Science.gov

Sample records for alloys fracture mechanics

  1. Fracture Mechanics

    DTIC Science & Technology

    1974-01-31

    2219 -T851 aluminum (fractures at low stresses). The parameter KF is alloy compact specimens 1 2 and demonstrate consistent a function of specimen...Congress of 20. Walker, E. K., "The Effect of Stress Ratio Applied Mechanics, 1924. During Crack Propagation and Fatigue for 2024-T3 and 7015- T6 Aluminum ...34Stress- Corrosion Cracking in 12. Kaufman, J. G., and Nelson, F. G., "More Ti-6A1-4V Titanium Alloy in Nitrogen Tetroxide," on Specimen Size Effect in 2219

  2. Fracture toughness testing and toughening mechanisms of some commercial cobalt-free hardfacing alloys

    SciTech Connect

    Cockeram, B.V.

    1998-04-27

    Hardfacing alloys are weld deposited to provide a wear resistant surface for structural base materials. Commercial low cobalt hardfacing alloys are being evaluated to reduce plant activation levels. Since hardfacing alloys typically must be resistant to cracking to assure adequate in service performance, fracture toughness is a critical material property. Fracture toughness (K{sub IC}) measurements of Fe base, Ni-base, and Co-base hardfacing were performed in accordance with ASTM E399-90 procedure in an effort to identify a tough cobalt-free alternative. Reduced scatter in K{sub IC} data was observed for the Fe base hardfacing, and the 95% lower bound K{sub IC} values were generally higher than the Ni-base Hardfacing alloys. Preliminary crack growth data obtained during precracking indicate that the Ni-base hardfacing possess better fatigue crack growth resistance. However, none of the Fe-base or Ni-base hardfacing have K{sub IC} values that are comparable to the reference Co-base hard facing. The test specimens were machined from thick (0.5 inches) weld deposits, and the microstructures of the test specimens are compared with the more prototypic, thinner deposits. Microstructural and fractographic examinations are used to characterize the fracture mechanisms and delineate the operative toughening mechanisms. Crack deflection and crack bridging toughening mechanisms are shown to be relevant for most of the commercial hardfacing.

  3. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment.

    PubMed

    Choudhary, Lokesh; Raman, R K Singh

    2012-02-01

    It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment.

  4. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties

    NASA Astrophysics Data System (ADS)

    Sanders, D. G.; Edwards, P.; Cantrell, A. M.; Gangwar, K.; Ramulu, M.

    2015-05-01

    Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

  5. Characterization of the Microstructure, Fracture, and Mechanical Properties of Aluminum Alloys 7085-O and 7175-T7452 Hollow Cylinder Extrusions

    NASA Astrophysics Data System (ADS)

    Benoit, Samuel G.; Chalivendra, Vijaya B.; Rice, Matthew A.; Doleski, Robert F.

    2016-09-01

    Microstructural, tensile, and fracture characterizations of cylindrically forged forms of aluminum alloys AA7085-O and AA7175-T7452 were performed. Mechanical and fracture properties were investigated along radial, circumferential, and longitudinal directions to determine directional dependency. American Society for Testing and Materials (ASTM) test methods (ASTM E8-04 and ASTM E1820) were employed for both the tensile and fracture characterizations, respectively. The tensile and fracture properties were related to microstructure in each direction. The strength, elongation at break, and ultimate tensile strength of AA7085-O were higher than those of AA7175-T7452. AA7175-T7452 alloy failed in a brittle manner during fracture studies. AA7085-O outperformed AA7175-T7452 on fracture energy in all of the orientations studied. Smaller grain sizes on the planes normal to circumferential and longitudinal directions showed improvement in both elongation at break and fracture energy values compared to those of radial direction. Scanning electron microscopy images demonstrated cleavage fracture in AA7175-T7452 and transgranular fracture in AA7085-O.

  6. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  7. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    NASA Technical Reports Server (NTRS)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  8. Dynamic tensile response of Zr-based bulk amorphous alloys: Fracture morphologies and mechanisms

    NASA Astrophysics Data System (ADS)

    Escobedo, J. P.; Gupta, Y. M.

    2010-06-01

    Plate impact experiments were conducted to examine the dynamic tensile response of Zr-based bulk amorphous alloys (BAAs) having a nominal composition of Zr56.7Cu15.3Ni12.5Nb5.0Al10.0Y0.5. The experimental configuration used in our work permitted soft recovery of the samples to allow a careful examination of the fractured samples along with real-time measurements of the sample free-surface velocity (FSV) histories. Tensile loading was preceded by elastic compressive loading to peak stresses in the 3.6 to 6.0 GPa range. Tensile damage in the recovered samples was examined using optical and electron microscopy. The microscopy results showed that the BAA samples exhibit a brittle behavior (as a glass) at the macroscopic level and a ductile behavior (as a metal) at the microscopic level; in addition, corrugations and bumps are observed at the nanoscale. The observed fracture morphologies are related to three key features present in our spall experiments: preceding compressive stress (3.6-6.0 GPa), high tensile loading rate (˜106/s), high mean tensile stress (˜2.3 GPa); and are intrinsically related to the amorphous glassy structure of the BAAs (free volume content). We propose that the compressive stress depletes the free volume content. With increasing compressive stress, the available free volume decreases causing a suppression of shear stresses during tension. Thus, the mean tensile component becomes more dominant at higher stresses. Consequently, the observed surface morphology results from brittle cleavage, causing an increased damage localization in the recovered samples spalled at higher stresses. These observations support the inferences made from measurements of FSV histories. The high tensile loading rate is proposed to be responsible for cracking by multiple shear band propagation and interception, rendering the observed serrated surface morphology. Finally, we proposed that the corrugations are created due to a succession of arrest and propagation of mode

  9. Development and fracture mechanics data for 6Al-6V-2 Sn titanium alloy

    NASA Technical Reports Server (NTRS)

    Fiftal, C. F.; Beck, E. J.

    1974-01-01

    Fracture mechanics properties of 6Al-6V-2Sn titanium in the annealed, solution-treated, and aged condition are presented. Tensile, fracture toughness, cyclic flaw growth, and sustained-load threshold tests were conducted. Both surface flaw and compact tension-specimen geometries were employed. Temperatures and/or environments used were -65 F (220 K) air, ambient, 300 F (422 K) air, and room-temperature air containing 10 and 100% relative humidity.

  10. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics, microstructure and chemistry

    SciTech Connect

    Wei, R.P.

    1993-01-25

    Phase transformation and cracking during RT aging of charged, high-purity Fe18Cr12Ni alloy and commerical 304 ss were examined; results show that [epsilon]* (hcp) hydride formed on Fe18Cr12Ni upon charging, and it decomposed rapidly to form first [epsilon] and then [alpha]' martensite. Morphology of fracture surfaces of Fe18Cr12Ni produced by corrosion fatigue in NaCl solutions and in hydrogen was found to be identical. Effort was made to examine the approaches and methodologies used in service life predictions and reliability analyses.

  11. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics, microstructure and chemistry

    SciTech Connect

    Wei, R.P.

    1992-01-29

    This progress report briefly summarizes the research performed under the referenced grant for the period from 1 December 1990 to 31 December 1991, and contains a cumulative listing of technical presentations and publications dating back to 1 June 1988. Under this grant, a multi-disciplinary research program is undertaken to address certain fundamental issues relating to corrosion fatigue crack growth in structurally important alloys in aqueous environments. The principal goal of the research is to develop and expand the scientific understanding of the processes that control corrosion fatigue crack growth, particularly for ferrous alloys in terms of the controlling mechanical and chemical/electrochemical processes and their interactions with the microstructure. Focus is placed upon the austenitic iron-chromium-nickel (FeCrNi) alloys because of the need to resolve certain mechanistic issues and because of extensive utilization of these alloys in the power generation and chemical industries. Emphasis is given to the growth of short (small) cracks at low growth rates because crack growth in this regime is expected to be more sensitive to changes in external chemical/electrochemical variables.

  12. Spall Fracture Morphologies and Mechanisms of Zr-based Bulk Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Gupta, Y. M.; Escobedo, J. P.

    2011-06-01

    Plate impact experiments were conducted to examine the dynamic tensile response of Zr-based bulk amorphous alloys (BAAs). Tensile loading was preceded by elastic compressive loading (3.6 to 6.0 GPa). Microscopy results revealed that the BAA samples exhibit brittle behavior (glass like) macroscopically and ductile behavior (metal like) microscopically; corrugations and bumps are observed at the nanoscale. The observed fracture morphologies are related to three key features of our spall experiments and the free volume content of the BAAs. With increasing compressive stress, the available free volume decreases causing a suppression of shear stresses during tension, resulting in brittle cleavage at higher stresses. The high tensile loading rate likely causes cracking by multiple shear band propagation and interception, rendering a serrated surface morphology. Finally, the corrugations are likely created due to a succession of arrest and propagation of mode I cracks. A subsequent dilatation, an effect of the tensile mean stress, caused the corrugations to evolve to bump-type features (10-100 nm). Work supported by DOE/NNSA.

  13. High temperature deformation and fracture mechanisms in a dendritic Ni[sub 3]Al alloy

    SciTech Connect

    Kim, H.K.; Earthman, J.C. . Dept. of Mechanical and Aerospace Engineering)

    1994-03-01

    The mechanisms that control high temperature deformation and rupture were studied in a Ni[sub 3]Al alloy that was thermo-mechanically treated to produce a non-porous dendritic grain structure. Comparisons of data corresponding to the dendritic grain morphology with that for the equiaxed grain structures indicate that the dendritic morphology results in significantly lower creep rates as well as substantially greater times to rupture. Comparison of the data with numerical calculations suggests that this difference in creep strength is due to an inherent resistance to grain boundary sliding by the dendritic grain structure. A constrained cavity growth model was adapted based on microstructural observations to account for cavitation within the dendritic microstructure. The success of the model indicates that rupture time is primarily determined by constrained cavity growth on isolated dendrite boundary segments.

  14. Mechanisms of intergranular fracture

    SciTech Connect

    Farkas, D.

    1999-08-01

    The authors present a study of the atomistic mechanisms of crack propagation along grain boundaries in metals and alloys. The failure behavior showing cleavage crack growth and/or crack-tip dislocation emission is demonstrated using atomistic simulations for an embedded-atom model. The simulations follow the quasi-equilibrium growth of a crack as the stress intensity applied increases. Dislocations emitted from crack tips normally blunt the crack and inhibit cleavage, inducing ductile behavior. When the emitted dislocations stay near the crack tip (sessile dislocations), they do blunt the crack but brittle cleavage can occur after the emission of a sufficient number of dislocations. The fracture process occurs as a combination of dislocation emission/micro-cleavage portions that are controlled by the local atomistic structure of the grain boundary. The grain boundary is shown to be a region where dislocation emission is easier, a mechanism that competes with the lower cohesive strength of the boundary region.

  15. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    SciTech Connect

    Park, H. B.; Chopra, O. K.

    2000-04-10

    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of {Delta}J and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values.

  16. The Delayed Fracture of Aluminum Alloys.

    DTIC Science & Technology

    1981-01-01

    if necessary and Identify by block number) aluminum alloys, stress - corrosion cracking, oxide film, Auger electron spectroscopy, Auger depth profiling...revere Ide If r ecester’ nd Ientify by block number). b -. ,h 0 unJaInenta mechanZsm of stress - corrosion cracking (SCC) has been studied for high-purity...these specimens is not intergranular. Fracture appears to have originated through pitting corrosion , which caused local stress concentration leading to

  17. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  18. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    NASA Technical Reports Server (NTRS)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  19. Elevated temperature fracture of RS/PM aluminum alloy 8009

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Yang, Leng; Gangloff, Richard P.

    1991-01-01

    The fracture behavior of advanced powder metallurgy Al-Fe-V-Si alloy 8009 (previously called FVS0812) is being characterized under monotonic loads, as a function of temperature. Particular attention is focused on contributions to the fracture mechanism from the fine grained dispersoid strengthened microstructure, dissolved solute from rapid solidification, and the moist air environment. Time-dependent crack growth is characterized in advanced aluminum alloys at elevated temperatures with the fracture mechanics approach, and cracking mechanisms are examined with a metallurgical approach. Specific tasks were to obtain standard load crack growth experimental information from a refined testing system; to correlate crack growth kinetics with the j-integral and time dependent C(sub t)(t); and to investigate the intermediate temperature embrittlement of 8009 alloy in order to understand crack growth mechanisms.

  20. Fracture mechanics expert system

    NASA Technical Reports Server (NTRS)

    Powers, E.; Elfer, N.; Casadaban, C.

    1992-01-01

    Attention is given to fracture mechanics, an analytical method used extensively in the National Space Transportation System to conservatively predict the remaining service life of an article when a flaw or a material defect is detected. These analyses are performed on hardware containing material defects that have been detected by various nondestructive inspection techniques. An expert system being developed to streamline the process so that hardware dispositions may be obtained in a timely and consistent manner is discussed. The expert system reduces the potential for errors due to the manual transcription between the various software programs involved in completing a fracture mechanics analysis. NEXPERT Object, the expert system development shell selected for this purpose, allows the various software programs used in fracture mechanics analyses to be accessed and manipulated from the same platform.

  1. Effect of argon purity on mechanical properties, microstructure and fracture mode of commercially pure (cp) Ti and Ti-6Al-4V alloys for ceramometal dental prostheses.

    PubMed

    Bauer, José; Cella, Suelen; Pinto, Marcelo M; Filho, Leonardo E Rodrigues; Reis, Alessandra; Loguercio, Alessandro D

    2009-12-01

    Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey's test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.

  2. Phase Field Fracture Mechanics.

    SciTech Connect

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  3. Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 steels

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Lee, Sunghak; Im, Young-Roc; Lee, Hu-Chul; Oh, Yong Jun; Hong, Jun Hwa

    2001-04-01

    This study was aimed at developing low-alloy steels for nuclear reactor pressure vessels by investigating the effects of alloying elements on mechanical and fracture properties of base metals and heat-affected zones (HAZs). Four steels whose compositions were variations of the composition specification for SA 508 steel (class 3) were fabricated by vacuum-induction melting and heat treatment, and their tensile properties and Charpy impact toughness were evaluated. Microstructural analyses indicated that coarse M3C-type carbides and fine M2C-type carbides were precipitated along lath boundaries and inside laths, respectively. In the steels having decreased carbon content and increased molybdenum content, the amount of fine M2C carbides was greatly increased, while that of coarse M3C carbides was decreased, thereby leading to the improvement of tensile properties and impact toughness. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment (PWHT). These findings suggested that the low-alloy steels with high strength and toughness could be processed by decreasing carbon and manganese contents and by increasing molybdenum content.

  4. The effect of microstructure on the fracture toughness of titanium alloys

    NASA Technical Reports Server (NTRS)

    Vanstone, R. H.; Low, J. R., Jr.

    1973-01-01

    The high-strength titanium alloys are widely used in aircraft and aerospace structures due to their high strength to density ratios. In such applications, the fracture toughness rather than the strength is often the factor which requires larger size sections and lower useful payloads. The response of the strength and toughness of titanium alloys was analyzed generally without regard to the fracture mode or the effect of microstructure on the fracture mechanisms. Research on the fracture mechanisms in aluminum alloys and steels showed that the toughness may be improved by decreasing the sizes of inclusions and sub-micron precipitates. An investigation was conducted to study the fracture mechanisms in titanium alloys which may lead to suggestions for the improvement of the fracture toughness without a corresponding loss in strength.

  5. Fracture mechanics validity limits

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.; Ernst, Hugo A.

    1994-01-01

    Fracture behavior is characteristics of a dramatic loss of strength compared to elastic deformation behavior. Fracture parameters have been developed and exhibit a range within which each is valid for predicting growth. Each is limited by the assumptions made in its development: all are defined within a specific context. For example, the stress intensity parameters, K, and the crack driving force, G, are derived using an assumption of linear elasticity. To use K or G, the zone of plasticity must be small as compared to the physical dimensions of the object being loaded. This insures an elastic response, and in this context, K and G will work well. Rice's J-integral has been used beyond the limits imposed on K and G. J requires an assumption of nonlinear elasticity, which is not characteristic of real material behavior, but is thought to be a reasonable approximation if unloading is kept to a minimum. As well, the constraint cannot change dramatically (typically, the crack extension is limited to ten-percent of the initial remaining ligament length). Rice, et al investigated the properties required of J-type parameters, J(sub x), and showed that the time rate, dJ(sub x)/dt, must not be a function of the crack extension rate, da/dt. Ernst devised the modified-J parameter, J(sub M), that meets this criterion. J(sub M) correlates fracture data to much higher crack growth than does J. Ultimately, a limit of the validity of J(sub M) is anticipated, and this has been estimated to be at a crack extension of about 40-percent of the initial remaining ligament length. None of the various parameters can be expected to describe fracture in an environment of gross plasticity, in which case the process is better described by deformation parameters, e.g., stress and strain. In the current study, various schemes to identify the onset of the plasticity-dominated behavior, i.e., the end of fracture mechanics validity, are presented. Each validity limit parameter is developed in

  6. Fracture Behavior of a Uranium and a Tungsten Alloy in a Notched Component with Inertia Loading

    DTIC Science & Technology

    1983-12-01

    34AD up’., TECHNICAL REPORT ARLCS-TR-83043 FRACTURE BEHAVIOR OF A URANIUM AND A TUNGSTEN ALLOY* iN A. NOTCHED COMPONENT WITH INERIrA LOADING J. H...andCutitle) S. TYPE OF REPORT & PERIOD COVERED FRACTURE BEHAVIOR OF A URANIUM AND A TUNGSTEN Final ALLOY IN A NOTCHED COMPONENT WITH INERTIA LOADTIG s...34M Report) Il. SUPPLEMENTARY NOTES Presented at Sixteenth National Symposium on Fracture Mechanics, ASTM, Columbus, Ohio, 15-18 August 1983

  7. Linear elastic fracture mechanics primer

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.

    1992-01-01

    This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.

  8. The effect of hydrogen on the fracture toughness of alloy X-750 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Symons, Douglas M.

    Ni-Cr-Fe alloys are widely used in pressurized water nuclear reactors (PWR). These alloys are susceptible to stress corrosion cracking (SCC) in PWR environments. There have been numerous mechanisms of crack advance proposed to describe the SCC of the nickel-base alloys in a PWR environment including slip/film rupture/oxidation and hydrogen embrittlement. It has also been suggested that there is not sufficient evidence to implicate hydrogen in the PWR SCC of nickel-base alloys. This program evaluated the effect of hydrogen on the embrittlement of a nickel-base alloy, alloy X-750, at elevated temperatures with a hydrogen concentration typical of what may be developed from the corrosion reaction. Fracture toughness values and the tearing resistance of alloy X-750 were evaluated in hydrogen gas and in air 260°C and 338°C. It was shown that at 260°C and 338°C alloy X-750 was severely embrittled in high pressure hydrogen gas. Further, the fracture morphology changed from predominantly transgranular ductile dimple fracture in air to predominantly intergranular fracture in hydrogen. The fracture morphology in hydrogen was similar to that found for PWR SCC of this material. This work supports a hydrogen-enhanced fracture mechanism contributing to the SCC of nickel-base alloys at elevated temperatures.

  9. Fracture testing and performance of beryllium copper alloy C 17510

    SciTech Connect

    Murray, H.A.; Zatz, I.J. . Plasma Physics Lab.); Ratka, J.O. )

    1992-01-01

    A series of test programs was undertaken on copper beryllium alloy C 17510 for several variations in material process and chemistry. These variations in C 17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C 17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C 17510 alloys included both J-integral and plane strain fracture toughness testing (E813, E399) and fatigue crack growth rate tests (E647), as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature.

  10. Fracture testing and performance of beryllium copper alloy C 17510

    SciTech Connect

    Murray, H.A.; Zatz, I.J.; Ratka, J.O.

    1992-12-01

    A series of test programs was undertaken on copper beryllium alloy C 17510 for several variations in material process and chemistry. These variations in C 17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C 17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C 17510 alloys included both J-integral and plane strain fracture toughness testing (E813, E399) and fatigue crack growth rate tests (E647), as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature.

  11. Fracture Mechanisms in Iron and Nickel Aluminides

    DTIC Science & Technology

    1988-08-15

    ITmc rE co"i 41 ) 0) Final Report I Contract N00014-84-K-0276 FRACTURE MECHANISMS IN IRON AND NICKEL ALUMINIDES covering the period 1/3/84 - 31/5/88...THIS PAGE ABSTRACT -he high cycle fatigue ( HCF ) resistance of several boron-doped Ni3AI alloys has been determined over a range of test temperatures...were transgranular in the Ni-rich alloys and intergranular or interdendritic in Ni-26%A).. HCF lives decreased sharply at temperatures above 500dC

  12. Mechanics of Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  13. Fracture behavior of nickel-based alloys in water

    SciTech Connect

    Mills, W.J.; Brown, C.M.

    1999-08-01

    The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.

  14. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  15. The effect of alloy composition on the mechanism of stress corrosion cracking of titanium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Boyd, J. D.; Williams, D. N.; Wood, R. A.; Jaffee, R. I.

    1972-01-01

    The effects of alloy composition on the aqueous stress corrosion of titanium alloys were studied with emphasis on determining the interrelations among composition, phase structure, and deformation and fracture properties of the alpha phase in alpha-beta alloys. Accomplishments summarized include the effects of alloy composition on susceptibility, and metallurgical mechanisms of stress-corrosion cracking.

  16. EBSD and Nanoindentation-Correlated Study of Delamination Fracture in Al-Li Alloy 2090

    NASA Technical Reports Server (NTRS)

    Tayon, Wesley A.; Crooks, Roy E.; Domack, Marcia S.; Wagner, John A.; Elmustafa, A. A.

    2008-01-01

    Al-Li alloys offer attractive combinations of high strength and low density. However, a tendency for delamination fracture has limited their use. A better understanding of the delamination mechanisms may identify methods to control delaminations through processing modifications. A combination of new techniques has been used to evaluate delamination fracture in Al-Li alloys. Both high quality electron backscattered diffraction (EBSD) information and valid nanoindentation measurements were obtained from fractured test specimens. Correlations were drawn between nano-scale hardness variations and local texture along delaminating boundaries. Intriguing findings were observed for delamination fracture through the combined analysis of grain orientation, Taylor factor, and kernel average misorientation.

  17. Relationship between Fracture Toughness and Tensile Properties of A357 Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N. D.; Tiryakioğlu, M.

    2009-03-01

    The fracture-related mechanical properties of the A357 cast aluminum alloy, namely, elongation to fracture, tensile strain energy density (tensile toughness), strain-hardening exponent, and plane strain fracture toughness were investigated. Correlations between these properties have been established for 25 different artificial aging heat-treatment conditions and for five minor variations in chemical composition. Empirical relationships between the strain energy density and both the tensile elongation to fracture and the strain-hardening exponent have been developed. Analysis of the fracture surfaces indicated that the fracture mechanism of the investigated specimens varies according to the artificial aging conditions. Moreover, empirical relationships between the fracture toughness and strain energy density and between fracture toughness and strain-hardening exponent have been developed; these can be used to estimate the plane strain fracture toughness of A357 as a function of yield strength and tensile toughness.

  18. Mechanisms of Plastic and Fracture Instabilities for Alloy Development of Fusion Materials. Final Project Report for period July 15, 1998 - July 14, 2003

    SciTech Connect

    Ghoniem, N. M.

    2003-07-14

    The main objective of this research was to develop new computational tools for the simulation and analysis of plasticity and fracture mechanisms of fusion materials, and to assist in planning and assessment of corresponding radiation experiments.

  19. Effect of Rolling on High-Cycle Fatigue and Fracture of an Al - Mg - Sc Alloy

    NASA Astrophysics Data System (ADS)

    Zhemchuzhnikova, D. A.; Petrov, A. P.; Eremeev, N. V.; Eremeev, V. V.; Kaibyshev, R. O.

    2016-07-01

    The tensile strength and fatigue properties of alloy 1575 of the Al - Mg - Sc system are studied after hot deformation (at 360°C) and subsequent cold rolling with different reduction ratios. The effect of the deformed structure on the properties and mechanisms of fracture of the alloy under cyclic tests is determined.

  20. A statistical model for cleavage fracture of low alloy steel

    SciTech Connect

    Chen, J.H.; Wang, G.Z.; Wang, H.J.

    1996-10-01

    A new statistical model for cleavage fracture of the low alloy steel is proposed. This model is based on a recently suggested physical model and takes account of the effect of the preceding loading processes. This statistical model satisfactorily describes the failure probability distribution of 42 precracked specimens fractured at various loads at a test temperature of {minus}100 C. The micromechanisms of cleavage fracture of low alloy steel are also further discussed.

  1. Geometrically Frustrated Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Mitchell, Noah; Koning, Vinzenz; Vitelli, Vincenzo; Irvine, William T. M.

    2015-03-01

    When a flat elastic sheet is forced to conform to a surface with Gaussian curvature, stresses arise in the sheet. The mismatch between initial and final metrics gives rise to new fracture behavior which cannot be achieved by boundary loading alone. Using experiments of PDMS sheets frustrated on 3D-printed surfaces and a linearized analytical model, we demonstrate the ability of curvature to govern the sheets' fracture phenomenology. In this talk, we first show that curvature can both stimulate and suppress fracture initiation, depending on the position and orientation of the initial slit. Secondly, we show that curvature can steer the path of a crack as it propagates through the material. Lastly, the curvature can arrest cracks which would otherwise continue to propagate.

  2. Mechanical alloying of brittle materials

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; McDermott, B.; Koch, C. C.

    1988-12-01

    Mechanical alloying by high energy ball milling has been observed in systems with nominally brittle components. The phases formed by mechanical alloying of brittle components include solid solutions (Si + Ge → SiGe solid solution), intermetallic compounds (Mn + Bi → MnBi), and amorphous alloys (NiZr2 + Ni11Zr9 → amorphous Ni50Zr50). A key feature of possible mechanisms for mechanical alloying of brittle components is the temperature of the powders during milling. Experiments and a computer model of the kinetics of mechanical alloying were carried out in order to esti-mate the temperature effect. Temperature rises in typical powder alloys during milling in a SPEX mill were estimated to be ≤350 K using the kinetic parameters determined from the computer model. The tempering response of fresh martensite in an Fe-1.2 wt pct C alloy during milling was consistent with the maximum results of the computer model, yielding temperatures in the pow-ders of ≤575 K i.e., ΔT ≤ 300 K). Thermal activation was required for mechanical alloying of Si and Ge powder. No alloying occurred when the milling vial was cooled by liquid nitrogen. The pos-sible mechanisms responsible for material transfer during mechanical alloying of brittle components are considered.

  3. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics, microstructure and chemistry. Progress report, January 1, 1992--December 31, 1992

    SciTech Connect

    Wei, R.P.

    1993-01-25

    Phase transformation and cracking during RT aging of charged, high-purity Fe18Cr12Ni alloy and commerical 304 ss were examined; results show that {epsilon}* (hcp) hydride formed on Fe18Cr12Ni upon charging, and it decomposed rapidly to form first {epsilon} and then {alpha}` martensite. Morphology of fracture surfaces of Fe18Cr12Ni produced by corrosion fatigue in NaCl solutions and in hydrogen was found to be identical. Effort was made to examine the approaches and methodologies used in service life predictions and reliability analyses.

  4. Some recent theoretical and experimental developments in fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Eftis, J.; Hones, D. L.

    1978-01-01

    Recent theoretical and experimental developments in four distinct areas of fracture mechanics research are described. These are as follows: experimental comparisons of different nonlinear fracture toughness measures, including the nonlinear energy, R curve, COD and J integral methods; the singular elastic crack-tip stress and displacement equations and the validity of the proposition of their general adequacy as indicated, for example, by the biaxially loaded infinite sheet with a flat crack; the thermodynamic nature of surface energy induced by propagating cracks in relation to a general continuum thermodynamic description of brittle fracture; and analytical and experimental aspects of Mode II fracture, with experimental data for certain aluminum, steel and titanium alloys.

  5. The effect of microstructure on the fracture toughness of titanium alloys

    NASA Technical Reports Server (NTRS)

    Vanstone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.

    1974-01-01

    The microstructure of the alpha titanium alloy Ti-5Al-2.5Sn and the metastable beta titanium alloy Beta 3 was examined. The material was from normal and extra low interstitial grade plates which were either air-cooled or furnace-cooled from an annealing treatment. Beta 3 was studied in alpha-aged and omega-aged plates which were heat treated to similar strength levels. Tensile and plane strain fracture toughness tests were conducted at room temperature on the alpha-aged material. The microstructure and fracture mechanisms of alloys were studied using optical metallography, electron microscopy, microprobe analyses, and texture pole figures. Future experiments are described.

  6. Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials.

  7. Fracture testing and performance of beryllium copper alloy C17510

    SciTech Connect

    Murray, H.A.; Zatz, I.J.

    1994-05-01

    When a literature search and discussion with manufacturers revealed that there was virtually no existing data related to the fracture properties and behavior of copper beryllium alloy C17510, a series of test programs was undertaken to ascertain this information for several variations in material processing and chemistry. These variations in C17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C17510 alloys included both J-integral and plane strain fracture toughness testing and fatigue crack growth rate tests, as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature. In order to confirm the test results, duplicate and independent test programs were awarded to separate facilities with appropriate test experience, whenever possible. The primary goal of the test program, to determine and bound the fracture toughness and Paris constants for C17510,was accomplished. In addition, a wealth of information was accumulated pertaining to crack growth characteristics, effects of directionality and potential testing pitfalls. The paper discusses the test program and its findings in detail.

  8. Modelling the graphite fracture mechanisms

    SciTech Connect

    Jacquemoud, C.; Marie, S.; Nedelec, M.

    2012-07-01

    In order to define a design criterion for graphite components, it is important to identify the physical phenomena responsible for the graphite fracture, to include them in a more effective modelling. In a first step, a large panel of experiments have been realised in order to build up an important database; results of tensile tests, 3 and 4 point bending tests on smooth and notched specimens have been analysed and have demonstrated an important geometry related effects on the behavior up to fracture. Then, first simulations with an elastic or an elastoplastic bilinear constitutive law have not made it possible to simulate the experimental fracture stress variations with the specimen geometry, the fracture mechanisms of the graphite being at the microstructural scale. That is the reason why a specific F.E. model of the graphite structure has been developed in which every graphite grain has been meshed independently, the crack initiation along the basal plane of the particles as well as the crack propagation and coalescence have been modelled too. This specific model has been used to test two different approaches for fracture initiation: a critical stress criterion and two criteria of fracture mechanic type. They are all based on crystallographic considerations as a global critical stress criterion gave unsatisfactory results. The criteria of fracture mechanic type being extremely unstable and unable to represent the graphite global behaviour up to the final collapse, the critical stress criterion has been preferred to predict the results of the large range of available experiments, on both smooth and notched specimens. In so doing, the experimental observations have been correctly simulated: the geometry related effects on the experimental fracture stress dispersion, the specimen volume effects on the macroscopic fracture stress and the crack propagation at a constant stress intensity factor. In addition, the parameters of the criterion have been related to

  9. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    NASA Technical Reports Server (NTRS)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  10. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    SciTech Connect

    Sarkar, B.; Lisagor, W.B. NASA, Langley Research Center, Hampton, VI )

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate. 12 refs.

  11. Fracture mechanics of cellular glass

    NASA Technical Reports Server (NTRS)

    Zwissler, J. G.; Adams, M. A.

    1981-01-01

    The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.

  12. Microstructure and Fracture Behavior of Tungsten Heavy Alloys

    SciTech Connect

    Sunwoo, A

    2003-06-01

    The 93% W-5.6% Ni-1.4% Fe and 93.1% W-4.7% Ni-2.2% Co alloys (WHA) provided by Army Research Laboratory (ARL), Aberdeen are characterized to determine the effects of matrix alloying and swaging on the microstructure and fracture behavior. The W particles are oblong with respect to the swaging direction. The microstructure of the W-Ni-Fe alloy reveals good cohesive bonding between W particles, but there is W-matrix interface separation and matrix alloy cracking. The microstructure of the W-Ni-Co alloy reveals regions of good cohesive bonding between W particles, but also regions where some wetting has not occurred by the liquid. No evidence was observed of matrix alloy cracking. The fracture characteristic of WHA is dominantly cleavage of W particles.

  13. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  14. Microstructure and Mechanical Behavior of High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Licavoli, Joseph J.; Gao, Michael C.; Sears, John S.; Jablonski, Paul D.; Hawk, Jeffrey A.

    2015-10-01

    High-entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion, usually of equal atomic percent, they have high configurational entropy, and thus, they hold the promise of interesting and useful properties such as enhanced strength and alloy stability. The present study investigates the mechanical behavior, fracture characteristics, and microstructure of two single-phase FCC HEAs CoCrFeNi and CoCrFeNiMn with some detailed attention given to melting, homogenization, and thermo-mechanical processing. Ingots approaching 8 kg in mass were made by vacuum induction melting to avoid the extrinsic factors inherent to small-scale laboratory button samples. A computationally based homogenization heat treatment was given to both alloys in order to eliminate any solidification segregation. The alloys were then fabricated in the usual way (forging, followed by hot rolling) with typical thermo-mechanical processing parameters employed. Transmission electron microscopy was subsequently used to assess the single-phase nature of the alloys prior to mechanical testing. Tensile specimens (ASTM E8) were prepared with tensile mechanical properties obtained from room temperature through 800 °C. Material from the gage section of selected tensile specimens was extracted to document room and elevated temperature deformation within the HEAs. Fracture surfaces were also examined to note fracture failure modes. The tensile behavior and selected tensile properties were compared with results in the literature for similar alloys.

  15. An investigation of plastic fracture in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Low, J. R., Jr.; Vanstone, R. H.; Merchant, R. H.

    1972-01-01

    The brittle fracture of many high strength alloys such as steel, titanium, and aluminum was shown to occur by a process called plastic fracture. According to this process microscopic voids form at impurity particles, then grow and coalesce to cause the final rupture. To further understand the role of impurities, four aluminum alloys were investigated: 2024-T851, 2124-T851, 7075-T7351 and 7079-T651. Fractography, quantitative metallography, and microprobe studies assessed the roles of various impurity particles relative to these alloys.

  16. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics, microstructure and chemistry. Progress report, December 1, 1990--December 31, 1992

    SciTech Connect

    Wei, R.P.

    1992-01-29

    This progress report briefly summarizes the research performed under the referenced grant for the period from 1 December 1990 to 31 December 1991, and contains a cumulative listing of technical presentations and publications dating back to 1 June 1988. Under this grant, a multi-disciplinary research program is undertaken to address certain fundamental issues relating to corrosion fatigue crack growth in structurally important alloys in aqueous environments. The principal goal of the research is to develop and expand the scientific understanding of the processes that control corrosion fatigue crack growth, particularly for ferrous alloys in terms of the controlling mechanical and chemical/electrochemical processes and their interactions with the microstructure. Focus is placed upon the austenitic iron-chromium-nickel (FeCrNi) alloys because of the need to resolve certain mechanistic issues and because of extensive utilization of these alloys in the power generation and chemical industries. Emphasis is given to the growth of short (small) cracks at low growth rates because crack growth in this regime is expected to be more sensitive to changes in external chemical/electrochemical variables.

  17. A nonlinear high temperature fracture mechanics basis for strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Halford, Gary R.

    1989-01-01

    A direct link was established between Strainrange Partitioning (SRP) and high temperature fracture mechanics by deriving the general SRP inelastic strain range versus cyclic life relationships from high temperature, nonlinear, fracture mechanics considerations. The derived SRP life relationships are in reasonable agreement based on the experience of the SRP behavior of many high temperature alloys. In addition, fracture mechanics has served as a basis for derivation of the Ductility-Normalized SRP life equations, as well as for examination of SRP relations that are applicable to thermal fatigue life prediction. Areas of additional links between nonlinear fracture mechanics and SRP were identified for future exploration. These include effects of multiaxiality as well as low strain, nominally elastic, long life creep fatigue interaction.

  18. Fracture mechanics parameters for small fatigue cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    This paper presents a review of some common small-crack test specimens, the underlying causes of the small-crack effect, and the fracture-mechanics parameters that have been used to correlate or predict their growth behavior. This review concentrates on continuum mechanics concepts and on the nonlinear behavior of small cracks. The paper reviews some stress-intensity factor solutions for small-crack test specimens and develops some simple elastic-plastic J integral and cyclic J integral expressions that include the influence of crack-closure. These parameters were applied to small-crack growth data on two aluminum alloys, and a fatigue life prediction methodology is demonstrated. For these materials, the crack-closure transient from the plastic wake was found to be the major factor in causing the small-crack effect.

  19. Machining characteristics and fracture morphologies in a copper-beryllium (Cu-2Be) alloy

    NASA Astrophysics Data System (ADS)

    Sudhakar, K. V.; Cisneros, J. C.; Cervantes, Hector; Pineda, Cosme Gomez

    2006-02-01

    The technology of materials removal is improved greatly by the introduction of advanced cutting tools like cubic boron nitride, ceramics, polycrystalline diamond and the more recent whisker-reinforced materials. In this paper, the influence of cutting temperature on machinability, mechanical properties, microstructure, and fracture morphology of Cu-2Be alloy using a polycrystalline diamond cutter is investigated. The information on machining, microstructure, and fracture morphology of Cu-2Be alloy are very useful to understand their fabrication characteristics and the basic mechanisms of its deformation and fracture. The machinability (in terms of surface finish) of Cu-2Be alloy is evaluated as a function of cutting temperature, resulting from wet and dry cutting. Machining is carried out on a Hardinge Cobra 42 CNC machine (Hardinge Inc., Elmira, NY), and the machining parameters used—cutting speed, depth of cut, and feed rate—are kept constant during both wet and dry cutting. The machined surface finish on Cu-2Be alloy is measured using a surface finish analyzer (Surftest 401, series 178) technique. The machined specimens are examined for their strength and hardness properties using a standard Universal Testing Machine and Rockwell hardness tester, respectively. Wet cutting (using coolants) produced a smooth surface finish when compared with dry cutting of the Cu-2Be alloy. The machined specimens are examined for their microstructural features using a Nikon optical microscope. The specimens are etched using a suitable etchant solution for revealing such microstructure constituents as grain size, phase proportions, and the possible overheated areas (especially in dry cutting). The fractured surfaces from the tensile and impact toughness tests are investigated for their fracture morphologies (dry and wet cutting) using a microprocessor-controlled scanning electron microscope (Jeol Model JSM 5910 LV). A detailed analysis is also made to understand and interpret

  20. In-Situ Fracture Observation and Fracture Toughness Analysis of Zr-Based Amorphous Alloys Containing Ductile Dendrites

    NASA Astrophysics Data System (ADS)

    Jeon, Changwoo; Kim, Choongnyun Paul; Lee, Sunghak

    2012-10-01

    Effects of dendrite size on fracture properties of Zr-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. Three amorphous alloy plates having different thicknesses were fabricated by varying cooling rates after vacuum arc melting. The effective size of β dendrites was varied from 14.7 to 30.1 μm in the alloy plates, while their volume fraction was almost constant. According to microfracture observation of the alloy containing fine β dendrites, shear bands initiated at the amorphous matrix were connected with the notch tip as they were deepened through dendrites, which led to abrupt crack propagation. In the alloy containing coarser β dendrites, shear bands were initiated at the amorphous matrix to form a crack near the notch tip region and were expanded over large matrix areas. The crack propagation was frequently blocked by β dendrites, and many shear bands are formed near or in front of the propagating crack, thereby resulting in stable crack growth, which could be confirmed by the fracture resistance curve ( R-curve) behavior. This increase in fracture resistance with increasing crack length could be explained by mechanisms of blocking of crack growth, multiple shear band formation, and crack blunting.

  1. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  2. Modelling of Local Necking and Fracture in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Achani, D.; Eriksson, M.; Hopperstad, O. S.; Lademo, O.-G.

    2007-05-01

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As an accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests.

  3. (Fracture mechanics of inhomogeneous materials)

    SciTech Connect

    Bass, B.R.

    1990-10-01

    Discussions were held with Japanese researchers concerning (1) the Elastic-Plastic Fracture Mechanics in Inhomogeneous Materials and Structures (EPI) Program, and (2) ongoing large-scale pressurized- thermal-shock (PTS) experiments in Japan. In the EPI Program, major activities in the current fiscal year include round-robin analyses of measured data from inhomogeneous base metal/weld metal compact- tension (CT) specimens fabricated from welded plates of A533 grade B class 1 steel. The round-robin task involves participants from nine research organizations in Japan and is scheduled for completion by the end of 1990. Additional experiments will be performed on crack growth in inhomogeneous CT specimens and three-point bend (3PB) specimens 10 mm thick. The data will be compared with that generated previously from 19-mm-thick-specimens. A new type of inhomogeneous surface-cracked specimen will be tested this year, with ratio of crack depth to surface length (a/c) satisfying 0.2 {le} (a/c) {le} 0. 8 and using a 3PB type of applied load. Plans are under way to fabricate a new welded plate of A533 grade B class 1 steel (from a different heat than that currently being tested) in order to provide an expanded fracture-toughness data base. Other topics concerning fracture-prevention issues in reactor pressure vessels were discussed with each of the host organizations, including an overview of ongoing work in the Heavy-Section Steel Technology (HSST) Program.

  4. Fracture mechanics of cellular glass

    SciTech Connect

    Zwissler, J.G.; Adams, M.A.

    1981-02-01

    Cellular glasses are prime candidate materials for the structural substrate of mirrored glass for solar concentrator reflecting panels. These materials are brittle, however, and susceptible to mechanical failure from slow crack growth caused by a stress corrosion mechanism. The results are detailed of one part of a program established to develop improved cellular glasses and to characterize the behavior of these and commercially available materials. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials are developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region I may be slower, by orders of magnitude, than that found in dense glasses.

  5. Mechanical Coal-Face Fracturer

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Radial points on proposed drill bit take advantage of natural fracture planes of coal. Radial fracture points retracted during drilling and impacted by piston to fracture coal once drilling halts. Group of bits attached to array of pneumatic drivers to fracture large areas of coal face.

  6. The effect of hydrogen on the fracture toughness of alloy X-750

    NASA Astrophysics Data System (ADS)

    Symons, Douglas M.; Thompson, Anthony W.

    1997-03-01

    The effect of hydrogen on the fracture toughness behavior of a nickel-base superalloy, Alloy X-750, in the solutionized and aged condition was investigated. Notched bend specimens were tested to determine if the fracture process was stress or strain controlled. The fracture was observed to initiate at a distance between the location of maximum stress and maximum strain, suggesting that fracture required both a critical stress and strain. The effect of hydrogen was further investigated and modeled using fracture toughness testing and fractographic examination. The fracture toughness of the non-charged specimen was 147 MPasqrt m . Charging with hydrogen decreased the fracture toughness, K lc, to 52 MPasqrt m at a rapid loading rate and further decreased the toughness to 42 MPasqrt m for a slow loading rate. This is consistent with the rate-limiting step forthe embrittlement process being hydrogen diffusion. The fracture morphology for the hydrogen-charged specimens was intergranular ductile dimple, while the fracture morphology of noncharged specimens was a mixture of large transgranular dimples and fine intergranular dimples. The intergranular failure mechanism in Alloy X-750 was a microvoid initiation process at grain boundary carbides followed by void growth and coalescence. One role of hydrogen was to reduce the void initiation strain for the fine intergranular carbides. Hydrogen may have also increased the rate of void growth. The conditions ahead of a crack satisfy the critical stress criterion at a much lower applied stress intensity factor than for the critical fracture strain criterion. A model based on a critical fracture strain criterion is shown to predict the fracture behavior.

  7. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics, microstructure and chemistry. Final technical report, June 1, 1988--November 30, 1993

    SciTech Connect

    Wei, R.P.

    1994-01-05

    A multi-disciplinary research program was undertaken to address certain fundamental issues relating to corrosion fatigue crack growth in structurally important alloys in aqueous solutions. Focus was placed on austenitic iron-chromium-nickel alloys.

  8. Compendium of fracture mechanics problems

    NASA Technical Reports Server (NTRS)

    Stallworth, R.; Wilson, C.; Meyers, C.

    1990-01-01

    Fracture mechanics analysis results are presented from the following structures/components analyzed at Marshall Space Flight Center (MSFC) between 1982 and 1989: space shuttle main engine (SSME), Hubble Space Telescope (HST), external tank attach ring, B-1 stand LOX inner tank, and solid rocket booster (SRB). Results from the SSME high pressure fuel turbopump (HPFTP) second stage blade parametric analysis determine a critical flaw size for a wide variety of stress intensity values. The engine 0212 failure analysis was a time dependent fracture life assessment. Results indicated that the disk ruptured due to an overspeed condition. Results also indicated that very small flaws in the curvic coupling area could propagate and lead to failure under normal operating conditions. It was strongly recommended that a nondestructive evaluation inspection schedule be implemented. The main ring of the HST, scheduled to launch in 1990, was analyzed by safe-life and fail-safe analyses. First safe-life inspection criteria curves for the ring inner and outer skins and the fore and aft channels were derived. Afterwards the skins and channels were determined to be fail-safe by analysis. A conservative safe-life analysis was done on the 270 redesign external tank attach ring. Results from the analysis were used to determine the nondestructive evaluation technique required.

  9. Entablature: fracture types and mechanisms

    NASA Astrophysics Data System (ADS)

    Forbes, A. E. S.; Blake, S.; Tuffen, H.

    2014-05-01

    Entablature is the term used to describe zones or tiers of irregular jointing in basaltic lava flows. It is thought to form when water from rivers dammed by the lava inundates the lava flow surface, and during lava-meltwater interaction in subglacial settings. A number of different fracture types are described in entablature outcrops from the Búrfell lava and older lava flows in Þjórsárdalur, southwest Iceland. These are: striae-bearing, column-bounding fractures and pseudopillow fracture systems that themselves consist of two different fracture types—master fractures with dimpled surface textures and subsidiary fractures with curved striae. The interaction of pseudopillow fracture systems and columnar jointing in the entablature produces the chevron fracture patterns that are commonly observed in entablature. Cube-jointing is a more densely fractured version of entablature, which likely forms when more coolant enters the hot lava. The entablature tiers display closely spaced striae and dendritic crystal shapes which indicate rapid cooling. Master fracture surfaces show a thin band with an evolved composition at the fracture surface; mineral textures in this band also show evidence of quenching of this material. This is interpreted as gas-driven filter pressing of late-stage residual melt that is drawn into an area of low pressure immediately preceding or during master fracture formation by ductile extensional fracture of hot, partially crystallised lava. This melt is then quenched by an influx of water and/or steam when the master fracture fully opens. Our findings suggest that master fractures are the main conduit for coolant entering the lava flow during entablature formation.

  10. Microstructure-fracture toughness relationship of vanadium alloy/stainless steel brazed joints

    NASA Astrophysics Data System (ADS)

    Gan, Y. X.; Aglan, H. A.; Steward, R. V.; Chin, B. A.; Grossbeck, M. L.

    2001-11-01

    In this work, brazing V-5Ti-5Cr to 304 stainless steel (SS 304) using Au-18Ni alloy as filler material was conducted under high vacuum condition. Sessile drop technique was used to determine the wettability of filler alloy to the stainless steel and the vanadium alloy substrates upon which the relationship between the contact angles with time was obtained. Tensile tests were performed on unnotched and notched specimens to demonstrate the overloading behavior and the fracture toughness of the base materials and the brazed joint. Fracture surface was examined for both the V-5Ti-5Cr and the joint to identify the failure mechanisms under static loadings. It was found that the Au-18Ni filler material exhibited good wettability with the SS 304 and V-5Ti-5Cr. The ultimate tensile strength of the brazed joint reached 245 MPa. The strain to failure was about 1.3%. Young's modulus was about 351 GPa. The fracture toughness ( KIc) of this joint was 19.1 MPa √ m. The fracture surface of the joint showed well brazed area with good wettability and proper amount of residual filler material which came from the solidification of residual liquid filler alloy of Au-Ni. The failure of the joint occurred along the interface of the vanadium/filler under static load.

  11. Review of cryogenic mechanical and thermal properties of Al-Li alloys and Alloy 2219

    SciTech Connect

    Simon, N.J.; Drexler, E.S.; Reed, R.P.

    1991-12-01

    The review of cryogenic mechanical and thermal properties presented here is part of a broader National Institute of Standards and Technology (NIST) program to assess new high-strength Al-Li alloys for use in the cryogenic tankage of the Advanced Launch System (ALS). The purpose of the NIST program has been to assess the relative suitability of high-strength Al-Li alloys and alloy 2219 for use in ALS cryogenic tanks. In the report, the cryogenic data on Al-Li alloys 8090, 2090, WL049, and Al alloy 2219 have been summarized. Properties covered in the survey are tensile strength, yield strength, elongation, fracture toughness, elastic constants, specific heat, thermal conductivity, and thermal expansion.

  12. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  13. Temperature effects on the deformation and fracture of Al-Li-Cu-In alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1991-01-01

    The crack initiation and growth fracture resistance of Al-Cu-Li and Al-Cu-Li-In alloys were characterized and optimized for cryogenic tank applications. Presently, the effects of stress state and temperature is being determined on the fracture toughness and fracture mechanisms of commercially available Vintage 3 2090-T81 and experimental 2090+In-T6. Precracked J-integral specimens of both alloys were tested at ambient and cryogenic temperatures in the plane stress and plane strain conditions. Considering ambient temperature, results showed that 2090-T81 exhibited the highest toughness in both plane strain and plane stress conditions. For the plane strain condition, reasonable crack initiation and growth toughness of 1090-T81 are associated with a significant amount of delamination and transgranular fracture. Plane stress toughnesses were higher and fracture was characterized by shear cracking with minimal delaminations. In comparisons, the fracture behavior of 2090+In-T6 is significantly degraded by subgrain boundary precipitation. Toughness is low and characterized by intersubgranular fracture with no delamination in the plane stress or plane strain conditions. Intersubgranular cracking is a low energy event which presumably occurs prior to the onset of slip band cracking. Copious grain boundary precipitation is atypical of commercially available 2090. At cryogenic temperatures, both alloys exhibit increased yield strength, toughness, and amount of delamination and shear cracking. The change in fracture mode of 2090+In-T6 from intersubgranular cracking at ambient temperature to a combination of intersubgranular cracking, shear cracking, and delamination at cryogenic temperature is the subject of further investigation.

  14. In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Euh, Kwangjun; Lee, Jung-Moo; Nam, Duk-Hyun; Lee, Sunghak

    2011-12-01

    The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile γ particles was explained by direct observation of microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of γ particles in β grains after the homogenization treatment at 1073 K to 1373 K (800 °C to 1100 °C). With increasing homogenization temperature, γ particles were coarsened and distributed homogeneously along β grain boundaries as well as inside β grains. According to the in-situ microfracture observation, γ particles effectively acted as blocking sites of crack propagation and provided the stable crack growth, which could be confirmed by the R-curve analysis. The increase in fracture resistance with increasing crack length improved overall fracture properties of the Ni-Mn-Ga-Fe alloys. This improvement could be explained by mechanisms of blocking of crack propagation and crack blunting and bridging.

  15. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Lambert, D. M.

    1994-01-01

    The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).

  16. Special Features of Fracture of a Solid-State Titanium Alloy - Nickel - Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Khazgaliev, R. G.; Mukhametrakhimov, M. Kh.; Imaev, M. F.; Shayakhmetov, R. U.; Mulyukov, R. R.

    2015-10-01

    Microstructure, nanohardness, and special features of fracture of three-phase titanium alloy and stainless steel joint through a nanostructural nickel foil are investigated. Uniformly distributed microcracks are observed in Ti2Ni and TiN3 layers joined at temperatures above T = 700°C, whereas no microcracks are observed in the TiNi layer. This suggests that the reason for microcracking is an anomalously large change in the linear expansion coefficient of the TiNi layer during austenitic-martensitic transformation. Specimens subjected to mechanical tests at T = 20°C are fractured along different layers of the material, namely, in the central part of the specimen they are fractured along the Ti2Тi/TiNi interface, whereas at the edge they are fractured along the TiNi/TiNi3 interface.

  17. Relation between the fracture laws and the fatigue life of a surface-hardened pseudo-α titanium alloy

    NASA Astrophysics Data System (ADS)

    Bagmutov, V. P.; Vodop'yanov, V. I.; Zakharov, I. N.; Denisevich, D. S.

    2016-07-01

    The laws of fracture and fatigue life of the PT-3V pseudo-α titanium alloy subjected to surface hardening using electromechanical, ultrasonic, and combined treatment are studied. Fracture mechanisms and the structures of crack nucleation and growth zones are described using the results of metallographic and fractographic analysis of samples after fatigue tests. It is shown that the existence of a thin hardened layer on the sample surface changes the crack nucleation time and the state of fracture surface in the crack nucleation zone. This surface is characterized by signs of brittle or ductile fracture, which substantially affects the fatigue life of the sample.

  18. Fracture mechanism of a thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Samoilenko, V. M.; Ravilov, R. G.; Drevnyak, V. V.; Petrova, M. A.

    2016-06-01

    The fracture mechanism of the thermal barrier coating of gas turbine blades is studied. The causes of the fracture of the ceramic layer are discussed and the possible ways to increase the fatigue life of the thermal barrier coating are considered.

  19. Fracture toughness of an Al-Li-Cu-In alloy

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1992-01-01

    The crack initiation and growth fracture toughness of select AL-Li-Cu alloy variants are characterized and elucidated. Conventionally processed plates form large DC cast ingots are investigated to eliminate the variation in microstructure associated with laboratory scale and SPF-processed material. Fracture resistance is characterized using the J-integral method to establish crack initiation and growth behavior at 25 and -185 C. It is shown that state-of-the-art 2090-T81 has superior toughness compared to 2090 + In-T6 at both test temperatures, with the low toughness of 2090 + In-T6 associated with intersubgranular fracture attributed to a high density of subboundary precipitates.

  20. A fracture-resistant high-entropy alloy for cryogenic applications.

    PubMed

    Gludovatz, Bernd; Hohenwarter, Anton; Catoor, Dhiraj; Chang, Edwin H; George, Easo P; Ritchie, Robert O

    2014-09-05

    High-entropy alloys are equiatomic, multi-element systems that can crystallize as a single phase, despite containing multiple elements with different crystal structures. A rationale for this is that the configurational entropy contribution to the total free energy in alloys with five or more major elements may stabilize the solid-solution state relative to multiphase microstructures. We examined a five-element high-entropy alloy, CrMnFeCoNi, which forms a single-phase face-centered cubic solid solution, and found it to have exceptional damage tolerance with tensile strengths above 1 GPa and fracture toughness values exceeding 200 MPa·m(1/2). Furthermore, its mechanical properties actually improve at cryogenic temperatures; we attribute this to a transition from planar-slip dislocation activity at room temperature to deformation by mechanical nanotwinning with decreasing temperature, which results in continuous steady strain hardening.

  1. Fracture Mechanics of Delamination. Initiation and Growth.

    DTIC Science & Technology

    1982-01-01

    transverse cracking, delamina- tion, x- radiography , fracture mechanics, strain energy release rate, finite element, initiation and growth criteria...Battelle Columbus Laboratories, Metals and Ceramics Information Center, 505 King Avenue, Columbus, OH 43201. . . .1 Bell Aerospace Company, Buffalo , NY

  2. Fracture mechanism of borated stainless steel

    SciTech Connect

    He, J.Y.; Soliman, S.E.; Baratta, A.J.; Balliett, T.A.

    2000-05-01

    The mechanical properties and fracture mechanism of irradiated and unirradiated boron containing Type 304 stainless steel are studied. Four different batches with different boron weight percentages are used. One of these batches was manufactured by a conventional wrought technique, while the others were manufactured by a powder metallurgy technique. The irradiated specimens were subjected to a fluence level of 5 x 10{sup 19} or 1 {times} 10{sup 21} n/m{sup 2}. The mechanical and fracture tests were performed at temperatures of 233, 298, and 533 K. No significant effects on the mechanical properties or fracture behavior were observed as a result of neutron irradiation and/or temperature. The ductility and toughness of the borated steel were found to decrease with increasing boron content. The effect of boride on void nucleation and linkage was found to play an important role in the fracture behavior of borated steel.

  3. Fracture mechanics; Proceedings of the 22nd National Symposium, Atlanta, GA, June 26-28, 1990. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A. (Editor); Saxena, Ashok (Editor); Mcdowell, David L. (Editor); Atluri, Satya N. (Editor); Newman, James C., Jr. (Editor); Raju, Ivatury S. (Editor); Epstein, Jonathan S. (Editor)

    1992-01-01

    Current research on fracture mechanics is reviewed, focusing on ductile fracture; high-temperature and time-dependent fracture; 3D problems; interface fracture; microstructural aspects of fatigue and fracture; and fracture predictions and applications. Particular attention is given to the determination and comparison of crack resistance curves from wide plates and fracture mechanics specimens; a relationship between R-curves in contained and uncontained yield; the creep crack growth behavior of titanium alloy Ti-6242; a crack growth response in three heat resistant materials at elevated temperature; a crack-surface-contact model for determining effective-stress-intensity factors; interfacial dislocations in anisotropic bimaterials; an effect of intergranular crack branching on fracture toughness evaluation; the fracture toughness behavior of exservice chromium-molybdenum steels; the application of fracture mechanics to assess the significance of proof loading; and a load ratio method for estimating crack extension.

  4. Ductility and fracture in B2 FeAl alloys. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Crimp, Martin A.

    1987-01-01

    The mechanical behavior of B2FeAl alloys was studied. Stoichiometric Fe-50Al exhibits totally brittle behavior while iron-rich Fe-40Al yields and displays about 3% total strain. This change in behavior results from large decreases in the yield strength with iron-rich deviations from stoichiometry while the fracture stress remains essentially constant. Single crystal studies show that these yield strength decreases are directly related to decreases in the critical resolved shear stress for a group of zone axes /111/ set of (110) planes slip. This behavior is rationalized in terms of the decrease in antiphase boundary energy with decreasing aluminum content. The addition of boron results in improvements in the mechanical behavior of alloys on the iron-rich side of stoichiometry. These improvements are increased brittle fracture stresses of near-stoichiometric alloys, and enhanced ductility of up to 6% in Fe-40Al. These effects were attributed to increased grain boundary adhesion as reflected by changes in fracture mode from intergranular to transgranular failure. The increases in yield strength, which are observed in both polycrystals and single crystals, result from the quenching in of large numbers of thermal vacancies. Hall-Petch plots show that the cooling rate effects are a direct result of changes in the Hall-Petch intercept/lattice resistance flow.

  5. Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model.

    PubMed

    Maletta, Carmine; Sgambitterra, Emanuele; Niccoli, Fabrizio

    2016-12-01

    Temperature dependent fracture properties of NiTi-based Shape Memory Alloys (SMAs), within the pseudoelastic regime, were analyzed. In particular, the effective Stress Intensity Factor (SIF) was estimated, at different values of the testing temperature, by a fitting of the William's expansion series, based on Digital Image Correlation (DIC) measurements. It was found that temperature plays an important role on SIF and on critical fast fracture conditions. As a consequence, Linear Elastic Fracture Mechanics (LEFM) approaches are not suitable to predict fracture properties of SMAs, as they do not consider the effects of temperature. On the contrary, good agreements between DIC results and the predictions of an ad-hoc analytical model were observed. In fact, the model takes into account the whole thermo mechanical loading condition, including both mechanical load and temperature. Results revealed that crack tip stress-induced transformations do not represent a toughening effect and this is a completely novel result within the SMA community. Furthremore, it was demonstrated that the analytical model can be actually used to define a temperature independent fracture toughness parameter. Therefore, a new approach is proposed, based on the analytical model, where both mechanical load and temperature are considered as loading parameters in SIF computation.

  6. A Hierarchical Approach to Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Taasan, Shlomo

    2004-01-01

    Recent research conducted under NASA LaRC's Creativity and Innovation Program has led to the development of an initial approach for a hierarchical fracture mechanics. This methodology unites failure mechanisms occurring at different length scales and provides a framework for a physics-based theory of fracture. At the nanoscale, parametric molecular dynamic simulations are used to compute the energy associated with atomic level failure mechanisms. This information is used in a mesoscale percolation model of defect coalescence to obtain statistics of fracture paths and energies through Monte Carlo simulations. The mathematical structure of predicted crack paths is described using concepts of fractal geometry. The non-integer fractal dimension relates geometric and energy measures between meso- and macroscales. For illustration, a fractal-based continuum strain energy release rate is derived for inter- and transgranular fracture in polycrystalline metals.

  7. Fracture mechanics of snow avalanches

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Timonen, J.

    2001-07-01

    Dense snow avalanches are analyzed by modeling the snow slab as an elastic and brittle plate, attached by static friction to the underlying ground. The grade of heterogeneity in the local fracture (slip) thresholds, and the ratio of the average substrate slip threshold to the average slab fracture threshold, are the decisive parameters for avalanche dynamics. For a strong pack of snow there appears a stable precursor of local slips when the frictional contacts are weakened (equivalent to rising temperature), which eventually trigger a catastrophic crack growth that suddenly releases the entire slab. In the opposite limit of very high slip thresholds, the slab simply melts when the temperature is increased. In the intermediate regime, and for a homogeneous slab, the model display features typical of real snow avalanches. The model also suggests an explanation to why avalanches are impossible to forecast reliably based on precursor observations. This explanation may as well be applicable to other catastrophic rupture phenomena such as earthquakes.

  8. The kinetics of composite particle formation during mechanical alloying

    NASA Technical Reports Server (NTRS)

    Aikin, B. J. M.; Courtney, T. H.

    1993-01-01

    The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.

  9. The Origin of Fracture in the I-ECAP of AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Gzyl, Michal; Rosochowski, Andrzej; Boczkal, Sonia; Qarni, Muhammad Jawad

    2015-11-01

    Magnesium alloys are very promising materials for weight-saving structural applications due to their low density, comparing to other metals and alloys currently used. However, they usually suffer from a limited formability at room temperature and low strength. In order to overcome those issues, processes of severe plastic deformation (SPD) can be utilized to improve mechanical properties, but processing parameters need to be selected with care to avoid fracture, very often observed for those alloys during forming. In the current work, the AZ31B magnesium alloy was subjected to SPD by incremental equal-channel angular pressing (I-ECAP) at temperatures varying from 398 K to 525 K (125 °C to 250 °C) to determine the window of allowable processing parameters. The effects of initial grain size and billet rotation scheme on the occurrence of fracture during I-ECAP were investigated. The initial grain size ranged from 1.5 to 40 µm and the I-ECAP routes tested were A, BC, and C. Microstructures of the processed billets were characterized before and after I-ECAP. It was found that a fine-grained and homogenous microstructure was required to avoid fracture at low temperatures. Strain localization arising from a stress relaxation within recrystallized regions, namely twins and fine-grained zones, was shown to be responsible for the generation of microcracks. Based on the I-ECAP experiments and available literature data for ECAP, a power law between the initial grain size and processing conditions, described by a Zener-Hollomon parameter, has been proposed. Finally, processing by various routes at 473 K (200 °C) revealed that route A was less prone to fracture than routes BC and C.

  10. The fracture of boron fibre-reinforced 6061 aluminium alloy

    NASA Technical Reports Server (NTRS)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  11. The effect of thermal treatment on the fracture properties of alloy X-750 in aqueous environments

    SciTech Connect

    Ballinger, R.; Elliott, C.S.; Hwang, I.S.; Prybylowski, J.

    1993-05-01

    Alloy X-750 is a high strength, age hardenable nickel-base alloy used in light water nuclear reactors. The excellent corrosion resistance and high temperature strength of alloy X-750 make it suitable for use in a variety of structure components in both pressurized water reactors and boiling water reactors. These applications involve exposure of highly stressed material to aqueous media. Operational stresses are subject to low frequency thermally induced fluctuations and high frequency flow induced fluctuations. In general, alloy X-750 has performed well in light water reactors. However, an economically significant number of components have failed unexpectedly due to localized forms of attack such as corrosion fatigue and stress corrosion cracking. Thermal processing history is known to play a significant role in the fracture properties of alloy X-750 in aqueous environments. While thermal treatments have been developed recently to improve performance, in many cases the reason for improved performance remains unclear. Therefore, identification of the mechanisms responsible for the degradation of fracture properties in aqueous environments is necessary. As a corollary it is necessary to achieve an understanding of how thermal treatment influences microstructure and, in turn, how microstructure influences fracture properties in aqueous environments. This report discusses five thermal treatments which were studied: (1) SA-1 hr at 1093{degree}C, (2) AH - 24 hr at 885{degree}C + 20 hr at 704{degree}C, (3) HTH - 1 hr at 1093{degree}C + 20 hr at 704{degree}C, (4) AHTH - 1 hr at 1093{degree}C + 24 hr at 885{degree}C + 20 hr at 704{degree}C, and (5) HOA - 1 hr at 1093{degree}C + 100 hrs at 760{degree}C. Microstructural characterization of these materials was accomplished through the use of optical microscopy, transmission electron microscopy,scanning transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffractometry.

  12. The influence of microstructure and strength on the fracture mode and toughness of 7XXX series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Ludtka, Gerard M.; Laughlin, David E.

    1982-03-01

    The effects of microstructure and strength on the fracture toughness of ultra high strength aluminum alloys have been investigated. For this study three ultra high purity compositions were chosen and fabricated into 1.60 mm (0.063 inches) sheet in a T6 temper providing a range of yield strengths from 496 MPa (72 ksi) to 614 MPa (89 ksi). These alloys differ only in the volume fraction of the fine matrix strengthening precipitates (G. P. ordered + η' ). Fracture toughness data were generated using Kahn-type tear tests, as well as R-curve and J c analyses performed on data from 102 mm wide center cracked tension panel tests. Consistent with previous studies, it has been demonstrated that the toughness decreases as the yield strength is increased by increasing the solute content. Concomitant with this decrease in toughness, a transition in fracture mode was observed from predominantly transgranular dimpled rupture to predominantly intergranular dimpled rupture. Both quantitative fractography and X-ray microanalysis clearly demonstrate that fracture initiation for the two fracture modes occurred by void formation at the Cr-dispersoids ( E-phase). In the case of intergranular fracture, void coalescence was facilitated by the grain boundary η precipitates. The difference in fracture toughness behavior of these alloys has been shown to be dependent on the coarseness of matrix slip and the strength differential between the matrix and precipitate free zone (σM-σPFZ). A new fracture mechanism has been proposed to explain the development of the large amounts of intergranular fracture observed in the low toughness alloys.

  13. Fracture toughness and corrosion resistance of semisolid AlSi5 alloy

    NASA Astrophysics Data System (ADS)

    Pola, A.; Montesano, L.; Gelfi, M.; Roberti, R.

    2011-05-01

    The aim of this work was to investigate fracture toughness and corrosion resistance of semisolid AlSi5 castings, compared to samples obtained from conventional casting operations. In order to have a semisolid microstructure, the melt alloy was treated by means of ultrasound during solidification and then poured into permanent moulds. Mechanical properties of semisolid and conventional castings were compared by means of ultimate tensile strength (Rm), yield stress (Rp02) and hardness (HV) measurements. Fracture mechanics tests were carried out on Single Edge Notched Bend (SENB) specimens, machined from castings, and pre-cracked by fatigue. These tests were performed to determine the effect of the microstructure on the J-Integral resistance (J-R) behavior and to deeply understand the ductile fracture behaviour of semisolid parts. The J-Integral versus spaced crack extension (J-Δa) curves showed an improved resistance of the semisolid microstructure, due to the higher ductility. Finally, the corrosion behaviour of semisolid samples was compared to that of castings coming from solidification of fully liquid alloy by means of electrochemical potentiodynamic polarization tests. It was observed that the globular microstructure offers better quality, in terms of higher mechanical properties, as a consequence of a more uniform distribution of the solute.

  14. Fracture toughness and corrosion resistance of semisolid AlSi5 alloy

    SciTech Connect

    Pola, A.; Montesano, L.; Gelfi, M.; Roberti, R.

    2011-05-04

    The aim of this work was to investigate fracture toughness and corrosion resistance of semisolid AlSi5 castings, compared to samples obtained from conventional casting operations. In order to have a semisolid microstructure, the melt alloy was treated by means of ultrasound during solidification and then poured into permanent moulds. Mechanical properties of semisolid and conventional castings were compared by means of ultimate tensile strength (R{sub m}), yield stress (Rp{sub 02}) and hardness (HV) measurements. Fracture mechanics tests were carried out on Single Edge Notched Bend (SENB) specimens, machined from castings, and pre-cracked by fatigue. These tests were performed to determine the effect of the microstructure on the J-Integral resistance (J-R) behavior and to deeply understand the ductile fracture behaviour of semisolid parts. The J-Integral versus spaced crack extension (J-{Delta}a) curves showed an improved resistance of the semisolid microstructure, due to the higher ductility. Finally, the corrosion behaviour of semisolid samples was compared to that of castings coming from solidification of fully liquid alloy by means of electrochemical potentiodynamic polarization tests. It was observed that the globular microstructure offers better quality, in terms of higher mechanical properties, as a consequence of a more uniform distribution of the solute.

  15. Rabotnov damageparameter and description of delayed fracture: Results, current status, application to fracture mechanics, and prospects

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.; Igonin, S. A.

    2015-03-01

    This paper presents a review of studies of delayed fracture and fracture mechanics problems in which the hypotheses and ideas of Yu. N. Rabotnov and L. M. Kachanov on the mechanisms of delayed fracture under creep conditions are extended to describe fracture processes using scalar and tensor measures of damage. The results of current research in the theory of elasticity, the mathematical theory of plasticity and creep, the mechanics of composites, and linear and nonlinear fracture mechanics, with material damage taken into account.

  16. Mechanical alloying of biocompatible Co-28Cr-6Mo alloy.

    PubMed

    Sánchez-De Jesús, F; Bolarín-Miró, A M; Torres-Villaseñor, G; Cortés-Escobedo, C A; Betancourt-Cantera, J A

    2010-07-01

    We report on an alternative route for the synthesis of crystalline Co-28Cr-6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co-28Cr-6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 mum at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction.

  17. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  18. Effects of Be and Fe content on plane strain fracture toughness in A357 alloys

    SciTech Connect

    Tan, Y.H.; Lee, S.L.; Lin, Y.L.

    1995-11-01

    The effect of Be and Fe content on the plane strain fracture toughness K{sub IC} of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicron-strengthening particles. The effect of Be on increasing K{sub IC} is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.

  19. Effects of be and fe content on plane strain fracture toughness in A357 alloys

    NASA Astrophysics Data System (ADS)

    Tan, Yen-Hung; Lee, Sheng-Long; Lin, Yu-Lom

    1995-11-01

    The effect of Be and Fe content on the plane strain fracture toughness K IC of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicronstrengthening particles. The effect of Be on increasing K IC is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.

  20. Mechanical properties of cast Ti-6Al-4V-XCu alloys.

    PubMed

    Aoki, T; Okafor, I C I; Watanabe, I; Hattori, M; Oda, Y; Okabe, T

    2004-11-01

    The mechanical properties of Ti-6Al-4V-XCu (1, 4 and 10 wt% Cu) alloys were examined. The castings for each alloy were made in a centrifugal titanium casting machine. Two shapes of specimens were used: a dumbbell (20 mm gauge length x 2.8 mm diameter) for mechanical property studies, and a flat slab (2 mm x 10 mm x 10 mm) for metallography, microhardness determination and X-ray diffractometry. Tensile strength, yield strength, modulus of elasticity, elongation and microhardness were evaluated. After tensile testing, the fracture surfaces were observed using scanning electron microscopy. The tensile strengths of the quaternary alloys decreased from 1016 MPa for the 1% Cu alloy to 387 MPa for the 10% Cu alloy. Elongation decreased with an increase in the copper content. The 1% Cu alloy exhibited elongation similar to Ti-6Al-4V without copper (3.0%). The results also indicated that the copper additions increased the bulk hardness of the quaternary alloy. In particular, the 10% Cu alloy had the highest hardness and underwent the most brittle fracture. The mechanical properties of cast Ti-6Al-4V alloy with 1 and 4% Cu were well within the values for existing dental casting non-precious alloys.

  1. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA. Revision 1

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  2. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  3. Effects of aging condition on the fracture toughness of 2XXX and 7XXX series aluminum alloy composites

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Results are presented on the effects of matrix aging condition (i.e., matrix temper) on the fracture toughness of 2XXX and 7XXX Al matrix alloys reinforced with SiC particulates, and the results are compared with the mechanical behavior. Fracture toughness testing was conducted on fatigue precracked bend specimens, and fracture surfaces were examined using SEM. Results revealed dramatic differences in the effect of matrix microstructure on the fracture properties of the two composite series. In the 7XXX material, the toughness values decreased from the underaged (UA) condition to the overaged (OA) condition by approximately 40 percent, while in the 2XXX series composite, the effect of matrix microstructure was marginal. In the 7XXX series composites, a transition in fracture mode from particle cracking (in UA) to matrix and linear-interface failure (in OA) was observed, while the 2XXX series composite failed predominantly by particle cracking.

  4. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357

    NASA Astrophysics Data System (ADS)

    Wang, Q. G.

    2003-12-01

    The tensile properties and fracture behavior of cast aluminum alloys A356 and A357 strongly depend on secondary dendrite arm spacing (SDAS), Mg content, and, in particular, the size and shape of eutectic silicon particles and Fe-rich intermetallics. In the unmodified alloys, increasing the cooling rate during solidification refines both the dendrites and eutectic particles and increases ductility. Strontium modification reduces the size and aspect ratio of the eutectic silicon particles, leading to a fairly constant particle size and aspect ratio over the range of SDAS studied. In comparison with the unmodified alloys, the Sr-modified alloys show higher ductility, particularly the A356 alloy, but slightly lower yield strength. In the microstructures with large SDAS (>50 µm), the ductility of the Sr-modified alloys does not continuously decrease with SDAS as it does in the unmodified alloy. Increasing Mg content increases both the matrix strength and eutectic particle size. This decreases ductility in both the Sr-modified and unmodified alloys. The A356/357 alloys with large and elongated particles show higher strain hardening and, thus, have a higher damage accumulation rate by particle cracking. Compared to A356, the increased volume fraction and size of the Fe-rich intermetallics ( π phase) in the A357 alloy are responsible for the lower ductility, especially in the Sr-modified alloy. In alloys with large SDAS (>50 µm), final fracture occurs along the cell boundaries, and the fracture mode is transgranular. In the small SDAS (<30 µm) alloys, final fracture tends to concentrate along grain boundaries. The transition from transgranular to intergranular fracture mode is accompanied by an increase in the ductility of the alloys.

  5. Crack branching in carbon steel. Fracture mechanisms

    NASA Astrophysics Data System (ADS)

    Syromyatnikova, A. S.; Alekseev, A. A.; Levin, A. I.; Lyglaev, A. V.

    2010-04-01

    The fracture surfaces of pressure vessels made of carbon steel that form during crack branching propagation are examined by fractography. Crack branching is found to occur at a crack velocity higher than a certain critical value V > V c . In this case, the material volume that is involved in fracture and depends on the elastoplastic properties of the material and the sample width has no time to dissipate the energy released upon crack motion via the damage mechanisms intrinsic in the material under given deformation conditions (in our case, via cracking according to intragranular cleavage).

  6. Size Effects in Linear Elastic Fracture Mechanics

    DTIC Science & Technology

    1988-01-01

    Recent Theoretical and Experimental Developments in Fracture Mechanics", Fracture 1977, 1 (1977) 695-723. 40 S. Mindess and J. S. Nadeau," Effect of Notch...0.4 1.42 b 2.0 0.80 b Mindess and Nadeau [40], 1.0 3.98 0.86 b Mortar, 3PB 8.03 0.80 b 12.0 0.82 b 16.0 0.84 b 20.0 0.83 b Concrete, 3PB 1.0 3.54 1.08

  7. Metallurgical characterization of the fracture of several high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bhandarkar, M. D.; Lisagor, W. B.

    1977-01-01

    The fracture behavior for structural aluminum alloys (2024, 6061, 7075, and 7178) was examined in selected heat treatments. The investigation included tensile, shear, and precracked notch-bend specimens fractured at ambient temperature under monotonic loading. Specimens were obtained from thin sheets and thick plates and were tested in longitudinal and transverse orientations at different strain rates. Microstructures of alloys were examined using the optical microscope and the scanning electron microscope with associated energy dispersive X ray chemical analysis. Several different types of second phase particles, some not reported by other investigators, were identified in the alloys. Fracture morphology was related to microstructural variables, test variables, and type of commercial product. Specimen orientation examined in the present investigation had little effect on fracture morphology. Test strain rate changes resulted in some change in shear fracture morphology, but not in fracture morphology of tensile specimens.

  8. Mechanical properties of laser welded aluminum alloys

    SciTech Connect

    Douglass, D.M.; Mazumder, J.

    1996-12-31

    The demand for lighter weight vehicles has prompted accelerated development in processing aluminum alloys for automobile structural applications. One of the current research initiatives centers on laser beam welding of aluminum alloys. Autogenous butt welds have been performed on Al 3003, 5754, 6111, and 6061-T6 plates with a 6 kW CO2 laser. For 6061, tensile data indicate about 60% of the base metal strength was attained in the as-welded condition, with a brittle fracture occurring through the weld. A post-weld heat treatment to the T6 condition resulted in a recovery of original ultimate tensile strengths, although these also failed in the weld. Hardness measurements of the post-weld T6 reveal a uniform hardness across the HAZ and fusion zone that is comparable to the original hardness. All 3003 welds fractured in the parent material in a ductile fashion. A high quality bead was consistently achieved with the 3003 alloy, whereas the other alloys demonstrated bead irregularities. SEM photographs reveal large, spherical pores, suggesting that they were formed by gas entrapment rather than by shrinkage.

  9. Deformation and fracture of a particle-reinforced aluminum alloy composite: Part I. Experiments

    NASA Astrophysics Data System (ADS)

    Pandey, A. B.; Majumdar, B. S.; Miracle, D. B.

    2000-03-01

    Mechanical tests were performed on a powder-metallurgically processed 7093/SiC/15p discontinuously reinforced aluminum (DRA) composite in different heat-treatment conditions, to determine the influence of matrix characteristics on the composite response. The work-hardening exponent and the strain to failure varied inversely to the strength, similar to monolithic Al alloys, and this dependence was independent of the dominant damage mode. The damage consisted of SiC particle cracks, interface and near-interface debonds, and matrix rupture inside intense slip bands. Fracture surfaces revealed particle fracture-dominated damage for most of the heat-treatment conditions, including an overaged (OA) condition that exhibited a combination of precipitates at the interface and a precipitate-free zone (PFZ) in the immediate vicinity. In the highly OA conditions and in a 450°C as-rolled condition, when the composite strength became less than 400 MPa, near-interface matrix rupture became dominant. A combination of a relatively weak matrix and a weak zone around the particle likely contributed to this damage mode over that of particle fracture. Fracture-toughness tests show that it is important to maintain a proper geometry and testing procedure to obtain valid fracture-toughness data. Overaged microstructures did reveal a recovery of fracture toughness as compared to the peak-aged (PA) condition, unlike the lack of toughness recovery reported earlier for a similar 7XXX (Al-Zn-Cu-Mg)—based DRA. The PA material exhibited extensive localization of damage and plasticity. The low toughness of the DRA in this PA condition is explored in detail, using fractography and metallography. The damage and fracture micromechanisms formed the basis for modeling the strength, elongation, toughness, and damage, which are described in Part II of this work.

  10. Effects of irradiation to 4 dpa at 390 C on the fracture toughness of vanadium alloys

    SciTech Connect

    Gruber, E.E.; Galvin, T.M.; Chopra, O.K.

    1998-09-01

    Fracture toughness J-R curve tests were conducted at room temperature on disk-shaped compact-tension DC(T) specimens of three vanadium alloys having a nominal composition of V-4Cr-4Ti. The alloys in the nonirradiated condition showed high fracture toughness; J{sub IC} could not be determined but is expected to be above 600 kJ/m{sup 2}. The alloys showed very poor fracture toughness after irradiation to 4 dpa at 390 C, e.g., J{sub IC} values of {approx}10 kJ/m{sup 2} or lower.

  11. A review of fracture mechanics life technology

    NASA Technical Reports Server (NTRS)

    Besuner, P. M.; Harris, D. O.; Thomas, J. M.

    1986-01-01

    Lifetime prediction technology for structural components subjected to cyclic loads is examined. The central objectives of the project are: (1) to report the current state of the art, and (2) recommend future development of fracture mechanics-based analytical tools for modeling subcritical fatigue crack growth in structures. Of special interest is the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. The authors conducted a survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.

  12. Ambient- to elevated-temperature fracture and fatigue properties of Mo-Si-B alloys: Role of microstructure

    NASA Astrophysics Data System (ADS)

    Kruzic, J. J.; Schneibel, J. H.; Ritchie, R. O.

    2005-09-01

    Ambient- to elevated-temperature fracture and fatigue-crack growth results are presented for five Mo-Mo3Si-Mo5SiB2-containing α-Mo matrix (17 to 49 vol pct) alloys, which are compared to results for intermetallic-matrix alloys with similar compositions. By increasing the α-Mo volume fraction, ductility, or microstructural coarseness, or by using a continuous α-Mo matrix, it was found that improved fracture and fatigue properties are achieved by promoting the active toughening mechanisms, specifically crack trapping and crack bridging by the α-Mo phase. Crack-initiation fracture toughness values increased from 5 to 12 MPa√m with increasing α-Mo content from 17 to 49 vol pct, and fracture toughness values rose with crack extension, ranging from 8.5 to 21 MPa√m at ambient temperatures. Fatigue thresholds benefited similarly from more α-Mo phase, and the fracture and fatigue resistance was improved for all alloys tested at 1300 °C, the latter effects being attributed to improved ductility of the α-Mo phase at elevated temperatures.

  13. Applications of advanced fracture mechanics to fuselage

    NASA Astrophysics Data System (ADS)

    Kanninen, M. F.; O'Donoghue, P. E.; Green, S. T.; Leung, C. P.; Roy, S.; Burnside, O. H.

    Multi-site damage (MSD) in the form of cracking at rivet holes in lap splice joints has been identified as a serious threat to the integrity of commercial aircraft nearing their design life targets. Consequently, to assure the safety of aircraft that have accumulated large numbers of flights, flight hours and years in service requires requires inspection procedures that are based on the possibility that MSD may be present. For inspections of aircraft components to be properly focused on me defect sizes that are critical for structural integrity, fracture analyses are needed. The current methods are essentially those of linear elastic fracture mechanics (LEFM) which are strictly valid only for cracks that extend in a quasi-static manner under small-scale crack tip plasticity conditions. While LEFM is very likely to be appropriate for subcritical crack growth, quantifying the conditions for fracture instability and subsequent propagation may require advanced fracture mechanics techniques. The specific focus in this paper was to identify the conditions in which inelastic-dynamic effects occur in (1) the linking up Of local damage in a lap splice joint to form a major crack, and (2) large-scale fuselage failure by a rapidly occurring fluid structure interaction process.

  14. A Study On Critical Thinning In Thin-walled Tube Bending Of Al-Alloy 5052O Via Coupled Ductile Fracture Criteria

    SciTech Connect

    Li Heng; Yang He; Zhan Mei

    2010-06-15

    Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.

  15. Shape-Memory-Alloy Release Mechanism

    NASA Technical Reports Server (NTRS)

    Mckinnis, Darin

    1993-01-01

    Release-nut mechanism activated by electric current applied to shape-memory alloy. Separates attached objects quickly by remote control. Does not create hazard or cause damage. Shape-memory release-nut mechanism unaffected by moisture or vacuum. Requires sustained current lasting 5 seconds or longer, and insensitive to electromagnetic interference. Mechanism can be reused.

  16. Cryogenic Fracture Toughness Evaluation of an Investment Cast Aluminum-Beryllium Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne; McGill, Preston

    2006-01-01

    This document is a viewgraph presentation that details the fracture toughness of Aluminum-Beryllium Alloy for use in structures at cryogenic temperatures. Graphs and charts are presented in the presentation

  17. An Experimental Evaluation of Material Properties and Fracture Simulation of Cryorolled 7075 Al Alloy

    NASA Astrophysics Data System (ADS)

    Das, Prosenjit; Singh, I. V.; Jayaganthan, R.

    2012-07-01

    This work presents an experimental evaluation of yield strength, tensile strength, and impact toughness of 7075 Al alloy. The extended finite element method (XFEM) has been chosen for quasi-static crack growth simulations using Charpy impact energy as the crack growth criterion for both Bulk and ultrafine-grained (UFG) 7075 Al alloy. The 7075 Al alloy is rolled for different thickness reductions (40 and 70%) at cryogenic (liquid nitrogen) temperature, and its mechanical properties are studied by performing the tensile and Charpy impact testing. The microstructural characterization of the alloy was carried out using field emission scanning electron microscopy (FE-SEM). The rolling of the Al alloy at cryogenic temperature suppresses dynamic recovery, and dislocation cells formed during processing, transformed into fully formed ultrafine-grains (600 nm) at 70% thickness reduction. The impact energy used as the crack growth criterion under quasi-static loading condition based on the Griffith energy concept. The elastic-plastic ductile fracture simulations are performed by XFEM using ABAQUS Software (Version 6.9). For crack modeling, two different types of functions are used to model a crack based on partition of unity concept. A discontinuous function is used to model the portion behind the crack tip, whereas crack tip is modeled by near-tip asymptotic functions. This permits the crack is to be represented explicitly without meshing the crack surfaces, thus crack propagation simulations can be carried out without a need of re-meshing. Strain energy release and stress distribution ahead of the crack tip is found for some practical crack problems. The numerical examples indicate a significant improvement in crack growth properties of UFG 7075 Al alloy as compared to its bulk form due to an effective grain refinement.

  18. Mechanical properties of oxide dispersion strengthened (ODS) molybdenum alloys

    SciTech Connect

    Bianco, R.; Buckman, R.W. Jr.

    1998-03-01

    Oxide dispersion strengthened molybdenum, Mo-ODS, developed by a proprietary powder metallurgy process, exhibits a creep rupture life at 0.65T{sub m} (1,600 C) of three to five orders of magnitude greater than unalloyed molybdenum, while maintaining ductile fracture behavior at temperatures significantly below room temperature. In comparison, the creep rupture life of the Mo-50Re solid solution strengthened alloy at 1,600 C is only an order of magnitude greater than unalloyed molybdenum. The results of microstructural characterization and thermal stability and mechanical property testing are discussed.

  19. Synthesis of molybdenum disilicide by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Srinivasan, S.R.; Petrovic, J.J.; Maggiore, C.J.

    1991-01-01

    We have used mechanical alloying (MA), a high-energy ball-milling process, to prepare MoSi{sub 2} and MoSi{sub 2}-based alloys starting from mixtures of the pure elements. This synthesis route has the potential for preparing oxygen-free MoSi{sub 2} and the flexibility for close control of second-phase additions. MA, first developed for producing oxide-dispersions in Ni-based superalloys, takes advantage of the atomic-level mixing accomplished by the intense mechanical working of the alloy constituents. All the alloying reactions during the process occur in the solid-state. This technique is thus well-suited for synthesizing high melting point materials such as MoSi{sub 2}. The product of the MA process is a highly homogeneous and fine-grained powder. Its purity is determined by the purity of the starting materials and possible impurities introduced during processing. However, a careful control of the MA process enables a minimization of the impurities. We also report here the consolidation of the mechanically alloyed powder and the characterization of the MoSi{sub 2} alloys by optical and transmission electron microscopy, x-ray diffraction, and mechanical property measurements. 21 refs., 9 figs.

  20. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    NASA Astrophysics Data System (ADS)

    Margolin, B.; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-01

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  1. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Huang, S.; Zhou, J. Z.; Lu, J. Z.; Xu, S. Q.; Zhang, H. F.

    2016-03-01

    To deeply understand the effect of laser peening (LP) with different laser pulse energies on 6061-T6 aluminum alloy, the fatigue fracture morphologies evolution process at various fatigue crack growth (FCG) stages and the corresponding strengthen mechanism were investigated. At the initial stage of FCG, more fatigue micro-cliffs were found after LP, while the fatigue striation spacing simultaneously reduced. A "stop-continue" phenomenon of crack propagation was discovered for laser peened samples. The fatigue striation spacing at the middle stage of FCG increased significantly while compared with that at the initial stage, in addition, the fatigue striation spacing decreased with an increase in laser pulse energy. Fracture morphologies in transition region of laser peened samples exhibit a mixing fracture characteristic of striations and dimples. The laser peened sample with laser pulse energy of 7 J presents more circuitous growing paths. Due to the complex stress state induced by LP, dimples with different sizes appeared in the final fracture region.

  2. Deformation and Fracture of P/M Titanium Alloys.

    DTIC Science & Technology

    1983-11-15

    provides to the graduate students involved. In the past fiscal year the program has supported: Roy Bourcier, Ph.D., August 1983; Barbara Lograsso, Ph.D...with Barbara Lograsso, Ph.D. candidate] The use of hot isostatic pressing (HIP) to compact both powders and castings to full density has been a...of Fracture. 16. F. A. McClintock , Journal of Applied Mechanics, 35, (1968) 363-371. 17. J. R. Rice and D. M. Tracey, Journal of the Mechanics and

  3. An investigation into the effects of hydrogen on the fracture and deformation of Alloy X-750

    SciTech Connect

    Symons, Douglas M.

    1994-11-01

    this study investigated the effect of hydrogen on the fracture of a nickel-base superalloy, Alloy X-750 in the solution treated and aged (HTH) condition. The effect of hydrogen was examined through tensile testing and fracture toughness testing incorporating observations from scanning electron microscopy and light microscopy.

  4. Fracture behavior of reinforced aluminum alloy matrix composites using thermal imaging tools

    NASA Astrophysics Data System (ADS)

    Avdelidis, N. P.; Exarchos, D.; Vazquez, P.; Ibarra-Castanedo, C.; Sfarra, S.; Maldague, X. P. V.; Matikas, T. E.

    2016-05-01

    In this work the influence of the microstructure at the vicinity of the interface on the fracture behavior of particulate-reinforced aluminum alloy matrix composites (Al/SiCp composites) is studied by using thermographic tools. In particular, infrared thermography was used to monitor the plane crack propagation behavior of the materials. The deformation of solid materials is almost always accompanied by heat release. When the material becomes deformed or is damaged and fractured, a part of the energy necessary to initiate and propagate the damage is transformed in an irreversible way into heat. The thermal camera detects the heat wave, generated by the thermo-mechanical coupling and the intrinsic dissipated energy during mechanical loading of the sample. By using an adapted detector, thermography records the two dimensional "temperature" field as it results from the infrared radiation emitted by the object. The principal advantage of infrared thermography is its noncontact, non-destructive character. This methodology is being applied to characterise the fracture behavior of the particulate composites. Infrared thermography is being used to monitor the plane crack propagation behavior of such materials. Furthermore, an innovative approach to use microscopic measurements using IR microscopic lenses was attempted, in order to enable smaller features (in the micro scale) to be imaged with accuracy and assurance.

  5. Fracture testing of large-scale thin-sheet aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dewit, Roland; Fields, Richard J.; Low, Samuel R., III; Harne, Donald E.; Foecke, Tim

    1995-05-01

    A series of fracture tests on large-scale, pre-cracked, aluminum alloy panel was carried out to examine and to characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were specially designed to enable the panel specimens to be loaded in tension in a 1780-kN-capacity universal testing machine. Using existing information, a test matrix was set up to explore regions of failure controlled by fracture mechanics, with additional tests near the boundary between plastic collapse and fracture. In addition, a variety of multiple site damage (MSD) configurations were included to distinguish between various proposed linkage mechanisms. All tests but one used anti-buckling guides. The data were analyzed by two different procedures: (1) the plastic zone model based on the residual strength diagram; and (2) the R-curve. The first three tests were used to determine the basic material properties, and these results were then used in the analysis of the subsequent tests with MSD cracks.

  6. Fracture toughness of Alloy 690 and EN52 weld in air and water

    SciTech Connect

    Brown, C.M.; Mills, W.J.

    1999-06-01

    The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.

  7. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Hamilton, M.L. ); Huang, F.H.; Hu, Wan-Liang )

    1992-06-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were re-examined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9.

  8. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Huang, F.H.; Hu, W.L. ); Hamilton, M.L. )

    1992-09-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were reexamined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9. 8 refs, 8 figs.

  9. Stress Concentration and Fracture at Inter-variant Boundaries in an Al-Li Alloy

    NASA Technical Reports Server (NTRS)

    Crooks, Roy; Tayon, Wes; Domack, Marcia; Wagner, John; Beaudoin, Armand

    2009-01-01

    Delamination fracture has limited the use of lightweight Al-Li alloys. Studies of secondary, delamination cracks in alloy 2090, L-T fracture toughness samples showed grain boundary failure between variants of the brass texture component. Although the adjacent texture variants, designated B(sub s1) and B(sub s2), behave similarly during rolling, their plastic responses to mechanical tests can be quite different. EBSD data from through-thickness scans were used to generate Taylor factor maps. When a combined boundary normal and shear tensor was used in the calculation, the delaminating grains showed the greatest Taylor Factor differences of any grain pairs. Kernel Average Misorientation (KAM) maps also showed damage accumulation on one side of the interface. Both of these are consistent with poor slip accommodation from a crystallographically softer grain to a harder one. Transmission electron microscopy was used to confirm the EBSD observations and to show the role of slip bands in the development of large, interfacial stress concentrations. A viewgraph presentation accompanies the provided abstract.

  10. Numerical Fracture Analysis of Cryogenically Treated Alloy Steel Weldments

    NASA Astrophysics Data System (ADS)

    Rasool Mohideen, S.; Thamizhmanii, S.; Fatah, M. M. Muhammed Abdul; Saidin, W. Najmuddin W.

    2016-02-01

    Cryogenic treatment is being used commercially in the industries in the last two decades for improving the life of many engineering component such as bearings and cutting tools. Though their influence in improving the wear resistance of tool materials is well established, the effect of treatment on weldments is not much investigated. In the present work, a two dimensional finite element analysis was carried out on the compact tension specimen model for simulating the treatment process and to study the fracture behaviour. The weldments were modelled by thermo- mechanical coupled field analysis for simulating he temperature distribution in the model during weld pool cooling and introducing thermal stresses due to uneven contraction and cooling. The model was subjected to cryogenic treatment by adopting radiation effect. The fracture analysis was carried out using Rice's J- Integral approach. The analysis produced a similar outcome of experimental results i.e. Increase in the fracture toughness of the specimen after cryogenic treatment in the heat affected zone of weldment.

  11. Interpretation of Fracture Toughness and R-Curve Behavior by Direct Observation of Microfracture Process in Ti-Based Dendrite-Containing Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Jeon, Changwoo; Kim, Choongnyun Paul; Kim, Hyoung Seop; Lee, Sunghak

    2015-04-01

    Fracture properties of Ti-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes. Three Ti-based amorphous alloys were fabricated by adding Ti, Zr, V, Ni, Al, and Be into a Ti-6Al-4V alloy by a vacuum arc melting method. The effective sizes of dendrites varied from 63 to 104 μm, while their volume fractions were almost constant within the range from 74 to 76 pct. The observation of the microfracture of the alloy containing coarse dendrites revealed that a microcrack initiated at the amorphous matrix of the notch tip and propagated along the amorphous matrix. In the alloy containing fine dendrites, the crack propagation was frequently blocked by dendrites, and many deformation bands were formed near or in front of the propagating crack, thereby resulting in a zig-zag fracture path. Crack initiation toughness was almost the same at 35 to 36 MPa√m within error ranges in the three alloys because it was heavily affected by the stress applied to the specimen at the time of crack initiation at the crack tip as well as strength levels of the alloys. According to the R-curve behavior, however, the best overall fracture properties in the alloy containing fine dendrites were explained by mechanisms of blocking of the crack growth and crack blunting and deformation band formation at dendrites.

  12. Study of Fatigue and Fracture Behavior of Cr-Based Alloys and Intermetallic Materials

    SciTech Connect

    He, YH

    2001-01-31

    The microhardness, and tensile and fracture-toughness properties of drop-cast and directionally-solidified Cr-9.25 at.% (atomic percent) Ta alloys have been investigated. Directional solidification was found to soften the alloy, which could be related to the development of equilibrium and aligned microstructures. It was observed that the tensile properties of the Cr-Ta alloys at room and elevated temperatures could be improved by obtaining aligned microstructures. The directionally-solidified alloy also showed increased fracture toughness at room temperature. This trend is mainly associated with crack deflection and the formation of shear ribs in the samples with aligned microstructures. The sample with better-aligned lamellar exhibits greater fracture toughness.

  13. Hexaferrite magnetic materials prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ding, J.; Maurice, D.; Miao, W. F.; McCormick, P. G.; Street, R.

    1995-02-01

    The structure and properties of hexaferrites in the form of MFe 12O 19 with M = Ba, Sr and Pb prepared by mechanical alloying and heat treatment have been studied. Coercivities of 6-7 kOe were measured for Ba- and Sr-hexaferrite powders. The high values of coercivities have been associated with small particle sizes (˜ 0.1 μm) resulting from the mechanical alloying and subsequent heat treatment. High-coercivity anisotropic samples have been synthesized using hot-pressing, with remanences of 70-75% of the saturation magnetisation being obtained.

  14. Directionally Solidified NiAl-Based Alloys Studied for Improved Elevated-Temperature Strength and Room-Temperature Fracture Toughness

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2000-01-01

    Efforts are underway to replace superalloys used in the hot sections of gas turbine engines with materials possessing better mechanical and physical properties. Alloys based on the intermetallic NiAl have demonstrated potential; however, they generally suffer from low fracture resistance (toughness) at room temperature and from poor strength at elevated temperatures. Directional solidification of NiAl alloyed with both Cr and Mo has yielded materials with useful toughness and elevated-temperature strength values. The intermetallic alloy NiAl has been proposed as an advanced material to extend the maximum operational temperature of gas turbine engines by several hundred degrees centigrade. This intermetallic alloy displays a lower density (approximately 30-percent less) and a higher thermal conductivity (4 to 8 times greater) than conventional superalloys as well as good high-temperature oxidation resistance. Unfortunately, unalloyed NiAl has poor elevated temperature strength (approximately 50 MPa at 1027 C) and low room-temperature fracture toughness (about 5 MPa). Directionally solidified NiAl eutectic alloys are known to possess a combination of high elevated-temperature strength and good room-temperature fracture toughness. Research has demonstrated that a NiAl matrix containing a uniform distribution of very thin Cr plates alloyed with Mo possessed both increased fracture toughness and elevated-temperature creep strength. Although attractive properties were obtained, these alloys were formed at low growth rates (greater than 19 mm/hr), which are considered to be economically unviable. Hence, an investigation was warranted of the strength and toughness behavior of NiAl-(Cr,Mo) directionally solidified at faster growth rates. If the mechanical properties did not deteriorate with increased growth rates, directional solidification could offer an economical means to produce NiAl-based alloys commercially for gas turbine engines. An investigation at the NASA Glenn

  15. Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates. II: Fracture Mechanism Map

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Huang, Z.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2012-02-01

    A methodology to construct fracture mechanism maps for Sn-3.8%Ag-0.7%Cu (SAC387) solder joints attached to Cu substrates has been developed. The map, which delineates the operative mechanisms of fracture along with corresponding joint fracture toughness values, is plotted in a space described by two microstructure-dependent parameters, with the abscissa describing the interfacial intermetallic compound (IMC) and the ordinate representing the strain-rate-dependent solder yield strength. The plot space encompasses the three major mechanisms by which joints fail, namely (i) cohesive fracture of solder, (ii) cleavage fracture of interfacial intermetallic compounds (IMC), and (iii) fracture of the solder-IMC interface. Line contours of constant fracture toughness values, as well as constant fraction of each of the above mechanisms, are indicated on the plots. The plots are generated by experimentally quantifying the dependence of the operative fracture mechanism(s) on the two microstructure-dependent parameters (IMC geometry and solder yield strength) as functions of strain rate, reflow parameters, and post-reflow aging. Separate maps are presented for nominally mode I and equi-mixed mode loading conditions (loading angle ϕ = 0° and 45°, respectively). The maps allow rapid assessment of the operative fracture mechanism(s) along with estimation of the expected joint fracture toughness value for a given loading condition (strain rate and loading angle) and joint microstructure without conducting actual tests, and may serve as a tool for both prediction and microstructure design.

  16. Analogy between fluid cavitation and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  17. The fracture resistance of 1420 and 1421 Al-Mg-Li alloys

    SciTech Connect

    Birt, M.J.; Hafley, R.A.; Wagner, J.A.; Lisagor, W.B. )

    1993-04-15

    Aluminum-magnesium-lithium alloy 1420 was developed in the form USSR as a lightweight, weldable, corrosion resistant alloy for aerospace applications. The alloy is primarily strengthened upon aging by the homogeneous precipitation of metastable [delta][prime] (Al[sub 3]Li). The equilibrium T-phase (Al[sub 2]MgLi) also precipitated during aging on grain boundaries and dislocations but does not contribute to strength and can have deleterious effects on fracture toughness. The addition of scandium, which refines the ingot grain structure, led to the evolution of alloy 1421 which exhibits higher strength and superior weldability compared to the earlier 1420 alloy. Zirconium is added to both alloys and forms a coherent precipitate, [beta][prime] (Al[sub 3]Zr), which acts as a recrystallization inhibitor. The fracture resistance of alloys 1420 and 1421 in the T6 temper has been examined by R-curve determination and the observed behavior has been compared with Al alloy, 2219-T87. The center-cracked (M(T)) sheet panels tested in this study were of sufficient width to produce stable crack growth to a [Delta]a of [approximately] 25 mm and the R-curves that were generated allowed for a comparison to be made of the stable crack growth resistance between the alloys in accordance with ASTM E561-86. The data presented are part of an extensive collaborative test program involving both private industry and government laboratories to evaluate the 1420 and 1421 alloys.

  18. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  19. Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load

    NASA Astrophysics Data System (ADS)

    Hu, Yumei; Xiao, Yue; Jin, Xiaoqing; Zheng, Haoran; Zhou, Yinge; Shao, Jinhua

    2016-11-01

    Using the combination of experiment and simulation, the fracture behavior of the brittle metal named ADC12 aluminum alloy was studied. Five typical experiments were carried out on this material, with responding data collected on different stress states and dynamic strain rates. Fractographs revealed that the morphologies of fractured specimen under several rates showed different results, indicating that the fracture was predominantly a brittle one in nature. Simulations of the fracture processes of those specimens were conducted by Finite Element Method, whilst consistency was observed between simulations and experiments. In simulation, the Johnson- Cook model was chosen to describe the damage development and to predict the failure using parameters determined from those experimental data. Subsequently, an ADC12 engine mount bracket crashing simulation was conducted and the results indicated good agreement with the experiments. The accordance showed that our research can provide an accurate description for the deforming and fracture processes of the studied alloy.

  20. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  1. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE PAGES

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; ...

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  2. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    SciTech Connect

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  3. Comparison of the Effect of Individual and Combined Zr and Mn Additions on the Fracture Behavior of Al-Cu-Li Alloy AA2198 Rolled Sheet

    NASA Astrophysics Data System (ADS)

    Tsivoulas, Dimitrios; Prangnell, Philip B.

    2013-11-01

    The effect of individual and combined addition of dispersoid-forming alloying elements Zr and Mn on the fracture behavior of the Al-Cu-Li alloy 2198 has been investigated by the Kahn tear test. Overall, the standard baseline 2198 alloy containing only Zr exhibited the best performance, while the alloy with the combined presence of Zr and Mn was slightly inferior. The lowest properties were seen for a Zr-free 2198-0.4Mn alloy variant. In the T351 temper fracture initiated at coarse constituent particles that formed large cavities and microvoid sheets linked the initial sites of void growth. In the Mn-containing alloys microvoids clearly nucleated at the coarser Al20Cu2Mn3 dispersoids within the microstructure, while this was not identifiable for the finer coherent Al3Zr dispersoids. However, this difference in the mechanism of cavity linkage had little effect on the overall toughness of the materials, which was more closely related to the effect of Mn and Zr on the level of recrystallization. Extended artificial aging promoted grain boundary decohesion due to the precipitation of high densities of T1 particles on GBs and favored a cleavage fracture mode. Particle decohesive fracture was also promoted by T1 precipitation on the Mn dispersoids.

  4. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    NASA Astrophysics Data System (ADS)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-12-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  5. Correlation of microstructure and fracture toughness in high-chromium white iron hardfacing alloys

    SciTech Connect

    Lee, S.; Choo, S.H.; Kim, N.J.; Baek, E.R.; Ahn, S.

    1996-12-01

    A correlation is made of microstructure and fracture toughness in hypereutectic high-chromium white iron hardfacing alloys. In order to investigate the matrix effect of these alloys, in particular, four different matrices such as pearlite, austenite, and a mixture of pearlite and austenite were employed by changing the ratio of Mn/Si, while the total volume fraction of carbides was fixed. The hardfacing alloys were deposited twice on a mild steel plate by the self-shielding flux-cored arc-welding method. Fracture toughness was increased by increasing the volume fraction of austenite in the matrix, whereas hardness and abrasion resistance were nearly constant. In situ observation of the fracture process showed that cracks initiated at large primary carbides tended to be blocked at the austenitic matrix. This suggested that fracture toughness was controlled mainly by the amount of austenite in the matrix, thereby yielding the better toughness in the hardfacing alloy having the austenitic matrix. Considering both abrasion resistance and fracture toughness, therefore, the austenitic matrix was preferred for the high-chromium white iron hardfacing alloys.

  6. Mechanical Alloying for Making Thermoelectric Compounds

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Fleurial, Jean-Pierre; Snyder, Jeffrey; Blair, Richard; May, Andrew

    2007-01-01

    An economical room-temperature mechanical alloying process has been shown to be an effective means of making a homogeneous powder that can be hot-pressed to synthesize a thermoelectric material having reproducible chemical composition. The synthesis of a given material consists of the room temperature thermomechanical-alloying process followed b y a hot-pressing process. Relative to synthesis of nominally the same material by a traditional process that includes hot melting, this s ynthesis is simpler and yields a material having superior thermoelect ric properties.

  7. Mechanics of fracture - Fundamentals and some recent developments

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Subramonian, N.; Lee, J. D.

    1979-01-01

    An overview is presented of the fundamental aspects of and recent developments in fracture mechanics. Reference is made to linear elastic fracture mechanics including the state of stresses and displacements in the vicinity of cracks, effects of crack geometry and orientation on stress intensity factors, energy balance of Griffith, Irwin's stress intensity concept, and linear elastic fracture mechanics testing for fracture toughness. Other aspects of this paper include the non-linear behavior of materials and their influence on fracture mechanics parameters, consideration of viscoelasticity and plasticity, non-linear fracture toughness parameters as C.O.D., R-curve and J-integral, and a non-linear energy method, proposed by Liebowitz. Finite element methods applied to fracture mechanics problems are indicated. Also, consideration has been given to slow crack growth, dynamic effects on K(IC), Sih's criterion for fracture, Lee and Liebowitz's criterion relating crack growth with plastic energy, and applications of fracture mechanics to aircraft design. Suggestions are offered for future research efforts to be undertaken in fracture mechanics.

  8. Patterns and perspectives in applied fracture mechanics

    SciTech Connect

    Merkle, J.G.

    1994-12-31

    This lecture begins with a overview of applied fracture mechanics pertinent to safety of pressure vessels. It then progresses to a chronological panorama of experimental and analytical results. To be useful and dependable in safety analysis of real structures, new analysis developments must be physically realistic, which means that they must accurately describe physical cause and effect. Consequently, before mathematical modeling can begin, cause and effect must be established from experimental data. This can be difficult and time consuming, but worth the effort. Accordingly, the theme of this paper is that the search for patterns is constant and vital. This theme is illustrated by the development of small, single-specimen, fracture toughness testing techniques. It is also illustrated by the development, based on two different published large-strain, elastic-plastic, three-dimensional finite-element analyses, of a hypothesis concerning three-dimensional loss of constraint. When a generalization of Irwin`s thickness-normalized plastic-zone parameter, reaches a value close to 2{pi}, the through-thickness contraction strain at the apex of the near-tip logarithmic-spiral slip-line region becomes the dominant negative strain accommodating crack opening. Because slip lines passing from the midplane to the stress-free side surfaces do not have to curve, once these slip lines are established, stresses near the crack tip are only elevated by strain hardening and constraint becomes significantly relaxed. This hypothesis, based on published three-dimensional elastic-plastic analyses, provides a potentially valuable means for gaining additional insight into constraint effects on fracture toughness by considering the roles played by the plastic strains as well as the stresses that develop near a crack tip.

  9. Mechanisms for fast flow in unsaturated fractured rock

    SciTech Connect

    Tokunaga, Tetsu K.; Wan, Jiamin

    1998-03-01

    Although fractures in rock are well-recognized as pathways for fast percolation of water, the possibility that fast flow could occur along unsaturated fracture pathways is commonly not considered in vadose zone hydrology. In this study, two mechanisms for fast flow along unsaturated fractures were investigated, film flow and surface zone flow. The importance of fracture surface roughness was demonstrated through experiments conducted on ceramic blocks having simple surface topographies. Those experiments showed that film flow on fracture surfaces is largely due to flow along continuous surface channels which become water-filled at near-zero matric (capillary) potentials. The second mechanism, surface zone flow, is important when the permeability of the rock along fractures (fracture skin) is significantly greater than that of the bulk rock matrix. Surface zone fast flow was demonstrated through water imbibition (sorptivity) experiments. These mechanisms help explain observations of rapid solute transport in unsaturated subsurface environments.

  10. Mechanical properties of low tantalum alloys

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1982-01-01

    The mechanical property behavior of equiaxed cast B-1900 + Hf alloy as a function of tantalum content was studied. Tensile and stress rupture characterization was conducted on cast to size test bars containing tantalum at the 4.3% (standard level), 2.2% and 0% levels. Casting parameters were selected to duplicate conditions used to prepare test specimens for master metal heat qualification. The mechanical property results as well as results of microstructural/phase analysis of failed test bars are presented.

  11. Hydrogen pickup mechanism of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Couet, Adrien

    Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes

  12. Fracture behavior of large-scale thin-sheet aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dewit, Roland; Fields, Richard J.; Mordfin, Leonard; Low, Samuel R.; Harne, Donald

    1994-01-01

    A series of fracture tests on large-scale, pre-cracked, aluminum alloy panels is being carried out to examine and to characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were specially designed to enable the panel specimens to be loaded in tension, in a 1780-kN-capacity universal testing machine. Twelve panel specimens, each consisting of a single sheet of bare 2024-T3 aluminum alloy, 3988 mm high, 2286 mm wide, and 1.016 mm thick are being fabricated with simulated through-cracks oriented horizontally at mid-height. Using existing information, a test matrix has been set up that explores regions of failure that are controlled by fracture mechanics, with additional tests near the boundary between plastic collapse and fracture. In addition, a variety of multiple site damage (MSD) configurations have been included to distinguish between various proposed linkage mechanisms. All tests but one use anti-buckling guides. At this writing seven specimens have been tested. Three were fabricated with a single central crack, three others had multiple cracks on each side of the central crack, and one had a single crack but no anti-buckling guides. Each fracture event was recorded on film, video, computer, magnetic tape, and occasionally optical microscopy. The visual showed the crack tip with a load meter in the field of view, using motion picture film for one tip and SVHS video tape for the other. The computer recorded the output of the testing machine load cell, the stroke, and twelve strain gages at 1.5 second intervals. A wideband FM magnetic tape recorder was used to record data from the same sources. The data were analyzed by two different procedures: (1) the plastic zone model based on the residual strength diagram; and (2) the R-curve. The first three tests were used to determine the basic material properties, and these results were then used in the analysis of the two subsequent tests with MSD cracks. There is

  13. Magnetic properties of metastable Fe Pd alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Yabe, Hiromasa; O'Handley, Robert C.; Kuji, Toshiro

    2007-03-01

    Metastable Fe-Pd powder samples with various Pd content were synthesized by mechanical alloying. Their fundamental properties, i.e., structure, magnetization and coercive fore are discussed. The saturation magnetizations of the metastable Fe-Pd powders gradually decreases with increasing Pd content. The coercive forces observed in as-milled samples are all less than 40 Oe. However, some of the heat-treated samples, notably, Pd content around 55 at% with L1 0 structure, shows Hc up to 1589 Oe.

  14. Mechanical stratigraphic controls on natural fracture spacing and penetration

    NASA Astrophysics Data System (ADS)

    McGinnis, Ronald N.; Ferrill, David A.; Morris, Alan P.; Smart, Kevin J.; Lehrmann, Daniel

    2017-02-01

    Fine-grained low permeability sedimentary rocks, such as shale and mudrock, have drawn attention as unconventional hydrocarbon reservoirs. Fracturing - both natural and induced - is extremely important for increasing permeability in otherwise low-permeability rock. We analyze natural extension fracture networks within a complete measured outcrop section of the Ernst Member of the Boquillas Formation in Big Bend National Park, west Texas. Results of bed-center, dip-parallel scanline surveys demonstrate nearly identical fracture strikes and slight variation in dip between mudrock, chalk, and limestone beds. Fracture spacing tends to increase proportional to bed thickness in limestone and chalk beds; however, dramatic differences in fracture spacing are observed in mudrock. A direct relationship is observed between fracture spacing/thickness ratio and rock competence. Vertical fracture penetrations measured from the middle of chalk and limestone beds generally extend to and often beyond bed boundaries into the vertically adjacent mudrock beds. In contrast, fractures in the mudrock beds rarely penetrate beyond the bed boundaries into the adjacent carbonate beds. Consequently, natural bed-perpendicular fracture connectivity through the mechanically layered sequence generally is poor. Fracture connectivity strongly influences permeability architecture, and fracture prediction should consider thin bed-scale control on fracture heights and the strong lithologic control on fracture spacing.

  15. Intergranular fracture in some precipitation-hardened aluminum alloys at low temperatures

    SciTech Connect

    Kuramoto, S.; Itoh, G.; Kanno, M.

    1996-10-01

    Intergranular fracture at low temperatures from room temperature down to 4.2 K has been studied in some precipitation-hardened aluminum alloys. Microscopic appearance of intergranular facets is revealed to be greatly affected by the microstructure adjacent to the grain boundaries (GBs). When large precipitates on GBs and wide precipitation-free zones (PFZs) are present, coalescence of microvoids initiated at the GB precipitates causes the intergranular fracture with dimples. This fracture process is found to be unaffected by deformation temperature. On the other hand, in the presence of fine precipitates on GBs and narrow PFZs, matrix slip localization exerts significant influence on the fracture behavior. At low temperatures, large stress concentration at GBs leads to intergranular fracture, forming sharp ledges on the fracture surfaces, while at room temperature, the dynamic recovery process is thought to relax such stress concentration, resulting in a transgranular ductile rupture.

  16. [Bone fracture and the healing mechanisms. The mechanical stress for fracture healing in view of distraction osteogenesis].

    PubMed

    Yukata, Kiminori; Takahashi, Mitsuhiko; Yasui, Natsuo

    2009-05-01

    It is generally accepted that moderate mechanical stress influences the course of fracture healing. A flexible fixation of the fractured site can induce fracture callus formation, whereas an unstable fixation can lead to a nonunion. The relationship between mechanical stress and the process of bone regeneration or healing remains incompletely understood. Distraction osteogenesis is a surgical technique that, using appropriate mechanical tension-stress, does not break the callus but rather it stimulates and maintains osteogenesis. The common principles of distraction osteogenesis are osteotomy and slow progressive distraction by an external fixation device. Interest in bone regeneration associated with mechanical stress might lead to better understanding of the fracture healing process.

  17. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.

    PubMed

    Kannan, M Bobby; Orr, Lynnley

    2011-08-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  18. Correlation of microstructure with the wear resistance and fracture toughness of white cast iron alloys

    NASA Astrophysics Data System (ADS)

    Filipovic, M.; Kamberovic, Z.; Korac, M.; Gavrilovski, M.

    2013-05-01

    The objective of this investigation was to set down (on the basis of the results obtained by the examination of white cast iron alloys with different contents of alloying elements) a correlation between chemical composition and microstructure, on one hand, and the properties relevant for this group of materials, i.e., wear resistance and fracture toughness, on the other. Experimental results indicate that the volume fraction of the eutectic carbide phase (M3C or M7C3) have an important influence on the wear resistance of white iron alloys under low-stress abrasion conditions. Besides, the martensitic or martensite-austenitic matrix microstructure more adequately reinforced the eutectic carbides, minimizing cracking and removal during wear, than did the austenitic matrix. The secondary carbides which precipitate in the matrix regions of high chromium iron also influence the abrasion behaviour. The results of fracture toughness tests show that the dynamic fracture toughness in white irons is determined mainly by the properties of the matrix. The high chromium iron containing 1.19 wt% V in the as-cast condition, showed the greater fracture toughness when compared to other experimental alloys. The higher toughness was attributed to strengthening during fracture, since very fine secondary carbide particles were present mainly in an austenitic matrix.

  19. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  20. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.

    PubMed

    Kannan, M Bobby; Raman, R K Singh

    2008-05-01

    The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.

  1. Investigation of Microstructural Factors that Cause Low Fracture Toughness in Silicon Carbide Whisker/Al Alloy Composites

    DTIC Science & Technology

    1988-10-01

    TOUGHNESS IN SILICON CARBIDE WHISKER/Al ALLOY COMPOSITES oSubmittLJ to: Office of Naval Research 800 N. Quincy Street Arlington, VA 22217-5000...September 30, 1988 INVESTIGATION OF MICROSTRUCTURAL FACTORS THAT CAUSE LOW FRACTURE TOUGHNESS IN SILICON CARBIDE WHISKER/Al ALLOY COMPOSITES Submitted...Investigation of Microstructural Factors that Cause Low Fracture Toughness in Silicon Carbide Whisker/Al Alloy Composites .12 PERSONAL AUTHOR(S) F. E. Wawner

  2. Elastic - Plastic Fracture Mechanics. A Critical Review. Part 1

    DTIC Science & Technology

    1990-04-01

    STATE UNIVERSITY OF NEW YORK MICS COMMITTEE MARITIME COLLE GE Dr. William Sandberg Dr. W. R. Porter AMERICAN IRON AND STEEL INSTITUTE WELDING RESEARCH... welded steel structures. Fundamental concepts and underlying assumptions are described. Standardized test methods and recent developments are reviewed...fracture mechanics, as applied to welded steel structures. First, the fundamental concepts and underlying assumptions of fracture mechanics are described

  3. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  4. Mechanical properties of 50Molybdenum-50Rhenium alloys and their assembly by spinal muscular atrophy

    NASA Astrophysics Data System (ADS)

    Xu, Jianhui

    This study is concerned with the deformation and fracture behaviors, especially strain-rate effect on plasticity in tensile tests, of two 50Mo-50Re alloys at strain rates ranging from 10-6 s-1 to 1 s-1 at room temperature in air. Metallographic observations of the 50Mo-50Re alloys before and after tensile deformation were conducted to understand the relationships among mechanical properties, microstructure and strain rate in these alloys. Understanding the strain-rate effect on mechanical properties of 50Mo-50Re alloys is important for optimizing forming operations, especially sheet forming, of these alloys, which are often used in cathode and aerospace applications. An anomalous strain-rate effect on ductility was observed in the 50Mo-50Re alloys. Ductility was significantly increased by increasing the strain rate from 10-6 s-1 to 1 s-1 in the fully-recrystallized and recovery heat-treated 50Mo-50Re alloys in tension at room temperature. At a low strain rate, fracture was predominantly brittle, while it was more ductile at higher stain rates. At a low strain rate, secondary cracks initiated at grain boundaries and triple junctions were observed in these alloys, which suggested that significant stress concentration was generated by tensile plastic deformation in the vicinity of grain boundaries, especially triple junctions. Electron backscatter diffraction experiments revealed that there was strain concentration at grain boundaries and their triple junctions during tensile deformation in these alloys. The decrease in ductility at low strain rates in the alloys was related to the possible interaction between dislocations and trace interstitial atoms (e.g., H, O, N and C) picked up during production of these alloys. This dissertation also reports the research efforts made to optimize small-scale resistance spot welding (SSRSW) of refractory alloy 50Mo-50Re thin sheet by adjusting seven important welding parameters, including hold time, electrode material, electrode

  5. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy

    DOE PAGES

    Alam, M. Ershadul; Pal, Soupitak; Fields, Kirk; ...

    2016-08-13

    Here, a new larger heat of a 14YWT nanostructured ferritic alloy (NFA), FCRD NFA-1, was synthesized by ball milling FeO and argon atomized Fe-14Cr-3W-0.4Ti-0.2Y (wt%) powders, followed by hot extrusion, annealing and cross rolling to produce an ≈10 mm-thick plate. NFA-1 contains a bimodal size distribution of pancake-shaped, mostly very fine scale, grains. The as-processed plate also contains a large population of microcracks running parallel to its broad surfaces. The small grains and large concentration of Y–Ti–O nano-oxides (NOs) result in high strength up to 800 °C. The uniform and total elongations range from ≈1–8%, and ≈10–24%, respectively. The strengthmore » decreases more rapidly above ≈400 °C and deformation transitions to largely viscoplastic creep by ≈600 °C. While the local fracture mechanism is generally ductile-dimple microvoid nucleation, growth and coalescence, perhaps the most notable feature of tensile deformation behavior of NFA-1 is the occurrence of periodic delamination, manifested as fissures on the fracture surfaces.« less

  6. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy

    SciTech Connect

    Alam, M. Ershadul; Pal, Soupitak; Fields, Kirk; Maloy, S. A.; Hoelzer, David T.; Odette, George R.

    2016-08-13

    Here, a new larger heat of a 14YWT nanostructured ferritic alloy (NFA), FCRD NFA-1, was synthesized by ball milling FeO and argon atomized Fe-14Cr-3W-0.4Ti-0.2Y (wt%) powders, followed by hot extrusion, annealing and cross rolling to produce an ≈10 mm-thick plate. NFA-1 contains a bimodal size distribution of pancake-shaped, mostly very fine scale, grains. The as-processed plate also contains a large population of microcracks running parallel to its broad surfaces. The small grains and large concentration of Y–Ti–O nano-oxides (NOs) result in high strength up to 800 °C. The uniform and total elongations range from ≈1–8%, and ≈10–24%, respectively. The strength decreases more rapidly above ≈400 °C and deformation transitions to largely viscoplastic creep by ≈600 °C. While the local fracture mechanism is generally ductile-dimple microvoid nucleation, growth and coalescence, perhaps the most notable feature of tensile deformation behavior of NFA-1 is the occurrence of periodic delamination, manifested as fissures on the fracture surfaces.

  7. Mechanical and Wear Properties of Sb- and Y-Added Mg-9Al-1Zn (AZ91) Alloy

    NASA Astrophysics Data System (ADS)

    Boby, Arun; Srinivasan, A.; Pillai, U. T. S.; Pai, B. C.

    2015-09-01

    This paper studies the effect of Sb and Y additions on the microstructure and mechanical properties of the AZ91 alloy. The results indicate that the Sb and Y additions lead to the formation of Mg3Sb2 and Al2Y phases. These phases modify the morphology of the β-Mg17Al12 phase, and hence refine the microstructure. The effects of Sb and Y additions on the aging behavior have also been investigated. Aging of the AZ91 alloy results in the formation of continuous and discontinuous types of precipitates. Whereas Sb and Y additions to AZ91 alloy suppresses the formation of discontinuous precipitate. The paper also reports the mechanical properties of as-cast and aged Sb-added AZ91-xY alloys for room and high temperatures. The optimum tensile properties are obtained with the alloy having the combined addition of 0.5 wt pct Sb and 0.6 wt pct Y. The fracture surface of AZ91-0.5Sb-0.6Y alloy reveals more quasi-cleavage type of failure with a cleavage fracture than the base alloy. At HT, the AZ91-0.5Sb-0.6Y alloy displays more cleavage facets connected with tearing ridges and shallow dimples than AZ91 alloy. Furthermore, it observed the improvement in wear resistance through the addition of Y. The worn surface reveals abrasion, oxidation, delamination, and plastic deformation wear mechanisms.

  8. Subtask 12D3: Fracture properties of V-5Cr-5Ti Alloy

    SciTech Connect

    Li, H.; Hamilton, M.L.; Jones, R.H.

    1995-03-01

    The purpose of this research is to investigate the effect of heat treatment on microstructure and fracture toughness of a V-5Cr-5Ti alloy in the range -50-100{degrees}C. Fracture toughness and impact tests were performed on a V-5Cr-5Ti alloy. Specimens annealed at 1125{degrees}C for 1 h and furnace cooled in a vacuum of 1.33 x 10{sup -5} Pa were brittle at room temperature (RT) and experienced a mixture of intergranular and cleavage fracture. Fracture toughness (J{sub IQ}) at RT was 52 kJ/m{sup 2} and the impact fracture energy (IFE) was 6 J. The IFE at -100{degrees}C was only 1 J. While specimens exhibited high fracture toughness at 100{degrees}C (J{sub IQ} is 485 kj/m{sup 2}), fracture was a mixture of dimple and intergranular failure, with intergranular fracture making up 40% of the total fracture surface. The ductile to brittle transition temperature (DBTT) was estimated to be about 20{degrees}C. When some specimens were given an additional annealing at 890{degrees}C for 24 h, they became very ductile at RT and fractured by microvoid coalescence. The J{sub IQ} value increased from 52 kJ/m{sup 2} to {approximately}1100 kJ/m{sup 2}. The impact test failed to fracture specimens at RT due to a large amount of plastic deformation. 7 refs., 1 fig., 6 tabs.

  9. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  10. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  11. Mixed-mode Mechanism of Hydraulic Fracture Segmentation

    NASA Astrophysics Data System (ADS)

    Hurt, R. S.; Germanovich, L.; Wu, R.

    2006-12-01

    Mixed-mode I+III loading is one of the primary causes of fracture front segmentation. Although such segmented fractures have been observed both in nature and laboratory, we are not aware of direct laboratory experiments on the mode III mechanism of segmentation of hydraulically induced fractures. In this work, we developed a laboratory technique and a theoretical model for studying not only the effect of mode III loading on the onset of hydraulic fracture segmentation, but also the effect of segmentation on the subsequent growth of hydraulic fractures. In quasi-brittle materials, even a small mode III component may cause fracture segmentation due to a tensile stress field induced near the fracture front [Rice, 1968]. Previously, this has been confirmed in experiments with non-hydraulic fractures [Knauss, 1970; Cooke and Pollard, 1996]. In one occasion, quasi-hydraulic fractures propagated in fast, uncontrollable manner [Sommer, 1969]. This is why, we focused on controlled hydraulic fractures with a rather small KIII/KI ratio (1-10 %). For mixed mode I+III experiments, we used transparent, cylindrical PMMA samples with circular internal fractures perpendicular to the sample axis. Fracture orientation was controlled by thermoelastic stresses induced in each sample by preheating it before creating a fracture. In order to apply mode III loading to the initial fracture, a constant torque was applied to the specimen while fluid was injected into the fracture at a constant rate to pressurize it and to induce mode I loading. The velocity of fracture propagation was constrained by controlling the rate of fluid injection. In spite of a small magnitude of the mode III component, we observed segmented fracture fronts in all tested samples. The segments had similar dimensions and shape elongated around the perimeter of the initial fracture. When the fractures were further pressurized by injecting additional fluid into the sample, second-order segments developed along the fronts

  12. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    SciTech Connect

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F.

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  13. Prediction of Failure Due to Thermal Aging, Corrosion and Environmental Fracture in Amorphous and Titanium Alloys

    SciTech Connect

    Farmer, J C

    2003-04-15

    DARPA is exploring a number of advanced materials for military applications, including amorphous metals and titanium-based alloys. Equipment made from these materials can undergo degradation due to thermal aging, uniform corrosion, pitting, crevice corrosion, denting, stress corrosion cracking, corrosion fatigue, hydrogen induced cracking and microbial influenced corrosion. Amorphous alloys have exceptional resistance to corrosion, due in part to the absence of grain boundaries, but can undergo crystallization and other phase instabilities during heating and welding. Titanium alloys are extremely corrosion resistant due to the formation of a tenacious passive film of titanium oxide, but is prone to hydrogen absorption in crevices, and hydrogen induced cracking after hydrogen absorption. Accurate predictions of equipment reliability, necessary for strategic planning, requires integrated models that account for all relevant modes of attack, and that can make probabilistic predictions. Once developed, model parameters must be determined experimentally, and the validity of models must be established through careful laboratory and field tests. Such validation testing requires state-of-the-art surface analytical techniques, as well as electrochemical and fracture mechanics tests. The interaction between those processes that perturb the local environment on a surface and those that alter metallurgical condition must be integrated in predictive models. The material and environment come together to drive various modes of corrosive attack (Figure 1). Models must be supported through comprehensive materials testing capabilities. Such capabilities are available at LLNL and include: the Long Term Corrosion Test Facility (LTCTF) where large numbers of standard samples can be exposed to realistic test media at several temperature levels; a reverse DC machine that can be used to monitor the propagation of stress corrosion cracking (SCC) in situ; and banks of potentiostats with

  14. Deformation and Fracture Behavior of Metallic Glassy Alloys and Glassy-Crystal Composites

    NASA Astrophysics Data System (ADS)

    Louzguine-Luzgin, D. V.; Vinogradov, A.; Li, S.; Kawashima, A.; Xie, G.; Yavari, A. R.; Inoue, A.

    2011-06-01

    The present work demonstrates the deformation behavior of Zr-Cu-Ni-Al bulk glassy alloys and Zr-Ni-Cu-Al-Pd glassy foils as well as Ni-Cu-Ti-Zr bulk crystal-glassy composites. Fracture of Zr60Cu16Ni14Al10 and Zr64.13Ni10.12Cu15.75Al10 bulk glassy alloys is featured by nearly equal fraction areas of cleavage-like and vein-type relief. The observed pattern of alternating cleavage-like and vein-type patterns illustrates a result of dynamically self-organizing shear propagation at the final catastrophic stage. The deformation behavior of Zr64.13Ni10.12Cu15.75Al10 alloy has also been tested at LN2 temperature. The strength of the sample decreases with temperature, and no clear serrated flow typical for bulk glassy samples tested at room temperature is observed in the case of the samples tested at LN2 temperature. We also studied the deformation behavior of Zr-Ni-Cu-Al-Pd glassy foils thinned to electron transparency in situ in tension in a transmission electron microscope. We also present a Ni-Cu-Ti-Zr crystal-glassy composite material having a superior strength paired with a considerable ductility exceeding 10 pct. The metastable cP2 crystalline phase promotes a strain-induced martensitic transformation leading to pseudoelastic behavior as well as enhanced plasticity at room temperature. Underlying mechanisms of plastic deformation are discussed in terms of the interplay between the dislocation slip in the crystalline phase and the shear deformation in the glassy matrix.

  15. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys

    PubMed Central

    Yu, Hailiang; Tieu, A. Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-01-01

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation. PMID:25851228

  16. Fatigue studies of high-palladium dental casting alloys: Part I. Fatigue limits and fracture characteristics.

    PubMed

    Li, D; Brantley, W A; Mitchell, J C; Daehn, G S; Monaghan, P; Papazoglou, E

    2002-04-01

    The fatigue limits and fracture characteristics for a Pd-Cu-Ga alloy and a Pd-Ga alloy were studied. The alloys were cast into tensile test bars with gauge diameter of 3 mm and gauge length of 15 mm, and the surfaces of the castings were neither air-abraded nor polished after removal from the investment. Specimens were prepared from all-new metal (not previously melted), a combination of 50% new metal and 50% old metal (previously melted one time) and 100% old metal. The cast bars were subjected to heat treatment simulating the complete firing cycles for dental porcelain, and fatigued in air at room temperature under uniaxial tension-compression stress at 10 Hz and a ratio of tensile stress amplitude to compressive stress amplitude (R-ratio) of -1. The alloy microstructures and fracture surfaces were examined with a scanning electron microscope (SEM). Results showed that the fatigue limits at 2 x 10(6)cycles of the Pd-Cu-Ga and Pd-Ga alloys were approximately 0.20 and 0.15 of their 0.1% yield strength (YS) in tension, respectively. The fatigue resistance for specimens from both alloys containing 50% old metal and 50% new metal was comparable to that of specimens containing all-new metal, although this decreased dramatically for Pd-Cu-Ga alloy specimens containing all-old metal. The fatigue resistance of the Pd-Cu-Ga alloy subjected to heat treatment simulating the porcelain firing cycles was not adversely affected by remnants of the original as-cast dendritic microstructure that remained in the relatively large test specimens. A longer heat treatment than recommended by the manufacturer for the porcelain firing cycles is needed to completely eliminate the as-cast dendritic structure in these specimens. The Pd-Cu-Ga alloy exhibited superior fatigue resistance to the Pd-Ga alloy, which has an equiaxed-grain microstructure and lower yield strength.

  17. Mechanisms affecting swelling in alloys with precipitates

    SciTech Connect

    Mansur, L.K.; Haynes, M.R.; Lee, E.H.

    1980-01-01

    In alloys under irradiation many mechanisms exist that couple phase instability to cavity swelling. These are compounded with the more familiar mechanisms associated with point defect behavior and the evolution of microstructure. The mechanisms may be classified according to three modes of operation. Some affect cavity swelling directly by cavity-precipitate particle association, others operate indirectly by precipitate-induced changes in sinks other than cavities and finally there are mechanisms that are mediated by precipitate-induced changes in the host matrix. The physics of one mechanism of each type is developed in detail and the results compared where possible to experimental measurements. In particular, we develop the theory necessary to treat the effects on swelling of precipitation-induced changes in overall sink density; precipitation-induced changes in point defect trapping by solute depletion and creation of precipitate particle-matrix interfacial trap sites.

  18. Fractographic analysis of the low energy fracture of an aluminum alloy

    NASA Technical Reports Server (NTRS)

    Tanaka, J.; Pampillo, C. A.; Low, J. R., Jr.

    1972-01-01

    A study of the fracture process in a high strength aluminum alloy, 2014T6, was undertaken to identify the void nucleating particles in this material, to determine their composition, and to suggest means by which they might be eliminated without loss of strength.

  19. Hydrogen embrittlement and fracture toughness of a titanium alloy with surface modification by hard coatings

    NASA Astrophysics Data System (ADS)

    Lee, S.-C.; Ho, W.-Y.; Huang, C.-C.; Meletis, E. I.; Liu, Y.

    1996-02-01

    The effect of hydrogen embrittlement on the fracture toughness of a titanium alloy with different surface modifications was investigated. Disk- shaped compact- tension specimens were first coated with different .hard films and then hydrogen charged by an electrochemical method. Glow discharge optical spectrometry (GDOS), scanning electron microscopy (SEM), and x- ray diffractometry (XRD) were applied to analyze the surface characteristics. The results revealed that fracture toughness of the as- received titanium alloy decreased with the increase of hydrogen charging time. Fracture toughness of the alloy after plasma nitriding or ion implantation, which produced a TiN x layer, decreased as well, but to a lesser extent after cathodic charging. The best result obtained was for the alloy coated with a CrN film where fracture toughness was sustained even after hydrogen charging for 144 h. Obviously, the CrN film acted as a better barrier to retard hydrogen permeation, but it was at the sacrifice of the CrN film itself.

  20. Dynamic fracture behavior of Ti-6Al-4V alloy with various stabilities of [beta] phase

    SciTech Connect

    Akmoulin, I.A.; Niinomi, M.; Kobayashi, T. . Dept. of Production Systems Engineering)

    1994-08-01

    The effect of stability of the body-centered cubic (bcc) [beta] phase on the dynamic fracture behavior of Ti-6Al-4V alloy at room temperature and 77 K has been studied. The presence of a highly unstable [beta] phase in the quenched alloy leads to a decrease in both the dynamic fracture toughness and the crack propagation energy, and this decrease becomes more pronounced when test temperature is reduced to 77 K. Somewhat improved fracture characteristics were obtained by applying anneal procedure to receive a fully stable [beta] phase. The highest fracture toughness as well as the greatest crack propagation resistance were observed in the air-cooled grade, where the lattice parameter of the bcc phase was intermediate between those pertaining to quenched and annealed Ti-6Al-4V alloys. The effect is attributed to the vanadium content in the [beta] phase, which is sufficiently high to suppress deformation-induced transformation. On the other hand, the V content should be low enough to retard ductile-brittle transition, typical for the bcc metals at cryogenic temperatures. As a result, marked toughening can be achieved, so that the lowest application temperature of high-strength titanium alloys containing the bcc phase can be decreased significantly.

  1. Processing and Composition Effects on the Fracture Behavior of Spray-Formed 7XXX Series Al Alloys

    NASA Astrophysics Data System (ADS)

    Sharma, M. M.; Ziemian, C. W.; Eden, T. J.

    2010-12-01

    The fracture properties of high-strength spray-formed Al alloys were investigated, with consideration of the effects of elemental additions such as zinc, manganese, and chromium and the influence of the addition of SiC particulate. Fracture resistance values between 13.6 and 25.6 MPa (m)1/2 were obtained for the monolithic alloys in the T6 and T7 conditions, respectively. The alloys with SiC particulate compared well and achieved fracture resistance values between 18.7 and 25.6 MPa (m)1/2. The spray-formed materials exhibited a loss in fracture resistance ( K I) compared to ingot metallurgy 7075 alloys but had an improved performance compared to high-solute powder metallurgy alloys of similar composition. Characterization of the fracture surfaces indicated a predominantly intergranular decohesion, possibly facilitated by the presence of incoherent particles at the grain boundary regions and by the large strength differential between the matrix and precipitate zone. It is believed that at the slip band-grain boundary intersection, particularly in the presence of large dispersoids and/or inclusions, microvoid nucleation would be significantly enhanced. Differences in fracture surfaces between the alloys in the T6 and T7 condition were observed and are attributed to inhomogeneous slip distribution, which results in strain localization at grain boundaries. The best overall combination of fracture resistance properties were obtained for alloys with minimum amounts of chromium and manganese additions.

  2. Microstructural and Mechanical Characterization of Zr Modified 2014 Aluminium Alloy

    DTIC Science & Technology

    2007-11-02

    heated using an induction furnace; the temperature stabilisation time was 6 min. -The gauge section of samples was a solid cylinder with a length (L) of...torsion tests - Fatigue tests -Fracture observations Introduction -Aluminium sheets require a good attitude to the cold metal forming. -Al-Cu-Mg alloys...precipitation occurring during hot deformation or heat treatment Introduction -The precipitation sequence for 2014 Al alloys has been extensively

  3. Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors

    NASA Astrophysics Data System (ADS)

    Bettaieb, Mohamed Ben; Van Hoof, Thibaut; Minnebo, Hans; Pardoen, Thomas; Dufour, Philippe; Jacques, Pascal J.; Habraken, Anne Marie

    2015-03-01

    A physics-based, uncoupled damage model is calibrated using cylindrical notched round tensile specimens made of Ti5553 and Ti-6Al-4V alloys. The fracture strain of Ti5553 is lower than for Ti-6Al-4V in the full range of stress triaxiality. This lower ductility originates from a higher volume fraction of damage sites. By proper heat treatment, the fracture strain of Ti5553 increases by almost a factor of two, as a result of a larger damage nucleation stress. This result proves the potential for further optimization of the damage resistance of the Ti5553 alloy. The damage model is combined with an elastoviscoplastic law in order to predict failure in a wide range of loading conditions. In particular, a specific application involving bolted sectors is addressed in order to determine the potential of replacing the Ti-6Al-4V by the Ti5553 alloy.

  4. RESEARCH ON THE BASIC NATURE OF STRESS CORROSION FOR VARIOUS STRUCTURAL ALLOYS AT ROOM AND ELEVATED TEMPERATURE,

    DTIC Science & Technology

    LIFE), GRAIN STRUCTURES(METALLURGY), FRACTURE(MECHANICS), TENSILE PROPERTIES , HEAT TREATMENT, TEMPERATURE, SEA WATER, CHLORIDES, SHEETS, STEEL, MOLYBDENUM ALLOYS, VANADIUM ALLOYS, ENVIRONMENTAL TESTS, MICROSTRUCTURE.

  5. Chemical and Mechanical Alteration of Fractured Caprock Under Reactive Flow

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Ameli, P.; Detwiler, R. L.

    2013-12-01

    Permeability evolution of fractures depends on chemical and mechanical processes. Stress perturbations lead to mechanical deformation and fracture propagation that can increase formation permeability. Chemical disequilibrium between fluids and resident minerals leads to dissolution and precipitation that further alter fracture porosity and permeability. The ability to predict whether these coupled chemical and mechanical processes will enhance or diminish fracture permeability remains elusive. Here, we present results from reactive-transport experiments in fractured anhydrite cores, with significant alteration of the rock matrix, where only the flow rate differed. For high flow rate, the transformation of anhydrite to gypsum occurred uniformly within the fracture leading to compaction and a two-order-of-magnitude decrease in permeability. For low flow rate, rock-fluid reactions proceeded to near equilibrium within the fracture with preferential flow paths persisting over the 6-month duration of the experiment and a negligible change in permeability. Anticipating such permeability evolution is critical for successful geologic CO2 sequestration and waste injection. Additionally, reactive alteration of the porous matrix bounding fractures will influence the strength of earthquake fault zones. Comparison of the aperture field before (a) and after (b) the reactive flow-through experiment at low flow rate. a) Aperture field from optical profilometry measurements of the fracture surfaces. b) Inferred aperture from x-ray computed tomography scans. Color scale I (blue) denotes mainly unaltered regions of the fracture and/or aperture < 200 μm. Color scale II (green/yellow) denotes reacted regions of the fracture surfaces and the matrix adjacent to the fracture. Persistent flow paths are clearly observed in panel (b) (color scale III corresponds to aperture > 200 μm) leading to negligible change in permeability after a 6-month run.

  6. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material.

    PubMed

    Medvedev, Alexander E; Molotnikov, Andrey; Lapovok, Rimma; Zeller, Rolf; Berner, Simon; Habersetzer, Philippe; Dalla Torre, Florian

    2016-09-01

    Ti-Zr alloys have recently started to receive a considerable amount of attention as promising materials for dental applications. This work compares mechanical properties of a new Ti-15Zr alloy to those of commercially pure titanium Grade4 in two surface conditions - machined and modified by sand-blasting and etching (SLA). As a result of significantly smaller grain size in the initial condition (1-2µm), the strength of Ti-15Zr alloy was found to be 10-15% higher than that of Grade4 titanium without reduction in the tensile elongation or compromising the fracture toughness. The fatigue endurance limit of the alloy was increased by around 30% (560MPa vs. 435MPa and 500MPa vs. 380MPa for machined and SLA-treated surfaces, respectively). Additional implant fatigue tests showed enhanced fatigue performance of Ti-15Zr over Ti-Grade4.

  7. Fracture Mechanics for Composites: State of the Art and Challenges

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Krueger, Ronald

    2006-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on the structural level. In this paper, the state-of-the-art in fracture toughness characterization, and interlaminar fracture mechanics analysis tools are described. To demonstrate the application on the structural level, a panel was selected which is reinforced with stringers. Full implementation of interlaminar fracture mechanics in design however remains a challenge and requires a continuing development effort of codes to calculate energy release rates and advancements in delamination onset and growth criteria under mixed mode conditions.

  8. Mechanical properties of semiconductors and their alloys

    NASA Astrophysics Data System (ADS)

    Sher, A.; Berding, M. A.; Paxton, A. T.; Krishnamurthy, S.; Chen, A.-B.

    1992-02-01

    A wide range of subjects have been treated in this contract. We have devoted time to the development and applications of two first principles computational methods: one, the full-potential linear muffin tin orbital (FP-LMTO) method is somewhat mature and highly accurate, while the other, linear combination of atomic orbitals (LCAO), is less accurate but more flexible and is easily incorporated into the other calculations we have in place, e.g., surface Green's function methods and CPA. Tight binding has also been used. These methods have been applied to solve a host of mechanical-property problems including elastic constants, cleavage energies, sublimation energies, interactions between surface atoms relating to their surface order-disorder state and growth theory, surface segregation, bulk order-disorder theory and phase stability, the effect of dislocations on electronic transport and electro-optic properties of semiconductors, the Ni-Al intermetallic phase diagram, planar fault energies in L12 alloys, high-performance structural metal alloy design, and a contribution to understanding the Jones theory of metal alloying. Many of these subjects have been brought to publishable conclusions. Whenever possible, we have presented our detailed results in the form of preprints and reprints, with only brief summaries of the work given here. In instances where the research is incomplete, we have given somewhat longer expositions.

  9. Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry

    SciTech Connect

    Salas Zamarripa, A.; Mata, M.P. Guerrero; Morales, M. Castillo; Beber-Solano, T.P.

    2011-12-15

    The identification and the development of a quantification technique of the modes of fracture in fatigue fracture surfaces of a 2618-T6 aluminum alloy were developed during this research. Fatigue tests at room and high temperature (230 Degree-Sign C) were carried out to be able to compare the microscopic fractographic features developed by this material under these testing conditions. The overall observations by scanning electron microscopy (SEM) of the fracture surfaces showed a mixture of transgranular and ductile intergranular fracture. The ductile intergranular fracture contribution appears to be more significant at room temperature than at 230 Degree-Sign C. A quantitative methodology was developed to identify and to measure the contribution of these microscopic fractographic features. The technique consisted of a combination of stereophotogrammetry and image analysis. Stereo-pairs were randomly taken along the crack paths and were then analyzed using the profile module of MeX software. The analysis involved the 3-D surface reconstruction, the trace of primary profile lines in both vertical and horizontal directions within the stereo-pair area, the measurements of the contribution of the modes of fracture in each profile, and finally, the calculation of the average contribution in each stereo-pair. The technique results confirmed a higher contribution of ductile intergranular fracture at room temperature than at 230 Degree-Sign C. Moreover, there was no indication of a direct relationship between this contribution and the strain amplitudes range applied during the fatigue testing. - Highlights: Black-Right-Pointing-Pointer Stereophotogrammetry and image analysis as a measuring tool of modes of fracture in fatigue fracture surfaces. Black-Right-Pointing-Pointer A mixture of ductile intergranular and transgranular fracture was identified at room temperature and 230 Degree-Sign C testing. Black-Right-Pointing-Pointer Development of a quantitative methodology to

  10. The relationship between observed stress corrosion cracking fracture morphology and microstructure in Alloy 600

    SciTech Connect

    Symons, D.M.; Burke, M.G.; Foster, J.P.

    1997-12-31

    Microstructure is known to influence the stress corrosion cracking (SCC) behavior of Alloy 600 in both hydrogenated water and steam environments. This study evaluated the relative SCC response of a single heat of Alloy 600 as a function of microstructure in a hydrogenated doped-steam environment. The 400 C doped-steam environment was selected for the SCC tests to accelerate cracking. The material was evaluated in three conditions: (1) as-received (2) as-annealed, and (3) as-annealed + 26% deformation. Microstructural characterization was performed using analytical electron microscopy (AEM) techniques for the evaluation of carbide type and morphology, and general structure. Constant displacement (bolt-loaded) compact tension specimens were used to induce SCC. The as-annealed and as-annealed plus cold worked samples had two fracture morphologies: a rough intergranular SCC fracture morphology and a smooth intergranular fracture morphology. The SCC fracture in the as-received specimens was characterized by a classic intergranular morphology at low magnification, consistent with the microstructural evaluation of cross-sectional metallographic samples. More detailed examination revealed a pseudo-intergranular fracture morphology. This pseudo-intergranular morphology appears to be comprised of very fine cleavage-like microfacets. These observations may assist in understanding the difference in SCC fracture morphologies as reported in the open literature.

  11. Mechanistic Study of Delamination Fracture in Al-Li Alloy C458 (2099)

    NASA Technical Reports Server (NTRS)

    Tayon, W. A.; Crooks, R. E.; Domack, M. S.; Wagner, J. A.; Beaudoin, A. J.; McDonald, R. J.

    2009-01-01

    Delamination fracture has limited the use of lightweight Al-Li alloys. In the present study, electron backscattered diffraction (EBSD) methods were used to characterize crack paths in Al-Li alloy C458 (2099). Secondary delamination cracks in fracture toughness samples showed a pronounced tendency for fracture between grain variants of the same deformation texture component. These results were analyzed by EBSD mapping methods and simulated with finite element analyses. Simulation procedures include a description of material anisotropy, local grain orientations, and fracture utilizing crystal plasticity and cohesive zone elements. Taylor factors computed for each grain orientation subjected to normal and shear stresses indicated that grain pairs with the largest Taylor factor differences were adjacent to boundaries that failed by delamination. Examination of matching delamination fracture surface pairs revealed pronounced slip bands in only one of the grains bordering the delamination. These results, along with EBSD studies, plasticity simulations, and Auger electron spectroscopy observations support a hypothesis that delamination fracture occurs due to poor slip accommodation along boundaries between grains with greatly differing plastic response.

  12. Fracture analysis of cast pure Ti and Ti-6Al-4V alloy for dental use.

    PubMed

    Kim, K H; Choi, M Y; Kishi, T

    1997-01-01

    The fracture behavior of cast two types of pure Ti and Ti-6Al-4V alloy was understood by acoustic emission (AE) analysis during a fracture toughness test. Specimens for test were cast by the lost wax method using a specially designed Ti casting machine of pressure-different method for dental use. A fatigue crack was inserted from the machined notch tip into the body of a specimen in the range of 0.45-0.55 a/W. Acoustic emission signals released during the fracture toughness test were detected by two sensors attached to both ends of the specimen. Then the signals were recorded and analysed by the PAC 3000/3104 system. From the early stage of the fracture toughness test, AE signals started to be released in all types of specimens tested. A reaction layer with the investment materials of about 50-100 microns was thought to be the result of the AE release from an early stage of the fracture toughness test. A microfracture behavior of the cast pure Ti and Ti alloys was proposed based on the results obtained from the AE releasing pattern and fracture surface findings.

  13. Progress report on the influence of test temperature and grain boundary chemistry on the fracture behavior of ITER copper alloys

    SciTech Connect

    Li, M.; Stubbins, J.F.; Edwards, D.J.

    1998-09-01

    This collaborative study was initiated to determine mechanical properties at elevated temperatures of various copper alloys by University of Illinois and Pacific Northwestern National Lab (PNNL) with support of OMG Americas, Inc. and Brush Wellman, Inc. This report includes current experimental results on notch tensile tests and pre-cracked bend bar tests on these materials at room temperature, 200 and 300 C. The elevated temperature tests were performed in vacuum and indicate that a decrease in fracture resistance with increasing temperature, as seen in previous investigations. While the causes for the decreases in fracture resistance are still not clear, the current results indicate that environmental effects are likely less important in the process than formerly assumed.

  14. An evaluation of the fatigue crack growth and fracture toughness properties of beryllium-copper alloy CDA172

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Henkener, Julie A.

    1990-01-01

    A series of fracture mechanics tests, using the Be-Cu alloy CDA172 in the round rod product form, was conducted in a lab air environment at room temperature. Tensile data is presented in both the L and C directions and K sub Ic data in both the C-R and C-L orientations. Fracture toughness values were derived from M(T) (center cracked), PS(T) (surface cracked) and CC01 (corner cracked) specimens of varying thickness. Fatigue crack growth data were obtained for the C-R orientation at stress ratio of 0.1, 0.4, and 0.7 and for the C-L orientation at stress ratios of 0.1, 0.3, 0.4, and 0.7.

  15. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

    NASA Astrophysics Data System (ADS)

    Karak, Swapan Kumar; Dutta Majumdar, J.; Witczak, Zbigniew; Lojkowski, Witold; Ciupiński, Łukasz; Kurzydłowski, K. J.; Manna, Indranil

    2013-06-01

    In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young's modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (<1200 MPa) or tungsten-based alloys (<2200 MPa). Besides superior mechanical strength, the novelty of these alloys lies in the unique microstructure comprising uniform distribution of either nanometric (~10 nm) oxide (Y2Ti2O7/Y2TiO5 or un-reacted Y2O3) or intermetallic (Fe11TiY and Al9.22Cr2.78Y) particles' ferritic matrix useful for grain boundary pinning and creep resistance.

  16. Cryogenic mechanical properties of low density superplastic aluminum alloys

    SciTech Connect

    Verzasconi, S.L.

    1989-05-01

    Two alloy systems, mainly Al-Li-Cu and Al-Mg-Sc, were studied in this work. Both of these systems have been shown to be superplastically formable in the conditions chosen, and both provide a significant density reduction over a currently used aluminum cryogenic fuel tankage material, 2219. The Al-Mg-Sc alloy provides over 50 percent of the density reduction of 2090 over 2219. In addition to lower density, Al-Li alloys have a higher elastic modulus (stiffness) than conventional aerospace alloys. The main purpose of this work is to characterize the cryogenic strength and toughness of several Al-Cu-Li and Al-Mg-Sc alloys. In addition, the microstructures and fracture surfaces are characterized and related to these properties where possible. 43 refs.

  17. A comparison of fracture behavior of low alloy steel with different sizes of carbide particles

    SciTech Connect

    Wang, G.Z.; Chen, J.H.

    1996-07-01

    The fracture behaviors of low alloy steels with similar grain sizes but different sizes of carbide particles were investigated using precracked and notched specimens. The results indicate that in precracked specimens (COD), steel with coarser carbide particles has a lower toughness than steel with finer carbide particles over a temperature range from {minus}196 C to {minus}90 C. However, in notched specimens (four-point bending (4PB) and Charpy V), these two steels shows similar toughness at low temperature where specimens are fractured by cleavage without fibrous cracking. In the transition temperature range, the steel with coarser carbide particles conversely shows a little higher toughness due to the longer extension length of the fibrous crack. This phenomenon indicates that in precracked specimens, the second-phase particles play a leading role in cleavage fracture, while in notched specimens, the grain size dominates the fracture behavior.

  18. Adaptive Finite-Element Computation In Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1995-01-01

    Report discusses recent progress in use of solution-adaptive finite-element computational methods to solve two-dimensional problems in linear elastic fracture mechanics. Method also shown extensible to three-dimensional problems.

  19. Deformation and fracture of aluminum-lithium alloys: The effect of dissolved hydrogen

    NASA Technical Reports Server (NTRS)

    Rivet, F. C.; Swanson, R. E.

    1990-01-01

    The effects of dissolved hydrogen on the mechanical properties of 2090 and 2219 alloys are studied. The work done during this semi-annual period consists of the hydrogen charging study and some preliminary mechanical tests. Prior to SIMS analysis, several potentiostatic and galvanostatic experiments were performed for various times (going from 10 minutes to several hours) in the cathodic zone, and for the two aqueous solutions: 0.04N of HCl and 0.1N NaOH both combined with a small amount of As2O3. A study of the surface damage was conducted in parallel with the charging experiments. Those tests were performed to choose the best charging conditions without surface damage. Disk rupture tests and tensile tests are part of the study designed to investigate the effect of temperature, surface roughness, strain rate, and environment on the fracture behavior. The importance of the roughness and environment were shown using the disk rupture test as well as the importance of the strain rate under hydrogen environment. The tensile tests, without hydrogen effects, have not shown significant differences between low and room temperature.

  20. Mixed mode fracture characterization of hydroxylapatite-titanium alloy interface.

    PubMed

    Mann, K A; Edidin, A A; Kinoshita, R K; Manley, M T

    1994-01-01

    Cantilever beam and four-point bend specimen geometries were used to experimentally determine the critical energy release rates for a plasma sprayed hydroxylapatite-titanium alloy (HA-Ti alloy) interface. A locus of energy release rates as a function of crack tip phase angle was determined where a 0 degree phase angle represented tensile opening (mode I) loading and a 90 degree phase angle represented in-plane shear (mode II) loading. Energy release rates were found to increase substantially with an increase in phase angle. An energy release rate of 0.108 N/mm was determined for a phase angle of 0 degrees (mode I). Energy release rates of 0.221, 0.686, and 1.212 N/mm were determined for phase angles of 66 degrees, 69 degrees, and 72 degrees, respectively. The experimental data was matched to a phenomenological model for which crack propagation depended on mode I loading alone indicating that crack propagation at the Ha-Ti alloy interface is dominated by the mode I loading component. Therefore, regions of HA coated implants that experience compressive or shear loading across the HA-Ti alloy interface may be much less likely to debond than regions that experience tensile loading.

  1. Ship Fracture Mechanisms Investigation. Part 1

    DTIC Science & Technology

    1987-01-01

    the spar deck, but is belcw the nominal yield for mild steel of 32,000 psi. 3-13 Initiation Site Arrest Down- Toward Ship’s bottom Up- Toward Figure 3...hatch. The deck material in the vicinity of fracture was 46mm (1.81 inch)"EH33" normalized steel . Description of the Circumstances at the Time of...finally installing "CS" normalized steel doubler plate over the existing deck plate at the hatch corners. This repair fractured in the spring of 1976

  2. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys

    PubMed Central

    Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.

    2017-01-01

    In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition. PMID:28067248

  3. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys

    NASA Astrophysics Data System (ADS)

    Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.

    2017-01-01

    In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition.

  4. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys.

    PubMed

    Kim, J T; Hong, S H; Park, H J; Kim, Y S; Suh, J Y; Lee, J K; Park, J M; Maity, T; Eckert, J; Kim, K B

    2017-01-09

    In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition.

  5. Damage and fracture loci for a dual-phase steel and a high-strength low-alloyed steel: Revealing the different plastic localization-damage-ductile fracture pattern

    NASA Astrophysics Data System (ADS)

    Lian, Junhe; Münstermann, Sebastian; Bleck, Wolfgang

    2016-10-01

    The ductile fracture locus has been developed in the recent years as a relevant tool to predict the ductile fracture and assess the structure safety. In the various developed models, the occurrence of the final fracture or the initiation of the fracture is considered as the critical phase of deformation for materials or structures. However, in the application of high-strength steels, the damage onset and evolution are of significant importance in the forming processes, as they are naturally interacting with the plastic localization and ductile fracture and eventually creating various possible failure patterns. The present study contributes to a demonstration of the differences of these features in different steels by quantitatively comparing the material parameters of a hybrid damage mechanics model. A dual-phase steel sheet (DP600) and a high-strength low-alloy steel plate (S355J2+N), which show very different relation patterns between damage and fracture, are investigated. The aim of this study is to compare the plastic localization, damage and fracture loci of them and reveal the differences in their localization-damage initiation-ductile fracture patterns. The reasons for the observed different patterns are discussed and it is concluded that the microstructural features are ultimately contributing to the different patterns and the criteria for evaluating the cold formability of these steels shall be varied depending on their failure patterns.

  6. Effects of Al3(Sc,Zr) and Shear Band Formation on the Tensile Properties and Fracture Behavior of Al-Mg-Sc-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Huang, Hongfeng; Jiang, Feng; Zhou, Jiang; Wei, Lili; Qu, Jiping; Liu, Lele

    2015-11-01

    The mechanical properties and microstructures of Al-6Mg-0.25Sc-0.1Zr alloy (wt.%) during annealing were investigated by means of uniaxial tensile testing, optical microscope, scanning electron microscope, transmission electron microscope, and high-resolution transmission electron microscope. The results show that a large number of micro and grain-scale shear bands form in this alloy after cold rolling. As the tensile-loading force rises, strain softening would generate in shear bands, resulting in the occurrence of shear banding fracture in cold-rolled Al-Mg-Sc-Zr alloys. Recrystallization takes place preferentially in shear bands during annealing. Due to the formation of coarse-grain bands constructed by new subgrains, recrystallization softening tends to occur in these regions. During low-temperature annealing, recrystallization is inhibited by nano-scale Al3(Sc,Zr) precipitates which exert significant coherency strengthening and modulus hardening. However, the strengthening effect of Al3(Sc,Zr) decreases with the increasing of particle diameter at elevated annealing temperature. The mechanical properties of the recrystallized Al-Mg-Sc-Zr alloy decrease to a minimum level, and the fracture plane exhibits pure ductile fracture characteristics.

  7. Microstructure, fracture characteristics, and tensile properties of two tungsten heavy alloys. Final report, January 1992-March 1993

    SciTech Connect

    Kennedy, E.W.

    1995-11-01

    The influence of microstructure on fracture behavior and tensile properties was investigated for two tungsten heavy alloys (93W-4.9Ni-2.1Fe and 91W-6Ni-3Co by weight-percentage) that are suitable materiai candidates for use as kinetic energy penetrators. Both alloys were evaluated in swaged and aged conditions. For comparable levels of swaging and aging, the W-Ni-Co alloy exhibited increased tensile strength and ductility compared to the W-Ni-Fe material. The W-Ni-Co alloy had a smaller average W grain size and a larger percentage of W in the matrix. Fracture surfaces of failed uniaxial tensile specimens tested at quasi-static and low-to-medium strain rates were characterized using scanning electron microscopy. The results indicate a strong relationship between microstructure, fracture behavior, and tensile properties as a function of alloy composition and strain rate.

  8. The effect of hydrogen on the fracture of alloy x-750

    NASA Astrophysics Data System (ADS)

    Symons, Douglas M.; Thompson, Anthony W.

    1996-01-01

    The effect of hydrogen on the fracture of a nickel-base superalloy, alloy X-750, was investigated in the HTH condition. The effect of hydrogen was examined through tensile testing incorporating observations from scanning electron microscopy and light microscopy. The ductility at 25 °C, as measured by elongation to failure for tensile specimens, was reduced from 21 pct for noncharged specimens to 7.3 pct for 5.7 ppm hydrogen and to 3.5 pct for 65 ppm hydrogen. The elongation to failure was a function of the strain rate and test temperature. For hydrogen-charged specimens, the elongation decreased as the strain rate decreased at a constant temperature, while for a constant strain rate and varying temperature, there was a maximum in embrittlement near 25 °C and no embrittlement at -196 °C. For the noncharged specimens, the elongation monotonically increased as temperature increased, while there was no noticeable effect of strain rate. Prestraining prior to charging dramatically decreased elongation after hydrogen charging. When the strain rate was increased on the prestrained specimens, more plastic deformation was observed prior to failure. Failure did not occur until the flow stress was reached, supporting the proposition that plasticity is required for failure. The intergranular failure mechanism in alloy X-750 was a microvoid initiation process at grain boundary carbides followed by void growth and coalescence. The void initiation strain, as determined from tensile data and from sectioning unfractured specimens, was observed to be much lower in the hydrogen-charged specimens as compared to noncharged specimens. The reduced ductility may be explained by either a reduction of the interfacial strength of the carbide-matrix interface or a local hydrogen pressure at the carbide-matrix interface.

  9. In Vitro Fracture of Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms

    SciTech Connect

    Nalla, R; Stolken, J; Kinney, J; Ritchie, R

    2004-08-18

    A micro-mechanistic understanding of bone fracture that encompasses how cracks interact with the underlying microstructure and defines their local failure mode is lacking, despite extensive research on the response of bone to a variety of factors like aging, loading, and/or disease. Micro-mechanical models for fracture incorporating such local failure criteria have been widely developed for metallic and ceramic materials systems; however, few such deliberations have been undertaken for the fracture of bone. In fact, although the fracture event in mineralized tissues such as bone is commonly believed to be locally strain controlled, until recently there has been little experimental evidence to support this widely held belief. In the present study, a series of in vitro experiments involving a double-notch bend test geometry are performed in order to shed further light on the nature of the local cracking events that precede catastrophic fracture in bone and to define their relationship to the microstructure. Specifically, crack-microstructure interactions are examined to determine the salient toughening mechanisms in human cortical bone and to characterize how these may affect the anisotropy in fracture properties. Based on preliminary micro-mechanical models of these processes, in particular crack deflection and uncracked ligament bridging, the relative importance of these toughening mechanisms is established.

  10. Elastic-plastic fracture mechanics technology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr. (Editor); Loss, F. J. (Editor)

    1985-01-01

    Among the topics discussed are: fracture analysis methods evaluation; instability prediction using the K sub R-curve approach; and the deformation failure assessment diagram. Consideration is also given to: instability prediction based on the modified J, J sub M-resistance curve approach; and stable crack growth and instability prediction on the V by means of the V sub R-curve method.

  11. Prior deformation effects on creep and fracture in inconel alloy X-750

    NASA Astrophysics Data System (ADS)

    Pandey, M. C.; Mukherjee, A. K.; Taplin, D. M. R.

    1984-07-01

    Creep fracture process in Inconel alloy X-750 can be modified by room-temperature prestraining. It has been observed that fracture in the prestrained specimens occurred due to growth and interlinkage of the prenucleated voids whereas failure occurred by plastic instability in the non-prestrained specimens. Creep ductility and the times-to-rupture are found to decrease progressively with room-temperature prestraining, but there is no marked influence on the minimum creep rate. This is explained in terms of two compcting processes: a weakening effect caused by prenucleation of grain boundary voids and a hardening effect due to generation of dislocations due to the prestraining.

  12. Grain boundary segregation and hydrogen-induced fracture in 7050 aluminium alloy

    SciTech Connect

    Song, R.G.; Tseng, M.K.; Zhang, B.J.; Liu, J.; Jin, Z.H.; Shin, K.S.

    1996-08-01

    The relationships between grain boundary segregation and crack growth of stress corrosion and corrosion fatigue in 7050 aluminium alloy have been investigated under various aging conditions; the effects of grain boundary segregation on intergranular fracture work have been calculated using a quasichemical approach. The results show that the hydrogen content at the crack tip and the crack growth rate increase with the concentration of solid solution Mg on increasing grain boundary; both Mg and H segregation induce the intergranular fracture work to decrease. Mg segregation accelerates H enriching and crack propagation. It is indicated that a Mg-H interaction occurs in the processes of corrosion fatigue as well as stress corrosion.

  13. The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy

    SciTech Connect

    Gall, K.; Yang, N.; Horstemeyer, M.; McDowell, D.L.; Fan, J.

    1999-12-01

    Constant-amplitude high-cycle fatigue tests ({sigma}{sub max} = 133 MPa, {sigma}{sub max}/{sigma}{sub y} = 0.55, and R = 0.1) were conducted on a cylindrical samples machined from a cast A356-T6 aluminum plate: The fracture surface of the sample with the smallest fatigue-crack nucleating defect was examined using a scanning electron microscope (SEM). For low crack-tip driving forces (fatigue-crack growth rates of da/dN {lt} 1 x 10{sup {minus}7} m/cycle), the authors discovered that a small semicircular surface fatigue crack propagated primarily through the Al-1% Si dendrite cells. The silicon particles in the eutectic remained intact and served as barriers at low fatigue-crack propagation rates. when the semicircular fatigue crack inevitably crossed the three-dimensional Al-Si eutectic network, it propagated primarily along the interface between the silicon particles and the Al-1% Si matrix. Furthermore, nearly all of the silicon particles were progressively debonded by the fatigue cracks propagating at low rates, with the exception of elongated particles with a major axis perpendicular to the crack plane, which were fractured. As the fatigue cracks grew with a high crack-tip driving force (fatigue-crack growth rates of da/dN {gt} 1 x 10{sup {minus}6} m/cycle), silicon particles ahead of the crack tip were fractured, and the crack subsequently propagated through the weakest distribution of prefractured particles in the Al-Si eutectic. Only small rounded silicon particles were observed to debond while the fatigue crack grew at high rates. Using fracture-surface markings and fracture mechanics, a macroscopic measure of the maximum critical driving force between particle debonding vs fracture during fatigue-crack growth was calculated to be approximately K{sub max}{sup tr} {approx} 6.0 MPa {radical}m for the present cast A356 alloy.

  14. The Features of Fracture Behavior of an Aluminum-Magnesium Alloy AMg6 Under High-Rate Straining

    NASA Astrophysics Data System (ADS)

    Skripnyak, N. V.

    2015-09-01

    The results of investigation of fracture dynamics of rolled sheet specimens of an AMg6 alloy are presented for the range of strain rates from 10-3 to 103 s-1. It is found out that the presence of nanostructured surface layers on the thin AMg6 rolled sheets results in improved strength characteristics within the above range of strain rates. A modified model of a deforming medium is proposed to describe the plastic flow and fracture of the AMg6 alloy.

  15. The effect of hot isostatic pressing on crack initiation, fatigue, and mechanical properties of two cast aluminum alloys

    NASA Astrophysics Data System (ADS)

    Rich, T. P.; Orbison, J. G.; Duncan, R. S.; Olivero, P. G.; Peterec, R. H.

    1999-06-01

    This article presents the results of an experimental materials testing program on the effect of hot isostatic pressing (HIP) on the crack initiation, fatigue, and mechanical properties of two cast aluminum alloys: AMS 4220 and 4225. These alloys are often used in castings for high temperature applications. Standard tensile and instrumented Charpy impact tests were performed at room and elevated temperatures. The resulting data quantify improvements in ultimate tensile strength, ductility, and Charpy impact toughness from the HIP process while indicating little change in yield strength for both alloys. In addition standard fracture mechanics fatigue tests along with a set of unique fatigue crack initiation tests were performed on the alloys. Hot isostatic pressing was shown to produce a significant increase in cycles to crack initiation for AMS 4225, while no change was evident in traditional da/dN fatigue crack growth. The data permits comparisons of the two alloys both with and without the HIP process.

  16. Mechanical Properties and Deformation Mechanisms of Mg-Gd-Y-Zr Alloy at Cryogenic and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Zheng, Jing-Xu; Yang, Chao-Ming; Chen, Yi-Xin; Cao, San-Chen; Zhao, Zhi-Xian; Li, Xiao-Ling; Lu, Chen

    2017-02-01

    In this study, mechanical properties and deformation mechanisms of Mg-Gd-Y-Zr alloy at temperatures ranging from 77 K to 523 K have been investigated. The effects of temperature on the mechanical properties, deformation mechanism, and fracture mechanism are discussed. The results show that the strengths of alloy decrease gradually while the elongations increase progressively with increasing temperature. The maximum ultimate tensile strength of the alloy as high as 442 MPa is obtained at 77 K. As the temperature increases from 77 K to 523 K, the ultimate tensile strength of the alloy decreases from 442 MPa to 254 MPa and the elongations increase from 6.3% to 28.9% gradually. The study verifies that the deformation at 77 K is predominated by basal slip and {10bar{1}2} {10bar{1}2} < {10bar{1}1} rangle . < {10bar{1}1} rangle deformation twinning system. At 223 K, lots of twins emerge primarily at grain boundaries. At 373 K, all dislocations are proved to be < a> dislocations. At 523 K, although basal slip is still the dominant deformation mechanism, non-basal slip systems also become activate.

  17. Dynamic Strength and Edge Effects at Spall Fracture for Titanium Alloys of Varying Oxygen Content

    NASA Astrophysics Data System (ADS)

    Razorenov, Sergey; Kanel, Gennady; Utkin, Alexander; Bogach, Andrey; Burkins, Matthew; Gooch, William

    1999-06-01

    The two objectives of this paper were to study the system of engineering criteria of fracture and fragmentation, including the energy criterion for separation of a spall element, and to study the influence of oxygen content in Ti-6Al-4V alloy on the resistance to plastic deformation and fracture. In the experiments, the peak shock stress was varied from 4 to 75 GPa with the load duration from 10-7 s to 10-5 s. The VISAR free-surface velocity measurements show a growth by 20im t of alloys with increasing oxygen content from 0.105l trength value. Within experimental uncertainty, the specific energy of spall element separation is practically the same for all three types of samples tested.

  18. Multiescalar studies of fracturing mechanisms in fluvial-lacustrine basins

    NASA Astrophysics Data System (ADS)

    Carreon-Freyre, D.; Cerca, M.; Hidalgo, C.; Hernandez-Marin, M.

    2007-05-01

    Fracturing of clayey fluvial and lacustrine deposits has become a major problem in several cities of central Mexico. The available data reveals the coexistence of several factors determining fracturing at different scales. As main factors we analyze the variation in compressibility of sediments causing differential deformation and withdrawal of groundwater causing a drop in pore pressure. Compressibility depends on consolidation, a term that in soil mechanics refers to the expulsion of interstitial water, and provokes volume decrease and land subsidence. Although major volume decrease occurs in the vertical scale, consolidation of silty clayey materials generates also horizontal tensile stresses. Considering that this factor can be determining to the generation of fractures, the deformational conditions of clayey, silty and sandy sequences is analyzed integrating their stratigraphy and mechanical characteristics. A particular emphasis is made in the mineralogical heterogeneity of the clay fraction that can be related to compressibility variations and can generate micro-fracturing by differential deformation. As study case we analyze the mechanical and geological properties of two sedimentary sequences with contrasting hydraulic and mechanical behavior. Our results show that the paleoenvironmental history of sediments can be used to determine a specific type of fracturing. Thus, the fracturing in fluvial lacustrine deposits is not a random phenomenon but is highly dependent of the geological properties of materials.

  19. Development of a Brazing Alloy for the Mechanically Alloyed High Temperature Sheet Material INCOLOY Alloy MA 956.

    DTIC Science & Technology

    1981-09-01

    well established that joining these alloys by conventional fusion welding techniques has presented problems, especially in achieving good quality high...temperature joint properties, mainly because of agglomeration of the dispersoid in the weld bead. Brazing, diffusion bonding and transient liquid...produced mechanically alloyed iron based sheet material, INQ)LOY alloy MA956, has excellent high temperature strength and corrosion resistance and has

  20. Determination of design allowable properties. Fracture of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Engstrom, W. L.

    1972-01-01

    A literature survey was conducted to provide a comprehensive report of available valid data on tensile properties, fracture toughness, fatigue crack propagation, and sustained load behavior of 2219-T87 aluminum alloy base metal and weldments, as applicable to manned spacecraft tankage. Most of the data found were from tests conducted at room temperature, -320 F and -423 F. Data are presented in graphical and tabular form, and areas in which data are lacking are established.

  1. Effect of Sb on the microstructure and mechanical properties of AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Qudong; Chen, Wenzhou; Ding, Wenjiang; Zhu, Yanping; Mabuchi, M.

    2001-03-01

    Effects of Sb addition on the microstructure, mechanical properties, and fracture behaviors of AZ91 magnesium alloy, as well as the sensitivity to section thickness of the structure and mechanical properties, have been studied. The results show that when Sb is added into the AZ91 alloy, the grain is refined, the Mg17Al12 phase is refined and granulated, and a new Mg3Sb2 phase is formed and becomes coarse needle-shaped as Sb content increases. The room-temperature tensile strength, elongation, and impact toughness increase first, and then decrease with increasing Sb content. The study on sensitivity to section thickness shows that, when composition is constant, the room-temperature tensile strength and elongation increase with the reduction of section thickness; when section thickness is constant, the room-temperature tensile strength and elongation increase first, and then decrease with increasing Sb content. Additionally, the Sb addition improves the tensile strength of the AZ91 alloy at 100°C and 150°C. The room-temperature tensile and impact fractographs of the AZ91 alloy show intergranular fracture. With increasing Sb content, the tearing deformation zones on the both fractographs enlarge at first, and then diminish, which is consistent with the change of tensile strength, elongation, and impact toughness increasing first, and then reducing with increasing Sb content.

  2. Advances in the fracture mechanics of cortical bone.

    PubMed

    Bonfield, W

    1987-01-01

    As cortical bone is a semi-brittle solid, its fracture is dependent not only on the magnitude of the applied stress, but also on the nature of any intrinsic or introduced cracks. Consequently a variety of fracture mechanics techniques have been utilised to evaluate the fracture toughness of cortical bone, including the single edge notched, centre notched cylindrical and compact tension methods, and values have been established for the critical stress intensity factor (Kc) and the critical strain energy release rate (Gc). The Kc and Gc values obtained depend on the orientation of the cortical bone, as well as on bone density, the velocity of crack propagation and specimen geometry. The significance of these fracture mechanics parameters for cortical bone is critically reviewed.

  3. Fracture of Ni-Ti superelastic alloy under sustained tensile load in physiological saline solution containing hydrogen peroxide.

    PubMed

    Yokoyama, Ken'ichi; Ogawa, Toshio; Fujita, Atsushi; Asaoka, Kenzo; Sakai, Jun'ichi

    2007-09-01

    The fracture of Ni-Ti superelastic alloy has been investigated by a sustained tensile-loading test in physiological saline solution containing hydrogen peroxide (0.15M NaCl + 0.3M H(2)O(2)). The fracture always occurs when the applied stress exceeds the critical stress for martensite transformation. In contrast, under a low applied stress, the fracture does not always occur within 1000 h. The fracture is probably mainly caused by localized corrosion associated with the preferential dissolution of nickel ions. In 0.3M H(2)O(2) solution without NaCl, the fracture does not occur even under a high applied stress. The results of the present study imply that one reason for the fracture of the Ni-Ti superelastic alloy in vivo is localized corrosion due to the synergistic effects of hydrogen peroxide and sodium chloride under applied stress.

  4. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  5. Interaction of hydraulic and buckling mechanisms in blowout fractures.

    PubMed

    Nagasao, Tomohisa; Miyamoto, Junpei; Jiang, Hua; Tamaki, Tamotsu; Kaneko, Tsuyoshi

    2010-04-01

    The etiology of blowout fractures is generally attributed to 2 mechanisms--increase in the pressure of the orbital contents (the hydraulic mechanism) and direct transmission of impacts on the orbital walls (the buckling mechanism). The present study aims to elucidate whether or not an interaction exists between these 2 mechanisms. We performed a simulation experiment using 10 Computer-Aided-Design skull models. We applied destructive energy to the orbits of the 10 models in 3 different ways. First, to simulate pure hydraulic mechanism, energy was applied solely on the internal walls of the orbit. Second, to simulate pure buckling mechanism, energy was applied solely on the inferior rim of the orbit. Third, to simulate the combined effect of the hydraulic and buckling mechanisms, energy was applied both on the internal wall of the orbit and inferior rim of the orbit. After applying the energy, we calculated the areas of the regions where fracture occurred in the models. Thereafter, we compared the areas among the 3 energy application patterns. When the hydraulic and buckling mechanisms work simultaneously, fracture occurs on wider areas of the orbital walls than when each of these mechanisms works separately. The hydraulic and buckling mechanisms interact, enhancing each other's effect. This information should be taken into consideration when we examine patients in whom blowout fracture is suspected.

  6. Wetting and Mechanical Performance of Zirconia Brazed with Silver/Copper Oxide and Silver/Vanadium Oxide Alloys

    SciTech Connect

    Sinnamon, Kathleen E.; Meier, Alan; Joshi, Vineet V.

    2014-12-01

    The wetting behavior and mechanical strength of silver/copper oxide and silver/vanadium oxide braze alloys were investigated for both magnesia-stabilized and yttria-stabilized (Mg-PSZ and Y-TZP) transformation toughened zirconia substrates. The temperatures investigated were 1000 to 1100°C, with oxide additions of 1 to 10 weight percent V2O5 or CuO, and hold times of 0.9 to 3.6 ks. Increasing either the isothermal hold temperature or time had a distinctly negative effect on the joint strength. The maximum strengths for both braze alloys were obtained for 5 wt. % oxide additions at 1050°C with a hold time of 0.9 ks. The Mg-PSZ/Ag-CuO system exhibited a average fracture strength of 255 MPa (45% of the reported monolithic strength), and the Y-TZP/Ag-CuO system had an average fracture strength of 540 MPa (30% of the reported monolithic strength). The fracture strengths were lower for the Ag-V2O5 braze alloys, with fracture strengths of approximately 180 MPa (30% of the monolithic strength) for Mg-PSZ versus approximately 160 MPa (10% of the monolithic strength) for Y-TZP. No interfacial products were observed in low magnification SEM analysis for the brazing alloys containing V2O5 additions, while there were interfacial products present for brazes prepared with CuO additions in the braze alloy.

  7. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  8. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  9. Fracture Mechanics Evaluation of B-1 Materials. Volume I. Text

    DTIC Science & Technology

    1976-10-01

    8.2.14 Weldments In Ti-6AI-4V, 9-4,.20 and PH13 -8Mo 8 -314 8.2.15 Comparison of All Aluminum Alloys 8 -359 8.2.16 Comparison of Steels and Inconel 718 8 ...Inconel 718 8 -299 tbru 8.2.13.7-3 8 -313 8.2.14.1.1-1 t•nru Comparison FCGR Curves on Weldments in 8 -319 thru 8.2.14.3.9-1 Ti-6A1-4V, PH13 -8Mo and 9-4...investigated. In addition, the fracture properties of welds in Ti-6A1-4V, PH13 -8Mo, and 9-4-.20 alloys and of diffusion bonds in Ti-6AI-hV were determined

  10. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  11. Effect of heat treatment on the fracture and structure of tin-indium solder alloy

    NASA Astrophysics Data System (ADS)

    Shalaby, R. M.; El-Sayed, M.

    2005-01-01

    The effect of heat treatment on the structure, hardness, and electrical resistivity of the crystalline Sn100-x In-x (x=10 wt.%) solder alloy is studied. The structures of as-casted and heat-treated alloys have been investigated by means of a X-ray diffraction technique. Using X-ray analysis a crystalline beta-Sn and an In phase are detected. The amount of the crystalline phases increases upon increasing the annealing temperature. It is found that the fracture is delayed from 8.6 kg/mm(2) at 50 s and 100 g at room temperature to 4 kg/mm(2) at 90 s and 100 g at 423 K. Differential thermal analysis was used to investigate the melting characteristics of the alloy (m.p. similar to 214 degrees C). The resistivity is also determined for samples thermally and non-thermally treated.

  12. Effects of Solidification Thermal Parameters on Microstructure and Mechanical Properties of Sn-Bi Solder Alloys

    NASA Astrophysics Data System (ADS)

    Silva, Bismarck Luiz; da Silva, Vítor Covre Evangelista; Garcia, Amauri; Spinelli, José Eduardo

    2017-03-01

    Samples extracted along the length of directionally solidified (DS) castings of three Sn- xBi alloys ( x = 34 wt.%Bi, 52 wt.%Bi and 58 wt.%Bi) were first evaluated metallographically and then subjected to scanning electron microscopy and energy-dispersive x-ray spectroscopy analyses. The characteristic length scale of both eutectic and dendritic phases forming the microstructure were determined and correlated with solidification thermal parameters (growth rate V, and cooling rate Ṫ). Tensile and Vickers hardness tests were performed to allow strength and ductility to be discussed as a function of both microstructure features and alloy solute content. The tertiary dendrite arm spacings along the length of the DS Sn-52 wt.%Bi alloy casting are shown to be lower than those obtained for the Sn-34 wt.%Bi alloy casting. The results of mechanical tests show that, with the decrease in the alloy Bi content, both tensile strength and hardness are improved. This is shown to be mainly attributed to the higher density of Bi precipitates decorating the Sn-rich dendrites, which are finer than the equivalent phase developed for the Sn-52 wt.%Bi alloy. However, the ductility is shown to be significantly improved for specimens associated with regions of more refined microstructure of the Sn-52 wt.%Bi alloy DS casting. A microstructure combining much branched dendrites, fine Bi particles within the β-Sn dendritic matrix and an important proportion of very fine eutectic formed by alternate Bi-rich and Sn-rich phase, seems to be conducive to this higher ductility. In this case, the fracture surface is shown to be more finely broken with presence of dimples for this particular condition, i.e., characteristic of a ductile fracture mode.

  13. An investigation on quench cracking behavior of superalloy Udimet 720LI using a fracture mechanics approach

    SciTech Connect

    Mao, J.; Keefer, V.L.; Chang, K.M.; Furrer, D.

    2000-04-01

    Quench cracking can be a serious problem in the heat treatment of high strength superalloys. A new fracture mechanics approach, quench cracking toughness (K{sub Q}), was introduced to evaluate the on-cooling quench cracking resistance of superalloy Udimet 720LI. A fully automatic computer controlled data acquisition and processing system was set up to track the on-cooling quenching process and to simulate the quench cracking. The influences of grain size, cooling rate, solution temperature, and alloy processing routes on quench cracking resistance were investigated. Research results indicate that quench cracking revealed a typical brittle and intergranular failure at high temperatures, which causes a lower quench cracking toughness in comparison to fracture toughness at room temperature. Fine grain structures show the higher quench cracking resistance and lower failure temperatures than intermediate grain structures at the same cooling rates. Moreover, higher cooling rate results in lower cracking toughness under the same grain size structures. In comparison of processing routes, powder metallurgy (PM) alloys show higher cracking resistance than cast and wrought (CW) alloys for fine grain structures at the same cooling rates. However, for immediate grain structure, there is no obvious difference of K{sub Q} between the two processing route in this study.

  14. Toughness of carbon nanotubes conforms to classic fracture mechanics.

    PubMed

    Yang, Lin; Greenfeld, Israel; Wagner, H Daniel

    2016-02-01

    Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT's truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m(0.5), typical of moderately brittle materials and applicable also to graphene.

  15. Toughness of carbon nanotubes conforms to classic fracture mechanics

    PubMed Central

    Yang, Lin; Greenfeld, Israel; Wagner, H. Daniel

    2016-01-01

    Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT’s truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m0.5, typical of moderately brittle materials and applicable also to graphene. PMID:26989774

  16. RSRM nozzle actuator bracket/lug fracture mechanics qualification test

    NASA Technical Reports Server (NTRS)

    Kelley, Peggy

    1993-01-01

    This is the final report for the actuator bracket/lug fracture mechanics qualification test. The test plan (CTP-0071) outlined a two-phase test program designed to answer questions about the fracture criticality of the redesigned solid rocket motor (RSRM) nozzle actuator bracket. An analysis conducted using the NASA/FLAGRO fracture mechanics computer program indicated that the actuator bracket might be a fracture critical component. In the NASA/FLAGRO analysis, a simple lug model was used to represent the actuator bracket. It was calculated that the bracket would fracture if subjected to an actuator stall load in the presence of a 0.10 in. corner crack at the actuator attachment hole. The 0.10 in. crack size corresponds to the nondestructive inspection detectability limit for the actuator bracket. The inspection method used is the dye penetrant method. The actuator stall load (103,424 lb) is the maximum load which the actuator bracket is required to withstand during motor operation. This testing was designed to establish the accuracy of the analytical model and to directly determine whether the actuator bracket is capable of meeting fracture mechanics safe-life requirements.

  17. Molecular-dynamics simulation of mechanical alloying for the Al50Ti50 alloy

    NASA Astrophysics Data System (ADS)

    Lu, J.; Szpunar, J. A.

    1993-07-01

    The structural ordering development during mechanical alloying of the Al50Ti50 alloy was investigated by using molecular-dynamics computer simulations. Random external forces with both random orientations and magnitudes were used to simulate the mechanical alloying processes and pseudopotential was used as a model for the interaction between the atoms. The results indicate that the final nonequilibrium phase obtained through simulation of mechanical alloying is an amorphous state which can be formed experimentally in the laboratory. The transformation from crystals to amorphous state may locally be a first-order-like phase transition, but statistically it is a gradual phase transition due to the characteristics of random external forces which help atoms to overcome their energetic barrier during the mechanical alloying. This means that the transformation occurs in random sites and is discontinuous.

  18. Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir

    2015-06-01

    Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.

  19. Processing and Properties of Mechanical Alloyed Al93Fe3Cr2Ti2 Alloys

    DTIC Science & Technology

    2004-10-01

    Nanomaterials, Aluminum Alloys ABSTRACT Nanostructured A193Fe3Ti2Cr2 alloys were prepared via mechanical alloying (MA) starting from elemental powders...2Cr2 . The aluminum powder had a purity of 99.5 wt% with a mean particle size of 70 ^rn, while the corresponding values for iron, chromium and...increases. 2) All aluminum reflections exhibit broadening even after only 2-hours of milling, indicating the grain size reduction and possibly the

  20. Thermo-Mechanical Processing Parameters for the INCONEL ALLOY 740

    SciTech Connect

    Ludtka, G.M.; Smith, G.

    2007-11-19

    In 2000, a Cooperative Research and Development Agreement (CRADA) was undertaken between the Oak Ridge National Laboratory (ORNL) and the Special Metals Corporation (SMC) to determine the mechanical property response of the IN740 alloy to help establish thermo-mechanical processing parameters for the use of this alloy in supercritical and ultra-critical boiler tubes with the potential for other end uses. SMC had developed an alloy, commercially known as INCONEL alloy 740, which exhibited various beneficial physical, mechanical, and chemical properties. As part of SMC's on-going efforts to optimize this alloy for targeted boiler applications there was a need to develop an understanding of the thermo-mechanical response of the material, characterize the resulting microstructure from this processing, and possibly, utilize models to develop the appropriate processing scheme for this product.

  1. Effect of nano-additives on microstructure, mechanical properties and wear behaviour of Fe⿿Cr⿿B hardfacing alloy

    NASA Astrophysics Data System (ADS)

    Gou, Junfeng; Lu, Pengpeng; Wang, You; Liu, Saiyue; Zou, Zhiwei

    2016-01-01

    Fe⿿Cr⿿B hardfacing alloys with different nano-additives content were investigated. The effects of nano-additives on the microstructures of hardfacing alloy were studied by using optical microscope, scanning electron microscope, X-ray diffractometer. The hardness and the fracture toughness of hardfacing alloys were measured, respectively. The sliding wear tests were carried out using a ball-on-disc tribometer. The experimental results showed that primary carbide of hardfacing alloys was refined and its distribution became uniform with content of nano-additives increased. The hardfacing alloys are composed of Cr7C3, Fe7C3, α-Fe and Fe2B according to the results of X-ray diffraction. The hardness of hardfacing alloys increased linearly with the increase of nano-additives. The hardness of the hardfacing alloy with 1.5 wt.% nano-additives increased 54.8% than that of the hardfacing alloy without nano-additives and reached to 1011HV. The KIC of the hardfacing alloy with 0.65 wt.% nano-additives was 15.4 MPam1/2, which reached a maximum. The value increased 57.1% than that of the hardfacing alloy without nano-additives. The wear rates of the hardfacing layer with 0.65 wt.% and 1.0 wt.% nano-additives decreased about 88% than that of the hardfacing layer without nano-additives. The main wear mechanism was adhesion wear.

  2. Characterization methods of bone-implant-interfaces of bioresorbable and titanium implants by fracture mechanical means.

    PubMed

    Tschegg, E K; Lindtner, R A; Doblhoff-Dier, V; Stanzl-Tschegg, S E; Holzlechner, G; Castellani, C; Imwinkelried, T; Weinberg, A

    2011-07-01

    Bioresorbable materials for implants have become increasingly researched over the last years. The bone-implant-interfaces of three different implant materials, namely a new bioresorbable magnesium alloy, a new self-reinforced polymer implant and a conventional titanium alloy, were tested using various methods: push-out tests, SEM and EDX analyses as well as surface analyses based on stereoscopic 3D pictures were conducted. The fracture energy is proposed as a very significant reference value for characterizing the mechanical performance of a bone-implant system. By using a video-extensometer system instead of, as is commonly done, tracking the movement of the crosshead in the push-out tests, the accuracy of measurement could be increased.

  3. Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering

    SciTech Connect

    Bathula, Sivaiah; Gahtori, Bhasker; Tripathy, S. K.; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay; Jayasimhadri, M.

    2014-08-11

    Owing to their high thermoelectric (TE) figure-of-merit, nanostructured Si{sub 80}Ge{sub 20} alloys are evolving as a potential replacement for their bulk counterparts in designing efficient radio-isotope TE generators. However, as the mechanical properties of these alloys are equally important in order to avoid in-service catastrophic failure of their TE modules, we report the strength, hardness, fracture toughness, and thermal shock resistance of nanostructured n-type Si{sub 80}Ge{sub 20} alloys synthesized employing spark plasma sintering of mechanically alloyed nanopowders of its constituent elements. These mechanical properties show a significant enhancement, which has been correlated with the microstructural features at nano-scale, delineated by transmission electron microscopy.

  4. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  5. Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations

    PubMed Central

    Kokolis, John; Chakmakchi, Makdad; Theocharopoulos, Antonios; Prombonas, Anthony

    2015-01-01

    PURPOSE The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a 45° bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (ε) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (α=.05) and Weibull analysis where Weibull modulus m and characteristic strength σο were identified. Fractured surfaces were imaged by a SEM. RESULTS SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ε, m and σο) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability. PMID:25722836

  6. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  7. Test environments and mechanical properties of Zr-base bulk amorphous alloys

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Easton, D.S.

    1998-07-01

    The mechanical properties of two Zr-base bulk amorphous alloys (BAA), Zr-10Al-30Cu-5Ni (BAA-10) and Zr-10Al-5Ti-17.9Cu-14.6Ni (BAA-11), were studied by both tensile and compressive tests at room temperature in various test environments. The BAA ingots up to 7 mm in diameter were successfully produced by both arc melting and drop casting and induction melting and injection casting. The BAA specimens deformed mainly elastically, followed by catastrophic failure along shear bands. Examination of the fracture region revealed ductile fracture features resulting from a substantial increase in temperature, which was attributable to the conversion of the stored elastic strain energy to heat. Surprisingly, liquid droplets located at major shear-band cracks adjacent to the fracture section were observed, indicating the occurrence of local melting during fracture. The angle orientation of shear bands, shear-band cracks, and fracture surfaces relative to the stress axis is quite different for BAA specimens tested in tension and compression. This suggests that both shear stress and normal stress may play a role in developing shear bands during plastic deformation. The tensile properties of BAAs were found to be insensitive to the test environment at room temperature. However, the reaction of BAAs with distilled water and heavy water was detected by laser desorption mass spectrometry (LDMS). These results suggest that moisture-induced hydrogen embrittlement in BAAs may be masked by catastrophic fracture following shear bands.

  8. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  9. Low melting temperature alloy deployment mechanism and recent experiments

    NASA Technical Reports Server (NTRS)

    Madden, M. J.

    1993-01-01

    This paper describes the concept of a low melting temperature alloy deployment mechanism, U.S. Patent 4,842,106. It begins with a brief history of conventional dimethyl-silicone fluid damped mechanisms. Design fundamentals of the new melting alloy mechanism are then introduced. Benefits of the new over the old are compared and contrasted. Recent experiments and lessons learned complete this paper.

  10. The effect of alloying elements on the microstructural development and mechanical properties of multiphase nickel-rich nickel-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Abdo, Zafir Abdo Mohamed

    2000-11-01

    The research work presented in this study is devoted towards examining bulk multiphase nickel-rich alloys derived from the intermetallic compound beta-NiAl. The microstructural development and structure - property relationship of nickel-rich NiAl alloys with different alloying element additions is considered. Additions of chromium, chromium plus titanium, copper as well as higher order additions to nickel-rich NiAl alloys are investigated. The general theme of this research is to produce bulk alloys with fixed compositions and investigate their microstructural stability with respect to high temperature treatments as well as their room temperature mechanical behavior. Many high temperature industrial applications can benefit from these studies. Examples include diffusion coating of nickel-base superalloys, joining of NiAl and nickel bearing substrate and the future application of NiAl alloys in high temperature structural applications. In this work, Cr is selected as an alloying element due to the ability of Cr to enhance the room temperature fracture toughness and ductility of NiAl. The possibility of producing a beta - gamma/gamma ' mixture in high aluminum content Ni-Al-Cr alloys is investigated. The effect of Cr content and high temperature heat treatment on the stability a beta - gamma/gamma' mixture is studied. The precipitation of various morphologies of the A2 type alpha-Cr phase and their effect on the stability of the produced microstructure is evaluated. The formation of an intradendritic L10 type martensite and the precipitation of gamma' from the martensitic regions as a result of high temperature aging treatments is studied. The intent of alloying NiAl with Cr and Ti is to produce microstructures with the potential for combined improved low temperature ductility and high temperature creep resistance. The role of Ti levels in the stability of a beta/beta ' two phase mixture is discussed. The mechanisms of beta ' decomposition as a result of high

  11. Weldable aluminum alloy has improved mechanical properties

    NASA Technical Reports Server (NTRS)

    Westerlund, R. W.

    1966-01-01

    Weldable aluminum alloy has good resistance to stress-corrosion cracking, shows unchanged strength and formability after storage at room temperature, and can be pre-aged, stretched, and aged. Since toxic fumes of cadmium oxide are evolved when the new alloy is welded, adequate ventilation must be provided.

  12. A study on electromigration-inducing intergranular fracture of fine silver alloy wires

    NASA Astrophysics Data System (ADS)

    Hsueh, Hao-Wen; Hung, Fei-Yi; Lui, Truan-Sheng

    2017-01-01

    In this study, Pd-coated Cu, Ag (purity = 4 N), and Ag alloy (Ag-8Au-3Pd) wires were employed to measure the tensile properties during current stressing using the so-called dynamic current tensile (DCT) test. Both the tensile strength and elongation of the wires decreased dramatically in the DCT test, particularly of the Ag-based wires, and the fracture morphology of the Cu-based and Ag-based wires was ductile fracture and intergranular fracture, respectively. Compared to the Cu-based wires, electromigration occurred more easily in the Ag-based wires, and it always generated voids and cracks at the grain boundaries; therefore, the fracture morphology of the Ag-based wires was intergranular fracture owing to the weakened grain boundary. Further, the results indicated that the Ag-based wires could not carry a higher current density than the Cu-based wires, primarily because their extremely low strength and elongation in current stressing might cause serious reliability problems.

  13. Mechanical Property Evaluation of Aluminum Alloy 7010-T73651

    DTIC Science & Technology

    1980-07-01

    is intended to improve stress corrosion cracking resistance. Except for a slightly higher copper content, the two alloys, 7010 and 7050 , are similar...sensitive; the room temperature threshold for stress corrosion cracking in a 3.5% Wt. NaCl solution was determined to be in excess of 70 percent of the...Orientation Tensile Tests 4 3 Compact Type Specimen Configurations Used for Fracture Toughness (KIC), Threshold for Stress Corrosion Cracking (KISCC

  14. Equine cortical bone exhibits rising R-curve fracture mechanics.

    PubMed

    Malik, C L; Stover, S M; Martin, R B; Gibeling, J C

    2003-02-01

    Previous studies of the fracture properties of cortical bone have suggested that the fracture toughness increases with crack length, which is indicative of rising R-curve behavior. Based on this indirect evidence and the similarity of bone to ceramic matrix composites, we hypothesized that bone would exhibit rising R-curve behavior in the transverse orientation and that the characteristics of the R-curves would be regionally dependent within the cortex due to variations in bone microstructure and toughening mechanisms. To test these hypotheses, we conducted R-curve experiments on specimens from equine third metacarpal bones using standard fracture mechanics testing methods. Compact type specimens from the dorsal and lateral regions in the middle of the diaphysis were oriented for crack propagation transverse to the longitudinal axis of the bone. The test results demonstrate that equine cortical bone exhibits rising R-curve behavior during transverse crack propagation as hypothesized. Statistical analyses of the crack growth initiation toughness, K0, the peak toughness, Kpeak, and the crack extension at peak toughness, deltaa, revealed significant regional differences in these characteristics. Specifically, the lateral cortex displayed higher crack growth initiation and peak toughnesses. The dorsal cortex exhibited greater crack extension at the peak of crack growth resistance. Scanning electron microscopy revealed osteon pullout on fracture surfaces from the dorsal cortex and but not in the lateral cortex. Taken together, the significant differences in R-curves and the SEM fractography indicate that the fracture mechanisms acting in equine cortical bone are regionally dependent.

  15. Enhancement of Apoptosis by Titanium Alloy Internal Fixations during Microwave Treatments for Fractures: An Animal Study

    PubMed Central

    Zhang, Lina; Ye, Dongmei; Feng, Xianxuan; Fu, Tengfei; Bai, Yuehong

    2015-01-01

    Objective Microwaves are used in one method of physical therapy and can increase muscle tissue temperature which is useful for improving muscle, tendon and bone injuries. In the study, we sought to determine whether titanium alloy internal fixations influence apoptosis in tissues subjected to microwave treatments at 2,450 MHz and 40 W during the healing of fractures because this issue is not yet fully understood. Methods In this study, titanium alloy internal fixations were used to treat 3.0-mm transverse osteotomies in the middle of New Zealand rabbits’ femurs. After the operation, 30-day microwave treatments were applied to the 3.0 mm transverse osteotomies 3 days after the operation. The changes in the temperatures of the muscle tissues in front of the implants or the 3.0 mm transverse osteotomies were measured during the microwave treatments. To characterize the effects of titanium alloy internal fixations on apoptosis in the muscles after microwave treatment, we performed TUNEL assays, fluorescent real-time (quantitative) PCR, western blotting analyses, reactive oxygen species (ROS) detection and transmission electron microscopy examinations. Results The temperatures were markedly increased in the animals with the titanium alloy implants. Apoptosis in the muscle cells of the implanted group was significantly more extensive than that in the non-implanted control group at different time points. Transmission electron microscopy examinations of the skeletal muscles of the implanted groups revealed muscular mitochondrial swelling, vacuolization. ROS, Bax and Hsp70 were up-regulated, and Bcl-2 was down-regulated in the implanted group. Conclusion Our results suggest that titanium alloy internal fixations caused greater muscular tissue cell apoptosis following 2,450 MHz, 40 W microwave treatments in this rabbit femur fracture models. PMID:26132082

  16. Mechanical properties of amorphous LixSi alloys: a reactive force field study

    NASA Astrophysics Data System (ADS)

    Fan, Feifei; Huang, Shan; Yang, Hui; Raju, Muralikrishna; Datta, Dibakar; Shenoy, Vivek B.; van Duin, Adri C. T.; Zhang, Sulin; Zhu, Ting

    2013-10-01

    Silicon is a high-capacity anode material for lithium-ion batteries. Electrochemical cycling of Si electrodes usually produces amorphous LixSi (a-LixSi) alloys at room temperature. Despite intensive investigation of the electrochemical behaviors of a-LixSi alloys, their mechanical properties and underlying atomistic mechanisms remain largely unexplored. Here we perform molecular dynamics simulations to characterize the mechanical properties of a-LixSi with a newly developed reactive force field (ReaxFF). We compute the yield and fracture strengths of a-LixSi alloys under a variety of chemomechanical loading conditions, including the constrained thin-film lithiation, biaxial compression, uniaxial tension and compression. Effects of loading sequence and stress state are investigated to correlate the mechanical responses with the dominant atomic bonding, featuring a transition from the covalent to the metallic glass characteristics with increasing Li concentration. The results provide mechanistic insights for interpreting experiments, understanding properties and designing new experiments on a-LixSi alloys, which are essential to the development of durable Si electrodes for high-performance lithium-ion batteries.

  17. Microstructure and Mechanical Properties of Ultra-Fine Grain Al-Zr Alloy Fabricated by Mechanical Alloying Process.

    PubMed

    Kim, Chung Seok; Kim, Il-Ho

    2015-08-01

    The ultra-fine grain Al-4Zr alloy has been successfully fabricated by a mechanical alloying process. The intermetallic Al3Zr phases strongly enhance the mechanical properties of Al-based alloy and prevent grain growth of alloy. The phase stability and transformation during mechanical alloying process have been investigated. The ultra-fine grain alloy has been successfully obtained. The thin film of Al-4Zr alloy has been observed by a transmission electron microscope. The equivalent grain size of as-milling specimen is 55 nm. After milling process, the specimens were heat treated at 350 °C to 650 °C. The equivalent grain size of heat treated specimens were 80 nm at 350 °C and 130 nm at 650 °C. Some of Zr atoms were dissolved into the Al matrix and most of them reacted with hydrogen produced by decomposition of PCA to form ZrH2 during mechanical alloying process. These ZrH2 hydrides decomposed gradually after the heat treatment. Stable A13Zr with a D023 structure was formed by heat treatment at temperature of 550 °C.

  18. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  19. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  20. Measurements of residual stress in fracture mechanics coupons

    SciTech Connect

    Prime, Michael B; Hill, Michael R; Nav Dalen, John E

    2010-01-01

    This paper describes measurements of residual stress in coupons used for fracture mechanics testing. The primary objective of the measurements is to quantify the distribution of residual stress acting to open (and/or close) the crack across the crack plane. The slitting method and the contour method are two destructive residual stress measurement methods particularly capable of addressing that objective, and these were applied to measure residual stress in a set of identically prepared compact tension (C(T)) coupons. Comparison of the results of the two measurement methods provides some useful observations. Results from fracture mechanics tests of residual stress bearing coupons and fracture analysis, based on linear superposition of applied and residual stresses, show consistent behavior of coupons having various levels of residual stress.

  1. Evaluation of the mechanical properties of electroslag refined iron alloys

    NASA Technical Reports Server (NTRS)

    Bhat, G. K.

    1976-01-01

    Nitronic 40 (21Cr-6N-9Mn), HY-130, 9Ni-4Co, and D-6 alloys were prepared and evaluated in the form of 15.2 mm thick plates. Smooth bar tensile tests, double-edge sharp notch fracture toughness tests Charpy V-notch impact tests were conducted on appropriate heat treated specimens of the four steel plates at 22 C, -50 C, -100 C, -150 C, and -196 C. Similar material characterization, including metallographic evaluation studies on air melt and vacuum arc melt grades of same four alloy steels were conducted for comparative purposes. A cost analysis of manufacturing plates of air melt, electroslag remelt and vacuum arc remelt grades was performed. The results of both material characterization and cost analyses pointed out certain special benefits of electroslag processing iron base alloys.

  2. Investigation of the fracture mechanics of boride composites

    NASA Technical Reports Server (NTRS)

    Kaufman, L.; Clougherty, E. V.; Nesor, H.

    1971-01-01

    Fracture energies of WC-6Co, Boride 5 (ZrB2+SiC), Boride 8(ZrB2+SiC+C) and Boride 8-M2(ZrB2+SiC+C) were measured by slow bend and impact tests of notched charpy bars. Cobalt bonded tungsten carbide exhibited impact energies of 0.76 ft-lb or 73.9 in-lb/square inch. Boride 5 and the Boride 8 exhibit impact energies one third and one quarter of that observed for WC-6Co comparing favorably with measurements for SiC and Si3N4. Slow bend-notched bar-fracture energies for WC-6Co were near 2.6 in-lb/square inch or 1/20 the impact energies. Slow bend energies for Boride 8-M2, Boride 8 and Boride 5 were 58%, 42% and 25% of the value observed for WC-6Co. Fractograph showed differences for WC-6Co where slow bend testing resulted in smooth transgranular cleavage while samples broken by impact exhibited intergranular failures. By contrast the boride fractures showed no distinction based on testing method. Fabrication studies were conducted to effect alteration of the boride composites by alloying and introduction of graphite cloth.

  3. Fracture mechanisms of retrieved titanium screw thread in dental implant.

    PubMed

    Yokoyama, Ken'ichi; Ichikawa, Tetsuo; Murakami, Hiroki; Miyamoto, Youji; Asaoka, Kenzo

    2002-06-01

    Titanium and its alloy are increasingly attracting attention for use as biomaterials. However, delayed fracture of titanium dental implants has been reported, and factors affecting the acceleration of corrosion and fatigue have to be determined. The fractured surface of a retrieved titanium screw and metallurgical structures of a dental implant system were analyzed. The outer surface of the retrieved screw had a structure different from that of the as-received screw. It was confirmed that a shear crack initiated at the root of the thread and propagated into the inner section of the screw. Gas chromatography revealed that the retrieved screw had absorbed a higher amount of hydrogen than the as-received sample. The grain structure of a titanium screw, immersed in a solution known to induce hydrogen absorption, showed features similar to those of the retrieved screw. It was concluded that titanium in a biological environment absorbs hydrogen and this may be the reason for delayed fracture of a titanium implant.

  4. Deformation and fracture of low alloy steels at high temperature

    SciTech Connect

    Marriott, D.L.; Stubbins, J.F.; Leckie, F.A.; Muddle, B.

    1988-12-01

    This project formed part of the initiative in the AR TD program to characterize high temperature, time-dependent damage processes in low alloy steels, for use in the construction of coal-gasification plant. This project was broadly aimed at adding to the knowledge base for this bainitic form of 2.25Cr 1Mo steel, as it related to time-dependent performance at elevated temperature. Its original intention was to obtain information in specific grades of 2.25Cr 1Mo steel, in particular those containing reduced residual elements and microalloyed modifications, which were being considered as candidate materials at the time. This objective was subsequently modified, in the course of the contract period, to a more generic study of bainitic steel, using the 2.25Cr 1Mo material as a representative of the class. The main thrust of the project was directed initially at the detrimental effect of cyclic loading on creep resistance and manifesting itself in an apparently severe creep-fatigue interaction. Three subtasks were eventually identified. These are: a study of the evolution of microstructural changes in bainitic materials during steady load creep and under constant amplitude cyclic deformation, investigation of the effect of cyclic softening on the fatigue and creep strength of complex geometries, focusing on circumferentially notched bars, and investigation of the influence of environment as a possible cause of observed fatigue/elevated temperature interaction through its effects on crack initiation and propagation, using EDM notched specimens tested in air and vacuum. Results are discussed. 24 refs., 40 figs., 5 tabs.

  5. Investigation of the fracture mechanics of boride composites

    NASA Technical Reports Server (NTRS)

    Clougherty, E. V.; Pober, R. L.; Kaufman, L.

    1972-01-01

    Significant results were obtained in fabrication studies of the role of metallic additives of Zr, Ti, Ni, Fe and Cr on the densification of ZrB2. All elemental additions lower the processing temperatures required to effect full densification of ZrB2. Each addition effects enhanced densification by a clearly distinguishable and different mechanism and the resulting fabricated materials are different. A significant improvement in strength and fracture toughness was obtained for the ZrB2/Ti composition. Mechanical characterization studies for the ZrB2/SiC/C composites and the new ZrB2/Metal materials produced data relevant to the effect of impacting load on measured impact energies, a specimen configuration for which controlled fracture could occur in a suitably hard testing apparatus, and fracture strength data. Controlled fracture--indicative of measurable fracture toughness--was obtained for the ZrB2-SiC-C composite, and a ZrB2/Ti composite fabricated from ZrB2 with an addition of 30 weight per cent Ti. The increased strength and toughness of the ZrB2/Ti composite is consistent with the presence of a significantly large amount of a fine grained acicular phase formed by reaction of Ti with ZrB2 during processing.

  6. Probabilistic fracture mechanics and optimum fracture control of the solid rocket motor case of the shuttle

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1977-01-01

    Development of a procedure for the reliability analysis of the solid rocket motor case of the space shuttle is described. The analysis is based on probabilistic fracture mechanics and consideration of a probability distribution for the initial flaw sizes. The reliability analysis can be used to select design variables, such as the thickness of the SRM case, projected design life and proof factor, on the basis of minimum expected cost and specified reliability bounds. Effects of fracture control plans such as the non-destructive inspections and the material erosion between missions can also be considered in the developed methodology for selection of design variables. The reliability-based procedure can be easily modified to consider other similar structures and different fracture control plans.

  7. Mechanical Behaviour of Light Metal Alloys at High Strain Rates. Computer Simulation on Mesoscale Levels

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir; Skripnyak, Evgeniya; Meyer, Lothar W.; Herzig, Norman; Skripnyak, Nataliya

    2012-02-01

    Researches of the last years have allowed to establish that the laws of deformation and fracture of bulk ultrafine-grained and coarse-grained materials are various both in static and in dynamic loading conditions. Development of adequate constitutive equations for the description of mechanical behavior of bulk ultrafine-grained materials at intensive dynamic influences is complicated in consequence of insufficient knowledge about general rules of inelastic deformation and nucleation and growth of cracks. Multi-scale computational model was used for the investigation of deformation and fracture of bulk structured aluminum and magnesium alloys under stress pulse loadings on mesoscale level. The increment of plastic deformation is defined by the sum of the increments caused by a nucleation and gliding of dislocations, the twinning, meso-blocks movement, and grain boundary sliding. The model takes into account the influence on mechanical properties of alloys an average grains size, grain sizes distribution of and concentration of precipitates. It was obtained the nucleation and gliding of dislocations caused the high attenuation rate of the elastic precursor of ultrafine-grained alloys than in coarse grained counterparts.

  8. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zheng, Zhou; Xu, Jing; Wang, Yan

    2014-04-01

    In this paper, the effects of milling duration and composition on the microstructure and magnetic properties of equi-atomic FeSiBAlNi and FeSiBAlNiNb high entropy alloys during mechanical alloying have been investigated using X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy and alternating gradient magnetometry. The amorphous high entropy alloys have been successfully fabricated using the mechanical alloying method. The results show that the Nb addition prolongs the milling time for the formation of the fully FeSiBAlNi amorphous phase and decreases the glass forming ability. However, FeSiBAlNiNb amorphous high entropy alloy has the higher thermal stability and heat resisting properties. Moreover, the as-milled FeSiBAlNi(Nb) powders are soft-magnetic materials indicated by their low coercivity. The saturation magnetization of the as-milled FeSiBAlNi(Nb) powders decreases with prolonging of the milling time and shows the lowest value when the amorphous high entropy alloys are formed. It suggests that the as-milled products with solid solution phases show the better soft-magnetic properties than those with fully amorphous phases. The Nb addition does not improve the soft-magnetic properties of the FeSiBAlNi high entropy alloys. Rather, both amorphous high entropy alloys have similar soft-magnetic properties after a long milling time.

  9. Fracture mechanics applied to the machining of brittle materials

    SciTech Connect

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  10. Processing effects on the mechanical properties of tungsten heavy alloys

    NASA Technical Reports Server (NTRS)

    Kishi, Toshihito; German, R. M.

    1990-01-01

    Tungsten heavy alloys exhibit significant mechanical property sensitivities to the fabrication variables. These sensitivities are illustrated in this examination of vacuum sintering and the effects of composition, sintering temperature, and sintering time on the mechanical properties of tungsten heavy alloys. Measurements were conducted to assess the density, strength, hardness, and elongation dependencies. A detrimental aspect of vacuum sintering is matrix phase evaporation, although vacuum sintering does eliminate the need for postsintering heat treatments.

  11. Microstructural effects on the deformation and fracture of the alloy Ti-25Al-10Nb-3B-1Mo. Final report, 1 July 1988-15 December 1992

    SciTech Connect

    Ward, C.H.

    1992-12-01

    The effects of microstructure and temperature on tensile and fracture behavior were explored for the titanium aluminide alloy Ti-25Al-lONb-3V-lMo (atomic percent). Three microstructures were selected for this study in an attempt to determine the role of the individual microstructural constituents. the three microstructures studied were an alpha-2 + beta processed microstructure with a fine Widmanstaetten microstructure, a beta processed microstructure with a fine Widmanstaetten microstructure, and a beta processed microstructure with a coarse Widmanstaetten microstructure. Tensile testing of both round and flat specimens was conducted in vacuum at elevated temperature and in air at room and elevated temperatures. Extensive fractography and specimen sectioning were used to study tensile deformation and the effects of environment on this alloy. Room temperature fracture toughness testing using compact tension specimens was conducted. Elevated temperature toughness testing was performed using J-bend bar specimens in an air environment. Again, extensive fractography and specimen sectioning were used to study the elevated temperature toughening mechanisms of this alloy.... Titanium, Titanium aluminide, Intermetallic, Fracture toughness, Tensile behavior, Fractography environmental interaction.

  12. Correlation of stress-wave-emission characteristics with fracture aluminum alloys

    NASA Technical Reports Server (NTRS)

    Hartbower, C. E.; Reuter, W. G.; Morais, C. F.; Crimmins, P. P.

    1972-01-01

    A study to correlate stress wave emission characteristics with fracture in welded and unwelded aluminum alloys tested at room and cryogenic temperature is reported. The stress wave emission characteristics investigated were those which serve to presage crack instability; viz., a marked increase in:(1) signal amplitude; (2) signal repetition rate; and (3) the slope of cumulative count plotted versus load. The alloys were 7075-T73, 2219-T87 and 2014-T651, welded with MIG and TIG using 2319 and 4043 filler wire. The testing was done with both unnotched and part-through-crack (PTC) tension specimens and with 18-in.-dia subscale pressure vessels. In the latter testing, a real time, acoustic emission, triangulation system was used to locate the source of each stress wave emission. With such a system, multiple emissions from a given location were correlated with defects found by conventional nondestructive inspection.

  13. Dynamic strength and edge effects at spall fracture for titanium alloys of varying oxygen content

    NASA Astrophysics Data System (ADS)

    Razorenov, S. V.; Kanel, G. I.; Utkin, A. V.; Bogach, A. A.; Burkins, M.; Gooch, W. A.

    2000-04-01

    The results of VISAR free-surface velocity measurements for Ti-6Al-4V alloys with different oxygen content and the HEL, the spall strength, the spall fracture energy data are presented. The peak shock stress was varied from 4 to 75 GPa, the load duration from ˜10-7 s to ˜10-5 s. The Hugoniot elastic limit grows by ˜20% with increasing the oxygen content from 0.105% up to 0.24%. The alloy with the largest oxygen content exhibits also a greatest viscosity. The measurements have not revealed a notable variations in the spall strength magnitudes as a function of the oxygen content. The specific energy of spall element separation is practically the same for the all three types of samples tested.

  14. Effects of nitrogen addition on microstructure and mechanical behavior of biomedical Co-Cr-Mo alloys.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2014-01-01

    In the present study, the microstructures and tensile deformation behaviors of biomedical Co-29Cr-6Mo (wt%) alloys containing different concentrations of nitrogen (0-0.24wt%) were systematically investigated. As the nitrogen concentration increased, the volume fraction of athermal ε martensite decreased, because nanoprecipitates hindered the formation of stacking faults (SFs) by acting as obstacles to Shockley partial dislocation formation, and athermal ε martensite usually forms through the regular overlapping of SFs. The formation of the athermal ε martensite was completely suppressed when the nitrogen concentration exceeded 0.10wt%, resulting in a simultaneous improvement in the strength and ductility of the alloys. It was found that the glide of the Shockley partial dislocations and the strain-induced γ (fcc)→ε (hcp) martensitic transformation (SIMT) operated as the primary deformation mechanisms. However, adding nitrogen reduced the work hardening by suppressing the formation of the SFs and preventing the SIMT from taking place. This resulted in an intrinsic decrease in the tensile ductility of the alloys. It is also shown that all the alloys exhibited premature fractures owing to the SIMT. The formation of annealing twins in the γ grains is found to be enhanced by nitrogen addition and to promote the SIMT, resulting in a reduction in the elongation-to-failure due to nitrogen addition. These results should aid in the design of alloys that contain nitrogen.

  15. Kinetics and fracture behavior under cycle loading of an Al-Cu-Mg-Ag alloy

    NASA Astrophysics Data System (ADS)

    Gazizov, M. R.; Kaibyshev, R. O.

    2016-07-01

    The behavior of aluminum alloy AA2139 subjected to T6 treatment, including solution treatment and artificial aging, has been studied using cyclic loading with a constant total strain amplitude. Upon low-cyclic fatigue in the range of total strain amplitudes ɛac of 0.4-1.0%, the cyclic behavior of the AA2139-T6 alloy is determined by the processes that occur under the conditions of predominance of the elastic deformation over plastic deformation. The AA2139 alloy exhibits stability to cyclic loading without significant softening. The stress-strained state of the alloy upon cyclic loading can be described by the Hollomon equation with the cyclic strength coefficient K' and the cyclic strain-hardening exponent n' equal to 641 MPa and 0.066, respectively. The dependence of the number of cycles to fracture on the loading amplitude and its components (amplitudes of the plastic and elastic deformation) is described by a Basquin-Manson-Coffin equation with the parameters σ'/ E = 0.014, b =-0.123, ɛ'f= 178.65, and c =-1.677.

  16. Aging effects on the fracture toughness of SiC whisker reinforced 2XXX aluminum alloys

    NASA Technical Reports Server (NTRS)

    Ratnaparkhi, P. L.; Rack, H. J.

    1989-01-01

    The effect of aging (at 150 C) time on the fracture toughness behavior of a 2XXX alloy (Al-3.55Cu-1.29Mg-0.01Fe-trace Mn) reinforced with 5 vol pct F-8 SiC whiskers was investigated by measuring hardness and electrical conductivity followed by fracture toughness tests on center-cracked specimens. The ageing time-hardening response plots showed that, independent of whisker orientation, the initial rapid increase in hardness was followed by a more gradual increase, with a broad hardness peak between 32 and 128 hrs of aging. Coincident with the hardness changes, the electrical conductivity initially decreased, reached a minimum, and then increased at aging times beyond 32 hrs. Examination by SEM indicated that the initial increase in hardness and decrease in conductivity was due to the GPB zone formation, while the subsequent increase in electrical conductivity and decrease in hardness (overaging) was due to S nucleation and growth.

  17. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    SciTech Connect

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching; Lee, Chih-Jhan; Ho, Wen-Fu

    2010-09-15

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable {beta} phase began. However, when 4 mass% Fe or greater was added, the {beta} phase was entirely retained with a bcc crystal structure. Moreover, the {omega} phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of {omega} phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9{sup o}) and Ti-5Nb-5Fe (29.5{sup o}) alloys were greater than that of c.p. Ti (2.7{sup o}) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  18. A compendium of sources of fracture toughness and fatigue crack growth data for metallic alloys. II

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Seward, S. K.

    1982-01-01

    A compendium is presented of sources for metallic alloy fracture toughness and fatigue crack growth data, which concentrates on technical reports as the primary source of references and updates the previous Hudson and Seward (1978) compendium references on technical journals. Where available, the accession numbers which are used as code numbers for the ordering of the reports from their publishers are given. The sources of these reports include the AIAA Technical Information Service, the Defense Technical Information Center, the National Technical Information Service, and NASA.

  19. Estimating plane strain fracture toughness of high strength aluminum alloys from crack arrest toughness

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1977-01-01

    A comparison is made between fracture toughness KIc as measured by recommended ASTM procedures and crack arrest toughness KIa as measured on more than 100 bolt-loaded double-cantilever beam (DCB) specimens from 7075, 7050, and 7049 alloy plates. Close agreement was found between the two values, KIa being on the average less than KIc over a specified range. This indicates that a simplified test based on a bolt-loaded DCB specimen could be used for quality control, lot release, and screening purposes. Measurements of crack length and specimen deflection are all that are required. The specimens do not have to be fatigue precracked, nor is a tensile machine needed.

  20. The effect of electric discharge machined notches on the fracture toughness of several structural alloys

    SciTech Connect

    Joyce, J.A.; Link, R.E.

    1993-09-01

    Recent computational studies of the stress and strain fields at the tip of very sharp notches have shown that the stress and strain fields are very weakly dependent on the initial geometry of the notch once the notch has been blunted to a radius that is 6 to 10 times the initial root radius. It follows that if the fracture toughness of a material is sufficiently high so that fracture initiation does not occur in a specimen until the crack-tip opening displacement (CTOD) reaches a value from 6 to 10 times the size of the initial notch tip diameter, then the fracture toughness will be independent of whether a fatigue crack or a machined notch served as the initial crack. In this experimental program the fracture toughness (J{sub Ic} and J resistance (J-R) curve, and CTOD) for several structure alloys was measured using specimens with conventional fatigue cracks and with EDM machined notches. The results of this program have shown, in fact, that most structural materials do not achieve initiation CTOD values on the order of 6 to 10 times the radius of even the smallest EDM notch tip presently achievable. It is found furthermore that tougher materials do not seem to be less dependent on the type of notch tip present. Some materials are shown to be much more dependent on the type of notch tip used, but no simple pattern is found that relates this observed dependence to the material strength toughness, or strain hardening rate.

  1. Giant magnetoresistance of Co-Ni-Cu alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Zhang, Z. D.; Xiao, Q. F.; Geng, D. Y.; Zhao, X. G.; Zhang, W. S.; You, C. Y.

    2003-05-01

    The structure, magnetic properties and magnetoresistance (MR) effect of Co20NixCu80-x alloys produced by mechanical alloying and subsequent annealing have been investigated. After milling for 5 h, a supersaturated solid solution forms for all the alloys. Co20NixCu80-x alloys annealed at 973 K for 30 min segregated into two-phases of fcc-Co and fcc-Cu. The maximum value for MR ratio, at room temperature is 4.7% at a field of 1.2 T, and at 5 K is 15% at a field of 2 T for Co20Cu80 annealed at 718 K for 30 min. The MR ratio of Co-Ni-Cu alloys decreases monotonically with increasing Ni content. The MR and its dependence on particle size are discussed.

  2. Hydrogen storage properties of lithium silicon alloy synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Doi, Koichi; Hino, Satoshi; Miyaoka, Hiroki; Ichikawa, Takayuki; Kojima, Yoshitsugu

    A lithium silicon alloy was synthesized by mechanical alloying method. Hydrogen storage properties of this Li-Si-H system were studied. During hydrogenation of the lithium silicon alloy, lithium atom was extracted from the alloy and lithium hydride was generated. Equilibrium hydrogen pressures for desorption and absorption reactions were measured in a temperature range from 400 to 500 °C to investigate the thermodynamic characteristics of the system, which can reversibly store 5.4 mass% hydrogen with smaller reaction enthalpy than simple metal Li. Li absorbing alloys, which have been widely studied as a negative electrode material for Li ion rechargeable batteries, can be used as hydrogen storage materials with high hydrogen capacity.

  3. MECHANICAL BEHAVIOR OF MOLYBDENUM DISILICIDE-BASED ALLOYS

    SciTech Connect

    A. MISRA; A. SHARIF; ET AL

    2000-12-01

    We have investigated the mechanical behavior of the following single-phase polycrystalline alloys with the MoSi{sub 2} body-center tetragonal structure: MoSi{sub 2} alloyed with {approximately}2.5 at.% Re, MoSi{sub 2} alloyed with 2 at.% Al, MoSi{sub 2} alloyed with 1 at.% Nb, and MoSi{sub 2} alloyed with 1 at.% Re and 2 at.% Al. Several anomalies in the mechanical behavior of alloyed materials were observed. For example, (1) addition of only {approximately}2.5 at. % Re results in an order of magnitude increase in compressive strength at 1600 C, (2) additions of Nb and Al cause solution softening at near-ambient temperatures, and (3) quaternary MoSi{sub 2}-Re-Al alloys show strengthening at elevated temperatures and reduction in flow stress with enhanced plasticity at near-ambient temperatures in compression. The mechanisms of anomalous solution hardening and softening are discussed.

  4. The fracture properties and toughening mechanisms of bone and dentin

    NASA Astrophysics Data System (ADS)

    Koester, Kurt John

    The mechanical properties of bone and dentin and in particular their fracture properties, are the subject of intense research. The relevance of these properties is increasing as our population ages and fracture incidence impacts the lives of a greater portion of the population. A robust framework is needed to understand the fracture properties of bone and dentin to guide researchers as they attempt to characterize the effects of aging, disease, and pharmaceutical treatments on the properties of these mineralized tissues. In the present work, this framework is provided and applied to human bone, human dentin, and animal bone. In situ electron microscopy was also used to identify the salient toughening mechanisms in bone and dentin. It was found that bone and dentin are extrinsically toughened materials and consequently their fracture properties are best characterized utilizing a crack-growth resistance approach. A description of the different mechanical measurements commonly employed when using small animal models (rats and mice) to evaluate the influence of drug therapies on bone fragility is provided. A study where these properties were measured for a large population of wild-type rats and mice was also conducted. Given my findings, it was determined that for the most complete understanding of small animal bone it was necessary to measure strength and toughness. Strength measurements probe the flaw distribution and toughness measurements to evaluate the resistance to facture in the presence of a single dominant worst-case flaw.

  5. Mechanical properties and grindability of experimental Ti-Au alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu

    2004-06-01

    Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.

  6. Environment assisted degradation mechanisms in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  7. Influences of Hydrogen Micropores and Intermetallic Particles on Fracture Behaviors of Al-Zn-Mg-Cu Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Su, Hang; Yoshimura, Takuro; Toda, Hiroyuki; Bhuiyan, Md. Shahnewaz; Uesugi, Kentaro; Takeuchi, Akihisa; Sakaguchi, Nobuhito; Watanabe, Yoshio

    2016-12-01

    The combined effects of hydrogen micropores and intermetallic particles on the voids initiation and growth behavior of Al-Zn-Mg-Cu aluminum alloys during deformation and fracture are investigated with the help of the high-resolution X-ray tomography. It is interesting to note that the high-hydrogen concentration induced by an EDM cutting process results in the initiation of quasi-cleavage fracture near surface. With the increase of strain, the quasi-cleavage fracture is gradually replaced by dimple fracture. Voids initiation related to the dimple fracture is caused by both intermetallic particles fracture and interfacial debonding between particles and matrix. The nucleation of hydrogen micropores on intermetallic particles accelerates the voids initiation. The existence of triaxial stress ahead of the tip of a quasi-cleavage crack enhances growth rate for both hydrogen micropores and voids.

  8. A Novel Cu-10Zn-1.5Ni-0.34Si Alloy with Excellent Mechanical Property Through Precipitation Hardening

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Mingpu; Li, Zhou; Dong, Qiyi; Jia, Yanlin; Xiao, Zhu; Zhang, Rui; Yu, Hongchun

    2016-11-01

    A novel Cu-10Zn-1.5Ni-0.34Si alloy was designed to replace the expensive tin-phosphor bronze in this paper. The alloy had better comprehensive mechanical properties than traditional C5191 alloy. The aged Cu-10Zn-1.5Ni-0.34Si alloy had a hardness of 220 HV, electrical conductivity of 28.5% IACS, tensile strength of 650 MPa, yield strength of 575 MPa and elongation of 13%. Ni2Si precipitates formed during aging, and the crystal orientation relationship between matrix and precipitates was: (001)α//(001)δ, and [110]α//[100]δ. Ductile fracture surface with deep cavities was found in the alloy. Solid solution strengthening, deformation strengthening and precipitation strengthening were found to be core strengthening mechanisms in the alloy.

  9. Analysis of Deformation Damage and Fracture of 7050 Aluminum Alloy During Double Shear Based on Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    Chen, Han; Li, Fuguo; Cao, Jun; Li, Jinghui; Wang, Qianru; Li, Weina

    2017-02-01

    Based on the finite element simulation and experimental analysis, this paper mainly studies the deformation damage and fracture of 7050-H112 aluminum alloy during double shear based on the elastic strain energy density. The analyses of deformation damage and fracture for ends-free and ends-constrained specimens in complex stress and strain states have been carried out. The different stress and strain states which are characterized by stress triaxiality and strain Lode parameter have important effects on damage and fracture according to the simulation and experimental results. The final fracture is mainly caused by tensile stress both for specimens with ends free and ends constraint. Meanwhile, the shear planes are mainly in a state of shear strain when fracture occurs according to the analysis of stress triaxiality and strain Lode parameter. Three characteristic areas (radiation area, fiber area and shear lips) are observed from fracture morphology and account for different proportions on fracture surface for ends-free and ends-constrained specimens. The simulated results on the damage evolution and fracture from finite element method (FEM) are in good agreement with the experimental ones. Besides, there are competitive relations between ductile fracture and brittle fracture during the process of fracture in this paper.

  10. Analysis of Deformation Damage and Fracture of 7050 Aluminum Alloy During Double Shear Based on Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    Chen, Han; Li, Fuguo; Cao, Jun; Li, Jinghui; Wang, Qianru; Li, Weina

    2017-03-01

    Based on the finite element simulation and experimental analysis, this paper mainly studies the deformation damage and fracture of 7050-H112 aluminum alloy during double shear based on the elastic strain energy density. The analyses of deformation damage and fracture for ends-free and ends-constrained specimens in complex stress and strain states have been carried out. The different stress and strain states which are characterized by stress triaxiality and strain Lode parameter have important effects on damage and fracture according to the simulation and experimental results. The final fracture is mainly caused by tensile stress both for specimens with ends free and ends constraint. Meanwhile, the shear planes are mainly in a state of shear strain when fracture occurs according to the analysis of stress triaxiality and strain Lode parameter. Three characteristic areas (radiation area, fiber area and shear lips) are observed from fracture morphology and account for different proportions on fracture surface for ends-free and ends-constrained specimens. The simulated results on the damage evolution and fracture from finite element method (FEM) are in good agreement with the experimental ones. Besides, there are competitive relations between ductile fracture and brittle fracture during the process of fracture in this paper.

  11. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    SciTech Connect

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z.

    1997-12-01

    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  12. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  13. Hydraulic fracture extending into network in shale: reviewing influence factors and their mechanism.

    PubMed

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design.

  14. Effect of heat treatment on microstructure and fracture toughness of a V-5Cr-5Ti alloy

    SciTech Connect

    Li, H.; Hamilton, M.L.; Jones, R.H.

    1995-04-01

    The purpose of this research is to investigate the effect of heat treatment on microstructure and fracture toughness in the range of {minus}50 to 100{degrees}C for a V-5Cr-5Ti alloy. Fracture toughness and impact tests were performed on a V-5Cr-5Ti alloy. Specimens annealed at 1125{degree}C for 1 h and furnace cooled in a vacuum of 1.33 x 10{sup {minus}5} Pa were brittle at room temperature and experienced a mixture of intergranular and cleavage fracture. The ductile to brittle transition temperature was estimated to be about 20{degree}C. When some specimens were given an additional annealing at 890{degree}C for 24 h, they became very ductile at room temperature and fractured by microvoid coalescence.

  15. Amorphous phase formation in mechanically alloyed iron-based systems

    NASA Astrophysics Data System (ADS)

    Sharma, Satyajeet

    Bulk metallic glasses have interesting combination of physical, chemical, mechanical, and magnetic properties which make them attractive for a variety of applications. Consequently there has been a lot of interest in understanding the structure and properties of these materials. More varied applications can be sought if one understands the reasons for glass formation and the methods to control them. The glass-forming ability (GFA) of alloys can be substantially increased by a proper selection of alloying elements and the chemical composition of the alloy. High GFA will enable in obtaining large section thickness of amorphous alloys. Ability to produce glassy alloys in larger section thicknesses enables exploitation of these advanced materials for a variety of different applications. The technique of mechanical alloying (MA) is a powerful non-equilibrium processing technique and is known to produce glassy (or amorphous) alloys in several alloy systems. Metallic amorphous alloys have been produced by MA starting from either blended elemental metal powders or pre-alloyed powders. Subsequently, these amorphous alloy powders could be consolidated to full density in the temperature range between the glass transition and crystallization temperatures, where the amorphous phase has a very low viscosity. This Dissertation focuses on identifying the various Fe-based multicomponent alloy systems that can be amorphized using the MA technique, studying the GFA of alloys with emphasis on improving it, and also on analyzing the effect of extended milling time on the constitution of the amorphous alloy powder produced at earlier times. The Dissertation contains seven chapters, where the lead chapter deals with the background, history and introduction to bulk metallic glasses. The following four chapters are the published/to be published work, where the criterion for predicting glass formation, effect of Niobium addition on glass-forming ability (GFA), lattice contraction on

  16. Mechanical anisotropy of a gamma titanium aluminide alloy after hot extrusion

    SciTech Connect

    Oehring, M.; Lorenz, U.; Niefanger, R.; Appel, F.; Brokmeier, H.G.; Wagner, R.; Clemens, H.; Eberhardt, N.

    1999-07-01

    By hot extrusion below and above the {alpha} transus temperature equiaxed and predominantly lamellar microstructures were obtained in a Ti aluminide alloy. In order to examine a possible orientation dependence of mechanical properties the flow stress, the activation parameters of plastic deformation and the fracture toughness were determined parallel and perpendicular to the extrusion direction at room temperature and 700 C. The observed anisotropy in these properties may be mainly attributed to anisotropies in the microstructures, in particular to a preferential alignment of lamellae in lamellar microstructures.

  17. Fracture mechanics analysis of composite microcracking - Experimental results in fatigue

    NASA Technical Reports Server (NTRS)

    Nairn, J. A.; Liu, S.

    1990-01-01

    The Nairn (1989) variational mechanics analysis, which yields the energy release rate of a microcrack's formation between two existing microcracks, has proven useful in the fracture mechanics interpretation of cross-ply laminates' microcracking. Attention is presently given to the application of this energy release rate analysis to a fracture mechanics-based interpretation of microcrack formation during fatigue loading, for the case of fatigue experiments on three layups of Avimid K/IM6 laminates and four layups of Fiberite 934/T300 laminates. The single master Paris-law plot onto which the data from all layups of a given material system fall is claimed to offer a complete characterization of that system's microcrack-formation resistance during fatigue loading.

  18. Fracture control methods for space vehicles. Volume 2: Assessment of fracture mechanics technology for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.

    1974-01-01

    The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.

  19. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys.

    PubMed

    Lee, Won-Jong; Chia, Wen-Jui; Wang, Jinliu; Chen, Yanfeng; Vaynman, Semyon; Fine, Morris E; Chung, Yip-Wah

    2010-11-02

    This article explores the subtle effects of surfaces and interfaces on the mechanical properties of bulk metallic alloys using three examples: environmental effects on fatigue life, hydrogen embrittlement effects on the ductility of intermetallics, and the role of coherent precipitates in the toughness of steels. It is demonstrated that the marked degradation of the fatigue life of metals is due to the strong chemisorption of adsorbates on exposed slip steps that are formed during fatigue deformation. These adsorbates reduce the reversibility of slip, thus accelerating fatigue damage in a chemically active gas environment. For certain intermetallic alloys such as Ni(3)Al and Ni(3)Fe, the ductility depends on the ambient gas composition and the atomic ordering in these alloys, both of which govern the complex surface chemical reactions taking place in the vicinity of crack tips. Finally, it is shown that local stresses at a coherent precipitate-matrix interface can activate dislocation motion at low temperatures, thus improving the fracture toughness of bulk alloys such as steels at cryogenic temperatures. These examples illustrate the complex interplay between surface chemistry and mechanics, often yielding unexpected results.

  20. Mechanical Properties of Aluminum-alloy Rivets

    NASA Technical Reports Server (NTRS)

    Brueggeman, Wm C

    1936-01-01

    The development of metal construction for aircraft has created a need for accurate and detailed information regarding the strength of riveted joints in aluminum-alloy structures. To obtain this information the National Bureau of Standards in cooperation with the National Advisory Committee for Aeronautics is investigating the strength of riveted joints in aluminum alloys. The strength of riveted joints may be influenced by the form of the head, the ratio of the rivet diameter to the sheet thickness, the driving stress, and other factors. This note gives the results of tests to develop the riveting technique for test specimens and to determine the effects of these factors.

  1. Deformation and fracture of Macadamia nuts Part 2: Microstructure and fracture mechanics analysis of nutshell

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Hui; Mai, Yiu-Wing

    A study of the microstructure and mechanical properties of Macadamia nutshells subjected to various heat treatments is given in Part 2 of this paper. It is found that the nutshell has a three-dimensional, close-packed, cell structure. The cells have a diameter to length ratio of about 1 to 3, and the orientation of the cells is reasonably isotropic with no apparent variation with either position or direction. The material behaves in a very brittle manner under tension and compression. Based on the elastic stress analysis of a nut under diametrical compression and the mechanical properties of the shell, it is shown that cracks that cause the final fracture are initiated from the inner surface beneath the loading point. A theoretical model is proposed and predictions of the fracture load for Macadamia nuts are in good agreement with experimental results.

  2. Mathematical modeling of mechanical properties of metals and alloys at large strains

    NASA Astrophysics Data System (ADS)

    Agal'tsov, V. I.; Vladimirov, S. A.; Degtyarev, V. P.

    2007-02-01

    We discuss problems in mathematical modeling of the mechanical behavior of metals and alloys at large strains. Attention is mainly paid to the analysis of the stress-strain state of specimens and structural fragments made of highly plastic materials with the effect of stability loss under tensile stresses taken into account. We discuss the methods for determining the true property diagram at strains exceeding the ultimate uniform strain. We process experimental data and determine the true property diagrams for AMg6, AMg6M, and 1201 aluminum alloys and BrKh08 alloy. To calculate the load-carrying capacity of structural members, one often uses the conventional ultimate strength σ b accepted in regulations as a material characteristic. But it follows from the method for experimentally determining this characteristic that it depends on the properties of the specimen viewed as a structure. As a result, a formal use of fracture criteria recommended in regulations leads to a discrepancy between design and experimental values of fracture loads. Nowadays, the finite element method is widely used in practical strength analysis. This method permits one to study the elastoplastic strained state of geometrically complicated structures in detail, take into account physical nonlinearity at large strains, determine damage boundaries, and improve experimental methodology. The wide capabilities of this method allow one to use test results more completely.

  3. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  4. New Fe-Ni based metal-metalloid glassy alloys prepared by mechanical alloying and rapid solidification

    SciTech Connect

    Sunol, J.J.; Clavaguera-Mora, M.T.; Clavaguera, N.; Pradell, T.

    1997-12-31

    Mechanical alloying and rapid solidification are two important routes to obtain glassy alloys. New Fe-Ni based metal-metalloid (P-Si) alloys prepared by these two different processing routes were studied by differential scanning calorimetry and transmission Moessbauer spectroscopy. Mechanical alloyed samples were prepared with elemental precursors, and different nominal compositions. Rapidly solidified alloys were obtained by melt-spinning. The structural analyses show that, independent of the composition, the materials obtained by mechanical alloying are not completely disordered whereas fully amorphous alloys were obtained by rapid solidification. Consequently, the thermal stability of mechanically alloyed samples is lower than that of the analogous material prepared by rapid solidification. The P/Si ratio controls the magnetic interaction of the glassy ribbons obtained by rapid solidification. The experimental results are discussed in terms of the degree of amorphization and crystallization versus processing route and P/Si ratio content.

  5. Effect of extrusion ratio on microstructure and mechanical properties of Mg-Nd-Zn-Zr alloys prepared by a solid recycling process

    SciTech Connect

    Wen Lihua Ji Zesheng; Li Xiaoliang

    2008-11-15

    Microstructures and room temperature mechanical properties of Mg-2.4Nd-0.6Zn-0.6Zr alloys prepared by a solid recycling process with different extrusion ratios were studied. The tensile properties of the materials were evaluated for the magnesium alloys in as-extruded and extruded-T6 conditions. With increasing extrusion ratio, the tensile strength and elongation to failure increases. The heat treatment results in a significant increase in tensile yield strength and ultimate tensile strength because of dispersive particles or fine precipitates. Moreover, the ductility decreases from as-extruded condition to extruded-T6 condition. The morphology of the fracture surfaces was examined by employing scanning electron microscope. The fracture mode is a mix mechanism with brittle fracture and gliding fracture.

  6. Mechanical properties of dental Ti-Ag alloys with 22.5, 25, 27.5, and 30 mass% Ag.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo

    2015-01-01

    The mechanical properties -tensile strength, yield strength, elongation after fracture, Vickers hardness, and Young's modulus-and the phases of Ti-Ag alloys were investigated, as prepared with 22.5, 25, 27.5, and 30 mass% Ag. The tensile strength, yield strength, hardness, and Young's modulus of the alloys increase with their Ag content up to 25 mass%, but their breaking elongation decreases. These changes in the mechanical properties are attributed to solid-solution strengthening of the α-titanium phase, to Ti2Ag precipitation, and to the formation of eutectic structures composed of α+Ti2Ag. The addition of Ag, at 25 mass% in particular, improves the mechanical properties of these alloys, making them suitable for high strength dental prostheses, such as implantretained superstructures and narrow-diameter implants.

  7. Cryogenic Fracture Toughness Evaluation of an Investment Cast Al-Be Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; McGill, P. B.

    2006-01-01

    Aluminum-Beryllium metal matrix composite materials are useful due to their desirable performance characteristics for aerospace applications. Desirable characteristics of this material includes light-weight, dimensional stability, stiffness, good vibration damping characteristics, low coefficient of thermal expansion, and workability, This material is 3.5 times stiffer and 22% lighter than conventional aluminum alloys. electro-optical systems, advanced sensor and guidance components for flight and satellite systems, components for light-weight high-performance aircraft engines, and structural components for helicopters. Aluminum-beryllium materials are now available in the form of near net shape investment castings. In this materials properties characterization study, the cryogenic tensile and fracture properties of an investment casting alloy, Beralcast 363, were determined. Tensile testing was performed at 21 C (70 F), -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F), and fracture (K(sub lc) and da/dN) testing was performed at -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F). Their use is attractive for weight critical structural applications such as advanced

  8. Cryogenic Fracture Toughness Improvement for the Super Lightweight Tank's Main Structural Alloy

    NASA Technical Reports Server (NTRS)

    Chen, P. S.; Stanton, W. P.

    2002-01-01

    Marshall Space Flight Center has developed a two-step (TS) artificial aging technique that can significantly enhance cryogenic fracture toughness and resistance to stress corrosion cracking (SCC) in aluminum-copper-lithium alloy 2195. The new TS aging treatment consists of exposures at 132 C (270 F)/20 hr + 138 C (280 F)/42 hr, which can be readily applied to flight hardware production. TS aging achieves the same yield strength levels as conventional aging, while providing much improved ductility in the short transverse direction. After TS aging, five previously rejected lots of alloy 2195 (lots 950M029B, 960M030F, 960M030J, 960M030K, and 960M030L) passed simulated service testing for use in the super lightweight tank program. Each lot exhibited higher fracture toughness at cryogenic temperature than at ambient temperature. Their SCC resistance was also enhanced. All SCC specimens passed the minimum 10-day requirement in 3.5-percent sodium chloride alternate immersion at a stress of 45 ksi. The SCC lives ranged from 57 to 83 days, with an average of 70 days.

  9. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  10. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  11. [Bone fracture and the healing mechanisms. Pathophysiology and classification of osteoporotic fractures].

    PubMed

    Kishimoto, Hideaki

    2009-05-01

    Bone provides momentary strength and fatigue strength, and bone strength decreases with age. In elderly men and women with fragile bones osteoporotic fractures frequently occur. Fragility fracture occurs as a consequence of the decrease in momentary strength, and fragility fracture is one of the pathological fractures. In patients with the decrease in fatigue strength, insufficiency fractures frequently occurs. Insufficiency fracture is the same term as stress or fatigue fracture.

  12. Fundamental Mechanisms of Tensile Fracture in Aluminum Sheet Unidirectionally Reinforced with Boron Filament. Ph.D. Thesis - Virginia Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Herring, H. W.

    1971-01-01

    Results are presented from an experimental research effort to gain a more complete understanding of the physics of tensile fracture in unidirectionally reinforced B-Al composite sheet. By varying the degree of filament degradation resulting from fabrication, composite specimens were produced which failed in tension by the cumulative mode, the noncumulative mode, or by any desired combination of the two modes. Radiographic and acoustic emission techniques were combined to identify and physically describe a previously unrecognized fundamental fracture mechanism which was responsible for the noncumulative mode. The tensile strength of the composite was found to be severely limited by the noncumulative mechanism which involved the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level followed by ductile fracture of the matrix. The minimum average filament stress required for initiation of the fracture mechanism was shown to be approximately 170 ksi, and appeared to be independent of filament diameter, number of filament layers, and the identity of the matrix alloy.

  13. Investigating enhanced mechanical properties in dual-phase Fe-Ga-Tb alloys.

    PubMed

    Meng, Chongzheng; Wang, Hui; Wu, Yuye; Liu, Jinghua; Jiang, Chengbao

    2016-10-03

    Dual-phase (Fe83Ga17)100-xTbx alloys with 0 ≤ x ≤ 1 were synthesized by arc melting and homogenization treatment. The microstructures and the corresponding mechanical properties were systematically investigated. The chemical composition of the body centered cubic matrix is Fe83Ga17. The monoclinic second phase was composed of meltable precipitates with approximate composition Fe57Ga33Tb10. The nano-hardness of matrix and precipitates were 2.55 ± 0.17 GPa and 6.81 ± 1.03 GPa, respectively. Both the ultimate tensile strength (UTS) and fracture strain (ε) of the alloys were improved by the precipitates for x ≤ 0.2 alloys, but the strain decreases significantly at higher values of x. As potential structural-functional materials, the best mechanical properties obtained were a UTS of 595 ± 10 MPa and an ε of 3.5 ± 0.1%, four-fold and seven-fold improvements compared with the un-doped alloy. The mechanism for these anomalous changes of mechanical properties was attributed to the dispersed precipitates and semi-coherent interfaces, which serve as strong obstacles to dislocation motion and reduce the stress concentration at the grain boundaries. A sizeable improvement of magnetostriction induced by the precipitates in the range 0 ≤ x ≤ 0.2 was discovered and an optimal value of 150 ± 5 ppm is found, over three times higher than that of the un-doped alloy.

  14. Investigating enhanced mechanical properties in dual-phase Fe-Ga-Tb alloys

    PubMed Central

    Meng, Chongzheng; Wang, Hui; Wu, Yuye; Liu, Jinghua; Jiang, Chengbao

    2016-01-01

    Dual-phase (Fe83Ga17)100−xTbx alloys with 0 ≤ x ≤ 1 were synthesized by arc melting and homogenization treatment. The microstructures and the corresponding mechanical properties were systematically investigated. The chemical composition of the body centered cubic matrix is Fe83Ga17. The monoclinic second phase was composed of meltable precipitates with approximate composition Fe57Ga33Tb10. The nano-hardness of matrix and precipitates were 2.55 ± 0.17 GPa and 6.81 ± 1.03 GPa, respectively. Both the ultimate tensile strength (UTS) and fracture strain (ε) of the alloys were improved by the precipitates for x ≤ 0.2 alloys, but the strain decreases significantly at higher values of x. As potential structural-functional materials, the best mechanical properties obtained were a UTS of 595 ± 10 MPa and an ε of 3.5 ± 0.1%, four-fold and seven-fold improvements compared with the un-doped alloy. The mechanism for these anomalous changes of mechanical properties was attributed to the dispersed precipitates and semi-coherent interfaces, which serve as strong obstacles to dislocation motion and reduce the stress concentration at the grain boundaries. A sizeable improvement of magnetostriction induced by the precipitates in the range 0 ≤ x ≤ 0.2 was discovered and an optimal value of 150 ± 5 ppm is found, over three times higher than that of the un-doped alloy. PMID:27694839

  15. Investigating enhanced mechanical properties in dual-phase Fe-Ga-Tb alloys

    NASA Astrophysics Data System (ADS)

    Meng, Chongzheng; Wang, Hui; Wu, Yuye; Liu, Jinghua; Jiang, Chengbao

    2016-10-01

    Dual-phase (Fe83Ga17)100‑xTbx alloys with 0 ≤ x ≤ 1 were synthesized by arc melting and homogenization treatment. The microstructures and the corresponding mechanical properties were systematically investigated. The chemical composition of the body centered cubic matrix is Fe83Ga17. The monoclinic second phase was composed of meltable precipitates with approximate composition Fe57Ga33Tb10. The nano-hardness of matrix and precipitates were 2.55 ± 0.17 GPa and 6.81 ± 1.03 GPa, respectively. Both the ultimate tensile strength (UTS) and fracture strain (ε) of the alloys were improved by the precipitates for x ≤ 0.2 alloys, but the strain decreases significantly at higher values of x. As potential structural-functional materials, the best mechanical properties obtained were a UTS of 595 ± 10 MPa and an ε of 3.5 ± 0.1%, four-fold and seven-fold improvements compared with the un-doped alloy. The mechanism for these anomalous changes of mechanical properties was attributed to the dispersed precipitates and semi-coherent interfaces, which serve as strong obstacles to dislocation motion and reduce the stress concentration at the grain boundaries. A sizeable improvement of magnetostriction induced by the precipitates in the range 0 ≤ x ≤ 0.2 was discovered and an optimal value of 150 ± 5 ppm is found, over three times higher than that of the un-doped alloy.

  16. Direct Studies of Fracture Mechanisms in Metals at Highest Magnification.

    DTIC Science & Technology

    1982-05-01

    or even high purity and therefore will deform before and after void initiation according to recog- nized mechanisms of workhardening in pure metals...discussion it is clear that in precipitation hardened alloys material between voids must suffer extensive plastic deformation during neck formation and the...motion of dislocation groups and their specific behavior during plastic deformation to rupture at record- ing speeds of 30 frames per second. In order

  17. Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying

    SciTech Connect

    Shen, B.L.; Itoi, T.; Yamasaki, T.; Ogino, Y.

    2000-04-01

    In recent years, nanocrystalline materials have attracted much attention in materials research because they behave differently from conventional materials. For example, the nanocrystalline materials exhibit enhanced mechanical properties, such as high strength and hardness. The present study was performed to investigate the indentation creep mechanism of nanocrystalline Cu-TiC alloys which were prepared by HIP (Hot Isostatic Press) processing of MA (Mechanical Alloying) powders and hot rolling afterwards. As these materials have high densities and high structural stability, the authors could investigate creep behavior at wide temperature ranges below 0.5Tm (Tm is the melting temperature of copper).

  18. Mechanical Stability and Reversible Fracture of Vault Particles

    PubMed Central

    Llauró, Aida; Guerra, Pablo; Irigoyen, Nerea; Rodríguez, José F.; Verdaguer, Núria; de Pablo, Pedro J.

    2014-01-01

    Vaults are the largest ribonucleoprotein particles found in eukaryotic cells, with an unclear cellular function and promising applications as vehicles for drug delivery. In this article, we examine the local stiffness of individual vaults and probe their structural stability with atomic force microscopy under physiological conditions. Our data show that the barrel, the central part of the vault, governs both the stiffness and mechanical strength of these particles. In addition, we induce single-protein fractures in the barrel shell and monitor their temporal evolution. Our high-resolution atomic force microscopy topographies show that these fractures occur along the contacts between two major vault proteins and disappear over time. This unprecedented systematic self-healing mechanism, which enables these particles to reversibly adapt to certain geometric constraints, might help vaults safely pass through the nuclear pore complex and potentiate their role as self-reparable nanocontainers. PMID:24507609

  19. Effect of heat treatments on mechanical properties and damage evolution of thixoformed aluminium alloys

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it; Cerri, E.; Leo, P.

    2005-07-15

    In the present work, the effects of heat treatments on mechanical properties, microstructure evolution and damage resulting from plastic deformation of thixoformed A319 and A356 aluminium alloys, are studied. The thixoforming process can lead to the production of components that are characterized by very good mechanical properties and low porosity with a globular microstructure which is fine and uniform. The mechanical properties can be further improved through heat treatments such as T5 and T6. The prime factor influencing the damage in the alloys belonging to the Al-Si system is represented by decohesion of silicon particles resulting from the stress concentration at the particle-matrix interfaces. A statistical analysis of fractured particles after tensile tests in the as-cast and as-treated condition has been carried out in the present work; optical and scanning electron microscopy techniques have been used to characterize the microstructure and fracture surfaces of the specimens and the results are fully presented.

  20. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  1. Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)

    SciTech Connect

    J. H. Jackson; S. P. Teysseyre

    2012-02-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials of interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.

  2. Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)

    SciTech Connect

    J. H. Jackson; S. P. Teysseyre

    2012-10-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials of interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.

  3. Stress Fracture Etiology as Dependent on Mechanically Induced Fluid Flow

    DTIC Science & Technology

    2004-08-01

    Martin, M . B. Schaffler, and C. H . Turner. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J.Bone Miner.Res. 12:6...ulnae (Adams et al., 1995). Endosteal and periosteal were labeled weekly using tetracycline solution (15 ing- new bone formation, as well as...Transport mechanism operating Huiskes, R.. Weinans, H ., Grootenboer, H.J., Dalstra, M ., Fudala. B., between blood supply and osteocytes in long bones

  4. Micro and Macro Mechanics of Fracture in Ceramics.

    DTIC Science & Technology

    1982-10-30

    originates from resistant second phase particles in the path of a propagating crack. The crack tends to bow between the particles, causing the stress...increases until the fracture toughness of the particle is reached, whereupon crack advance ensues. The penetrability (or resistance ) of the second phase... resistance interfaces. Crack deflection has been associated with improved mechanical properties; I-3 however, the specific quantitative relation between the

  5. Fracture and Stress Evolution on Europa: New Insights Into Fracture Interpretation and Ice Thickness Estimates Using Fracture Mechanics Analyses

    NASA Technical Reports Server (NTRS)

    Kattenhorn, Simon

    2004-01-01

    The work completed during the funding period has provided many important insights into fracturing behavior in Europa's ice shell. It has been determined that fracturing through time is likely to have been controlled by the effects of nonsynchronous rotation stresses and that as much as 720 deg of said rotation may have occurred during the visible geologic history. It has been determined that there are at least two distinct styles of strike-slip faulting and that their mutual evolutionary styles are likely to have been different, with one involving a significant dilational component during shear motion. It has been determined that secondary fracturing in perturbed stress fields adjacent to older structures such as faults is a prevalent process on Europa. It has been determined that cycloidal ridges are likely to experience shear stresses along the existing segment portions as they propagate, which affects propagation direction and ultimately induces tailcracking at the segment tip than then initiates a new cycle of cycloid segment growth. Finally, it has been established that mechanical methods (e.g., flexure analysis) can be used to determine the elastic thickness of the ice shell, which, although probably only several km thick, is likely to be spatially variable, being thinner under bands but thicker under ridged plains terrain.

  6. Results of fracture mechanics tests on PNC SUS 304 plate

    SciTech Connect

    Mills, W.J.; James, L.A.; Blackburn, L.D.

    1985-08-01

    PNC provided SUS 304 plate to be irradiated in FFTF at about 400/sup 0/C to a target fluence of 5 x 10/sup 21/ n/cm/sup 2/ (E > 0.1 MeV). The actual irradiation included two basically different exposure levels to assure that information would be available for the exposure of interest. After irradiation, tensile properties, fatigue-crack growth rates and J-integral fracture toughness response were determined. These same properties were also measured for the unirradiated material so radiation damage effects could be characterized. This report presents the results of this program. It is expected that these results would be applicable for detailed fracture analysis of reactor components. Recent advances in elastic-plastic fracture mechanics enable reasonably accurate predictions of failure conditions for flawed stainless steel components. Extensive research has focused on the development of J-integral-based engineering approach for assessing the load carrying capacity of low-strength, high-toughness structural materials. Furthermore, Kanninen, et al., have demonstrated that J-integral concepts can accurately predict the fracture response for full-scale cracked structures manufactured from Type 304 stainless steel.

  7. Wide-range displacement expressions for standard fracture mechanics specimens

    NASA Technical Reports Server (NTRS)

    Kapp, J. A.; Gross, B.; Leger, G. S.

    1985-01-01

    Wide-range algebraic expressions for the displacement of cracked fracture mechanics specimens are developed. For each specimen two equations are given: one for the displacement as a function of crack length, the other for crack length as a function of displacement. All the specimens that appear in ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399) are represented in addition to the crack mouth displacement for a pure bending specimen. For the compact tension sample and the disk-shaped compact tension sample, the displacement at the crack mouth and at the load line are both considered. Only the crack mouth displacements for the arc-shaped tension samples are presented. The agreement between the displacements or crack lengths predicted by the various equations and the corresponding numerical data from which they were developed are nominally about 3 percent or better. These expressions should be useful in all types of fracture testing including fracture toughness, K-resistance, and fatigue crack growth.

  8. Observation and prediction of the deformation and fracture of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Creuziger, Adam

    This thesis explores the deformation and fracture behavior of two common shape memory alloys (SMAs), CuAlNi and NiTi. Millimeter, micrometer and nanometer scale features are observed and compared with crystallographic theory of martensite (CTM) predictions and finite element models. Observed fracture behavior, in conjunction with theory and modeling, shed light on the fracture behavior and deformation in shape memory materials. The in plane and out of plane deformations are quantitatively measured and compared with good agreement to predictions from the CTM. For deformation where the stress state was unknown, predicted martensite plates correlated well with observed features. When the stress state could be calculated using finite element analysis (FEA), an available work criterion was used to predict which type of martensite plate would form; with good agreement in arbitrarily oriented, notched CuAlNi samples. The out of plane deformation caused during transformation was quantitatively investigated and agrees well with the average strain of twinned martensite. Using a FEA model of a tapered martensite, the effect of boundary conditions on the out of plane deformation angle was explored. Some limitations on the available work criterion were found. The direction of the out of plane deformation near the notch is consistently such that the area directly ahead of the notch sinks downward. This effect, and the wide martensite plates observed after fracture occurs, indicate the role boundary conditions have on the transformation observed. These effects are not taken into account in the current available work criterion. In single crystal NiTi, the available work criterion was not predictive of the deformations observed in uniaxial tension or in notched samples. However, available work predictions were useful in predicting the fracture properties of notched single crystal NiTi samples, a capability not previously demonstrated. Investigation into the grain boundary fracture

  9. Approaches for mechanical joining of 7xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Jäckel, M.; Grimm, T.; Landgrebe, D.

    2016-10-01

    This paper shows a numerical and experimental analysis of the different problems occurring during or after the conventional self-pierce riveting with semi-tubular and solid rivets of the high strength aluminum alloy EN AW-7021 T4. Furthermore this paper describes different pre-process methods by which the fracture in the high strength aluminum, caused by the self-pierce riveting processes, can be prevented and proper joining results are achieved. On this basis, the different approaches are compared regarding joint strength.

  10. State-of-the-art report on piping fracture mechanics

    SciTech Connect

    Wilkowski, G.M.; Olson, R.J.; Scott, P.M.

    1998-01-01

    This report is an in-depth summary of the state-of-the-art in nuclear piping fracture mechanics. It represents the culmination of 20 years of work done primarily in the US, but also attempts to include important aspects from other international efforts. Although the focus of this work was for the nuclear industry, the technology is also applicable in many cases to fossil plants, petrochemical/refinery plants, and the oil and gas industry. In compiling this detailed summary report, all of the equations and details of the analysis procedure or experimental results are not necessarily included. Rather, the report describes the important aspects and limitations, tells the reader where he can go for further information, and more importantly, describes the accuracy of the models. Nevertheless, the report still contains over 150 equations and over 400 references. The main sections of this report describe: (1) the evolution of piping fracture mechanics history relative to the developments of the nuclear industry, (2) technical developments in stress analyses, material property aspects, and fracture mechanics analyses, (3) unresolved issues and technically evolving areas, and (4) a summary of conclusions of major developments to date.

  11. Elasto-plastic fracture mechanics of crack growth in soil

    NASA Astrophysics Data System (ADS)

    Hallett, P. D.; Newson, T. A.

    2003-04-01

    A predominant variable in soil structure formation and degradation is crack propagation. Empirical models exist to predict fracture but these do not describe the underlying physical processes. Theoretical fracture mechanics models have been applied to soil, but most are not applicable when soil is in a wet, plastic state. Since the onset of crack formation in soil tends to occur in this condition, physically sound elasto-plastic fracture mechanics approaches are long overdue. We address this weakness by applying a new elasto-plastic fracture mechanics approach to describe crack formation in plastic soil. Samples are fractured using a deep-notch (modified 4-point) bend test, with data on load transmission, sample bending, crack growth, and crack mouth opening collected to assess the crack opening angle (COA), the crack tip opening angle (CTOA) and the plastic energy dissipation rate (Dpl). These are all material properties that can be used directly to predict and describe crack propagation. CTOA will be used to discuss the results here, although a full description of the other parameters will be provided in the conference presentation. It provides a powerful parameter for describing soil cracking since CTOA is induced by soil shrinkage (an easily measured parameter) and can be used to describe elasto-plastic fracture in finite element modelling packages. The test variables we have studied to date are clay platelet orientation, soil texture, clay mineralogy, and pore water salinity. All samples were formed by consolidating a soil slurry with a 120 kPa vertical stress. Tests on pure kaolinite showed that platelet orientation did not affect CTOA which was 0.23 ± 0.02 for both conditions. Soil texture did have a marked influence, however, with silica sand:kaolinite mixes of 20:80 and 40:60 reducing CTOA to 0.14 ± 0.02 and 0.12 ± 0.01 respectively. These lower values of CTOA indicate that less strain is required to induce fracture when the amount of clay is lowered

  12. Dynamic fracture behavior of Ti-6Al-4V alloy with various stabilities of βphase

    NASA Astrophysics Data System (ADS)

    Akmoulin, I. A.; Niinomi, M.; Kobayashi, T.

    1994-08-01

    The effect of stability of the body-centered cubic (bcc) β phase on the dynamic fracture behavior of Ti-6Al-4V alloy at room temperature and 77 K has been studied. The presence of a highly unstable β phase in the quenched alloy leads to a decrease in both the dynamic fracture toughness and the crack propagation energy, and this decrease bccomes more pronounced when test temperature is reduced to 77 K. Somewhat improved fracture characteristics were obtained by applying anneal procedure to receive a fully stable β phase. The highest fracture toughness as well as the greatest crack propagation resistance were observed in the air-cooled grade, where the lattice parameter of the bcc phase was intermediate between those pertaining to quenched and annealed Ti-6Al-4V alloys. The effect is attributed to the vanadium content in the β phase, which is sufficiently high to suppress deformation-induced transformation. On the other hand, the V content should be low enough to retard ductile-brittle transition, typical for the bcc metals at cryogenic temperatures. As a result, marked toughening can be achieved, so that the lowest application temperature of high-strength titanium alloys containing the bcc phase can be decreased significantly.

  13. Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems

    NASA Astrophysics Data System (ADS)

    Tang, Zhi; Gao, Michael C.; Diao, Haoyan; Yang, Tengfei; Liu, Junpeng; Zuo, Tingting; Zhang, Yong; Lu, Zhaoping; Cheng, Yongqiang; Zhang, Yanwen; Dahmen, Karin A.; Liaw, Peter K.; Egami, Takeshi

    2013-12-01

    The crystal lattice type is one of the dominant factors for controlling the mechanical behavior of high-entropy alloys (HEAs). For example, the yield strength at room temperature varies from 300 MPa for the face-centered-cubic (fcc) structured alloys, such as the CoCrCuFeNiTi x system, to about 3,000 MPa for the body-centered-cubic (bcc) structured alloys, such as the AlCoCrFeNiTi x system. The values of Vickers hardness range from 100 to 900, depending on lattice types and microstructures. As in conventional alloys with one or two principal elements, the addition of minor alloying elements to HEAs can further alter their mechanical properties, such as strength, plasticity, hardness, etc. Excessive alloying may even result in the change of lattice types of HEAs. In this report, we first review alloying effects on lattice types and properties of HEAs in five Al-containing HEA systems: Al x CoCrCuFeNi, Al x CoCrFeNi, Al x CrFe1.5MnNi0.5, Al x CoCrFeNiTi, and Al x CrCuFeNi2. It is found that Al acts as a strong bcc stabilizer, and its addition enhances the strength of the alloy at the cost of reduced ductility. The origins of such effects are then qualitatively discussed from the viewpoints of lattice-strain energies and electronic bonds. Quantification of the interaction between Al and 3 d transition metals in fcc, bcc, and intermetallic compounds is illustrated in the thermodynamic modeling using the CALculation of PHAse Diagram method.

  14. Mechanical Properties for Fracture Analysis of Mild Steel Storage Tasks

    SciTech Connect

    Sindelar, R.L.

    1999-03-03

    Mechanical properties of 1950's vintage, A285 Grade B carbon steels have been compiled for elastic-plastic fracture mechanics analysis of storage tanks (Lam and Sindelar, 1999). The properties are from standard Charpy V-notch (CVN), 0.4T planform Compact Tension (C(T)), and Tensile (T) specimens machined from archival steel from large water piping. The piping and storage tanks were constructed in the 1950s from semi-killed, hot-rolled carbon steel plate specified as A285 Grade B. Evaluation of potential aging mechanisms at both service conditions shows no loss in fracture resistance of the steel in either case.Site and literature data show that the A285, Grade B steel, at and above approximately 70 degrees Fahrenheit, is in the upper transition to upper shelf region for absorbed energy and is not subject to cleavage cracking or a brittle fracture mode. Furthermore, the tank sidewalls are 1/2 or 5/8-inch thick, and therefore, the J-resistance (JR) curve that characterizes material resistance to stable crack extension under elastic-plastic deformation best defines the material fracture toughness. The JR curves for several heats of A285, Grade B steel tested at 40 degrees Fahrenheit, a temperature near the average ductile-to-brittle (DBTT) transition temperature (CVN {at} 15 ft-lb), are presented. This data is applicable to evaluate flaw stability of the storage tanks that are operated above 70 degrees Fahrenheit since, even at 40 degrees Fahrenheit, crack advance is observed to proceed by ductile tearing.

  15. Mechanical Properties of Iron Alumininides Intermetallic Alloy with Molybdenum Addition

    SciTech Connect

    Zuhailawati, H.; Fauzi, M. N. A.

    2010-03-11

    In this work, FeAl-based alloys with and without molybdenum addition were fabricated by sintering of mechanically alloyed powders in order to investigate the effect of molybdenum on iron aluminide mechanical properties. Bulk samples were prepared by mechanical alloying for 4 hours, pressing at 360 MPa and sintering at 1000 deg. C for 2 hours. The specimens were tested in compression at room temperature using Instron machine. The phase identification and microstructure of the consolidated material was examined by x-ray diffraction and scanning electron microscope correspondingly. Results show that 2.5 wt%Mo addition significantly increased the ultimate stress and ultimate strain in compressive mode due to solid solution hardening. However, the addition of Mo more than 2.5 wt% was accompanied by a reduction in both properties caused by the presence of Mo-rich precipitate particles.

  16. Re Effects on Phase Stability and Mechanical Properties of MoSS+Mo3Si+Mo5SiB2 alloys

    SciTech Connect

    Yang, Ying; Bei, Hongbin; George, Easo P; Tiley, Jaimie

    2013-01-01

    Because of their high melting points and good oxidation resistance Mo-Si-B alloys are of interest as potential ultrahigh-temperature structural materials. But their major drawbacks are poor ductility and fracture toughness at room temperature. Since alloying with Re has been suggested as a possible solution, we investigate here the effects of Re additions on the microstructure and mechanical properties of a ternary alloy with the composition Mo-12.5Si-8.5B (at.%). This alloy has a three-phase microstructure consisting of Mo solid-solution (MoSS), Mo3Si, and Mo5SiB2 and our results show that up to 8.4 at.% Re can be added to it without changing its microstructure or forming any brittle phase at 1600 C. Three-point bend tests using chevron-notched specimens showed that Re did not improve fracture toughness of the three-phase alloy. Nanoindentation performed on the MoSS phase in the three-phase alloy showed that Re increases Young s modulus, but does not lower hardness as in some Mo solid solution alloys. Based on our thermodynamic calculations and microstructural analyses, the lack of a Re softening effect is attributed to the increased Si levels in the Re-containing MoSS phase since Si is known to increase its hardness. This lack of softening is possibly why there is no Re-induced improvement in fracture toughness.

  17. The influence of heat treatment on the high-stress abrasion resistance and fracture toughness of alloy white cast irons

    NASA Astrophysics Data System (ADS)

    Sare, I. R.; Arnold, B. K.

    1995-07-01

    The influence of a range of austenitizing and subcritical (tempering) heat treatments on the high-stress abrasion resistance and fracture toughness of four commercially significant grades of alloy white cast iron was investigated. Complementing an earlier study[1] on the influence of a more limited range of heat treatments on the gouging abrasion performance of the same alloys, the results showed that the effect of austenitizing temperature on high-stress abrasion pin test weight loss differed for each alloy. With increasing austenitizing temperature, these results ranged from a substantial improvement in wear performance and retention of hardness through to vir-tually no change in wear performance and substantial falls in hardness. Fracture toughness, however, increased markedly in all alloys with increasing austenitizing temperature. Tempering treatments in the range 400 °C to 600 °C, following hardening at the austenitizing temperature used commonly in industrial practice for each alloy, produced significant changes in both hard-ness and wear performance, but negligible changes in fracture toughness. Most importantly, the data showed that selection of the correct temperature for subcritical heat treatment to reduce the retained austenite content for applications involving repeated impact loading is critical if abrasion resistance is not to suffer.

  18. Mechanical and fracture behavior of calcium phosphate cements

    NASA Astrophysics Data System (ADS)

    Jew, Victoria Chou

    Apatite-based calcium phosphate cements are currently employed to a limited extent in the biomedical and dental fields. They present significant potential for a much broader range of applications, particularly as a bone mineral substitute for fracture fixation. Specifically, hydroxyapatite (HA) is known for its biocompatibility and non-immunogenicity, attributed to its similarity to the mineral phase of natural bone. The advantages of a cement-based HA include injectability, greater resorbability and osteoconductivity compared to sintered HA, and an isothermal cement-forming reaction that avoids necrosis during cement setting. Although apatite cements demonstrate good compressive strength, tensile properties are very weak compared to natural bone. Applications involving normal weight-bearing require better structural integrity than apatite cements currently provide. A more thorough understanding of fracture behavior can elucidate failure mechanisms and is essential for the design of targeted strengthening methods. This study investigated a hydroxyapatite cement using a fracture mechanics approach, focusing on subcritical crack growth properties. Subcritical crack growth can lead to much lower load-bearing ability than critical strength values predict. Experiments show that HA cement is susceptible to crack growth under both cyclic fatigue-crack growth and stress corrosion cracking conditions, but only environmental, not mechanical, mechanisms contribute to crack extension. This appears to be the first evidence ever presented of stress corrosion crack growth behavior in calcium phosphate cements. Stress corrosion cracking was examined for a range of environmental conditions. Variations in pH have surprisingly little effect. Behavior in water at elevated temperature (50°C) is altered compared to water at ambient temperature (22°C), but only for crack-growth velocities below 10-7 m/s. However, fracture resistance of dried HA cement in air increases significantly

  19. Compensating Mechanisms That Minimize Flux Variability Through Unsaturated Fractures

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Su, G. W.

    2001-12-01

    Fast flow in fractures and macropores is a major cause of discrepancy between measurements and unsaturated flow models. Most models treat preferential flow as diffuse Darcy-Richards flow, so it is important to ascertain whether the mechanisms of unsaturated fracture flow accord with Darcy's law. The key issue is whether water flux is directly proportional to driving force with a proportionality factor, the hydraulic conductivity (K), that is independent of flux and force. We consider flow in a partially water-filled fracture with continuously supplied (e.g. ponded) water, responding to a change in driving force such as a change in tilt angle with respect to gravity. Four general flow modes, alone or in combination, can account for the dominant portion of the flow for these conditions, as shown by the experimental studies of Su and others (1999) and Tokunaga and Wan (1997). (1) Film flow occurs within a sheet or film that contacts a wall of the fracture. (2) Connected rivulet flow occurs when a rivulet that bridges across the fracture aperture by capillary force is consistently connected across the domain of interest from the inflow point to the outflow point. (3) Snapping rivulet flow occurs if the rivulet sometimes but not always extends continuously across the domain. (4) Pulsating-blob flow occurs in isolated blobs that bridge across the fracture aperture and move across the domain of interest without ever extending completely between the inflow and outflow points. Where fractures are large enough that the air-water interfaces are free to change shape or position in response to an externally applied change, each flow mode has its own characteristic relation between force and flow rate. This contrasts with the air-water interfaces commonly visualized in fine-textured media, in which the interface is constrained to a particular shape and position by capillarity and adsorption, so that the consistent geometry of the effective flow conduits leads to Darcian flow. In

  20. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  1. [Bone fracture and the healing mechanisms. Fragility fracture and bone quality].

    PubMed

    Mawatari, Taro; Iwamoto, Yukihide

    2009-05-01

    Fracture occurs in bone having less than normal elastic resistance without any violence. Numerous terms have been used to classify various types of fractures from low trauma events; "fragility fracture", "stress fracture", "insufficiency fracture", "fatigue fracture", "pathologic fracture", etc. The definitions of these terms and clinical characteristics of these fractures are discussed. Also state-of-the-art bone quality assessments; Finite element analysis of clinical CT scans, assessments of the Microdamage, and the Cross-links of Collagen are introduced in this review.

  2. Measurement of residual stresses using fracture mechanics weight functions

    SciTech Connect

    Fan, Y.

    2000-10-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed.

  3. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  4. Some basic fracture mechanics concepts in functionally graded materials

    NASA Astrophysics Data System (ADS)

    Jin, Z.-H.; Batra, R. C.

    1996-08-01

    In this paper, the crack-tip fields in a general nonhomogeneous material are summarized. The fracture toughness and R-curve of functionally graded materials (FGMs) are studied based on the crack-bridging concept and a rule of mixtures. It is shown that the fracture toughness is significantly increased when a crack grows from the ceramic-rich region into the metal-rich region in an alumina-nickel FGM. By applying the concept of the toughening mechanism to the study of the strength behavior of FGMs, it is found that the residual strength of the alumina-nickel FGM with an edge crack on the ceramic side is quite notch insensitive.

  5. Acoustic Emission Determination of Deformation Mechanisms Leading to Failure of Naval Alloys. Volume 1

    DTIC Science & Technology

    1983-05-01

    behavior during the deforma- S. tion and fracture of a series of rather microstruc - turally complex Naval alloy steels. ’. a a a...investigation the acoustic emission behavior of thre Naval alloy steels (HY 80, HY 100 and HY 130) was characterized during tensile elongation and bend type...and fracture modes despite a slight dif- ference in microstructures. They also exhibited identical "-’=, acoustic emission behavior within statistical

  6. Mechanical design optimization of bioabsorbable fixation devices for bone fractures.

    PubMed

    Lovald, Scott T; Khraishi, Tariq; Wagner, Jon; Baack, Bret

    2009-03-01

    Bioabsorbable bone plates can eliminate the necessity for a permanent implant when used to fixate fractures of the human mandible. They are currently not in widespread use because of the low strength of the materials and the requisite large volume of the resulting bone plate. The aim of the current study was to discover a minimally invasive bioabsorbable bone plate design that can provide the same mechanical stability as a standard titanium bone plate. A finite element model of a mandible with a fracture in the body region is subjected to bite loads that are common to patients postsurgery. The model is used first to determine benchmark stress and strain values for a titanium plate. These values are then set as the limits within which the bioabsorbable bone plate must comply. The model is then modified to consider a bone plate made of the polymer poly-L/DL-lactide 70/30. An optimization routine is run to determine the smallest volume of bioabsorbable bone plate that can perform and a titanium bone plate when fixating fractures of this considered type. Two design parameters are varied for the bone plate design during the optimization analysis. The analysis determined that a strut style poly-L-lactide-co-DL-lactide plate of 690 mm2 can provide as much mechanical stability as a similar titanium design structure of 172 mm2. The model has determined a bioabsorbable bone plate design that is as strong as a titanium plate when fixating fractures of the load-bearing mandible. This is an intriguing outcome, considering that the polymer material has only 6% of the stiffness of titanium.

  7. Structural and magnetic properties of nanocrystalline Fe-Co-Ni alloy processed by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Raanaei, Hossein; Eskandari, Hossein; Mohammad-Hosseini, Vahid

    2016-01-01

    In this present work, a nanostructured iron-cobalt-nickel alloy with Fe50Co30Ni20 composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe3O4 crystalline phase.

  8. Mechanism for Corrosion Prevention by a Mechanical Plating of Uniform Zinc-Iron Alloy

    NASA Astrophysics Data System (ADS)

    Kasai, Naoya; Kaku, Yoshihiko; Okazaki, Shinji; Hirai, Kuninori

    2016-11-01

    In situ electrochemical monitoring with a three-electrode cell was applied to investigate the anti-corrosion properties of a mechanical zinc-iron alloy plating. Several electron probe microanalyses were also conducted to identify the chemical elements in the plating. The results indicated the formation of a Zn-Fe intermetallic compound, which allowed a mechanism for corrosion prevention to be proposed. In the proposed mechanism, Zn(OH)2 plays a significant role in the corrosion prevention of steel alloys.

  9. On the fracture of high temperature alloys by creep cavitation under uniaxial or biaxial stress states

    NASA Astrophysics Data System (ADS)

    Sanders, John W.; Dadfarnia, Mohsen; Stubbins, James F.; Sofronis, Petros

    2017-01-01

    It is well known that creep rupture in high temperature alloys is caused by grain boundary cavitation: the nucleation, growth, and coalescence of voids along grain boundaries. However, it has been observed recently that the multiaxial rupture behavior of a promising class of high temperature alloys (Tung et al., 2014) cannot be captured by a well-known empirical creep rupture model due to Hayhurst. In an effort to gain a better understanding of rupture in these materials, we depart from empirical models and simulate the underlying rupture mechanisms directly, employing two related models of void growth from the literature: one due to Sham and Needleman (1983), and an extension of Sham and Needleman's model due to Van der Giessen et al. (1995). Our results suggest that the experimental observations might be explained in terms of the interplay between bulk creep and gain boundary diffusion processes. Furthermore, we find that Sham and Needleman's original void growth model, combined with our rupture model, is well suited to capture the experimental data considered here. Such a mechanism-based understanding of the influence of multiaxial stress states on the creep rupture behavior of high temperature alloys promises to be of value and to provide a basis for the qualification of these alloys for extended service in a variety of elevated temperature applications.

  10. Mechanics and fracture of hybrid material interface bond

    NASA Astrophysics Data System (ADS)

    Wang, Jialai

    Considering current and future applications of hybrid materials and structures in civil engineering, the strength and durability of interface bond between the conventional materials and composites are critical to development of such products. Conventional methods mostly used for analysis of isotropic materials may not be well suitable or accurate enough for a system made of anisotropic materials with relatively low shear stiffness. A need exists for developing more accurate and explicit analytical solutions for hybrid material interface analysis and related novel experimental characterization techniques. In this study, a combined analytical and experimental approach to characterize hybrid material interface bond is developed. Using a shear deformable plate theory and an elastic interface model, a mechanics approach for interface analysis of hybrid material bond under general loading is first proposed. The resulting closed-form solution of interface stress distribution is used to compute strain energy release rate (SERB) and stress intensity factor (SIF) of the interface with or without adhesive bond. This approach is then extended to delamination of composite structures under generic loading conditions. Second, novel experimental approaches for characterization of hybrid material bonded interfaces are presented. To account for the crack tip deformations, a tapered beam on elastic foundation (TBEF) is developed. Based on the TBEF model, analysis and design of two novel fracture specimens, Tapered Double Cantilever Beam (TDCB) and Tapered End Notched Flexure (TENF), are proposed, and they are effectively used in fracture toughness tests of bonded interface under Mode-I and Mode-II loadings, respectively. A constant compliance rate change over certain crack length range is achieved for the TDCB and TENF specimens, and it alleviates the necessity of experimental compliance calibration tests. The fracture toughness data obtained from the experiments are useful to

  11. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y 2O 3

    NASA Astrophysics Data System (ADS)

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.; Odette, G. R.; Yamamoto, T.; Gragg, D.

    2011-10-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 20 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  12. Mechanical alloying Ti[sub 50]Al[sub 50] in nitrogen atmosphere

    SciTech Connect

    Wang, K.Y.; Chen, G.L.; Wang, J.G. )

    1994-07-01

    Titanium aluminides ([gamma]-TiAl or [alpha][sub 2]-Ti[sub 3]Al) are very useful structural materials for application in the aerospace industry owing to their low density, high specific strength and modulus, and good oxidation and corrosion resistance, at least up to 800 C. However, their use has been limited because of a poor ductility and fracture toughness at room temperature. To improve these properties, TiAl compound was recently made as a composite material containing a secondary phase such as boride, carbide, oxide or nitride or refinement of crystalline by inert gas condensation or mechanical alloying. Itsukaichi et al. reported the mechanical alloying of Al-Ti systems, where the amorphous phase was obtained for the Ti[sub 50]Al[sub 50] system after milling of 1,000h in Ar atmosphere. Suryanarayana et al. also reported that the amorphous phase could be obtained after milling for 25h of a Ti-50 at. % Al system and adding a surfactant such as hexane during mechanical alloying. Ogino et al. reported MA of Ti[sub 0.50]Al[sub 0.50] in N[sub 2] gas. The results obtained show that the diffraction peaks broadened at an intermediate stage of milling and thereafter the powder transformed into a cubic nitride (Ti[sub 0.50]Al[sub 0.50])N. But they have not confirmed the formation of an amorphous phase. In this paper, the authors prepared an amorphous Ti-Al phase through mechanical alloying in N[sub 2] gas; thermal behaviors of the amorphous phase were also investigated.

  13. High-temperature fracture and fatigue-crack growth behavior of an XD gamma-based titanium aluminide intermetallic alloy

    SciTech Connect

    McKelvey, A.L.; Venkateswara Rao, K.T.; Ritchie, R.O.

    2000-05-01

    A study has been made of the effect of temperature (between 25 C and 800 C) on fracture toughness and fatigue-crack propagation behavior in an XD-processed, {gamma}-based titanium aluminide intermetallic alloy, reinforced with a fine dispersion of {approximately}1 vol pct TiB{sub 2} particles. It was found that, whereas crack-initiation toughness increased with increasing temperature, the crack-growth toughness on the resistance curve was highest just below the ductile-to-brittle transition temperature (DBTT) at 600 C; indeed, above the DBTT, at 800 C, no rising resistance curve was seen. Such behavior is attributed to the ease of microcrack nucleation above and below the DBTT, which, in turn, governs the extent of uncracked ligament bridging in the crack wake as the primary toughening mechanism. The corresponding fatigue-crack growth behavior was also found to vary inconsistently with temperature. The fastest crack growth rates (and lowest fatigue thresholds) were seen at 600 C, while the slowest crack growth rates (and highest thresholds) were seen at 800 C; the behavior at 25 C was intermediate. Previous explanations for this anomalous temperature effect in {gamma}-TiAl alloys have focused on the existence of some unspecified environmental embrittlement at intermediate temperatures or on the development of excessive crack closure at 800 C; no evidence supporting these explanations could be found. The effect is now explained in terms of the mutual competition of two processes, namely, the intrinsic microstructural damage/crack-advance mechanism, which promotes crack growth, and the propensity for crack-tip blunting, which impedes crack growth, both of which are markedly enhanced by increasing temperature.

  14. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  15. High-cycle fatigue of 10M Ni-Mn-Ga magnetic shape memory alloy in reversed mechanical loading

    NASA Astrophysics Data System (ADS)

    Aaltio, I.; Soroka, A.; Ge, Y.; Söderberg, O.; Hannula, S.-P.

    2010-07-01

    Application of Ni-Mn-Ga magnetic shape memory alloys in magnetic-field-induced actuation relies on their performance in long-term high-cycle fatigue. In this paper the performance and changes in the microstructure of a Ni-Mn-Ga 10M martensite single crystal material are reported in a long-term mechanically induced shape change cycling. The longest test was run for 2 × 109 cycles at a frequency of 250 Hz and a strain amplitude of ± 1%. After the test a clear increase of the dynamic stiffness of the material was detected. Three specimens out of ten were cycled until fracture occurred and their fracture mechanism was studied. It was observed that the macroscopic crack growth took place roughly at a 45° angle with respect to the loading direction that was along the lang100rang crystallographic direction of the sample. The macroscopic fracture plane seemed to correspond roughly to the {111} crystal planes. On a microscopic scale the fracture propagated in a step-like manner at least partly along crystallographic planes. The steps at the fracture plane correspond to the {101} twin planes, with the height of steps along the lang101rang direction. The final fracture of the samples occurred in a brittle manner after the critical stress was exceeded.

  16. Mechanical Characterization and Corrosion Testing of X608 Al Alloy

    SciTech Connect

    Prabhakaran, Ramprashad; Choi, Jung-Pyung; Stephens, Elizabeth V.; Catalini, David; Lavender, Curt A.; Rohatgi, Aashish

    2016-02-07

    This paper describes the mechanical characterization and corrosion testing of X608 Al alloy that is being considered for A-pillar covers for heavy-duty truck applications. Recently, PNNL developed a thermo-mechanical process to stamp A-pillar covers at room temperature using this alloy, and the full-size prototype was successfully stamped by a tier-1 supplier. This study was conducted to obtain additional important information related to the newly developed forming process, and to further improve its mechanical properties. The solutionization temperature, pre-strain and paint-bake heat-treatment were found to influence the alloy’s fabricability and mechanical properties. Natural aging effect on the formability was investigated by limiting dome height (LDH) tests. Preliminary corrosion experiments showed that the employed thermo-mechanical treatments did not significantly affect the corrosion behavior of Al X608.

  17. Mechanical Behavior and Microstructural Analysis of Extruded AZ31B Magnesium Alloy Processed by Backward Extrusion

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.; Grünheid, Thomas

    2016-07-01

    This study investigates the mechanical behavior of an extruded AZ31B magnesium alloy profile at various strain rates from 0.001 to 375/s. The electron backscatter diffraction analysis revealed that the profile has \\{ { 0 0 0 1} \\}< 1 0overline{1} 0 rangle and \\{ {1 0overline{1} 0 }\\}< { 1 1overline{2} 0}rangle textures. Due to the textures, the profile exhibits pronounced anisotropy in mechanical properties. In the extrusion direction (ED), the profile shows the highest yield strength (YS) but the lowest total elongation at fracture (TE) due to a hard activation of non-basal slip and \\{ { 1 0overline{1} 1} \\}< { 1 0overline{1} overline{2} } rangle twinning; in the diagonal direction (DD), it shows the lowest ultimate tensile strength (UTS) but the highest TE due to an easy activation of basal slip; in the transverse direction (TD), it shows the lowest YS due to an easy activation of \\{ {10overline{1} 2} \\}< {10overline{1} overline{1} } rangle twinning. Moreover, the number of twins increases with the increasing strain rate. This indicates that deformation twinning becomes prevalent to accommodate high-rate deformation. Due to the different deformation mechanisms, the profile exhibits an orientation-dependent effect of strain rate on the mechanical properties. A positive effect of strain rate on the YS and UTS was found in the ED, while the effect of strain rate on the YS is negligible in the DD and TD. The TE in the ED, DD, and TD decreases in general as the strain rate increases. Fractographic analysis under a scanning electron microscope revealed that the fracture is a mixed mode of ductile and brittle fracture, and the magnesium oxide inclusions could be the origins of the fracture.

  18. A comparison of the stress corrosion cracking susceptibility of commercially pure titanium grade 4 in Ringer's solution and in distilled water: a fracture mechanics approach.

    PubMed

    Roach, Michael D; Williamson, R Scott; Thomas, Joseph A; Griggs, Jason A; Zardiackas, Lyle D

    2014-01-01

    From the results of laboratory investigations reported in the literature, it has been suggested that stress corrosion cracking (SCC) mechanisms may contribute to early failures in titanium alloys that have elevated oxygen concentrations. However, the susceptibility of titanium alloys to SCC in physiological environments remains unclear. In this study, a fracture mechanics approach was used to examine the SCC susceptibility of CP titanium grade 4 in Ringer's solution and distilled de-ionized (DI) water, at 37°C. The study duration was 26 weeks, simulating the non-union declaration of a plated fracture. Four wedge loads were used corresponding to 86-95% of the alloy's ligament yield load. The longest cracks were measured to be 0.18 mm and 0.10 mm in Ringer's solution and DI water, respectively. SEM analysis revealed no evidence of extensive fluting and quasi-cleavage fracture features which, in literature reports, were attributed to SCC. We thus postulate that the Ringer's solution accelerated the wedge-loaded crack growth without producing the critical stresses needed to change the fracture mechanism. Regression analysis of the crack length results led to a significant best-fit relationship between crack growth velocity (independent variable) and test electrolyte, initial wedge load, and time of immersion of specimen in electrolyte (dependent variables).

  19. Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

    NASA Astrophysics Data System (ADS)

    Hruby, Peter

    Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using

  20. Survival Predictions of Ceramic Crowns Using Statistical Fracture Mechanics.

    PubMed

    Nasrin, S; Katsube, N; Seghi, R R; Rokhlin, S I

    2017-01-01

    This work establishes a survival probability methodology for interface-initiated fatigue failures of monolithic ceramic crowns under simulated masticatory loading. A complete 3-dimensional (3D) finite element analysis model of a minimally reduced molar crown was developed using commercially available hardware and software. Estimates of material surface flaw distributions and fatigue parameters for 3 reinforced glass-ceramics (fluormica [FM], leucite [LR], and lithium disilicate [LD]) and a dense sintered yttrium-stabilized zirconia (YZ) were obtained from the literature and incorporated into the model. Utilizing the proposed fracture mechanics-based model, crown survival probability as a function of loading cycles was obtained from simulations performed on the 4 ceramic materials utilizing identical crown geometries and loading conditions. The weaker ceramic materials (FM and LR) resulted in lower survival rates than the more recently developed higher-strength ceramic materials (LD and YZ). The simulated 10-y survival rate of crowns fabricated from YZ was only slightly better than those fabricated from LD. In addition, 2 of the model crown systems (FM and LD) were expanded to determine regional-dependent failure probabilities. This analysis predicted that the LD-based crowns were more likely to fail from fractures initiating from margin areas, whereas the FM-based crowns showed a slightly higher probability of failure from fractures initiating from the occlusal table below the contact areas. These 2 predicted fracture initiation locations have some agreement with reported fractographic analyses of failed crowns. In this model, we considered the maximum tensile stress tangential to the interfacial surface, as opposed to the more universally reported maximum principal stress, because it more directly impacts crack propagation. While the accuracy of these predictions needs to be experimentally verified, the model can provide a fundamental understanding of the

  1. Mechanical Properties of the TiAl IRIS Alloy

    NASA Astrophysics Data System (ADS)

    Voisin, Thomas; Monchoux, Jean-Philippe; Thomas, Marc; Deshayes, Christophe; Couret, Alain

    2016-12-01

    This paper presents a study of the mechanical properties at room and high temperature of the boron and tungsten containing IRIS alloy (Ti-48Al-2W-0.08B at. pct). This alloy was densified by Spark Plasma Sintering (SPS). The resultant microstructure consists of small lamellar colonies surrounded by γ regions containing B2 precipitates. Tensile tests are performed from room temperature to 1273 K (1000 °C). Creep properties are determined at 973 K (700 °C)/300 MPa, 1023 K (750 °C)/120 MPa, and 1023 K (750 °C)/200 MPa. The tensile strength and the creep resistance at high temperature are found to be very high compared to the data reported in the current literature while a plastic elongation of 1.6 pct is preserved at room temperature. A grain size dependence of both ductility and strength is highlighted at room temperature. The deformation mechanisms are studied by post-mortem analyses on deformed samples and by in situ straining experiments, both performed in a transmission electron microscope. In particular, a low mobility of non-screw segments of dislocations at room temperature and the activation of a mixed-climb mechanism during creep have been identified. The mechanical properties of this IRIS alloy processed by SPS are compared to those of other TiAl alloys developed for high-temperature structural applications as well as to those of similar tungsten containing alloys obtained by more conventional processing techniques. Finally, the relationships between mechanical properties and microstructural features together with the elementary deformation mechanisms are discussed.

  2. Secondary hardening and fracture behavior in alloy steels containing Mo, W, and Cr

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Lee, K. B.; Yang, H. R.; Lee, J. B.; Kim, Y. S.

    1997-03-01

    In 4Mo, 6W, 2Mo3W, 2Mo2Cr, and 3W2Cr alloy steels, which cointain alloying elements, such as Mo, W and Cr, contributing to the secondary hardening by forming M2C type carbide, the secondary hardening and fracture behavior were studied. Molybdenum had a strong effect on secondary hardening, while W had a very weak effect on it but delayed the overaging. The MoW steel exhibited both moderately strong hardening and considerable resistance to overaging. On the other hand, the secondary hardening effect was diminished by the Cr addition, because the cementite of M3C type was stabilized at higher temperatures and the formation of M2C carbides was thus inhibited. Although the Cr addition had no merit in the secondary hardening itself, it eliminated the secondary hardening embrittlement (SHE). This was observed as a severe intergranular embrittlement due to the impurity segregation for the Mo and MoW steels and as a decrease in upper shelf energy for W steel, even in the overaged condition.

  3. Probabilistic/Fracture-Mechanics Model For Service Life

    NASA Technical Reports Server (NTRS)

    Watkins, T., Jr.; Annis, C. G., Jr.

    1991-01-01

    Computer program makes probabilistic estimates of lifetime of engine and components thereof. Developed to fill need for more accurate life-assessment technique that avoids errors in estimated lives and provides for statistical assessment of levels of risk created by engineering decisions in designing system. Implements mathematical model combining techniques of statistics, fatigue, fracture mechanics, nondestructive analysis, life-cycle cost analysis, and management of engine parts. Used to investigate effects of such engine-component life-controlling parameters as return-to-service intervals, stresses, capabilities for nondestructive evaluation, and qualities of materials.

  4. The method of lines in three dimensional fracture mechanics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J.; Berke, L.

    1980-01-01

    A review of recent developments in the calculation of design parameters for fracture mechanics by the method of lines (MOL) is presented. Three dimensional elastic and elasto-plastic formulations are examined and results from previous and current research activities are reported. The application of MOL to the appropriate partial differential equations of equilibrium leads to coupled sets of simultaneous ordinary differential equations. Solutions of these equations are obtained by the Peano-Baker and by the recurrance relations methods. The advantages and limitations of both solution methods from the computational standpoint are summarized.

  5. Aluminum alloys for ALS cryogenic tanks: Comparative measurements of cryogenic mechanical properties of Al-Li alloys and alloy 2219, February 1993

    SciTech Connect

    Reed, R.P.; Purtscher, P.T.; Simon, N.J.; McColskey, J.D.; Walsh, R.P.

    1993-02-01

    Tensile and fracture toughness were obtained at cryogenic temperatures to compare the Al-Li alloys 8090, 2090, and WL049, and alloy 2219 in various tempers and specimen orientations. The strongest alloy at very low temperatures is WL049-T851, which is about 10 percent stronger than 2090-T81. Both alloys are considerably stronger than 2219-T87. Alloy 2090-T81 is tougher (about 50 percent) than WL049-T851 at low temperatures; the higher toughness is attributed to the presence of fewer constituent particles and the tendency to delaminate at low temperatures. The delamination divides the moving crack, thus separating it into smaller regions where plane stress (rather than plane strain) conditions are conducive to increased toughness.

  6. Do biodegradable magnesium alloy intramedullary interlocking nails prematurely lose fixation stability in the treatment of tibial fracture? A numerical simulation.

    PubMed

    Wang, Haosen; Hao, Zhixiu; Wen, Shizhu

    2017-01-01

    Intramedullary interlocking nailing is an effective technique used to treat long bone fractures. Recently, biodegradable metals have drawn increased attention as an intramedullary interlocking nailing material. In this study, numerical simulations were implemented to determine whether the degradation rate of magnesium alloy makes it a suitable material for manufacturing biodegradable intramedullary interlocking nails. Mechano-regulatory and bone-remodeling models were used to simulate the fracture healing process, and a surface corrosion model was used to simulate intramedullary rod degradation. The results showed that magnesium alloy intramedullary rods exhibited a satisfactory degradation rate; the fracture healed and callus enhancement was observed before complete dissolution of the intramedullary rod. Delayed magnesium degradation (using surface coating techniques) did not confer a significant advantage over the non-delayed degradation process; immediate degradation also achieved satisfactory healing outcomes. However, delayed degradation had no negative effect on callus enhancement, as it did not cause signs of stress shielding. To avoid risks of individual differences such as delayed union, delayed degradation is recommended. Although the magnesium intramedullary rod did not demonstrate rapid degradation, its ability to provide high fixation stiffness to achieve earlier load bearing was inferior to that of the conventional titanium alloy and stainless steel rods. Therefore, light physiological loads should be ensured during the early stages of healing to achieve bony healing; otherwise, with increased loading and degraded intramedullary rods, the fracture may ultimately fail to heal.

  7. Amorphous phase formation in Fe-6.0wt%Si alloy by mechanical alloying

    SciTech Connect

    Filho, A.F.; Bolfarini, C.; Xu, Y.; Kiminami, C.S.

    1999-12-31

    Mechanical alloying, MA, is a high-energy ball milling technique, in which elemental blends are milled to achieve alloying at atomic level. This communication describes the results of an investigation on the phase transformation of a mixture of Fe and Si powders with 6wt%Si during MA processing. Besides the verification of the effect of milling time on the structure and on the compositional homogeneity, this study was undertaken in order to confirm, by using TEM technique, the possibility of amorphous phase formation for Si content lower than 17.7wt%.

  8. Precise Analysis of Microstructural Effects on Mechanical Properties of Cast ADC12 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Yamamoto, Masaki; Ohfuji, Hiroaki; Ochi, Toshihiro

    2015-04-01

    The effects of microstructural characteristics (secondary dendrite arm spacing, SDAS) and Si- and Fe-based eutectic structures on the mechanical properties and failure behavior of an Al-Si-Cu alloy are investigated. Cast Al alloy samples are produced using a special continuous-casting technique with which it is easy to control both the sizes of microstructures and the direction of crystal orientation. Dendrite cells appear to grow in the casting direction. There are linear correlations between SDAS and tensile properties (ultimate tensile strength σ UTS, 0.2 pct proof strength σ 0.2, and fracture strain ɛ f). These linear correlations, however, break down, especially for σ UTS vs SDAS and ɛ f vs SDAS, as the eutectic structures become more than 3 μm in diameter, when the strength and ductility ( σ UTS and ɛ f) decrease significantly. For eutectic structures larger than 3 μm, failure is dominated by the brittle eutectic phases, for which SDAS is no longer strongly correlated with σ UTS and ɛ f. In contrast, a linear correlation is obtained between σ 0.2 and SDAS, even for eutectic structures larger than 3 μm, and the eutectic structure does not have a strong effect on yield behavior. This is because failure in the eutectic phases occurs just before final fracture. In situ failure observation during tensile testing is performed using microstructural and lattice characteristics. From the experimental results obtained, models of failure during tensile loading are proposed.

  9. Trace element effects on precipitation processes and mechanical properties in an Al-Cu-Li alloy

    SciTech Connect

    Gilmore, D.L.; Starke, E.A. Jr.

    1997-07-01

    A study has been made of how impurities (Na and K) and trace additions of indium, magnesium, and silicon affect the microstructure and related mechanical properties of an Al-Cu-Li alloy. Transmission electron microscopy (TEM) was used to determine the size and distribution of particles in four alloys. Indium and magnesium are both seen to stimulate T{sub 1} precipitation. Indium also modifies {theta}{double_prime} morphology, and magnesium greatly increases the number density of {theta}{double_prime} precipitates. Strain localization was observed in underaged Al-Cu-Li-In tensile samples, consistent with observed changes in precipitate structure. No superposition of the effects of indium and magnesium was seen. High-resolution analytical microscopy was used to inspect precipitates for segregation of trace elements during early stages of aging, but no segregation was found within the detection limits of the system. Variations in heat treatment were made in order to study nucleation kinetics and trace element interactions with vacancies. Indium, with a binding energy less than that of lithium, was not seen to interact with quenched-in vacancies, while magnesium, with a binding energy greater than that of lithium, had a strong interaction. Yield anisotropies and fracture toughnesses were measured. Removal of trace impurities of sodium and potassium correlated with improved fracture properties. Magnesium was observed to increase anisotropy, especially in the T8 temper. A model was used to explain the anisotropy data in terms of texture and precipitate distribution.

  10. Subtask 12F4: Effects of neutron irradiation on the impact properties and fracture behavior of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    Up-to-date results on the effects of neutron irradiation on the impact properties and fracture behavior of V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented in this paper, with an emphasis on the behavior of the U.S. reference alloys V-4Cr-4Ti containing 500-1000 wppm Si. Database on impact energy and cluctile-brittle transition temperature (DBTT) has been established from Charpy impact tests of one-third-size specimens irradiated at 420{degrees}C-600{degrees}C up to {approx}50 dpa in lithium environment in fast fission reactors. To supplement the Charpy impact tests fracture behavior was also characterized by quantitative SEM fractography on miniature tensile and disk specimens that were irradiated to similar conditions and fractured at -196{degrees}C to 200{degrees}C by multiple bending. For similar irradiation conditions irradiation-induced increase in DBTT was influenced most significantly by Cr content, indicating that irradiation-induced clustering of Cr atoms takes place in high-Cr (Cr {ge} 7 wt.%) alloys. When combined contents of Cr and Ti were {le}10 wt.%, effects of neutron irradiation on impact properties and fracture behavior were negligible. For example, from the Charpy-impact and multiple-bend tests there was no indication of irradiation-induced embrittlement for V-5Ti, V-3Ti-1Si and the U.S. reference alloy V-4Cr-4Ti after irradiation to {approx}34 dpa at 420{degrees}C to 600{degrees}C, and only ductile fracture was observed for temperatures as low as -196{degrees}C. 14 refs., 8 figs., 1 tab.

  11. Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Ma, S. G.; Chu, M. Y.; Yang, H. J.; Wang, Z. H.; Zhang, Y.; Qiao, J. W.

    2016-02-01

    High-entropy alloys with composition of AlCoCrFeNiTi x ( x: molar ratio; x = 0, 0.2, 0.4) under quasi-static and dynamic compression exhibit excellent mechanical properties. A positive strain-rate sensitivity of yield strength and the strong work-hardening behavior during plastic flows dominate upon dynamic loading in the present alloy system. The constitutive relationships are extracted to model flow behaviors by employing the Johnson-Cook constitutive model. Upon dynamic loading, the ultimate strength and fracture strain of AlCoCrFeNiTi x alloys are superior to most of bulk metallic glasses and in situ metallic glass matrix composites.

  12. Experimental investigation of quasistatic and dynamic fracture properties of titanium alloys

    NASA Astrophysics Data System (ADS)

    Anderson, David Deloyd

    2002-09-01

    The goal of this work is to investigate the quasistatic and dynamic fracture properties of three titanium alloys: 6Al-4V titanium, 6Al-4V titanium ELI, and Timetal 5111. While standard tests exist for measuring quasistatic fracture toughness, the dynamic investigation requires that several measurement techniques are employed including Coherent Gradient Sensing (CGS), Crack Opening Displacement (COD), and the use of strain gages. The use of these methods with difficult engineering materials in the dynamic loading regime requires methodologies to be advanced beyond that previously required with model materials having properties ideal for experimental measurements techniques. After a description of each measurement technique is given, stress intensity factor measurements made on 12.7 mm thick pre-cracked 6Al-4V titanium specimens are compared. These specimens were dynamically impacted in three point bend in a drop weight tower. Specimens with and without side-grooves were tested as each measurement technique allows. Resulting stress intensity factor-time histories from the different techniques are compared to verify that their results mutually agree. Advancements in employing CGS, a shearing interferometric technique, are described in more detail. First, the analysis of CGS interferograms is extended to allow experimental fringe data to be fit to very general analytical asymptotic crack tip solution to determine mixed mode stress intensity factors. As formulated in this work, the CGS technique can be used to measure stress intensity factors for non-uniformly propagating dynamic mixed mode cracks moving along arbitrary paths in homogeneous linear elastic isotropic materials. Other advancements are also detailed which improve analysis accuracy, objectivity, and efficiency. Finally, with the equivalence of the three measurement technique results established, tests were performed on 8--17 mm thick pre-cracked three point bend specimens of the three materials to measure

  13. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  14. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  15. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high titanium content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of titanium and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of titanium alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is studied.

  16. Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation

    SciTech Connect

    Byun, Thak Sang

    2008-01-01

    The dose dependence of mechanical properties was investigated for tantalum and tantalum alloys after low temperature irradiation. Miniature tensile specimens of three pure tantalum metals, ISIS Ta, Aesar Ta1, Aesar Ta2, and one tantalum alloy, Ta-1W, were irradiated by neutrons in the High Flux Isotope Reactor (HFIR) at ORNL to doses ranging from 0.00004 to 0.14 displacements per atom (dpa) in the temperature range 60 C 100 oC. Also, two tantalum-tungsten alloys, Ta-1W and Ta-10W, were irradiated by protons and spallation neutrons in the LANSCE facility at LANL to doses ranging from 0.7 to 7.5 dpa and from 0.7 to 25.2 dpa, respectively, in the temperature range 50 C 160 oC. Tensile tests were performed at room temperature and at 250oC at nominal strain rates of about 10-3 s-1. All neutron-irradiated materials underwent progressive irradiation hardening and loss of ductility with increasing dose. The ISIS Ta experienced embrittlement at 0.14 dpa, while the other metals retained significant necking ductility. Such a premature embrittlement in ISIS Ta is believed to be because of high initial oxygen concentrations picked up during a pre-irradiation anneal. The Ta-1W and Ta-10W specimens irradiated in spallation condition experienced prompt necking at yield since irradiation doses for those specimens were high ( 0.7 dpa). At the highest dose, 25.2 dpa, the Ta-10W alloy specimen broke with little necking strain. Among the test materials, the Ta-1W alloy displayed the best combination of strength and ductility. The plastic instability stress and true fracture stress were nearly independent of dose. Increasing test temperature decreased strength and delayed the onset of necking at yield.

  17. Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed Through Multidirectional Cryoforging

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Kumar, Nikhil; Yogesha, K. K.; Jayaganthan, R.; Nath, S. K.

    2016-07-01

    Mechanical properties and microstructure evolution of Al 2014 alloy subjected to cryoforging (MDF) to a cumulative strain of 1.2, 1.8, and 2.4 were investigated in the present work. The deformed samples after 4 cycles at a cumulative strain of 2.4 shows the formation of ultrafine grain sizes in the range of 100-450 nm with high-angle grain boundaries as observed from TEM analysis. The tensile and hardness of the deformed sample were measured by Universal Testing machine and Vickers hardness Tester, respectively. The tests were also conducted for sample deformed at room temperature to compare with cryo-forged samples. The sample deformed at cryogenic temperature up to a cumulative strain 2.4 shows an improvement of tensile strength, hardness, and apparent fracture toughness (KQ) from 318 MPa to 470 MPa, 103HV to 171 HV, and 23.93 MPa √ m to 37.7 MPa √ m, respectively, with decrease in ductility from 18% to 6% as compared with solution-treated alloy. The cryo-forged Al 2014 alloy exhibits an increment of 7% in tensile strength, 3% in yield strength, and 3% in hardness up to cumulative true strain of 2.4 as compared to the samples forged at room temperature. The improvement in tensile properties of MDFed alloy is attributed to dislocation strengthening and grain boundary strengthening effect at both temperatures. The effective suppression of cross slip and climb at liquid nitrogen temperature improves the strength of cryo-forged sample better than that of room temperature-forged alloy.

  18. Nanoscale shape-memory alloys for ultrahigh mechanical damping.

    PubMed

    San Juan, Jose; Nó, Maria L; Schuh, Christopher A

    2009-07-01

    Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices.

  19. Mechanism and Kinetics of Mechanical Alloying in an Immiscible Fe-Mg System

    NASA Astrophysics Data System (ADS)

    Yelsukov, E. P.; Dorofeev, G. A.; Ulyanov, A. L.

    2005-07-01

    Mössbauer spectroscopy, X-ray diffraction, Auger spectroscopy, secondary ion mass-spectrometry and chemical analysis were used to study mechanical alloying of Fe and Mg powder mixture with the atomic ratio of 93:7. It has been shown that the process of mechanical alloying involves the formation of nanostructure in α-Fe particles, penetration and segregation of Mg atoms along the α-Fe grain boundaries, formation of the α-Fe(Mg) supersaturated solid solution.

  20. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering

    NASA Astrophysics Data System (ADS)

    Çınar, Simge; Tevis, Ian D.; Chen, Jiahao; Thuo, Martin

    2016-02-01

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate (‘/’ = physisorbed, ‘-’ = chemisorbed), from molten Field’s metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity.

  1. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering.

    PubMed

    Çınar, Simge; Tevis, Ian D; Chen, Jiahao; Thuo, Martin

    2016-02-23

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate ('/' = physisorbed, '-' = chemisorbed), from molten Field's metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity.

  2. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering

    PubMed Central

    Çınar, Simge; Tevis, Ian D.; Chen, Jiahao; Thuo, Martin

    2016-01-01

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate (‘/’ = physisorbed, ‘-’ = chemisorbed), from molten Field’s metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity. PMID:26902483

  3. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.

    2016-09-01

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2-5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen.

  4. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    SciTech Connect

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.

  5. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.

    PubMed

    Bobby Kannan, M; Singh Raman, R K; Witte, F; Blawert, C; Dietzel, W

    2011-02-01

    Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF.

  6. Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; ...

    2015-03-23

    Duplex precipitates are presented in a NiAl-strengthened ferritic alloy. They were characterized by the ultra-small angle X-ray scattering and transmission electron microscope. Fine cooling precipitates with the size of several to tens of nanometres harden the matrix considerably at room temperature. Cracks are likely to initiate from precipitates, and coalesce and propagate quickly through the matrix due to the excessive hardening effect of cooling precipitates, which lead to the premature fracture of NiAl-strengthened ferritic alloys.

  7. Application of probabilistic fracture mechanics to the PTS issue

    SciTech Connect

    Cheverton, R.D.; Ball, D.G.

    1985-01-01

    As a part of the NRC effort to obtain a resolution to the PWR PTS issue, a probabilistic approach has been applied that includes a probabilistic fracture-mechanics (PFM) analysis. The PFM analysis is performed with OCA-P, a computer code that performs thermal, stress and fracture-mechanics analyses and estimates the conditional probability of vessel failure, P(F/E), using Monte Carlo techniques. The stress intensity factor (K/sub I/) is calculated for two- and three-dimensional surface flaws using superposition techniques and influence coefficients. Importance-sampling techniques are used, as necessary, to limit to a reasonable value the number of vessels actually calculated. Analyses of three PWR plants indicate that (1) the critical initial flaw depth is very small (5 to 15 mm), (2) the benefit of warm prestressing and the role of crack arrest are transient dependent, (3) crack arrest does not occur for the dominant transients, and (4) the single largest uncertainty in the overall probabilistic analysis is the number of surface flaws per vessel. 30 refs., 6 figs., 4 tabs.

  8. Fracture mechanics parameters for failure prediction of composite resins.

    PubMed

    De Groot, R; Van Elst, H C; Peters, M C

    1988-06-01

    This study contains the first part of a research project in which the applicability of fracture mechanics parameters to predict failure of a restored tooth was investigated. Fracture mechanics parameters have been used in dental research before, but were restricted to comparative studies between various brands of composites. The critical values of the opening mode stress intensity factor (KI), its equivalents, the strain energy release rate (GI), and the J integral (JI), were measured with single-edge notched-bend (SENB) specimens of dental composite in a three-point bend test. The measured values of KIc for Silux (KIc = 0.99 +/- 0.03 MNm-3/2) and P-30 (KIc = 1.88 +/- 0.12 MNm-3/2), compared with values from the literature, show quantitative agreement. The J integral was computed by means of finite element analysis (FEA) on a two-dimensional model of the SENB specimens. The critical value of the J integral (measured with SENB specimens, notch depth-to-width ratio (a/W) = 1/2) was used to predict failure of specimens having an arbitrary geometry. In this study, failure was predicted for SENB specimens with notch depth-to-width ratio (a/W) = 1/4 and 3/4. The predicted deflection and load at failure correspond well with the measured deflection and load.

  9. Effect of multiaxial forging on microstructure and mechanical properties of Mg-o.8Ca alloy

    NASA Astrophysics Data System (ADS)

    Yurchenko, N. Yu; Stepanov, N. D.; Salishchev, G. A.; Rokhlin, L. L.; Dobatkin, S. V.

    2014-08-01

    It was shown that multiaxial forging with continuous decrease of temperature from 450°C to 250°C turns coarse structure of the Mg-0.8Ca alloy in homogenized state with grain size of several hundreeds gm into fine structure with average grain size of about 2.1 gm. Refinement of structure is accompanied by drastic increase of mechanical properties: tensile yield strength increases from 50 MPa to 193 MPa, ultimate tensile strength increases from 78 to 308 MPa and elongation to fracture increases from 3.0% to 7.2%. The microstructural evolution during multiaxial forging is studied using optical microscopy, scanning electron microscopy and EBSD analysis. The mechanisms responsible for refinement of microstructure are discussed

  10. Critically Stressed Fractures as Conduits: Mechanically-Chemically-Mediated Anisotropy of the Effective Permeability of Fractured Rock

    NASA Astrophysics Data System (ADS)

    Lang, P. S.; Nejati, M.; Paluszny, A.; Zimmerman, R. W.

    2015-12-01

    It has long been suggested that fractures that are critically oriented with respect to the in situ stress field are the most likely to be hydraulically conductive. This observation is revisited from the point of view of chemically mediated compaction processes, using numerical multi-physics, multi-scale simulations. Fracture contact is computed explicitly for discrete fracture networks, to find local displacements and contact tractions, which govern the initial permeability of the fractures. Subsequent flow simulations compute the full permeability tensor of the network. Local normal tractions then inform a series of transient reactive-transport, elastic-contact simulations at the grain scale that model the compaction of the fracture void space due to pressure-solution and free-face precipitation, assuming the pore-fluid in equilibrium concentration. The ensuing change of fracture transmissivity feeds back to the discrete fracture network model, wherein changes in the permeability tensor are evaluated. The eigenvectors of the initial permeability tensor reflect the higher permeability of fractures having shear/normal stress ratios near 0.6, which are characterized by relatively high permeability due to their combination of shear displacement and normal compression. The resulting preferred flow direction of the network becomes more pronounced over time as fractures that are subject to larger normal stresses experience stronger compaction, for two reasons. Firstly, larger normal traction over the surfaces provides a stronger drive for pressure solution at the contacting asperities. Secondly, these fractures are subject to smaller shear displacement. Their void space has less pronounced channels and is more sensitive to hydraulic sealing due to contact-zone percolation during the compaction process. It is concluded that mechanically-chemically mediated closure processes contribute to critically stressed fractures being likely hydraulic conduits.

  11. Fracture behavior of a B2 Ni-30Al-20Fe-0.05Zr intermetallic alloy in the temperature range 300 to 1300 K

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1992-01-01

    The fracture behavior of a B2 Ni-30Al-20Fe-0.05Zr (at. pct) alloy was investigated using results of tensile tests conducted in the temperature range 300-1300 K under initial strain rates that varied between 10 exp -6 and 10 exp -3/sec, together with results of deformation measurements reported by Raj et al. (1992). Microstructural observations revealed that the alloy had failed by transgranular cleavage fracture below 873 K and by ductile fracture, power-law cavitation, triple point cracking, and rupture above this temperautre. The fracture map constructed using fracture results is compared with those for other classes of materials, showing that the atomic bonding plays a significant role in the low-temperature ductility of NiAl-based alloys.

  12. Coupled Flow and Mechanics in Porous and Fractured Media*

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Newell, P.; Bishop, J.

    2012-12-01

    Numerical models describing subsurface flow through deformable porous materials are important for understanding and enabling energy security and climate security. Some applications of current interest come from such diverse areas as geologic sequestration of anthropogenic CO2, hydro-fracturing for stimulation of hydrocarbon reservoirs, and modeling electrochemistry-induced swelling of fluid-filled porous electrodes. Induced stress fields in any of these applications can lead to structural failure and fracture. The ultimate goal of this research is to model evolving faults and fracture networks and flow within the networks while coupling to flow and mechanics within the intact porous structure. We report here on a new computational capability for coupling of multiphase porous flow with geomechanics including assessment of over-pressure-induced structural damage. The geomechanics is coupled to the flow via the variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material strains which alter the pore volume (porosity field) and hence the permeability field. For linear elastic solid mechanics a monolithic coupling strategy is utilized. For nonlinear elastic/plastic and fractured media, a segregated coupling is presented. To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy allows for different time steps in the flow solve compared to the mechanics solve. If time steps are synchronized, the controller allows user-specified intra-time-step iterations. The iterative coupling is dynamically controlled based on a norm measuring the degree of variation in the deformed porosity. The model is applied for evaluation of the integrity of jointed caprock systems during CO2 sequestration operations. Creation or reactivation of joints can lead to enhanced pathways for leakage. Similarly, over-pressures can induce flow along faults. Fluid flow rates in fractures are strongly dependent on the

  13. Effect of Grain Refinement on the Mechanical Behaviour of an Al6061 Alloy at Cryogenic Temperatures

    SciTech Connect

    Moreno-Valle, E.; Sabirov, I.; Murashkin, M. Yu.; Valiev, R. Z.; Bobruk, E. V.; Perez-Prado, M. T.

    2011-05-04

    A solution treated coarse grained (CG) Al6061 was subjected to high pressure torsion (HPT) at room temperature resulting in the formation of a homogeneous ultra-fine grained (UFG) microstructure with an average grain size of 170 nm. Tensile tests were performed at room temperature (RT) and liquid nitrogen temperature (LNT). The as-HPT UFG Al6061 alloy shows an increased strength at both RT and LNT. The decrease of testing temperature results in increased flow stress and in enhanced elongation to failure in both CG and UFG samples. The ratio {sigma}{sub y}{sup LNT}/{sigma}{sub y}{sup RT} was found to be larger for the CG Al6061 than for the UFG Al6061. Both surface relief and fracture surface observations were performed. The effect of the grain size and of the testing temperature on the mechanical behaviour of the Al6061 alloy is analyzed in detail. It is suggested that the solute atoms play an important role in the plastic deformation of the UFG Al6061 alloy.

  14. Mechanical evaluation of two canine iliac fracture fixation systems.

    PubMed

    Vangundy, T E; Hulse, D A; Nelson, J K; Boothe, H W

    1988-01-01

    Twenty-three canine pelves were tested bilaterally to determine the stiffness and strength of intact ilium and stabilized oblique iliac osteotomies that simulated a common clinical fracture. Fixation systems tested were three 4.0 mm cancellous screws inserted ventral to dorsal across the osteotomy site and one laterally placed five hole 3.5 mm dynamic compression plate. Specimens were mechanically tested to failure under torsional, axial, or axial plus bending loads. Lag screw fixation was stiffer and stronger than plate fixation in all testing modes. The differences were statistically significant (p less than .05) in the torsional and axial plus bending loading modes. Fatigue testing was performed on implanted specimens with low-level cyclic loading under axial plus bending loading conditions. Physiologic loading conditions failed to produce mechanical failure of either fixation system after 100,000 cycles.

  15. Determination of the deformation mechanism of Fe-Mn alloys

    NASA Astrophysics Data System (ADS)

    Jo, Minho; Koo, Yang Mo; Kwon, Se Kyun

    2015-03-01

    The energy parameters of planar defects are decisive for understanding the deformation mechanisms of metals. The stacking fault energy has been regarded as a key parameter to determine the activation of the deformation mechanisms of the face-centered cubic metals and alloys. However, it is still under a long debate why the stacking fault energy can be treated to be such an exclusive parameter among the general planar fault energies. We have employed molecular dynamics method to examine the effects of Mn alloying on the deformation behavior of austenitic Fe-Mn systems. The energies of stable and unstable states are calculated by sliding the (111) plane and are analyzed in two different schemes, stacking fault energy and energy barriers, which leads to a contradiction between them. We show that a linear relationship can be identified among the energy barriers. This finding is used to identify the activated deformation mechanism. A new parameter is also suggested to characterize the material deformation.

  16. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    NASA Technical Reports Server (NTRS)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  17. Fracture Mechanics Modelling of an In Situ Concrete Spalling Experiment

    NASA Astrophysics Data System (ADS)

    Siren, Topias; Uotinen, Lauri; Rinne, Mikael; Shen, Baotang

    2015-07-01

    During the operation of nuclear waste disposal facilities, some sprayed concrete reinforced underground spaces will be in use for approximately 100 years. During this time of use, the local stress regime will be altered by the radioactive decay heat. The change in the stress state will impose high demands on sprayed concrete, as it may suffer stress damage or lose its adhesion to the rock surface. It is also unclear what kind of support pressure the sprayed concrete layer will apply to the rock. To investigate this, an in situ experiment is planned in the ONKALO underground rock characterization facility at Olkiluoto, Finland. A vertical experimental hole will be concreted, and the surrounding rock mass will be instrumented with heat sources, in order to simulate an increase in the surrounding stress field. The experiment is instrumented with an acoustic emission system for the observation of rock failure and temperature, as well as strain gauges to observe the thermo-mechanical interactive behaviour of the concrete and rock at several levels, in both rock and concrete. A thermo-mechanical fracture mechanics study is necessary for the prediction of the damage before the experiment, in order to plan the experiment and instrumentation, and for generating a proper prediction/outcome study due to the special nature of the in situ experiment. The prediction of acoustic emission patterns is made by Fracod 2D and the model later compared to the actual observed acoustic emissions. The fracture mechanics model will be compared to a COMSOL Multiphysics 3D model to study the geometrical effects along the hole axis.

  18. Magnesium-based hydrogen storage materials modified by mechanical alloying

    SciTech Connect

    Cui, N.; He, P.; Luo, J.L.

    1999-10-26

    The effects of mechanical alloying on microstructure and electrochemical performance of a Mg-Ni-Y-Al hydrogen storage alloy in 6 M KOH solution were studied. The ball-milled powders were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected-area electron diffraction (SED) and energy dispersion spectrometry (EDS). TEM and EDS results clearly reveal that the smaller nickel clusters or particles were well dispersed on the surface of larger magnesium alloy particles by mechanical grinding for 72 h. With an increase in milling time to 240 h, the nickel clusters or particles disappeared and a new monophase alloy with amorphous structure was formed. The electrochemical capacity of the modified material significantly increased with increasing milling time within 72 h and then dropped to nearly nil when the milling time reached 240 h. The capacity decay, however, was always improved with increasing grinding time. Further analysis and discussion were made based on d.c. polarization and a.c. impedance spectroscopy measurement results.

  19. Cryogenic mechanical properties of low density superplastic Al-Mg-Sc alloys

    SciTech Connect

    Verzasconi, S.L.; Morris, J.W. Jr. )

    1989-06-01

    Spacecraft cryogenic fuel tankage made from superplastic materials is a possible new application for low density aluminum alloys such as Al-Mg-Sc. Examples from this alloy system were examined for cryogenic strength and toughness. Alloys studied were received in the superplastically formable condition, in sheet form. Alloy 2219-T87 sheet was also tested for comparison, since 2219-T8X is currently used in cryogenic tankage. Five compositions of Al-Mg-Sc alloys were tested at 77 and 4 K. Alloys showed the expected increase in strength with decreasing temperature, accompanied by a general slight decrease in elongation and the Kahn tear-yield ratio toughness indicator; however, the strength-tear toughness relationship of this alloy class was as good as or better than that of 2219-T87. Correlations found between the properties, microstructure, and fracture surfaces are discussed. 8 refs., 1 fig., 3 tabs.

  20. Effects of Aging Treatments on the Mechanical Behavior of Ti-15V-3Cr-3Sn-3Al Alloy

    NASA Astrophysics Data System (ADS)

    Chou, Y.-K.; Tsay, L. W.; Chen, C.

    2015-09-01

    The effect of aging treatments on the mechanical properties and microstructures of Ti-15V-3Cr-3Sn-3Al (Ti-15-3) alloy was evaluated using tensile, notched tensile, and J-integral tests. The properties for the one-step aged specimens (371 to 648 °C for 8 h) were compared with those for the two-step aged specimens (one-step aged + 426 °C/24 h). An increase in aging temperature of one-step aging resulted in increased notched tensile strength and fracture toughness of the Ti-15-3 alloy. The second-step aging at 426 °C for 24 h caused various degrees of hardening in the group of double aged specimens. Comparing to the one-step aged specimens, increased notch brittleness and decreased fracture toughness were observed in the two-step aged specimens. For the specimens subjected to aging at 648 °C, the formation of thick α layer at β grain boundaries resulted in lower tensile properties and fracture toughness. The fracture modes of the notch-brittle specimens were strongly affected by the distribution, size, and morphology of the α precipitates.

  1. Cryogenic mechanical properties of low density superplastically formable Al-Li alloys

    NASA Technical Reports Server (NTRS)

    Verzasconi, S. L.; Morris, J. W., Jr.

    1989-01-01

    The aerospace industry is considering the use of low density, superplastically formable (SPF) materials, such as Al-Li alloys in cryogenic tankage. SPF modifications of alloys 8090, 2090, and 2090+In were tested for strength and Kahn tear toughness. The results were compared to those of similar tests of 2219-T87, an alloy currently used in cryogenic tankage, and 2090-T81, a recently studied Al-Li alloy with exceptional cryogenic properties (1-9). With decreasing temperature, all materials showed an increase in strength, while most materials showed an increase in elongation and decrease in Kahn toughness. The indium addition to 2090 increased alloy strength, but did not improve the strength-toughness combination. The fracture mode was predominantly intergranular along small, recrystallized grains, with some transgranular fracture, some ductile rupture, and some delamination on large, unrecrystallized grains.

  2. Effects of proof loads and combined mode loadings on fracture and flaw growth characteristics of aerospace alloys

    NASA Technical Reports Server (NTRS)

    Shah, R. C.

    1974-01-01

    This experimental program was undertaken to determine the effects of (1) combined tensile and bending loadings, (2) combined tensile and shear loadings, and (3) proof overloads on fracture and flaw growth characteristics of aerospace alloys. Tests were performed on four alloys: 2219-T87 aluminum, 5Al-2.5Sn (ELl) titanium, 6Al-4V beta STA titanium and high strength 4340 steel. Tests were conducted in room air, gaseous nitrogen at -200F (144K), liquid nitrogen and liquid hydrogen. Flat center cracked and surface flawed specimens, cracked tube specimens, circumferentially notched round bar and surface flawed cylindrical specimens were tested. The three-dimensional photoelastic technique of stress freezing and slicing was used to determine stress intensity factors for surface flawed cylindrical specimens subjected to tension or torsion. Results showed that proof load/temperature histories used in the tests have a small beneficial effect or no effect on subsequent fracture strength and flaw growth rates.

  3. Microstructure/mechanical property relationships for various thermal treatments of Al-Cu-Mg-X PM aluminum alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1986-01-01

    The thermal response and aging behavior of three 2XXX-series powder metallurgy aluminum alloys have been investigated, using Rockwell B hardness measurements, optical and electron microscopy, and energy-dispersive chemical analysis, in order to correlate microstructure with measured mechanical properties. Results of the thermal response study indicated that an increased solution heat treatment temperature was effective in resolutionizing large primary constituents in the alloy bearing more copper but had no apparent effect on the microconstituents of the other two. Aging studies conducted at room temperature and at 120, 150, and 180 C for times ranging up to 60 days indicated that classic aging response curves, as determined by hardness measurements, occurred at lower aging temperatures than were previously studied for these alloys, as well as at lower aging temperatures than are commonly used for ingot metallurgy alloys of similar compositions. Microstructural examination and fracture surface analysis of peak-aged tension specimens indicated that the highest tensile strengths are associated with extremely fine and homogeneous distributions of theta-prime or S-prime phases combined with low levels of both large constituent particles and dispersoids. Examination of the results suggest that refined solution heat treatments and lower aging temperatures may be necessary to achieve optimum mechanical properties for these 2XXX series alloys.

  4. Fracture mechanics of bone--the effects of density, specimen thickness and crack velocity on longitudinal fracture.

    PubMed

    Behiri, J C; Bonfield, W

    1984-01-01

    The fracture mechanics parameters of critical stress intensity factor (Kc) and critical strain energy release rate (Gc) for longitudinal fracture of bovine tibia cortical bone were determined by the compact tension method. It was demonstrated that, for a given bone density, Kc and Gc depended on the loading rate, and resultant crack velocity, with a maximum in fracture toughness (Kc approximately 6.3 MNm-3/2, Gc approximately 2900 Jm-2) at a crack velocity approximately 10(-3) ms-1. For a given loading rate, or crack velocity, an increase in bone density, in the range from 1.92 to 2.02 Mgm-3, produced increases in Kc and Gc, but a variation in specimen thickness (from 0.5 to 2 mm) had no effect on the measured fracture mechanics parameters.

  5. Probabilistic Fracture Mechanics and Optimum Fracture Control Analytical Procedures for a Reusable Solid Rocket Motor Case

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1977-01-01

    A methodology for the reliability analysis of a reusable solid rocket motor case is discussed. The analysis is based on probabilistic fracture mechanics and probability distribution for initial flaw sizes. The developed reliability analysis is used to select the structural design variables of the solid rocket motor case on the basis of minimum expected cost and specified reliability bounds during the projected design life of the case. Effects of failure prevention plans such as nondestructive inspection and the material erosion between missions are also considered in the developed procedure for selection of design variables. The reliability-based procedure can be modified to consider other similar structures of reusable space vehicle systems with different failure prevention plans.

  6. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    DOE PAGES

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less

  7. Determination of parameters of the Johnson-Cook model for the description of deformation and fracture of titanium alloys

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.; Gladky, I. L.; Kraus, E. I.

    2015-03-01

    Stress-strain curves of dynamic loading of VT6, OT4, and OT4-0 titanium-based alloys are constructed on the basis of experimental data, and the Johnson-Cook model parameters are determined. Results of LS-DYNA simulations of the processes of deformation and fracture of the fan casing after its high-velocity impact with a fan blade simulator are presented.

  8. Mechanical Alloying of Metal-Organic Frameworks.

    PubMed

    Panda, Tamas; Horike, Satoshi; Hagi, Keisuke; Ogiwara, Naoki; Kadota, Kentaro; Itakura, Tomoya; Tsujimoto, Masahiko; Kitagawa, Susumu

    2017-02-20

    The solvent-free mechanical milling process for two distinct metal-organic framework (MOF) crystals induced the formation of a solid solution, which is not feasible by conventional solution-based syntheses. X-ray and STEM-EDX studies revealed that performing mechanical milling under an Ar atmosphere promotes the high diffusivity of each metal ion in an amorphous solid matrix; the amorphous state turns into the porous crystalline structure by vapor exposure treatment to form a new phase of a MOF solid solution.

  9. Fracture and mechanical stratigraphy for Mississippian-Pennsylvanian age carbonates, Ozark Dome, NW Arkansas

    NASA Astrophysics Data System (ADS)

    Peppers, M.; Burberry, C. M.

    2014-12-01

    Identifying natural fracture patterns in an area gives a detailed look into the local tectonic history. Comparing those fractures to the mechanical properties of the rocks provides key insights into predicting fractures in the subsurface. The Ozark Dome is an ideal study area for fracture research due to multiple fracturing events resulting from the multi-stage deformation Ouachita Orogeny during the late Paleozoic. This study used field observations of lithology and fracture attributes over ~10 outcrops in the Mississppian-Pennsylvanian (360-298 ma) carbonate sequence of the Ozark Plateau. Outcrops were chosen having excellent lithological exposure up the sequence from the Boone to Atoka formations and with 3D representations of the fracture patterns. In all, the area investigated covered nearly 60 square miles. Fracture attributes collected included fracture intensity, length, and abutting relationships; and rock hardness data collected from a Schmidt Hammer. Data was analyzed using programs such as Stereonet and MOVE structural software that generated rose diagrams, structural cross sections, and products. Initial results indicate 4 main fracture orientations that resulted from at least 3 discrete phases of deformation during the Miss-Penn. Initial results also indicate that the present-day mechanical stratigraphy is not the same one that existed during the deformation phases. Work done at the Tiger Blvd. outcrops showed at least 2 distinct mechanical units. Fractures observed at the outcrop did not respect mechanical bed boundaries, and showed no relationship to the differences in mechanical properties observed. This study will aid in the interpretation of fractures in regards to mechanical stratigraphy, which allows for a better understanding of subsurface fracture prediction in carbonate sequences worldwide. Finally, the fracture work here will also help in elucidating the tectonic history of the field area during the Mississippian and Pennsylvanian.

  10. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  11. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-01-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  12. Deformation and fracture of a composite material based on a high-strength maraging steel covered with a melt-quenched Co69Fe4Cr4Si12B11 alloy layer

    NASA Astrophysics Data System (ADS)

    Sevost'yanov, M. A.; Kolmakov, A. G.; Molokanov, V. V.; Zabolotnyi, V. T.; Umnov, P. P.; Umnova, N. V.

    2011-04-01

    Multifractal analysis is used to study the deformation and fracture of a promising composite material consisting of a wire base made of K17N9M14 maraging steel covered with a surface layer made from a Co69Fe4Cr4Si12B11 amorphous alloy. As compared to its components, this material has a substantially better set of the mechanical properties.

  13. Mechanical design of a shape memory alloy actuated prosthetic hand.

    PubMed

    De Laurentis, Kathryn J; Mavroidis, Constantinos

    2002-01-01

    This paper presents the mechanical design for a new five fingered, twenty degree-of-freedom dexterous hand patterned after human anatomy and actuated by Shape Memory Alloy artificial muscles. Two experimental prototypes of a finger, one fabricated by traditional means and another fabricated by rapid prototyping techniques, are described and used to evaluate the design. An important aspect of the Rapid Prototype technique used here is that this multi-articulated hand will be fabricated in one step, without requiring assembly, while maintaining its desired mobility. The use of Shape Memory Alloy actuators combined with the rapid fabrication of the non-assembly type hand, reduce considerably its weight and fabrication time. Therefore, the focus of this paper is the mechanical design of a dexterous hand that combines Rapid Prototype techniques and smart actuators. The type of robotic hand described in this paper can be utilized for applications requiring low weight, compactness, and dexterity such as prosthetic devices, space and planetary exploration.

  14. Nucleation mechanisms of refined alpha microstructure in beta titanium alloys

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    Due to a great combination of physical and mechanical properties, beta titanium alloys have become promising candidates in the field of chemical industry, aerospace and biomedical materials. The microstructure of beta titanium alloys is the governing factor that determines their properties and performances, especially the size scale, distribution and volume fraction of precipitate phase in parent phase matrix. Therefore in order to enhance the performance of beta titanium alloys, it is critical to obtain a thorough understanding of microstructural evolution in beta titanium alloys upon various thermal and/or mechanical processes. The present work is focusing on the study of nucleation mechanisms of refined alpha microstructure and super-refined alpha microstructure in beta titanium alloys in order to study the influence of instabilities within parent phase matrix on precipitates nucleation, including compositional instabilities and/or structural instabilities. The current study is primarily conducted in Ti-5Al-5Mo-5V-3Cr (wt%, Ti-5553), a commercial material for aerospace application. Refined and super-refined precipitates microstructure in Ti-5553 are obtained under specific accurate temperature controlled heat treatments. The characteristics of either microstructure are investigated in details using various characterization techniques, such as SEM, TEM, STEM, HRSTEM and 3D atom probe to describe the features of microstructure in the aspect of morphology, distribution, structure and composition. Nucleation mechanisms of refined and super-refined precipitates are proposed in order to fully explain the features of different precipitates microstructure in Ti-5553. The necessary thermodynamic conditions and detailed process of phase transformations are introduced. In order to verify the reliability of proposed nucleation mechanisms, thermodynamic calculation and phase field modeling simulation are accomplished using the database of simple binary Ti-Mo system

  15. Mechanical property determination of high conductivity metals and alloys

    NASA Technical Reports Server (NTRS)

    Harrod, D. L.; Vandergrift, E.; France, L.

    1973-01-01

    Pertinent mechanical properties of three high conductivity metals and alloys; namely, vacuum hot pressed grade S-200E beryllium, OFHC copper and beryllium-copper alloy no. 10 were determined. These materials were selected based on their possible use in rocket thrust chamber and nozzle hardware. They were procured in a form and condition similar to that which might be ordered for actual hardware fabrication. The mechanical properties measured include (1) tension and compression stress strain curves at constant strain rate (2) tensile and compressive creep, (3) tensile and compressive stress-relaxation behavior and (4) elastic properties. Tests were conducted over the temperature range of from 75 F to 1600 F. The resulting data is presented in both graphical and tabular form.

  16. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  17. Mechanical properties and microstructures of dental cast Ti-6Nb-4Cu, Ti-18Nb-2Cu, and Ti-24Nb-1Cu alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo

    2016-01-01

    The mechanical properties -tensile strength, yield strength, elongation after fracture, and Vickers hardness- and alloy phases of the dental cast alloys Ti-6%Nb-4%Cu, Ti-18%Nb-2%Cu, and Ti-24%Nb-1%Cu were investigated. Ti-6%Nb-4%Cu consisted of a single α-phase, while Ti-18%Nb-2%Cu and Ti-24%Nb-1%Cu consisted of α- and β-phases. The tensile strengths, yield strengths, and hardnesses of these alloys were higher than those of Ti-5%Cu and Ti-30%Nb; however, their breaking elongations were smaller. These differences in the mechanical properties are attributable to solid-solution strengthening or to precipitation strengthening by the dual-phase (α+β) structure. Thus, Ti-Nb-Cu alloys are suitable for use in high-strength dental prostheses, such as implantretained superstructures and narrow-diameter implants.

  18. Creep and stress rupture of oxide dispersion strengthened mechanically alloyed Inconel alloy MA 754

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Stulga, J. E.

    1980-01-01

    The creep and stress rupture behavior of the mechanically alloyed oxide dispersion strengthened nickel-base alloy MA 754 was studied at 760, 982 and 1093 C. Tensile specimens with a fine, highly elongated grain structure, oriented parallel and perpendicular to the longitudinal grain direction were tested at various stresses in air under constant load. It was found that the apparent stress dependence was large, with power law exponents ranging from 19 to 33 over the temperature range studied. The creep activation energy, after correction for the temperature dependence of the elastic modulus, was close to but slightly larger than the activation energy for self diffusion. Rupture was intergranular and the rupture ductility as measured by percentage elongation was generally low, with values ranging from 0.5 to 16 pct. The creep properties are rationalized by describing the creep rates in terms of an effective stress which is the applied stress minus a resisting stress consistent with the alloy microstructure. Values of the resisting stress obtained through a curve fitting procedure are found to be close to the values of the particle by-pass stress for this oxide dispersion strengthened alloy, as calculated from the measured oxide particle distribution.

  19. Chemical and Mechanical Alteration of Fractures: Micro-Scale Simulations and Comparison to Experimental Results

    NASA Astrophysics Data System (ADS)

    Ameli, P.; Detwiler, R. L.; Elkhoury, J. E.; Morris, J. P.

    2012-12-01

    Fractures are often the main pathways for subsurface fluid flow especially in rocks with low matrix porosity. Therefore, the hydro-mechanical properties of fractures are of fundamental concern for subsurface CO2 sequestration, enhanced geothermal energy production, enhanced oil recovery, and nuclear waste disposal. Chemical and mechanical stresses induced during these applications may lead to significant alteration of the hydro-mechanical properties of fractures. Laboratory experiments aimed at understanding the chemo-hydro-mechanical response of fractures have shown a range of results that contradict simple conceptual models. For example, under conditions favoring mineral dissolution, where one would expect an overall increase in permeability and fracture aperture, permeability increases under some conditions and decreases under others. Recent experiments have attempted to link these core-scale observations to the relevant small-scale processes occurring within fractures. Results suggest that the loss of mechanical strength in asperities due to chemical alteration may cause non-uniform deformation and alteration of fracture apertures. However, it remains difficult to directly measure the coupled chemical and mechanical processes that lead to alteration of contacting fracture surfaces, which challenges our ability to predict the long-term evolution of the hydro-mechanical properties of fractures. Here, we present a computational model that uses micro-scale surface roughness and explicitly couples dissolution and elastic deformation to calculate local alterations in fracture aperture under chemical and mechanical stresses. Chemical alteration of the fracture surfaces is modeled using a depth-averaged algorithm of fracture flow and reactive transport. Then, we deform the resulting altered fracture-surfaces using an algorithm that calculates the elastic deformation. Nonuniform dissolution may cause the location of the resultant force between the two contacting

  20. Measuring the Fracture Toughness of TZM and ODS Molybdenum Alloys Using Standard and Sub-Sized Bend Specimens

    SciTech Connect

    Cockeram, B. V.

    2002-12-01

    Oxide Dispersion Strengthened (ODS) and TZM molybdenum have excellent creep resistance and strength at high temperatures in inert atmospheres. Fracture toughness and tensile testing was performed at temperatures between -150 degrees C and 450 degrees C to characterize 6.35 mm thick plate material of ODS and TZM molybdenum. A transition from low fracture toughness values (5.8 to 29.6 MPa square root m) to values greater than 30 MPa square root m is observed for TZM molybdenum in the longitudinal orientation at 100 degrees C and in the transverse orientation at 150 degrees C. These results are consistent with data reported in literature for molybdenum. A transition to low fracture toughness values (less than 30 MPa square root m) was not observed for longitudinal ODS molybdenum at temperatures greater than or equal to -150 degrees C, while a transition to low fracture toughness values (12.6 to 25.4 MPa square root m) was observed for the transverse orientation at room-temperature. The fi ne spacing of La-oxide precipitates that are present in ODS molybdenum result in a transition temperature that is significantly lower than any molybdenum alloy reported to date, with upper bound fracture toughness values that bound the literature data. A comparison of fracture toughness values obtained using a 1T, 0.5T, and 0.25T Charpy shows that a 0.5T Charpy could be used as a sub-sized specimen geometry.

  1. Ductile Fracture Prediction in Rotational Incremental Forming for Magnesium Alloy Sheets Using Combined Kinematic/Isotropic Hardening Model

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc-Toan; Park, Jin-Gee; Kim, Young-Suk

    2010-08-01

    To predict the ductile fracture of a magnesium alloy sheet when using rotational incremental forming, a combined kinematic and isotropic hardening law is implemented and evaluated from the histories of the ductile fracture value ( I) using a finite element analysis. Here, the criterion for a ductile fracture, as developed by Oyane ( J. Mech. Work. Technol., 1980, vol. 4, pp. 65-81), is applied via a user material based on a finite element analysis. To simulate the effect of the large amount of heat generation at elements in the contact area due to the friction energy of the rotational tool-specimen interface on the equivalent stress-strain evolution in incremental forming, the Johnson-Cook (JC) model was applied and the results compared with equivalent stress-strain curves obtained from tensile tests at elevated temperatures. The finite element (FE) simulation results for a ductile fracture were compared with the experimental results for a (80 mm × 80 mm × 25 mm) square shape with a 45 and 60 deg wall angle, respectively, and a (80 mm × 80 mm × 20 mm) square shape with a 70 deg wall angle. The trends of the FE simulation results agreed quite well with the experimental results. Finally, the effects of the process parameters, i.e., the tool down-step and tool radius, on the ductile fracture value and FLC at fracture (FLCF) were also investigated using the FE simulation results.

  2. Influence of hydrogen content on fracture toughness of CWSR Zr-2.5Nb pressure tube alloy

    NASA Astrophysics Data System (ADS)

    Singh, R. N.; Bind, A. K.; Srinivasan, N. S.; Ståhle, P.

    2013-01-01

    In this work, influence of hydrogen and temperature on the fracture toughness parameters of unirradiated, cold worked and stress relieved (CWSR) Zr-2.5Nb pressure tube alloys used in Indian Pressurized Heavy Water Reactor is reported. The fracture toughness tests were carried out using 17 mm width curved compact tension specimens machined from gaseously hydrogen charged tube-sections. Metallography of the samples revealed that hydrides were predominantly oriented along axial-circumferential plane of the tube. Fracture toughness tests were carried out in the temperature range of 30-300 °C as per ASTM standard E-1820-06, with the crack length measured using direct current potential drop (DCPD) technique. The fracture toughness parameters (JQ, JMax and dJ/da), were determined. The critical crack length (CCL) for catastrophic failure was determined using a numerical method. It was observed that for a given test temperature, the fracture toughness parameters representing crack initiation (JQ) and crack propagation (JMax, and dJ/da) is practically unaffected by hydrogen content. Also, for given hydrogen content, all the aforementioned fracture toughness parameters increased with temperature to a saturation value.

  3. Precipitation Mechanisms in Aluminum-Lithium Alloys.

    DTIC Science & Technology

    1983-09-01

    supplied by the dissolution • .- - ,] " ’a " " ’ " " -" " " Y " ’ " " ,t ... . " ".-" " " " - ,; -• - ’ 9 mechanism described by Gibbs- Thomson effect (19...reduces the overall energy within the system. The Gibbs- Thomson Effect is also included in the model which does predict symmetrical PSD’s and values of

  4. Comparison of magnesium alloys and poly-l-lactide screws as degradable implants in a canine fracture model.

    PubMed

    Marukawa, Eriko; Tamai, Masato; Takahashi, Yukinobu; Hatakeyama, Ichiro; Sato, Masaru; Higuchi, Yusuke; Kakidachi, Hiroshi; Taniguchi, Hirofumi; Sakamoto, Takamitsu; Honda, Jun; Omura, Ken; Harada, Hiroyuki

    2016-10-01

    The aims of this study were to evaluate in vivo the biological responses to implants composed of biodegradable anodized WE43 (containing magnesium yttrium, rare earth elements and zirconium; Elektron SynerMag®) magnesium alloy, monolithic WE43 magnesium alloy and poly-l-lactic acid (PLLA), which are commonly used materials in clinic settings, and to evaluate the effectiveness of the materials as bone screws. The effectiveness of the magnesium alloy implants in osteosynthesis was evaluated using a bone fracture model involving the tibia of beagle dogs. For the monolithic WE43 implants, radiological, and histological evaluation revealed that bone trabeculae around the implanted monolithic WE43 decreased because of an inflammatory response. However, there was no damage due to hydrogen gas or inflammatory response in the bone tissue around the anodized WE43 implants. After 4 weeks, all the PLLA implants (n = 3) had broken but the WE43 implants had not (n = 6). These results suggest that the WE43 implants had sufficient strength to fix bone fractures at load-bearing sites in orthopedic and oral maxillofacial surgery. Therefore, these biodegradable magnesium alloys are good candidates for replacing biodegradable polymers. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1282-1289, 2016.

  5. Diameter of basalt columns derived from fracture mechanics bifurcation analysis.

    PubMed

    Bahr, H-A; Hofmann, M; Weiss, H-J; Bahr, U; Fischer, G; Balke, H

    2009-05-01

    The diameter of columnar joints forming in cooling basalt and drying starch increases with decreasing growth rate. This observation can be reproduced with a linear-elastic three-dimensional fracture mechanics bifurcation analysis, which has been done for a periodic array of hexagonal columnar joints by considering a bifurcation mode compatible with observations on drying starch. In order to be applicable to basalt columns, the analysis has been carried out with simplified stationary temperature fields. The critical diameter differs from the one derived with a two-dimensional model by a mere factor of 1/2. By taking into account the latent heat released at the solidification front, the results agree fairly well with observed column diameters.

  6. Simple spline-function equations for fracture mechanics calculations

    NASA Technical Reports Server (NTRS)

    Orange, T. W.

    1979-01-01

    The paper presents simple spline-function equations for fracture mechanics calculations. A spline function is a sequence of piecewise polynomials of degree n greater than 1 whose coefficients are such that the function and its first n-1 derivatives are continuous. Second-degree spline equations are presented for the compact, three point bend, and crack-line wedge-loaded specimens. Some expressions can be used directly, so that for a cyclic crack propagation test using a compact specimen, the equation given allows the cracklength to be calculated from the slope of the load-displacement curve. For an R-curve test, equations allow the crack length and stress intensity factor to be calculated from the displacement and the displacement ratio.

  7. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.

    PubMed

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2012-03-01

    Cyclic stresses are often related to the premature mechanical failure of metallic biomaterials. The complex interaction between fatigue and corrosion in the physiological environment has been subject of many investigations. In this context, microstructure, heat treatments, plastic deformation, surface finishing and coatings have decisive influence on the mechanisms of fatigue crack nucleation and growth. Furthermore, wear is frequently present and contributes to the process. However, despite all the effort at elucidating the mechanisms that govern corrosion fatigue of biomedical alloys, failures continue to occur. This work reviews the literature on corrosion-fatigue-related phenomena of Ti alloys, surgical stainless steels, Co-Cr-Mo and Mg alloys. The aim was to discuss the correlation between structural and surface aspects of these materials and the onset of fatigue in the highly saline environment of the human body. By understanding such correlation, mitigation of corrosion fatigue failure may be achieved in a reliable scientific-based manner. Different mitigation methods are also reviewed and discussed throughout the text. It is intended that the information condensed in this article should be a valuable tool in the development of increasingly successful designs against the corrosion fatigue of metallic implants.

  8. Mechanical properties and microstructure of centrifugally cast alloy 718

    NASA Astrophysics Data System (ADS)

    Michel, D. J.; Smith, H. H.

    1985-07-01

    The relationship between the microstructure and mechanical properties of alloy 718 was investigated for two discs centrifugally cast at 50 and 200 rpm and given a duplex age heat treatment. The results of mechanical property tests at temperatures from 426 to 649 °C showed that the tensile yield and ultimate strength levels of both castings were similar. However, the creep-rupture properties were considerably enhanced for the casting produced at 200 rpm. Comparison of the radial and transverse creep properties of each disc indicated that creep life was generally independent of orientation, but ductility was greatest for specimens oriented transverse to the radial direction of the casting. Fatigue crack propagation performance was not greatly influenced by orientation or mold speed parameters and was comparable to wrought alloy 718 when compared on the basis of stress intensity factor range. The centrifugal casting process was found to produce a homogeneous microstructure free of porosity but with the expected segregation of solute alloying elements to Laves and carbide phases. The effect of the as-cast microstructure on the mechanical behavior and the potential influence of hot isostatic pressing to improve the microstructure are discussed.

  9. Fracture mechanics; Proceedings of the Seventeenth National Symposium, Albany, NY, August 7-9, 1984

    NASA Technical Reports Server (NTRS)

    Underwood, J. M. (Editor); Chait, R. (Editor); Smith, C. W. (Editor); Wilhem, D. P. (Editor); Andrews, W. A. (Editor); Newman, J. C. (Editor)

    1986-01-01

    The present conference gives attention to topics in the application of fracture mechanics, subcritical crack growth phenomena, fracture testing methods, ductile fracture behavior, and fracture mechanisms and their analysis. Specific papers treat the resistance curve approach to composite materials characterization, fracture toughness in ductile iron and cast steel, hold-time effects in elevated temperature fatigue crack propagation, creep crack growth under nonsteady conditions, viscoplastic fatigue in a superalloy at elevated temperatures, fracture testing with arc bend specimens, one-point bend impact test application, and a compact mode II fracture specimen. Also discussed are the computation of stable crack growth using the J-integral, the use of plastic energy dissipation to characterize crack growth, the extension of surface cracks under cyclic loading, the minimum time criterion for crack instability in structural materials, dynamic crack propagation and branching under biaxial loading, and boundary layer effects in cracked bodies.

  10. A mechanism-based approach to modeling ductile fracture.

    SciTech Connect

    Bammann, Douglas J.; Hammi, Youssef; Antoun, Bonnie R.; Klein, Patrick A.; Foulk, James W., III; McFadden, Sam X.

    2004-01-01

    Ductile fracture in metals has been observed to result from the nucleation, growth, and coalescence of voids. The evolution of this damage is inherently history dependent, affected by how time-varying stresses drive the formation of defect structures in the material. At some critically damaged state, the softening response of the material leads to strain localization across a surface that, under continued loading, becomes the faces of a crack in the material. Modeling localization of strain requires introduction of a length scale to make the energy dissipated in the localized zone well-defined. In this work, a cohesive zone approach is used to describe the post-bifurcation evolution of material within the localized zone. The relations are developed within a thermodynamically consistent framework that incorporates temperature and rate-dependent evolution relationships motivated by dislocation mechanics. As such, we do not prescribe the evolution of tractions with opening displacements across the localized zone a priori. The evolution of tractions is itself an outcome of the solution of particular, initial boundary value problems. The stress and internal state of the material at the point of bifurcation provides the initial conditions for the subsequent evolution of the cohesive zone. The models we develop are motivated by in-situ scanning electron microscopy of three-point bending experiments using 6061-T6 aluminum and 304L stainless steel, The in situ observations of the initiation and evolution of fracture zones reveal the scale over which the failure mechanisms act. In addition, these observations are essential for motivating the micromechanically-based models of the decohesion process that incorporate the effects of loading mode mixity, temperature, and loading rate. The response of these new cohesive zone relations is demonstrated by modeling the three-point bending configuration used for the experiments. In addition, we survey other methods with the potential

  11. Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality.

    PubMed

    van der Meulen, Marjolein C H; Boskey, Adele L

    2012-08-29

    Bisphosphonates are highly effective agents for reducing osteoporotic fractures in women and men, decreasing fracture incidence at the hip and spine up to 50%. In a small subset of patients, however, these agents have recently been associated with 'atypical femoral fractures' (AFFs) in the subtrochanteric region or the diaphysis. These fractures have several atypical characteristics, including occurrence with minimal trauma; younger age than typical osteoporotic fractures; occurrence at cortical, rather than cancellous sites; early radiographic appearance similar to that of a stress fracture; transverse fracture pattern rather than the familiar spiral or transverse-oblique morphologies; initiation on the lateral cortex; and high risk of fracture on the contralateral side, at the same location as the initial fracture. Fracture is a mechanical phenomenon that occurs when the loads applied to a structure such as a long bone exceed its load-bearing capacity, either due to a single catastrophic overload (traumatic failure) or as a result of accumulated damage and crack propagation at sub-failure loads (fatigue failure). The association of AFFs with no or minimal trauma suggests a fatigue-based mechanism that depends on cortical cross-sectional geometry and tissue material properties. In the case of AFFs, bisphosphonate treatment may alter cortical tissue properties, as these agents are known to alter bone remodeling. This review discusses the use of bisphosphonates, their effects on bone remodeling, mechanics and tissue composition, their significance as an effective therapy for osteoporosis, and why these agents may increase fracture risk in a small population of patients.

  12. Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024-T3 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dong, Ji-hong; Gao, Chong; Lu, Yao; Han, Jian; Jiao, Xiang-dong; Zhu, Zhi-xiong

    2017-02-01

    Cold-rolled 2024-T3 sheet alloy was subjected to bobbin-tool friction stir welding (BTFSW). The microstructural characteristics and mechanical properties of the nugget zone in the as-welded state were investigated. The results show that the equiaxed grain size of BTFSW 2024-T3 alloy decreases from 7.6 to 2.8 μm as the welding speed is increased from 80 to 120 mm/min; in addition, fine grains are generated in the nugget zone and the size distribution is non-uniform. All Al2CuMg (S') precipitates dissolve into the Al matrix, whereas Mn-rich phases confirmed as T phases (Al20Cu2Mn3, Al6Mn, or Al3Mn) remain unchanged. The optimized parameters for BTFSW are verified as the rotation speed of 350 r/min and the travel speed of 100 mm/min. The variations in precipitation and dislocation play more important roles than grain size in the nugget zone with respect to influencing the mechanical properties during the BTFSW process. After the BTFSW process, the fracture mode of base material 2024-T3 alloy transforms from ductile rupture to ductile-brittle mixed fracture.

  13. Texture evolution and mechanical anisotropy of biomedical hot-rolled Co-Cr-Mo alloy.

    PubMed

    Mori, Manami; Yamanaka, Kenta; Sato, Shigeo; Chiba, Akihiko

    2015-11-01

    Crystallographic textures and their effect on the mechanical anisotropy of a hot-rolled biomedical Co-Cr-Mo alloy were investigated. The hot-rolled Co-28Cr-6Mo-0.13N (mass%) alloy examined here exhibited a monotonic strength increment following hot-rolling reduction, eventually reaching a 0.2% proof stress of 1400 MPa while maintaining acceptable ductility (>10%). The dominant hot-rolling texture was a brass-type component, which is characterized by the alloy's peculiarly low stacking fault energy (SFE) even at hot rolling temperatures, although the minor peaks of the near copper component were also identified. However, because of the onset of dynamic recrystallization (DRX) during the hot rolling process, the texture intensity was relatively weak even after 90% hot rolling, although the grain refinement originating from the DRX was not significant (the "less active DRX" condition increased the strain accumulation during the process, resulting in high-strength samples). The weakened texture development resulted in negligible in-plane anisotropy for the hot-rolled specimen strength, when the specimens were tensile strained in the rolling direction (RD) and transverse direction (TD). The elongation-to-failure, however, exhibited a difference with respect to the tensile loading axis. It is suggested that the ductility anisotropy is closely related to a strain-induced γ (fcc) → ε (hcp) martensitic transformation during tensile loading, resulting in a difference in the proportion of quasi-cleavage fracture surfaces. The obtained results will be helpful in the development of high-strength Co-Cr-Mo alloy plates and sheets, and have implications regarding plastic deformation and texture evolution during the hot rolling of non-conventional metallic materials with low SFE at elevated temperatures, where planar dislocation slips of Shockley partial dislocations and thermally activated process interplay.

  14. Damage Tolerance Assessment Handbook. Volume 1. Introduction Fracture Mechanics Fatigue Crack Propagation

    DTIC Science & Technology

    1993-10-01

    Volume ,: Introduction NJ 08405 Fracture Mechanics Fatigue Crack Propagation Research and Special Programs Administration John A. Volpe National...Load-displacement plot [Adapted from John M. Barson/Stanley T. Rolfe, Fracture and Fatigue Control in Structures. Applications of Fracture Mechanics...Methods ASTM STP 527, American Society for Testing and Materials, Philadelphia, PA, 1973. 2-19. Ratwani, M.M. and Wilhem , DP. Develonment and EvaluAtion of

  15. On study of nonclassical problems of fracture and failure mechanics and related mechanisms

    NASA Astrophysics Data System (ADS)

    Guz, A. N.

    2009-01-01

    Nonclassical problems of fracture and failure mechanics that have been analyzed by the author and his collaborators at the S. P. Timoshenko Institute of Mechanics (Kiev, National Academy of Sciences of Ukraine) during the past forty years are considered in brief. The results of the analysis are presented in a form that would be quite informative for the majority of experts interested in various fundamental and applied aspects of fracture and failure problems including the identification of related mechanisms. This paper was prepared on invitation of the Editorial Board of the journal "Annals. The European Academy of Sciences" and may be considered as an Extended Pascal Medal Lecture (The 2007 Blaise Pascal Medal in Materials Sciences of the EAS)

  16. LITERATURE SURVEY OF GASEOUS HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON AND LOW ALLOY STEELS

    SciTech Connect

    Lam, P; Robert Sindelar, R; Thad Adams, T

    2007-04-18

    Literature survey has been performed for a compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction of area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are drawn from literature sources under a variety of test methods and conditions. However, the collection of literature data is by no means complete, but the diversity of data and dependency of results in test method is sufficient to warrant a design and implementation of a thorough test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e.g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens).

  17. Microstructural and mechanical characterizations of rapidly solidified Nb-TiNi hydrogen permeation alloy

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Matsuda, M.; Shimada, Y.; Takashima, K.; Ishikawa, K.; Aoki, K.

    2009-01-01

    The microstructural and mechanical characterizations of the rapidly solidified Nb20Ti40Ni40 (at%) hydrogen permeation alloy have been performed. An as-melt spun ribbon consists of an amorphous phase with sound bending ductility. The successive crystallization of B2-TiNi and bcc-Nb solid solution phases takes place during heating. The amorphous phase is stable in the specimens annealed below 773 K. The specimens annealed from 798 to 923 K are quite brittle, although those consist of fine equiaxed grains less than 50 nm. With annealing above 948 K for prolonged periods the grain size is increased to about 150 nm or more and the hardness is decreased about 260 Hv or less. Consequently, the ductility is recovered. The fracture toughness of as-melt spun and annealed ribbons is also investigated by the micromechanical test.

  18. LITERATURE SURVEY OF GASEOUS HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON AND LOW ALLOY STEELS

    SciTech Connect

    Lam, P; Andrew Duncan, A; Robert Sindelar, R; Thad Adams, T

    2009-04-27

    Literature survey has been performed for a compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction of area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are drawn from literature sources under a variety of test methods and conditions. However, the collection of literature data is by no means complete, but the diversity of data and dependency of results in test method is sufficient to warrant a design and implementation of a thorough test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e.g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens).

  19. Combined Isolated Laugier's Fracture and Distal Radial Fracture: Management and Literature Review on the Mechanism of Injury

    PubMed Central

    Osman, Walid; Alaya, Zeineb; Naouar, Nader; Ben Ayeche, Mohamed

    2016-01-01

    Introduction. Isolated fracture of the trochlea is an uncommon condition requiring a particular mechanism of injury. Its association with a distal radial fracture is rare. We aimed through this case report to identify the injury mechanism and to assess surgical outcomes. Case Presentation. We report a 26-year-old female who was admitted to our department for elbow trauma following an accidental fall on her outstretched right hand with her elbow extended and supinated. On examination, the right elbow was swollen with tenderness over the anteromedial aspect of the distal humerus. The elbow range was restricted. Standard radiographs showed an intra-articular half-moon-shaped fragment lying proximal and anterior to the distal humerus. There was a comminuted articular fracture of the distal radius with an anterior displacement. A computed tomography revealed an isolated shear fracture of the trochlea without any associated lesion of the elbow. The patient was surgically managed. Anatomical reduction was achieved and the fracture was fixed with 2 Kirschner wires. The distal radial fracture was treated by open reduction and plate fixation. The postoperative course was uneventful with a good recovery. Conclusion. Knowledge of such entity would be useful to indicate the suitable surgical management and eventually to obtain good functional outcomes. PMID:28070435

  20. Structural evolution in mechanically alloyed Al-Fe powders

    SciTech Connect

    Mukhopadhyay, D.K.; Suryanarayana, C.; Froes, F.H.

    1995-08-01

    The structural evolution in mechanically alloyed binary aluminum-iron powder mixtures containing 1, 4, 7.3, 10.7, and 25 at pct Fe was investigated using X-ray diffraction (XRD) and electron microscopic techniques. The constitution (number and identity of phases present), microstructure (crystal size, particle size), and transformation behavior of the powders on annealing were studied. The solid solubility of Fe in Al has been extended up to at least 4.5 at. pct, which is close to that observed using rapid solidification (RS) (4.4 at. pct), compared with the equilibrium value of 0.025 at. pct Fe at room temperature. Nanometer-sized grains were observed in as-milled crystalline powders in all compositions. Increasing the ball-to-powder weight ratio (BPR) resulted in a faster rate of decrease of crystal size. A fully amorphous phase was obtained in the Al-25 at. pct Fe composition, and a mixed amorphous phase plus solid solution of Fe in Al was developed in the Al-10.7 at. pct Fe alloy, agreeing well with the predictions made using the semiempirical Miedema model. Heat treatment of the mechanically alloyed powders containing the supersaturated solid solution or the amorphous phase resulted in the formation of the Al{sub 3}Fe intermetallic in all but the Al-25 at. pct Fe powders. In the Al-25 at. pct Fe powder, formation of nanocrystalline Al{sub 5}Fe{sub 2} was observed directly by milling. Electron microscope studies of the shock-consolidated mechanically alloyed Al-10.7 and 25 at. pct Fe powders indicated that nanometer-sized grains were retained after compaction.

  1. Mechanically alloyed Mo-Si-B alloys with a continuous a-Mo matrix and improved mechanical properties

    SciTech Connect

    Krueger, M.; Franz, S.; Heilmaier, M.; Schneibel, Joachim H; Jehanno, P.; Boening, Mike Boening; Kestler, Heinrich

    2008-01-01

    Mechanical alloying (MA) followed by cold isostatic pressing (CIPing), sintering and hot isostatic pressing (HIPing) was used to prepare Mo-base silicide alloys consisting of a Mo(Si) solid solution and the intermetallic phases Mo{sub 3}Si and Mo{sub 5}SiB{sub 2}. The microstructural development during milling of both binary Mo-Si and Mo-B and ternary Mo-Si-B powder mixtures was evaluated. While obtaining a supersaturated solid solution requires rather long milling times, domain size (which correlates with the grain size) is reduced to below 100 {angstrom} after about 10 h of milling. After heat treatment and consolidation the microstructure reveals a continuous {alpha}-Mo matrix with embedded, uniformly distributed intermetallic particles. The establishment of such a microstructure is beneficial for the mechanical properties since, as compared to a discontinuous {alpha}-Mo matrix, it decreases the brittle-to-ductile transition temperature (BDTT) by about 150 K.

  2. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    SciTech Connect

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-06-20

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation.

  3. Multiscale rotational mechanism of fracture propagation in geomaterials

    NASA Astrophysics Data System (ADS)

    Dyskin, Arcady; Pasternak, Elena; Esin, Maxim

    2015-10-01

    We consider rotational mechanism of macrocrack propagation based on breakage of the bonds between mutually rotating grains. The mechanism is multiscale with the macroscopic scale corresponding to the macrocrack, the next, smaller scale corresponding to the grain rotations and the smallest scale corresponding to the microcracks formed in the bonds whose propagation causes the bond breakage. The bond breakage is initiated by their bending or twisting caused by the corresponding moments. The sign of the moments only affects the side of the bond where the microfracturing starts. The independence of the microfracturing of the sign of the moment stresses provides a unified way of describing such apparently different types of fractures as tensile (Mode I) cracks, compaction bands (Mode I anticracks) and shear bands (Mode II and III). Modelling of this mechanism is based on the Cosserat theory. The bending/twisting moments are controlled by the corresponding components of moment stress. In the cases, when the Cosserat characteristic lengths are comparable with the grain sizes, the Cosserat theory is reduced to the couple-stress theory. It is found that the stress exhibits the square root singularity that coincides with the conventional ones, while the moment stress has singularity of the power -3/2. The J-integral, however, reflects only stress singularities, while the moment stress singularities do not contribute to the energy release rate. Subsequently, the energy criterion of macrofracture propagation can be based on the conventional J-integral and is not affected by the strong moment stress singularity.

  4. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction

    DOE PAGES

    Wu, Wei; An, Ke; Liaw, Peter K.

    2014-12-23

    In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less

  5. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction

    SciTech Connect

    Wu, Wei; An, Ke; Liaw, Peter K.

    2014-12-23

    In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustion of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.

  6. Impact of Injury Mechanisms on Patterns and Management of Facial Fractures.

    PubMed

    Greathouse, S Travis; Adkinson, Joshua M; Garza, Ramon; Gilstrap, Jarom; Miller, Nathan F; Eid, Sherrine M; Murphy, Robert X

    2015-07-01

    Mechanisms causing facial fractures have evolved over time and may be predictive of the types of injuries sustained. The objective of this study is to examine the impact of mechanisms of injury on the type and management of facial fractures at our Level 1 Trauma Center. The authors performed an Institutional Review Board-approved review of our network's trauma registry from 2006 to 2010, documenting age, sex, mechanism, Injury Severity Score, Glasgow Coma Scale, facial fracture patterns (nasal, maxillary/malar, orbital, mandible), and reconstructions. Mechanism rates were compared using a Pearson χ2 test. The database identified 23,318 patients, including 1686 patients with facial fractures and a subset of 1505 patients sustaining 2094 fractures by motor vehicle collision (MVC), fall, or assault. Nasal fractures were the most common injuries sustained by all mechanisms. MVCs were most likely to cause nasal and malar/maxillary fractures (P < 0.01). Falls were the least likely and assaults the most likely to cause mandible fractures (P < 0.001), the most common injury leading to surgical intervention (P < 0.001). Although not statistically significant, fractures sustained in MVCs were the most likely overall to undergo surgical intervention. Age, number of fractures, and alcohol level were statistically significant variables associated with operative management. Age and number of fractures sustained were associated with operative intervention. Although there is a statistically significant correlation between mechanism of injury and type of facial fracture sustained, none of the mechanisms evaluated herein are statistically associated with surgical intervention. Clinical Question/Level of Evidence: Therapeutic, III.

  7. Optimizing strength and fracture toughness of a cast titanium alloy through heat treatment and microstructure control

    NASA Astrophysics Data System (ADS)

    Robinson, Amy C.

    of fracture controlled by a crack initiation and propagation process within a single grain that comprises a large fraction of the specimen cross-section. Thus, once a large crack initiated, minimal additional strain was required to propagate the crack. Both intrinsic and extrinsic toughening mechanisms were apparent in the fracture toughness study of the castings. The fracture initiation toughness was enhanced by secondary cracking and significant blunting at the crack tip as evidenced by the presence of strain-induced void formation within a large process zone. Large alpha colonies located at the transition between the fatigue pre-crack and tensile crack growth regions limited the fracture initiation toughness by promoting easy crack growth along a significant fraction of the crack front. Thus, limiting the alpha colony size should enhance the fracture initiation toughness. The best crack propagation resistance (tearing modulus) was observed from specimens with large alpha colonies and large prior beta grains. Enhancing the size of these features increased the surface roughness, and consequently the tearing modulus, due to greater crack deflection, crack bifurcation, and shear ligament toughening from the larger alpha colonies and prior beta grains. Crack bridging by the ductile beta phase was also observed and should enhance the tearing modulus. When compared to the hot-rolled and annealed plate, the graphite mold castings exhibited better fracture initiation toughness and crack propagation resistance. However, the wrought plate maintained relatively good fracture initiation toughness and crack propagation resistance as a result of the continuous ductile beta matrix present in the microstructure.

  8. Mechanical alloying of powder materials by ultrasonic milling.

    PubMed

    Mordyuk, B N; Prokopenko, G I

    2004-04-01

    An ultrasonic grinding mill was designed. It permits to carry out simultaneously intensive ultrasonic, mechanical and cavitation treatments of powder materials that in turn leads to sharp acceleration of diffusion, mass-transfer processes and solid phase reactions due to crystallite size and structure changing. It was shown that meta-stable non-equilibrium solid solution (Cu+Ni+Fe, Fe+C), and crystalline structure transformed (Fe(4)N: fcc-hcp transformation) powders could be obtained for the much shorter time in compare with traditional mechanical alloying in planetary ball mill.

  9. Damage Tolerant Design Handbook. A Compilation of Fracture and Crack- Growth Data for High-Strength Alloys. Volume 3

    DTIC Science & Technology

    1983-12-01

    T73 K~c 7175-T736 K~c 7475-T61 KC 7475-T761 Kc 7475(ALCLAD)-T61 Kc Babilon , C.,F., et al., "Mechanical Properties, Fracture Toughness, Fatigue...dN 7175-T736 da/dN 7475-T61 Kc, da/dN 7475-T761 Kc, da/dN 7475(ALCLAD)-T61 Kc Babilon , C. E., et al., "Mechanical Properties, Fracture Toughness

  10. Effects of Heat Treatment on Grain-Boundary β-Mg17Al12 and Fracture Properties of Resistance Spot-Welded AZ80 Mg Alloy

    NASA Astrophysics Data System (ADS)

    Niknejad, Seyed Tirdad; Liu, Lei; Nguyen, Tam; Lee, Mok-Young; Esmaeili, Shahrzad; Zhou, Norman Y.

    2013-08-01

    The distribution and morphology of β-Mg17Al12 intermetallic phase in resistance spot-welded AZ80 Mg alloy were investigated by means of optical microscopy, scanning electron microscopy, and X-ray diffraction. The influence of intermetallic phase on mechanical strength was studied by tensile shear testing and fractography. The results showed that continuous networks of β-Mg17Al12 formed along grain boundaries in both the nugget and heat-affected zone of the spot-welded AZ80 Mg alloy. Those continuous grain-boundary β-Mg17Al12 networks acted as effective crack propagation paths, which had negative effects on the weld strength. Post-weld solution heat treatment effectively reduced the amount of β-Mg17Al12 and broke the grain-boundary intermetallic networks in both the nugget and heat-affected zone. This significantly increased the weld strength of AZ80 Mg alloy and changed the fracture mode from nugget pull-out in the as-welded condition to through-thickness after heat treatment.

  11. Morphology and mechanical properties of nanocrystalline Cu/Ag alloy

    NASA Astrophysics Data System (ADS)

    Li, Ao; Szlufarska, Izabela

    2017-04-01

    Hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations are conducted to study the microstructures of nanocrystalline (nc) Cu/Ag alloys with various Ag concentrations. When the Ag concentration is below 50 Ag atoms/nm!, an increase in Ag concentration leads to a gradual growth of monolayer grain boundary (GB) complexions into nanolayer complexions. Above the concentration of 50 Ag atoms/nm!, wetting layers with a bulk crystalline phase are observed. The effects of Ag on mechanical properties and deformation mechanisms of nc Cu/Ag alloys are investigated in MD simulations of uniaxial tension. GB sliding resistance is found to first increase and then decrease with an increase in Ag concentration. Surprisingly, we also find that the dislocation density decreases monotonically with an increase in Ag concentration, which suggests that the grain interiors are softened by the introduction of Ag dopants at GBs. In addition, there is a critical Ag concentration that maximizes flow stress of nc Cu/Ag alloys. The flow stress, GB sliding resistance, and the intragranular dislocation densities become less sensitive to Ag dopants when the grain diameter increases from 5nm to 40nm.

  12. Mössbauer study of Fe-Re alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Konieczny, R.; Idczak, R.

    2016-12-01

    The room temperature Mössbauer spectra of 57Fe were measured for nanocrystalline iron-based solid solutions Fe 1- x Re x , prepared by mechanical alloying with x in the range 0.01 ≤ x ≤ 0.04. The obtained data were analysed in terms of the binding energy E b between two rhenium atoms in the Fe-Re system. The extrapolated value of E b for x = 0 was used for computation of enthalpy of solution of rhenium in iron. The result was compared with that resulting from the cellular atomic model of alloys by Miedema as well as with value, derived from proper data for Fe-Re solid solutions obtained by melting in an arc furnace. From the comparison it follows that our findings are in agreement with the Miedema's model predictions and previous Mössbauer studies.

  13. Influence of Constituent Materials on the Impact Toughness and Fracture Mechanisms of Hot-Roll-Bonded Aluminum Multilayer Laminates

    NASA Astrophysics Data System (ADS)

    Cepeda-Jiménez, C. M.; Hidalgo, P.; Pozuelo, M.; Ruano, O. A.; Carreño, F.

    2010-01-01

    Two aluminum multilayer laminates have been processed by hot roll bonding following similar processing paths. The first one is constituted by alternated Al 2024 and Al 1050 layers (ALH19) and the second one by alternated Al 7075 and Al 1050 layers (ADH19). The influence of the constituent materials in the multilayer laminates both during the processing at high temperature and during the subsequent mechanical characterization has been analyzed. The mechanical behavior of the as-received materials at the processing conditions has been characterized by hot torsion. Multilayer laminates have been tested at room temperature under impact Charpy tests, three-point bend tests, and shear tests on the interfaces. The relative toughness increase compared to the constituent materials was much higher for the ADH19 laminate based on the high-strength Al 7075 alloy than for the ALH19 laminate. This is attributed to the different fracture mechanism.

  14. Microstructure and magnetic behavior of Cu-Co-Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.

    2017-03-01

    Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  15. Structural size effects of intermetallic compounds on the mechanical properties of Mo-Si-B alloy: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Park, Chun Woong; Suk, Myung-Jin; Kim, Young Do

    2016-01-01

    In general, size, shape and dispersion of phases in alloys significantly affect mechanical properties. In this study, the mechanical properties of Mo-Si-B alloys were experimentally investigated with regards to the refinement of intermetallic compound. To confirm the size effect of the intermetallic compound phases on mechanical properties, two differently sized intermetallic compound powders consisting Mo5SiB2 and Mo3Si were fabricated by mechano-chemical process and high-energy ball milling. A modified powder metallurgy method was used with core-shell intermetallic powders where the intermetallic compound particles were the core and nano-sized Mo particles which formed by the hydrogen reduction of Mo oxide were the shells, leading to the microstructures with uniformly distributed intermetallic compound phases within a continuous α-Mo matrix phase. Vickers hardness and fracture toughness were measured to examine the mechanical properties of sintered bodies. Vickers hardness was 472 Hv for the fine intermetallic compound powder and 415 Hv for the coarse intermetallic compound powder. The fracture toughness was 12.4 MPa·√m for the fine IMC powders and 13.5 MPa·√m for the coarse intermetallic compound powder.

  16. High temperature mechanical properties of a zirconium-modified, precipitation- strengthened nickel, 30 percent copper alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1974-01-01

    A precipitation-strengthened Monel-type alloy has been developed through minor alloying additions of zirconium to a base Ni-30Cu alloy. The results of this exploratory study indicate that thermomechanical processing of a solution-treated Ni-30Cu-0.2Zr alloy produced a dispersion of precipitates. The precipitates have been tentatively identified as a Ni5Zr compound. A comparison of the mechanical properties, as determined by testing in air, of the zirconium-modified alloy to those of a Ni-30Cu alloy reveals that the precipitation-strengthened alloy has improved tensile properties to 1200 K and improved stress-rupture properties to 1100 K. The oxidation characteristics of the modified alloy appeared to be equivalent to those of the base Ni-30Cu alloy.

  17. Structural and magnetic properties of Co 2CrAl Heusler alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hakimi, M.; Kameli, P.; Salamati, H.

    2010-11-01

    Mechanical alloying has been used to produce nanocrystalline samples of Co 2CrAl Heusler alloys. The samples were characterized by using different methods. The results indicate that, it is possible to produce L2 1-Co 2CrAl powders after 15 h of ball-milling. The grain size of 15 h ball milled L2 1-Co 2CrAl Heusler phase, calculated by analyzing the XRD peak broadening using Williamson and Hall approach was 14 nm. The estimated magnetic moment per formula unit is ˜2 μ B. The obtained magnetic moment is significantly smaller than the theoretical value of 2.96 μ B for L2 1 structure. It seems that an atomic disorder from the crystalline L2 1-type ordered state and two-phase separation depresses the ferromagnetic ordering in alloy. Also, the effect of annealing on the structural and magnetic properties of ball milled powders was investigated. Two structures were identified for annealed sample, namely L2 1 and B2. The obtained value for magnetic moment of annealed sample is smaller than the as-milled sample due to the presence of disordered B2 phase and improvement of phase separation.

  18. Buckling and hydraulic mechanisms in orbital blowout fractures: fact or fiction?

    PubMed

    Ahmad, Fateh; Kirkpatrick, Niall A; Lyne, Jonathan; Urdang, Michael; Waterhouse, Norman

    2006-05-01

    Since the first description of orbital blowout fractures, there has been much confusion as to their etiology. Two principal mechanisms have been proposed to explain their production, the buckling and the hydraulic mechanisms caused, respectively, by trauma to the orbital rim and the globe of the eye. The aim of this study was to evaluate both mechanisms qualitatively and quantitatively. Our protocol used intact cadavers, quantifiable intraocular pressure, variable and quantifiable force, and quantifiable bone strain distribution with strain gauge analysis. One orbit of each cadaver was used to simulate each of the two mechanisms, allowing direct comparison. Fractures produced by the buckling mechanism were limited to the anterior part of the orbital floor, with strain readings reaching up to 3756 microepsilon. Posteriorly, strain did not exceed 221 microepsilon. In contrast, hydraulic-type fractures were much larger, involving anterior and posterior parts of the floor as well as the medial wall of the orbit. Here, strain exceeded 3756 microepsilon in both parts of the floor. Furthermore, we have demonstrated that the average energy required to fracture the orbital floor by the buckling mechanism is 1.54 J, whereas an average energy of 1.22 J is needed to produce this fracture by the hydraulic mechanism. Our results suggest that efforts to establish one or another mechanism as the primary etiology are misplaced. Both mechanisms produce orbital blowout fractures, with different and specific characteristics. We believe this provides the basis for our reclassification of such fractures.

  19. Mechanical and petrophysical study of fractured shale materials

    NASA Astrophysics Data System (ADS)

    Bonnelye, A.; Schubnel, A.; David, C.; Henry, P.; Guglielmi, Y.; Gout, C.; Dick, P.

    2015-12-01

    Mechanical and physical properties of shales are of major importance for upper crustal fault hydro-mechanical behavior. In particular, relationships between applied stress, textural anisotropy and transport properties. These relations can be investigated in the laboratory and here, was used shales from Tournemire (southern France). Triaxial tests were performed in order to determine the elasto-plastic yield envelope on 3 sets of samples with 3various bedding orientations (0°, 45°, and 90°). For each set, experiments were carried out at increasing confining pressures (2.5, 5, 10, 20, 40, 80MPa). They were performed under nominally drained conditions, at strain rates ranging between 5x10-7 s-1 - 1x10-5 s-1up to failure. During each experiment, P and S wave elastic velocities were continuously measured, in order to monitor the evolution of elastic anisotropy. Results show that the orientation of principal stress relative to bedding plays an important role on the brittle strength. Minimum strength is observed for samples deformed at 45° to bedding. Strength anisotropy increases both with confining pressure and strain rate. We interpret this result as the cohesive strength (and fracture toughness) being strain rate dependent. Although brittle failure and stress drops were systematically observed, deformation remained aseismic. This confirms that shales are good lithological candidates for shallow aseismic creep and slow slip events. Brittle failure was preceded by the development of P wave anisotropy, due to both crack growth and mineral re-orientation. Anisotropy variations were largest for samples deformed perpendicular to bedding, at the onset of rupture. Anisotropy reversal was observed at the highest confining pressures. For samples deformed parallel to bedding, the P wave anisotropy development is weaker. For both of these orientations, Thomsens parameters were inverted from the elastic wave data in order to quantify the evolution of elastic anisotropy. We

  20. Refinement performance and mechanism of an Al-50Si alloy

    SciTech Connect

    Dai, H.S.; Liu, X.F.

    2008-11-15

    The microstructure and melt structure of primary silicon particles in an Al-50%Si (wt.%) alloy have been investigated by optical microscopy, scanning electron microscopy, electron probe micro-analysis and a high temperature X-ray diffractometer. The results show that the Al-50Si alloy can be effectively refined by a newly developed Si-20P master alloy, and the melting temperature is crucial to the refinement process. The minimal overheating degree {delta}T{sub min} ({delta}T{sub min} is the difference between the minimal overheating temperature T{sub min} and the liquidus temperature T{sub L}) for good refinement is about 260 deg. C. Primary silicon particles can be refined after adding 0.2 wt.% phosphorus amount at sufficient temperature, and their average size transforms from 2-4 mm to about 30 {mu}m. The X-ray diffraction data of the Al-50Si melt demonstrate that structural change occurs when the melting temperature varies from 1100 deg. C to 1300 deg. C. Additionally, the relationship between the refinement mechanism and the melt structure is discussed.

  1. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    NASA Astrophysics Data System (ADS)

    Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong

    2015-12-01

    The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in good agreement with the tested results.

  2. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration.

    PubMed

    Kruzic, J J; Nalla, R K; Kinney, J H; Ritchie, R O

    2003-12-01

    Few studies have focused on a description of the fracture toughness properties of dentin in terms of resistance-curve (R-curve) behavior, i.e., fracture resistance increasing with crack extension, particularly in light of the relevant toughening mechanisms involved. Accordingly, in the present study, fracture mechanics based experiments were conducted on elephant dentin in order to determine such R-curves, to identify the salient toughening mechanisms and to discern how hydration may affect their potency. Crack bridging by uncracked ligaments, observed directly by microscopy and X-ray tomography, was identified as a major toughening mechanism, with further experimental evidence provided by compliance-based experiments. In addition, with hydration, dentin was observed to display significant crack blunting leading to a higher overall fracture resistance than in the dehydrated material. The results of this work are deemed to be of importance from the perspective of modeling the fracture behavior of dentin and in predicting its failure in vivo.

  3. Fractures

    MedlinePlus

    A fracture is a break, usually in a bone. If the broken bone punctures the skin, it is called an open ... falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the ...

  4. Spartan Release Engagement Mechanism (REM) stress and fracture analysis

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.

  5. Factors Influencing Fracture Toughness and Other Properties of Aluminum- Lithium Alloys

    DTIC Science & Technology

    1979-06-14

    tramp elements sodium, potassium and sulfuir presumably segregated in the grain boundaries. Furthermore, the hydrogen content of the alloys was also shown...tion of these elements at grain boundaries is worth noting. Furthermore, the hydrogen content of the Al-Li and A1-Mg-Li alloys is significantly higher...than the hydrogen content of typical commerical high strength aluminum alloys. Fatigue Crack Growth (FCG) The FCG performance of the Al-Cu-Li alloy

  6. Mechanical properties of tungsten alloys with Y 2O 3 and titanium additions

    NASA Astrophysics Data System (ADS)

    Aguirre, M. V.; Martín, A.; Pastor, J. Y.; LLorca, J.; Monge, M. A.; Pareja, R.

    2011-10-01

    In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti-0.47 wt.% Y 2O 3 and 4 wt.% Ti-0.5 wt.% Y 2O 3) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 °C to 1000 °C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y 2O 3, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y 2O 3 and Ti permits to obtain materials with low pores presence.

  7. Deformation and Failure Mechanisms of Shape Memory Alloys

    SciTech Connect

    Daly, Samantha Hayes

    2015-04-15

    The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape memory and superelasticity. These phase transformations occur across multiple length scales (one example being the martensite-austenite twinning that underlies macroscopic strain localization) and result in a large hysteresis. In order to optimize the use of this hysteretic behavior in energy storage and damping applications, we must first have a quantitative understanding of this transformation behavior. Prior results on shape memory alloys have been largely qualitative (i.e., mapping phase transformations through cracked oxide coatings or surface morphology). The PI developed and utilized new approaches to provide a quantitative, full-field characterization of phase transformation, conducting a comprehensive suite of experiments across multiple length scales and tying these results to theoretical and computational analysis. The research funded by this award utilized new combinations of scanning electron microscopy, diffraction, digital image correlation, and custom testing equipment and procedures to study phase transformation processes at a wide range of length scales, with a focus at small length scales with spatial resolution on the order of 1 nanometer. These experiments probe the basic connections between length scales during phase transformation. In addition to the insights gained on the fundamental mechanisms driving transformations in shape memory alloys, the unique experimental methodologies developed under this award are applicable to a wide range of solid-to-solid phase transformations and other strain localization mechanisms.

  8. Comparative study using MS and XRD of Fe80Al20 alloy produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hadef, F.; Otmani, A.; Grenèche, J. M.

    2013-08-01

    An X-ray diffraction and 57Fe Mössbauer effect study of mechanically alloyed Fe80Al20 is presented. X-ray measurements indicate that the disordered bcc α-Fe(Al) solid solution was formed after 2 h of milling, while the analysis of Mössbauer spectra suggested that total dissolution of aluminium is achieved after 10 h of milling. These differences can be attributed to: (i) rapid nanocrystallization of aluminium and/or (ii) small particles with small amounts of aluminium cannot be detected by the X-ray diffraction technique.

  9. Characterization of shape memory alloys for safety mechanisms.

    SciTech Connect

    McLaughlin, Jarred T.; Buchheit, Thomas Edward; Massad, Jordan Elias

    2008-03-01

    Shape memory alloys (SMAs) are metals that exhibit large recoverable strains and exert large forces with tremendous energy densities. The behavior of SMAs is thermomechanically coupled. Their response to temperature is sensitive to their loading condition and their response to loading is sensitive to their thermal condition. This coupled behavior is not to be circumvented, but to be confronted and understood, since it is what manifests SMA's superior clamping performance. To reasonably characterize the coupled behavior of SMA clamping rings used in safety mechanisms, we conduct a series of experiments on SMA samples. The results of the tests will allow increased fidelity in modeling and failure analysis of parts.

  10. Mechanical alloying of Co and P: Structural and photoacoustic studies

    NASA Astrophysics Data System (ADS)

    Souza, S. M.; Trichês, D. M.; de Lima, J. C.; Grandi, T. A.; Campos, C. E. M.

    2007-09-01

    A mixture of elemental Co and P powders with nominal CoP3 composition was investigated by the mechanical alloying technique. For milling times greater than 26h, the measured x-ray diffraction (XRD) patterns revealed the coexistence of the skutterudite CoP3, the orthorhombic CoP, and Co2P phases. The structural and photoacoustic properties of as-milled powders were studied by the XRD and photoacoustic spectroscopy (PAS) techniques. The thermal diffusivity parameter of the as-milled sample was measured from fitting the PAS signal phase. The thermoelastic bending process is the main contribution to the PAS signal amplitude.

  11. Monte Carlo Simulation of Alloy Design Techniques: Fracture and Welding Studied Using the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Good, Brian; Noebe, Ronald D.; Honecy, Frank; Abel, Phillip

    1999-01-01

    Large-scale simulations of dynamic processes at the atomic level have developed into one of the main areas of work in computational materials science. Until recently, severe computational restrictions, as well as the lack of accurate methods for calculating the energetics, resulted in slower growth in the area than that required by current alloy design programs. The Computational Materials Group at the NASA Lewis Research Center is devoted to the development of powerful, accurate, economical tools to aid in alloy design. These include the BFS (Bozzolo, Ferrante, and Smith) method for alloys (ref. 1) and the development of dedicated software for large-scale simulations based on Monte Carlo- Metropolis numerical techniques, as well as state-of-the-art visualization methods. Our previous effort linking theoretical and computational modeling resulted in the successful prediction of the microstructure of a five-element intermetallic alloy, in excellent agreement with experimental results (refs. 2 and 3). This effort also produced a complete description of the role of alloying additions in intermetallic binary, ternary, and higher order alloys (ref. 4).

  12. Fracture Mechanics Analyses for Interface Crack Problems - A Review

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Shivakumar, Kunigal; Raju, Ivatury S.

    2013-01-01

    Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.

  13. Fracture-mechanics parameters of the composite-enamel bond.

    PubMed

    de Groot, R; van Elst, H C; Peters, M C

    1990-01-01

    In a previous study, the critical values of the opening mode stress intensity factor (K1), its equivalent, the strain energy-release rate (G1), and the J integral (J1) (in the elastic case being equal to that of G1) were determined for resin composite. In this study, the strength of the composite-tooth interface was investigated. The critical values of K1 and J1 were measured with single-edge notched-bend (SENB) specimens of resin composite bonded to enamel, with the notch at midspan at the bonded interface. Due to enamel's anisotropy, the values of Klc and Jlc to be used in a fracture-mechanics application for failure prediction of a structure depend on the enamel prism orientation relative to the adhesive interface. Where interfacial failure is to be expected, the following values for Jlc and Klc can be used: Silux, Jlc = 145 +/- 35 Jm-2 and Klc = 0.84 +/- 0.16 MNm-3/2; P-30, Jlc = 163 +/- 13 Jm-2 and Klc = 1.02 +/- 0.07 MNm-3/2. Where enamel failure is expected or where the failure mode cannot be predicted, the following values can be applied: Silux, Jlc = 89 +/- 15 Jm-2 and Klc = 0.84 +/- 0.16 MNm-3/2; P-30, Jlc = 89 +/- 15 Jm-2 and Klc = 0.75 +/- 0.10 MNm-3/2.

  14. Mechanical alloying of lanthana-bearing nanostructured ferritic steels

    SciTech Connect

    Somayeh Paseban; Indrajit Charit; Yaqiao Q. Wu; Jatuporn Burns; Kerry N. Allahar; Darryl P. Butt; James I. Cole

    2013-09-01

    A novel nanostructured ferritic steel powder with the nominal composition Fe–14Cr–1Ti–0.3Mo–0.5La2O3 (wt.%) was developed via high energy ball milling. La2O3 was added to this alloy instead of the traditionally used Y2O3. The effects of varying the ball milling parameters, such as milling time, steel ball size and ball to powder ratio, on the mechanical properties and micro structural characteristics of the as-milled powder were investigated. Nanocrystallites of a body-centered cubic ferritic solid solution matrix with a mean size of approximately 20 nm were observed by transmission electron microscopy. Nanoscale characterization of the as-milled powder by local electrode atom probe tomography revealed the formation of Cr–Ti–La–O-enriched nanoclusters during mechanical alloying. The Cr:Ti:La:O ratio is considered “non-stoichiometric”. The average size (radius) of the nanoclusters was about 1 nm, with number density of 3.7 1024 m3. The mechanism for formation of nanoclusters in the as-milled powder is discussed. La2O3 appears to be a promising alternative rare earth oxide for future nanostructured ferritic steels.

  15. The improvement of cryogenic mechanical properties of Fe-12 Mn and Fe-8 Mn alloy steels through thermal/mechanical treatments

    NASA Technical Reports Server (NTRS)

    Hwang, S. K.; Morris, J. W., Jr.

    1979-01-01

    An investigation has been made to improve the low temperature mechanical properties of Fe-8Mn and Fe-12Mn-0.2 Ti alloy steels. A reversion annealing heat treatment in the two-phase (alpha + gamma) region following cold working has been identified as an effective treatment. In an Fe-12Mn-0.2Ti alloy a promising combination of low temperature (-196 C) fracture toughness and yield strength was obtained by this method. The improvement of properties was attributed to the refinement of grain size and to the introduction of a uniform distribution of retained austenite (gamma). It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated alpha-prime martensitic structure and absence of epsilon martensite. As a result, a significant reduction of ductile to brittle transition temperature was obtained.

  16. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    SciTech Connect

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  17. Effects of Strain Rates on Mechanical Properties and Fracture Mechanism of DP780 Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Li, Shengci; Kang, Yonglin; Zhu, Guoming; Kuang, Shuang

    2015-06-01

    The mechanical properties of DP780 dual phase steel were measured by quasi-static and high-speed tensile tests at strain rates between 0.001 and 1000 s-1 at room temperature. The deformation and fracture mechanisms were analyzed by observation of the tensile fracture and microstructure near the fracture. Dynamic factor and feret ratio quantitative methods were applied to study the effect of strain rate on the microstructure and properties of DP780 steel. The constitutive relation was described by a modified Johnson-Cook and Zerilli-Armstrong model. The results showed that the strain rate sensitivity of yield strength is bigger than that of ultimate tensile strength; as strain rate increased, the formation of microcracks and voids at the ferrite/martensite interface can be alleviated; the strain rate effect is unevenly distributed in the plastic deformation region. Moreover, both models can effectively describe the experimental results, while the modified Zerilli-Armstrong model is more accurate because the strain-hardening rate of this model is independent of strain rate.

  18. Spall Fracture Patterns for the Heterophase Cu-Al-Ni Alloy in Ultrafine- and Coarse-Grained States Exposed to a Nanosecond Relativistic High-Current Electron Beam

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Markov, A. B.; Mayer, A. E.; Bakach, G. P.; Tabachenko, A. N.; Kashin, O. A.; Pochivalova, G. P.; Skosyrskii, A. B.; Kitsanov, S. A.; Zhorovkov, M. F.; Yakovlev, E. V.

    2013-05-01

    A comparative study of spall fracture patterns for the heterophase Cu - 8.45% Al - 5.06% Ni alloy (аt.%) in ultrafine- and coarse-grained states under shock-wave loading using the "SINUS-7" electron accelerator is carried out. For electron energy of 1.4 MeV, pulse duration of 50 ns, and power density of 1.6·1010 W/cm2, the shock wave amplitude was 8 GPa and the strain rate was ~2·105 s-1. It is established that the thickness of the spalled layer increased for both grained structures, and the degree of plastic strain decreased with increasing target thickness. Based on experimental data obtained and results of theoretical calculations, it is demonstrated that the spall strength of ultrafine- and coarse-grained structures is ~3 GPa. The data on the grained structure at different distances from the spall surface and spall fraction patterns and mechanism are presented.

  19. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, J.E.; Goldman, A.I.; Anderson, I.E.; Ellis, T.W.; McCallum, R.W.; Sordelet, D.J.

    1995-07-18

    A method of making quasicrystalline alloy particulates is disclosed wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture. 3 figs.

  20. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, Jeffrey E.; Goldman, Alan I.; Anderson, Iver E.; Ellis, Timothy W.; McCallum, R. William; Sordelet, Daniel J.

    1995-07-18

    A method of making quasicrystalline alloy particulates wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture.

  1. Resistance to Fracture, Fatigue and Stress-Corrosion of Al-Cu-Li-Zr Alloys

    DTIC Science & Technology

    2007-11-02

    Zr alloyý, 4 Heat treatment and hot rolling schedules fur 66 the Al-Cu-Li-Zr alloys 5 Laue transmission analysis of Al-Cu-Li-Zr alloys 67 6 X-ray...ratio, there appears to be an increase in amount of matrix 6 ’ as well as grain boundary precipitates ( 6 , T-phase) (? 4 ). As a result, there is a...containing 6 ’ precipitates that enhance slip planarity and certain titanium alloys (e.g. alloys with acicular astructure), will be expected to have a

  2. On the Role of Dimensionless Elastic Fracture Mechanics.

    DTIC Science & Technology

    1985-07-03

    INDIVIDUAL 22b. TELEPHONE NUMBER 122c. OFFICE SYMS L David A. Glasgow, MAJOR, ’"F ’NA, I DD FORM 1473,83 APR EDTION OF 1 𔃻IB OBSOLETE. unclassified I 5 11...fracture are available in the literature and address various aspects of its consequences, e.g. Goodier in Fracture, Vol. I. The aspect of concern here...various aspects of its consequences, e.g. Goodier in Fracture, Vol. II. The aspect of concern here is the size de- pendence implied by the approach

  3. Application of a shape-memory alloy internal fixator for treatment of acetabular fractures with a follow-up of two to nine years in China

    PubMed Central

    Liu, Xinwei; Xu, Shuogui; Su, Jiacan; Yu, Baoqing

    2009-01-01

    Displaced acetabular fractures should be treated surgically. Over the past decade, surgical approaches to the acetabulum and the surgical technique for repair of common fracture patterns have advanced. Excellent outcomes after repair of these injuries can be achieved. The aim of this study was to assess the medium-term results of reconstruction of acetabular fractures by using shape-memory alloy designed by the authors. This is a retrospective review conducted at a level 1 trauma centre. From October 1999 to July 2009, 19 patients with acetabular fractures were treated with our patented Ni-Ti shape-memory alloy acetabular tridimensional memory alloy-fixation system (ATMFS). The ATMFS device was cooled with ice before implantation and then warmed to 40–50°C after implantation to produce balanced axial and compression forces that would stabilise the fracture three dimensionally. Our results are as follows; according to the D’Aubigne−Postel scoring system: Fifteen cases out of 19 (79%) achieved excellent or good clinical results. In two patients, late complications included avascular necrosis of the femoral head (ANFH) associated with posterior dislocation of the hip joint two years after the operation. We also observed two cases of grade II or III ectopic ossification, with good hip function, and one case of traumatic arthritis. In conclusion, these results demonstrate the effectiveness of the ATMFS device for the management of acetabular fracture. The device provides continuous compression of the fracture with minimal disruption to the local blood supply. PMID:20012433

  4. Continuum model of tensile fracture of pure aluminum and D16 alloy and its application to the shock wave problems

    NASA Astrophysics Data System (ADS)

    Mayer, A. E.

    2016-11-01

    A continuum model of tensile fracture of solid metals is formulated for the cases of pure aluminum and D16 alloy. It is verified within a wide range of strain rates using results of molecular dynamics simulations and known experimental data. The model considers the growth of spherical voids driven by plastic deformation in their vicinities. Both thermofluctuation nucleation of new voids and growth of the pre-existing ones are considered. The stress concentration areas near inclusions are taken into account in the case of alloy. The model is applied to description of the back-side spallation of metal targets exposed to the shock wave loading initiated by high-velocity impact; calculations are performed in 1D case. Results of comparison with known experimental back surface velocity histories are presented.

  5. Mechanical properties and the electronic structure of transition of metal alloys

    NASA Technical Reports Server (NTRS)

    Arsenault, R. J.; Drew, H. D.

    1977-01-01

    This interdiscipline research program was undertaken in an effort to investigate the relationship between the mechanical strength of Mo based alloys with their electronic structure. Electronic properties of these alloys were examined through optical studies, and the classical solid solution strengthening mechanisms were considered, based on size and molecular differences to determine if these mechanisms could explain the hardness data.

  6. A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass

    SciTech Connect

    Bower, Kathleen Marie

    1996-06-01

    Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

  7. The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys.

    PubMed

    Goldberg, Jay R; Gilbert, Jeremy L

    2004-02-01

    The mechanical and electrochemical behavior of the surface oxides of CoCrMo and Ti6Al4V alloys during fracture and repassivation play an important role in the corrosion of the taper interfaces of modular hip implants. This behavior was investigated in one group of CoCrMo and Ti6Al4V alloy samples passivated with nitric acid and another group coated with a novel TiN/AlN coating. The effects of mechanical load and sample potential on peak currents and time constants resulting from fracture of the surface oxide or coating, and the effects of mechanical load on scratch depth were investigated to determine the mechanical and electrochemical properties of the oxides or coating. The polarization behavior of the samples after fracture of the oxide or coating was also investigated. CoCrMo had a stronger surface oxide and higher interfacial adhesion strength, making it more resistant to fracture than Ti6Al4V. If undisturbed, the oxide on the surface of Ti6Al4V significantly reduced dissolution currents at a wider range of potentials than CoCrMo, making Ti6Al4V more resistant to corrosion. The TiN/AlN coating had a higher hardness and modulus of elasticity than CoCrMo and Ti6Al4V. It was much less susceptible to fracture, had a higher interfacial adhesion strength, and was a better barrier to ionic diffusion than the surface oxides on CoCrMo and Ti6Al4V. The coating provided increased corrosion and fretting resistance to the substrate alloys.

  8. PILOT EVALUATION OF VANADIUM ALLOYS.

    DTIC Science & Technology

    ARCS, SHEETS, ROLLING(METALLURGY), HIGH TEMPERATURE, SCIENTIFIC RESEARCH, COMPRESSIVE PROPERTIES, DUCTILITY, CREEP, OXIDATION, COATINGS , SILICIDES , HARDNESS, WELDING, EXTRUSION, TANTALUM ALLOYS, MOLYBDENUM ALLOYS....VANADIUM ALLOYS, * NIOBIUM ALLOYS, MECHANICAL PROPERTIES, MECHANICAL PROPERTIES, TITANIUM ALLOYS, ZIRCONIUM ALLOYS, CARBON ALLOYS, MELTING, ELECTRIC

  9. An extension of fracture mechanics/technology to larger and smaller cracks/defects.

    PubMed

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper.

  10. Cracked finite elements proposed for NASTRAN. [based on application of finite element method to fracture mechanics

    NASA Technical Reports Server (NTRS)

    Aberson, J. A.; Anderson, J. M.

    1973-01-01

    The recent introduction of special crack-tip singularity elements, usually referred to as cracked elements, has brought the power and flexibility of the finite-element method to bear much more effectively on fracture mechanics problems. This paper recalls the development of two cracked elements and presents the results of some applications proving their accuracy and economy. Judging from the available literature on numerical methods in fracture mechanics, it seems clear that the elements described have been used more extensively than any others in practical fracture mechanics applications.

  11. An extension of fracture mechanics/technology to larger and smaller cracks/defects

    PubMed Central

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123

  12. Analysis of seismic sources for different mechanisms of fracture growth for microseismic monitoring applications

    SciTech Connect

    Duchkov, A. A.; Stefanov, Yu. P.

    2015-10-27

    We have developed and illustrated an approach for geomechanic modeling of elastic wave generation (microsiesmic event occurrence) during incremental fracture growth. We then derived properties of effective point seismic sources (radiation patterns) approximating obtained wavefields. These results establish connection between geomechanic models of hydraulic fracturing and microseismic monitoring. Thus, the results of the moment tensor inversion of microseismic data can be related to different geomechanic scenarios of hydraulic fracture growth. In future, the results can be used for calibrating hydrofrac models. We carried out a series of numerical simulations and made some observations about wave generation during fracture growth. In particular when the growing fracture hits pre-existing crack then it generates much stronger microseismic event compared to fracture growth in homogeneous medium (radiation pattern is very close to the theoretical dipole-type source mechanism)

  13. The peel test in experimental adhesive fracture mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Devries, K. L.; Williams, M. L.

    1974-01-01

    Several testing methods have been proposed for obtaining critical energy release rate or adhesive fracture energy in bond systems. These tests include blister, cone, lap shear, and peel tests. Peel tests have been used for many years to compare relative strengths of different adhesives, different surface preparation techniques, etc. The present work demonstrates the potential use of the peel test for obtaining adhesive fracture energy values.

  14. Formation of tetragonal hydrogen tungsten bronze by reactive mechanical alloying

    SciTech Connect

    Urretavizcaya, G. Tonus, F.; Gaudin, E.; Bobet, J.-L.; Castro, F.J.

    2007-10-15

    Hydrogen tungsten bronzes have been synthesized by reactive mechanical alloying monoclinic tungsten (VI) oxide under hydrogen atmosphere. Two milling devices with different energy ranges were used. Regardless of the distinct reaction times, a similar phase evolution was observed with both apparatus. The characterization of the materials was performed by XRD, SEM, DSC and total hydrogen content determination. The final product obtained was a mixture of tetragonal H{sub 0.33}WO{sub 3} and H{sub 0.23}WO{sub 3} bronzes. - Graphical abstract: Hydrogen tungsten bronzes have been synthesized by reactive mechanical alloying (RMA) monoclinic WO{sub 3} under H{sub 2} atmosphere. By using two milling devices with different energy ranges a similar phase evolution with distinct reaction times was observed. The materials were characterized by XRD, SEM, DSC and total hydrogen content determination. The final product obtained was a mixture of tetragonal H{sub 0.33}WO{sub 3} and H{sub 0.23}WO{sub 3} bronzes. Display Omitted.

  15. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    PubMed

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained.

  16. Mechanisms and Management of Stress Fractures in Physically Active Persons

    PubMed Central

    Romani, William A.; Gieck, Joe H.; Perrin, David H.; Saliba, Ethan N.; Kahler, David M.

    2002-01-01

    Objective: To describe the anatomy of bone and the physiology of bone remodeling as a basis for the proper management of stress fractures in physically active people. Data Sources: We searched PubMed for the years 1965 through 2000 using the key words stress fracture, bone remodeling, epidemiology, and rehabilitation. Data Synthesis: Bone undergoes a normal remodeling process in physically active persons. Increased stress leads to an acceleration of this remodeling process, a subsequent weakening of bone, and a higher susceptibility to stress fracture. When a stress fracture is suspected, appropriate management of the injury should begin immediately. Effective management includes a cyclic process of activity and rest that is based on the remodeling process of bone. Conclusions/Recommendations: Bone continuously remodels itself to withstand the stresses involved with physical activity. Stress fractures occur as the result of increased remodeling and a subsequent weakening of the outer surface ofthe bone. Once a stress fracture is suspected, a cyclic management program that incorporates the physiology of bone remodeling should be initiated. The cyclic program should allow the physically active person to remove the source of the stress to the bone, maintain fitness, promote a safe return to activity, and permit the bone to heal properly. PMID:16558676

  17. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  18. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    NASA Astrophysics Data System (ADS)

    Margolin, B.; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-01

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  19. Aluminum alloys for ALS cryogenic tanks: Comparative measurements of cryogenic mechanical properties of Al-Li alloys and Alloy 2219. Final report, Aug 89-Mar 90

    SciTech Connect

    Reed, R.P.; Purtscher, P.T.; Simon, N.J.; McColskey, J.D.; Walsh, R.P.

    1991-10-01

    Tensile and plane-strain fracture toughness properties were obtained at cryogenic temperatures to compare the Al-Li alloys 8090, 2090, and WL049 and alloy 2219 in various tempers and specimen orientations. The strongest alloy at very low temperatures is WL049-T851, which is about 10% stronger than 2090-T81. Both alloys are considerably stronger than 2219-T87. Alloy 2090-T81 is tougher in the in-plane orientations (about 50%) than WL049-T851 at low temperatures; the higher in-plane toughness is attributed to the presence of less constituent particles and the tendency to crack out-of-plane or delaminate at low temperatures. This delamination tends to divide the moving crack, thus separating it into smaller regions where plan stress (rather than plane strain) conditions are conducive to increased toughness. Thus, a dichotomy: reduced toughness in the through-thickness or out-of-plane orientations leads to increased toughness in the in-plane orientations. In service, a leak in the tank is considered failure, and a leak will be caused by a crack in the panels of the tankage growing through the panel thickness. To measure the resistance to crack growth under these conditions, surface-flawed panel tests are recommended.

  20. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.