Science.gov

Sample records for aln buffer layers

  1. GaN on Silicon Substrate with AlN Buffer Layer for UV Photodiode

    NASA Astrophysics Data System (ADS)

    Chuah, L. S.; Thahab, S. M.; Hassan, Z.

    Nitrogen plasma-assisted molecular beam epitaxy (PAMBE) deposited GaN thin films on (111) n-type silicon substrate with different thickness AlN buffer layers are investigated and distinguished by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman scattering. The thickness of AlN buffer layer ranged from 200 nm to 300 nm. Besides that, the electrical characteristics of the GaN thin film for ultraviolet detecting utilizations are studied by calculating the photo current/dark current ratio on a metal-semiconductor-metal (MSM) photodiode with and without the illumination of Hg-lamp source. The devices have been tested over room temperature (RT). The photocurrent analysis, together with the study of Schottky barrier height (SBH) development, ascertain that the principal mechanism of photo transport is thermionic emission. The photocurrent value is rigorously dependent on Schottky barrier height. The GaN/AlN(200 nm)/n-Si MSM photodiode produces the highest photo/dark current ratio for the lowest strain that consists of the GaN film grown on the AlN (200 nm) buffer layer.

  2. Quality-enhanced AlN epitaxial films grown on c-sapphire using ZnO buffer layer for SAW applications

    NASA Astrophysics Data System (ADS)

    Fu, Sulei; Li, Qi; Gao, Shuang; Wang, Guangyue; Zeng, Fei; Pan, Feng

    2017-04-01

    AlN epitaxial films with a thin ZnO buffer layer were successfully deposited on c-sapphire by DC magnetron sputtering for surface acoustic wave (SAW) applications. The effect of ZnO buffer layer thickness on structural properties of AlN epitaxial films and the related SAW properties were investigated systematically. The results revealed that a thin ZnO buffer layer can significantly enhance the crystalline quality of AlN films and release the strain in AlN films. The AlN films were epitaxially grown on ZnO buffered-substrate with orientation relationship of (0001) [ 10 1 bar 0 ] AlN//(0001) [ 10 1 bar 0 ] ZnO//(0001) [2 bar 110 ] Al2O3. High frequency SAW devices with a center frequency of 1.4 GHz, a phase velocity of 5600 m/s were achieved on the obtained AlN films. The optimum ZnO buffer layer thickness was found to be 10 nm, resulting in high-quality epitaxial AlN films with a FWHM value of the rocking curve of 0.84°, nearly zero stress and low insertion loss of SAW devices. This work offers an effective approach to achieve high-quality AlN epitaxial films on sapphire substrates for the applications of AlN-based SAW devices.

  3. A nanoporous AlN layer patterned by anodic aluminum oxide and its application as a buffer layer in a GaN-based light-emitting diode.

    PubMed

    Chen, Lung-Chien; Wang, Chih-Kai; Huang, Jenn-Bin; Hong, Lu-Sheng

    2009-02-25

    This work investigates a nanoporous aluminum nitride (AlN) layer prepared using an anodic aluminum oxide (AAO) process and its application as a buffer layer for a GaN-based light-emitting diode (LED) fabricated on sapphire substrate. Following this AAO process, the average pore spacing and pore diameter of the nanoporous AlN layer were in the ranges 180-200 nm and 100-150 nm, respectively. The light output power of the GaN-based LED with a nanoporous AlN layer was about 53% higher than that of a GaN-based LED without a nanoporous AlN layer at an injection current of 20 mA. At an injection current of 80 mA, the light output power was increased by about 34%.

  4. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Niu, Mu Tong; Zhang, Ji Cai; Wang, Wei; wang, Jian Feng; Xu, Ke

    2017-02-01

    Crystalline qualities of three AlN films grown by cold-wall high temperature hydride vapor phase epitaxy (CW-HT-HVPE) on c-plane sapphire substrates, with different AlN buffer layers (BLs) deposited either by CW-HT-HVPE or by hot-wall low temperature hydride vapor phase epitaxy (HW-LT-HVPE), have been studied. The best film quality was obtained on a 500-nm-thick AlN BL grown by HW-LT-HVPE at 1000 ℃. In this case,the AlN epilayer has the lowest full-width at half-maximum (FWHM) values of the (0002) and (10-12) x-ray rocking curve peaks of 295 and 306 arcsec, respectively, corresponding to the screw and edge threading dislocation (TD) densities of 1.9×108 cm-2 and 5.2×108 cm-2. This improvement in crystal quality of the AlN film can be attributed to the high compressive-stress of BL grown by HW-LT-HVPE,which facilitate the inclination and annihilation of TDs.

  5. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Brubaker, Matt D.; Rourke, Devin M.; Sanford, Norman A.; Bertness, Kris A.; Bright, Victor M.

    2011-09-01

    Low-temperature AlN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AlN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AlN V/III flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AlN columns, including the size and the degree of tilt. Piezoresponse force microscopy and polarity-sensitive etching indicate that the AlN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nucleation sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AlN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AlN buffer layers grown under slightly N-rich conditions (V/III flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.

  6. Effect of AlN buffer layers on the structural and optoelectronic properties of InN/AlN/Sapphire heterostructures grown by MEPA-MOCVD

    NASA Astrophysics Data System (ADS)

    Indika, S. M. K.; Seidlitz, Daniel; Fali, Alireza; Cross, Brendan; Abate, Yohannes; Dietz, Nikolaus

    2016-09-01

    This contribution presents results on the structural and optoelectronic properties of InN layers grown on AlN/sapphire (0001) templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPAMOCVD). The AlN nucleation layer (NL) was varied to assess the physical properties of the InN layers. For ex-situ analysis of the deposited structures, Raman spectroscopy, Atomic Force Microscopy (AFM), and Fourier Transform Infrared (FTIR) reflectance spectroscopy have been utilized. The structural and optoelectronic properties are assessed by Raman-E2 high FWHM values, surface roughness, free carrier concentrations, mobility of the free carriers, and high frequency dielectric function. This study focus on optimizing the AlN nucleation layer (e.g. temporal precursor exposure, nitrogen plasma exposure, plasma power and AlN buffer growth temperature) and its effect on the InN layer properties.

  7. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers

    PubMed Central

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-01-01

    We report the anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11–22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1–100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting. PMID:26861595

  8. RF-MBE growth of cubic AlN on MgO (001) substrates via 2-step c-GaN buffer layer

    NASA Astrophysics Data System (ADS)

    Kakuda, M.; Morikawa, S.; Kuboya, S.; Katayama, R.; Yaguchi, H.; Onabe, K.

    2013-09-01

    We fabricated cubic AlN (c-AlN) films on MgO (001) substrates via 2-step c-GaN buffer layer by radio-frequency-plasma-assisted molecular beam epitaxy (RF-MBE). The effect of low temperature c-GaN buffer layer on the surface flatness and crystal quality of c-AlN was investigated by AFM and XRD reciprocal space mapping analysis. We examined optical properties of the c-AlN film by spectroscopic ellipsometry. The absorption edge by the direct transition of the c-AlN film was 5.95 eV caused by the hexagonal phase incorporation.

  9. Single crystalline AlN film formed by direct nitridation of sapphire using aluminum oxynitride buffer

    NASA Astrophysics Data System (ADS)

    Nakao, Wataru; Fukuyama, Hiroyuki

    2003-12-01

    A noble method forming single crystalline AlN films has been developed as a new substrate for blue/UV light emitters. Sapphire substrates have been nitrided by appropriate CO-N 2 gas mixtures saturated with graphite based on the chemical potential diagram of the Al-N-O-C system. The nitrided surface of sapphire consists of consecutive layers of AlN and γ-aluminum oxynitride (γ-ALON) with low-level dislocation density, where the γ-ALON layer spontaneously forms as an equilibrium phase and acts as a buffer. The lattice mismatch between sapphire substrate and AlN layer has been effectively reduced by using the γ-ALON buffer, which significantly attributes to the growth of single crystalline AlN.

  10. Mechanism for persistent hexagonal island formation in AlN buffer layer during growth on Si (111) by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Hsu, K.-Y.; Chung, H.-C.; Liu, C.-P.; Tu, L.-W.

    2007-05-21

    The characteristics of structure and morphology of AlN grown by a growth interruption method on Si (111) with plasma-assisted molecular beam epitaxy are investigated. It is found that the growth interruption method would improve the surface flatness of the AlN layer without the formation of Al droplets. However, AlN hexagonal islands were present and persistent throughout the entire growth owing to effective strain relaxation and Eherlich-Schowebel barrier effect of preexistent surface islands grown on higher terraces of the Si substrate. The density of threading dislocations underneath the hexagonal islands is much less than elsewhere in the film, which is presumably due to dislocation annihilation during the island growth process.

  11. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-05

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  12. Methods for improved growth of group III nitride buffer layers

    DOEpatents

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  13. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE

    NASA Astrophysics Data System (ADS)

    Kumagai, Yoshinao; Enatsu, Yuuki; Ishizuki, Masanari; Kubota, Yuki; Tajima, Jumpei; Nagashima, Toru; Murakami, Hisashi; Takada, Kazuya; Koukitu, Akinori

    2010-09-01

    Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50-200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H 2 and NH 3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×10 8 cm -2.

  14. Undoped Buffer Layer Development.

    DTIC Science & Technology

    1984-01-01

    boiled for several hours in aqua regia , followed by boiling for several more hours in deionized water before being dried in air and loaded into the...different from Report) 1S. SUPPLEMENTARY NOTES it. IKy WORDS (Canal... an reverse 4aaIo It eesarav d Ientify by block nuinbr) Epitaxial layer MBE

  15. Silicon induced defect reduction in AlN template layers for epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Mogilatenko, A.; Knauer, A.; Zeimer, U.; Hartmann, C.; Oppermann, H.; Weyers, M.

    2017-03-01

    The effect of Si doping on defect density in AlN layers grown on sapphire was analysed. Si concentration in the range of 1019 cm-3 leads to dislocation line inclination in AlN layers with a threading dislocation density of 3×1010 cm-2. Overgrowth of Si doped AlN layers by non-intentionally doped AlN results in a reduction of threading dislocation density by a factor of two. In contrast, an increase of the Si concentration to an order of 1020 cm-3 leads to a structural degradation of the AlN layers. The degradation process takes place through transformation to columnar-like growth. In a second experiment the AlN/AlN:Si/AlN layers with a decreased defect density were trench-patterned and used for subsequent epitaxial lateral overgrowth. In comparison to the epitaxial lateral overgrowth of non-intentionally doped AlN templates, the use of the AlN templates containing an AlN:Si interlayer allows to reduce the threading dislocation density in the defect-rich regions above the ridges in 6 μm thick epitaxial laterally overgrown AlN by a factor of 2.5.

  16. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  17. Effects of AlN Coating Layer on High Temperature Characteristics of Langasite SAW Sensors

    PubMed Central

    Shu, Lin; Peng, Bin; Cui, Yilin; Gong, Dongdong; Yang, Zhengbing; Liu, Xingzhao; Zhang, Wanli

    2016-01-01

    High temperature characteristics of langasite surface acoustic wave (SAW) devices coated with an AlN thin film have been investigated in this work. The AlN films were deposited on the prepared SAW devices by mid-frequency magnetron sputtering. The SAW devices coated with AlN films were measured from room temperature to 600 °C. The results show that the SAW devices can work up to 600 °C. The AlN coating layer can protect and improve the performance of the SAW devices at high temperature. The SAW velocity increases with increasing AlN coating layer thickness. The temperature coefficients of frequency (TCF) of the prepared SAW devices decrease with increasing thickness of AlN coating layers, while the electromechanical coupling coefficient (K2) of the SAW devices increases with increasing AlN film thickness. The K2 of the SAW devices increases by about 20% from room temperature to 600 °C. The results suggest that AlN coating layer can not only protect the SAW devices from environmental contamination, but also improve the K2 of the SAW devices. PMID:27608027

  18. Dynamic measurements of actuators driven by AlN layers

    NASA Astrophysics Data System (ADS)

    Kacperski, Jacek; Kujawinska, Malgorzata; Leon, Sergio Camacho; Nieradko, Lukasz; Jozwik, Michal; Gorecki, Christophe

    2005-09-01

    Micro-Electro-Mechanical Systems are nowadays frequently used in many fields of industry. The number of their applications increase and their functions became more complex and demanding. Therefore precise knowledge about their static (shape, deformations, stresses) and dynamic (resonance frequencies, amplitude and phase of vibration) properties is necessary. Two beam laser interferometry is one of the most popular testing methods of micromechanical elements as a non-contact, high-accurate method allowing full-field measurement. First part of the paper present microbeam actuators designed for MEMS/MOEMS applications. The proposed structures are the straight silicon microbeams formed by KOH etching of Si wafer. Aluminium nitride (AlN) thin films are promising materials for many acoustic and optic applications in MEMS field. In the proposed architecture the actuation layer is sandwiched between two metal electrodes on the top of beam. In the second part we describe the methodology of the actuator characterization. These methods applied are: stroboscopic interferometry and active interferometry (LCOS SLM is used as a reference surface in Twyman-Green interferometer). Moreover some results of FEM analysis of the sample are shown and compared with experimental results. Dynamic measurements validate the design and simulations, and provide information for optimization of the actuator manufacturing process.

  19. Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy

    SciTech Connect

    Nepal, N.; Qadri, S. B.; Hite, J. K.; Mahadik, N. A.; Mastro, M. A.; Eddy, C. R. Jr.

    2013-08-19

    Thin AlN layers were grown at 200–650 °C by plasma assisted atomic layer epitaxy (PA-ALE) simultaneously on Si(111), sapphire (1120), and GaN/sapphire substrates. The AlN growth on Si(111) is self-limited for trimethyaluminum (TMA) pulse of length > 0.04 s, using a 10 s purge. However, the AlN nucleation on GaN/sapphire is non-uniform and has a bimodal island size distribution for TMA pulse of ≤0.03 s. The growth rate (GR) remains almost constant for T{sub g} between 300 and 400 °C indicating ALE mode at those temperatures. The GR is increased by 20% at T{sub g} = 500 °C. Spectroscopic ellipsometry (SE) measurement shows that the ALE AlN layers grown at T{sub g} ≤ 400 °C have no clear band edge related features, however, the theoretically estimated band gap of 6.2 eV was measured for AlN grown at T{sub g} ≥ 500 °C. X-ray diffraction measurements on 37 nm thick AlN films grown at optimized growth conditions (T{sub g} = 500 °C, 10 s purge, 0.06 s TMA pulse) reveal that the ALE AlN on GaN/sapphire is (0002) oriented with rocking curve full width at the half maximum (FWHM) of 670 arc sec. Epitaxial growth of crystalline AlN layers by PA-ALE at low temperatures broadens application of the material in the technologies that require large area conformal growth at low temperatures with thickness control at the atomic scale.

  20. Buffer layer for thin film structures

    SciTech Connect

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  1. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  2. Magnetic behavior of CoPt-AlN granular structure laminated with AlN layers

    NASA Astrophysics Data System (ADS)

    Yu, Youxing; Shi, Ji; Nakamura, Yoshio

    2011-04-01

    The magnetic behavior of CoPt-AlN granular structure laminated with AlN layers has been studied. Ultrathin multilayer structure, [CoPt0.5 nm/AlN0.5nm]4, is used as the precursor of the magnetic layers, which are separated by 5-nm-thick AlN layers. Upon thermal annealing, the ultrathin multilayer transforms into CoPt-AlN granular structure, and the thick AlN layers remain to be spacers. When the film was annealed at 400 °C, the out-of-plane direction becomes the easy axis of magnetization, although the coercivity remains small. TEM observation has proved that CoPt shows disklike shape at such an annealing temperature. When increasing the annealing temperature to 600 °C and above, the films show "isotropic" magnetic behavior due to the formation of equiaxial CoPt particles in the magnetic layers.

  3. Growth and optical properties of AlN homoepitaxial layers grown by ammonia-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Iwata, Shiro; Nanjo, Yoshiyuki; Okuno, Toshihiro; Kurai, Satoshi; Taguchi, Tsunemasa

    2007-04-01

    We have performed the homoepitaxial growth of high-crystalline quality Aluminium nitride (AlN) epilayers by the ammonia-gas source (GS) molecular-beam epitaxy method using the hydride vapor-phase epitaxy (HVPE) grown AlN thin layers as substrates. Surface morphologies and step-bunching structures of the homoepitaxially grown AlN epilayers were evaluated using in situ reflection high-energy electron diffraction (RHEED) patterns and scanning probe microscopy. It is noted that the step height of several monolayers was achieved on the surface of homoepitaxial layers. The homoepitaxial AlN thin films had the same or improved crystalline quality compared with the HVPE-grown AlN layers from X-ray rocking curve measurements, and its optical properties were investigated using cathodoluminescence measurements. Excitonic emission, which originates from the A free-exciton transition, was clearly observed in the present high-quality homoepitaxial AlN epilayers.

  4. Improvement of OLED properties with the AlN insulated layer

    NASA Astrophysics Data System (ADS)

    Liu, Chunling; Wang, Jin; Wang, Chunwu; Zhao, Lei; Jiang, Wenlong

    2010-11-01

    The thin aluminum nitride(AlN) film using as an insulating layer was inserted between the anode (ITO) and the NPB organic film in the organic light-emitting devices(OLED) for the structure being K9/ITO/AlN/NPB/Alq3/LiF/Al.The effect of the different thickness AlN film on the device performance was investigated. After optimization, improvement of OLEDs properties is biggest when the AlN film thickness is about 0.4nm.Such a structure with AlN layer facilitates the increase of current density and decrease of threshold voltage, resulting in an improved luminance and energy efficiency. The average luminance increased by about 30% and an improvement of 21.8% on the average current density. The lifetime experiment of the devices has proved an improvement on stability because of inserted AlN film. This phenomenon is mainly because of the insulating capability of the aluminum nitride coating and the passivation role of AlN film to the ITO surface. The processing is simple and high efficient, can be widely applied to the OLED devices.

  5. Interface roughness of double buffer layer of GaN film grown on Si(1 1 1) substrate using GIXR analysis

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Yamabe, N.; Ohachi, T.

    2011-03-01

    A double buffer layer (DBL), interface reaction epitaxy (IRE) AlN/β-Si3N4/Si, grown by an IRE of β-Si3N4 and AlN films on Si, was fabricated to improve the crystalline quality of successively grown 30 nm GaN on a 30 nm AlN buffer layer using plasma-assisted molecular beam epitaxy (PA-MBE). The DBL was first prepared by surface nitridation of Si and successively prepared by IRE between the deposited Al and N atoms in β-Si3N4. Both the AlN buffer layer on the DBL and GaN film on the AlN buffer layer were grown by activity-modulation migration enhanced epitaxy (AM-MEE). Hetero epitaxial grown films of GaN(30 nm)/AlN buffer(30 nm)/DBL/Si(1 1 1) were prepared for analysis using a three layer model of grazing incidence-angle X-ray reflectivity (GIXR), which consisted of three layers of GaN, AlN buffer and Si and of the three interfaces of the GaN surface, GaN/AlN buffer and AlN buffer/DBL/Si. The nitridation temperature dependence of the interface roughness of the DBL was measured to be 0.5 and 0.6 nm, for nitridation temperatures of 780 and 830 °C, respectively. The full width at half maximum (FWHM) of rocking curve GaN(0 0 0 2) measured by X-ray diffraction (XRD) for nitridation temperatures of 780 and 830 °C were 58.2 and 55.2 arcmin, respectively.

  6. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  7. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    NASA Astrophysics Data System (ADS)

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  8. Semipolar AlN and GaN on Si(100): HVPE technology and layer properties

    NASA Astrophysics Data System (ADS)

    Bessolov, V.; Kalmykov, A.; Konenkova, E.; Kukushkin, S.; Myasoedov, A.; Poletaev, N.; Rodin, S.

    2017-01-01

    Hydride vapor phase epitaxy (HVPE) growth of semipolar AlN and GaN layers on planar Si(100) substrates with SiC nanolayer is investigated. It is shown experimentally that the solid-phase epitaxial formation of a specially oriented SiC nucleation layer followed by epitaxy of AlN layer by HVPE at low rates enables growth of aluminum and gallium nitrides in the semipolar direction. For the best GaN(20-23) layers obtained, the full width at half maximum (FWHM) value for the x-ray diffraction rocking curve is 24 arcmin. The photoluminescence spectrum of the semipolar GaN measured at 4 K exhibits bands related to basal-plane and prismatic stacking faults (BSF and PSF).

  9. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    NASA Astrophysics Data System (ADS)

    Chen, Shuo-Wei; Li, Heng; Lu, Tien-Chang

    2016-04-01

    The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs) with ex-situ sputtered physical vapor deposition (PVD) aluminum nitride (AlN) nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study shows the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.

  10. Buffer layers on biaxially textured metal substrates

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  11. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200 °C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2–21.5 MV/m), Schottky emission (23.6–39.5 MV/m), Frenkel-Poole emission (63.8–211.8 MV/m), trap-assisted tunneling (226–280 MV/m), and Fowler-Nordheim tunneling (290–447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  12. Growing oriented AlN films on sapphire substrates by plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tarala, V. A.; Altakhov, A. S.; Ambartsumov, M. G.; Martens, V. Ya.

    2017-01-01

    The possibility of growing oriented AlN films on Al2O3 substrates at temperatures below 300°C by plasma-enhanced atomic layer deposition was examined. The samples were subjected to X-ray phase analysis and ellipsometry. It was demonstrated that the refraction index of films deposited with plasma exposures longer than 20 s was 2.03 ± 0.03. The (0002) and (0004) reflections at 2Θ angles of 35.7° and 75.9° were present in the X-ray diffraction patterns of these samples. These reflections are typical of the hexagonal AlN polytype. The full width at half maximum of the rocking curve of reflection (0002) in the best sample was 162 ± 11 arcsec.

  13. Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-12-03

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  14. Lightwave coupler utilizing a tapered buffer layer.

    PubMed

    Kishioka, K

    1988-06-01

    We discuss the performance of a lightwave coupler utilizing a tapered buffer layer. The coupler with a ridge waveguide is fabricated on a glass substrate and high coupling efficiencies of 75% and 50% are measured for the operations of coupling from the waveguide to a light beam and from the laser beam into the waveguide, respectively. Further, experimental results of the rigid connection between the optical fiber and the waveguide are demonstrated. We also describe how the coupler differs from the conventional tapered guiding-layer coupler.

  15. Impact of high-temperature annealing of AlN layer on sapphire and its thermodynamic principle

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hiroyuki; Miyake, Hideto; Nishio, Gou; Suzuki, Shuhei; Hiramatsu, Kazumasa

    2016-05-01

    The N2-CO gas annealing technique was demonstrated to improve the crystalline quality of the AlN layer on sapphire. 300-nm-thick AlN layers were fabricated on sapphire substrates by a metal-organic vapor phase epitaxy method. The AlN layers were annealed in N2 and/or N2-CO gas atmosphere at 1923-1973 K for 0.5-4 h. Many pits and voids were observed on the AlN surface annealed in N2 atmosphere at 1973 K for 2 h. The rough surface was, however, much improved for the AlN annealed in N2-CO gas atmosphere. The thermodynamic principle of the N2-CO gas annealing technique is explained in this paper on the basis of the phase stability diagram of the Al2O3-AlN-C-N2-CO system. Voids and γ-aluminum oxynitride (γ-AlON) at the AlN/sapphire interface formed during the annealing, which is also explained on the basis of the phase stability diagram. The in-plane epitaxial relationships among AlN, γ-AlON, and sapphire are presented, and misfits among them are discussed.

  16. Significant improvement of GaN crystal quality with ex-situ sputtered AlN nucleation layers

    NASA Astrophysics Data System (ADS)

    Chen, Shuo-Wei; Yang, Young; Wen, Wei-Chih; Li, Heng; Lu, Tien-Chang

    2016-03-01

    Ex-situ sputtered AlN nucleation layer has been demonstrated effective to significantly improve crystal quality and electrical properties of GaN epitaxy layers for GaN based Light-emitting diodes (LEDs). In this report, we have successfully reduced X-ray (102) FWHM from 240 to 110 arcsec, and (002) FWHM from 230 to 101 arcsec. In addition, reverse-bias voltage (Vr) increased around 20% with the sputtered AlN nucleation layer. Furthermore, output power of LEDs grown on sputtered AlN nucleation layer can be improved around 4.0% compared with LEDs which is with conventional GaN nucleation layer on pattern sapphire substrate (PSS).

  17. Buffer layers and articles for electronic devices

    DOEpatents

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  18. Morphology and arrangement of InN nanocolumns deposited by radio-frequency sputtering: Effect of the buffer layer

    NASA Astrophysics Data System (ADS)

    Monteagudo-Lerma, L.; Valdueza-Felip, S.; Núñez-Cascajero, A.; Ruiz, A.; González-Herráez, M.; Monroy, E.; Naranjo, F. B.

    2016-01-01

    We present the structural and optical properties of (0001)-oriented nanocolumnar films of InN deposited on c-sapphire substrates by radio-frequency reactive sputtering. It is observed that the column density and dimensions are highly dependent on the growth parameters of the buffer layer. We investigate four buffer layers consisting of (i) 30 nm of low-growth-rate InN, (ii) 30 nm of AlN deposited on the unbiased substrate (us), (iii) 30 nm of AlN deposited on the reverse-biased substrate (bs), and (iv) a 60-nm-thick bilayer consisting of 30-nm-thick bs-AlN deposited on top of 30-nm-thick us-AlN. Differences in the layer nucleation process due to the buffer layer induce variations of the column density in the range of (2.5-16)×109 cm-2, and of the column diameter in the range of 87-176 nm. Best results in terms of mosaicity are obtained using the bs-AlN buffer layer, which leads to a full width at half-maximum of the InN(0002) rocking curve of 1.2°. A residual compressive strain is still present in the nanocolumns. All samples exhibit room temperature photoluminescence emission at ~1.6 eV, and an apparent optical band gap at ~1.7 eV estimated from linear optical transmittance measurements.

  19. Buffer layer optimization for high efficiency CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Severino, N.; Bednar, N.; Adamovic, N.

    2016-10-01

    This work presents a study concerning the numerical optimization of a buffer layer for high efficiency CIGS solar cells. The dependence of the solar cell properties on the buffer layer material, the layer thickness, the type and density of defects within the same layer were numerically investigated and analysed. Promising results were obtained with alternative Cd-free buffer layers (ZnSnO, InS and ZnS) in place of the standard CdS.

  20. Back contact buffer layer for thin-film solar cells

    DOEpatents

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  1. MOCVD growth of N-polar GaN on on-axis sapphire substrate: Impact of AlN nucleation layer on GaN surface hillock density

    NASA Astrophysics Data System (ADS)

    Marini, Jonathan; Leathersich, Jeffrey; Mahaboob, Isra; Bulmer, John; Newman, Neil; (Shadi) Shahedipour-Sandvik, F.

    2016-05-01

    We report on the impact of growth conditions on surface hillock density of N-polar GaN grown on nominally on-axis (0001) sapphire substrate by metal organic chemical vapor deposition (MOCVD). Large reduction in hillock density was achieved by implementation of an optimized high temperature AlN nucleation layer and use of indium surfactant in GaN overgrowth. A reduction by more than a factor of five in hillock density from 1000 to 170 hillocks/cm-2 was achieved as a result. Crystal quality and surface morphology of the resultant GaN films were characterized by high resolution x-ray diffraction and atomic force microscopy and found to be relatively unaffected by the buffer conditions. It is also shown that the density of smaller surface features is unaffected by AlN buffer conditions.

  2. Improved output power of GaN-based ultraviolet light-emitting diodes with sputtered AlN nucleation layer

    NASA Astrophysics Data System (ADS)

    Chiu, C. H.; Lin, Y. W.; Tsai, M. T.; Lin, B. C.; Li, Z. Y.; Tu, P. M.; Huang, S. C.; Hsu, Earl; Uen, W. Y.; Lee, W. I.; Kuo, H. C.

    2015-03-01

    In this work, the ultraviolet light-emitting diodes (UV-LEDs) at 380 nm were grown on patterned sapphire substrate (PSS) by atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD). A sputtered AlN nucleation layer was utilized on the PSS to enhance the quality of the epitaxial layer. By using high-resolution X-ray diffraction, the full-width at half-maximum of the rocking curve shows that the UV-LEDs with sputtered AlN nucleation layer had better crystalline quality when compared to conventional GaN nucleation samples. From the scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, it can be observed that the tip and sidewall portion of the pattern was smooth using the sputtered AlN nucleation layer. The threading dislocation densities (TDDs) are reduced from 6×107 cm-2 to 2.5×107 cm-2 at the interface between the u-GaN layers for conventional and AlN PSS devices, respectively. As a result, a much higher light output power was achieved. The light output power at an injection current of 20 mA was enhanced by 30%. Further photoluminescence (PL) measurement and numerical simulation confirm that this increase of output power can be attributed to the improvement of material quality and light extraction.

  3. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    SciTech Connect

    Bairamis, A.; Zervos, Ch.; Georgakilas, A.; Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as the AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.

  4. Thin film photovoltaic devices with a minimally conductive buffer layer

    DOEpatents

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  5. Buffer layers for REBCO films for use in superconducting devices

    DOEpatents

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  6. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-10-05

    An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.

  7. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  8. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOEpatents

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  9. Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H2/N2 plasma

    NASA Astrophysics Data System (ADS)

    Goerke, Sebastian; Ziegler, Mario; Ihring, Andreas; Dellith, Jan; Undisz, Andreas; Diegel, Marco; Anders, Solveig; Huebner, Uwe; Rettenmayr, Markus; Meyer, Hans-Georg

    2015-05-01

    Aluminum nitride (AlN) thin films with thicknesses from 20 to 100 nm were deposited on silicon, amorphous silica, silicon nitride, and vitreous carbon by plasma enhanced atomic layer deposition (PE-ALD). Trimethylaluminum (TMA) and a H2/N2 plasma mixture were used as precursors. We investigated the influence of deposition temperature and plasma parameters on the growth characteristics and the film properties of AlN. Stable PE-ALD growth conditions were obtained from 150 °C to the highest tested temperature of 300 °C. The growth rate, refractive index, and thickness homogeneity on 4″ wafers were determined by spectroscopic ellipsometry. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Rutherford backscattering spectrometry (RBS) were carried out to analyze crystallinity and composition of the films. Furthermore, the thermal conductivity and the film stress were determined. The stress was sufficiently low to fabricate mechanically stable free-standing AlN membranes with lateral dimensions of up to 2.2 × 2.2 mm2. The membranes were patterned with focused ion beam etching. Thus, these AlN membranes qualify as dielectric support material for a variety of potential applications.

  10. On buffer layers as non-reflecting computational boundaries

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  11. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  12. Enhanced adhesion for LIGA microfabrication by using a buffer layer

    DOEpatents

    Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.

    2001-01-01

    The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).

  13. Enhanced adhesion for LIGA microfabrication by using a buffer layer

    DOEpatents

    Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.

    2004-01-27

    The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).

  14. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  15. Method of depositing buffer layers on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  16. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  17. Influence of high-temperature AlN intermediate layer on the optical properties of MOCVD grown AlGaN films

    NASA Astrophysics Data System (ADS)

    Xie, Deng; Qiu, Zhi Ren; Liu, Yao; Talwar, Devki N.; Wan, Lingyu; Zhang, Xiong; Mei, Ting; Ferguson, Ian T.; Feng, Zhe Chuan

    2017-02-01

    By combining spectroscopic ellipsometry (SE) and optical transmission (OT) characterization methods we have systematically investigated the influence of AlN intermediate layer and AlN transition layer on the optical properties of AlGaN epilayers grown on sapphire by metalorganic chemical vapor deposition (MOCVD) method. Most dielectric functions of III-nitrides obtained by different research groups show significant band-tail absorption—which is not anticipated for such a direct band gap material. The dielectric functions are studied for a series of AlGaN/AlN/Al2O3 structures, with a four-layer model taking into account both high temperature grown AlN layer and low temperature grown AlN layer. The results obtained by fitting the optical parameters to experimental data show that the band-tail absorption should originate from the transition layer. AlGaN film without high temperature AlN epilayer exhibited a redshift of band gap around 0.24 eV.

  18. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  19. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan; Goyal, Amit; Barnett, Scott A.; Kim, Ilwon; Kroeger, Donald M.

    2004-08-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.

  20. Microscopic potential fluctuations in Si-doped AlGaN epitaxial layers with various AlN molar fractions and Si concentrations

    SciTech Connect

    Kurai, Satoshi Yamada, Yoichi; Miyake, Hideto; Hiramatsu, Kazumasa

    2016-01-14

    Nanoscopic potential fluctuations of Si-doped AlGaN epitaxial layers with the AlN molar fraction varying from 0.42 to 0.95 and Si-doped Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with Si concentrations of 3.0–37 × 10{sup 17 }cm{sup −3} were investigated by cathodoluminescence (CL) imaging combined with scanning electron microscopy. The spot CL linewidths of AlGaN epitaxial layers broadened as the AlN molar fraction was increased to 0.7, and then narrowed at higher AlN molar fractions. The experimental linewidths were compared with the theoretical prediction from the alloy broadening model. The trends displayed by our spot CL linewidths were consistent with calculated results at AlN molar fractions of less than about 0.60, but the spot CL linewidths were markedly broader than the calculated linewidths at higher AlN molar fractions. The dependence of the difference between the spot CL linewidth and calculated line broadening on AlN molar fraction was found to be similar to the dependence of reported S values, indicating that the vacancy clusters acted as the origin of additional line broadening at high AlN molar fractions. The spot CL linewidths of Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with the same Al concentration and different Si concentrations were nearly constant in the entire Si concentration range tested. From the comparison of reported S values, the increase of V{sub Al} did not contribute to the linewidth broadening, unlike the case of the V{sub Al} clusters.

  1. Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yu; Tzou, An-Jye; Lin, Bing-Cheng; Lan, Yu-Pin; Chiu, Ching-Hsueh; Chi, Gou-Chung; Chen, Chi-Hsiang; Kuo, Hao-Chung; Lin, Ray-Ming; Chang, Chun-Yen

    2014-09-01

    The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8 × 107 cm-2 to 2.6 × 107 cm-2. Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer.

  2. Substrate-induced magnetism in epitaxial graphene buffer layers.

    PubMed

    Ramasubramaniam, A; Medhekar, N V; Shenoy, V B

    2009-07-08

    Magnetism in graphene is of fundamental as well as technological interest, with potential applications in molecular magnets and spintronic devices. While defects and/or adsorbates in freestanding graphene nanoribbons and graphene sheets have been shown to cause itinerant magnetism, controlling the density and distribution of defects and adsorbates is in general difficult. We show from first principles calculations that graphene buffer layers on SiC(0001) can also show intrinsic magnetism. The formation of graphene-substrate chemical bonds disrupts the graphene pi-bonds and causes localization of graphene states near the Fermi level. Exchange interactions between these states lead to itinerant magnetism in the graphene buffer layer. We demonstrate the occurrence of magnetism in graphene buffer layers on both bulk-terminated as well as more realistic adatom-terminated SiC(0001) surfaces. Our calculations show that adatom density has a profound effect on the spin distribution in the graphene buffer layer, thereby providing a means of engineering magnetism in epitaxial graphene.

  3. On the feasibility of silicene encapsulation by AlN deposited using an atomic layer deposition process

    SciTech Connect

    Van Bui, H. E-mail: M.P.deJong@utwente.nl; Wiggers, F. B.; Kovalgin, A. Y.; Jong, M. P. de E-mail: M.P.deJong@utwente.nl; Friedlein, R.; Yamada-Takamura, Y.

    2015-02-14

    Since epitaxial silicene is not chemically inert under ambient conditions, its application in devices and the ex-situ characterization outside of ultrahigh vacuum environments require the use of an insulating capping layer. Here, we report on a study of the feasibility of encapsulating epitaxial silicene on ZrB{sub 2}(0001) thin films grown on Si(111) substrates by aluminum nitride (AlN) deposited using trimethylaluminum (TMA) and ammonia (NH{sub 3}) precursors. By in-situ high-resolution core-level photoelectron spectroscopy, the chemical modifications of the surface due to subsequent exposure to TMA and NH{sub 3} molecules, at temperatures of 300 °C and 400 °C, respectively, have been investigated. While an AlN-related layer can indeed be grown, silicene reacts strongly with both precursor molecules resulting in the formation of Si–C and Si–N bonds such that the use of these precursors does not allow for the protective AlN encapsulation that leaves the electronic properties of silicene intact.

  4. Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Takahashi, Nobuaki; Nagashio, Kosuke

    2016-12-01

    The integration of a high-k oxide on graphene using atomic layer deposition requires an electrically reliable buffer layer. In this study, Y was selected as the buffer layer due to its highest oxidation ability among the rare-earth elements, and various oxidation methods (atmospheric, and high-pressure O2 and ozone annealing) were applied to the Y metal buffer layer. By optimizing the oxidation conditions of the top-gate insulator, we successfully improved the capacitance of the top gate Y2O3 insulator and demonstrated a large I on/I off ratio for bilayer graphene under an external electric field.

  5. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    SciTech Connect

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; Lin, Yi -Hsuan; Machuca, Francisco; Weiss, Robert; Welsh, Alex; McCartney, Martha R.; Smith, David J.; Kravchenko, Ivan I.

    2016-09-21

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffer layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 108 cm–2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (fT) of 8.9 GHz and a maximum frequency of oscillation (fmax) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.

  6. Semiconducting chalcogenide buffer layer for oxide heteroepitaxy on Si(001)

    NASA Astrophysics Data System (ADS)

    Schmidt, D. A.; Ohta, Taisuke; Lu, C.-Y.; Bostwick, Aaron A.; Yu, Q.; Rotenberg, Eli; Ohuchi, F. S.; Olmstead, Marjorie A.

    2006-05-01

    We report controlled laminar growth of a crystalline transition metal oxide on Si(001) without SiOx or silicide formation by utilizing the chalcogenide semiconductor gallium sesquiselenide (Ga2Se3) as a nonreactive buffer layer. Initial nucleation of both pure and Co-doped anatase (TiO2) is along Ga2Se3 nanowire structures, coalescing to a flat, multidomain film within two molecular layers. Arsenic-terminated Si(001) [Si(001):As] is stable against pure O2, but oxidizes when both Ti and O2 are present. The Si -TiO2 valence band offset using either buffer layer is about 2.8eV, producing a staggered band alignment.

  7. A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan

    2017-03-01

    In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage ( C- V) and current-voltage ( I- V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density ( N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.

  8. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ˜5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density-voltage and frequency dependent (7 kHz-5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole-Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  9. A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan

    2016-12-01

    In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage (C-V) and current-voltage (I-V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density (N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.

  10. Improved thermal stability and electrical properties of atomic layer deposited HfO{sub 2}/AlN high-k gate dielectric stacks on GaAs

    SciTech Connect

    Cao, Yan-Qiang; Li, Xin; Zhu, Lin; Cao, Zheng-Yi; Wu, Di; Li, Ai-Dong

    2015-01-15

    The thermal stability and electrical properties of atomic layer deposited HfO{sub 2}/AlN high-k gate dielectric stacks on GaAs were investigated. Compared to HfO{sub 2}/Al{sub 2}O{sub 3} gate dielectric, significant improvements in interfacial quality as well as electrical characteristics after postdeposition annealing are confirmed by constructing HfO{sub 2}/AlN dielectric stacks. The chemical states were carefully explored by the x-ray photoelectron spectroscopy, which indicates the AlN layers effectively prevent from the formation of defective native oxides at elevated temperatures. In addition, it is found that NH{sub 3} plasma during AlN plasma-enhanced atomic layer deposition also has the self-cleaning effect as Al(CH{sub 3}){sub 3} in removing native oxides. The passivating AlN layers suppress the formation of interfacial oxide and trap charge, leading to the decrease of capacitance equivalent thickness after annealing. Moreover, HfO{sub 2}/AlN/GaAs sample has a much lower leakage current density of 2.23 × 10{sup −4} A/cm{sup 2} than HfO{sub 2}/Al{sub 2}O{sub 3}/GaAs sample of 2.58 × 10{sup −2} A/cm{sup 2}. For the HfO{sub 2}/AlN/GaAs sample annealed at 500 °C, it has a lowest interface trap density value of 2.11 × 10{sup 11} eV{sup −1} cm{sup −2}. These results indicate that adopting HfO{sub 2}/AlN dielectric stacks may be a promising approach for the realization of high quality GaAs-based transistor devices.

  11. Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer

    PubMed Central

    Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J.

    2016-01-01

    Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack. PMID:27279454

  12. Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes

    PubMed Central

    Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng

    2017-01-01

    We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166

  13. Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng

    2017-03-01

    We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm.

  14. Advanced titania buffer layer architectures prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Kunert, J.; Bäcker, M.; Brunkahl, O.; Wesolowski, D.; Edney, C.; Clem, P.; Thomas, N.; Liersch, A.

    2011-08-01

    Chemical solution deposition (CSD) was used to grow high-quality (100) oriented films of SrTiO3 (STO) on CSD CaTiO3 (CTO), Ba0.1Ca0.9TiO3 (BCT) and STO seed and template layers. These template films bridge the lattice misfit between STO and the nickel-tungsten (NiW) substrate, assisting in dense growth of textured STO. Additional niobium (Nb) doping of the STO buffer layer reduces oxygen diffusion which is necessary to avoid undesired oxidation of the NiW. The investigated templates offer suitable alternatives to established standard buffer systems like La2Zr2O7 (LZO) and CeO2 for coated conductors.

  15. Growth and Stress-induced Transformation of Zinc blende AlN Layers in Al-AlN-TiN Multilayers

    PubMed Central

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; Liu, Xiang-Yang; Misra, Amit

    2015-01-01

    AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN. PMID:26681109

  16. Growth and stress-induced transformation of zinc blende AlN layers in Al-AlN-TiN multilayers

    DOE PAGES

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; ...

    2015-12-18

    We report that AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN.

  17. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2016-09-21

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 108 cm–2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (fT) of 8.9 GHz and a maximum frequency of oscillation (fmax) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less

  18. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    NASA Astrophysics Data System (ADS)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  19. Temperature dependence of the crystalline quality of AlN layer grown on sapphire substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hang; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Douglas Yoder, P.; Detchprohm, Theeradetch; Dupuis, Russell D.; Fischer, Alec M.; Ponce, Fernando A.

    2015-03-01

    We studied temperature dependence of crystalline quality of AlN layers at 1050-1250 °C with a fine increment step of around 18 °C. The AlN layers were grown on c-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVD) and characterized by X-ray diffraction (XRD) ω-scans and atomic force microscopy (AFM). At 1050-1068 °C, the templates exhibited poor quality with surface pits and higher XRD (002) and (102) full-width at half-maximum (FWHM) because of insufficient Al atom mobility. At 1086 °C, the surface became smooth suggesting sufficient Al atom mobility. Above 1086 °C, the (102) FWHM and thus edge dislocation density increased with temperatures which may be attributed to the shorter growth mode transition from three-dimension (3D) to two-dimension (2D). Above 1212 °C, surface macro-steps were formed due to the longer diffusion length of Al atoms than the expected step terrace width. The edge dislocation density increased rapidly above 1212 °C, indicating this temperature may be a threshold above which the impact of the transition from 3D to 2D is more significant. The (002) FWHM and thus screw dislocation density were insensitive to the temperature change. This study suggests that high-quality AlN/sapphire templates may be potentially achieved at temperatures as low as 1086 °C which is accessible by most of the III-nitride MOCVD systems.

  20. Selective area growth of high-density GaN nanowire arrays on Si(111) using thin AlN seeding layers

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Lee, P. Y.; Chen, K. Y.; Tseng, Y. T.; Wang, Y. L.; Cheng, K. Y.

    2016-11-01

    Selective area growth (SAG) of high-density (2.5×109 cm-2) GaN nanowires (NWs) on Si(111) substrate by plasma-assisted molecular beam epitaxy is presented. The effects of morphology and thickness of the AlN seeding layer on the quality of SAG GaN NWs are investigated. A thin AlN seeding layer of 30 nm thick with a surface roughness of less than 0.5 nm is suitable for high quality SAG GaN NWs growth. High-density AlN nanopedestal arrays used as seeds for SAG GaN NWs are fabricated from thin AlN seeding layers using soft nanoimprint lithography. By adjusting the growth temperature and Ga/N flux ratio, hexagonal shaped SAG GaN NWs are realized. The quality of SAG GaN NWs is evaluated by low temperature photoluminescence (PL) measurements. Three major groups of PL peaks at 3.47, 3.45, and 3.41 eV are identified. The peak at 3.471 eV is related to the neutral donor-bound exciton emission, and the 3.41 eV broadband emission is attributed to stacking faults or structural defects. The 3.45 eV peak is identified as the emission due to exciton recombination at polar inversion domain boundaries of NWs.

  1. High Jc coated conductors with a simple buffer layer architecture

    NASA Astrophysics Data System (ADS)

    Gianni, L.; Baldini, A.; Bindi, M.; Gauzzi, A.; Rampino, S.; Zannella, S.

    2005-10-01

    We report on the in situ route for the continuous fabrication of YBCO coated conductors (CC) by thermal co-evaporation. CC architecture consists of YBCO film grown on biaxially textured Ni-alloys tapes buffered with a single layer of CeO2. The buffer layer deposition has been optimized by either e-beam or thermal evaporation using respectively ceria or metallic cerium. Best results have been obtained on CeO2 film, with a thickness less or equal than 100 nm, grown in a reducing atmosphere at 690 °C with a growth rate of 2.4 Å/s. The optimal samples exhibit a highly biaxial texture, as indicated by FWHM values in the range of 5-8° and 4-6° for respectively in- and out-of-plane orientations. The layers are characterized by an uniform and crack-free surface with an average roughness lower than 10 nm. SIMS analysis confirms the effectiveness of CeO2 buffer layer against Ni interdiffusion. This template allows to obtain YBCO films strong textured, with good superconductive properties. YBCO texture data are equivalent the CeO2 ones. Midpoint critical temperature, Tc, falls reproducibly in 87-88 K range, with transition widths ΔTc < 2-3 K. Critical current density, Jc, up to 2 MA/cm2 at 77 K in self-field, have been achieved in a meter long CC corresponding to Ic/width value of 130 A/cm-width. Uniformity and reproducibility of long CC properties are under optimization.

  2. High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer

    NASA Astrophysics Data System (ADS)

    Ko, Tsung-Shine; Lin, Der-Yuh; Lin, Chia-Feng; Chang, Che-Wei; Zhang, Jin-Cheng; Tu, Shang-Ju

    2017-04-01

    In this paper, we experimentally studied the effect of AlN spacer layer on optical and electrical properties of AlGaN/GaN high electric mobility transistors (HEMTs) grown by metal organic chemical vapor deposition method. For AlGaN layer in HEMT structure, the Al composition of the sample was determined using x-ray diffraction and photoluminescence. Electrolyte electro-reflectance (EER) measurement not only confirmed the aluminum composition of AlGaN layer, but also determined the electric field strength on the AlGaN layer through the Franz-Keldysh oscillation phenomenon. This result indicated that the electric field on the AlGaN layer could be improved from 430 to 621 kV/cm when AlN spacer layer was inserted in HEMT structure, which increased the concentration of two dimensional electron gas (2DEG) and improve the mobility. The temperature dependent Hall results show that both the mobility and the carrier concentration of 2DEG would decrease abruptly causing HEMT loss of function due to phonon scattering and carrier thermal escape when temperature increases above a specific value. Meanwhile, our study also demonstrates using AlN spacer layer could be beneficial to allow the mobility and carrier density of 2DEG sustaining at high temperature region.

  3. Alloys containing antimony as metamorphic buffer layer for device applications

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benny Perez

    This work explores the stress/strain relaxation kinetics in metamorphic buffer layers of GaAs1-xSbx/GaAs (001) grown by molecular beam epitaxy. The real-time stress/strain evolution was obtained using an in situ multi-beam optical sensor measurement, and combined with detailed analysis from x-ray diffraction, transmission electron microscopy, and atomic force microscopy. Several distinct stages of the strain relaxation were observed during growth of GaAs1-xSbx constant composition buffer layers, which are separated into three main regimes: pseudomorphic growth, fast strain relaxation and saturation. Constant composition layers of GaAs0.5Sb0.5/GaAs initially relax elastically followed by the rapid nucleation of both 60° and pure edge dislocations. The saturation regime is distinguished by coalescence of small islands that appears to trigger the formation of threading dislocations. The strain relaxation profile for GaAs0.5Sb0.5, GaAs0.61Sb0.39, and In0.2Ga0.8As films were modeled using Dodson and Tsao's model of effective stress, with a new representation for elastic interactions of misfit dislocations. The model results agree with the experimental data and show that repulsive interaction of misfit dislocations is responsible for the large residual stress. Using this model, estimated line dislocation densities are in good agreement with the values obtained experimentally. This could have potential application in the design of metamorphic buffer layers because our observations are made in real time on individual growth, without the need of external characterization to measure the dislocation density. In addition, this model offers new insights in estimating the dislocation glide energy for simulation purposes. Linearly graded GaAs1-xSbx films resulted in a decreased Sb incorporation, higher residual stress, and bifurcation in the tilt of the sample. Less aggressive grading resulted in more uniform incorporation and lower residual stress. Step graded films resulted in

  4. Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers

    DOE PAGES

    Yadav, S. K.; Wang, J.; Liu, X. -Y.

    2016-06-13

    An unusual growth mechanism of metastable zincblende AlN thin film by diffusion of nitrogen atoms into Al lattice is established. Using first-principles density functional theory, we studied the possibility of thermodynamic stability of AlN as a zincblende phase due to epitaxial strains and interface effect, which fails to explain the formation of zincblende AlN. We then compared the formation energetics of rocksalt and zincblende AlN in fcc Al through direct diffusion of nitrogen atoms to Al octahedral and tetrahedral interstitials. Furthermore, the formation of a zincblende AlN thin film is determined to be a kinetically driven process, not a thermodynamicallymore » driven process.« less

  5. Photo-induced wettability of TiO{sub 2} film with Au buffer layer

    SciTech Connect

    Purkayastha, Debarun Dhar; Sangani, L. D. Varma; Krishna, M. Ghanashyam; Madhurima, V.

    2014-04-24

    The effect of thickness of Au buffer layer (15-25 nm) between TiO{sub 2} film and substrate on the wettability of TiO{sub 2} films is reported. TiO{sub 2} films grown on Au buffer layer have a higher contact angle of 96-;100° as compared to 47.6o for the film grown without buffer layer. The transition from hydrophobicity to hydrophilicity under UV irradiation occurs within 10 min. for the buffer layered films whereas it is almost 30 min. for the film grown without buffer layer. The enhanced photo induced hydrophilicity is shown to be surface energy driven.

  6. Buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  7. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect

    Cerio, Frank

    2013-09-14

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance

  8. Improved interface properties of GaN metal-oxide-semiconductor device with non-polar plane and AlN passivation layer

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Liang, Renrong; Guo, Lei; Liu, Lei; Xiao, Lei; Shen, Shanshan; Xu, Jun; Wang, Jing

    2016-12-01

    Utilizing a non-polar plane substrate and an ultra-thin AlN passivation layer results in significantly improved interface properties of a GaN metal-oxide-semiconductor (MOS) device. After depositing an Al2O3 gate dielectric layer on GaN substrates with polar c-plane and non-polar m-plane surfaces, it is found that the devices on the non-polar surface show much better interface properties than those on the polar surface. To further improve the interface properties, an amorphous ultra-thin AlN layer is deposited on the substrate before the Al2O3 deposition. The interface properties of both devices on the c-plane and m-plane are dramatically improved by the AlN passivation layer. The interface trap density of the Al/Al2O3/AlN/GaN MOS capacitor on the non-polar surface is reduced by two orders of magnitude compared to that on the polar surface.

  9. Study on the influence of different trench-patterned templates on the crystalline microstructure of AlN epitaxial films by X-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Thanh Khan, Dinh; Takeuchi, Shotaro; Nakamura, Yoshiaki; Nakamura, Kunihiko; Arauchi, Takuji; Miyake, Hideto; Hiramatsu, Kazumasa; Imai, Yasuhiko; Kimura, Shigeru; Sakai, Akira

    2017-02-01

    The crystalline microstructure of AlN films epitaxially grown on trench-patterned templates of AlN/α-Al2O3 and α-Al2O3 was studied by position-dependent X-ray microdiffraction measurements of AlN 11\\bar{2}4 and 0004 Bragg reflections. The crystalline microstructure of the AlN films is highly anisotropic and periodic corresponding to the periodicity in the trench pattern of templates. The lattice tilting fluctuation in the AlN film grown on the trench-patterned α-Al2O3 template is about one-half order of magnitude larger than that in the AlN film grown on the trench-patterned AlN/α-Al2O3 template. This is likely to be related to the significant misorientation initiated at the growth of AlN crystal domains from the sidewalls of the α-Al2O3 template without AlN buffer layers and the difference in contact areas at the AlN film/α-Al2O3 interface between the two samples. These findings suggest that trench-patterned templates of AlN/α-Al2O3 are suitable for growing thick high-quality AlN films.

  10. Leakage effects in n-GaAs MESFET with n-GaAs buffer layer

    NASA Technical Reports Server (NTRS)

    Wang, Y. C.; Bahrami, M.

    1983-01-01

    Whereas improvement of the interface between the active layer and the buffer layer has been demonstrated, the leakage effects can be important if the buffer layer resistivity is not sufficiently high and/or the buffer layer thickness is not sufficiently small. It was found that two buffer leakage currents exist from the channel under the gate to the source and from drain to the channel in addition to the buffer leakage resistance between drain and source. It is shown that for a 1 micron gate-length n-GaAs MESFET, if the buffer layer resistivity is 12 OHM-CM and the buffer layer thickness h is 2 microns, the performance of the device degrades drastically. It is suggested that h should be below 2 microns.

  11. Doped Y.sub.2O.sub.3 buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2007-08-21

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  12. Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy

    SciTech Connect

    Fernandez-Garrido, S.; Pereiro, J.; Munoz, E.; Calleja, E.; Gago, R.; Bertram, F.; Christen, J.; Luna, E.; Trampert, A.

    2008-10-15

    Indium incorporation into wurtzite (0001)-oriented In{sub x}Al{sub y}Ga{sub 1-x-y}N layers grown by plasma-assisted molecular beam epitaxy was studied as a function of the growth temperature (565-635 deg. C) and the AlN mole fraction (0.01layer stoichiometry was determined by Rutherford backscattering spectrometry (RBS). RBS shows that indium incorporation decreased continuously with increasing growth temperature due to thermally enhanced dissociation of In-N bonds and for increasing AlN mole fractions. High resolution x-ray diffraction and transmission electron microscopy (TEM) measurements did not show evidence of phase separation. The mosaicity of the quaternary layers was found to be mainly determined by the growth temperature and independent on alloy composition within the range studied. However, depending on the AlN mole fraction, nanometer-sized composition fluctuations were detected by TEM. Photoluminescence spectra showed a single broad emission at room temperature, with energy and bandwidth S- and W-shaped temperature dependences typical of exciton localization by alloy inhomogeneities. Cathodoluminescence measurements demonstrated that the alloy inhomogeneities, responsible of exciton localization, occur on a lateral length scale below 150 nm, which is corroborated by TEM.

  13. Strain states of AlN/GaN-stress mitigating layer and their effect on GaN buffer layer grown by ammonia molecular beam epitaxy on 100-mm Si(111)

    NASA Astrophysics Data System (ADS)

    Ravikiran, L.; Radhakrishnan, K.; Dharmarasu, N.; Agrawal, M.; Munawar Basha, S.

    2013-09-01

    The effect of strain states of AlN/GaN-stress mitigating layer (SML) on buried crack density and its subsequent influence on the residual stresses in GaN buffer layers grown using ammonia-molecular beam epitaxy on 100-mm Si(111) substrate has been investigated. Different stages involved in the formation of buried cracks, which are crack initialization, growth of relaxed AlN layer, and subsequent lateral over growth, are identified using in-situ curvature measurements. While the increase of GaN thickness in AlN/GaN-SML enhanced its compressive strain relaxation and resulted in reduced buried crack spacing, the variation of AlN thickness did not show any effect on the crack spacing. Moreover, the decrease in the crack spacing (or increase in the buried crack density) was found to reduce the residual compression in 1st and 2nd GaN layers of AlN/GaN-SML structure. The higher buried crack density relaxed the compressive strain in 1st GaN layer, which further reduced its ability to compensate the tensile stress generated during substrate cool down, and hence resulted in lower residual compressive stress in 2nd GaN layer.

  14. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-10-12

    An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.

  15. Influence of AlN thickness on AlGaN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jayasakthi, M.; Juillaguet, S.; Peyre, H.; Konczewicz, L.; Baskar, K.; Contreras, S.

    2016-10-01

    AlGaN/AlN layers were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The AlN buffer thickness was varied from 400 nm to 800 nm. The AlGaN layer thickness was 1000 nm. The crystalline quality, thickness and composition of AlGaN were determined using high resolution X-ray diffraction (HRXRD). The threading dislocation density (TDD) was found to decrease with increase of AlN layer thickness. Reciprocal space mapping (RSM) was used to estimate the strain and relaxation between AlGaN and AlN. The optical properties of AlGaN layers were investigated by temperature dependent photoluminescence (PL). PL intensities of AlGaN layers increases with increasing the AlN thickness. The surface morphology of AlGaN was studied by atomic force microscopy (AFM). Root mean square (RMS) roughness values were found to be decreased while increase of AlN thickness.

  16. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    SciTech Connect

    Hultqvist, Adam; Bent, Stacey F.; Li, Jian V.; Kuciauskas, Darius; Dippo, Patricia; Contreras, Miguel A.; Levi, Dean H.

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.

  17. Structural evolution of Ag-Cu nano-alloys confined between AlN nano-layers upon fast heating.

    PubMed

    Janczak-Rusch, J; Chiodi, M; Cancellieri, C; Moszner, F; Hauert, R; Pigozzi, G; Jeurgens, L P H

    2015-11-14

    The structural evolution of a Ag-Cu/AlN nano-multilayer (NML), as prepared by magnetron-sputtering on a α-Al2O3 substrate, was monitored during fast heating by real-time in situ XRD analysis (at the synchrotron), as well as by ex situ microstructural analysis using SEM, XPS and in-house XRD. The as-deposited NML is constituted of alternating nano-layers (thickness ≈ 10 nm) of a chemically inert AlN barrier and a eutectic Ag-Cu(40at%) nano-alloy. The nano-alloy in the as-deposited state is composed of a fcc matrix of Ag nano-grains (≈6 nm), which are supersaturated by Cu, and some smaller embedded Cu rich nano-grains (≈4 nm). Heating up to 265 °C activates segregation of Cu out of the supersaturated Ag nano-grains phase, thus initiating phase separation. At T > 265 °C, the phase-separated Cu metal partially migrates to the top NML surface, thereby relaxing thermally-accumulated compressive stresses in the confined alloy nano-layers and facilitating grain coarsening of (still confined) phase-separated nano-crystallites. Further heating and annealing up to 420 °C results in complete phase separation, forming extended Ag and Cu domains with well-defined coherent Ag/AlN interfaces. The observed outflow of Cu well below the eutectic melting point of the bulk Ag-Cu alloy might provide new pathways for designing low-temperature nano-structured brazing materials.

  18. Characterization of Cu buffer layers for growth of L10-FeNi thin films

    NASA Astrophysics Data System (ADS)

    Mizuguchi, M.; Sekiya, S.; Takanashi, K.

    2010-05-01

    A Cu(001) layer was fabricated on a Au(001) layer to investigate the use of Cu as a buffer layer for growing L10-FeNi thin films. The epitaxial growth of a Cu buffer layer was observed using reflection high-energy electron diffraction. The flatness of the layer improved drastically with an increase in the substrate temperature although the layer was an alloy (AuCu3). An FeNi thin film was epitaxially grown on the AuCu3 buffer layer by alternate monatomic layer deposition and the formation of an L10-FeNi ordered alloy was expected. The AuCu3 buffer layer is thus a promising candidate material for the growth of L10-FeNi thin films.

  19. The structure of crystallographic damage in GaN formed during rare earth ion implantation with and without an ultrathin AlN capping layer

    NASA Astrophysics Data System (ADS)

    Gloux, F.; Ruterana, P.; Wojtowicz, T.; Lorenz, K.; Alves, E.

    2006-10-01

    The crystallographic nature of the damage created in GaN implanted by rare earth ions at 300 keV and room temperature has been investigated by transmission electron microscopy versus the fluence, from 7×10 13 to 2×10 16 at/cm 2, using Er, Eu or Tm ions. The density of point defect clusters was seen to increase with the fluence. From about 3×10 15 at/cm 2, a highly disordered 'nanocrystalline layer' (NL) appears on the GaN surface. Its structure exhibits a mixture of voids and misoriented nanocrystallites. Basal stacking faults (BSFs) of I 1, E and I 2 types have been noticed from the lowest fluence, they are I 1 in the majority. Their density increases and saturates when the NL is observed. Many prismatic stacking faults (PSFs) with Drum atomic configuration have been identified. The I 1 BSFs are shown to propagate easily through GaN by folding from basal to prismatic planes thanks to the PSFs. When implanting through a 10 nm AlN cap, the NL threshold goes up to about 3×10 16 at/cm 2. The AlN cap plays a protective role against the dissociation of the GaN up to the highest fluences. The flat surface after implantation and the absence of SFs in the AlN cap indicate its high resistance to the damage formation.

  20. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  1. Effect of Oxide Buffer Layer on the Thermochromic Properties of VO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Koo, Hyun; Xu, Lu; Ko, Kyeong-Eun; Ahn, Seunghyun; Chang, Se-Hong; Park, Chan

    2013-12-01

    VO2 thin films were deposited on soda lime glass substrates with ZnO, TiO2, SnO2, and CeO2 thin films applied as buffer layers between the VO2 films and the substrates in order to investigate the effect of buffer layer on the formation and the thermochromic properties of VO2 film. Buffer layers with thicknesses over 50 nm were found to affect the formation of VO2 film, which was confirmed by XRD spectra. By using ZnO, TiO2, and SnO2 buffer layers, monoclinic VO2 (VO2(M)) film was successfully fabricated on soda lime glass at 370 °C. On the contrary, films of VO2(B), which is known to have no phase transition near room temperature, were formed rather than VO2(M) when the film was deposited on CeO2 buffer layer at the same film deposition temperature. The excellent thermochromic properties of the films deposited on ZnO, TiO2, and SnO2 buffer layers were confirmed from the temperature dependence of electrical resistivity from room temperature to 80 °C. Especially, due to the tendency of ZnO thin film to grow with a high degree of preferred orientation on soda lime glass at low temperature, the VO2 film deposited on ZnO buffer layer exhibits the best thermochromic properties compared to those on other buffer layer materials used in this study. These results suggest that deposition of VO2 films on soda lime glass at low temperature with excellent thermochromic properties can be achieved by considering the buffer layer material having structural similarity with VO2. Moreover, the degree of crystallization of buffer layer is also related with that of VO2 film, and thus ZnO can be one of the most effective buffer layer materials.

  2. Buffer layer investigations on MFIS capacitors consisting of ferroelectric poly[vinylidene fluoride trifluoroethylene

    NASA Astrophysics Data System (ADS)

    Henkel, K.; Seime, B.; Paloumpa, I.; Müller, K.; Schmeißer, D.

    2010-02-01

    In this paper we present capacitance-voltage (CV) measurements on metal-ferroelectric-insulator-semiconductor (MFIS) capacitors with poly[vinylidene fluoride trifluoroethylene] (P[VDF/TrFE] as ferroelectric layer and SiO2, Al2O3 and HfO2 as buffering insulator layer. In order to discuss our data in a quantitative manner we perform fits to the data based on a model proposed by Miller and McWorther. The improvement of the polarization values and subsequently its effect on the hysteresis of the CV curve by the successive shrinking of the buffer layer thickness and the following choice of a high-k buffer material is demonstrated. Our data underline that a saturated polarization of P[VDF/TrFE] cannot be controlled with a SiO2 buffer layer and the insertion of a high-k buffer layer is essential for further improvements of the characteristics of MFIS stacks.

  3. Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom

    DOEpatents

    Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    The present invention provides methods and biaxially textured articles having a deformed epitaxial layer formed therefrom for use with high temperature superconductors, photovoltaic, ferroelectric, or optical devices. A buffer layer is epitaxially deposited onto biaxially-textured substrates and then mechanically deformed. The deformation process minimizes or eliminates grooves, or other irregularities, formed on the buffer layer while maintaining the biaxial texture of the buffer layer. Advantageously, the biaxial texture of the buffer layer is not altered during subsequent heat treatments of the deformed buffer. The present invention provides mechanical densification procedures which can be incorporated into the processing of superconducting films through the powder deposit or precursor approaches without incurring unfavorable high-angle grain boundaries.

  4. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    NASA Astrophysics Data System (ADS)

    Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu

    2016-02-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).

  5. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  6. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  7. New Approach to Depositing Yttria-Stabilized Zirconia Buffer Layers for Coated Conductors (Postprint)

    DTIC Science & Technology

    2012-02-01

    distribution unlimited. See additional restrictions described on inside pages STINFO COPY © 2003 Materials Research Society AIR... additional layer in the buffer layer stack—a transient nickel layer deposited directly on the substrate. Regardless of the substrate and protective layers...Ridge Na- tional Laboratory ( ORNL ), Oak Ridge, TN, were precleaned in organic solvents (acetone, ethanol, chloro- form) using ultrasonic agitation

  8. Microstructures of YBa2Cu3Oy Layers Deposited on Conductive Layer-Buffered Metal Tapes

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru; Hashimoto, Masayuki; Horii, Shigeru; Doi, Toshiya

    REBa2Cu3Oy (REBCO; RE: rare-earth elements)-coated conductors (CCs) have high potential for use in superconducting devices. In particular, REBCO CCs are useful for superconducting devices working at relatively high temperatures near 77 K. The important issues in their applications are high performance, reliability and low cost. To date, sufficient performance for some applications has almost been achieved by considerable efforts. The establishment of the reliability of superconducting devices is under way at present. The issue of low cost must be resolved to realize the application of superconducting devices in the near future. Therefore, we have attempted several ways to reduce the cost of REBCO CCs. The coated conductors using a Nb-doped SrTiO3 buffer layer and Ni-plated Cu and stainless steel laminate metal tapes have recently been developed to eliminate the use of electric stabilization layers of Cu and Ag, which are expected to reduce the material cost. Good superconducting properties are obtained at 77 K. The critical current density (JC) at 77 K under a magnetic self-field is determined to be more than 2x106 A/cm2. The microstructures of the CCs are analyzed by transmission electron microscopy to obtain a much higher quality. By microscopic structure analysis, an overgrowth of the buffer layer is observed at a grain boundary of the metal substrate, which is one of the reasons for the high JC.

  9. MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2001-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  10. Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2002-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  11. Growth Optimization of YBa2NbO6 Buffer Layers (Postprint)

    DTIC Science & Technology

    2012-02-01

    single crystals, and IBAD MgO buffered Inconel substrates has been investigated. X-ray diffraction confirms the epitaxial growth of highly h00 oriented...YBNO thin films on single crystal substrates and IBAD MgO buffered Inconel substrates. The best average surface roughness of the YBNO films...diffraction, crystal, buffered, inconel , epitaxial, films, substrates, layers, growth, investigated, sufficient, preliminary, critical 16. SECURITY

  12. The effect of AlN nucleation temperature on inverted pyramid defects in GaN layers grown on 200 mm silicon wafers

    NASA Astrophysics Data System (ADS)

    Charles, Matthew; Baines, Yannick; Bos, Sandra; Escoffier, René; Garnier, Gennie; Kanyandekwe, Joël; Lebreton, Julie; Vandendaele, William

    2017-04-01

    We have examined 200 mm GaN on silicon wafers, while varying the AlN nucleation temperature, and have found that higher temperatures result in a more convex bow on the wafers. In addition, by performing full wafer defect mapping, we have found that a higher nucleation temperature results in a higher density of inverted pyramid defects, which have previously been found to reduce the breakdown voltage of GaN on silicon layers. We have performed electrical measurements on a wafer with the lowest temperature AlN layer, which is still within our bow specification, and which therefore has the lowest density of inverted pyramid defects. This wafer showed the same leakage current density for both very small and very large test structures (2×10-3 and 18.7 mm2 respectively), with all but one of our large structures maintaining a breakdown voltage greater than 700 V. This is a very promising result for high yield of devices on 200 mm GaN on silicon wafers.

  13. Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer

    NASA Astrophysics Data System (ADS)

    Chan, M. Y.; Lee, C. S.; Lai, S. L.; Fung, M. K.; Wong, F. L.; Sun, H. Y.; Lau, K. M.; Lee, S. T.

    2006-11-01

    By using bathophenanthroline (BPhen) as an exciton blocking layer (EBL) at the organic/cathode contact of a standard copper phthalocyanine/C60 organic photovoltaic (OPV) device, power conversion efficiency was substantially increased from 0.86% to 2.64%. The BPhen-based devices showed a 45% increase in power conversion efficiency over that of an equivalent device with an EBL of bathocuproine. The performance improvement was analyzed in terms of the electron energy levels, optical transparencies and electron mobilities of the two EBLs. Based on these results, the roles of and requirements for an effective EBL were discussed. Combining the use of BPhen and a WO3 anodic buffer layer further increased the power conversion efficiency of the OPV device to 3.33%.

  14. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    SciTech Connect

    Xu, Xiaoqing Parizi, Kokab B.; Huo, Yijie; Kang, Yangsen; Philip Wong, H.-S.; Li, Yang

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to III–V nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surface leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.

  15. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  16. Pulsed Laser Deposition of YBCO With Yttrium Oxide Buffer Layers (Postprint)

    DTIC Science & Technology

    2012-02-01

    AFRL-RZ-WP-TP-2012-0092 PULSED LASER DEPOSITION OF YBCO WITH YTTRIUM OXIDE BUFFER LAYERS (POSTPRINT) Paul N. Barnes, Timothy J. Haugan...Paper Postprint 01 January 2002 – 01 January 2004 4. TITLE AND SUBTITLE PULSED LASER DEPOSITION OF YBCO WITH YTTRIUM OXIDE BUFFER LAYERS (POSTPRINT...Textured metallic substrate based HTS coated conductors with the YBCO /CeO2/YSZ/CeO2/Ni architecture have already been shown to exhibit high current

  17. Organic Photovoltaic Cells with Improved Performance Using Bathophenanthroline as a Buffer Layer

    NASA Astrophysics Data System (ADS)

    Wang, Na-na; Yu, Jun-sheng; Lin, Hui; Jiang, Ya-dong

    2010-02-01

    The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.

  18. Matching characteristics of different buffer layers with VO2 thin films

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Dongping; Liu, Yi; Guan, Tianrui; Qin, Xiaonan; Zhong, Aihua; Cai, Xingmin; Fan, Ping; Lv, Weizhong

    2016-10-01

    VO2 thin films were fabricated by reactive DC magnetron sputtering on different buffer layers of MgF2, Al2O3 and TiO2, respectively. The crystallinity and orientation relationship, thickness of VO2 thin films, atoms vibrational modes, optical and electrical property, surface morphology of films were characterized by X-ray diffraction, Raman scattering microscopy, step profiler, spectrophotometer, four-probe technique, and scanning electron microscopy, respectively. XRD results investigated that the films have preferential crystalline planes VO2 (011). The crystallinity of VO2 films grown on TiO2 buffer layers are superior to VO2 directly deposited on soda-lime glass. The Raman bands of the VO2 films correspond to an Ag symmetry mode of VO2 (M). The sample prepared on 100nm TiO2 buffer layer appears nanorods structure, and exhibits remarkable solar energy modulation ability as high as 5.82% in full spectrum and 23% in near infrared spectrum. Cross-sectional SEM image of the thin films samples indicate that MgF2 buffer layer has clear interface with VO2 layer. But there are serious interdiffusion phenomenons between Al2O3, TiO2 buffer layer with VO2 layer.

  19. DEFECT SELECTIVE ETCHING OF THICK ALN LAYERS GROWN ON 6H-SIC SEEDS - A TRANSMISSION ELECTRON MICROSCOPY STUDY

    SciTech Connect

    Nyakiti, Luke; Chaudhari, Jharna; Kenik, Edward A; Lu, Peng; Edgar, J H

    2008-01-01

    In the present study, the type and densities of defects in AlN crystals grown on 6H-SiC seeds by the sublimation-recombination method were assessed. The positions of the defects in AlN were first identified by defect selective etching (DSE) in molten NaOH-KOH at 400 C for 2 minutes. Etching produced pits of three different sizes: 1.77 m, 2.35 m , and 2.86 m. The etch pits were either aligned together forming a sub-grain boundary or randomly distributed. The smaller etch pits were either isolated or associated with larger etch pits. After preparing crosssections of the pits by the focused ion beam (FIB) technique, transmission electron microscopy (TEM) was performed to determine which dislocation type (edge, mixed or screw) produced a specific etch pit sizes. Preliminary TEM bright field and dark field study using different zone axes and diffraction vectors indicates an edge dislocation with a Burgers vector 1/3[1120] is associated with the smallest etch pit size.

  20. Photovoltaic devices comprising zinc stannate buffer layer and method for making

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter; Coutts, Timothy J.

    2001-01-01

    A photovoltaic device has a buffer layer zinc stannate Zn.sub.2 SnO.sub.4 disposed between the semiconductor junction structure and the transparent conducting oxide (TCO) layer to prevent formation of localized junctions with the TCO through a thin window semiconductor layer, to prevent shunting through etched grain boundaries of semiconductors, and to relieve stresses and improve adhesion between these layers.

  1. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou

    2016-12-01

    In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  2. YSZ buffer layers and YBCO superconducting tapes with enhanced biaxial alignment and properties

    NASA Astrophysics Data System (ADS)

    Savvides, N.; Gnanarajan, S.

    2003-05-01

    Commercial applications of YBa 2Cu 3O 7 (YBCO) superconducting cables require viable and scalable manufacturing processes. We have investigated the evolution of the biaxial alignment of yttria-stabilized zirconia (YSZ) buffer layers with increasing film thickness (50-900 nm) and report on a method of fabricating highly aligned YBCO tapes using a thin epitaxial YSZ buffer layer as template. The method employs magnetron and ion beam assisted deposition (IBAD) techniques followed by epitaxial growth to produce the buffer architectures IBAD-YSZ and epi-YSZ/IBAD-YSZ onto optically polished hastelloy metal substrates. Subsequent in situ deposition of YBCO films is used to determine the biaxial alignment at the surface of the buffer architecture, and to show that 100-200 nm thick epi-YSZ layers suffice to yield YBCO tapes that have enhanced biaxial alignment (Δ φ=9-10°) and high critical current densities: J c(77 K)=(1-2)×10 6 A cm -2 and J c(5 K,1 T)=8×10 6 A cm -2. Atomic force microscopy of the surface microstructure of the YSZ buffer layers and YBCO films reveals some grain coarsening in the epi-YSZ layers compared to the IBAD-YSZ layers while the YBCO tapes show significant outgrowths (∼200 nm) and large grains (800-1200 nm) that are similar to high- Jc YBCO films grown on single crystal MgO(1 0 0) substrates.

  3. Dependence of Magnetic Properties of Co/Pt Multilayers on Deposition Temperature of Pt Buffer Layers

    NASA Astrophysics Data System (ADS)

    Shiomi, Shigeru; Nishimura, Tomotaka; Kobayashi, Tadashi; Masuda, Morio

    1993-04-01

    A 15-nm-thick Pt buffer layer was deposited on a glass slide at temperature Ts(Ptbuf) ranging from 30 to 300°C by e-gun evaporation. Following the cooling in vacuum to ambient temperature, Co and Pt layers have been alternately deposited on it. Very large perpendicular anisotropy and coercivity have been obtained at Ts(Ptbuf) higher than 200°C. The (111) preferred orientation of the Co/Pt multilayer as well as the Pt buffer layer became more pronounced with elevating Ts(Ptbuf), to which the enhancement of perpendicular anisotropy with elevating Ts(Ptbuf) might be ascribable.

  4. Perpendicular magnetization of CoFeB on top of an amorphous buffer layer

    NASA Astrophysics Data System (ADS)

    Kim, Dongseok; Jung, K. Y.; Joo, Sungjung; Jang, Youngjae; Hong, Jinki; Lee, B. C.; You, C. Y.; Cho, J. H.; Kim, M. Y.; Rhie, K.

    2015-01-01

    Perpendicular magnetic anisotropy was observed in sputtered FeZr/CoFeB/MgO multilayers. A thin paramagnetic amorphous FeZr layer was used as a buffer layer and perpendicular anisotropy was obtained by annealing the samples without an external magnetic field. The critical CoFeB thickness for perpendicular anisotropy was 1.8 nm; the anisotropy changes from out-of-plane to in-plane as the CoFeB thickness increases beyond this point. Perpendicular anisotropy was also enhanced when a Ta layer was capped on top of the MgO layer. The amorphous buffer provided better perpendicular anisotropy than previously reported Ta buffer, and it may be applied to perpendicular magnetization MRAM devices where good uniformity of tunnel junctions is required.

  5. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    PubMed Central

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  6. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    NASA Astrophysics Data System (ADS)

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-07-01

    We demonstrate the high structural and optical properties of InxGa1‑xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm‑2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1‑xN epilayers can be achieved with high optical quality of InxGa1‑xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  7. Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Yen; Cheng, Wen-Hui; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-06-01

    In this study, a low-temperature solution-processed zinc tin oxide (ZTO) films are successfully utilized as the cathode buffer layer in the inverted organic P3HT:PCBM bulk heterojunction solar cells. ZTO film cathode buffer layer with an appropriate Sn-doping concentration outperforms the zinc oxide (ZnO) film with an improved power conversion efficiency (1.96% (ZTO film) vs. 1.56% (ZnO film)). Furthermore, ZTO nanoparticles (NPs) are also synthesized via low-temperature solution route and the device with ZTO NPs buffer layer exhibits a significant improvement in device performance to reach a PCE of 2.60%. The crystallinity of the cathode buffer layer plays an influential factor in the performance. From impedance spectroscopy analysis, a correlation between short circuit current (Jsc), carrier life time (τavg) and, thus, PCE is observed. The interplay between composition and crystallinity of the cathode buffer layers is discussed to find their influences on the solar cell performance.

  8. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  9. Amorphous carbon buffer layers for separating free gallium nitride films

    NASA Astrophysics Data System (ADS)

    Altakhov, A. S.; Gorbunov, R. I.; Kasharina, L. A.; Latyshev, F. E.; Tarala, V. A.; Shreter, Yu. G.

    2016-11-01

    The possibility of using amorphous diamond-like carbon (DLC) films for self-separation of gallium nitride (GaN) layers grown by hydride vapor-phase epitaxy has been analyzed. DLC films have been synthesized by plasma-enhanced chemical vapor deposition under low pressure on sapphire (Al2O3) substrates with a (0001) crystallographic orientation. The samples have been studied by the methods of Raman scattering and X-ray diffraction analysis. It is shown that thin DLC films affect only slightly the processes of nucleation and growth of gallium nitride films. Notably, the strength of the "GaN film-Al2O3" substrate interface decreases, which facilitates separation of the GaN layers.

  10. Defect Reduction in Epitaxial Growth Using Superlattice Buffer Layers

    DTIC Science & Technology

    1988-07-01

    Katsuyama, Y. J. Yang and S. M. Bedair, Electron Dev. Lett., vol. 8, p. 240, 1987. 0 -15 -" Journal of (ryOstal (io iih 77 (108(,) ,xQ 9i4 S9 North-I...layer facilitat the csea of Gaosu 3 (5% in H2) + 500 sccm of H , and ed cross-sectional thickness measurements. trimethylgallium (TMG) + 500 sccm of H

  11. Evaluation of methods for application of epitaxial layers of superconductor and buffer layers

    SciTech Connect

    1997-06-01

    The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, based on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process, an

  12. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  13. Buffer layer between a planar optical concentrator and a solar cell

    SciTech Connect

    Solano, Manuel E.; Barber, Greg D.; Lakhtakia, Akhlesh; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  14. Effect of buffer layer and external stress on magnetic properties of flexible FeGa films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoshan; Zhan, Qingfeng; Dai, Guohong; Liu, Yiwei; Zuo, Zhenghu; Yang, Huali; Chen, Bin; Li, Run-Wei

    2013-05-01

    We systematically investigated the effect of a Ta buffer layer and external stress on the magnetic properties of magnetostrictive Fe81Ga19 films deposited on flexible polyethylene terephthalate (PET) substrates. The Ta buffer layers could effectively smoothen the rough surface of PET. As a result, the FeGa films grown on Ta buffer layers exhibit a weaker uniaxial magnetic anisotropy and lower coercivity, as compared to those films directly grown on PET substrates. By inward and outward bending the FeGa/Ta/PET samples, external in-plane compressive and tensile stresses were applied to the magnetic films. Due to the inverse magnetostrictive effect of FeGa, both the coercivity and squareness of hysteresis loops for FeGa/Ta films could be well tuned under various strains.

  15. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    NASA Technical Reports Server (NTRS)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  16. Accelerating the L10 ordering transition of FePt(001) nanograins using composite buffer layers

    NASA Astrophysics Data System (ADS)

    Li, Guoqing; Zheng, Yuanping; Hayashi, Kenichi; Takanashi, Koki

    2011-07-01

    This paper reports fabrication of 2-nm-thick L10 FePt films at a low substrate temperature of 400 °C using composite MgO and FeAl buffer layers on (001) MgO substrates. The FeAl buffer layer is crucial in promoting the ordered L10 growth of (001) FePt by allowing additional heat uptake. The MgO buffer layer prevents interlayer diffusion of FeAl into the FePt films and induces (001) texture growth. The deposited FePt films consist of isolated nanograins about 13 nm in size. These films have (001) texture and perpendicular magnetic anisotropy with a coercivity of up to 19 kOe. They have potential applications in perpendicular magnetic recording.

  17. Coercivity enhancement of Nd-Fe-B thin film magnets by Dy buffer and capping layers

    NASA Astrophysics Data System (ADS)

    You, C. Y.; Wang, J. W.; Lu, Z. X.

    2012-04-01

    The Dy layer was inserted into the structure of SiO2/Ti/Nd-Fe-B/Ti as the buffer or capping layer of the Nd-Fe-B layer. The insertions of Dy layers had no significant influence on the film texture with the easy axis mainly perpendicular to the film plane. The film without Dy layer gave the out-of-plane coercivity of 533 kA/m, maximum magnetic energy product (BH)max of 245 kJ/m3. With a Dy buffer layer, the out-of-plane coercivity and (BH)max were increased to 1074 kA/m, 291 kJ/m3 respectively. The film with Dy capping layer had a coercivity of 1035 kA/m and (BH)max of 286 kJ/m3. Microstructure observations showed that the Nd-rich phases were evolved into grain boundaries from triple junctions by a Dy buffer layer deposition, resulting in a well magnetic decoupling of Nd2Fe14B neighboring grains. Through capping a Dy layer, the environment of grain boundaries had been improved and some Dy diffused into Nd2Fe14B phases, which contributed to the enhancement of magnetic performance.

  18. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al{sub 2}O{sub 3} gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    SciTech Connect

    Aoki, Takeshi Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-15

    This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS) structures comprising a Al{sub 2}O{sub 3} gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al{sub 2}O{sub 3} in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al{sub 2}O{sub 3} layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (D{sub it}) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce D{sub it} to below 2 × 10{sup 12} cm{sup −2} eV{sup −1}. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  19. The role of buffer layers and double windows layers in a solar cell CZTS performances

    NASA Astrophysics Data System (ADS)

    Mebarkia, C.; Dib, D.; Zerfaoui, H.; Belghit, R.

    2016-07-01

    In the overall context of the diversification of the use of natural resources, the use of renewable energy including solar photovoltaic has become increasingly indispensable. As such, the development of a new generation of photovoltaic cells based on CuZnSnS4 (CZTS) looks promising. Cu2ZnSnS4 (CZTS) is a new film absorber, with good physical properties (band gap energy 1.4-1.6 eV with a large absorption coefficient over 104 cm-1). Indeed, the performance of these cells exceeded 30% in recent years. In the present paper, our work based on modeling and numerical simulation, we used SCAPS to study the performance of solar cells based on Cu2ZnSnS4 (CZTS) and thus evaluate the electrical efficiency η for typical structures of n-ZnO:Al / i-ZnO / n-CdS / p-CZTS and n-ITO / n-ZnO:Al / n-CdS /p-CZTS. Furthermore, the influence of the change of CdS by ZnSeand In2S3buffer layer was treated in this paper.

  20. Indium Tin Oxide Electrode with an Ultrathin Al Buffer Layer for Flexible Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Sim, Boyeon; Hwang, Hyeonseok; Ryu, Seungyoon; Baik, Hongkoo; Lee, Myeongkyu

    2010-06-01

    This paper reports that the mechanical and electrical stability of indium tin oxide (ITO) film deposited on flexible plastic substrate can be much enhanced with a thin Al buffer layer while maintaining a visible transmittance over 75%. The improved stability is attributed to the effective elastic mismatch between the film and the substrate reduced by a ductile interlayer. A polymer light emitting diode fabricated using an ITO/Al anode exhibited a luminance of 13,000 cd/m2 with a current efficiency of 16 cd/A. Bending-induced degradation of the device performance was also alleviated when a mechanical buffer layer was inserted.

  1. CdS/CdTe thin-film solar cell with a zinc stannate buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, X.; Sheldon, P.; Mahathongdy, Y.; Ribelin, R.; Mason, A.; Moutinho, H. R.; Coutts, T. J.

    1999-03-01

    This paper describes an improved CdS/CdTe polycrystalline thin-film solar-cell device structure that integrates a zinc stannate (Zn2SnO4 or ZTO) buffer layer between the transparent conductive oxide (TCO) layer and the CdS window layer. Zinc stannate films have a high bandgap, high transmittance, low absorptance, and low surface roughness. In addition, these films are chemically stable and exhibit higher resistivities that are roughly matched to that of the CdS window layer in the device structure. Preliminary device results have demonstrated that by integrating a ZTO buffer layer in both SnO2-based and Cd2SnO4 (CTO)-based CdS/CdTe devices, performance and reproducibility can be significantly enhanced.

  2. Strain compensation in a semiconducting device structure using an intentionally mismatched uniform buffer layer

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2016-12-01

    The extent of strain relaxation in semiconducting device heterostructures has important implications in the design of high electron mobility transistors, light-emitting diodes, and laser diodes, in which the residual strain affects the device characteristics. In this work, we develop the theoretical framework for understanding strain compensation in a semiconductor device layer using a uniform buffer layer which can be intentionally mismatched to the material above. Specifically, we determined the critical condition for complete strain compensation in the device layer by intentionally introducing a compositional mismatch at the device-buffer interface. We present minimum energy calculations and show that for a given device layer with fixed mismatch and layer thickness, the buffer layer may be designed with the appropriate combination of thickness and mismatch such that the device layer will have zero residual strain in equilibrium. Such a structure can be referred to as a completely strain-compensated design. In the more general case, there may be partial strain compensation, and we give a simple physics-based Gaussian-type function describing the residual strain in the device layer. We have applied this general framework to In x Ga1-x As/GaAs (001) heterostructures for the purpose of illustration, but the work is applicable to any diamond or zinc blende (001) heteroepitaxial material system.

  3. Exciton-blocking phosphonic acid-treated anode buffer layers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeramy D.; Song, Byeongseop; Griffith, Olga; Forrest, Stephen R.

    2013-12-01

    We demonstrate significant improvements in power conversion efficiency of bilayer organic photovoltaics by replacing the exciton-quenching MoO3 anode buffer layer with an exciton-blocking benzylphosphonic acid (BPA)-treated MoO3 or NiO layer. We show that the phosphonic acid treatment creates buffers that block up to 70% of excitons without sacrificing the hole extraction efficiency. Compared to untreated MoO3 anode buffers, BPA-treated NiO buffers exhibit a ˜ 25% increase in the near-infrared spectral response in diphenylanilo functionalized squaraine (DPSQ)/C60-based bilayer devices, increasing the power conversion efficiency under 1 sun AM1.5G simulated solar illumination from 4.8 ± 0.2% to 5.4 ± 0.3%. The efficiency can be further increased to 5.9 ± 0.3% by incorporating a highly conductive exciton blocking bathophenanthroline (BPhen):C60 cathode buffer. We find similar increases in efficiency in two other small-molecule photovoltaic systems, indicating the generality of the phosphonic acid-treated buffer approach to enhance exciton blocking.

  4. Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers

    SciTech Connect

    Yadav, S. K.; Wang, J.; Liu, X. -Y.

    2016-06-13

    An unusual growth mechanism of metastable zincblende AlN thin film by diffusion of nitrogen atoms into Al lattice is established. Using first-principles density functional theory, we studied the possibility of thermodynamic stability of AlN as a zincblende phase due to epitaxial strains and interface effect, which fails to explain the formation of zincblende AlN. We then compared the formation energetics of rocksalt and zincblende AlN in fcc Al through direct diffusion of nitrogen atoms to Al octahedral and tetrahedral interstitials. Furthermore, the formation of a zincblende AlN thin film is determined to be a kinetically driven process, not a thermodynamically driven process.

  5. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    DOEpatents

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  6. Benzocyclobutene (BCB) Polymer as Amphibious Buffer Layer for Graphene Field-Effect Transistor.

    PubMed

    Wu, Yun; Zou, Jianjun; Huo, Shuai; Lu, Haiyan; Kong, Yuecan; Chen, Tangshen; Wu, Wei; Xu, Jingxia

    2015-08-01

    Owing to the scattering and trapping effects, the interfaces of dielectric/graphene or substrate/graphene can tailor the performance of field-effect transistor (FET). In this letter, the polymer of benzocyclobutene (BCB) was used as an amphibious buffer layer and located at between the layers of substrate and graphene and between the layers of dielectric and graphene. Interestingly, with the help of nonpolar and hydrophobic BCB buffer layer, the large-scale top-gated, chemical vapor deposited (CVD) graphene transistors was prepared on Si/SiO2 substrate, its cutoff frequency (fT) and the maximum cutoff frequency (fmax) of the graphene field-effect transistor (GFET) can be reached at 12 GHz and 11 GHz, respectively.

  7. Compatibility of the selective area growth of GaN nanowires on AlN-buffered Si substrates with the operation of light emitting diodes.

    PubMed

    Musolino, M; Tahraoui, A; Fernández-Garrido, S; Brandt, O; Trampert, A; Geelhaar, L; Riechert, H

    2015-02-27

    AlN layers with thicknesses between 2 and 14 nm were grown on Si(111) substrates by molecular beam epitaxy. The effect of the AlN layer thickness on the morphology and nucleation time of spontaneously formed GaN nanowires (NWs) was investigated by scanning electron microscopy and line-of-sight quadrupole mass spectrometry, respectively. We observed that the alignment of the NWs grown on these layers improves with increasing layer thickness while their nucleation time decreases. Our results show that 4 nm is the smallest thickness of the AlN layer that allows the growth of well-aligned NWs with short nucleation time. Such an AlN buffer layer was successfully employed, together with a patterned SiOx mask, for the selective-area growth (SAG) of vertical GaN NWs. In addition, we fabricated light-emitting diodes (LEDs) from NW ensembles that were grown by means of self-organization phenomena on bare and on AlN-buffered Si substrates. A careful characterization of the optoelectronic properties of the two devices showed that the performance of NW-LEDs on bare and AlN-buffered Si is similar. Electrical conduction across the AlN buffer is facilitated by a high number of grain boundaries that were revealed by transmission electron microscopy. These results demonstrate that grainy AlN buffer layers on Si are compatible both with the SAG of GaN NWs and LED operation. Therefore, this study is a first step towards the fabrication of LEDs on Si substrates based on homogeneous NW ensembles.

  8. Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Benqin; Tao, Haizheng; Zhao, Xiujian

    2016-03-01

    As a well-developed industrial fabricating method, magnetron sputtering technique has its distinct advantages for the large-scale production. In order to investigate the effect of buffer layer on the formation and thermochromic performances of VO2 films, using RF magnetron sputtering method, we fabricated three kinds of buffer layers SiO2, TiO2 and SnO2 on soda lime float-glass. Then according to the reactive DC magnetron sputtering method, VO2 films were deposited. Due to the restriction of heat treatment temperature when using soda lime float-glass as substrates, dense rutile phase TiO2 cannot be formed, leading to the formation of vanadium oxide compounds containing Na ions. When using SnO2 as buffer layer, we found that relatively high pure VO2 can be deposited more easily. In addition, compared with the effect of SiO2 buffer layer, we observed an enhanced visible transparency, a decreased infrared emissivity, which should be mainly originated from the modified morphology and/or the hetero-structured VO2/SnO2 interface.

  9. Sol-gel deposition of buffer layers on biaxially textured metal substances

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  10. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    SciTech Connect

    Srinivas, S.; Bhatnagar, A.K.; Pinto, R.

    1994-12-31

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si<100>, Sapphire and LaAlO{sub 3} <100> substrates. The effect of substrate temperatures upto 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar structure with variation growth conditions. The buffer layers of YSZ and STO showed orientation. The tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa{sub 2}Cu{sub 9}O{sub 7-x} (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  11. Sol-gel deposition of buffer layers on biaxially textured metal substances

    SciTech Connect

    Shoup, S.S.; Paranthamam, M.; Beach, D.B.; Kroeger, D.M.; Goyal, A.

    2000-06-20

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  12. Characterization of Cu buffer layers for growth of L1{sub 0}-FeNi thin films

    SciTech Connect

    Mizuguchi, M.; Sekiya, S.; Takanashi, K.

    2010-05-15

    A Cu(001) layer was fabricated on a Au(001) layer to investigate the use of Cu as a buffer layer for growing L1{sub 0}-FeNi thin films. The epitaxial growth of a Cu buffer layer was observed using reflection high-energy electron diffraction. The flatness of the layer improved drastically with an increase in the substrate temperature although the layer was an alloy (AuCu{sub 3}). An FeNi thin film was epitaxially grown on the AuCu{sub 3} buffer layer by alternate monatomic layer deposition and the formation of an L1{sub 0}-FeNi ordered alloy was expected. The AuCu{sub 3} buffer layer is thus a promising candidate material for the growth of L1{sub 0}-FeNi thin films.

  13. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    SciTech Connect

    Lordi, Vincenzo

    2016-09-30

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enabling R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.

  14. Layer-based buffer aware rate adaptation design for SHVC video streaming

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  15. Epitaxial growth of cadmium telluride films on silicon with a buffer silicon carbide layer

    NASA Astrophysics Data System (ADS)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.

    2017-02-01

    An epitaxial 1-3-μm-thick cadmium telluride film has been grown on silicon with a buffer silicon carbide layer using the method of open thermal evaporation and condensation in vacuum for the first time. The optimum substrate temperature was 500°C at an evaporator temperature of 580°C, and the growth time was 4 s. In order to provide more qualitative growth of cadmium telluride, a high-quality 100-nm-thick buffer silicon carbide layer was previously synthesized on the silicon surface using the method of topochemical substitution of atoms. The ellipsometric, Raman, X-ray diffraction, and electron-diffraction analyses showed a high structural perfection of the CdTe layer in the absence of a polycrystalline phase.

  16. Epitaxial MOD-YSZ buffer layers on IBAD-YSZ substrates

    NASA Astrophysics Data System (ADS)

    Jarzina, H.; Sievers, S.; Jooss, Ch; Freyhardt, H. C.; Lobinger, P.; Roesky, H. W.

    2005-03-01

    There are a number of reports on the epitaxial growth of MOD buffer layers for coated conductors. However, the quality of superconducting films deposited on top of these layers is often poor. We demonstrate that Y Ba2Cu3O7 (YBCO) layers with a high critical current density of 20 MA cm-2 (8 K) can be deposited on MOD-YSZ (ZrO2:10 mol% Y2O3) which has been grown epitaxially on YSZ(001) single crystals. Furthermore, high jc YBCO films are obtained on a MOD-YSZ buffer deposited on an IBAD (ion-beam-assisted-deposition)-YSZ substrate. In this case, critical current densities of 11 MA cm-2 (8 K) are observed. Finally, multilayers of MOD-YSZ on IBAD-YSZ substrates are prepared, where the development of texture with increasing film thickness is discussed as well as its possible technological impact.

  17. Improvement of luminescence properties of GaN buffer layer for fast nitride scintillator structures

    NASA Astrophysics Data System (ADS)

    Hubáček, T.; Hospodková, A.; Oswald, J.; Kuldová, K.; Pangrác, J.

    2017-04-01

    We have optimized technology of GaN buffer layer growth with respect to the application in fast scintillation structures. The deep defect luminescence so called yellow band (YB) with decay time up to tens of microseconds is undesired for these applications and should be suppressed or at least the ratio of intensities of excitonic to YB maximum has to be considerably increased. The required photoluminescence properties were achieved by optimization of growth parameters of nucleation and coalescence layer on sapphire substrate. We have shown that decrease of NH3 flow, decrease of coalescence temperature, increase of nucleation time and nucleation pressure lead to improvement of the structure and luminescence properties of the buffer layer. Results indicate a significant increased ratio of excitonic/YB luminescence intensity.

  18. From front contact to back contact in cadmium telluride/cadmium sulfide solar cells: Buffer layer and interfacial layer

    NASA Astrophysics Data System (ADS)

    Roussillon, Yann

    Cadmium telluride (CdTe) polycrystalline thin film solar cells, with their near optimum direct band-gap of 1.4 eV matching almost perfectly the sun radiation spectrum, are a strong contender as a less expensive alternative, among photovoltaic materials, than the more commonly used silicon-based cells. Polycrystalline solar cells are usually deposited over large areas. Such devices often exhibit strong fluctuations (nonuniformities) in electronic properties, which originate from deposition and post-deposition processes, and are detrimental to the device performance. Therefore their effects need to be constrained. A new approach in this work was, when a CdS/CdTe solar cell is exposed to light and immersed in a proper electrolyte, fluctuations in surface potential can drive electrochemical reactions which result in a nonuniform interfacial layer that could balance the original nonuniformity. This approach improved the device efficiency for CdS/CdTe photovoltaic devices from 1--3% to 11--12%. Cadmium sulfide (CdS), used as a window layer and heterojunction partner to CdTe, is electrically inactive and absorb light energies above its band-gap of 2.4 eV. Therefore, to maximize the device efficiency, a thin US layer needs to be used. However, more defects, such as pinholes, are likely to be present in the film, leading to shunts. A resistive transparent layer, called buffer layer, is therefore deposited before CdS. A key observation was that the open-circuit voltage (Voc) for cells made using a buffer layer was high, around 800 mV, similar to cells without buffer layer after Cu doping. The standard p-n junction theory cannot explain this phenomena, therefore an alternative junction mechanism, similar to metal-insulator-semiconductor devices, was developed. Furthermore, alternative Cu-free back-contacts were used in conjunction with a buffer layer. The Voc of the devices was found to be dependent of the back contact used. This change occurs as the back-contact junction

  19. Development of buffer layers on 30 mm wide textured metal substrates for REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Ota, H.; Ohki, K.; Konishi, M.; Ohmatsu, K.

    2010-11-01

    We have been studying REBa2Cu3Ox (RE: rare earth elements) coated conductors on clad-type substrates. We developed coated conductors on the 10 mm wide clad-type tape, and succeeded in obtaining the maximum critical current of 380 A/cm with the 2.0 μm thick GdBa2Cu3Ox superconducting film. At present, we are trying to widen the tape width from 10 mm to 30 mm in order to increase production throughput. We report our recent progress on scaling-up of the buffer layers and their properties. The buffer layers consisted of three layers; CeO2 as the seed layer, yttrium-stabilized zirconia (YSZ) as the diffusion barrier layer and CeO2 as the lattice matching layer. They were grown by the RF-sputtering method and the electron beam evaporation technique (EB). EB deposition has possibility of higher throughput compared with the RF-sputtering. The intensity ratio of (2 0 0) to (2 0 0) + (1 1 1) for the lattice matching layer showed as high as 98%. The uniform properties of 40 m long and 30 mm wide substrates were successfully produced by all sputtering method. Additionally, the tape travel speed of the seed layer can be increased from 7 m/h (RF-sputtering deposition) to 10 m/h (EB deposition) on short sample (0.3 m long).

  20. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  1. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

    DOEpatents

    Norman, Andrew

    2016-08-23

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

  2. Pyroelectric and dielectric properties of ferroelectric films with interposed dielectric buffer layers

    NASA Astrophysics Data System (ADS)

    Espinal, Y.; Kesim, M. T.; Misirlioglu, I. B.; Trolier-McKinstry, S.; Mantese, J. V.; Alpay, S. P.

    2014-12-01

    The dielectric and pyroelectric properties of c-domain ferroelectric films with linear dielectric buffer layers were investigated theoretically. Computations were carried out for multilayers consisting of PbZr0.2Ti0.8O3 with Al2O3, SiO2, Si3N4, HfO2, and TiO2 buffers on metalized Si. It is shown that the dielectric and pyroelectric properties of such multilayers can be increased by the presence of the buffer compared to ferroelectric monolayers. Calculations for PbZr0.2Ti0.8O3 films with 1% Al2O3 interposed between electrodes on Si show that the dielectric and pyroelectric coefficients are 310 and 0.070 μC cm-2 °C-1, respectively. Both values are higher than the intrinsic response of PbZr0.2Ti0.8O3 monolayer on Si.

  3. Effects of buffer layers on the structural and electronic properties of InSb films

    SciTech Connect

    Weng, X.; Rudawski, N.G.; Wang, P.T.; Goldman, R.S.; Partin, D.L.; Heremans, J.

    2005-02-15

    We have investigated the effects of various buffer layers on the structural and electronic properties of n-doped InSb films. We find a significant decrease in room-temperature electron mobility of InSb films grown on low-misfit GaSb buffers, and a significant increase in room-temperature electron mobility of InSb films grown on high-misfit InAlSb or step-graded GaSb+InAlSb buffers, in comparison with those grown directly on GaAs. Plan-view transmission electron microscopy (TEM) indicates a significant increase in threading dislocation density for InSb films grown on the low-misfit buffers, and a significant decrease in threading dislocation density for InSb films grown on high-misfit or step-graded buffers, in comparison with those grown directly on GaAs. Cross-sectional TEM reveals the role of the film/buffer interfaces in the nucleation (filtering) of threading dislocations for the low-misfit (high-misfit and step-graded) buffers. A quantitative analysis of electron mobility and carrier-concentration dependence on threading dislocation density suggests that electron scattering from the lattice dilation associated with threading dislocations has a stronger effect on electron mobility than electron scattering from the depletion potential surrounding the dislocations. Furthermore, while lattice dilation is the predominant mobility-limiting factor in these n-doped InSb films, ionized impurity scattering associated with dopants also plays a role in limiting the electron mobility.

  4. Effects of buffer layers on the structural and electronic properties of InSb films

    NASA Astrophysics Data System (ADS)

    Weng, X.; Rudawski, N. G.; Wang, P. T.; Goldman, R. S.; Partin, D. L.; Heremans, J.

    2005-02-01

    We have investigated the effects of various buffer layers on the structural and electronic properties of n-doped InSb films. We find a significant decrease in room-temperature electron mobility of InSb films grown on low-misfit GaSb buffers, and a significant increase in room-temperature electron mobility of InSb films grown on high-misfit InAlSb or step-graded GaSb +InAlSb buffers, in comparison with those grown directly on GaAs. Plan-view transmission electron microscopy (TEM) indicates a significant increase in threading dislocation density for InSb films grown on the low-misfit buffers, and a significant decrease in threading dislocation density for InSb films grown on high-misfit or step-graded buffers, in comparison with those grown directly on GaAs. Cross-sectional TEM reveals the role of the film/buffer interfaces in the nucleation (filtering) of threading dislocations for the low-misfit (high-misfit and step-graded) buffers. A quantitative analysis of electron mobility and carrier-concentration dependence on threading dislocation density suggests that electron scattering from the lattice dilation associated with threading dislocations has a stronger effect on electron mobility than electron scattering from the depletion potential surrounding the dislocations. Furthermore, while lattice dilation is the predominant mobility-limiting factor in these n-doped InSb films, ionized impurity scattering associated with dopants also plays a role in limiting the electron mobility.

  5. Electron dynamics of the buffer layer and bilayer graphene on SiC

    SciTech Connect

    Shearer, Alex J.; Caplins, Benjamin W.; Suich, David E.; Harris, Charles B.; Johns, James E.; Hersam, Mark C.

    2014-06-09

    Angle- and time-resolved two-photon photoemission (TPPE) was used to investigate electronic states in the buffer layer of 4H-SiC(0001). An image potential state (IPS) series was observed on this strongly surface-bound buffer layer, and dispersion measurements indicated free-electron-like behavior for all states in this series. These results were compared with TPPE taken on bilayer graphene, which also show the existence of a free-electron-like IPS series. Lifetimes for the n = 2, and n = 3 states were obtained from time-resolved TPPE; slightly increased lifetimes were observed in the bilayer graphene sample for the n = 2 the n = 3 states. Despite the large band gap of graphene at the center of the Brillouin zone, the lifetime results demonstrate that the graphene layers do not behave as a simple tunneling barrier, suggesting that the buffer layer and graphene overlayers play a direct role in the decay of IPS electrons.

  6. Exploring Cd-Zn-O-S alloys for optimal buffer layers in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Varley, J.; He, X.; Mackie, N.; Rockett, A.; Lordi, V.

    2015-03-01

    The development of thin-film photovoltaics has largely focused on alternative absorber materials, while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the USDoE by LLNL under Contract DE-AC52-07NA27344 and funded by the DoE EERE through the SunShot BRIDGE program.

  7. Effect of magnetic structural processing on structure and texture of La2Zr2O7 buffer layers

    NASA Astrophysics Data System (ADS)

    Chibirova, F. Kh.; Kotina, G. V.; Bovina, E. A.; Tarasova, D. V.; Polisan, A. A.; Parkhomenko, Yu. N.

    2016-11-01

    Epitaxial CeO2 seed layer and La2Zr2O7 (LZO) buffer layers were deposited on biaxially-textured Ni-5 at.% W (NiW) tape substrate by liquid-phase polymer assisted nanoparticles deposition (PAND) method. LZO layers deposited by PAND have consistently shown tilting of the c-axis toward the direction of the sample’s surface normal. A new approach increasing the sharpening of the buffer texture by magnetic structural processing (MSP) of buffer layers was tested. The LZO layers, deposited on the seed and buffer layers after MSP, have dense and smooth surface structure, and more importantly, significantly improved out-of-plane texture, compared with the LZO layers that were deposited on a layer without MSP. Transmission electron microscopy study confirmed the c-axis tilting of CeO2 and LZO layers and revealed the absence of interfaces between LZO layers which have been grown on the layers after MSP. There are very small (2-4 nm) gated pores in the single-crystal structure of LZO layers that are not typical for structure of LZO layers obtained by liquid-phase methods. Thus the LZO buffer layers can serve as an effective metal-ion diffusion barrier.

  8. Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability

    NASA Astrophysics Data System (ADS)

    Zhao, Wenchao; Ye, Long; Zhang, Shaoqing; Fan, Bin; Sun, Mingliang; Hou, Jianhui

    2014-10-01

    Interfacial buffer layers often attribute the improved device performance in organic optoelectronic device. Herein, a water-soluble hydrochloric acid doped polyanilines (HAPAN) were utilized as p-type electrode buffer layer in highly efficient polymer solar cells (PSC) based on PBDTTT-EFT and several representative polymers. The PBDTTT-EFT-based conventional PSC featuring ultrathin HAPAN (1.3 nm) delivered high PCE approximately 9%, which is one of the highest values among conventional PSC devices. Moreover, ultrathin HAPAN also exhibited wide applicability in a variety of efficient photovoltaic polymers including PBDTTT-C-T, PTB7, PBDTBDD, PBTTDPP-T, PDPP3T and P3HT. The excellent performances were originated from the high transparency, small film roughness and suitable work function.

  9. Selective growth of Pb islands on graphene/SiC buffer layers

    SciTech Connect

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.; Hu, T. W.; Ma, F. E-mail: kwxu@mail.xjtu.edu.cn; Chu, Paul K.; Xu, K. W. E-mail: kwxu@mail.xjtu.edu.cn

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Since Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.

  10. Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer

    NASA Astrophysics Data System (ADS)

    Kim, Inho; Seok Jeong, Doo; Seong Lee, Taek; Seong Lee, Wook; Lee, Kyeong-Seok

    2012-05-01

    We demonstrate using finite-difference-time-domain calculations that embedding Ag nano disks (NDs) in the buffer layers of thin P3HT:PCBM organic solar cells can enhance optical absorption in the active layers at specific wavelength range. We show that the aspect ratio of the NDs is a key parameter for strong plasmonic absorption enhancement. Two different plasmonic absorption bands are observed stemming from optical refractive index differences among the layers surrounding the NDs in the solar cell devices. One absorption band by the surface plasmon mode localized at the interface of indium tin oxide/ND, which is undesirable for plasmonic absorption enhancement in the active layer, become negligible as the aspect ratio of the diameter-to-height increased. The other absorption band by the dipole-like surface plasmon mode, which plays a main role in enhancing the absorption in the active layer, is spectrally tunable by adjusting the aspect ratio of the NDs. The influences of diameter, height, and coverage of the NDs on optical absorption in the active layer are discussed. Embedding the optimal size NDs in the buffer layer leads to the enhanced total absorption in the 50 nm thick active layer by 16% relative to that without the NDs, and the optical absorption keeps enhanced with increasing the active layer thickness up to 90 nm. However, further increases in the active layer thickness are detrimental to absorption enhancement, which is considered to be caused by destructive interference between scattered light by the NDs and incident light.

  11. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  12. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOEpatents

    Bhattacharya, Raghu N.

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  13. Growth and characterization of CdS buffer layers by CBD and MOCVD

    SciTech Connect

    Morrone, A.A.; Huang, C.; Li, S.S.

    1999-03-01

    Thin film CdS has been widely used in thin-film photovoltaic devices. The most efficient Cu(In,&hthinsp;Ga)Se{sub 2} (CIGS) solar cells reported to date utilized a thin CdS buffer layer prepared by a reactive solution growth technique known as chemical bath deposition (CBD). Considerable effort has been directed to better understand the role and find a replacement for the CBD CdS process in CIGS-based solar cells. We reported a low temperature ({approximately}150&hthinsp;{degree}C) Metalorganic Chemical Vapor Deposition (MOCVD) CdS thin film buffer layer process for CIGS absorbers. Many prior studies have reported that CBD CdS contains a mixture of crystal structures. Recent investigations of CBD CdS thin films by ellipsometry suggested a multilayer structure. In this study we compare CdS thin films prepared by CBD and MOCVD and the effects of annealing. TED and XRD are used to characterize the crystal structure, the film microstructure is studied by HRTEM, and the optical properties are studied by Raman and spectrophotometry. All of these characterization techniques reveal superior crystalline film quality for CdS films grown by MOCVD compared to those grown by CBD. Dual Beam Optical Modulation (DBOM) studies showed that the MOCVD and CBD CdS buffer layer processes have nearly the same effect on CIGS absorbers when combined with a cadmium partial electrolyte aqueous dip. {copyright} {ital 1999 American Institute of Physics.}

  14. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer

    PubMed Central

    Tan, Zhan'ao; Li, Shusheng; Wang, Fuzhi; Qian, Deping; Lin, Jun; Hou, Jianhui; Li, Yongfang

    2014-01-01

    Low-work-function active metals are commonly used as cathode in polymer solar cells (PSCs), but sensitivity of the active metals towards moisture and oxygen results in poor stability of the devices. Therefore, solution-proceessable and stable cathode buffer layer is of great importance for the application of PSCs. Here we demonstrate high performance PSCs by employing as-prepared zirconium acetylacetonate (a-ZrAcac) film spin-cast from its ethanol solution as cathode buffer layer. The PSCs based on a low bandgap polymer PBDTBDD as donor and PC60BM as acceptor with a-ZrAcac/Al cathode demonstrated an average power conversion efficiency (PCE) of 8.75% which is significantly improved than that of the devices with traditional Ca/Al cathode. The improved photovoltaic performance is benefitted from the decreased series resistance and enhanced light harvest of the PSCs with the a-ZrAcac/Al cathode. The results indicate that a-ZrAcac is a promising high performance cathode buffer layer for fabricating large area flexible PSCs. PMID:24732976

  15. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer.

    PubMed

    Ambade, Swapnil B; Ambade, Rohan B; Kim, Seojin; Park, Hanok; Yoo, Dong Jin; Leel, Soo-Hyoung

    2014-11-01

    Polymer solar cells (PSCs) have attracted increasing attention in recent years. The rapid progress and mounting interest suggest the feasibility of PSC commercialization. However, critical issues such as stability and the weak nature of their interfaces posses quite a challenge. In the context of improving stability, PSCs with inverted geometry consising of inorganic oxide layer acting as an n-buffer offer quite the panacea. Zinc oxide (ZnO) is one of the most preferred semiconducting wide band gap oxides as an efficient cathode layer that effectively extracts and transports photoelectrons from the acceptor to the conducting indium-doped tin oxide (ITO) due to its high conductivity and transparency. However, the existence of a back charge transfer from metal oxides to electron-donating conjugated polymer and poor contact with the bulk heterojunction (BHJ) active layer results in serious interfacial recombination and leads to relatively low photovoltaic performance. One approach to improving the performance and charge selectivity of these types of inverted devices consists of modifying the interface between the inorganic metal oxide (e.g., ZnO) and organic active layer using a sub-monolayer of interfacial materials (e.g., functional dyes). In this work, we demonstrate that the photovoltaic parameters of inverted solar cells comprising a thin overlayer of functional dyes over ZnO nanoparticle as an n-buffer layer are highly influenced by the anchoring groups they possess. While an inverted PSC containing an n-buffer of only ZnO exhibited an overall power conversion efficiency (PCE) of 2.87%, the devices with an interlayer of dyes containing functional cyano-carboxylic, cyano-cyano, and carboxylic groups exhibited PCE of 3.52%, 3.39%, and 3.21%, respectively, due to increased forward charge collection resulting from enhanced electronic coupling between the ZnO and BHJ active layers.

  16. Multi-filamentary REBCO tapes fabricated by scratching a buffer layer along the tape longitudinal direction

    NASA Astrophysics Data System (ADS)

    Kurihara, Chihaya; Fujita, Shinji; Nakamura, Naonori; Igarashi, Mitsunori; Iijima, Yasuhiro; Higashikawa, Kohei; Uetsuhara, Dai; Kiss, Takanobu; Iwakuma, Masataka

    2016-11-01

    A method for making multi-filamentary REBCO tapes by only scratching buffer layer was developed for coil application which requires accurate magnetic fields. By continuous Ic measurement, we found that our new multi-filamentary tape could provide almost equal Ic compared to conventional tapes. Then, using EBSD and RTR-SHPM methods, a divided structure of REBCO layer was surely confirmed. AC loss was also decreased. Furthermore, the result of delamination test of our new multi-filamentary tape showed enough mechanical property. As a result, we have succeeded in developing 100 m class multi-filamentary tape for superconducting coil.

  17. Applied Learning Networks (ALN)

    DTIC Science & Technology

    2007-01-01

    AFRL-IF-RS-TR-2007-7 Final Technical Report January 2007 APPLIED LEARNING NETWORKS (ALN) University of Southern California...any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them...1-0051 4. TITLE AND SUBTITLE APPLIED LEARNING NETWORKS (ALN) 5c. PROGRAM ELEMENT NUMBER 62301E 5d. PROJECT NUMBER T981 5e. TASK NUMBER US

  18. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    SciTech Connect

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun; You, Chun-Yeol; Han, Dong-Soo; Kim, June-Seo Swagten, Henk J. M.

    2015-10-05

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlO{sub x} and Ta/Pt/Co/AlO{sub x} structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy are significantly improved due to the better interface between heavy metal and ferromagnetic layer. From the frequency shift between Stokes- and anti-Stokes spin-waves, we successively obtain considerably larger iDM energy densities (D{sub max} = 1.65 ± 0.13 mJ/m{sup 2} at t{sub Co} = 1.35 nm) upon adding the Ta buffer layer, despite the nominally identical interface materials. Moreover, the energy density shows an inverse proportionality with the Co layer thickness, which is the critical clue that the observed iDMI is indeed originating from the interface between the Pt and Co layers.

  19. The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements.

    PubMed

    Gong, Kemeng; Qu, Shuxin; Liu, Yumei; Wang, Jing; Zhang, Yongchao; Jiang, Chongxi; Shen, Ru

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) has tremendous potential as an orthopeadic biomaterial for joint replacements. However, poor mechanical and tribological properties of UHMWPE-ALN are still obstacle for further application. The purpose of this study was to investigate the effect and mechanism of mechanical activation on mechanical and tribological properties of 1wt% ALN-loaded UHMWPE (UHMWPE-ALN-ma). In this study, tensile test, small punch test and reciprocating sliding wear test were applied to characterize the mechanical and tribological properties of UHMWPE-ALN-ma. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize UHMWPE-ALN-ma. Tensile test and small punch test showed that Young׳s modulus, tensile strength and work-to-failure (WTF) of UHMWPE-ALN-ma increased significantly compared to those of UHMWPE-ALN. The friction coefficients and wear factors of UHMWPE-ALN-ma both decreased significantly compared to those of UHMWPE-ALN. Mechanical activation obviously reduced type 1 (void) and type 2 (the disconnected and dislocated machining marks) fusion defects of UHMWPE-ALN-ma, which were revealed by SEM images of freeze fracture surfaces after etching and lateral surfaces of specimens after extension to fracture, respectively. It was attributed to peeled-off layers and chain scission of molecular chains of UHMWPE particles after mechanical activation, which were revealed by SEM images and FTIR spectra of UHMWPE-ALN-ma and UHMWPE-ALN, respectively. Moreover, EDS spectra revealed the more homogeneous distribution of ALN in UHMWPE-ALN-ma compared to that of UHMWPE-ALN. The present results showed that mechanical activation was a potential strategy to improve mechanical and tribological properties of UHMWPE-ALN-ma as an orthopeadic biomaterial for joint replacements.

  20. Formation of a Buffer Layer for Graphene on C-Face SiC{0001}

    NASA Astrophysics Data System (ADS)

    He, Guowei; Srivastava, N.; Feenstra, R. M.

    2014-04-01

    Graphene films prepared by heating the SiC surface (the C-face of the {0001} surface) in a Si-rich environment have been studied using low-energy electron diffraction (LEED) and low-energy electron microscopy. Upon graphitization, an interface with symmetry is observed by in situ LEED. After oxidation, the interface displays symmetry. Electron reflectivity measurements indicate that these interface structures arise from a graphene-like "buffer layer" that forms between the graphene and the SiC, similar to that observed on Si-face SiC. From a dynamical LEED structure calculation for the oxidized C-face surface, it is found to consist of a graphene layer sitting on top of a silicate (Si2O3) layer, with the silicate layer having the well-known structure as previously studied on bare SiC surfaces. Based on this result, the structure of the interface prior to oxidation is discussed.

  1. Development of Solution Buffer Layers for RABiTS Based YBCO Coated Conductors

    SciTech Connect

    Paranthaman, Mariappan Parans; Qiu, Xiaofeng; List III, Frederick Alyious; Zhang, Yifei; Li, Xiaoping; Sathyamurthy, Srivatsan; Thieme, C. L. H.; Rupich, M. W.

    2011-01-01

    Abstract The main objective of this research is to find a suitable alternate solution based seed layer for the standard RABiTS three-layer architecture of physical vapor deposited CeO cap/YSZ barrier/Y O seed on Ni-5%W metal tape. In the present work, we have identified CeO buffer layer as a potential replacement for Y O seeds. Using a metal-organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of CeO (pure and Zr, Cu and Gd-doped) directly on biaxially textured Ni-5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial CeO phase with slightly improved out-of-plane texture compared to the texture of the underlying Ni-W substrates can be achieved in pure, undoped CeO samples. We have also demonstrated the growth of YSZ barrier layers on pure CeO seeds using sputtering. Both sputtered CeO cap layers and MOD-YBCO films were grown epitaxially on these YSZ-buffered MOD-CeO /Ni-5W substrates. High critical currents per unit width, of 264 A/cm (critical current density, of 3.3 MA/cm ) at 77 K and 0.01 T was achieved for 0.8 m thick MOD-YBCO films grown on MOD-CeO seeds. These results indicate that CeO films can be grown directly on Ni-5W substrates and still support high performance YBCO coated conductors. This work holds promise for a route for producing low-cost buffer architecture for RABiTS based YBCO coated conductors.

  2. Dummy Fill Aware Buffer Insertion after Layer Assignment Based on an Effective Estimation Model

    NASA Astrophysics Data System (ADS)

    Jia, Yanming; Cai, Yici; Hong, Xianlong

    This paper studies the impact of dummy fill for chemical mechanical polishing (CMP)-induced capacitance variation on buffer insertion based on a virtual CMP fill estimation model. Compared with existing methods, our algorithm is more feasible by performing buffer insertion not in post-process but during early physical design. Our contributions are threefold. First, we introduce an improved fast dummy fill amount estimation algorithm based on [4], and use some speedup techniques (tile merging, fill factor and amount assigning) for early estimation. Second, based on some reasonable assumptions, we present an optimum virtual dummy fill method to estimate dummy position and the effect on the interconnect capacitance. Then the dummy fill estimation model was verified by our experiments. Third, we use this model in early buffer insertion after layer assignment considering the effects of dummy fill. Experimental results verified the necessity of early dummy fill estimation and the validity of our algorithm. Buffer insertion considering dummy fill during early physical design is necessary and our algorithm is promising.

  3. Study of optical waveguide sensor using metamaterial as buffer layer with non-linear cladding and substrate

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Kumari, Anamika; Raghuwanshi, Sanjeev K.

    2015-05-01

    In this paper, dispersion equation of optical waveguide using metamaterial as buffer layer with non-linear cladding and substrate is pointed. The sensitivity of TE in metamaterial optical waveguide sensor is computed mathematically. The impacts of buffer layer with non-linear cladding and substrate on metamaterial optical waveguide sensor are also tried out. The effects of various parameters on sensitivity of sensor are obtained through MATLAB. It is expected that metamaterial as buffer layer with non-linear cladding and substrate profile has a huge application in leaky fibre sensor, gas sensor and chemical sensor for oil and under grounds mining industries.

  4. AlN texturing and piezoelectricity on flexible substrates for sensor applications

    SciTech Connect

    Smecca, Emanuele; Pellegrino, Giovanna; Alberti, Alessandra; Maita, Francesco; Maiolo, Luca; Fortunato, Guglielmo; Vinciguerra, Vincenzo; La Magna, Luigi; Mirabella, Salvo; Condorelli, Guglielmo G.

    2015-06-08

    We show that AlN-based piezocapacitors with relatively high piezoelectric coefficient (d{sub 33}) values (3–4 pC/N) can be fabricated on polyimide (PI) substrates at 160 °C or even at room temperature by sputtering processes. With respect to PI, a reduction of the piezoelectric performances was observed on polyethylene naphthalate (PEN). With the same approach, a d{sub 33} value as high as 8 pC/N was achieved on rigid substrates (SiO{sub 2}/Si). In all cases, a thin Al buffer layer was deposited, immediately before AlN, without breaking the vacuum in the deposition chamber, in order to preserve the interface from contaminations that would obstruct the optimal atomic stratification with the desired [0001] growth axis. The piezoelectric behavior was thus correlated to the degree of texturing of the AlN layer through the evaluation of the XRD texturing coefficients and to the morphology by means of AFM analyses. We show that a high level of roughness introduced by the PEN substrate, coupled with the effect of the substrate flexibility on the piezoelectric coefficient, reduces the impact of the AlN texturing on the d{sub 33} values.

  5. Layer coupling and read disturbances in a buffered magnetic logic environment

    NASA Astrophysics Data System (ADS)

    Windbacher, Thomas; Makarov, Alexander; Sverdlov, Viktor; Selberherr, Siegfried

    2016-10-01

    There are two major obstacles impeding computing systems from further advancements: The power dissipation due to leakage and the energy spent for the information transfer between memory and processor(s). The first issue is commonly handled by shutting down unused circuit parts, however, when the dormant circuits are turned on again, their previous state must be recovered. This is commonly realized by retrieving the required information from the memory, which exacerbates the limited bandwidth between memory and processor(s). In order to circumvent these limitations, we have proposed a non-volatile buffered magnetic logic grid with instant-on capability. Non-volatile magnetic flip flops and spin-transfer torque majority gates are combined to a compact regular structure, which enables a small layout foot print as well as it guarantees the reduction of the information transfer due to a shared buffer. In the proposed structure the information is passed from one magnetic layer to another by first running a current through the magnetic layer to be read, which subsequently generates a magnetization orientation encoded spin-transfer torque, when the polarized electron spins enter the next layer. Since the current passing through the junction also exerts a spin-transfer torque on the read layer, its magnetization orientation could be destabilized which might cause a read disturbance. However, during our simulations it was also found out that the stray fields of neighboring layers have a non-negligible influence on the proposed copy operation. In this work we investigate these potential read disturbances in detail for a 2-bit shift register for varying stray field strength by changing the thickness of the interconnection layer. We found that for closer proximity the acting stray fields not only stabilize but also speed up the copy procedure, while for increasing interconnection layer thickness oscillating domain walls are formed and the copy operation becomes unreliable.

  6. Fibronectin layers by matrix-assisted pulsed laser evaporation from saline buffer-based cryogenic targets.

    PubMed

    Sima, F; Davidson, P; Pauthe, E; Sima, L E; Gallet, O; Mihailescu, I N; Anselme, K

    2011-10-01

    The deposition of fibronectin (FN) from saline buffer-based cryogenic targets by matrix-assisted pulsed laser evaporation (MAPLE) onto silicon substrates is reported. A uniform distribution of FN was revealed by Ponceau staining after control experiments on nitrocellulose paper. Well-organized particulates with heights from hundreds of nanometers up to more than 1 μm packed in homogeneous layers were evidenced by optical microscopy and profilometry on Si substrates. Atomic force microscopy images showed regions composed of buffer and FN aggregates forming a compact film. Comparison of infrared spectra of drop-cast and MAPLE-deposited FN confirmed the preservation of composition and showed no degradation of the protein. The protein deposition on Si was confirmed by antibody staining. Small aggregates and fluorescent fibrils were visualized by fluorescence microscopy. Superior attachment of human osteoprogenitor cells cultivated for 3 h proved the presence of stable and intact FN molecules after transfer.

  7. Buffer Layer Effects on Tandem InGaAs TPV Devices

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of

  8. SrO(001) on graphene: a universal buffer layer for integration of complex oxides

    NASA Astrophysics Data System (ADS)

    Ahmed, Adam; Wen, Hua; Pinchuk, Igor; Zhu, Tiancong; Kawakami, Roland

    2015-03-01

    We report the successful growth of high-quality crystalline SrO on highly-ordered pyrolytic graphite (HOPG) and single layer graphene by molecular beam epitaxy. The epitaxial SrO layers have (001) orientation as confirmed by x-ray diffraction (XRD), and atomic force microscopy measurements show rms surface roughness of optimal films to be 1.2 Å. Transport measurements of exfoliated graphene after SrO deposition show a strong dependence between the Dirac point and Sr oxidation. To show the utility of SrO as a buffer layer for complex oxide integration, we grew perovskite crystal SrTiO3 on SrO, and it was also confirmed to have (001) orientation from x-ray diffraction. This materials advancement opens the door to integration of many other complex oxides to explore novel correlated electron physics in graphene.

  9. ZnO buffer layer for metal films on silicon substrates

    DOEpatents

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  10. Lattice-matched HfN buffer layers for epitaxy of GaN on Si

    SciTech Connect

    Armitage, Robert; Yang, Qing; Feick, Henning; Gebauer, Joerg; Weber, Eicke R.; Shinkai, Satoko; Sasaki, Katsutaka

    2002-05-08

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using sputter-deposited hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 (mu)m. Initial results for GaN grown on the (111) surface show a photoluminescence peak width of 17 meV at 11 K, and an asymmetric x-ray rocking curve width of 20 arcmin. Wurtzite GaN on HfN/Si(001) shows reduced structural quality and peculiar low-temperature luminescence features. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  11. Effect of buffer layers on performance of organic photovoltaic devices based on copper phthalocyanine-perylene dye heterojunction

    NASA Astrophysics Data System (ADS)

    Signerski, R.; Jarosz, G.

    2011-12-01

    The work presents the results of research on the systems formed from thin films of copper phthalocyanine (CuPc), N-N'-dimethylperylene-3,4,9,10-dicarboximide (MePTCDI), electrodes of ITO and Ag, and from buffer layers: MoO3 at ITO and BCP at Ag. We have observed the effect of each buffer layer on voltage dependence of dark current and photocurrent, and on open circuit voltage-light intensity relationship. The system with both buffer layers exhibited the highest values of open circuit voltage and fill factor. The buffer layers improve transport of charge carriers within near-electrode regions, reduce dissociation of excitons on electrodes and reveal processes of charge carrier generation and recombination within the CuPc/MePTCDI junction.

  12. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer

    NASA Astrophysics Data System (ADS)

    He, Shaojian; Li, Shusheng; Wang, Fuzhi; Wang, Andrew Y.; Lin, Jun; Tan, Zhan'ao

    2013-05-01

    Quantum dot light-emitting diodes (QD-LEDs) are characterized by pure and saturated emission colors with narrow bandwidth. Optimization of the device interface is an effective way to achieve stable and high-performance QD-LEDs. Here we utilized solution-processed molybdenum oxide (MoOx) as the anode buffer layer on ITO to build efficient QD-LEDs. Using MoOx as the anode buffer layer provides the QD-LED with good Ohmic contact and a small charge transfer resistance. The device luminance is nearly independent of the thickness of the MoOx anode buffer layer. The QD-LEDs with a MoOx anode buffer layer exhibit a maximum luminance and luminous efficiency of 5230 cd m-2 and 0.67 cd A-1 for the yellow emission at 580 nm, and 7842 cd m-2 and 1.49 cd A-1 for the red emission at 610 nm, respectively.

  13. Optimization of CdS Buffer Layer for High Efficiency CIGS Solar Cells.

    PubMed

    Kim, Donguk; Jang, Yong-Jun; Jung, Ho-Sung; Kim, Minha; Baek, Dohyun; Yi, Junsin; Lee, Jaehyeong; Choi, Youngkwan

    2016-05-01

    In present work, effects of the thickness on the structural and optical properties of chemically deposited CdS thin films were investigated. In addition, we fabricated Cu(In, Ga)Se2 solar cells with various thicknesses of CdS buffer layer and optimized the thickness for a high efficiency. When the CdS thin films were thicker, the crystallinity improved but the transmittance decreased. The short-circuit current density (J(sc)) and the fill factor are the major efficiency limiting factors for the CIGS solar cells. As the thickness of the CdS buffer layer, the open-circuit voltage (V(oc)) and the fill factor increased, whereas the J(sc) slightly decreased. The improvement of the fill factor and thus efficiency resulted from larger shunt resistance. For the solar cells without a high resistive intrinsic ZnO layer, the highest efficiency was acquired at the thickness of 89 nm. With further increasing the thickness, the J(sc) decreased significantly, resulting in poor efficiency.

  14. AlN and AlGaN layers grown on Si(111) substrate by mixed-source hydride vapor phase epitaxy method

    NASA Astrophysics Data System (ADS)

    Jeon, Hunsoo; Jeon, Injun; Lee, Gang Seok; Bae, Sung Geun; Ahn, Hyung Soo; Yang, Min; Yi, Sam Nyung; Yu, Young Moon; Honda, Yoshio; Sawaki, Nobuhiko; Kim, Suck-Whan

    2017-01-01

    High Al-composition AlGaN and AlN epilayers were grown directly on Si(111) substrate by a hydride vapor phase epitaxy (HVPE) method with a melted mixed source in a graphite boat set in a source zone with high temperatures of T = 700 and 800 °C, respectively. The presence of the Ga material in the mixed source of Ga and Al promoted the growth of AlN and AlGaN epilayers in the growth zone. When the temperature in the source zone was 800 °C, the crystalline quality of the AlN and AlGaN epilayers increased as the ratio of Ga to Al increased, and the optimum mix ratio of Ga to Al for the growth of AlN epilayers was approximately 0.35-0.42, obtained from a numerical fitting analysis of the X-ray diffraction (XRD) data for these epilayers. It appears that they can be grown directly by our melted-mixed-source HVPE method in a high-temperature source zone.

  15. Design of optimal buffer layers for CuInGaSe2 thin-film solar cells(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Varley, Joel B.; He, Xiaoqing; Rockett, Angus A.; Bailey, Jeff; Zapalac, Geordie H.; Mackie, Neil; Poplavskyy, Dmitry; Bayman, Atiye

    2016-09-01

    Optimizing the buffer layer in manufactured thin-film PV is essential to maximize device efficiency. Here, we describe a combined synthesis, characterization, and theory effort to design optimal buffers based on the (Cd,Zn)(O,S) alloy system for CIGS devices. Optimization of buffer composition and absorber/buffer interface properties in light of several competing requirements for maximum device efficiency were performed, along with process variations to control the film and interface quality. The most relevant buffer properties controlling performance include band gap, conduction band offset with absorber, dopability, interface quality, and film crystallinity. Control of an all-PVD deposition process enabled variation of buffer composition, crystallinity, doping, and quality of the absorber/buffer interface. Analytical electron microscopy was used to characterize the film composition and morphology, while hybrid density functional theory was used to predict optimal compositions and growth parameters based on computed material properties. Process variations were developed to produce layers with controlled crystallinity, varying from amorphous to fully epitaxial, depending primarily on oxygen content. Elemental intermixing between buffer and absorber, particularly involving Cd and Cu, also is controlled and significantly affects device performance. Secondary phase formation at the interface is observed for some conditions and may be detrimental depending on the morphology. Theoretical calculations suggest optimal composition ranges for the buffer based on a suite of computed properties and drive process optimizations connected with observed film properties. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. a Novel pt and Npt Mixed Igbt Having a New n-BUFFER Layer

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Luo, Shuhua; Zhang, Liang; Wang, Wei; Yu, Wen; Li, Chengfang; Sun, Xiaowei

    For the first time, a novel mixed insulated gate bipolar transistor (MIGBT) is proposed and verified by two-dimensional (2D) mixed device-circuit simulations. The structure of the proposed device is almost identical with that of the conventional IGBT, except for the buffer layer which is formed by employing the n+/n- structure, so that the trade-off relation between the conduction and switching losses is greatly improved and efficiently decoupled. Furthermore, the proposed device exhibits larger forward blocking voltage and positive temperature coefficient of the forward voltage drop, facilitating parallel integration.

  17. Heterointegration of III-V on silicon using a crystalline oxide buffer layer

    NASA Astrophysics Data System (ADS)

    Bhatnagar, K.; Rojas-Ramirez, J. S.; Contreras-Guerrero, R.; Caro, M.; Droopad, R.

    2015-09-01

    The integration of III-V compound semiconductors with Si can combine the cost advantage and maturity of Si technology with the superior performance of III-V materials. We have achieved the heteroepitaxial growth of III-V compound semiconductors on a crystalline SrTiO3 buffer layer grown on Si(0 0 1) substrates. A two-step growth process utilizing a high temperature nucleation layer of GaAs, followed by a low-temperature GaAs layer at a higher growth rate was employed to achieve highly crystalline thick GaAs layers on the SrTiO3/Si substrates with low surface roughness as seen by AFM. The effect of the GaAs nucleation layer on different surface terminations for the SrTiO3 layer was studied for both on axis and miscut wafers, which led to the conclusion that the Sr terminated surface on miscut substrates provides the best GaAs films. Using GaAs/STO/Si as virtual substrates, we have optimized the growth of high quality GaSb using the interfacial misfit (IMF) dislocation array technique. This work can lead to the possibility of realizing infrared detectors and next-generation high mobility III-V CMOS within the existing Si substrate infrastructure.

  18. Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Rice, A.; Collazo, R.; Tweedie, J.; Dalmau, R.; Mita, S.; Xie, J.; Sitar, Z.

    2010-08-01

    Chemical surface treatments were conducted on mechanically polished (MP) and chemomechanically polished (CMP) (0001)-oriented single crystalline aluminum nitride (AlN) substrates to determine a surface preparation procedure for the homoepitaxial deposition of AlN epitaxial layers by metalorganic chemical vapor deposition. MP AlN substrates characterized by atomic force microscopy exhibited 0.5 nm rms roughness and polishing scratches, while CMP AlN substrates exhibited 0.1 nm rms roughness and were scratch-free. X-ray photoelectron spectroscopy analysis of MP and CMP AlN substrates indicated the presence of a surface hydroxide layer composed of mixed aluminum oxide hydroxide and aluminum trihydroxide. Wet etching with sulfuric and phosphoric acid mixtures reduced the amount of surface hydroxide. Ammonia annealing at 1250 °C converted the substrate hydroxide layer to AlN and increased the rms roughness of MP and CMP AlN substrates to 2.2 nm and 0.2 nm, respectively. AlN epitaxial layers were deposited at 1100-1250 °C under 20 Torr total pressure with a V/III ratio of 180-300 in either N2 or H2 diluent. High-resolution x-ray diffraction measurements revealed that AlN epitaxial layers deposited on MP substrates were strained due to nucleation and coalescence of AlN grains on the mechanically damaged surfaces. AlN deposited on CMP substrates was epitaxial and strain-free. Thermodynamic models for nitridation and AlN deposition were also proposed and evaluated.

  19. Body centered cubic buffer layers for enhanced lateral grain growth of Co/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Tsunoda, Masakiyo; Takahashi, Daisuke; Takahashi, Migaku

    2003-05-01

    The effect of buffer layers (BLs) on metallurgical microstructure and giant magnetoresistance of Co/Cu multilayers fabricated on them is discussed. The lateral grain size and the magnetoresistance (MR) ratio of multilayers are generally enlarged with changing the chemical composition of BLs toward a limiting concentration, within the range where the solid solution of body-centered-cubic (bcc) structure is formed. A guiding principle for material research for the BLs, which realize flat interfaces with large lateral grain size in the multilayers, is deduced from the correlation between the MR ratio of the multilayers and the surface energy of bcc BLs: the difference between the surface energy of BL (γS) and the interfacial energy (γSL) in Young-Dupré's equation (cos θ=(γS-γSL)/γL) should agree with the surface energy of Co layer (γL), which is deposited first on the BL.

  20. Multilayers Diamond-Like Carbon Film with Germanium Buffer Layers by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Lu, Y. M.; Guo, Y. L.; Huang, G. J.; Wang, S. Y.; Tian, F. T.

    Multilayer diamond-like carbon film with germanium buffer layers, which was composed of several thick DLC layers and thin germanium island “layers” and named as Ge-DLC film, was prepared on the germanium substrate by ultraviolet laser. The Ge-DLC film had almost same surface roughness as the pure DLC film. Hardness of the Ge-DLC film was above 48.1GPa, which was almost the same as that of pure DLC film. Meanwhile, compared to the pure DLC film, the critical load of Ge-DLC film on the germanium substrate increased from 81.6mN to 143.8mN. Moreover, Ge-DLC film on germanium substrates had no change after fastness tests. The results showed that Ge-DLC film not only kept high hardness but also had higher critical load than that of pure DLC film. Therefore, it could be used as practical protective films.

  1. Uncovering the role of cathode buffer layer in organic solar cells

    PubMed Central

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL. PMID:25588623

  2. Growth and superconductivity of REBCO bulk processed by a seed/buffer layer/precursor construction

    NASA Astrophysics Data System (ADS)

    Y Li, T.; Cheng, L.; Yan, S. B.; Sun, L. J.; Yao, X.; Yoshida, Y.; Ikuta, H.

    2010-12-01

    The buffer layer has been used, for the first time, in the cold-seeding melt-growth (MG) process for REBCO superconductor bulks. In this modified method, a mini pellet was inserted between the seed and the bulk precursor. Notably, the chemical contamination, from the seed material (either REBCO films or SmBCO/NdBCO crystals), was mostly absorbed by the mini pellet. Thus a uniformly high Tc REBCO bulk was readily gained. Secondly, the higher limits of the maximum processing temperature (Tmax) were evidently raised, which is promisingly beneficial for broadening the growth window and overcoming the self-nucleation in the growth of large-sized bulk. In short, the success of this work is that it protects the bulk from seed-induced contamination, and breaks the limit of Tmax caused by the intrinsic properties of the seed material. By means of this simple seed/buffer layer/precursor construction, we successfully fabricated a large single grain of GdBCO bulk superconductor with a diameter of 56 mm.

  3. Buffer layers on metal surfaces having biaxial texture as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  4. Fabrication of YSZ buffer layer by single source MOCVD technique for YBCO coated conductor

    NASA Astrophysics Data System (ADS)

    Jun, Byung-Hyuk; Sun, Jong-Won; Kim, Ho-Jin; Lee, Dong-Wook; Jung, Choong-Hwan; Park, Soon-Dong; Kim, Chan-Joong

    2003-10-01

    Yttria stabilized zirconia (YSZ) buffer layers were deposited by a metal organic chemical vapor deposition technique using a single liquid source for the application of YBa 2Cu 3O 7- δ (YBCO) coated conductor. Y:Zr mole ratio was 0.2:0.8, and tetrahydrofuran (THF) was used as a solvent. The (1 0 0) single crystal MgO substrate was used for searching the deposition conditions. Bi-axially oriented CeO 2 and NiO films were fabricated on {1 0 0} <0 0 1> textured Ni substrate by the same method and used as templates. At a constant working pressure of 10 Torr, the deposition temperatures (660-800 °C) and oxygen flow rates (100-500 sccm) were changed to find the optimum deposition condition. The best (1 0 0) oriented YSZ film on MgO was obtained at 740 °C and O 2 flow rate of 300 sccm. For a YSZ buffer layer with this deposition condition on a CeO 2/Ni template, full width half maximum values of the in-plane ( ϕ-scan) and out-of-plane ( ω-scan) alignments were 10.6° and 9.8°, respectively. The SEM image of YSZ film on CeO 2/Ni showed surface morphologies without microcracks. The film deposition rate was about 100 nm/min.

  5. Calcium manganate: A promising candidate as buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems

    SciTech Connect

    Zhao, Pengjun; Wang, Hongguang; Kong, Wenwen; Xu, Jinbao Wang, Lei; Ren, Wei; Bian, Liang; Chang, Aimin

    2014-11-21

    We have systematically studied the feasibility of CaMnO{sub 3} thin film, an n-type perovskite, to be utilized as the buffer layer for hybrid halide perovskite photovoltaic-thermoelectric device. Locations of the conduction band and the valence band, spontaneous polarization performance, and optical properties were investigated. Results indicate the energy band of CaMnO{sub 3} can match up well with that of CH{sub 3}NH{sub 3}PbI{sub 3} on separating electron-hole pairs. In addition, the consistent polarization angle helps enlarge the open circuit voltage of the composite system. Besides, CaMnO{sub 3} film shows large absorption coefficient and low extinction coefficient under visible irradiation, demonstrating high carrier concentration, which is beneficial to the current density. More importantly, benign thermoelectric properties enable CaMnO{sub 3} film to assimilate phonon vibration from CH{sub 3}NH3PbI{sub 3}. All the above features lead to a bright future of CaMnO{sub 3} film, which can be a promising candidate as a buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems.

  6. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  7. MIS and MFIS Devices: DyScO3 as a gate-oxide and buffer-layer

    NASA Astrophysics Data System (ADS)

    Melgarejo, R.; Karan, N. K.; Saavedra-Arias, J.; Pradhan, D. K.; Thomas, R.; Katiyar, R. S.

    2008-03-01

    Metal-Ferroelectric-Insulator-Semiconductor (MFIS) structure is of importance in nonvolatile memories, as insulating buffer layer that prevents interdiffusion between the ferroelectric (FE) and the Si substrate. However, insulating layer has some disadvantages viz. generation of depolarization field in FE film and increase of operation voltage. To overcome this, it is important to find a FE with low ɛr (compared to normal FE) and an insulating buffer layer with high ɛr (compared to ɛr = 3.9 of SiO2). High-k materials viz. LaAlO3, SiN, HfO2, HfAlO etc. have been studied as buffer layers in the MFIS structures and as gate-oxide in metal-insulator-silicon (MIS). Recently, a novel gate dielectric material, DyScO3 was considered and studies indicate that crystallization temperature significantly increased and the film on Si remained amorphous even at 1000 C annealing. Considering the requirements on crystallization temperature, ɛr, electrical stability for high-k buffer layers, DyScO3 seems to be very promising for future MFIS device applications. Therefore, the evaluations of MOCVD grown DyScO3 as gate-oxide for MIS and the buffer layers for Bi3.25La0.75Ti3O12 based MFIS structures are presented.

  8. Growth and characterization aluminum gallium nitride/gallium nitride heterostructures on silicon(111) wafers using various buffer layers

    NASA Astrophysics Data System (ADS)

    Venugopal, Rajesh

    Devices based on nitride wide bandgap semiconductors are suitable for several promising applications such as blue lasers, LEDs, HEMTs etc. Due to the absence of bulk nitride crystals, nitride films are grown on lattice mismatched substrates like Al2O3 and 6H-SiC. However from a cost and integration standpoint silicon would be the substrate of choice for the growth of these materials. Nitride heterostructure growth on large area Si(111) is hence attempted by Metal Organic Chemical Vapor Deposition (MOCVD) in an modified AIX 200/4 system. The large lattice and thermal mismatch prevents the direct deposition of GaN on Si and also causes GaN layers grown on Si to crack severely. It is hence necessary to use buffer layers to alleviate this lattice and thermal mismatch. Several buffer layer schemes are used for this purpose. The crystal quality of the AlGaN/GaN heterostructures grown under various conditions on these buffers are studied using several methods like Photoluminescence, X-ray diffraction, Electron Microscopy etc. The quality of heterostructures grown on these buffers is compared in order to identify the strengths and weaknesses of each buffer and to also map the effects of process parameters on nitride layers deposited on each buffer.

  9. Buffer influence on magnetic dead layer, critical current, and thermal stability in magnetic tunnel junctions with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Frankowski, Marek; Żywczak, Antoni; Czapkiewicz, Maciej; Zietek, Sławomir; Kanak, Jarosław; Banasik, Monika; Powroźnik, Wiesław; Skowroński, Witold; Checiński, Jakub; Wrona, Jerzy; Głowiński, Hubert; Dubowik, Janusz; Ansermet, Jean-Philippe; Stobiecki, Tomasz

    2015-06-01

    We present a detailed study of Ta/Ru-based buffers and their influence on features crucial from the point of view of applications of Magnetic Tunnel Junctions (MTJs) such as critical switching current and thermal stability. We study buffer/FeCoB/MgO/Ta/Ru and buffer/MgO/FeCoB/Ta/Ru layers, investigating the crystallographic texture, the roughness of the buffers, the magnetic domain pattern, the magnetic dead layer thickness, and the perpendicular magnetic anisotropy fields for each sample. Additionally, we examine the effect of the current induced magnetization switching for complete nanopillar MTJs with lateral dimensions of 270 × 180 nm. Buffer Ta 5/Ru 10/Ta 3 (thicknesses in nm), which has the thickest dead layer, exhibits a much larger thermal stability factor (63 compared to 32.5) while featuring a slightly lower critical current density value (1.25 MA/cm2 compared to 1.5 MA/cm2) than the buffer with the thinnest dead layer Ta 5/Ru 20/Ta 5. We can account for these results by considering the difference in damping which compensates for the difference in the switching barrier heights.

  10. Semi-insulating Sn-Zr-O: Tunable resistance buffer layers

    SciTech Connect

    Barnes, Teresa M.; Burst, James M.; Reese, Matthew O.; Perkins, Craig L.

    2015-03-02

    Highly resistive and transparent (HRT) buffer layers are critical components of solar cells and other opto-electronic devices. HRT layers are often undoped transparent conducting oxides. However, these oxides can be too conductive to form an optimal HRT. Here, we present a method to produce HRT layers with tunable electrical resistivity, despite the presence of high concentrations of unintentionally or intentionally added dopants in the film. This method relies on alloying wide-bandgap, high-k dielectric materials (e.g., ZrO{sub 2}) into the host oxide to tune the resistivity. We demonstrate Sn{sub x}Zr{sub 1−x}O{sub 2}:F films with tunable resistivities varying from 0.001 to 10 Ω cm, which are controlled by the Zr mole fraction in the films. Increasing Zr suppresses carriers by expanding the bandgap almost entirely by shifting the valence-band position, which allows the HRT layers to maintain good conduction-band alignment for a low-resistance front contact.

  11. Artificially MoO3 graded ITO anodes for acidic buffer layer free organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Min; Kim, Seok-Soon; Kim, Han-Ki

    2016-02-01

    We report characteristics of MoO3 graded ITO anodes prepared by a RF/DC graded sputtering for acidic poly(3,4-ethylene dioxylene thiophene):poly(styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs). Graded sputtering of the MoO3 buffer layer on top of the ITO layer produced MoO3 graded ITO anodes with a sheet resistance of 12.67 Ω/square, a resistivity of 2.54 × 10-4 Ω cm, and an optical transmittance of 86.78%, all of which were comparable to a conventional ITO anode. In addition, the MoO3 graded ITO electrode showed a greater work function of 4.92 eV than that (4.6 eV) of an ITO anode, which is beneficial for hole extraction from an organic active layer. Due to the high work function of MoO3 graded ITO electrodes, the acidic PEDOT:PSS-free OSCs fabricated on the MoO3 graded ITO electrode exhibited a power conversion efficiency 3.60% greater than that of a PEDOT:PSS-free OSC on the conventional ITO anode. The successful operation of PEDOT:PSS-free OSCs indicates simpler fabrication steps for cost-effective OSCs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable OSCs.

  12. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    SciTech Connect

    Fu, Tsu-Yi Wu, Jia-Yuan; Jhou, Ming-Kuan; Hsu, Hung-Chan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kinds of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.

  13. Optimal Cu buffer layer thickness for growing epitaxial Co overlayers on Si(111)7 x 7

    SciTech Connect

    Ivanov, Yu. P.; Zotov, A. V.; Ilin, A. I.; Davydenko, A. V.

    2011-10-15

    Using scanning tunneling microscopy, reflection high energy diffraction and magnetic optical Kerr effect measurements, growth mode and the magnetic properties of epitaxial Co films on Si(111) with epitaxial Cu(111) buffer layers of various thicknesses have been studied. The strained 3.5-monolayer-thick Cu/Si(111) film has been found to be an optimal buffer, in which case an almost ideal layer-by-layer like growth of Co is observed up to six Co monolayers, due to a negligible lattice mismatch. The coercivity of Co films grown in this layer-by-layer like fashion has been determined to be about 10 Oe, testifying to the high quality of the formed Co film and Co/Cu interface. Changeover of the Co film growth mode from layer-by-layer like to multilayer has been found to result in the transition of the film magnetic properties from isotropic to markedly uniaxially anisotropic.

  14. Effects of Cd-free buffer layer for CuInSe{sub 2} thin-film solar cells

    SciTech Connect

    Nii, T.; Sugiyama, I.; Kase, T.; Sato, M.; Kaniyama, Y.; Kuriyagawa, S.; Kushiya, K.; Takeshita, H.

    1994-12-31

    ZnO buffer layer by a chemical-bath deposition (CBD) method is developed in this study to improve the interface quality between n-ZnO window layer and p-CuInSe{sub 2} (CIS) thin-film absorber in CIS thin-film solar cells as one of the approaches to the fabrication of Cd-free thin-film solar cells. The optimization of the fabrication conditions of CBD-ZnO leads to the efficiency of about 10%. These results indicate the CBD-ZnO buffer layer has rather high capability to fabricate high-efficiency CIS thin-film solar cells.

  15. Performance improvement of MEH-PPV:PCBM solar cells using bathocuproine and bathophenanthroline as the buffer layers

    NASA Astrophysics Data System (ADS)

    Liu Xiao, Dong; Zhao, Su-Ling; Xu, Zheng; Zhang, Fu-Jun; Zhang, Tian-Hui; Gong, Wei; Yan, Guang; Kong, Chao; Wang, Yong-Sheng; Xu, Xu-Rong

    2011-06-01

    In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-nm BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in series resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.

  16. Effect of organic buffer layer in the electrical properties of amorphous-indium gallium zinc oxide thin film transistor.

    PubMed

    Wang, Jian-Xun; Hyung, Gun Woo; Li, Zhao-Hui; Son, Sung-Yong; Kwon, Sang Jik; Kim, Young Kwan; Cho, Eou Sik

    2012-07-01

    In this research, we reported on the fabrication of top-contact amorphous-indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with an organic buffer layer between inorganic gate dielectric and active layer in order to improve the electrical properties of devices. By inserting an organic buffer layer, it was possible to make an affirmation of the improvements in the electrical characteristics of a-IGZO TFTs such as subthreshold slope (SS), on/off current ratio (I(ON/OFF)), off-state current, and saturation field-effect mobility (muFE). The a-IGZO TFTs with the cross-linked polyvinyl alcohol (c-PVA) buffer layer exhibited the pronounced improvements of the muFE (17.4 cm2/Vs), SS (0.9 V/decade), and I(ON/OFF) (8.9 x 10(6)).

  17. Dislocation annihilation in regrown GaN on nanoporous GaN template with optimization of buffer layer growth

    NASA Astrophysics Data System (ADS)

    Soh, C. B.; Hartono, H.; Chow, S. Y.; Chua, S. J.; Fitzgerald, E. A.

    2007-01-01

    Nanoporous GaN template has been fabricated by electrochemical etching to give hexagonal pits with nanoscale pores of size 20-50nm in the underlying grains. The effect of GaN buffer layer grown at various temperatures from 650to1015°C on these as-fabricated nanopores templates is investigated by transmission electron microscopy. The buffer layer grown at the optimized temperature of 850°C partially fill up the pores and voids with annihilation of threading dislocations, serving as an excellent template for high-quality GaN growth. This phenomenon is, however, not observed for the samples grown with other temperature buffer layers. Micro-Raman measurements show significant strain relaxation and improvement in the crystal quality of the overgrown GaN layer on nanoporous GaN template as compared to overgrown on conventional GaN template.

  18. Depth distribution of the strain in the GaN layer with low-temperature AlN interlayer on Si(111) substrate studied by Rutherford backscattering/channeling

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Cong, G. W.; Liu, X. L.; Lu, D. C.; Wang, Z. G.; Wu, M. F.

    2004-12-01

    The depth distribution of the strain-related tetragonal distortion eT in the GaN epilayer with low-temperature AlN interlayer (LT-AlN IL) on Si(111) substrate is investigated by Rutherford backscattering and channeling. The samples with the LT-AlN IL of 8 and 16 nm thickness are studied, which are also compared with the sample without the LT-AlN IL. For the sample with 16-nm-thick LT-AlN IL, it is found that there exists a step-down of eT of about 0.1% in the strain distribution. Meanwhile, the angular scan around the normal GaN ⟨0001⟩ axis shows a tilt difference about 0.01° between the two parts of GaN separated by the LT-AlN IL, which means that these two GaN layers are partially decoupled by the AlN interlayer. However, for the sample with 8-nm-thick LT-AlN IL, neither step-down of eT nor the decoupling phenomenon is found. The 0.01° decoupled angle in the sample with 16-nm-thick LT-AlN IL confirms the relaxation of the LT-AlN IL. Thus the step-down of eT should result from the compressive strain compensation brought by the relaxed AlN interlayer. It is concluded that the strain compensation effect will occur only when the thickness of the LT-AlN IL is beyond a critical thickness.

  19. Inverted Organic Solar Cells with Improved Performance using Varied Cathode Buffer Layers

    NASA Astrophysics Data System (ADS)

    Guan, Zhi-qiang; Yu, Jun-sheng; Zang, Yue; Zeng, Xing-xin

    2012-10-01

    Organic solar cells with inverted planar heterojunction structure based on subphthalocyanine and C60 were fabricated using several kinds of materials as cathode buffer layer (CBL), including tris-8-hydroxy-quinolinato aluminum (Alq3), bathophenanthroline (Bphen), bathocuproine, 2,3,8,9,14,15-hexakis-dodecyl-sulfanyl-5,6,11,12,17,18-hexaazatrinaphthylene (HATNA), and an inorganic compound of Cs2CO3. The influence of the lowest unoccupied molecular orbital level and the electron mobility of organic CBL on the solar cells performance was compared. The results showed that Alq3, Bphen, and HATNA could significantly improve the device performance. The highest efficiency was obtained from device with annealed HATNA as CBL and increased for more than 7 times compared with device without CBL. Furthermore, the simulation results with space charge-limited current theory indicated that the Schottky barrier at the organic/electrode interface in inverted OSC structure was reduced for 27% by inserting HATNA CBL.

  20. Compact hematite buffer layer as a promoter of nanorod photoanode performances

    PubMed Central

    Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.

    2016-01-01

    The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry. PMID:27733756

  1. Compact hematite buffer layer as a promoter of nanorod photoanode performances

    NASA Astrophysics Data System (ADS)

    Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.

    2016-10-01

    The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.

  2. Interlaced, Nanostructured Interface with Graphene Buffer Layer Reduces Thermal Boundary Resistance in Nano/Microelectronic Systems.

    PubMed

    Tao, Lei; Theruvakkattil Sreenivasan, Sreeprasad; Shahsavari, Rouzbeh

    2017-01-11

    Improving heat transfer in hybrid nano/microelectronic systems is a challenge, mainly due to the high thermal boundary resistance (TBR) across the interface. Herein, we focus on gallium nitride (GaN)/diamond interface-as a model system with various high power, high temperature, and optoelectronic applications-and perform extensive reverse nonequilibrium molecular dynamics simulations, decoding the interplay between the pillar length, size, shape, hierarchy, density, arrangement, system size, and the interfacial heat transfer mechanisms to substantially reduce TBR in GaN-on-diamond devices. We found that changing the conventional planar interface to nanoengineered, interlaced architecture with optimal geometry results in >80% reduction in TBR. Moreover, introduction of conformal graphene buffer layer further reduces the TBR by ∼33%. Our findings demonstrate that the enhanced generation of intermediate frequency phonons activates the dominant group velocities, resulting in reduced TBR. This work has important implications on experimental studies, opening up a new space for engineering hybrid nano/microelectronics.

  3. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    PubMed

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%.

  4. R.F. Sputtering Deposition of Buffer Layers for Si/YBCO Integrated Microelectronics

    NASA Astrophysics Data System (ADS)

    Rombolà, G.; Ballarini, V.; Chiodoni, A.; Gozzelino, L.; Mezzetti, E.; Minetti, B.; Pirri, C. F.; Tresso, E.; Camerlingo, C.

    The aim of the present work is the optimization of the Si/buffer-layer/YBCO multilayer deposition process so as to grow superconducting films of quality suitable for device applications. The structural properties of the Si/CeO2 system, obtained by RF magnetron sputtering of CeO2 targets in Ar atmosphere, have been studied. More than 50 films have been deposited and some of them submitted to post-deposition annealing treatments both in N2 and O2 atmospheres. The presence of an unwanted amorphous SiO2 layer at the Si/CeO2 interface compromises the YBCO c-axis orientation, and therefore the sharpness of the R versus T transition. A newly designed deposition system has been realized: it has been specially conceived for obtaining bi- and tri-layers, adopting two targets in YSZ and CeO2, respectively. Results on YSZ/Si and CeO2/YSZ/Si systems obtained with the new machine are presented and discussed: (100) oriented YSZ films with nominal thickness of 40 nm have been obtained. The CeO2 film subsequently deposited has the desired (100) orientation. The YBCO film, in the final YBCO/YSZ/CeO2/Si configuration, is c-axis oriented.

  5. Direct electron injection into an oxide insulator using a cathode buffer layer

    PubMed Central

    Lee, Eungkyu; Lee, Jinwon; Kim, Ji-Hoon; Lim, Keon-Hee; Seok Byun, Jun; Ko, Jieun; Dong Kim, Young; Park, Yongsup; Kim, Youn Sang

    2015-01-01

    Injecting charge carriers into the mobile bands of an inorganic oxide insulator (for example, SiO2, HfO2) is a highly complicated task, or even impossible without external energy sources such as photons. This is because oxide insulators exhibit very low electron affinity and high ionization energy levels. Here we show that a ZnO layer acting as a cathode buffer layer permits direct electron injection into the conduction bands of various oxide insulators (for example, SiO2, Ta2O5, HfO2, Al2O3) from a metal cathode. Studies of current–voltage characteristics reveal that the current ohmically passes through the ZnO/oxide-insulator interface. Our findings suggests that the oxide insulators could be used for simply fabricated, transparent and highly stable electronic valves. With this strategy, we demonstrate an electrostatic discharging diode that uses 100-nm SiO2 as an active layer exhibiting an on/off ratio of ∼107, and protects the ZnO thin-film transistors from high electrical stresses. PMID:25864642

  6. Growth kinetics of AlN and GaN films grown by molecular beam epitaxy on R-plane sapphire substrates

    SciTech Connect

    Chandrasekaran, R.; Moustakas, T. D.; Ozcan, A. S.; Ludwig, K. F.; Zhou, L.; Smith, David J.

    2010-08-15

    This paper reports the growth by molecular beam epitaxy of AlN and GaN thin films on R-plane sapphire substrates. Contrary to previous findings that GaN grows with its (1120) A-plane parallel to the (1102) R-plane of sapphire, our results indicate that the crystallographic orientation of the III-nitride films is strongly dependent on the kinetic conditions of growth for the GaN or AlN buffer layers. Thus, group III-rich conditions for growth of either GaN or AlN buffers result in nitride films having (1120) planes parallel to the sapphire surface, and basal-plane stacking faults parallel to the growth direction. The growth of these buffers under N-rich conditions instead leads to nitride films with (1126) planes parallel to the sapphire surface, with inclined c-plane stacking faults that often terminate threading dislocations. Moreover, electron microscope observations indicate that slight miscut ({approx}0.5 deg. ) of the R-plane sapphire substrate almost completely suppresses the formation of twinning defects in the (1126) GaN films.

  7. Control over the morphology of AlN during molecular beam epitaxy with the plasma activation of nitrogen on Si (111) substrates

    SciTech Connect

    Mizerov, A. M. Kladko, P. N.; Nikitina, E. V.; Egorov, A. Yu.

    2015-02-15

    The results of studies of the growth kinetics of AlN layers during molecular beam epitaxy with the plasma activation of nitrogen using Si (111) substrates are presented. The possibility of the growth of individual AlN/Si (111) nanocolumns using growth conditions with enrichment of the surface with metal near the formation mode of Al drops, at a substrate temperature close to maximal, during molecular beam epitaxy with the plasma activation of nitrogen (T{sub s} ≈ 850°C) is shown. The possibility of growing smooth AlN layers on a nanocolumnar AlN/Si (111) buffer with the use of T{sub s} ≈ 750°C and growth conditions providing enrichment with metal is shown.

  8. Solution-dispersed CuO nanoparticles anode buffer layer: Effect of ultrasonic agitation duration on photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat; Jumali, Mohammad Hafizuddin Haji

    2016-11-01

    The performance of inverted type hybrid organic solar cell based on poly(3-hexyltheopene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) can be improved by adding an anode buffer layer of copper oxide (CuO). CuO that serves as an electron blocking layer which could effectively reduce the charge recombination at the photoactive layer (P3HT:PCBM)/silver (Ag) interfaces. At the same time, Cuo anode buffer layer could accelerate the holes collection from the photoactive layer to the top electrode. In this study we investigated the effects of ultrasonic agitation duration in preparation of solution-dispersed CuO anode buffer layer on the performance of the devices with a configuration of fluorine tin oxide (FTO)/zinc oxide (ZnO) nanorod arrays/P3HT:PCBM/ CuO/Ag. Different durations of ultrasonic agitation (0, 5, 15 and 25 min) were used for CuO nanoparticles solution dispersion to obtain the optimum particle size distribution of CuO. It was found that the smallest average particle size of CuO was obtained by applying the ultrasonic agitation for longest duration of 25 min. The highest power conversion efficiency of 1.22% was recorded from the device incorporating with CuO anode buffer layer with the smallest average particle size. It is believed that CuO anode buffer layer with the smallest average particle size had the least agglomerates, thus leading to better film formation and contact surface area.

  9. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  10. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Taohong, Wang; Changbo, Chen; Kunping, Guo; Guo, Chen; Tao, Xu; Bin, Wei

    2016-03-01

    The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL. Project supported by the National Natural Science Foundation of China (Grant No. 61204014), the “Chenguang” Project (13CG42) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China, and the Shanghai University Young Teacher Training Program of Shanghai Municipality, China.

  11. Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Fromm, F.; Oliveira, M. H., Jr.; Molina-Sánchez, A.; Hundhausen, M.; Lopes, J. M. J.; Riechert, H.; Wirtz, L.; Seyller, T.

    2013-04-01

    We report a Raman study of the so-called buffer layer with (6\\sqrt 3\\times 6\\sqrt 3)R30^{\\circ } periodicity which forms the intrinsic interface structure between epitaxial graphene and SiC(0001). We show that this interface structure leads to a non-vanishing signal in the Raman spectrum at frequencies in the range of the D- and G-band of graphene and discuss its shape and intensity. Ab initio phonon calculations reveal that these features can be attributed to the vibrational density of states of the buffer layer.

  12. Crystallinity of YBCO thin films on an MgO substrate using an amorphous buffer layer deposited at a low temperature

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kudo, S.; Mukaida, M.; Ohshima, S.

    2002-10-01

    We have investigated crystallinity of YBCO films on an MgO substrate using an amorphous buffer layer. The evaluated films are obtained as follows: an amorphous YBCO buffer layer is deposited on the MgO substrate at a low temperature (200 °C); and then, an amorphous buffer layer is crystallized by the thermal annealing at a high temperature from 910 to 1030 °C; finally, main YBCO film is grown on the crystalline YBCO buffer layer over the MgO substrate. A significant improvement in the crystalline quality of the YBCO films was achieved, when amorphous buffer layers of 100 nm in thickness were crystallized by annealing temperature 950 °C and then annealing is continued for 1 h in air atmosphere. We confirmed that YBCO films grown on a well-crystallized buffer layer had better crystallinity than ones on bare MgO substrate, which has substantially large lattice mismatch.

  13. Characteristics of GaN-based light emitting diodes with different thicknesses of buffer layer grown by HVPE and MOCVD

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Edwards, Paul R.; Wallace, Michael J.; Martin, Robert W.; McKendry, Jonathan J. D.; Gu, Erdan; Dawson, Martin D.; Qiu, Zhi-Jun; Jia, Chuanyu; Chen, Zhizhong; Zhang, Guoyi; Zheng, Lirong; Liu, Ran

    2017-02-01

    GaN-based light emitting diodes (LEDs) have been fabricated on sapphire substrates with different thicknesses of GaN buffer layer grown by a combination of hydride vapor phase epitaxy and metalorganic chemical vapor deposition. We analyzed the LED efficiency and modulation characteristics with buffer thicknesses of 12 μm and 30 μm. With the buffer thickness increase, cathodoluminescence hyperspectral imaging shows that the dislocation density in the buffer layer decreases from  ∼1.3  ×  108 cm‑2 to  ∼1.0  ×  108 cm‑2, and Raman spectra suggest that the compressive stress in the quantum wells is partly relaxed, which leads to a large blue shift in the peak emission wavelength of the photoluminescence and electroluminescent spectra. The combined effects of the low dislocation density and stress relaxation lead to improvements in the efficiency of LEDs with the 30 μm GaN buffer, but the electrical-to-optical modulation bandwidth is higher for the LEDs with the 12 μm GaN buffer. A rate equation analysis suggests that defect-related nonradiative recombination can help increase the modulation bandwidth but reduce the LED efficiency at low currents, suggesting that a compromise should be made in the choice of defect density.

  14. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    SciTech Connect

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U.; Bergsten, J.; Rorsman, N.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  15. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    NASA Astrophysics Data System (ADS)

    Li, X.; Bergsten, J.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Rorsman, N.; Janzén, E.; Forsberg, U.

    2015-12-01

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 1018 cm-3) epitaxial layer closest to the substrate and a lower doped layer (3 × 1016 cm-3) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 1018 cm-3) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  16. Epitaxial MgB2 thin films on ZrB2 buffer layers: structural characterization by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ferrando, V.; Tarantini, C.; Bellingeri, E.; Manfrinetti, P.; Pallecchi, I.; Marré, D.; Plantevin, O.; Putti, M.; Felici, R.; Ferdeghini, C.

    2004-12-01

    Structural and superconducting properties of magnesium diboride thin films grown by pulsed laser deposition on zirconium diboride buffer layers were studied. We demonstrate that the ZrB2 layer is compatible with the MgB2 two step deposition process. Synchrotron radiation measurements, in particular anomalous diffraction measurements, allowed us to separate MgB2 peaks from ZrB2 ones and revealed that both layers have a single in plane orientation with a sharp interface between them. Moreover, the buffer layer avoids oxygen contamination from the sapphire substrate. The critical temperature of this film is near 37.6 K and the upper critical field measured at the Grenoble High Magnetic Field Laboratory up to 20.3 T is comparable with the highest ones reported in literature.

  17. Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates

    NASA Astrophysics Data System (ADS)

    Bogumilowicz, Y.; Hartmann, J. M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.-Y.; Sanchez, E.

    2016-11-01

    We have grown GaAs epitaxial layers on Ge buffers, themselves on Si (001) substrates, using an Applied Materials 300 mm metal organic chemical vapor deposition tool. We varied the Ge buffer thickness between 0.36 and 1.38 μm and studied the properties of a 0.27 μm thick GaAs layer on top. We found that increasing the Ge buffer thickness yielded smoother GaAs films with an rms surface roughness as low as 0.5 nm obtained on a 5×5 μm2 area. The bow of the substrate increased following a linear law with the epitaxial stack thickness up to 240 μm for a 1.65 μm stack. We have also characterized the threading dislocations present in the GaAs layers using X-ray diffraction and cathodoluminescence. Increasing the Ge buffer thickness resulted in lower threading dislocation densities, enabling us to obtain anti-phase boundary - free GaAs films with a threading dislocation density as low as 3×107 cm-2. In addition, atomic force microscopy surface topology measurements showed the presence of pits in the GaAs layers whose density agreed well with other threading dislocation density assessments. It thus seems that threading dislocations can in certain cases induce some growth rate variations, making them visible in as-grown GaAs films. Using thicker Ge buffers results in smoother films with less threading dislocations, with the side effect of increasing the bow on the wafer. If bow is not an issue, this is a practical approach to improve the GaAs (on Ge buffer) on silicon quality.

  18. Light emission from an m-plane n-ZnO/p-Si heterojunction with an AlN interlayer

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Wang, Ti; Xu, Yang; Ai, Zhiwei

    2017-01-01

    Nonpolar m-plane n-ZnO/p-Si heterojunction light-emitting devices with and without an AlN intermediate layer were fabricated by atomic layer deposition. The energy band alignment of the ZnO/AlN/Si heterostructure was studied using X-ray photoelectron spectroscopy, and the result confirmed the electron-blocking ability of the AlN interlayer. Electroluminescence results revealed that the devices with the AlN intermediate layer emit a quasi-white light. This work indicates that the AlN intermediate layer can effectively improve the performance of n-ZnO/p-Si heterojunction light-emitting devices.

  19. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer.

    PubMed

    He, Shaojian; Li, Shusheng; Wang, Fuzhi; Wang, Andrew Y; Lin, Jun; Tan, Zhan'ao

    2013-05-03

    Quantum dot light-emitting diodes (QD-LEDs) are characterized by pure and saturated emission colors with narrow bandwidth. Optimization of the device interface is an effective way to achieve stable and high-performance QD-LEDs. Here we utilized solution-processed molybdenum oxide (MoOx) as the anode buffer layer on ITO to build efficient QD-LEDs. Using MoOx as the anode buffer layer provides the QD-LED with good Ohmic contact and a small charge transfer resistance. The device luminance is nearly independent of the thickness of the MoOx anode buffer layer. The QD-LEDs with a MoOx anode buffer layer exhibit a maximum luminance and luminous efficiency of 5230 cd m(-2) and 0.67 cd A(-1) for the yellow emission at 580 nm, and 7842 cd m(-2) and 1.49 cd A(-1) for the red emission at 610 nm, respectively.

  20. Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer

    NASA Astrophysics Data System (ADS)

    Poon, C. O.; Wong, F. L.; Tong, S. W.; Zhang, R. Q.; Lee, C. S.; Lee, S. T.

    2003-08-01

    The use of silicon oxy-nitride (SiOxNy) as an anode buffer layer in organic light-emitting devices (OLEDs) with a configuration of indium tin oxide (ITO)/SiOxNy/α-naphtylphenyliphenyl diamine (NPB)/8-hydroxyquinoline aluminum/Mg:Ag has been studied. With a SiOxNy buffer layer several angstroms thick, the device efficiency increased from 3.0 to 3.8 cd/A. The buffer layer also protected the ITO surface from contamination due to air exposure. Upon exposing the cleaned ITO substrate to air for one day before device fabrication, the device current efficiency and turn-on voltage degraded to 2.1 cd/A and 4.3 V, respectively, from 3 cd/A and 3.3 V for the device fabricated on an as-cleaned ITO surface. In contrast, devices prepared on air-exposed SiOxNy/ITO surface had almost the same current efficiency (3.85 cd/A) and turn on voltage (3.7 V) comparing to devices (3.8 cd/A and 3.7 V) fabricated on freshly prepared SiOxNy/ITO surface. The results suggested that SiOxNy is a promising anode buffer layer for OLEDs, for both efficiency and stability enhancements.

  1. High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition.

    PubMed

    Wang, Jiaming; Xu, Fujun; He, Chenguang; Zhang, Lisheng; Lu, Lin; Wang, Xinqiang; Qin, Zhixin; Shen, Bo

    2017-02-21

    Influence of sapphire pretreatment conditions on crystalline quality of AlN epilayers has been investigated by metal organic chemical vapor deposition (MOCVD). Compared to alumination treatment, it is found that appropriate sapphire nitridation significantly straightens the surface atomic terraces and decreases the X-ray diffraction (0002) full width at half maximum (FWHM) to a minimum of 55 arcsec, indicating a great improvement of the tilting feature of the grain structures in the AlN epilayer. More importantly, there is no inversion domains (IDs) found in the AlN epilayers, which clarifies that optimal sapphire nitridation is promising in the growth of high quality AlN. It is deduced that the different interfacial atomic structures caused by various pretreatment conditions influence the orientation of the AlN nucleation layer grains, which eventually determines the tilting features of the AlN epilayers.

  2. High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition

    PubMed Central

    Wang, Jiaming; Xu, Fujun; He, Chenguang; Zhang, Lisheng; Lu, Lin; Wang, Xinqiang; Qin, Zhixin; Shen, Bo

    2017-01-01

    Influence of sapphire pretreatment conditions on crystalline quality of AlN epilayers has been investigated by metal organic chemical vapor deposition (MOCVD). Compared to alumination treatment, it is found that appropriate sapphire nitridation significantly straightens the surface atomic terraces and decreases the X-ray diffraction (0002) full width at half maximum (FWHM) to a minimum of 55 arcsec, indicating a great improvement of the tilting feature of the grain structures in the AlN epilayer. More importantly, there is no inversion domains (IDs) found in the AlN epilayers, which clarifies that optimal sapphire nitridation is promising in the growth of high quality AlN. It is deduced that the different interfacial atomic structures caused by various pretreatment conditions influence the orientation of the AlN nucleation layer grains, which eventually determines the tilting features of the AlN epilayers. PMID:28220829

  3. High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Jiaming; Xu, Fujun; He, Chenguang; Zhang, Lisheng; Lu, Lin; Wang, Xinqiang; Qin, Zhixin; Shen, Bo

    2017-02-01

    Influence of sapphire pretreatment conditions on crystalline quality of AlN epilayers has been investigated by metal organic chemical vapor deposition (MOCVD). Compared to alumination treatment, it is found that appropriate sapphire nitridation significantly straightens the surface atomic terraces and decreases the X-ray diffraction (0002) full width at half maximum (FWHM) to a minimum of 55 arcsec, indicating a great improvement of the tilting feature of the grain structures in the AlN epilayer. More importantly, there is no inversion domains (IDs) found in the AlN epilayers, which clarifies that optimal sapphire nitridation is promising in the growth of high quality AlN. It is deduced that the different interfacial atomic structures caused by various pretreatment conditions influence the orientation of the AlN nucleation layer grains, which eventually determines the tilting features of the AlN epilayers.

  4. Characterization of MFIS Structure with Dy-Doped ZrO2 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Im, J. H.; Ah, G. Z.; Han, D. H.; Park, B. E.

    2011-12-01

    To evaluate the feasibility of DZO thin film as an insulating buffer layer for ferroelectric gate field effect transistors (Fe-FETs) with a metal-ferroelectric-insulator-semiconductor (MFIS) structure, we fabricated DZO/Si and BLT/DZO/Si structures by a sol-gel method. Equivalent oxide thickness (EOT) values of the DZO thin films were about 12.4nm, 11.9nm, 11.2nm and 11.1 nm for 650 °C, 700 °C 750 °C, and 800 °C,, respectively. Hysteresis was observed in all capacitance-voltage (C-V) curves of the DZO/Si structures, but hysteresis of the 750-°C-annealed film was negligible. The leakage current densities of the DZO thin films on Si showed the good characteristics regardless of the annealing temperature variations. The C-V characteristics of Au/300-nm-thick BLT/750-°C-annealed DZO/Si structure showed clockwise hysteresis loops, and the memory window width increased as the bias voltage increased. The maximum value of the memory window width was about 1.9 V at ±7 V.

  5. Cd-Zn-O-S alloys for optimal buffer layers in thin-film photovoltaics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Varley, Joel B.; He, Xiaoqing; Mackie, Neil; Rockett, Angus A.; Lordi, Vincenzo

    2015-09-01

    Advances in thin-film photovoltaics have largely focused on modifying the absorber layer(s), while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid density functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into device model simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Department of Energy office of Energy Efficiency and Renewable Energy (EERE) through the SunShot Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program.

  6. Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer

    NASA Astrophysics Data System (ADS)

    Jian-Feng, Li; Chuang, Zhao; Heng, Zhang; Jun-Feng, Tong; Peng, Zhang; Chun-Yan, Yang; Yang-Jun, Xia; Duo-Wang, Fan

    2016-02-01

    In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate)) (PEDOT:PSS) and its influence on the performance of perovskite solar cells. . The conductivity of PEDOT:PSS is improved obviously by doping glycerol. The maximum of the conductivity is 0.89 S/cm when the doping concentration reaches 6 wt%, which increases about 127 times compared with undoped. The perovskite solar cells are fabricated with a configuration of indium tin oxide (ITO)/PEDOT:PSS/CH3NH3PbI3/PC61BM/Al, where PEDOT:PSS and PC61BM are used as hole and electron transport layers, respectively. The results show an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT:PSS. Consequently, it improves the whole performance of perovskite solar cell. The power conversion efficiency (PCE) of the device is improved from 8.57% to 11.03% under AM 1.5 G (100 mW/cm2 illumination) after the buffer layer has been modified. Project supported by the National Natural Science Foundation of China (Grant Nos. 61264002, 61166002, 91333206, and 51463011), the Natural Science Foundation of Gansu Province, China (Grant No. 1308RJZA159), the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0840), the Research Project of Graduate Teacher of Gansu Province, China (Grant No. 2014A-0042), and the Postdoctoral Science Foundation from Lanzhou Jiaotong University, China.

  7. Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition

    SciTech Connect

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhou, Shizhong; Lin, Zhiting; Li, Guoqiang

    2015-05-14

    AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is a direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.

  8. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.

    PubMed

    Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao

    2016-01-13

    The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated.

  9. Zn (O,S) buffer layers by atomic layer deposition in Cu (In,Ga)Se2 based thin film solar cells: Band alignment and sulfur gradient

    NASA Astrophysics Data System (ADS)

    Platzer-Björkman, C.; Törndahl, T.; Abou-Ras, D.; Malmström, J.; Kessler, J.; Stolt, L.

    2006-08-01

    Thin film solar cells with the structure sodalimeglass /Mo/Cu(In,Ga)Se2/Zn(O,S)/ZnO/ZnO:Al are studied for varying thickness and sulfur content of the Zn (O,S) buffer layer. These Zn (O,S) layers were deposited by atomic layer deposition (ALD) at 120°C. Devices with no or small concentrations of sulfur in the buffer layer show low open-circuit voltages. This is explained by the cliff, or negative conduction-band offset (CBO), of -0.2eV measured by photoelectron spectroscopy (PES) and optical methods for the Cu (In,Ga)Se2 (CIGS)/ZnO interface. Devices with ZnS buffer layers exhibit very low photocurrent. This is expected from the large positive CBO (spike) of 1.2eV measured for the CIGS /ZnS interface. For devices with Zn (O,S) buffer layers, two different deposition recipes were found to yield devices with efficiencies equal to or above reference devices in which standard CdS buffer layers were used; ultrathin Zn (O,S) layers with S /Zn ratios of 0.8-0.9, and Zn (O,S) layers of around 30nm with average S /Zn ratios of 0.3. The sulfur concentration increases towards the CIGS interface as revealed by transmission electron microscopy and in vacuo PES measurements. The occurrence of this sulfur gradient in ALD-Zn (O,S) is explained by longer incubation time for ZnO growth compared to ZnS growth. For the Zn (O,S) film with high sulfur content, the CBO is large which causes blocking of the photocurrent unless the film is ultrathin. For the Zn (O,S) film with lower sulfur content, a CBO of 0.2eV is obtained which is close to ideal, according to simulations. Efficiencies of up to 16.4% are obtained for devices with this buffer layer.

  10. Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers

    NASA Astrophysics Data System (ADS)

    Li, Changli; Hisatomi, Takashi; Watanabe, Osamu; Nakabayashi, Mamiko; Shibata, Naoya; Domen, Kazunari; Delaunay, Jean-Jacques

    2016-07-01

    Coating n-type buffer and protective layers on Cu2O may be an effective means to improve the photoelectrochemical (PEC) water-splitting performance of Cu2O-based photocathodes. In this letter, the functions of the buffer layer and protective layer on Cu2O are examined. It is found that a Ga2O3 buffer layer can form a buried junction with Cu2O, which inhibits Cu2O self-reduction as well as increases the photovoltage through a small conduction band offset between the two semiconductors. The introduction of a TiO2 thin protective layer not only improves the stability of the photocathode but also enhances the electron transfer from the photocathode surface into the electrolyte, thus resulting in an increase in photocurrent at positive potentials. These results show that the selection of overlayers with appropriate conduction band positions provides an effective strategy for obtaining a high photovoltage and high photocurrent in PEC systems.

  11. Enhancing the blocking temperature of perpendicular-exchange biased Cr2O3 thin films using buffer layers

    NASA Astrophysics Data System (ADS)

    Shimomura, Naoki; Pati, Satya Prakash; Nozaki, Tomohiro; Shibata, Tatsuo; Sahashi, Masashi

    2017-02-01

    In this study, we investigated the effect of buffer layers on the blocking temperature (TB) of perpendicular exchange bias of thin Cr2O3/Co exchange coupled films with a Ru spacer and revealed a high TB of 260 K for 20-nm-thick Cr2O3 thin films. By comparing the TB values of the 20-nm-thick Cr2O3 films on Pt and α-Fe2O3 buffers, we investigated the lattice strain effect on the TB. We show that higher TB values can be obtained using an α-Fe2O3 buffer, which is likely because of the lattice strain-induced increase in Cr2O3 magnetocrystalline anisotropy.

  12. Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2016-12-01

    The electron mobility in depletion-mode lateral β-Ga2O3(010) metal-oxide-semiconductor field-effect transistors (MOSFETs) with an n-channel formed by Si-ion (Si+) implantation doping was extracted using low-field electrical measurements on FET structures. An undoped Ga2O3 buffer layer protected the channel against charge compensation by suppressing outdiffusion of deep Fe acceptors from the semi-insulating substrate. The molecular beam epitaxy growth temperature was identified as a key process parameter for eliminating parasitic conduction at the buffer/substrate growth interface. Devices with a resistive buffer showed room temperature channel mobilities of 90-100 cm2 V-1 s-1 at carrier concentrations of low- to mid-1017 cm-3, with small in-plane mobility anisotropy of 10-15% ascribable to anisotropic carrier scattering.

  13. Structural and optical properties of AlxGa1-xN (0.33 ≤ x ≤ 0.79) layers on high-temperature AlN interlayer grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xu, Qingjun; Liu, Bin; Zhang, Shiying; Tao, Tao; Dai, Jiangping; He, Guotang; Xie, Zili; Xiu, Xiangqian; Chen, Dunjun; Chen, Peng; Han, Ping; Zhang, Rong

    2017-01-01

    High-Al-content AlxGa1-xN films with x varying from 0.33 to 0.79 were grown on GaN templates with the high temperature AlN (HT-AlN) interlayer by metal organic chemical vapor deposition (MOCVD). The best crystalline quality, among these AlxGa1-xN alloys, can be obtained for an AlN mole fraction x = 0.55, where the full-width at half-maximum of the Al0.55Ga0.45N (0002) diffraction peak was measured to be 259 arcsec by high resolution X-ray diffraction (HRXRD). The screw threading dislocation (TDs) density was 2 × 108 cm-2 evaluated by transmission electron microscope (TEM), which agreed with the calculations from Williamson-Hall plots. Moreover, cross-sectional TEM indicated that the HT-AlN interlayer could sufficiently reduce the threading dislocations (TDs) through generation of V trenches in the HT-AlN interlayer, since the TDs propagated along the V trenches, then bent into basal planes and annihilated with other dislocations. The study of optical properties indicated that obvious S-shape of temperature dependence on emission energy was observed for Al0.55Ga0.45N layers, which was attributed to exciton localization with energy (Eloc) ∼14.95 meV at 10 K resulting from potential fluctuation and band tail states. The time-resolved photoluminescence (TRPL) curves showed a bi-exponential decay at low temperature. The fast decay time implied the presence of the localized excitons enhancing radiative recombination, while the quite slow one was due to the dominance of trapping mechanisms originating from cation vacancy complexes and the VIII-related complexes.

  14. Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate

    NASA Astrophysics Data System (ADS)

    Chen, Si; Chen, Jiangtao; Liu, Jianlin; Qi, Jing; Wang, Yuhua

    2016-11-01

    Field emitters based on ZnO nanowires and other nanomaterials are promising high-brightness electron sources for field emission display, microscopy and other applications. The performance of a ZnO nanowire field emitter is linked to the quality, conductivity and alignment of the nanowires on a substrate, therefore requiring ways to improve these parameters. Here, ZnO nanowire arrays were grown on ZnO seed layer on silicon substrate with MgO buffer between the seed layer and Si. The turn-on field and enhancement factor of these nanowire arrays are 3.79 V/μm and 3754, respectively. These properties are improved greatly compared to those of ZnO nanowire arrays grown on ZnO seed layer without MgO buffer, which are 5.06 V/μm and 1697, respectively. The enhanced field emission properties can be attributed to better electron transport in seed layer, and better nanowire alignment because of MgO buffer.

  15. Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization

    PubMed Central

    Narayanan, Vyshnavi; Van Steenberge, Sigelinde; Lommens, Petra; Van Driessche, Isabel

    2012-01-01

    In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO) films and non-stoichiometric lanthanum zirconate (LZO) buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD), starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy) were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7−x (YBCO) superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5% W)/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling.

  16. Effects of high-temperature AIN buffer on the microstructure of AlGaN/GaN HEMTs

    SciTech Connect

    Coerekci, S.; Oeztuerk, M. K.; Yu, Hongbo; Cakmak, M.; Oezcelik, S.; Oezbay, E.

    2013-06-15

    Effects on AlGaN/GaN high-electron-mobility transistor structure of a high-temperature AlN buffer on sapphire substrate have been studied by high-resolution x-ray diffraction and atomic force microscopy techniques. The buffer improves the microstructural quality of GaN epilayer and reduces approximately one order of magnitude the edge-type threading dislocation density. As expected, the buffer also leads an atomically flat surface with a low root-mean-square of 0.25 nm and a step termination density in the range of 10{sup 8} cm{sup -2}. Due to the high-temperature buffer layer, no change on the strain character of the GaN and AlGaN epitaxial layers has been observed. Both epilayers exhibit compressive strain in parallel to the growth direction and tensile strain in perpendicular to the growth direction. However, an high-temperature AlN buffer layer on sapphire substrate in the HEMT structure reduces the tensile stress in the AlGaN layer.

  17. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    SciTech Connect

    Hodges, C. Pomeroy, J.; Kuball, M.

    2014-02-14

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate.

  18. Development of Buffer Layer Technologies for LWIR and VLWIR HgCdTe Integration on Si

    DTIC Science & Technology

    2007-11-02

    the-art HgCdTe films ) can only be achieved on a Si(211)B surface orientation. Since Si-based digital electronics utilizes the (100) orientation...for the large lattice mismatch (and crystallographic orientation change) are urgently needed to overcome these problems. Currently ZnTe/ CdTe ...technologies are based on i) the use of ultrathin, GeSi films as obedient buffers ii) wafer bonding of lattice-matched buffers. Summary of the most

  19. Investigations into alterntive substrate, absorber, and buffer layer processing for Cu(In,Ga)Se{sub 2}-based solar cells

    SciTech Connect

    Tuttle, J.R.; Berens, T.A.; Keane, J.

    1996-05-01

    High-performance Cu(In,Ga)Se{sub 2}(CIGS)-based solar cells are presently fabricated within a narrow range of processing options. In this contribution, alternative substrate, absorber, and buffer layer processing is considered. Cell performance varies considerably when alternative substrates are employed. These variations are narrowed with the addition of Na via a Na{sub 2}S compound. Sputtered and electrodeposited CIGS precursors and completed absorbers show promise as alternatives to evaporation. A recrystallization process is required to improve their quality. (In,Ga){sub y}Se buffer layers contribute to cell performance above 10. Further improvements in these alternatives will lead to combined cell performance greater than 10% in the near term.

  20. Chemical Bath Deposited Zinc Sulfide Buffer Layers for Copper Indium Gallium Sulfur-selenide Solar Cells and Device Analysis

    SciTech Connect

    Kundu, Sambhu N.; Olsen, Larry C.

    2005-01-03

    Cd free CIGSS thin film solar cell structures with a MgF2/TCO/CGD-ZnS/CIGSS/Mo/SLG structure have been fabricated using chemical bath deposited (CBD)-ZnS buffer layers and high quality CIGSS absorber layers supplied from Shell Solar Industries. The use of CBD-ZnS, which is a higher band gap materials than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm2) efficiency of 13.3%. This paper also presents a discussion of the issues relating to the use of the CBD-ZnS buffer materials for improving device performance.

  1. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    PubMed

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  2. Thermally robust perpendicular Co/Pd-based synthetic antiferromagnetic coupling enabled by a W capping or buffer layer.

    PubMed

    Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo

    2016-02-18

    Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained.

  3. Thermally robust perpendicular Co/Pd-based synthetic antiferromagnetic coupling enabled by a W capping or buffer layer

    PubMed Central

    Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo

    2016-01-01

    Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained. PMID:26887790

  4. Improving fatigue resistance of Pb(Zr,Ti)O3 thin films by using PbZrO3 buffer layers

    NASA Astrophysics Data System (ADS)

    Mensur Alkoy, Ebru; Uchiyama, Kiyoshi; Shiosaki, Tadashi; Alkoy, Sedat

    2006-05-01

    Ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin films with PbZrO3 (PZ) buffer layers were prepared on Pt(111)/Ti/SiO2/Si(100) substrates using a hybrid rf magnetron sputtering and sol-gel process. Texture of PZT films was found to depend on Pb content of PZ buffer layers. Buffered PZT films displayed comparable ferroelectric properties (2Pr=38-53 μC/cm2,2Ec=136-170 kV/cm) with unbuffered PZT. Asymmetric leakage current and fatigue behavior with superior fatigue resistance was observed in PZ buffered PZT compared to unbuffered films. PZ buffer layers were found to affect crystallization and texture of PZT, and act as a capacitive interface layer possibly blocking charge injection from electrodes.

  5. Atomically flat Ge buffer layers and alternating shutter growth of CaGe2 for large area germanane

    NASA Astrophysics Data System (ADS)

    Xu, Jinsong; Katoch, Jyoti; Ahmed, Adam; Pinchuk, Igor; Williams, Robert; McComb, David; Kawakami, Roland

    Germanane (GeH), which is converted from CaGe2 by soaking in HCl acid, has recently attracted interest because of its novel properties, such as large band gap (1.56eV), spin orbit coupling and predictions of high mobility (18000 cm2/Vs). Previously CaGe2 was successfully grown on Ge(111) substrates by molecular beam epitaxy (MBE) growth. But there were cracks between µm-sized islands, which is not desirable for scientific study and application, and limits the material quality. By growing atomically flat Ge buffer layers and using alternating shutter MBE growth, we are able to grow crack-free, large area films of CaGe2 films. Reflection high energy electron diffraction (RHEED) patterns of Ge buffer layer and CaGe2 indicates high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform Ge buffer layer and CaGe2. The appearance of Laue oscillation in X-ray diffraction (XRD) and Kiessig fringes in X-ray reflectivity (XRR) proves the uniformity of CaGe2 film and the smoothness of the interface. The high quality of CaGe2 film makes it promising to explore novel properties of GeH. Funded by NSF MRSEC DMR-1420451.

  6. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  7. Enhanced Efficiency of Polymer Light-Emitting Diodes by Dispersing Dehydrated Nanotube Titanic Acid in the Hole-buffer Layer

    NASA Astrophysics Data System (ADS)

    Qian, L.; Xu, Z.; Teng, F.; Duan, X.-X.; Jin, Z.-S.; Du, Z.-L.; Li, F.-S.; Zheng, M.-J.; Wang, Y.-S.

    2007-06-01

    Efficiency of polymer light-emitting diodes (PLEDs) with poly(2-methoxy-5-(2-ethyl hexyloxy)- p-phenylene vinylene) (MEH-PPV) as an emitting layer was improved if a dehydrated nanotubed titanic acid (DNTA) doped hole-buffer layer polyethylene dioxythiophene (PEDOT) was used. Photoluminescence (PL) and Raman spectra indicated a stronger interaction between DNTA and sulfur atom in thiophene of PEDOT, which suppresses the chemical interaction between vinylene of MEH-PPV and thiophene of PEDOT. The interaction decreases the defect states in an interface region to result in enhancement in device efficiency, even though the hole transporting ability of PEDOT was decreased.

  8. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    SciTech Connect

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.; Zhurbina, I. A.; Domashevskaya, E. P.; Arsent'ev, I. N. Shishkov, M. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  9. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  10. Enhancement of perpendicular magnetic anisotropy and coercivity in ultrathin Ru/Co/Ru films through the buffer layer engineering

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Alexander G.; Stebliy, Maxim E.; Ognev, Alexey V.; Samardak, Alexander S.; Fedorets, Aleksandr N.; Plotnikov, Vladimir S.; Han, Xiufeng; Chebotkevich, Ludmila A.

    2016-10-01

    We present results on a study of the interplay between microstructure and the magnetic properties of ultrathin Ru/Co/Ru films with perpendicular magnetic anisotropy (PMA). To induce PMA in the Co layer, we experimentally determined thicknesses of the buffer and capping layers of Ru. The maximum value of PMA was observed for the Co thickness of 0.9 nm with the 3 nm thick capping layer. The effective anisotropy field (H eff) and coercive force (H c) of the Co layer are very sensitive to the Ru buffer layer thickness (t b). The values of H eff and H c increase approximately by two and ten times, correspondingly, when t b changes from 6 to 20 nm, owing to an increase in volume fraction of the crystalline phase as a result of the grains’ growth. PMA is found to be mainly enhanced by elastic strains induced by the lattice mismatch on the Ru/Co and Co/Ru interfaces, leading to the deformation of the Co lattice. The surface impact is determined to be less than 10% of the magneto-elastic contribution to the effective anisotropy. Observation of the magnetic domain structure by means of polar Kerr microscopy reveals that out-of-plane magnetization reversal occurs through the nucleation, growth, and annihilation of domains, where the average size drastically rises with the increasing t b.

  11. High rate buffer layer for IBAD MgO coated conductors

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  12. Chemically deposited La2Zr2O7 buffer layers for YBCO-coated conductors: film growth and microstructure

    NASA Astrophysics Data System (ADS)

    Molina, L.; Knoth, K.; Engel, S.; Holzapfel, B.; Eibl, O.

    2006-11-01

    An adequate buffer layer architecture is of great importance for YBa2Cu3O7-δ (YBCO)-coated conductor fabrication. We present a transmission electron microscopy (TEM) analysis of La2Zr2O7 (LZO) buffer layers on biaxially textured Ni-5 at.%W substrates for YBCO-coated conductors prepared by chemical solution deposition (CSD). The LZO thin films were heat-treated at 900 and 1050 °C respectively. Electron diffraction patterns, and bright and dark-field images were used to determine the microstructure, texture and the nanoporosity of the films. By x-ray diffraction the films were found to be [100] oriented and strongly biaxially textured. Although x-ray diffraction suggests an epitaxial growth of LZO on Ni it was shown by TEM that this was not the case. The grain size of the films is between 100 and 300 nm and therefore much smaller than the Ni grain size of 40 µm. Appropriate acquisition conditions for scanning electron microscopy (SEM) and TEM imaging are given to identify the nanogranularity of the films. For the film annealed at 1050 °C high-resolution SEM images clearly show a polycrystalline LZO microstructure and the grain size can readily be determined. Electron diffraction rings are more pronounced than for the film annealed at 900 °C, indicating a higher level of polycrystallinity in the film. SEM images of the film annealed at 900 °C yield no evidence of a polycrystalline microstructure; only single misoriented LZO grains separated by 500 nm are observed. Nanovoids 10-40 nm in size were found in the LZO buffer layers with a high density. The voids had approximately cuboid shape, indicating an anisotropy of the surface energy in LZO. The surface planes of the voids were identified as {111} lattice planes. Despite the nanoporosity, which is a typical feature of CSD-grown buffer layers, the LZO buffer layers act as efficient Ni diffusion barriers. Energy dispersive x-ray microanalysis (EDX) in the transmission electron microscope yielded the composition of

  13. Cd-free CIGS solar cells with buffer layer based on the In2S3 derivatives.

    PubMed

    Kim, Kihwan; Larina, Liudmila; Yun, Jae Ho; Yoon, Kyung Hoon; Kwon, HyukSang; Ahn, Byung Tae

    2013-06-21

    This study guided by device evaluations was conducted to reveal the reasons for the loss of the photo-generated carriers in CIGS cells with the buffer based on In2S3 derivatives. Chemical bath deposited Inx(OOH,S)y films have been employed as a Cd-free buffer layers. When compared to solar cells with CdS buffer layer, the Cu0.9(In0.7,Ga0.3)Se2.1 (Eg = 1.18 eV) cells with the Inx(OOH,S)y buffer exhibited strong voltage-dependent carrier collection and poor spectral response above 500 nm, presumably, due to energy barrier at the junction. In order to improve the charge collection by upward shift of the conduction band minimum of CIGS absorber, Inx(OOH,S)y/Cu0.9(In0.55,Ga0.45)Se2.1 (Eg = 1.30 eV) solar cells were also fabricated and their spectral responses were examined. When compared to the Cu0.9(In0.7,Ga0.3)Se2.1 cells, the improved spectral response and voltage dependent carrier collection were obtained. Nevertheless, considerable loss in charge collection above 500 nm was still observed. The efficiency reached 9.3% while the Cu0.9(In0.7,Ga0.3)Se2.1 cell exhibited only the efficiency of 3.4%. Finally, CIGS (Eg = 1.18 eV) solar cells with n-ZnO/i-ZnO/Inx(OOH,S)y/CdS/CIGS and n-ZnO/i-ZnO/CdS/Inx(OOH,S)y/CIGS configurations were fabricated. The influence of the TCO/buffer interface on the device characteristics was also addressed by means of comparison between the characteristics of two cells employing different interfaces. A 13.0% efficient cell has been achieved from n-ZnO/i-ZnO/CdS/Inx(OOH,S)y/CIGS configuration. The obtained data suggested that the limitation of the device efficiency was mainly related to the i-ZnO/Inx(OOH,S)y interface. The experimental results provide the knowledge base for further optimization of the interface properties to form high-quality p-n junction in the CIGS solar cells employing the CBD In2S3 buffer layer.

  14. Mechanism of stress control for GaN growth on Si using AlN interlayers

    NASA Astrophysics Data System (ADS)

    Suzuki, Michihiro; Nakamura, Akihiro; Nakano, Yoshiaki; Sugiyama, Masakazu

    2017-04-01

    For the purpose of controlling the wafer bow of GaN-on-Si structure, in situ curvature transient during the growth of a GaN layer on an AlN interlayer was investigated systematically by estimating the compressive strain applied to the GaN layer with the progress of the layer growth. The compressive strain was dependent on the morphology of the GaN surface prior to the growth of the AlN interlayer. It was found that the transition sequence from GaN growth to AlN growth induces roughening of the GaN surface and both high NH3 partial pressure and the short transition time were effective for reducing the roughness of the GaN surface beneath the AlN interlayer. The improved transition sequence increased the compressive strain in GaN by a factor of 2.5. The AlN grown at the same temperature as that of GaN was beneficial in both better surface morphology and the reduction of the transition time between GaN growth and AlN growth. With this high-temperature AlN interlayer, its thickness is another important factor governing the compressive strain in GaN. To get AlN relaxed for applying the compressive strain to GaN, the AlN layer should be thicker but too thick layer after relaxation results in surface roughening, which in turn introduces defects to the overlying GaN layer and reduces the compressive strain by partial lattice relaxation of GaN.

  15. Preparation of SmBiO3 buffer layer on YSZ substrate by an improved chemical solution deposition route

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Pu, Minghua; Zhao, Yong

    2016-12-01

    A quick route for chemical solution deposition (CSD) has been developed to prepare SmBiO3 (SBO) layers on yttria stabilized zirconia (YSZ) substrates rapidly by using of solid state decomposition (SSD) technique. The proper conditions for volatilization of lactic acid, which as solvent in precursor coated layer, and SBO growth are 115°C for 30 min and 794°C for 60 min in flowing Ar gas. The coated layers are amorphous structure of mixture oxides and quasi-crystal structure of SBO before and after growth, respectively. The total time by this quick CSD route for organic solvent volatilization, salts decomposed and layer growth is not up to 2 h, which are much less than that needed for traditional CSD of over 10 h. SBO layer is directly epitaxial growth on YSZ substrate without any lattice rotation. SBO layer prepared by this quick route as well as that by traditional route are suitable for the growth of YBCO. The superconducting transition temperature and critical current density of the coated YBCO layer on SBO/YSZ obtained by this quick route are up to 90 K and 1.66 MA/cm2. These results may be the usable reference for continuous preparation of SBO buffer layer on IBAD-YSZ/Ni-based alloy tapes.

  16. Ferroelectric properties of multi-layer LiTaO 3 thin films with Ta IIO 5 buffer

    NASA Astrophysics Data System (ADS)

    Zhang, De-Yin; Peng, Wei-Dong; Li, Jin-Hua; Li, Kun; Huang, Da-Gui

    2007-12-01

    The new sol-gel derived multi-layer LiTaO 3 thin films with Ta IIO 5 buffer layer were prepared on Pt/Ti/SiO2/Si substrate using lithium ethoxide and tantalum ethoxide as starting materials. The sol of Ta IIO 5 was firstly covered on the substrate by spin coating at 6500rpm for 50s and then a rapid annealing at 650°C for 2min to form an about 20nm thick Ta IIO 5 buffer layer. Multi-layer LiTaO 3 thin films were made over Ta IIO 5 buffer by repeated spin coating at 4000rpm for 30s and then a rapid annealing process at 700°C for 3min. The spectrum of XRD show the crystalline orientation of thin film type Ta IIO 5 is different compared to powder type Ta IIO 5. The SEM micrograph of the cross section shows the prepared sample is uniform, smooth and crack-free on the surface and the thickness of LiTaO 3 thin film is 0.341μm. The ferroelectric hysteresis loop and leakage current of the prepared sample have been measured using Al/LiTaO 3/Ta IIO 5/Pt structure electrode by a ferroelectric material analyzer PLC-100. The remanent polarization and coercive field of the prepared sample polarized at 13V were 3.4μC/cm2 and 185kV/cm respectively. The leakage current of the prepared sample was 2.66x10 -7A at 71.43kV/cm .Experimental results show the prepared sample of LiTaO 3 thin film with Ta IIO 5 buffer has good ferroelectric properties. Ta IIO 5 buffer introduction between LiTaO 3 thin film and Pt substrate can effectively decrease the leakage current and improve the properties of uncooled LiTaO 3 infrared device.

  17. Crack-free thick (∼5 µm) α-Ga2O3 films on sapphire substrates with α-(Al,Ga)2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Oda, Masaya; Kaneko, Kentaro; Fujita, Shizuo; Hitora, Toshimi

    2016-12-01

    To obtain crack-free thick α-Ga2O3 films on sapphire substrates, effects and behaviors of buffer layers have been investigated. With the growth of an α-Ga2O3 layer, there appeared an unintentionally formed layer in the sample, which was associated with stress accumulation and could be the seed for crack generation. We obtained a thick (∼5 µm) α-Ga2O3 layer on a sapphire substrate with the insertion of α-(Al0.12Ga0.88)2O3/α-(Al0.02Ga0.98)2O3 buffer layers, and for this sample, we did not observe the intermediate layer, suggesting that the buffer layers were effective for eliminating the stress accumulation at the α-Ga2O3/sapphire interface region.

  18. Photovoltaic properties of Cu2ZnSnS4 cells fabricated using ZnSnO and ZnSnO/CdS buffer layers

    NASA Astrophysics Data System (ADS)

    Tajima, Shin; Umehara, Mitsutaro; Mise, Takahiro

    2016-11-01

    To improve the photovoltaic properties of Cu2ZnSnS4 (CZTS) photovoltaic cells, we investigated the use of novel buffer layer materials. We found that Zn1- x Sn x O y fabricated by atomic layer deposition functioned as an effective buffer layer. The short-circuit current density increased by 10% because of a decrease in the absorption loss in the short-wavelength region. With Zn0.70Sn0.30O y layers, the conversion efficiency was 5.7%. To reduce interface recombination, a thin CdS layer was inserted between the ZnSnO and CZTS layers. The CZTS cells fabricated using ZnSnO/CdS double buffer layers showed a high open-circuit voltage of 0.81 V.

  19. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    NASA Astrophysics Data System (ADS)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-08-01

    We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Transport measurements of exfoliated graphene after SrO deposition show a strong dependence between the Dirac point and Sr oxidation. Subsequently, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  20. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    SciTech Connect

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  1. Surface electronic structure of ZrB2 buffer layers for GaN growth on Si wafers

    NASA Astrophysics Data System (ADS)

    Yamada-Takamura, Yukiko; Bussolotti, Fabio; Fleurence, Antoine; Bera, Sambhunath; Friedlein, Rainer

    2010-08-01

    The electronic structure of epitaxial, predominantly single-crystalline thin films of zirconium diboride (ZrB2), a lattice-matching, conductive ceramic to GaN, grown on Si(111) was studied using angle-resolved ultraviolet photoelectron spectroscopy. The existence of Zr-derived surface states dispersing along the Γ¯-M¯ direction indicates a metallic character provided by a two-dimensional Zr-layer at the surface. Together with the measured work function, the results demonstrate that the surface electronic properties of such thin ZrB2(0001) buffer layers are comparable to those of the single crystals promising excellent conduction between nitride layers and the substrate in vertical light-emitting diodes on economic substrates.

  2. Microstructures of GaN Buffer Layers Grown on Si(111) Using Rapic Thermal Process Low-Pressure Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Peng, Chen; Bo, Shen; Jian-Min, Zhu; Zhi-Zhong, Chen; Yu-Gang, Zhou; Shi-Yong, Xie; Rong, Zhang; Ping, Han; Shu-Lin, Gu; You-Dou, Zheng; Shu-Sheng, Jiang; Duan, Feng; Z, Huang C.

    2000-03-01

    Microstructures of GaN buffer layers grown on Si (111) substrates using rapid thermal process low-pressure metalorganic chemical vapor deposition are investigated by an atomic force microscope (AFM) and a high-resolution transmission electron microscope (HRTEM). AFM images show that the islands appear in the GaN buffer layer after annealing at high temperature. Cross-sectional HRTEM micrographs of the buffer region of these samples indicate that there are bunched steps on the surface of the Si substrate and a lot of domains in GaN misorienting each other with small angles. The boundaries of those domains locate near the bunched steps, and the regions of the film on a terrace between steps have the same crystal orientation. An amorphous-like layer, about 3 nm thick, can also be observed between the GaN buffer layer and the Si substrate.

  3. TEM study of dislocations structure in In0.82Ga0.18As/InP heterostructure with InGaAs as buffer layer

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Guo, Zuo-xing; Yuan, De-zeng; Wei, Qiu-lin; Zhao, Lei

    2016-05-01

    In order to improve the quality of detector, In x Ga1- x As ( x=0.82) buffer layer has been introduced in In0.82Ga0.18As/InP heterostructure. Dislocation behavior of the multilayer is analyzed through plane and cross section [110] by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The dislocations are effectively suppressed in In x Ga1- x As ( x=0.82) buffer layer, and the density of dislocations in epilayer is reduced obviously. No lattice mismatch between buffer layer and epilayer results in no misfit dislocation (MD). The threading dislocations (TDs) are directly related to the multiplication of the MDs in buffer layer.

  4. The effect of employing the p/i buffer layers and in-situ hydrogen treatment for transparent a-Si:H solar cells.

    PubMed

    Lee, Da Jung; Yun, Sun Jin; Park, Min A; Lim, Jung Wook

    2014-05-01

    In this study, we describe the effects of various thicknesses of triple p/i buffer layers and hydrogen treatment on various performances in the fabrication of transparent a-Si:H solar cells. For the increment of buffer layer thickness, V(oc) increases steadily and J(sc) firstly increases and then decreases. The triple buffer layers also enhance the transmittance as well as conversion efficiency. For hydrogen plasma treatment, overall performances were enhanced with plasma power due to the passivation of dangling bonds at p/i interface. Therefore, the usage of triple buffer layers with proper treatment is beneficial to obtaining transparent a-Si:H solar cells with high quality.

  5. Superconducting, surface and interface properties of Ho(123) and Bi(2212) films on sapphire with cerium oxide buffer layers

    NASA Astrophysics Data System (ADS)

    Castro, L. F.; Suryanarayanan, R.; Das, A.; Bacca, E.; Gómez, M. E.; Lopera, W.; Prieto, P.; Kreisler, A.; Martin, J. C.

    1995-09-01

    We report on the X-ray diffraction, secondary ion mass spectrometry, and atomic force microscopy on Ho(123) and Bi(2212) films dc sputtered in pure oxygen atmosphere onto heated sapphire substrates with CeO 2 buffer layers. The films were c-axis oriented. The Ho(123) films had a T c of 88 K but had a relatively high room temperature resistivity of 400 μΩcm. The Bi(2212) films showed a broad transition and a low T c of 46 K. The data may be explained by a certain amount of Al diffusion and inhomogenous grain growth.

  6. Improved properties of barium strontium titanate thin films grown on copper foils by pulsed laser deposition using a self-buffered layer.

    SciTech Connect

    Liu, S.; Ma, B.; Narayanan, M.; Balachandran, U.

    2012-01-01

    Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) films were deposited by pulsed laser deposition on copper foils with low-temperature self-buffered layers. The deposition conditions included a low oxygen partial pressure and a temperature of 700 C to crystallize the films without the formation of secondary phases and substrate oxidation. The results from x-ray diffraction and scanning electron microscopy indicated that the microstructure of the BST films strongly depended on the growth temperature. The use of the self-buffered layer improved the dielectric properties of the deposited BST films. The leakage current density of the BST films on the copper foil was 4.4 x 10{sup -9} A cm{sup -2} and 3.3 x 10{sup -6} A cm{sup -2} with and without the self-buffered layer, respectively. The ferroelectric hysteresis loop for the BST thin film with buffer layer was slim, in contrast to the distorted loop observed for the film without the buffer layer. The permittivity (7 0 0) and dielectric loss tangent (0.013) of the BST film on the copper foil with self-buffered layer at room temperature were comparable to those of the film on metal and single-crystal substrates.

  7. Epitaxial growth of BaHfO3 buffer layer and its structure degeneration analysed by Raman spectrum.

    PubMed

    Zheng, Jiahui; Fan, Feng; Yan, Xiangfa; Lu, Yuming; Liang, Yu; Bai, Chuanyi; Liu, Zhiyong; Guo, Yanqun; Cai, Chuanbing

    2016-01-01

    BaHfO3 (BHO) has been proposed as a new cap layer material for YBa2Cu3O7-δ (YBCO) coated conductors. Highly c-axis oriented BHO cap layer has been deposited on ion-beam assisted deposition-MgO buffered Hastelloy tapes by direct-current-magnetron sputtering method. The epi-growth of BHO films combined with its properties is investigated in details. The degenerated cubic crystal structure of BHO film is confirmed by Raman spectrum analysis. XRD θ-2θ scan, φ-scan and ω-scan reveal an excellent c-axis alignment with good in-plane and out-of-plane textures for BHO cap layers. SEM and AFM investigations show BHO cap layer a dense and crack-free morphology. Subsequently pure c-axis orientation YBCO film was epitaxial grown on such BHO cap layer successfully, shown BaHfO3 a potential cap layer material for coated conductors.

  8. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  9. The effect of h-BN buffer layers in bilayer graphene on Co (111)

    NASA Astrophysics Data System (ADS)

    Li, Can; Liu, Yan; Zhang, Bin; Wang, Tao; Guo, Qing; Sheng, Kuang; Yin, You

    2015-05-01

    Understanding of the interface of Co/graphene is essential for applications of graphene-based devices, as well as in the process of graphene synthesis. In this paper, the Co/graphene interface, including five structures of bilayer graphene (BLG) on Co (111) surface with bilayer or monolayer BN buffer sheets, is investigated by using density functional theory calculations. The corresponding atomic and electronic structures and Mulliken charge populations are also analyzed. The bilayer BN sheets are found to be the thinnest insulator for the backside Co metal gate, which shields BLG from Co substrate pining, decreases the charges influenced by the substrate, and improves BLG transport mobility.

  10. Distortions to current-voltage curves of cigs cells with sputtered Zinc(Oxygen,Sulfur) buffer layers

    NASA Astrophysics Data System (ADS)

    Song, Tao

    Sputtered-deposited Zn(O,S) is an attractive alternative to CdS for Cu(In,Ga)Se 2 (CIGS) thin-film solar cells' buffer layer. It has a higher band gap and thus allows greater blue photon collection to achieve higher photon current. The primary goal of the thesis is to investigate the effects of the secondary barrier at the buffer-absorber interface on the distortions to current-voltage (J-V) curves of sputtered-Zn(O,S)/CIGS solar cells. A straightforward photodiode model is employed in the numerical simulation to explain the physical mechanisms of the experimental J-V distortions including J-V crossover and red kink. It is shown that the secondary barrier is influenced by both the internal material properties, such as the conduction-band offset (CBO) and the doping density of Zn(O,S), and the external conditions, such as the light intensity and operating temperature. A key parameter for the sputter deposition of Zn(O,S) has been the oxygen fraction in the argon beam. It is found that the CBO varies with the oxygen fraction in the argon beam at a fixed temperature. With a greater CBO (DeltaEC>0.3 eV), the resulting energy barrier limits the electron current flowing across the interface and thus leads to the J-V distortion. Two different ZnS targets, non-indium and indium-doped one, were used to deposit the Zn(O,S) buffer layer. At the same oxygen fraction in argon beam, a non-In-doped Zn(O,S) buffer with a smaller amount of doping forms a greater secondary barrier to limit the electron current due to the compensation of the Zn(O,S) buffer layer. In addition, the temperature-dependent J-V crossover can be explained by the temperature-dependent impact of the secondary barrier - at lower temperature in the dark, the maximum distortion-free barrier is reduced and results in a more serious current limitation, indicating a greater J-V crossover. It is also found that, under low-intensity illumination, there is a lower doping density of Zn(O,S) due to a smaller amount of

  11. Development of mid-frequency AC reactive magnetron sputtering for fast deposition of Y2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Xiong, Jie; Xia, Yudong; Xue, Yan; Zhang, Fei; Guo, Pei; Zhao, Xiaohui; Tao, Bowan

    2014-02-01

    A reel-to-reel magnetron sputtering system with mid-frequency alternating current (AC) power supply was used to deposit double-sided Y2O3 seed layer on biaxially textured Ni-5 at.%W tape for YBa2Cu3O7-δ coated conductors. A reactive sputtering process was carried out using two opposite symmetrical sputtering guns with metallic yttrium targets and water vapor for oxidizing the sputtered metallic atoms. The voltage control mode of the power supply was used and the influence of the cathode voltage and ArH2 pressure were systematically investigated. Subsequently yttrium-stabilized zirconia (YSZ) barrier and CeO2 cap layers were deposited on the Y2O3 buffered substrates in sequence, indicating high quality and uniform double-sided structure and surface morphology of such the architecture.

  12. DEVELOPMENT OF IN-SITU CONTROL DIAGNOSTICS FOR APPLICATION OF EPITAXIAL SUPERCONDUCTOR AND BUFFER LAYERS

    SciTech Connect

    B.C. Winkleman; T.V. Giel, Jr.; J. Cunningham

    1999-06-30

    The recent achievements of critical currents in excess of 1x10{sup 6}amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the U. S. Department of Energy (DOE's) sponsorship, the University of Tennessee Space Institute (UTSI) performed an extensive evaluation of leading coated conductor processing options. In general, it is our feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineering evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's (LANL) ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's (ORNL) rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.

  13. Development of in-situ control diagnostics for application of epitaxial superconductor and buffer layers

    SciTech Connect

    B.C. Winkleman; T.V. Giel; Jason Cunningham

    1999-07-30

    The recent achievements of critical currents in excess of 1 x 10{sup 6} amp/cm{sup 2} at 77 K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the US DOE's sponsorship, the University of Tennessee Space Institute performed an extensive evaluation of leading coated conductor processing options. In general, it is their feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineering evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.

  14. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    DOE PAGES

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; ...

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 109 and 5 × 108 cm₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, there was no dispersionmore » observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.« less

  15. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Le, Lingcong; Hwang, Ya-Hsi; Kim, Byung-Jae; Ren, Fan; Pearton, Stephen J.; Lind, Aaron G.; Jones, Kevin S.; Kravchenko, I. I.; Zhang, Ming-Lan

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 109 and 5 × 108 cm₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, there was no dispersion observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.

  16. Reel-to-reel deposition of epitaxial double-sided MgO buffer layers for coated conductors

    NASA Astrophysics Data System (ADS)

    Xue, Yan; Xiong, Jie; Zhang, Yahui; Zhang, Fei; Zhao, Rui-Peng; Hui, Wang; Wang, Quiling; Cheng, Guo; Zhao, Xiao-Hui; Tao, Bo-Wan

    2016-06-01

    We have successfully employed a double-sided process to deposit MgO buffer layers on both sides of amorphous Y2O3 surface for double-sided YBa2Cu3O7-δ (YBCO) coated conductors (CCs) for the first time, the structure of which is of great prospect to improve the performance and cut the production cost. The biaxial textures of MgO buffer layer are noticeably affected by the ion energy and film thickness, which is demonstrated by X-ray diffraction. The best biaxial texture of double-sided MgO films shows ω-scan of (002) MgO and Φ-scan of (220) MgO yield full width at half maximum values of 4° and 7.8° for one side, respectively, as well as 3.5° and 6.7° for the other side. The subsequent double-sided YBCO films are deposited on the as-prepared MgO template with entire critical current of over 300 A/cm for both sides.

  17. Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets.

    PubMed

    Tetsuka, Hiroyuki; Nagoya, Akihiro; Tamura, Shin-Ichi

    2016-12-01

    A high performance hybrid broadband photodetector with graphene/nitrogen-functionalized graphene quantum dots (NGQDs@GFET) is developed using boron nitride nanosheets (BN-NSs) as a buffer layer to facilitate the separation and transport of photoexcited carriers from the NGQD absorber. The NGQDs@GFET photodetector with the buffer layer of BN-NSs exhibits enhanced photoresponsivity and detectivity in the deep ultraviolet region of ca. 2.3 × 10(6) A W(-1) and ca. 5.5 × 10(13) Jones without the application of a backgate voltage. The high level of photoresponsivity persists into the near-infrared region (ca. 3.4 × 10(2) A W(-1) and 8.0 × 10(9) Jones). In addition, application in flexible photodetectors is demonstrated by the construction of a structure on a polyethylene terephthalate (PET) substrate. We further show the feasibility of using our flexible photodetectors towards the practical application of infrared photoreflectors. Together with the potential application of flexible photodetectors and infrared photoreflectors, the proposed hybrid photodetectors have potential for use in future graphene-based optoelectronic devices.

  18. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  19. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers.

    PubMed

    Bersweiler, M; Dumesnil, K; Lacour, D; Hehn, M

    2016-08-24

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  20. Device performance and lifetime of polymer:fullerene solar cells with UV-ozone-irradiated hole-collecting buffer layers.

    PubMed

    Lee, Seungsoo; Nam, Sungho; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2011-11-18

    We report the influence of UV-ozone irradiation of the hole-collecting buffer layers on the performance and lifetime of polymer:fullerene solar cells. UV-ozone irradiation was targeted at the surface of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layers by varying the irradiation time up to 600 s. The change of the surface characteristics in the PEDOT:PSS after UV-ozone irradiation was measured by employing optical absorption spectroscopy, photoelectron yield spectroscopy, and contact angle measurements, while Raman and X-ray photoelectron spectroscopy techniques were introduced for more microscopic analysis. Results showed that the UV-ozone irradiation changed the chemical structure/composition of the surface of the PEDOT:PSS layers leading to the gradual increase of ionization potential with irradiation time in the presence of up-and-down variations in the contact angle (polarity). This surface property change was attributed to the formation of oxidative components, as evidenced by XPS and Auger electron images, which affected the sheet resistance of the PEDOT:PSS layers. Interestingly, device performance was slightly improved by short irradiation (up to 10 s), whereas it was gradually decreased by further irradiation. The short-duration illumination test showed that the lifetime of solar cells with the UV-ozone irradiated PEDOT:PSS layer was improved due to the protective role of the oxidative components formed upon UV-ozone irradiation against the attack of sulfonic acid groups in the PEDOT:PSS layer to the active layer.

  1. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction

    NASA Astrophysics Data System (ADS)

    El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.

    2016-11-01

    Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.

  2. UV-ozone-treated ultra-thin NaF film as anode buffer layer on organic light emitting devices.

    PubMed

    Chen, Yu-Cheng; Kao, Po-Ching; Chu, Sheng-Yuan

    2010-06-21

    An ultra-thin NaF film was thermally deposited between ITO and NPB as the buffer layer and then treated with the ultraviolet (UV) ozone, in the fabrication of organic light emitting diodes (ITO/NaF/NPB/Alq(3)/LiF/Al) to study its effect on hole-injection properties. The treatment drastically transforms the role of NaF film from hole-blocking to hole-injecting. This transformation is elucidated using hole-only devices, energy band measurement, surface energy, surface polarity, and X-ray photoelectron spectra. With the optimal thickness (3 nm) of the UV-ozone-treated NaF layer, the device performance is significantly improved, with a turn-on voltage, maximum luminance, and maximum current efficiency of 2.5 V, 15700 cd/m(2), and 4.9 cd/A, respectively. Results show that NaF film is not only a hole-blocking layer, but also a promising hole-injecting layer after UV-ozone treatment.

  3. Tailoring the magnetic anisotropy of CoFeB/MgO stacks onto W with a Ta buffer layer

    NASA Astrophysics Data System (ADS)

    Kaidatzis, Andreas; Bran, Cristina; Psycharis, Vasilios; Vázquez, Manuel; García-Martín, José Miguel; Niarchos, Dimitrios

    2015-06-01

    The emergence of perpendicular magnetic anisotropy (PMA) in CoFeB/MgO stacks deposited on W using a Ta buffer layer is studied as a function of Ta and CoFeB layer thickness and annealing temperature. It is shown that very thin Ta "dusting" layers (thickness between 0.3 and 1 nm) enhance PMA of CoFeB layers grown on top of W. We find that Ta thickness is a crucial factor affecting magnetic anisotropy and it needs to be scaled proportionally to CoFeB thickness for obtaining PMA. Stacks without Ta have in-plane anisotropy, verifying the "PMA-enhancing" role of Ta. The maximum effective PMA energy ( 3.6 ×106 erg/cm3) is obtained for a stack with 1.4 nm of CoFeB and 1 nm of Ta and after annealing at 350 °C . Besides, PMA can be obtained even at the as-deposited state for certain thicknesses. This W-based CoFeB/MgO system could enable the development of low power consumption, high density, and non-volatile magnetic memories.

  4. Hexagonal AlN: Dimensional-crossover-driven band-gap transition

    NASA Astrophysics Data System (ADS)

    Bacaksiz, C.; Sahin, H.; Ozaydin, H. D.; Horzum, S.; Senger, R. T.; Peeters, F. M.

    2015-02-01

    Motivated by a recent experiment that reported the successful synthesis of hexagonal (h ) AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013), 10.1063/1.4851239], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h -AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h -AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm-1 and an Eg mode at 703 cm-1, which are observable by Raman measurements. In addition, single-layer h -AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, A A' -type stacking is found to be the most favorable one, and interlayer interaction is strong. While N -layered h -AlN is an indirect-band-gap semiconductor for N =1 -9 , we predict that thicker structures (N ≥10 ) have a direct band gap at the Γ point. The number-of-layer-dependent band-gap transitions in h -AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides.

  5. Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics.

    PubMed

    Rao, Arun D; Karalatti, Suresh; Thomas, Tiju; Ramamurthy, Praveen C

    2014-10-08

    Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of ∼3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.

  6. 19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer

    SciTech Connect

    Bhattacharya. R. N.

    2008-01-01

    CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.

  7. High performance organic photovoltaics with zinc oxide and graphene oxide buffer layers

    NASA Astrophysics Data System (ADS)

    Mohd Yusoff, Abd Rashid Bin; Kim, Hyeong Pil; Jang, Jin

    2014-01-01

    We report air stable inverted organic photovoltaics (OPVs) incorporating graphene oxide (GO) and solution processed zinc oxide (ZnO) as hole transport and electron transport layers, respectively. Both the hole transport layer and the electron transport layer (HTL and ETL) are of advantage in high transparency and environmental stability. The use of GO and ZnO in poly(2,7-carbazole) derivative (PCDTBT):fullerene derivative (PC70BM)-based inverted OPVs leads to an improved device stability and enhanced high open circuit voltage (Voc) of 0.81 V, a short-circuit current density (Jsc) of 14.10 mA cm-2, and a fill factor (FF) of 54.44 along with a power conversion efficiency of 6.20%.

  8. Quantum transport modeling of the symmetric Fe/FeO0.5/MgO magnetic tunnel junction: the effects of correlations in the buffer layer.

    PubMed

    Timoshevskii, Vladimir; Hu, Yibin; Marcotte, Étienne; Guo, Hong

    2014-01-08

    We report ab initio simulations of quantum transport properties of Fe/MgO/Fe trilayer structures with FeO0.5 buffer iron oxide layer, where on-site Coulomb interaction is explicitly taken into account by local density approximation + Hubbard U approach. We show that on-site Coulomb repulsion in the iron-oxygen layer can cause a dramatic drop of the tunnel magnetoresistance of the system. We present an understanding of microscopic details of this phenomenon, connecting it to localization of electronic states of particular symmetry, which takes place in the buffer Fe-O layer, when on-site Coulomb repulsion is introduced. We further study the possible influence of the symmetry reduction in the buffer Fe-O layer on the transport properties of the Fe/MgO/Fe interface.

  9. Improved high temperature integration of Al{sub 2}O{sub 3} on MoS{sub 2} by using a metal oxide buffer layer

    SciTech Connect

    Son, Seokki; Choi, Moonseok; Kim, Dohyung; Choi, Changhwan; Yu, Sunmoon

    2015-01-12

    We deposited a metal oxide buffer layer before atomic layer deposition (ALD) of Al{sub 2}O{sub 3} onto exfoliated molybdenum disulfide (MoS{sub 2}) in order to accomplish enhanced integration. We demonstrate that even at a high temperature, functionalization of MoS{sub 2} by means of a metal oxide buffer layer can effectively provide nucleation sites for ALD precursors, enabling much better surface coverage of Al{sub 2}O{sub 3}. It is shown that using a metal oxide buffer layer not only allows high temperature ALD process, resulting in highly improved quality of Al{sub 2}O{sub 3}/MoS{sub 2} interface, but also leaves MoS{sub 2} intact.

  10. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.

    PubMed

    Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng

    2013-01-01

    A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.

  11. Evaluation of methods for application of epitaxial buffer and superconductor layers

    SciTech Connect

    1999-03-30

    The recent achievements of critical currents exceeding million amperes per square centimeter at 77K in YBCO deposited over suitably textured substrate have stimulated interest in the potential applications of coated conductors at high temperatures and in high magnetic fields. Currently, ion-beam assisted deposition (IBAD), and rolling assisted bi-axially textured substrate (RABiTS), represent two available options for obtaining textured substrates. For applying suitable coatings of buffer and high temperature superconductor (HTS) material over textured substrates, several options are available which include sputtering, electron-beam evaporation, laser ablation, electrophoresis, chemical vapor deposition (including metal organics chemical vapor deposition), sol-gel, metal organics decomposition, electrodeposition and aerosol/spray pyrolysis. A commercial continuous long-length wire/tape manufacturing scheme developed out of any suitable combination of the above techniques would consist of operations involving preparation of the substrate and application of buffer, HTS and passivation/insulation materials and special treatment steps such as post-annealing. These operations can be effected by various process parameters that can be classified into chemistry, materials, engineering and environmental related parameters. Under the DOE-sponsored program, to carry out an engineering evaluation, first, the process flow schemes were developed for various candidate options identifying the major operating steps, process conditions, and process streams. Next, to evaluate quantifiable parameters such as process severity (e.g. temperature and pressure), coating thickness and deposition rate for HTS material, achieved maximum J{sub c} value (for films >1{micro}m thick) and cost of chemical and material utilization efficiency, the multi-attribute method was used to determine attributes/merits for various parameters and candidate options. To determine similar attribute values for the

  12. Ge and GeOx films as sacrificial layer for MEMS technology based on piezoelectric AlN: etching and planarization processes (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Sangrador, J.; Olivares, J.; Iborra, E.; Vergara, L.; Clement, M.; Sanz-Hervas, A.

    2005-07-01

    In this article we present a study of deposition and etching techniques of germanium (Ge) and amorphous oxygen germanium (GeOx) films, with the aim of using them as sacrificial layer in the fabrication of AlN-based MEMS by surface micromachining processes. The Ge and GeOx layers were deposited by RF magnetron sputtering in Ar and Ar/O2 atmospheres. By controlling the process parameters we were able to set the final composition of the GeOx films, which was assessed by FTIR measurements. We have studied the etch rates of GeOx films with x ranging from 0 to 1 in H2O2 and H2O2/acid solutions. Depending on the etching temperature and the oxygen content in the layers, etch rates ranging from 0.2 to 2 μm/min were obtained. Nearly stoichiometric germanium oxide (GeO2) was etched in pure H2O at very high rate (>1 μm/min at room temperature). We have also developed a chemomechanical polishing (CMP) process for the planarization of Ge and GeOx. The influence of the slurries containing diverse powders (CeO2, Al2O3) and chemical agents (NH4OH, HCl), the different pads, and the various process parameters on the removal rate and the final sample topography has been studied. Finally, we have analysed the compatibility of the materials involved in the process flow with the processes of planarization and removal of the sacrificial layers.

  13. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing

    NASA Astrophysics Data System (ADS)

    Miyake, Hideto; Lin, Chia-Hung; Tokoro, Kenta; Hiramatsu, Kazumasa

    2016-12-01

    The annealing of sputtered AlN films with different thicknesses grown on sapphire in nitrogen ambient was investigated. In the annealing, two AlN films on sapphire were overlapped ;face-to-face; to suppress the thermal decomposition of the AlN films. The sputtered AlN films with small grains consisted of columnar structure were initially aligned with (0002) orientation but became slightly inclined with increasing film thickness resulting in the formation of a two-layer structure. After annealing, films became a single crystalline layer regardless of the film thickness, and their crystallinity markedly improved after annealing at 1600-1700 °C. The full widths at half maximum of the (0002)- and (10 1 bar2)-plane X-ray rocking curves were improved to 49 and 287 arcsec, respectively, owing to the annihilation of domain boundaries in the sputtered AlN films, which concurrently increased the compressive stress in the films.

  14. Improved structural quality of AlN grown on sapphire by 3D/2D alternation growth

    NASA Astrophysics Data System (ADS)

    Guo, Yanmin; Fang, Yulong; Yin, Jiayun; Zhang, Zhirong; Wang, Bo; Li, Jia; Lu, Weili; Feng, Zhihong

    2017-04-01

    Three dimensional (3D) and two dimensional (2D) alternation growth was used to grow AlN epitaxial layers on sapphire substrates. AlN samples grown using this technique have higher crystalline quality and lower dislocation density than samples grown using only 3D or 2D growth modes as witnessed by the high-resolution X-ray diffraction. Smooth atomic terraces with root mean square roughness of 0.107 nm were observed using atomic force microscopy (AFM) when the 3D and 2D AlN were 75 nm and 425 nm, respectively. This sample possesses single crystallographic orientation along the c-axis identified by Raman spectroscopy. Furthermore, the 3D/2D alternating growth mode modulates internal stress in AlN epitaxial layer by adjusting 2D AlN thickness, and the mechanism was studied in detail.

  15. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.

    PubMed

    Jeon, Dong-Hwan; Hwang, Dae-Kue; Kim, Dae-Hwan; Kang, Jin-Kyu; Lee, Chang-Seop

    2016-05-01

    We evaluated a ZnS buffer layer prepared using a chemical bath deposition (CBD) process for application in cadmium-free Cu(In,Ga)Se2 (CIGS) solar cells. The ZnS buffer layer showed good transmittance (above 90%) in the spectral range from 300 to 800 nm and was non-toxic compared with the CdS buffer layers normally used in CIGS solar cells. The CBD process was affected by several deposition conditions. The deposition rate was dependent on the ammonia concentration (complexing agent). When the ammonia concentration was either too high or low, a decrease in the deposition rate was observed. In addition, post heat treatments at high temperatures had detrimental influences on the ZnS buffer layers because portions of the ZnS thin films were transformed into ZnO. With optimized deposition conditions, a CIGS solar cell with a ZnS buffer layer showed an efficiency of 14.18% with a 0.23 cm2 active area under 100 mW/cm2 illumination.

  16. Effect of rear-surface buffer layer on performance of lift-off Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Aoyagi, Kenta; Tamura, Akihiro; Takakura, Hideyuki; Minemoto, Takashi

    2014-01-01

    The effect of an Au and MoOx rear-surface buffer layer inserted between Cu(In,Ga)Se2 (CIGS) and ZnO:Al on solar cell performances was examined. The lift-off CIGS solar cell without a rear-surface buffer layer showed particular characteristics of two series-connected diodes in the reverse direction, and its short-circuit current density was almost zero. In contrast, the Au or MoOx rear-surface buffer layer improved these characteristics. Although the lift-off CIGS solar cell with the Au rear-surface buffer layer showed shunt characteristics and low efficiency, the efficiency of the lift-off CIGS solar cell with the MoOx rear-surface buffer layer was approximately 50% of that of substrate-type CIGS solar cells. Diode parameters of lift-off CIGS solar cells were determined by fitting analysis of current density-voltage curves using a proposed new equivalent circuit model for lift-off CIGS solar cells.

  17. Finding the lost open-circuit voltage in polymer solar cells by UV-ozone treatment of the nickel acetate anode buffer layer.

    PubMed

    Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang

    2014-06-25

    Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.

  18. Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Hu, Ting; Chen, Lie; Yuan, Kai; Chen, Yiwang

    2015-05-01

    Two types of novel fullerene derivative/ZnO hybrids were prepared by physically blending amphiphilic fullerene-end-capped poly(ethylene glycol) (C60-PEG) with ZnO nanocrystals (ZnO/C60-PEG) and by in situ grown ZnO from C60-PEG (ZnO@C60-PEG) at relatively low temperatures. The C60-PEG could act as n-doping on the ZnO while the PEG side chain of C60-PEG could passivate the defects of the ZnO at the same time, consequently increasing the lowest unoccupied molecular orbital (LUMO) level. Compared with the ZnO/C60-PEG by the physical blend approach, the ZnO@C60-PEG by the growth approach showed a more favorable morphology and higher electron mobility by developing a homogeneous network. As a consequence, the efficiency of the inverted polymer solar cells based on thieno[3,4-b]-thiophene/benzodithiophene (PTB7):[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) is raised to 8.0% for the ZnO@C60-PEG cathode buffer layer and to 7.5% for the ZnO/C60-PEG cathode buffer layer with improved long-term stability.Two types of novel fullerene derivative/ZnO hybrids were prepared by physically blending amphiphilic fullerene-end-capped poly(ethylene glycol) (C60-PEG) with ZnO nanocrystals (ZnO/C60-PEG) and by in situ grown ZnO from C60-PEG (ZnO@C60-PEG) at relatively low temperatures. The C60-PEG could act as n-doping on the ZnO while the PEG side chain of C60-PEG could passivate the defects of the ZnO at the same time, consequently increasing the lowest unoccupied molecular orbital (LUMO) level. Compared with the ZnO/C60-PEG by the physical blend approach, the ZnO@C60-PEG by the growth approach showed a more favorable morphology and higher electron mobility by developing a homogeneous network. As a consequence, the efficiency of the inverted polymer solar cells based on thieno[3,4-b]-thiophene/benzodithiophene (PTB7):[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) is raised to 8.0% for the ZnO@C60-PEG cathode buffer layer and to 7.5% for the ZnO/C60-PEG cathode buffer layer

  19. Magnetic anisotropy of crystalline Fe films grown on (001) GaAs substrates using Ge buffer layers

    NASA Astrophysics Data System (ADS)

    Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyeop; Choi, Seonghoon; Yoo, Taehee; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2016-05-01

    Magnetic anisotropy of Fe films grown on (001) GaAs substrates using Ge buffer layers were investigated by planar Hall effect measurements. In addition to phenomena arising from dominant cubic symmetry of the Fe specimen, the study of angular dependence of magnetization reversal revealed breaking of this symmetry in the form of systematic asymmetric shifts of magnetic hysteresis loops around the <110 > crystallographic directions. We ascribe such symmetry breaking to an admixture of uniaxial anisotropy associated with the [100] direction in the Fe film. To determine the parameters associated with this uniaxial anisotropy, we quantitatively analyze the asymmetric shifts of the hysteresis loop centers from the <110 > directions. Even though the value of these parameters turns out to be relatively small compared to that of the cubic anisotropy (by about two orders of magnitude), they survive up to room temperature.

  20. Nano LaAlO3 buffer layer-assisted tunneling current in manganite p-n heterojunction

    NASA Astrophysics Data System (ADS)

    Ma, Jun-Jie; Wang, Deng-Jing; Huang, Hai-Lin; Wang, Ru-Wu; Li, Yun-Bao

    2015-10-01

    An oxide p-n heterojunction composed of a 150-nm La0.67Ca0.33MnO3 (LCMO) film, 0.05 wt% Nb doped SrTiO3 substrate (STON), and sandwiched 5-nm LaAlO3 (LAO) thin film is fabricated with the pulsed laser deposition technique and the interfacial transport properties are experimentally studied. The rectifying behavior of the junction is in agreement with Newman’s equation, indicating that tunneling is the dominant process for the carriers to pass through the interface while thermal emission is the dominant transport model of an LCMO/STON heterojunction with no LAO buffer layer. Project supported by the National Natural Science Foundation of China (Grant No. 10804089).

  1. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    PubMed

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  2. Air processed organic photovoltaic devices incorporating a MoOx anode buffer layer

    NASA Astrophysics Data System (ADS)

    Bovill, Edward S. R.; Griffin, Jonathan; Wang, Tao; Kingsley, James W.; Yi, Hunan; Iraqi, Ahmed; Buckley, Alastair R.; Lidzey, David G.

    2013-05-01

    Molybdenum oxide (MoOx) has been shown to act as an efficient hole extraction layer in organic photovoltaic (OPV) devices. However, exposing MoOx films to air is problematic as it is hygroscopic; the uptake of moisture having a negative impact on its electronic properties. Here, we use spectroscopic ellipsometry to characterise the uptake of water, and fabricate PCDTBT:PC70BM based OPVs to determine its effects on device performance. We then show that thermally annealing MoOx reduces its hygroscopicity, permitting it to be processed in air. Using this process, we create air-processsed OPVs having PCEs (power conversion efficiencies) of up to 5.36%.

  3. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates

    SciTech Connect

    Ok, Kyung-Chul; Park, Jin-Seong E-mail: jsparklime@hanyang.ac.kr; Ko Park, Sang-Hee; Kim, H. E-mail: jsparklime@hanyang.ac.kr; Hwang, Chi-Sun; Soo Shin, Hyun; Bae, Jonguk

    2014-02-10

    We demonstrated the fabrication of flexible amorphous indium gallium zinc oxide thin-film transistors (TFTs) on high-temperature polyimide (PI) substrates, which were debonded from the carrier glass after TFT fabrication. The application of appropriate buffer layers on the PI substrates affected the TFT performance and stability. The adoption of the SiN{sub x}/AlO{sub x} buffer layers as water and hydrogen diffusion barriers significantly improved the device performance and stability against the thermal annealing and negative bias stress, compared to single SiN{sub x} or SiO{sub x} buffer layers. The substrates could be bent down to a radius of curvature of 15 mm and the devices remained normally functional.

  4. Effect of dopent on the structural and optical properties of ZnS thin film as a buffer layer in solar cell application

    SciTech Connect

    Vashistha, Indu B. Sharma, S. K.; Sharma, Mahesh C.; Sharma, Ramphal

    2015-08-28

    In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5 eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.

  5. Effect of thermal annealing treatment with titanium chelate on buffer layer in inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Wang, Ning; Fu, Yan

    2016-12-01

    The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO3/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO2 as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Tidbnd O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.

  6. The Electronic Properties of AlN Tunnel Barriers and the Effect of Oxygen Impurities

    NASA Astrophysics Data System (ADS)

    Li, Yun; Read, John; Huang, Pinshane; Tseng, Hsin-Wei; Buhrman, Robert

    2009-03-01

    The use of ultra-thin aluminum nitride (AlN) barrier layers can result in Josephson Junctions (JJ's) with both very high critical current densities and low sub-gap leakage [1-4], demonstrating that AlN is a superior JJ tunnel barrier material in the ultra-thin barrier limit. We have utilized scanning tunneling spectroscopy (STS) and analytical scanning transmission electron microscopy (STEM) with electron energy-loss spectroscopy (EELS) to investigate thin AlN layers formed on Nb/Al bilayers by treating the Al surface with an atomic nitrogen beam. Under optimum nitridation conditions the resultant ˜1nm AlN barrier layers have small, ˜ 1 eV, but well defined band gaps and stable surfaces in UHV, with the absence of band-tail states extending close to the Fermi energy, which is in sharp contrast to the case for AlOx layers formed by thermal oxidation [5]. The AlN barrier layers are however quite sensitive to even low levels of background oxygen (O) exposure, either during or after the nitridation process, which reacts O into the barrier layer and results in the formation of low energy band-tail states and an unstable surface. [1] Zijlstra et al., APL 91, 233102 (2007); [2] Wang et al., APL 64, 2034 (1994); [3] Kleinsasser et al., IEEE TAS 5, 2318 (1995); [4] Kaul et al., JMRS 20, 3047 (2005); [5] Mather et al., APL 86, 242504 (2005)

  7. Understanding Coulomb Scattering Mechanism in Monolayer MoS2 Channel in the Presence of h-BN Buffer Layer.

    PubMed

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2017-02-08

    As the thickness becomes thinner, the importance of Coulomb scattering in two-dimensional layered materials increases because of the close proximity between channel and interfacial layer and the reduced screening effects. The Coulomb scattering in the channel is usually obscured mainly by the Schottky barrier at the contact in the noise measurements. Here, we report low-temperature (T) noise measurements to understand the Coulomb scattering mechanism in the MoS2 channel in the presence of h-BN buffer layer on the silicon dioxide (SiO2) insulating layer. One essential measure in the noise analysis is the Coulomb scattering parameter (αSC) which is different for channel materials and electron excess doping concentrations. This was extracted exclusively from a 4-probe method by eliminating the Schottky contact effect. We found that the presence of h-BN on SiO2 provides the suppression of αSC twice, the reduction of interfacial traps density by 100 times, and the lowered Schottky barrier noise by 50 times compared to those on SiO2 at T = 25 K. These improvements enable us to successfully identify the main noise source in the channel, which is the trapping-detrapping process at gate dielectrics rather than the charged impurities localized at the channel, as confirmed by fitting the noise features to the carrier number and correlated mobility fluctuation model. Further, the reduction in contact noise at low temperature in our system is attributed to inhomogeneous distributed Schottky barrier height distribution in the metal-MoS2 contact region.

  8. Effects of Varied Cleaning Methods on Ni-5% W Substrate for Dip-Coating of Water-based Buffer Layers: An X-ray Photoelectron Spectroscopy Study

    PubMed Central

    Narayanan, Vyshnavi; Bruneel, Els; Hühne, Ruben; van Driessche, Isabel

    2012-01-01

    This work describes various combinations of cleaning methods involved in the preparation of Ni-5% W substrates for the deposition of buffer layers using water-based solvents. The substrate has been studied for its surface properties using X-ray photoelectron spectroscopy (XPS). The contaminants in the substrates have been quantified and the appropriate cleaning method was chosen in terms of contaminants level and showing good surface crystallinity to further consider them for depositing chemical solution-based buffer layers for Y1Ba2Cu3Oy (YBCO) coated conductors.

  9. Density functional theory study of the adsorption and incorporation of Sc and Y on the AlN(0001) surface

    NASA Astrophysics Data System (ADS)

    González-Hernández, Rafael; González-Garcia, Alvaro; López-Perez, William

    2016-06-01

    Density functional theory (DFT) calculations were carried out in order to study the adsorption and incorporation of scandium and yttrium atoms on the AlN(0001) surface aiming to gain insight into epitaxial growth of ScxAl1-x N and YxAl1-x N layers on AlN. The adsorption energy, geometry, formation energy, band structure and density of states of Sc (and Y) adatom/AlN(0001) systems are calculated. The calculations showed that the interaction between Sc (and Y) adatom and the AlN(0001) surface is strong (~ 3.9 eV) and it prefers to adsorb on N-top site (T4). However, formation energy calculations reveal that the incorporation of Sc and Y atoms in the Al-substitutional site is energetically more favorable compared with the adsorption on the top layers, which can be attributed to the lower enthalpy of formation of ScN and YN with respect to that of AlN. The results also suggest that the Sc and Y atoms prefer to incorporate in top AlN surface layers. At full coverage, calculations show the formation of metallic ScxN and YxAl1-x N layers on the AlN polar surface over the entire range of Al chemical potentials, in agreement with experimental observations. In addition, we found that for high coverage Sc atoms couple ferromagnetically in the Al-substitutional sites on the AlN(0001) surface.

  10. Growth of ZnO(0001) on GaN(0001)/4H-SiC buffer layers by plasma-assisted hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Ive, Tommy

    2015-09-01

    Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.

  11. Nearly 4-Inch-Diameter Free-Standing GaN Wafer Fabricated by Hydride Vapor Phase Epitaxy with Pit-Inducing Buffer Layer

    NASA Astrophysics Data System (ADS)

    Sato, Tadashige; Okano, Shinya; Goto, Takenari; Yao, Takafumi; Seto, Ritsu; Sato, Akira; Goto, Hideki

    2013-08-01

    A free-standing GaN wafer was fabricated by depositing a GaN buffer that induced the formation of pits (hereafter, pit-inducing GaN buffer) on a low-temperature-grown GaN buffer on the sapphire substrate. A high-temperature-grown GaN layer was grown on the pit-inducing GaN buffer that induced the formation of pits on the high-temperature-grown GaN layer. The pit-inducing buffer suppresses crack formation in the thick GaN film thereby releasing growth stress. Thermal stress in GaN on a sapphire system is also discussed on the basis of calculations utilizing a bilayer model. We have succeeded in the fabrication of a nearly 4-in.-diameter free-standing GaN thick wafer with a pit-inducing GaN buffer by one-stop hydride vapor phase epitaxy, which will lead to a low-cost fabrication of free-standing GaN wafers.

  12. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  13. Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin cerium fluoride buffer layer

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Kao, Po-Ching; Chu, Sheng-Yuan

    2016-09-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3 film as an ultra-thin buffer layer between the ITO and NPB hole transport layer, with the structure configuration ITO/CeF3 (1 nm)/NPB (40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The work function increased from 4.8 eV (standard ITO electrode) to 5.2 eV (1-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The turn-on voltage decreased from 4.2 V to 4.0 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 10820 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.5 cd/A when the 1-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  14. Synthesis of c-axis oriented AlN thin films on different substrates: A review

    SciTech Connect

    Iriarte, G.F.

    2010-09-15

    Highly c-axis oriented AlN thin films have been deposited by reactive sputtering on different substrates. The crystallographic properties of layered film structures consisting of a piezoelectric layer, aluminum nitride (AlN), synthesized on a variety of substrates, have been examined. Aluminum nitride thin films have been deposited by reactive pulsed-DC magnetron sputtering using an aluminum target in an Ar/N{sub 2} gas mixture. The influence of the most critical deposition parameters on the AlN thin film crystallography has been investigated by means of X-ray diffraction (XRD) analysis of the rocking curve Full-Width at Half Maximum (FWHM) of the AlN-(0 0 0 2) peak. The relationship between the substrate, the synthesis parameters and the crystallographic orientation of the AlN thin films is discussed. A guide is provided showing how to optimize these conditions to obtain highly c-axis oriented AlN thin films on substrates of different nature.

  15. Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties

    NASA Astrophysics Data System (ADS)

    Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.

    2017-04-01

    Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.

  16. Investigation of CdZnS Buffer Layers on the Performance of CuInGaSe2 and CuGaSe2 Solar Cells

    SciTech Connect

    Song, J.; Li, S. S.; Chen, L.; Noufi, R.; Anderson, T. J.; Crisalle, O. D.

    2006-01-01

    Cu(In,Ga)Se{sub 2} (CIGS) and CuGaSe{sub 2} (CGS) solar cells were fabricated using Cd{sub 1-x}Zn{sub x}S (CdZnS) buffer layers prepared by chemical bath deposition (CBD) with relative Zn compositions in the CBD bath values of X{sub bath} = 0 (i.e., pure CdS), 0.1, 0.2, 0.3, 0.4, and 0.5. The cell performance parameters of CIGS and CGS films treated with a KCN solution were investigated and compared to cells without KCN treatment. It was found that absorber films treated with KCN etching prior to the buffer CBD step show an improved cell performance for both the CIGS and CGS cells deposited with either CdS or CdZnS buffer layer. A CIGS cell with CdZnS buffer layer of X{sub bath} = 0.2 produced a 13% AM1.5G conversion efficiency with higher V{sub oc}, J{sub sc}, and FF values as compared to the CdZnS/CIGS cells with different Zn contents. Results of photo- J-V and quantum efficiency (QE) measurements reveal that the CGS cell with CdZnS buffer layer of X{sub bath} = 0.3 performed better than the CGS cell deposited with a pure CdS buffer layer. This result is suggested as a result of an increased photocurrent at shorter wavelengths and a more favorable conduction band-offset at the CdZnS/CGS junction.

  17. Experimental Investigation on Thermoresistance between AlN, Bi-2223 and OFHC in High Tc- Direct Cooling Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Rao, R. S.; Wang, J.

    2014-12-01

    In the development of high temperature superconducting (HTS) direct cooling technology, the high electric insulation high heat conducting AlN has become one of the important components. The thermal contact resistance between AlN, Bi-2223 and OFHC is investigated by experiment with a G-M cryocooler as the source of cooling. The heat conductivity of AlN is measured between 29 and 160 K temperatures. When the temperature on the interface layer side of Bi-2223 is 55 K, under the action of the contact pressure of 0.5469 MPa, the thermal contact resistance between AlN and Bi-2223 is 38.86 times to the thermal conduction resistance of a 10 mm thick AlN pad. Baced on micro-nanocryogenics, it is proposed that the thermal contact resistance is one of the crucial techniques to be attacked in HTS direct cooling technology.

  18. Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter

    SciTech Connect

    Däubler, J. Passow, T.; Aidam, R.; Köhler, K.; Kirste, L.; Kunzer, M.; Wagner, J.

    2014-09-15

    Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown on metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.

  19. EXAMINATION OF DISLOCATIONS IN LATTICE-MISMATCHED GaInAs/BUFFER LAYER/GaAs FOR III-V PHOTOVOLTAICS

    SciTech Connect

    Levander, A.; Geisz, J.

    2007-01-01

    Dislocations act as sites for nonradiative electron/hole pair recombination, which reduces the effi ciency of photovoltaics. Lattice-matched materials can be grown on top of one another without forming a high density of dislocations. However, when the growth of lattice-mismatched (LMM) materials is attempted, many dislocations result from the relaxation of strain in the crystal structure. In an attempt to reduce the number of dislocations that propagate into a solar device when using LMM materials, a compositionally step-graded buffer is placed between the two LMM materials. In order to confi ne the dislocations to the buffer layer and therefore increase material quality and device effi ciency, the growth temperature and thickness of the buffer layer were varied. A GaInP compositionally graded buffer and GaInAs p-n junction were grown on a GaAs substrate in a metal-organic chemical vapor deposition (MOCVD) system. A multibeam optical stress sensor (MOSS) and X-ray diffraction (XRD) were used to characterize the strain in the epilayers. Electrical and optoelectronic properties were measured using a probe station and multimeter setup, solar simulator, and a quantum effi ciency instrument. It was determined that device functionality was highly dependent on the growth temperature of the graded buffer. As growth temperature increased, so did the dislocation density in the device despite an increase in the dislocation velocity, which should have increased the dislocation annihilation rate and the diffusion of dislocations to the edge of the crystal. The thickness of the graded buffer also affected device effi ciency with thinner samples performing poorly. The thinner graded buffer layers had high internal resistances from reduced carrier concentrations. In terms of effi ciency, the empirically derived recipe developed by the scientists at the National Renewable Energy Laboratory (NREL) produced the highest quality cells.

  20. High Cubic-Phase Purity InN on MgO (001) Using Cubic-Phase GaN as a Buffer Layer

    SciTech Connect

    Sanorpim, S.; Kuntharin, S.; Parinyataramas, J.; Yaguchi, H.; Iwahashi, Y.; Orihara, M.; Hijikata, Y.; Yoshida, S.

    2011-12-23

    High cubic-phase purity InN films were grown on MgO (001) substrates by molecular beam epitaxy with a cubic-phase GaN buffer layer. The cubic phase purity of the InN grown layers has been analyzed by high resolution X-ray diffraction, {mu}-Raman scattering and transmission electron microscopy. It is evidenced that the hexagonal-phase content in the InN overlayer much depends on hexagonal-phase content in the cubic-phase GaN buffer layer and increases with increasing the hexagonal-phase GaN content. From Raman scattering measurements, in addition, the InN layer with lowest hexagonal component (6%), only Raman characteristics of cubic TO{sub InN} and LO{sub InN} modes were observed, indicating a formation of a small amount of stacking faults, which does not affect on vibrational property.

  1. Mechanism insight into the effect of I/P buffer layer on the performance of NIP-type hydrogenated microcrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bai, Lisha; Liu, Bofei; Zhao, Jing; Suo, Song; Hou, Guofu; Zhang, Dekun; Sun, Jian; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2015-05-01

    A simulation and experimental study on the effect of the buffer layer at the I/P interface on the performance of NIP-type hydrogenated microcrystalline silicon (μc-Si:H) single-junction solar cells is presented. Device-quality hydrogenated amorphous silicon (a-Si:H) material as a buffer layer at the I/P interface obviously improves the performance of NIP-type μc-Si:H single-junction solar cells. In addition to the well-known mechanism that an a-Si:H I/P buffer layer can reduce the recombination current density at I/P interfaces, the optically and electrically calibrated simulations and supporting experimental results in this study illustrate that the performance improvement also originates from the mitigation of the electric screening effect due to the reduced defect density at the I/P interfaces, which reinforces the bulk electric field. Integrating an optimized hydrogen profiling strategy and adding a-Si:H I/P buffer layer yielded an initial efficiency of 9.20% for μc-Si:H single-junction solar cells with an active area of 0.27 cm2. This study may provide new ideas of further improving the performance of NIP-type μc-Si:H single-junction solar cells by mitigating the electric screening effect.

  2. Influence of high-temperature processing on the surface properties of bulk AlN substrates

    NASA Astrophysics Data System (ADS)

    Tojo, Shunsuke; Yamamoto, Reo; Tanaka, Ryohei; Thieu, Quang Tu; Togashi, Rie; Nagashima, Toru; Kinoshita, Toru; Dalmau, Rafael; Schlesser, Raoul; Murakami, Hisashi; Collazo, Ramón; Koukitu, Akinori; Monemar, Bo; Sitar, Zlatko; Kumagai, Yoshinao

    2016-07-01

    Deep-level luminescence at 3.3 eV related to the presence of Al vacancies (VAl) was observed in room temperature photoluminescence (RT-PL) spectra of homoepitaxial AlN layers grown at 1450 °C by hydride vapor-phase epitaxy (HVPE) and cooled to RT in a mixture of H2 and N2 with added NH3. However, this luminescence disappeared after removing the near surface layer of AlN by polishing. In addition, the deep-level luminescence was not observed when the post-growth cooling of AlN was conducted without NH3. Secondary ion mass spectrometry (SIMS) studies revealed that although the point defect density of the interior of the AlN layers remained low, the near surface layer cooled in the presence of NH3 was contaminated by Si impurities due to both suppression of the surface decomposition by the added NH3 and volatilization of Si by decomposition of the quartz reactor walls at high temperatures. The deep-level luminescence reappeared after the polished AlN wafers were heated in presence of NH3 at temperatures above 1400 °C. The surface contamination by Si is thought to generate VAl near the surface by lowering their formation energy due to the Fermi level effect, resulting in deep-level luminescence at 3.3 eV caused by the shallow donor (Si) to VAl transition.

  3. Improvement of photovoltaic efficiency of dye-sensitized solar cell by introducing highly transparent nanoporous TiO2 buffer layer.

    PubMed

    Kim, Yong Joo; Kim, Hark Jin; Lee, Mi Hyeon; Lim, Goo Il; Song, Hye Young; Choi, Young Sik; Park, Nam-Gyu; Lee, Chongmu; Lee, Wan In

    2010-01-01

    13 nm-sized highly-dispersible TiO2 nanoparticle was synthesized by solvothermal reaction of titanium isopropoxide in a basic condition with tetrabutylammonium hydroxide (TBAH). The prepared TiO2 nanoparticle was applied to fabrication of the transparent nanoporous TiO2 layer with 1.2 microm-thickness. By introducing this buffer layer between FTO and main TiO2 layer in the dye-sensitized solar cell (DSSC), the photovoltaic conversion efficiency was improved from 5.92% to 7.13%. Due to the excellent antireflective role of nanoporous TiO2 buffer layer, the transmittance of FTO glass was increased by 9.2%, and this seemed to be one of the major factors in enhancing photovoltaic conversion efficiency. Moreover, the presence of nanoporous TiO2 buffer layer induces excellent adhesion between FTO and main TiO2 layer, as well as it suppresses the back reaction by blocking direct contact between I3- and FTO electrode.

  4. Hydrothermal Growth and Application of ZnO Nanowire Films with ZnO and TiO2 Buffer Layers in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Weiguang; Wan, Farong; Chen, Siwei; Jiang, Chunhua

    2009-12-01

    This paper reports the effects of the seed layers prepared by spin-coating and dip-coating methods on the morphology and density of ZnO nanowire arrays, thus on the performance of ZnO nanowire-based dye-sensitized solar cells (DSSCs). The nanowire films with the thick ZnO buffer layer (~0.8-1 μm thick) can improve the open circuit voltage of the DSSCs through suppressing carrier recombination, however, and cause the decrease of dye loading absorbed on ZnO nanowires. In order to further investigate the effect of TiO2 buffer layer on the performance of ZnO nanowire-based DSSCs, compared with the ZnO nanowire-based DSSCs without a compact TiO2 buffer layer, the photovoltaic conversion efficiency and open circuit voltage of the ZnO DSSCs with the compact TiO2 layer (~50 nm thick) were improved by 3.9-12.5 and 2.4-41.7%, respectively. This can be attributed to the introduction of the compact TiO2 layer prepared by sputtering method, which effectively suppressed carrier recombination occurring across both the film-electrolyte interface and the substrate-electrolyte interface.

  5. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer.

    PubMed

    Jia, Xiaorui; Zhang, Lianping; Luo, Qun; Lu, Hui; Li, Xueyuan; Xie, Zhongzhi; Yang, Yongzhen; Li, Yan-Qing; Liu, Xuguang; Ma, Chang-Qi

    2016-07-20

    We have demonstrated in this article that both power conversion efficiency (PCE) and performance stability of inverted planar heterojunction perovskite solar cells can be improved by using a ZnO:PFN nanocomposite (PFN: poly[(9,9-bis(3'-(N,N-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene]) as the cathode buffer layer (CBL). This nanocomposite could form a compact and defect-less CBL film on the perovskite/PC61BM surface (PC61BM: phenyl-C61-butyric acid methyl ester). In addition, the high conductivity of the nanocomposite layer makes it works well at a layer thickness of 150 nm. Both advantages of the composite layer are helpful in reducing interface charge recombination and improving device performance. The power conversion efficiency (PCE) of the best ZnO:PFN CBL based device was measured to be 12.76%, which is higher than that of device without CBL (9.00%), or device with ZnO (7.93%) or PFN (11.30%) as the cathode buffer layer. In addition, the long-term stability is improved by using ZnO:PFN composite cathode buffer layer when compare to that of the reference cells. Almost no degradation of open circuit voltage (VOC) and fill factor (FF) was found for the device having ZnO:PFN, suggesting that ZnO:PFN is able to stabilize the interface property and consequently improve the solar cell performance stability.

  6. Application of biuret, dicyandiamide, or urea as a cathode buffer layer toward the efficiency enhancement of polymer solar cells.

    PubMed

    Zhao, Xuemei; Xu, Chenhui; Wang, Haitao; Chen, Fei; Zhang, Wenfeng; Zhao, Zhiqiang; Chen, Liwei; Yang, Shangfeng

    2014-03-26

    Three amino-containing small-molecule organic materials-biuret, dicyandiamide (DCDA), and urea-were successfully applied as novel cathode buffer layers (CBLs) in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs) for the first time, resulting in obvious efficiency enhancement. Under the optimized condition, the power conversion efficiencies (PCEs) of the CBL-incorporated BHJ-PSC devices are 3.84%, 4.25%, and 4.39% for biuret, DCDA, and urea, which are enhanced by ∼15%, ∼27%, and ∼31%, respectively, compared to the reference poly(3-hexylthiophene-2,5-diyl) : [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) BHJ-PSC device without any CBL. The efficiency enhancement is primarily attributed to the increases of both short-circuit current density (Jsc) and fill factor (FF), for which the enhancement ratio is found to be sensitively dependent on the molecular structure of small-molecule organic materials. The surface morphologies and surface potential changes of the CBL-incorporated P3HT:PCBM photoactive layers were studied by atomic force microscopy and scanning Kelvin probe microscopy, respectively, suggesting the formation of an interfacial dipole layer between the photoactive layer and Al cathode, which may decrease the energy level offset between the work function of Al and the lowest unoccipoed molecular orbital level (LUMO) of the PCBM acceptor and consequently facilitate electron extraction by the Al cathode. The difference in the enhancement effect of biuret, DCDA, and urea is due to their difference on the work function matching with P3HT:PCBM. Besides, the coordination interaction between the lone-pair electrons on the N atoms of the amino (-NH2) group and the Al atoms may prohibit interaction between Al and the thiophene rings of P3HT, contributing to the efficiency enhancement of the CBL-incorporated devices as well. In this sense, the different CBL performance of biuret, DCDA, and urea is also proposed to partially originate from the

  7. Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions.

    PubMed

    Wang, Zhihua; Liu, Fang; Lu, Chao

    2012-01-01

    In this work, serving as supports in immobilizing luminol reagent, catalysts of luminol chemiluminescence (CL), and buffer solutions for the CL reaction, Mg-Al-CO(3) layered double hydroxides (LDHs) were found to trigger luminol CL in weak acid solutions (pH 5.8). The silica sol-gel with glucose oxidase and horseradish peroxidase was immobilized in the first half of the inside surface of a clear quartz tube, and luminol-hybrid Mg-Al-CO(3) LDHs were packed in the second half. Therefore, a novel CL flow-through biosensor for glucose was constructed in weak acid solutions. The CL intensity was linear with glucose concentration in the range of 0.005-1.0mM, and the detection limit for glucose (S/N=3) was 0.1 μM. The proposed biosensor exhibited excellent stability, high reproducibility and high selectivity for the determination of glucose and has been successfully applied to determine glucose in human plasma samples with satisfactory results. The success of this work has broken the bottleneck of the pH incompatibility between luminol CL and enzyme activity.

  8. Characterization of Zn(O,S) Buffer Layers for Cu(In,Ga)Se2 Solar Cells.

    PubMed

    Choi, Ji Hyun; Jung, Sung Hee; Chung, Chee Won

    2016-05-01

    Zn(O,S) thin films were deposited using a ZnS target under Ar/O2 gases by radio-frequency magnetron sputtering. As the O2 concentration increased, the deposition rates of the Zn(O,S) films decreased due to increase of O-. The crystalline structure of Zn(O,S) was maintained at up to 0.6% O2, while the films became unstable at the condition exceeding 0.8% O2. This was attributed to incomplete nucleation and film growth on the substrate at the room temperature. Additionally, optical emission spectroscopy analysis indicated that an increased O- intensity at high O2 concentration was responsible for the slow deposition rate and increased oxygen concentration of the films. X-ray diffraction and scanning electron microscopy revealed the formation of a Zn(O,S) crystal structure with partial substitution of O for S and uniform and dense grains of the films. X-ray photoelectron spectroscopy showed that the Zn(O,S) films have a uniform composition of each element and consisted of a mixed crystal structure of Zn(O,S) with Zn-O bonding. Overall, the results of this study confirmed that Zn(O,S) films deposited by radio-frequency sputtering using Ar/O2 gas at room temperature can be applied to Cu(In,Ga)Se2 solar cells as a buffer layer.

  9. Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors

    NASA Astrophysics Data System (ADS)

    Molina, Leopoldo; Tan, Haiyan; Biermans, Ellen; Batenburg, Kees J.; Verbeeck, Jo; Bals, Sara; Van Tendeloo, Gustaaf

    2011-06-01

    Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films are investigated by a combination of scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni-5 at.%W substrates with a {100}lang001rang biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer-sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly faceted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS, yielding a 1.8 ± 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7 - δ coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.

  10. Heteroepitaxy mechanisms of AlN on nitridated c- and a-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Funato, Mitsuru; Shibaoka, Mami; Kawakami, Yoichi

    2017-02-01

    We investigate the metalorganic vapor phase epitaxy of c-oriented AlN on c- and a-plane sapphire substrates, focusing on the effect of sapphire nitridation on the AlN structure. Prior to AlN growth, the sapphire surface is subjected to nitridation via an in-situ NH3 treatment. We demonstrate that nitridation without H2 thermal etching treatment realizes high quality AlN on both c- and a-plane sapphires, indicating that a reaction between NH3 and oxygen on the sapphire surface is a critical factor in the material growth. It is proposed that nitridation initially creates nanometer-scale inversion domains in the AlN epilayer, but as growth proceeds, the N-polar domains are annihilated, leaving voids. Such growth behaviors can be regarded as spontaneous selective area growth with strain-adsorbing void formation, and lead to crack-free, ˜5 μm thick AlN layers, which produce x-ray line widths as narrow as 180 and 483 arc sec for the (0002) and ( 10 1 ¯ 2 ) reflections, respectively, on c-plane sapphire, and 237 and 433 arc sec for these reflections on a-plane sapphire.

  11. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  12. Capacitance-voltage and retention characteristics of Pt/SrBi2Ta2O9/HfO2/Si structures with various buffer layer thickness

    NASA Astrophysics Data System (ADS)

    Tang, M. H.; Sun, Z. H.; Zhou, Y. C.; Sugiyama, Y.; Ishiwara, H.

    2009-05-01

    The metal-ferroelectric-insulator-semiconductor (MFIS) structure diodes with SrBi2Ta2O9 (SBT) as ferroelectric thin film and HfO2 as insulating buffer layer were fabricated. The electrical properties of MFIS structure were investigated for different HfO2 buffer layer thickness. The experimental results show that the memory window extended significantly as the HfO2 layer thickness increased from 6 to 10 nm. It is also observed that the leakage current was reduced to about 10-10 A at applied voltage of 4 V, and the high and low capacitances remained distinguishable for over 8 h even if we extrapolate the measured data to 10 years.

  13. Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode.

    PubMed

    Bush, Kevin A; Bailie, Colin D; Chen, Ye; Bowring, Andrea R; Wang, Wei; Ma, Wen; Leijtens, Tomas; Moghadam, Farhad; McGehee, Michael D

    2016-05-01

    A sputtered oxide layer enabled by a solution-processed oxide nanoparticle buffer layer to protect underlying layers is used to make semi-transparent perovskite solar cells. Single-junction semi-transparent cells are 12.3% efficient, and mechanically stacked tandems on silicon solar cells are 18.0% efficient. The semi-transparent perovskite solar cell has a T 80 lifetime of 124 h when operated at the maximum power point at 100 °C without additional sealing in ambient atmosphere under visible illumination.

  14. High efficiency thin-film CuIn1-xGaxSe2 photovoltaic cells using a Cd1-xZnxS buffer layer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R. N.; Contreras, M. A.; Egaas, B.; Noufi, R. N.; Kanevce, A.; Sites, J. R.

    2006-12-01

    The authors have fabricated 19.52% thin-film CuIn1-xGaxSe2 (CIGS)-based photovoltaic devices using single layer chemical bath deposited Cd1-xZnxS (CdZnS) buffer layer. The efficiency equals the world record for any thin-film solar cell and is achieved with reduced optical absorption in the window layer. Using current-voltage, quantum efficiency, and capacitance-voltage measurements, the CIGS/CdZnS device parameters are directly compared with those of CIGS/CdS devices fabricated with equivalent absorbers.

  15. Structure and dielectric tunability of (Pb 0.5Ba 0.5)ZrO 3 thin films derived on (Sr 0.95La 0.05)TiO 3 buffer-layered substrates

    NASA Astrophysics Data System (ADS)

    Hao, Xihong; Zhai, Jiwei; Zhou, Jing; Yang, Jichun; Song, Xiwen; An, Shengli

    2010-02-01

    In present work, (Pb 0.5Ba 0.5)ZrO 3 (PBZ) thin films with a thickness of 840 nm were successfully fabricated on (Sr 0.95La 0.05)TiO 3 (SLT) buffer-layered Pt(1 1 1)/TiO 2/SiO 2/Si(1 0 0) substrates via the sol-gel technique. The effects of SLT buffer layer on the microstructure and electrical properties of PBZ thin films were investigated systemically. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that PBZ thin films on SLT buffer-layered substrates showed a more uniform structure with a random orientation. Dielectric measurements illustrated that PBZ films with SLT buffer layer displayed larger dielectric constant, improved tunability and enhanced figure of merit (FOM). Moreover, leakage current of PBZ films was also reduced by SLT buffer layer.

  16. Reduced Dislocation Density in GaxIn1-xP Compositionally Graded Buffer Layers through Engineered Glide Plane Switch

    SciTech Connect

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; Norman, Andrew G.; Guthrey, Harvey L.; Geisz, John F.

    2016-11-17

    In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.

  17. Reduced dislocation density in GaxIn1-xP compositionally graded buffer layers through engineered glide plane switch

    NASA Astrophysics Data System (ADS)

    Schulte, K. L.; France, R. M.; McMahon, W. E.; Norman, A. G.; Guthrey, H. L.; Geisz, J. F.

    2017-04-01

    In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter η decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.

  18. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs

    PubMed Central

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-01-01

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This “compliant” buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 105 cm−2. In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6” wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors. PMID:26329829

  19. Effect of Dual Cathode Buffer Layer on the Charge Carrier Dynamics of rrP3HT:PCBM Based Bulk Heterojunction Solar Cell.

    PubMed

    Singh, Ashish; Dey, Anamika; Das, Dipjyoti; Iyer, Parameswar Krishnan

    2016-05-04

    In bulk heterojunction (BHJ) solar cells, the buffer layer plays a vital role in enhancing the power conversion efficiency (PCE) by improving the charge carrier dynamics. A comprehensive understanding of the contacts is especially essential in order to optimize the performance of organic solar cells (OSCs). Although there are several fundamental reports on this subject, a proper correlation of the physical processes with experimental evidence at the photoactive layer and contact materials is essential. In this work, we incorporated three different additional buffer layers, namely, tris(8-hydroxyquinolinato) aluminum (Alq3), bathophenanthroline (BPhen) or bathocuproine (BCP) with LiF/Al as conventional cathode contact in both rrP3HT:PC61BM and rrP3HT:PC71BM blend BHJ solar cells and their corresponding photovoltaic performances were systematically correlated with their energy level diagram. The device with dual cathode buffer layer having ITO/PEDOT:PSS/blend polymer/BCP/LiF/Al configuration showed the best device performance with PCE, η = 4.96%, Jsc = 13.53 mA/cm(2), Voc = 0.60 V and FF= 61% for rrP3HT:PC71BM and PCE, η = 4.5% with Jsc = 13.3 mA/cm(2), Voc = 0.59 V and FF = 59% for rrP3HT:PC61BM. This drastic improvement in PCE in both the device configurations are due to the combined effects of better hole-blocking capacity of BCP and low work function provided by LiF/Al with the blend polymer. These results successfully explain the role of dual cathode buffer layers and their contribution to the PCE improvement and overall device performance with rrP3HT:PCBM based BHJ solar cell.

  20. Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer.

    PubMed

    Cemin, F; Bim, L T; Leidens, L M; Morales, M; Baumvol, I J R; Alvarez, F; Figueroa, C A

    2015-07-29

    Amorphous carbon (a-C) and several related materials (DLCs) may have ultralow friction coefficients that can be used for saving-energy applications. However, poor chemical bonding of a-C/DLC films on metallic alloys is expected, due to the stability of carbon-carbon bonds. Silicon-based intermediate layers are employed to enhance the adherence of a-C:H films on ferrous alloys, although the role of such buffer layers is not yet fully understood in chemical terms. The chemical bonding of a-C:H thin films on ferrous alloy intermediated by a nanometric SiCx:H buffer layer was analyzed by X-ray photoelectron spectroscopy (XPS). The chemical profile was inspected by glow discharge optical emission spectroscopy (GDOES), and the chemical structure was evaluated by Raman and Fourier transform infrared spectroscopy techniques. The nature of adhesion is discussed by analyzing the chemical bonding at the interfaces of the a-C:H/SiCx:H/ferrous alloy sandwich structure. The adhesion phenomenon is ascribed to specifically chemical bonding character at the buffer layer. Whereas carbon-carbon (C-C) and carbon-silicon (C-Si) bonds are formed at the outermost interface, the innermost interface is constituted mainly by silicon-iron (Si-Fe) bonds. The oxygen presence degrades the adhesion up to totally delaminate the a-C:H thin films. The SiCx:H deposition temperature determines the type of chemical bonding and the amount of oxygen contained in the buffer layer.

  1. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations

    NASA Astrophysics Data System (ADS)

    Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.

    2016-11-01

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1‑xN}/AlN, (b) Thin-GaN/3 × {AlxGa1‑xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V•s) and 2DEG carrier concentration (>1.0 × 1013 cm‑2) on Si(111) substrates.

  2. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations

    PubMed Central

    Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.

    2016-01-01

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222

  3. Atomic scattering spectroscopy for determination of the polarity of semipolar AlN grown on ZnO

    SciTech Connect

    Kobayashi, Atsushi; Ohta, Jitsuo; Ueno, Kohei; Oshima, Masaharu; Fujioka, Hiroshi

    2013-11-04

    Determination of the polarity of insulating semipolar AlN layers was achieved via atomic scattering spectroscopy. The back scattering of neutralized He atoms on AlN surfaces revealed the atomic alignment of the topmost layers of semipolar AlN and the ZnO substrate. Pole figures of the scattering intensity were used to readily determine the polarity of these wurtzite-type semipolar materials. In addition, we found that +R-plane AlN epitaxially grows on −R-plane ZnO, indicating that the polarity flips at the semipolar AlN/ZnO interface. This polarity flipping is possibly explained by the appearance of −c and m-faces on the −R ZnO surfaces, which was also revealed by atomic scattering spectroscopy.

  4. AlN thin films grown on epitaxial 3C-SiC (100) for piezoelectric resonant devices

    SciTech Connect

    Lin, Chih-Ming; Senesky, Debbie G.; Pisano, Albert P.; Lien, Wei-Cheng; Felmetsger, Valery V.; Hopcroft, Matthew A.

    2010-10-04

    Highly c-axis oriented heteroepitaxial aluminum nitride (AlN) films were grown on epitaxial cubic silicon carbide (3C-SiC) layers on Si (100) substrates using alternating current reactive magnetron sputtering at temperatures between approximately 300-450 deg. C. The AlN films were characterized by x-ray diffraction, scanning electron microscope, and transmission electron microscopy. A two-port surface acoustic wave device was fabricated on the AlN/3C-SiC/Si composite structure, and an expected Rayleigh mode exhibited a high acoustic velocity of 5200 m/s. The results demonstrate the potential of utilizing AlN films on epitaxial 3C-SiC layers to create piezoelectric resonant devices.

  5. Solution-processed nanocomposites containing molybdenum oxide and gold nanoparticles as anode buffer layers in plasmonic-enhanced organic photovoltaic devices.

    PubMed

    Tan, Kim-Shih; Chuang, Ming-Kai; Chen, Fang-Chung; Hsu, Chain-Shu

    2013-12-11

    Solution-processed nanocomposites containing molybdenum oxide (MoO3) and gold nanoparticles (Au NPs) have been used as anode buffer layers in organic photovoltaic devices (OPVs). The resulting devices exhibit a remarkable enhancement in power conversion efficiency after Au NPs were incorporated into the device. Such enhancements can be attributed to the localized surface plasmon resonance induced by the metallic nanostructures. We have also found that the rate of exciton generation and the probability of exciton dissociation were increased. Furthermore, the devices made of the MoO3 buffer layer containing Au NPs exhibited superior stability. This work opens up the possibility of fabricating OPVs with both high efficiency and a prolonged lifetime.

  6. Thirty-Day-Long Data Retention in Ferroelectric-Gate Field-Effect Transistors with HfO2 Buffer Layers

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuhiro; Aizawa, Koji; Park, Byung-Eun; Ishiwara, Hiroshi

    2005-08-01

    Metal-ferroelectric-insulator-semiconductor (MFIS) diodes and p-channel MFIS field-effect transistors (FETs) were fabricated and their electrical properties were characterized. These MFIS structures were formed using HfO2 as an insulating buffer layer, and SrBi2Ta2O9 (SBT) and (Bi,La)4Ti3O12 (BLT) as ferroelectric films. HfO2 buffer layers of about 8 nm physical thickness were deposited by ultrahigh-vacuum (UHV) electron-beam evaporation, then ferroelectric films of about 400 nm thickness were deposited by sol-gel spin coating. The fabricated p-channel MFIS-FETs with the SBT/HfO2 gate structure exhibited a drain current on/off ratio larger than 103 even after 30 days had elapsed. It was also found that the degradation of ferroelectricity was not pronounced even after applying 2.2× 1011 bipolar pulses.

  7. Growth of YBa sub 2 Cu sub 3 O sub 7 minus x thin films on Si with a CoSi sub 2 buffer layer

    SciTech Connect

    Luo, L.; Muenchausen, R.E.; Maggiore, C.J. ); Jimenez, J.R.; Schowalter, L.J. )

    1991-01-28

    By using the pulsed laser deposition technique, high-temperature superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} (YBCO) films were grown on Si(001) with a 36 nm single-crystal {l angle}001{r angle} oriented CoSi{sub 2} buffer layer. The films, grown at a substrate temperature of {similar to}700 {degree}C, have a metallic resistive temperature dependence with zero resistance at 85 K. X-ray diffraction, scanning electron microscopy, and ion channeling studies show that the YBCO films are polycrystalline but are strongly {ital c}-axis oriented normal to the Si substrate. Diffusion at the interface between the YBCO film and silicide buffer layer was minimized. This is essential to the growth of high-temperature superconducting films on Si substrates.

  8. Optical, structural, and chemical properties of flash evaporated In{sub 2}S{sub 3} buffer layer for Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect

    Verma, Rajneesh; Chirila, Adrian; Guettler, Dominik; Perrenoud, Julian; Pianezzi, Fabian; Tiwari, Ayodhya N.; Datta, Debjit; Kumar, Satyendra; Mueller, Ulrich

    2010-10-15

    In{sub 2}S{sub 3} layers were deposited by flash evaporation technique with varying flash rates. The optical constants of layers based on Tauc-Lorentz model dielectric function were extracted from spectroscopic ellipsometry measurements. X-ray photoelectron spectroscopic investigation revealed the presence of oxygen impurity in as-deposited and air-annealed layers with traces of Na inclusion in the layer grown at high flash rate. The enhancement in crystalline arrangement of as-deposited layer after air annealing was confirmed by Raman spectroscopy. Rutherford backscattering measurements revealed the growth of off-stoichiometric layers at all flash rates. An analytical layer growth model has been proposed supporting the results obtained by various layer characterization techniques. The solar cells were prepared with flash evaporated In{sub 2}S{sub 3} buffer layers and their performances were compared with CdS reference solar cell. A significant gain in short-circuit current was obtained after air annealing of the complete device at 200 deg. C for 20 min. A maximum conversion efficiency of 12.6% was delivered by a high flash rate In{sub 2}S{sub 3} buffered cell with open-circuit voltage close to that of CdS reference cell. The improvement in device performance after air annealing treatment is explained by thermally enhanced Cu and oxygen diffusion from Cu(In,Ga)Se{sub 2} and i-ZnO to In{sub 2}S{sub 3} layer, respectively.

  9. A sputtered CdS buffer layer for co-electrodeposited Cu2ZnSnS4 solar cells with 6.6% efficiency.

    PubMed

    Tao, Jiahua; Zhang, Kezhi; Zhang, Chuanjun; Chen, Leilei; Cao, Huiyi; Liu, Junfeng; Jiang, Jinchun; Sun, Lin; Yang, Pingxiong; Chu, Junhao

    2015-06-28

    Cu2ZnSnS4 thin films with thicknesses ranging from 0.35 to 1.85 μm and micron-sized grains (0.5-1.5 μm) were synthesized using co-electrodeposited Cu-Zn-Sn-S precursors with different deposition times. Here we have introduced a sputtered CdS buffer layer for the development of CZTS solar cells for the first time, which enables breakthrough efficiencies up to 6.6%.

  10. Non-Stoichiometric Amorphous Indium Selenide Thin Films as a Buffer Layer for CIGS Solar Cells with Various Temperatures in Rapid Thermal Annealing.

    PubMed

    Yoo, Myoung Han; Kim, Nam-Hoon

    2016-05-01

    The conventional structure of most of copper indium gallium diselenide (Culn(1-x)Ga(x)Se2, CIGS) solar cells includes a CdS thin film as a buffer layer. Cd-free buffer layers have attracted great interest for use in photovoltaic applications to avoid the use of hazardous and toxic materials. The RF magnetron sputtering method was used with an InSe2 compound target to prepare the indium selenide precursor. Rapid thermal annealing (RTA) was conducted in ambient N2 gas to control the concentration of volatile Se from the precursor with a change in temperature. The nature of the RTA-treated indium selenide thin films remained amorphous under annealing temperatures of ≤ 700 degrees C. The Se concentration of the RTA-treated specimens demonstrated an opposite trend to the annealing temperature. The optical transmittance and band gap energies were 75.33% and 2.451-3.085 eV, respectively, and thus were suitable for the buffer layer. As the annealing temperature increased, the resistivity decreased by an order-of-magnitude from 10(4) to 10(1) Ω-cm. At lower Se concentrations, the conductivity abruptly changed from p-type to n-type without crystallite formation in the amorphous phase, with the carrier concentration in the order of 10(17) cm(-3).

  11. Investigations on crack generation mechanism and crack reduction by buffer layer insertion in thermal-plasma-jet crystallization of amorphous silicon films on glass substrate

    NASA Astrophysics Data System (ADS)

    Tanaka, Keisuke; Hayashi, Shohei; Morisaki, Seiji; Higashi, Seiichiro

    2015-01-01

    The crack generation mechanism and the effect of crack reduction by buffer SiO2 layer insertion in thermal-plasma-jet (TPJ) crystallization of an amorphous silicon film on a glass substrate have been investigated. The crack generation was clearly observed 13.7 s after TPJ irradiation using a high-speed camera, which indicates that cracks are generated not during heating, but during cooling. From the measurement and simulation of substrate deformations, it was clarified that the substrate deformed convexly during heating and it consequently deformed concavely after cooling owing to the substrate surface densification. This result indicated that the tensile stress generated by the concave deformation is the origin of cracks. The deposition of the buffer SiO2 layer generated compressive stress, which minimizes accumulation of tensile stress after TPJ annealing. The number of cracks in unit length significantly decreased owing to the decrease in tensile stress with the increase in the thickness of the buffer SiO2 layer.

  12. Improvement in performance and reliability with CF4 plasma pretreatment on the buffer oxide layer for low-temperature polysilicon thin-film transistor

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yi-Yan; Yang, Chun-Chieh

    2012-03-01

    This study applies CF4 plasma pretreatment to a buffer oxide layer to improve the performance of low-temperature polysilicon thin-film transistors (LTPS TFTs). Results show that the fluorine atoms piled up at the interface between the bulk channel and buffer oxide layer and accumulated in the bulk channel. The reduction of the trap states density by fluorine passivation can improve the electrical characteristics of the LTPS TFTs. It is found that the threshold voltage reduced from 4.32 to 3.03 V and the field-effect mobility increased from 29.71 to 45.65 cm2 V-1 S-1. In addition, the on current degradation and threshold voltage shift after stressing were significantly improved about 31% and 70%, respectively. We believe that the proposed CF4 plasma pretreatment on the buffer oxide layer can passivate the trap states and avoid the plasma induced damage on the polysilicon channel surface, resulting in the improvement in performance and reliability for LTPS-TFT mass production application on AMOLED displays with critical reliability requirement.

  13. MOCVD of BN and GaN thin films on silicon: new attempt of GaN growth with BN buffer layer

    NASA Astrophysics Data System (ADS)

    Boo, Jin-Hyo; Rohr, Carsten; Ho, Wilson

    1998-06-01

    Highly oriented polycrystalline h-BN thin films were deposited on silicon substrates in the temperature range of 600-900°C from the single molecular precursor of borane-triethylamine complex, (C 2H 5) 3N : BH 3, by supersonic jet assisted chemical vapor deposition. Hydrogen was used as carrier gas, and additional nitrogen was supplied by either ammonia through a nozzle or nitrogen via a remote microwave plasma. Hexagonal GaN films were also grown on Si(1 0 0) with h-BN buffer layers at temperatures between 550 and 750°C with dual supersonic molecular beam sources. Triethylgallium, (C 2H 5) 3Ga, and ammonia, NH 3, were used as precursors. Hydrogen was used as seeding gas for the precursors, providing a wide range of possible kinetic energies for the supersonic beams. The h-BN buffer layers and the GaN films were characterized in situ by Auger electron spectroscopy (AES), and ex situ by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and optical transmission. This is the first report of growing the h-BN films on silicon substrates from the single source precursor of borane-triethylamine complex and new attempts of GaN film growth on silicon with BN buffer layer.

  14. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-01

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady

  15. Tunable work function of a WO{sub x} buffer layer for enhanced photocarrier collection of pin-type amorphous silicon solar cells

    SciTech Connect

    Fang Liang; Baik, Seung Jae; Kang, Sang Jung; Seo, Jung Won; Jeon, Jin-Wan; Lim, Koeng Su; Kim, Jeong Won; Kim, Yoon Hak

    2011-05-15

    An in situ postdeposition ultraviolet treatment was proposed to improve the electrical properties of a tungsten oxide (WO{sub x}) buffer layer of pin-type amorphous silicon-based solar cell. Based on the x-ray and ultraviolet photoelectron spectroscopy and the activation energy measurements, it was found that the work function of WO{sub x} is tunable by ultraviolet light treatment, and the collection performance of solar cells incorporating WO{sub x} with the lower work function is further improved. Moreover, the optimal band alignment scheme for a window layer is discussed in terms of obtaining enhanced carrier collection without open circuit voltage degradation.

  16. Growth and characterization of GaN thin films on Si(111) substrates using SiC intermediate layer

    SciTech Connect

    Lim, K.Y.; Lee, K.J.; Park, C.I.; Kim, K.C.; Choi, S.C.; Lee, W.H.; Suh, E.K.; Yang, G.M.; Nahm, K.S.

    2000-07-01

    GaN films have been grown atop Si-terminated 3C-SiC intermediate layer on Si(111) substrates using low pressure metalorganic chemical vapor deposition (LP-MOCVD). The SiC intermediate layer was grown by chemical vapor deposition (CVD) using tetramethylsilane (TMS) as the single source precursor. The Si terminated SiC surface was obtained by immediately flow of SiH{sub 4} gas after growth of SiC film. LP-MOCVD growth of GaN on 3C-SiC/Si(111) was carried out with trimethylgallium (TMG) and NH{sub 3}. Single crystalline hexagonal GaN layers can be grown on Si terminated SiC intermediate layer using an AlN or GaN buffer layer. Compared with GaN layers grown using a GaN buffer layer, the crystal qualities of GaN films with AlN buffer layers are extremely improved. The GaN films were characterized by x-ray diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). Full width at half maximum (FWHM) of double crystal x-ray diffraction (DCXD) rocking curve for GaN (0002) on 3C-SiC/Si(111) was 890 arcsec. PL near band edge emission peak position and FWHM at room temperature are 3.38 eV and 79.35 meV, respectively.

  17. Epitaxial growth of homogeneous single-crystalline AlN films on single-crystalline Cu (1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Yang, Weijia; Liu, Zuolian; Lin, Yunhao; Zhou, Shizhong; Qian, Huirong; Gao, Fangliang; Yang, Hui; Li, Guoqiang

    2014-03-01

    The homogeneous and crack free single-crystalline AlN thin films have been epitaxially grown on single-crystalline Cu (1 1 1) substrates with an in-plane alignment of AlN [11-20]//Cu [1-10] by pulsed laser deposition (PLD) technology with an integrated laser rastering program. The as-grown AlN films are studied by spectroscopic ellipsometry, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), polarized light microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy (HRTEM). The spectroscopic ellipsometry reveals the excellent thickness uniformity of as-grown AlN films on the Cu (1 1 1) substrates with a root-mean-square (RMS) thickness inhomogeneity less than 2.6%. AFM and FESEM measurements indicate that very smooth and flat surface AlN films are obtained with a surface RMS roughness of 2.3 nm. The X-ray reflectivity image illustrates that there is a maximum of 1.2 nm thick interfacial layer existing between the as-grown AlN and Cu (1 1 1) substrates and is confirmed by HRTEM measurement, and reciprocal space mapping shows that almost fully relaxed AlN films are achieved only with a compressive strain of 0.48% within ∼321 nm thick films. This work demonstrates a possibility to obtain homogeneous and crack free single-crystalline AlN films on metallic substrates by PLD with optimized laser rastering program, and brings up a broad prospect for the application of acoustic filters that require abrupt hetero-interfaces between the AlN films and the metallic electrodes.

  18. Control of metamorphic buffer structure and device performance of In(x)Ga(1-x)As epitaxial layers fabricated by metal organic chemical vapor deposition.

    PubMed

    Nguyen, H Q; Yu, H W; Luc, Q H; Tang, Y Z; Phan, V T H; Hsu, C H; Chang, E Y; Tseng, Y C

    2014-12-05

    Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique's precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (∼10(6) cm(-2)), while keeping each individual SG layer slightly exceeding the critical thickness (∼80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance-voltage responses with small frequency dispersion. A promising interface trap density of 3 × 10(12) eV(-1) cm(-2) in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.

  19. Control of metamorphic buffer structure and device performance of InxGa1-xAs epitaxial layers fabricated by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nguyen, H. Q.; Yu, H. W.; Luc, Q. H.; Tang, Y. Z.; Phan, V. T. H.; Hsu, C. H.; Chang, E. Y.; Tseng, Y. C.

    2014-12-01

    Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique’s precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (˜106 cm-2), while keeping each individual SG layer slightly exceeding the critical thickness (˜80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance-voltage responses with small frequency dispersion. A promising interface trap density of 3 × 1012 eV-1 cm-2 in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.

  20. Enhanced efficiency of inverted polymer solar cells by using solution-processed TiOx/CsOx cathode buffer layer.

    PubMed

    Zhou, Xiaodong; Fan, Xi; Sun, Xianke; Zhang, Yunli; Zhu, Ziqiang

    2015-01-01

    In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs). Compared with TiOx films and CsOx films, the TiOx/CsOx double-buffer film exhibited a favorable energy-level alignment among TiOx, CsOx, and the electron acceptor of PCBM or ICBA a better surface morphology; and an enhanced wetting and adhesion property with a contact angle of 21.0°, leading to a higher electron mobility of 5.52 × 10(-3) cm(2) V(-1)·s(-1). Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively. Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.

  1. Fabrication of CeO 2 buffer layer with high deposition rate on biaxially textured Ni-3%W substrate by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Lee, J. B.; Park, S. K.; Kim, B. J.; Lee, H. J.; Kim, S. S.; Moon, S. H.; Lee, H. G.; Hong, G. W.

    2011-11-01

    CeO2 has been used as a buffer layer of a coated conductor because of good chemical and structural compatibility with YBCO. But cracks were often observed at the surface for films thicker than 100 nm deposited at a high temperature because of a large difference in a thermal expansion coefficient between metal and CeO2. The deposition rate was limited to be slow for getting good epitaxy. In order to increase the film deposition rate, while maintaining the epitaxy till a final thickness, two-step deposition process was tested. The thin seed layer with a thickness less than 10 nm was deposited with a deposition rate of 3 Å/s, and the homo-epitaxial layer at a thickness more than 240 nm was deposited at a deposition rate of 30 Å/s. The resulting CeO2 films deposited at 600 °C showed a good texture with a Δφ of 5.3°, Δω of 4.2° and Ra of 2.2 nm. The two-step process may be option for a low cost buffer layer for Ni-3%W metal substrates for the coated conductor.

  2. Organic Solar Cells Based on WO2.72 Nanowire Anode Buffer Layer with Enhanced Power Conversion Efficiency and Ambient Stability.

    PubMed

    You, Longzhen; Liu, Bin; Liu, Tao; Fan, Bingbing; Cai, Yunhao; Guo, Lin; Sun, Yanming

    2017-04-12

    Tungsten oxide as an alternative to conventional acidic PEDOT:PSS has attracted much attention in organic solar cells (OSCs). However, the vacuum-processed WO3 layer and high-temperature sol-gel hydrolyzed WOX are incompatible with large-scale manufacturing of OSCs. Here, we report for the first time that a specific tungsten oxide WO2.72 (W18O49) nanowire can function well as the anode buffer layer. The nw-WO2.72 film exhibits a high optical transparency. The power conversion efficiency (PCE) of OSCs based on three typical polymer active layers PTB7:PC71BM, PTB7-Th:PC71BM, and PDBT-T1:PC71BM with nw-WO2.72 layer were improved significantly from 7.27 to 8.23%, from 8.44 to 9.30%, and from 8.45 to 9.09%, respectively compared to devices with PEDOT:PSS. Moreover, the photovoltaic performance of OSCs based on small molecule p-DTS(FBTTh2)2:PC71BM active layer was also enhanced with the incorporation of nw-WO2.72. The enhanced performance is mainly attributed to the improved short-circuit current density (Jsc), which benefits from the oxygen vacancies and the surface apophyses for better charge extraction. Furthermore, OSCs based on nw-WO2.72 show obviously improved ambient stability compared to devices with PEDOT:PSS layer. The results suggest that nw-WO2.72 is a promising candidate for the anode buffer layer materials in organic solar cells.

  3. Substrate Heating Effect on c-Axis Texture and Piezoelectric Properties of AlN Thin Films Deposited by Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood; Lin, Jianliang

    2016-06-01

    Aluminum nitride (AlN) thin films with highly preferred (002) orientations have been reactively deposited by a pulsed-closed field unbalanced magnetron sputtering system using TiN/Ti as the seed/adhesion layer with various substrate temperatures. The texture, orientation and piezoelectric properties of AlN films were characterized by means of x-ray diffraction, rocking curves and laser interferometry. A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. It was found that a slight substrate temperature increase would significantly affect the (002) orientation and the piezoelectric coefficient of AlN thin films compared to the coating obtained with no intentional substrate heating, while higher temperature applications on substrate deteriorated the c-axis texture of the coatings without significant improvement in the piezoelectric response of AlN films.

  4. Growth of Atomically Flat Ultra-Thin Ag Films on Si(111) by Introducing a √3 × √3-Ga Buffer Layer

    NASA Astrophysics Data System (ADS)

    He, Jie-Hui; Jiang, Li-Qun; Qiu, Jing-Lan; Chen, Lan; Wu, Ke-Hui

    2014-12-01

    It is known that, when Ag is deposited on Si(111)-7×7 substrates in a conventional growth procedure at room temperature, no atomically flat Ag film could be obtained. We use scanning tunneling microscopy and low-energy electron diffraction to investigate the growth of ultra-thin Ag films on the Si(111) substrates at room temperature. Our study reveals that, upon introducing a Si(111)-√3 × √3-Ga buffer layer, atomically flat Ag films can easily grow on Si(111) with a critical thickness of two monolayers. Moreover, Ag film growth follows a layer-by-layer mode with further deposition. This novel growth behavior of Ag can be explained in terms of a free electron model (i.e., particle in a box) and kinetic Monte Carlo simulations.

  5. Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer

    NASA Astrophysics Data System (ADS)

    Wei, Qiu-lin; Guo, Zuo-xing; Zhao, Lei; Zhao, Liang; Yuan, De-zeng; Miao, Guo-qing; Xia, Mao-sheng

    2016-11-01

    Microstructure and misfit dislocation behavior in In x Ga1- x As/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) were analyzed by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In0.82Ga0.18As/InP heterostructure, the In x Ga1- x As buffer layer was grown. The residual strain of the In0.82Ga0.18As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium (In) content In0.82Ga0.82As epitaxial layer has significant influence on the carrier concentration.

  6. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells

    PubMed Central

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beon; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains. PMID:28338088

  7. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beon; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-03-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains.

  8. Reduction of the dark current in a P3HT-based organic photodiode with a ytterbium-fluoride buffer layer for electron transport

    NASA Astrophysics Data System (ADS)

    Lim, Seong Bin; Ji, Chan Hyuk; Kim, Kee Tae; Oh, Se Young

    2016-08-01

    Photodiodes are widely used to convert light into electrical signals. The conventional silicon (Si) based photodiodes boast high photoelectric conversion efficiency and detectivity. However, in general, inorganic-based photodiodes have low sensitivity at visible wavelengths due to their absorption of infrared wavelengths. Recently, electrical conducting polymer-based photodiodes have received significant attention due to their flexibility, low cost of production and high sensitivity at visible wavelength ranges. In the present work, we fabricated an organic photodiode (OPD) with a consisting of ITO/ NiO x / P3HT:PC60BM/ YbF3/Al structure. In the OPD, a yitterbium fluoride (YbF3) buffer layer was used as the electron transport layer. The OPD was analyzed by using optical-electrical measurements to determine its J-V, detectivity, and dynamic characteristics. We investigated the physical effects of the YbF3 buffer layer on the performance of OPD such as its carrier extraction, leakage current and ohmic characteristics.

  9. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells.

    PubMed

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beon; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-03-24

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains.

  10. Mass sensing AlN sensors for waste water monitoring

    NASA Astrophysics Data System (ADS)

    Porrazzo, R.; Potter, G.; Lydecker, L.; Foraida, Z.; Gattu, S.; Tokranova, N.; Castracane, J.

    2014-08-01

    Monitoring the presence of nanomaterials in waste water from semiconductor facilities is a critical task for public health organizations. Advanced semiconductor technology allows the fabrication of sensitive piezoelectric-based mass sensors with a detection limit of less than 1.35 ng/cm2 of nanomaterials such as nanoparticles of alumina, amorphous silica, ceria, etc. The interactions between acoustic waves generated by the piezoelectric sensor and nanomaterial mass attached to its surface define the sensing response as a shift in the resonant frequency. In this article the development and characterization of a prototype AlN film bulk acoustic resonator (FBAR) are presented. DC reactive magnetron sputtering was used to create tilted c-axis oriented AlN films to generate shear waves which don't propagate in liquids thus minimizing the acoustic losses. The high acoustic velocity of AlN over quartz allows an increase in resonance frequency in comparison with a quartz crystal microbalance (QCM) and results in a higher frequency shift per mass change, and thus greater sensitivity. The membrane and electrodes were fabricated using state of the art semiconductor technology. The device surface functionalization was performed to demonstrate selectivity towards a specific nanomaterial. As a result, the devices were covered with a "docking" layer that allows the nanomaterials to be selectively attached to the surface. This was achieved using covalent modification of the surface, specifically targeting ZnO nanoparticles. Our functionalization approach was tested using two different types of nanoparticles, and binding specificity was confirmed with various analytical techniques.

  11. Characterization of Sulfur Bonding in CdS:O Buffer Layers for CdTe-based Thin-Film Solar Cells.

    PubMed

    Duncan, Douglas A; Kephart, Jason M; Horsley, Kimberly; Blum, Monika; Mezher, Michelle; Weinhardt, Lothar; Häming, Marc; Wilks, Regan G; Hofmann, Timo; Yang, Wanli; Bär, Marcus; Sampath, Walajabad S; Heske, Clemens

    2015-08-05

    On the basis of a combination of X-ray photoelectron spectroscopy and synchrotron-based X-ray emission spectroscopy, we present a detailed characterization of the chemical structure of CdS:O thin films that can be employed as a substitute for CdS layers in thin-film solar cells. It is possible to analyze the local chemical environment of the probed elements, in particular sulfur, hence allowing insights into the species-specific composition of the films and their surfaces. A detailed quantification of the observed sulfur environments (i.e., sulfide, sulfate, and an intermediate oxide) as a function of oxygen content is presented, allowing a deliberate optimization of CdS:O thin films for their use as alternative buffer layers in thin-film photovoltaic devices.

  12. Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer

    PubMed Central

    2013-01-01

    To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model. PMID:24330524

  13. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    SciTech Connect

    Lupina, L.; Zoellner, M. H.; Dietrich, B.; Capellini, G.; Niermann, T.; Lehmann, M.; Thapa, S. B.; Haeberlen, M.; Storck, P.; Schroeder, T.

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  14. Impact of thermal stability of poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) used as buffer layer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Dang, Minh Trung; Cantú-Valle, Jesus; Hirsch, Lionel; Wantz, Guillaume

    2013-09-01

    We compared the performances of polymer-based photovoltaic devices prepared from different formulations of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS). The PEDOT:PSS buffer layer is incorporated between the indium tin oxide (ITO) electrode and the active layer, which is composed of a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). A highest efficiency of 3.86% (under AM1.5 solar illumination) was achieved for device prepared from a PEDOT:PSS trade-named high conductivity grade. However, annealing devices at a temperature over 120 °C results in decreased photovoltaic performance. This study shows that attention has to be paid to chemicals used to formulate high conductive PEDOT:PSS to become compatible with the production of solar cells involving thermal processing.

  15. High-efficiency cadmium-free Cu(In,Ga)Se{sub 2} thin-film solar cells with chemically deposited ZnS buffer layers

    SciTech Connect

    Nakada, Tokio; Furumi, Keisuke; Kunioka, Akio

    1999-10-01

    Cadmium-free Cu(In,Ga)Se{sub 2} (CIGS) thin-film solar cells with a MgF{sub 2}/ZnO:Al/CBD-ZnS/CIGS/Mo/SLG structure have been fabricated using chemical bath deposition (CBD)-ZnS buffer layers and high-quality CIGS absorber layers grown using molecular beam epitaxy (MBE) system. The use of CBD-ZnS, which is a wider band gap material than CBD-CdS, improved the quantum efficiency of fabricated cells at short wavelengths, leading to an increase in the short-circuit current. The best cell at present yielded an active area efficiency of 16.9% which is the highest value reported previously for Cd-free CIGS thin-film solar cells. The as-fabricated solar cells exhibited a reversible light-soaking effect under AM 1.5, 100 mW/cm{sup 2} illumination. This paper also presents a discussion of the issues relating to the use of the CBD-ZnS buffer material for improving device performance.

  16. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    SciTech Connect

    Fedorenko, Y. G. Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K.

    2015-10-28

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  17. Low-Temperature Solution-Processed SnO2 Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells.

    PubMed

    Tran, Van-Huong; Ambade, Rohan B; Ambade, Swapnil B; Lee, Soo-Hyoung; Lee, In-Hwan

    2017-01-18

    SnO2 recently has attracted particular attention as a powerful buffer layer for organic optoelectronic devices due to its outstanding properties such as high electron mobility, suitable band alignment, and high optical transparency. Here, we report on facile low-temperature solution-processed SnO2 nanoparticles (NPs) in applications for a cathode buffer layer (CBL) of inverted organic solar cells (iOSCs). The conduction band energy of SnO2 NPs estimated by ultraviolet photoelectron spectroscopy was 4.01 eV, a salient feature that is necessary for an appropriate CBL. Using SnO2 NPs as CBL derived from a 0.1 M precursor concentration, P3HT:PC60BM-based iOSCs showed the best power conversion efficiency (PCE) of 2.9%. The iOSC devices using SnO2 NPs as CBL revealed excellent long-term device stabilities, and the PCE was retained at ∼95% of its initial value after 10 weeks in ambient air. These solution-processed SnO2 NPs are considered to be suitable for the low-cost, high throughput roll-to-roll process on a flexible substrate for optoelectronic devices.

  18. Effect of process temperature on structure and magnetic properties of perpendicularly magnetized D022-Mn3Ge thin films on a Cr buffer layer

    NASA Astrophysics Data System (ADS)

    Sugihara, Atsushi; Suzuki, Kazuya; Miyazaki, Terunobu; Mizukami, Shigemi

    2015-08-01

    We investigated the effect of post-annealing on the perpendicular magnetic anisotropy constant (Ku) and surface roughness (Ra) of Mn3Ge thin films grown at comparatively low temperatures (room temperature, 150, 200, and 250 °C) on Cr buffer layers. The films grown at ≥200 °C exhibit a D022-ordered crystal structure in an as-deposited state. The post-annealing process demonstrates differences in trends between the 200-°C-grown film and the 250-°C-grown film. The 200-°C-grown film displays significant degradation of Ku and an increase in Ra upon annealing at >300 °C because of its poor thermal durability, while the 250-°C-grown film is still intact even at 500 °C. The 250-°C-grown film post-annealed at 300 °C displays relatively high Ku while Ra remains low. It may be possible to grow D022-Mn3Ge with higher Ku and low Ra using a buffer-layer material with a lattice-matched crystal structure with D022-Mn3Ge and higher thermal durability than Cr.

  19. An all chemical solution deposition approach for the growth of highly textured CeO2 cap layers on La2Zr2O7-buffered long lengths of biaxially textured Ni W substrates for YBCO-coated conductors

    NASA Astrophysics Data System (ADS)

    Engel, S.; Knoth, K.; Hühne, R.; Schultz, L.; Holzapfel, B.

    2005-10-01

    A reel-to-reel, dip coating process has been developed to continuously deposit epitaxial La2Zr2O7 (LZO) and CeO2 on 5 m long cube-textured {100} (001)Ni tapes. Recent results for La2Zr2O7 and CeO2 buffer layers deposited on long lengths of Ni substrate for the realization of YBa2Cu3O7-x (YBCO)-coated conductors are presented. The major achievement is the development of a new all chemical solution deposition (CSD) process leading to the formation of highly textured buffer layers at moderate annealing temperatures. Reproducible highly textured, dense and crack-free LZO buffer layers and CeO2 cap layers were obtained for annealing temperatures as low as 900 °C in a reducing atmosphere (Ar-5 at.%-H2). The thickness of the LZO buffer layers was determined to be (200 ± 10) nm per single coating; prepared cerium oxide layers showed a thickness of 60 nm ± 10 nm. Pulsed laser deposition (PLD) was used to grow YBCO films on these substrates. A Tc 0 of T = 90.5 K and ΔTc = 1.4 K was obtained on PLD-YBCO/CSD-CeO2 /CSD-LZO/Ni-5 at.% W, which shows the outstanding features of this new buffer layer architecture processed by CSD. The large layer thickness combined with low annealing temperatures is the main advantage of this new process for low-cost buffer layer deposition on Ni-RABiTS (rolling-assisted biaxially textured substrates).

  20. Incorporation of La in epitaxial SrTiO3 thin films grown by atomic layer deposition on SrTiO3-buffered Si (001) substrates

    NASA Astrophysics Data System (ADS)

    McDaniel, Martin D.; Posadas, Agham; Ngo, Thong Q.; Karako, Christine M.; Bruley, John; Frank, Martin M.; Narayanan, Vijay; Demkov, Alexander A.; Ekerdt, John G.

    2014-06-01

    Strontium titanate, SrTiO3 (STO), thin films incorporated with lanthanum are grown on Si (001) substrates at a thickness range of 5-25 nm. Atomic layer deposition (ALD) is used to grow the LaxSr1-xTiO3 (La:STO) films after buffering the Si (001) substrate with four-unit-cells of STO deposited by molecular beam epitaxy. The crystalline structure and orientation of the La:STO films are confirmed via reflection high-energy electron diffraction, X-ray diffraction, and cross-sectional transmission electron microscopy. The low temperature ALD growth (˜225 °C) and post-deposition annealing at 550 °C for 5 min maintains an abrupt interface between Si (001) and the crystalline oxide. Higher annealing temperatures (650 °C) show more complete La activation with film resistivities of ˜2.0 × 10-2 Ω cm for 20-nm-thick La:STO (x ˜ 0.15); however, the STO-Si interface is slightly degraded due to the increased annealing temperature. To demonstrate the selective incorporation of lanthanum by ALD, a layered heterostructure is grown with an undoped STO layer sandwiched between two conductive La:STO layers. Based on this work, an epitaxial oxide stack centered on La:STO and BaTiO3 integrated with Si is envisioned as a material candidate for a ferroelectric field-effect transistor.

  1. Inkjet printing of multiple Ce0.8Gd0.2O2 buffer layers on a Ni-5%W substrate

    NASA Astrophysics Data System (ADS)

    Mosiadz, M.; Tomov, R. I.; Hopkins, S. C.; Martin, G.; Holzapfel, B.; Glowacki, B. A.

    2010-06-01

    The successful inkjet printing of multiple cerium gadolinium oxide (Ce0.8Gd0.2O2) layers on highly textured Ni-5%W is reported using a stable ink, developing a solid-liquid interface comparable with that arising from dip coating. Two different approaches were used for the deposition of CGO layers using a 16-nozzle piezoelectric drop-on-demand print head. Two overlapping square arrays of droplets with constant volume and spacing were printed, with and without an intermediate CGO crystallization. The shortest possible heat treatment of the deposited layers was applied, potentially suitable for continuous large scale production. The results from X-ray diffraction show that the single phase Ce0.8Gd0.2O2 was obtained in all cases, but only the approach with intermediate CGO crystallization can produce a highly textured buffer layer. Optical micrographs and atomic force microscopy (AFM) also indicate the good quality of deposited films after heat treatment.

  2. Investigation of polycrystalline thin-film CuInSe{sub 2} solar cells based on ZnSe and ZnO buffer layers. Final report, February 16, 1992--November 15, 1995

    SciTech Connect

    Olsen, L C

    1996-06-01

    The major objective of this program was to determine the potential of ZnSe and ZnO buffer layers in solar cells based on CuInSe{sub 2} and related alloys. Experimental studies were carried out with CIS and CIGSS substrates. ZnSe films were deposited by a CVD process which involved the reaction of a zinc adduct and H{sub 2}Se. Al/ZnSe/CIS test cells were used for process development. Test cell performance aided in determining the optimum thickness for ZnSe buffer layers to be in the range of 150 {angstrom} to 200 {angstrom} for Siemens CIS material, and between 80 {angstrom} and 120 {angstrom} for the graded absorber material. If the buffer layers exceeded these values significantly, the short-circuit current would be reduced to zero. The best efficiency achieved for a ZnSe/CIS cell was an active area value of 9.2%. In general, deposition of a conductive ZnO film on top of a ZnSe/CIS structure resulted in either shunted or inflected I-V characteristics. Two approaches were investigated for depositing ZnO buffer layers, namely, chemical bath deposition and CVD. CVD ZnO buffer layers are grown by reacting a zinc adduct with tetrahydrofuran. Best results were obtained for ZnO buffer layers grown with a substrate temperature ca. 225--250 C. These studies concentrated on Siemens graded absorber material (CIGSS). ZnO/CIS solar cells have been fabricated by first depositing a ZnO buffer layer, followed by deposition of a low resistivity ZnO top contact layer and an Al/Ag collector grid. Several cells were fabricated with an area of 0.44 cm{sup 2} that have total area efficiencies greater than 11%. To date, the best performing ZnO/CIS cell had a total area efficiency of 11.3%. In general, the authors find that ZnO buffer layers should have a resistivity > 1,000 ohm-cm and have a thickness from 200 {angstrom} to 600 {angstrom}. CIS cells studies with ZnO buffer layers grown by CBD also show promise. Finally, simulation studies were carried out using the 1-D code, PC-1D.

  3. Tailoring Photoelectrochemical Performance and Stability of Cu(In,Ga)Se2 Photocathode via TiO2-Coupled Buffer Layers.

    PubMed

    Koo, Bonhyeong; Nam, Sung-Wook; Haight, Richard; Kim, Suncheul; Oh, Seungtaeg; Cho, Minhyung; Oh, Jihun; Lee, Jeong Yong; Ahn, Byung Tae; Shin, Byungha

    2017-02-15

    We report on the photoelectrochemical (PEC) performance and stability of Cu(In,Ga)Se2 (CIGS)-based photocathodes for photocatalytic hydrogen evolution from water. Various functional overlayers, such as CdS, TiO2, ZnxSnyOz, and a combination of the aforementioned, were applied on the CIGS to improve the performance and stability. We identified that the insertion of TiO2 overlayer on p-CIGS/n-buffer layers significantly improves the PEC performance. A multilayered photocathode consisting of CIGS/CdS/TiO2/Pt exhibited the best current-potential characteristics among the tested photocathodes, which demonstrates a power-saved efficiency of 2.63%. However, repeated linear sweep voltammetry resulted in degradation of performance. In this regard, we focused on the PEC durability issues through in-depth chemical characterization that revealed the degradation was attributed to atomic redistribution of elements constituting the photocathode, namely, in-diffusion of Pt catalysts, out-diffusion of elements from the CIGS, and removal of the metal-oxide layers; the best-performing CIGS/CdS/TiO2/Pt photocathode retained its initial performance until the TiO2 overlayer was removed. It was also found that the durability of CIGS photocathodes with a TiO2-coated metal-oxide buffer layer such as ZnxSnyOz was better than those with a TiO2-coated CdS, and the degradation mechanism was different, suggesting that the stability of a CIGS-based photocathode can be improved by careful design of the structure.

  4. Comparative Study of Zn(O,S) Buffer Layers and CIGS Solar Cells Fabricated by CBD, ALD, and Sputtering: Preprint

    SciTech Connect

    Ramanathan, K.; Mann, J.; Glynn, S.; Christensen, S.; Pankow, J.; Li, J.; Scharf, J.; Mansfield, L. M.; Contreras, M. A.; Noufi, R.

    2012-06-01

    Zn(O,S) thin films were deposited by chemical bath deposition (CBD), atomic layer deposition, and sputtering. Composition of the films and band gap were measured and found to follow the trends described in the literature. CBD Zn(O,S) parameters were optimized and resulted in an 18.5% efficiency cell that did not require post annealing, light soaking, or an undoped ZnO layer. Promising results were obtained with sputtering. A 13% efficiency cell was obtained for a Zn(O,S) emitter layer deposited with 0.5%O2. With further optimization of process parameters and an analysis of the loss mechanisms, it should be possible to increase the efficiency.

  5. High efficiency Cu(In,Ga)Se{sub 2} thin film solar cells without intermediate buffer layers

    SciTech Connect

    Ramanathan, K.; Wiesner, H.; Asher, S.; Niles, D.; Bhattacharya, R.N.; Keane, J.; Contreras, M.A.; Noufi, R.

    1998-09-01

    The nature of the interface between CuInGaSe{sub 2} (CIGS) and the chemical bath deposited CdS layer has been investigated. The authors show that heat-treating the absorbers in Cd- or Zn-containing solutions in the presence of ammonium hydroxide sets up an interfacial reaction with the possibility of an ion exchange occurring between Cd and Cu. The characteristics of devices made in this manner suggest that the reaction generates a thin, n-doped region in the absorber. The authors suggest that this aspect might be more important than the CdS layer in the formation of the junction. It is quite possible that the CdS/CuInSe{sub 2} device is a buried, shallow junction with a CdS window layer, rather than a heterojunction between CdS and CIGS. The authors use these ideas to develop methods for fabricating diodes without CdS or Cd.

  6. Improved performances of organic light-emitting diodes with mixed layer and metal oxide as anode buffer

    NASA Astrophysics Data System (ADS)

    Xue, Qin; Liu, Shouyin; Zhang, Shiming; Chen, Ping; Zhao, Yi; Liu, Shiyong

    2013-01-01

    We fabricated organic light-emitting devices (OLEDs) employing 2-methyl-9,10-di(2-naphthyl)-anthracene (MADN) as hole-transport material (HTM) instead of commonly used N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB). After inserting a 0.9 nm thick molybdenum oxide (MoOx) layer at the indium tin oxide (ITO)/MADN interface and a 5 nm thick mixed layer at the organic/organic heterojunction interface, the power conversion efficiency of the device can be increased by 4-fold.

  7. AlN thin films deposited by DC reactive magnetron sputtering: effect of oxygen on film growth

    NASA Astrophysics Data System (ADS)

    García Molleja, Javier; José Gómez, Bernardo; Ferrón, Julio; Gautron, Eric; Bürgi, Juan; Abdallah, Bassam; Abdou Djouadi, Mohamed; Feugeas, Jorge; Jouan, Pierre-Yves

    2013-11-01

    Aluminum nitride is a ceramic compound with many technological applications in many fields, for example optics, electronics and resonators. Contaminants play a crucial role in the AlN performance. This paper focuses mainly in the effect of oxygen when AlN, with O impurities in its structure, is grown on oxidized layers. In this study, AlN thin films have been deposited at room temperature and low residual vacuum on SiO2/Si (1 0 0) substrates. AlN films were grown by DC reactive magnetron sputtering (aluminum target) and atmosphere composed by an argon/nitrogen mixture. Working pressure was 3 mTorr. Film characterization was performed by AES, XRD, SEM, EDS, FTIR, HRTEM, SAED and band-bending method. Our results show that oxidized interlayer imposes compressive stresses to AlN layer, developing a polycrystalline deposition. Indeed, when film thickness is over 900 nm, influence of oxidized interlayer diminishes and crystallographic orientation changes to the (0 0 0 2) one, i.e., columnar structure, and stress relief is induced (there is a transition from compressive to tensile stress). Also, we propose a growth scenario to explain this behaviour.

  8. Effects of annealing in Be/W and Be/C bilayers deposited on Si(0 0 1) substrates with Fe buffer layers

    NASA Astrophysics Data System (ADS)

    Schinteie, G.; Greculeasa, S. G.; Palade, P.; Lungu, G. A.; Porosnicu, C.; Jepu, I.; Lungu, C. P.; Filoti, G.; Kuncser, V.

    2015-02-01

    Atomic intermixing processes in relation to structural aspects and phase formation in Be based thin films subjected to different annealing treatments simulating the case of re-deposited layered structures on plasma facing components in nuclear fusion devices are reported. Accordingly, bilayers of Be/W and Be/C have been deposited on Si(0 0 1) substrates with Fe buffer layers. The Fe films have been prepared by radiofrequency sputtering and further processed by annealing in hydrogen atmosphere at 300 °C, for 90 min, at a pressure of 10 bars of H2. After the Be/W and Be/C bilayer deposition by means of thermionic vacuum arc method, annealing in vacuum at 600 °C, for 10 min has been applied to the complex structures. The influence of annealing on the phase composition and atomic intermixing processes in the complex structures has been studied by means of X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The layered structures present an oxidation gradient with oxide phases in the uppermost layers and non-oxidized phases in the lower layers, as observed from the XPS data. The CEMS results revealed that the as-deposited structures contain a main metallic Fe phase and secondary superparamagnetic Fe oxide phases at the Fe/Be interface, while annealed samples present a large contribution of Fe-Be and Fe-C mixtures. The annealing treatment induces considerable atomic interdiffusion, strongly dependent on the nature of the upper layer. In the case of Be/W system, the annealing provides a much rougher Be/W interface, while in case of the Be/C structure, the annealing treatment only homogenize the structure over the whole depth.

  9. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  10. Effect of TiO 2 buffer layer on the structural and optical properties of ZnO thin films deposited by E-beam evaporation and sol-gel method

    NASA Astrophysics Data System (ADS)

    Xu, Linhua; Shi, Linxing; Li, Xiangyin

    2008-12-01

    In this work, TiO 2 buffer layers were first deposited on Si substrates by electron beam evaporation, and then ZnO thin films were deposited on TiO 2 buffer layers by electron beam evaporation and a sol-gel method, respectively. The structural features and surface morphologies of these films were analyzed by X-ray diffraction (XRD) and a scanning probe microscope (SPM), respectively. The photoluminescence (PL) spectra were measured by a fluorophotometer. The analyses of the structures and surface morphologies showed that all the ZnO thin films were preferentially oriented along the c-axis perpendicular to the substrate surface; TiO 2 buffer layers increased the intensity of (0 0 2) diffraction peaks, made the grains denser and the surfaces of the films smoother. The photoluminescence spectra showed that TiO 2 buffer layers enhanced ultraviolet emissions and reduced visible emissions of the ZnO thin films to a large degree. All the results suggested that the use of TiO 2 buffer layers effectively improved the quality of ZnO thin films.

  11. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    SciTech Connect

    Mitchel, W. C. Haugan, H. J.; Mou, Shin; Brown, G. J.; Elhamri, S.; Berney, R.

    2015-09-15

    Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  12. Influence of a TiO{sub 2} buffer layer on the magnetic properties of anatase Co:TiO{sub 2} thin films

    SciTech Connect

    Gabor, M. S.; Petrisor, T. Jr.; Tiusan, C.; Hehn, M.; Vasile, B. S.; Petrisor, T.

    2012-04-15

    Our study addresses the influence of a TiO{sub 2} buffer layer on the morphological, structural, and magnetic properties of Co:TiO{sub 2} films grown on (001) SrTiO{sub 3} substrates by RF sputtering. We demonstrate that a direct correlation exist between the morphology, the Co heterogeneity, and the magnetic properties measured in the films. Correlated analysis by cross section transmission electron microscopy, energy dispersive x-ray, and x-ray photoemission spectroscopy reveals that the Co is not uniformly distributed in the film but concentrated in the surface clusters. Atomic force microscopy analysis illustrates that the unbuffered films present a large density of surface clusters. These clusters are not metallic Co but Co rich TiO{sub 2} anatase phase and they are accompanied by structural defects in the film: dislocations, small angle grain boundaries. Magnetometry analysis shows that the unbuffered films have a net ferromagnetic behavior, while in the buffered ones the ferromagnetism is quenched. Therefore, we conclude that the magnetism in unbuffered samples is related to the surface clusters and seems to have an extrinsic nature.

  13. Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing.

    PubMed

    Wi, Jae-Hyung; Kim, Tae Gun; Kim, Jeong Won; Lee, Woo-Jung; Cho, Dae-Hyung; Han, Won Seok; Chung, Yong-Duck

    2015-08-12

    We selected a sputtered-Zn(O,S) film as a buffer material and fabricated a Cu(In,Ga)Se2 (CIGS) solar cell for use in monolithic tandem solar cells. A thermally stable buffer layer was required because it should withstand heat treatment during processing of top cell. Postannealing treatment was performed on a CIGS solar cell in vacuum at temperatures from 300-500 °C to examine its thermal stability. Serious device degradation particularly in VOC was observed, which was due to the diffusion of thermally activated constituent elements. The elements In and Ga tend to out-diffuse to the top surface of the CIGS, while Zn diffuses into the interface of Zn(O,S)/CIGS. Such rearrangement of atomic fractions modifies the local energy band gap and band alignment at the interface. The notch-shape induced at the interface after postannealing could function as an electrical trap during electron transport, which would result in the reduction of solar cell efficiency.

  14. Dark current reduction of small molecule organic photodetectors by controlling gap states of molybdenum oxide buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, Seong Heon; Heo, Sung; Yun, Dong-Jin; Satoh, Ryu-ichi; Park, Gyeongsu; Kim, Kyu-Sik

    2016-09-01

    The gap states of the molybdenum-oxide (MoO x ) hole-extraction layer (HEL) in an organic photodetector (OPD) device, which originate from oxygen-vacancy defects, are controlled by appropriate plasma treatments on the MoO x layer. The density of MoO x gap states, investigated using X-ray photoelectron spectroscopy (XPS), is enhanced and depressed with Ar- and O2-plasma treatments, respectively. The dark current of an OPD with a MoO x HEL is considerably reduced by controlling the MoO x gap states using the plasma-treatment method. The mechanism of dark-current reduction may be interpreted by reduced gap states and by a suitable energy level bending and alignment.

  15. Fabrication of Sr silicate buffer layer on Si(100) substrate by pulsed laser deposition using a SrO target

    SciTech Connect

    Imanaka, Atsuhiro; Sasaki, Tsubasa; Hotta, Yasushi Satoh, Shin-ichi

    2014-09-01

    The authors fabricated 2 × 1 Sr-reconstructed Si(100) substrates using thin SrO layers, and used them to direct growth of crystalline perovskite oxide on Si. The SrO layers used to reconstruct the Si(100) substrates were grown by pulsed laser deposition from a SrO single crystal target, followed by postdeposition-annealing (PDA) of the SrO/Si(100) structure. In situ observations of reflective high-energy electron diffraction during PDA confirmed a 2 × 1 reconstruction of the Si surface and x-ray photoemission spectroscopy of the annealed samples confirmed the existence of Sr atoms in a silicate phase, which indicated that a 2 × 1 Sr-reconstructed Si surface was achieved. The optimal fabrication conditions were annealing at 720 °C for 1 min and an equivalent SrO layer thickness (ML{sub eq}) of 2.5 ML{sub eq}. The temperature condition was very narrow, at 720 ± 20 °C, for an acceptable product. Subsequently, the authors demonstrated the growth of crystalline SrTiO{sub 3} films on the 2 × 1 Sr-reconstructed Si(100) surfaces.

  16. Effects of the Buffer Layers on the Adhesion and Antimicrobial Properties of the Amorphous ZrAlNiCuSi Films

    NASA Astrophysics Data System (ADS)

    Chiang, Pai-Tsung; Chen, Guo-Ju; Jian, Sheng-Rui; Shih, Yung-Hui

    2011-06-01

    To extend the practical applications of the bulk metallic glasses (BMGs), the preparation of the metallic glass coatings on various substrates becomes an important research issue. Among the interfacial properties of the coatings, the adhesion between films and substrates is the most crucial. In this study, amorphous Zr61Al7.5Ni10Cu17.5Si4 (ZrAlNiCuSi) thin films were deposited on SUS304 stainless steel at various sputtering powers by DC sputtering. According to the scratch tests, the introduction of the Cr and Ti buffer layers effectively improves the adhesion between the amorphous thin films and substrate without changing the surface properties, such as roughness and morphology. The antimicrobial results show that the biological activities of these microbes, except Acinetobacter baumannii, are effectively suppressed during the test period.

  17. Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer

    NASA Astrophysics Data System (ADS)

    Wen, Hui-Juan; Zhang, Jin-Cheng; Lu, Xiao-Li; Wang, Zhi-Zhe; Ha, Wei; Ge, Sha-Sha; Cao, Rong-Tao; Hao, Yue

    2014-03-01

    The quality of an AlGaN channel heterojunction on a sapphire substrate is massively improved by using an AlGaN/GaN composite buffer layer. We demonstrate an Al0.4Ga0.5N/Al0.18Ga0.82N heterojunction with a state-of-the-art mobility of 815 cm2/(V·s) and a sheet resistance of 890 Ω/□ under room temperature. The crystalline quality and the electrical properties of the AlGaN heterojunction material are analyzed by atomic force microscopy, high-resolution X-ray diffraction, and van der Pauw Hall and capacitance—voltage (C—V) measurements. The results indicate that the improved electrical properties should derive from the reduced surface roughness and low dislocation density.

  18. Recent Results on Growth of (211)B CdTe on (211)Si with Intermediate Ge and ZnTe Buffer Layers by Metalorganic Vapor-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Shintri, Shashidhar; Rao, Sunil; Wijewarnasuriya, Priyalal; Trivedi, Sudhir; Bhat, Ishwara

    2012-10-01

    We report on the investigation of epitaxial cadmium telluride grown by metalorganic vapor-phase epitaxy (MOVPE) on (211)Si, with particular emphasis on studying the effect of changing the reactor parameters and thermal annealing conditions on the epilayer quality. The CdTe films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray diffraction (XRD). The best CdTe films were observed when the Te/Cd precursor partial pressure ratio was close to 3.1. It was also observed that, though annealing improved the crystal quality, a slight increase in surface roughness was observed. Similar attempts were made to improve the growth conditions of ZnTe intermediate buffer layer, which showed similar trends with changes in precursor flows.

  19. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    SciTech Connect

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha; Louis, Godfrey; Vijayakumar, K. P.; Kumar, K. Rajeev

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin film solar cells.

  20. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    SciTech Connect

    Liu, Xiaodong; Zhou, Yi E-mail: songbo@suda.edu.cn Song, Bo E-mail: songbo@suda.edu.cn; Lei, Ming; Li, Yongfang E-mail: songbo@suda.edu.cn

    2015-08-10

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH{sub 3}NH{sub 3}PbI{sub 3−X}Cl{sub X}. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (J{sub sc}). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  1. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Lei, Ming; Zhou, Yi; Song, Bo; Li, Yongfang

    2015-08-01

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH3NH3PbI3-XClX. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (Jsc). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  2. Single Junction InGaP/GaAs Solar Cells Grown on Si Substrates using SiGe Buffer Layers

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Carlin, J. A.; Andre, C. L.; Hudait, M. K.; Gonzalez, M.; Wilt, D. M.; Clark, E. B.; Jenkins, P.; Scheiman, D.; Allerman, A.

    2002-01-01

    Single junction InGaP/GaAs solar cells displaying high efficiency and record high open circuit voltage values have been grown by metalorganic chemical vapor deposition on Ge/graded SiGe/Si substrates. Open circuit voltages as high as 980 mV under AM0 conditions have been verified to result from a single GaAs junction, with no evidence of Ge-related sub-cell photoresponse. Current AM0 efficiencies of close to 16% have been measured for a large number of small area cells, whose performance is limited by non-fundamental current losses due to significant surface reflection resulting from greater than 10% front surface metal coverage and wafer handling during the growth sequence for these prototype cells. It is shown that at the material quality currently achieved for GaAs grown on Ge/SiGe/Si substrates, namely a 10 nanosecond minority carrier lifetime that results from complete elimination of anti-phase domains and maintaining a threading dislocation density of approximately 8 x 10(exp 5) per square centimeter, 19-20% AM0 single junction GaAs cells are imminent. Experiments show that the high performance is not degraded for larger area cells, with identical open circuit voltages and higher short circuit current (due to reduced front metal coverage) values being demonstrated, indicating that large area scaling is possible in the near term. Comparison to a simple model indicates that the voltage output of these GaAs on Si cells follows ideal behavior expected for lattice mismatched devices, demonstrating that unaccounted for defects and issues that have plagued other methods to epitaxially integrate III-V cells with Si are resolved using SiGe buffers and proper GaAs nucleation methods. These early results already show the enormous and realistic potential of the virtual SiGe substrate approach for generating high efficiency, lightweight and strong III-V solar cells.

  3. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  4. Assessment of Chemical Solution Synthesis and Properties of Gd2Zr2O7 Thin Films as Buffer Layers for Second-Generation High-Temperature Superconductor Wires (Postprint)

    DTIC Science & Technology

    2012-02-01

    due to differing chemical envi- ronment through the GZO layer, specifically caused by the variable carbon distribution. The performance of the MOD...deposition of lanthanum zirconate barrier layers applied to low-cost coated-conductor fabrication. J. Mater. Res. 19, 2117 (2004). 11. T. Aytug, M...cal solution deposition of lanthanum zirconate buffer layers on biaxially textured Ni–1.7% Fe–3% W alloy substrates for coated- conductor

  5. Impact of the deposition conditions of buffer and windows layers on lowering the metastability effects in Cu(In,Ga)Se2/Zn(S,O)-based solar cell

    NASA Astrophysics Data System (ADS)

    Naghavi, Negar; Hildebrandt, Thibaud; Bouttemy, Muriel; Etcheberry, Arnaud; Lincot, Daniel

    2016-02-01

    The highest and most reproducible (Cu(In,Ga)Se2 (CIGSe) based solar-cell efficiencies are obtained by use of a very thin n-type CdS layer deposited by chemical bath deposition (CBD). However because of both Cadmium's adverse environmental impact and the narrow bandgap of CdS (2.4-2.5 eV) one of the major objectives in the field of CIGSe technology remains the development and implementation in the production line of Cd-free buffer layers. The CBDZn( S,O) remains one the most studied buffer layer for replacing the CdS in Cu(In,Ga)Se2-based solar cells and has already demonstrated its potential to lead to high-efficiency solar cells up to 22.3%. However one of the key issue to implement a CBD-Zn(S,O) process in a CIGSe production line is the cells stability, which depends both on the deposition conditions of CBD-Zn(S,O) and on a good band alignment between CIGSe/Zn(S,O)/windows layers. The most common window layers applied in CIGSe solar cells consist of two layers : a thin (50-100 nm) and highly resistive i-ZnO layer deposited by magnetron sputtering and a transparent conducting 300-500 nm ZnO:Al layer. In the case of CBD-Zn(S,O) buffer layer, the nature and deposition conditions of both Zn(S,O) and the undoped window layer can strongly influence the performance and stability of cells. The present contribution will be specially focused on the effect of condition growth of CBD-Zn(S,O) buffer layers and the impact of the composition and deposition conditions of the undoped window layers such as ZnxMgyO or ZnxSnyO on the stability and performance of these solar cells.

  6. Optimal microelectromechanical systems (MEMS) device for achieving high pyroelectric response of AlN

    NASA Astrophysics Data System (ADS)

    Kebede, Bemnnet; Coutu, Ronald A.; Starman, LaVern

    2014-03-01

    This paper discusses research being conducted on aluminum nitride (AlN) as a pyroelectric material for use in detecting applications. AlN is being investigated because of its high pyroelectric coefficient, thermal stability, and high Curie temperature. In order to determine suitability of the pyroelectric properties of AlN for use as a detector, testing of several devices was conducted. These devices were fabricated using microelectromechanical systems (MEMS) fabrication processes; the devices were also designed to allow for voltage and current measurements. The deposited AlN films used were 150 nm - 300 nm in thickness. Thin-films were used to rapidly increase the temperature response after the thermal stimulus was applied to the pyroelectric material. This is important because the pyroelectric effect is directly proportional to the rate of temperature change. The design used was a face-electrode bridge that provides thermal isolation which minimizes heat loss to the substrate, thereby increasing operation frequency of the pyroelectric device. A thermal stimulus was applied to the pyroelectric material and the response was measured across the electrodes. A thermal imaging camera was used to monitor the changes in temperature. Throughout the testing process, the annealing temperatures, type of layers, and thicknesses were also varied. These changes resulted in improved MEMS designs, which were fabricated to obtain an optimal design configuration for achieving a high pyroelectric response. A pyroelectric voltage response of 38.9 mVp-p was measured without filtering, 12.45 mVp-p was measured in the infrared (IR) region using a Si filter, and 6.38 mVp-p was measured in the short wavelength IR region using a long pass filter. The results showed that AlN's pyroelectric properties can be used in detecting applications.

  7. Investigation of Donor and Acceptor Ion Implantation in AlN

    SciTech Connect

    Osinsky, Andrei

    2015-09-16

    AlGaN alloys with high Al composition and AlN based electronic devices are attractive for high voltage, high temperature applications, including microwave power sources, power switches and communication systems. AlN is of particular interest because of its wide bandgap of ~6.1eV which is ideal for power electronic device applications in extreme environments which requires high dose ion implantation. One of the major challenges that need to be addressed to achieve full utilization of AlN for opto and microelectronic applications is the development of a doping strategy for both donors and acceptors. Ion implantation is a particularly attractive approach since it allows for selected-area doping of semiconductors due to its high spatial and dose control and its high throughput capability. Active layers in the semiconductor are created by implanting a dopant species followed by very high temperature annealing to reduce defects and thereby activate the dopants. Recovery of implant damage in AlN requires excessively high temperature. In this SBIR program we began the investigation by simulation of ion beam implantation profiles for Mg, Ge and Si in AlN over wide dose and energy ranges. Si and Ge are implanted to achieve the n-type doping, Mg is investigated as a p-type doping. The simulation of implantation profiles were performed in collaboration between NRL and Agnitron using a commercial software known as Stopping and Range of Ions in Matter (SRIM). The simulation results were then used as the basis for ion implantation of AlN samples. The implanted samples were annealed by an innovative technique under different conditions and evaluated along the way. Raman spectroscopy and XRD were used to determine the crystal quality of the implanted samples, demonstrating the effectiveness of annealing in removing implant induced damage. Additionally, SIMS was used to verify that a nearly uniform doping profile was achieved near the sample surface. The electrical characteristics

  8. Electrical stabilities and memory mechanisms of organic bistable devices fabricated utilizing a poly(3,4-ethylene-dioxythiophene): Poly(styrenesulfonate) layer with a poly(methyl methacrylate) buffer layer

    NASA Astrophysics Data System (ADS)

    Min Son, Jung; Seung Song, Woo; Ho Yoo, Chan; Yeol Yun, Dong; Whan Kim, Tae

    2012-04-01

    Organic bistable devices (OBDs) based on a poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer with a poly(methyl methacrylate) (PMMA) buffer layer were fabricated on indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) flexible substrates. Current-voltage curves for the Al/PEDOT:PSS/PMMA/ITO/PET device showed current bistabilities with an ON/OFF current ratio of 1 × 103, indicative of a significant enhancement of memory storage. The endurance number of the ON/OFF switchings for the OBDs was above 1 × 105 cycles showing high potential applications in read only memory devices. The memory mechanisms for the OBDs on the basis of oxidation and reduction operations were attributed to the filament processes.

  9. Performance Improvement of AlN Crystal Quality Grown on Patterned Si(111) Substrate for Deep UV-LED Applications

    PubMed Central

    Tran, Binh Tinh; Maeda, Noritoshi; Jo, Masafumi; Inoue, Daishi; Kikitsu, Tomoka; Hirayama, Hideki

    2016-01-01

    An AlN template layer is required for growth of AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs). However, the crystal quality of AlN templates grown on both flat and patterned Si substrates has so far been insufficient for replacing templates grown on sapphire substrates. In this work, we grew a high-quality AlN template on 2 in. micro-circle-patterned Si substrate (mPSiS) with two different sizes and shapes through controlling the bias power of inductively coupled plasma (ICP) etching. The experimental results showed that the best AlN template was obtained on a large pattern size with a bow-angle shape and the template had X-ray rocking curves with full widths at half-maximum of 620 and 1141 arcsec for the (002) and (102) reflection planes. The threading dislocation density near surface of AlN template through transmission electron microscopy (TEM) estimation was in the order of 107 cm−2, which is the lowest dislocation density reported for a Si substrate to our knowledge. A strong single electroluminescence (EL) peak was also obtained for an AlGaN-based deep UV-LED grown on this template, means that it can be used for further developing high-efficiency deep UV-LEDs. PMID:27819331

  10. Performance Improvement of AlN Crystal Quality Grown on Patterned Si(111) Substrate for Deep UV-LED Applications

    NASA Astrophysics Data System (ADS)

    Tran, Binh Tinh; Maeda, Noritoshi; Jo, Masafumi; Inoue, Daishi; Kikitsu, Tomoka; Hirayama, Hideki

    2016-11-01

    An AlN template layer is required for growth of AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs). However, the crystal quality of AlN templates grown on both flat and patterned Si substrates has so far been insufficient for replacing templates grown on sapphire substrates. In this work, we grew a high-quality AlN template on 2 in. micro-circle-patterned Si substrate (mPSiS) with two different sizes and shapes through controlling the bias power of inductively coupled plasma (ICP) etching. The experimental results showed that the best AlN template was obtained on a large pattern size with a bow-angle shape and the template had X-ray rocking curves with full widths at half-maximum of 620 and 1141 arcsec for the (002) and (102) reflection planes. The threading dislocation density near surface of AlN template through transmission electron microscopy (TEM) estimation was in the order of 107 cm‑2, which is the lowest dislocation density reported for a Si substrate to our knowledge. A strong single electroluminescence (EL) peak was also obtained for an AlGaN-based deep UV-LED grown on this template, means that it can be used for further developing high-efficiency deep UV-LEDs.

  11. AlN and Al oxy-nitride gate dielectrics for reliable gate stacks on Ge and InGaAs channels

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Li, H.; Robertson, J.

    2016-05-01

    AlN and Al oxy-nitride dielectric layers are proposed instead of Al2O3 as a component of the gate dielectric stacks on higher mobility channels in metal oxide field effect transistors to improve their positive bias stress instability reliability. It is calculated that the gap states of nitrogen vacancies in AlN lie further away in energy from the semiconductor band gap than those of oxygen vacancies in Al2O3, and thus AlN might be less susceptible to charge trapping and have a better reliability performance. The unfavourable defect energy level distribution in amorphous Al2O3 is attributed to its larger coordination disorder compared to the more symmetrically bonded AlN. Al oxy-nitride is also predicted to have less tendency for charge trapping.

  12. Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer

    NASA Astrophysics Data System (ADS)

    Liu, T.; Cai, J. W.; Sun, Li

    2012-09-01

    By systematically comparing the magnetic properties of the Ta/CoFeB/Ta and MgO/CoFeB/MgO structures with and without a submonolayer of MgO, Ta, V, Nb, Hf and W inserted in the middle of the CoFeB layer, we have proved that the observed perpendicular magnetic anisotropy (PMA) in Ta/CoFeB/MgO sandwiches is solely originated from the CoFeB/MgO interface with the Ta buffer acting to enhance the CoFeB/MgO interface anisotropy significantly. Moreover, replacing Ta with Hf causes the CoFeB/MgO interfacial PMA further enhanced by 35%, and the CoFeB layer with perpendicular magnetization has a much larger critical thickness accordingly, leaving a wider thickness margin for the CoFeB/MgO-based perpendicular magnetic tunnel junction optimization. Also the sputter deposited thin Hf films are amorphous with low surface roughness. These results will ensure the Hf/CoFeB/MgO more promising material system for PMA device development.

  13. Peculiarities of strain relaxation in linearly graded InxGa1-xAs/GaAs(001) metamorphic buffer layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sorokin, S. V.; Klimko, G. V.; Sedova, I. V.; Sitnikova, A. A.; Kirilenko, D. A.; Baidakova, M. V.; Yagovkina, M. A.; Komissarova, T. A.; Belyaev, K. G.; Ivanov, S. V.

    2016-12-01

    This paper presents a comprehensive study of structural, optical and electrical properties of heterostructures with linearly graded InxGa1-xAs metamorphic buffer layers (MBLs) grown by molecular beam epitaxy on GaAs (001) substrates. The low density of threading dislocations (well below 106 cm-2) in 1-μm-thick In0.3Ga0.7As layers grown atop of the linearly graded InxGa1-xAs/GaAs MBLs has been confirmed by using transmission electron microscopy (TEM). X-ray diffraction (XRD) data demonstrate good agreement between the experimentally measured In step-back and its calculations in the frames of existing models. Combining the XRD reciprocal space maps (RSM) of the structures and the spatially-resolved selective area electron diffraction measurements by cross-sectional TEM in depth-profiled RSM diagrams allowed direct visualization of the strain relaxation dynamics during the MBL growth. Strong effect of the azimuth angle and the value of an unintentional initial miscut of nominally (001) oriented GaAs substrate on the strain relaxation dynamics was observed.

  14. New sulphide precursors for Zn(O,S) buffer layers in Cu(In,Ga)Se2 solar cells for faster reaction kinetics

    NASA Astrophysics Data System (ADS)

    Löckinger, Johannes; Nishiwaki, Shiro; Fuchs, Peter; Buecheler, Stephan; Romanyuk, Yaroslav E.; Tiwari, Ayodhya N.

    2016-08-01

    The development of a novel chemistry for the chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se2 (CIGS) solar cells is desired for a higher growth rate, hence reduced deposition time, while reducing simultaneously the required concentration of reactants. State-of-the-art recipes are based on thiourea as sulphide precursor requiring a high molarity of reactants and relatively long deposition times due to the slow decomposition rate of thiourea. In this contribution thioamide based sulphide precursors were investigated for their decomposition and growth behaviour. A co-solvent approach in an ethanolic/aqueous ammonia medium was evaluated omitting the need for additional complexants. By replacing thiourea with the investigated thioamides, homogeneous dense layers of around 30 nm were grown with a greatly decreased deposition time of 8 min compared to 25 min for thiourea. Likewise, the concentration of the sulphide precursor was 40-fold reduced. The photovoltaic performance as characterized by external quantum efficiency and current-voltage measurements, showed conversion efficiencies of 15% comparable to the thiourea based process.

  15. A proposed mechanism for investigating the effect of porous silicon buffer layer on TiO2 nanorods growth

    NASA Astrophysics Data System (ADS)

    Rahmani, N.; Dariani, R. S.; Rajabi, M.

    2016-03-01

    In this study, we have synthesized TiO2 nanorods (NRs) on silicon and porous silicon (PS) substrates by hydrothermal method. The PS substrates with different porosities were fabricated by electrochemical anodization on silicon. According to the field emission electron microscopy images, TiO2 NRs grown on PS substrates have a better growth compared to those grown on silicon. Also increasing substrate porosity leads to an increase in density of the NRs. Atomic force microscopy observation demonstrates that porous layer formation due to etching of silicon surface leads to an increase of its roughness. Results indicate surface roughness evolution with porosity increasing enhances TiO2 nucleation on substrate and thus increases TiO2 NRs density. We propose a growth mechanism to explain how we can control the local surface chemical potential and thus the nucleation and alignment of TiO2 NRs by surface roughness variation. Also, photoluminescence studies show a red-shift in band gap energy of NRs compared to that of common bulk TiO2.

  16. CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoemission Spectroscopy

    SciTech Connect

    Haight, Richard; Barkhouse, Aaron; Wang, Wei; Yu, Luo; Shao, Xiaoyan; Mitzi, David; Hiroi, Homare; Sugimoto, Hiroki

    2013-12-02

    The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4(CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

  17. Effect of ultrathin AlN spacer on electronic properties of GaN/SiC heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Miyake, Hiroki; Kimoto, Tsunenobu; Suda, Jun

    2014-03-01

    GaN/SiC heterojunction bipolar transistors (HBTs) with an ultrathin AlN spacer layer at the n-GaN/p-SiC emitter junction are proposed for the control of the electronic properties of GaN/SiC heterojunctions. The insertion of an AlN spacer is found to be promising in terms of improving electron injection efficiency owing to the reduced potential barrier (0.54 eV) to electron injection and reduced recombination via interface traps. We also investigated the effect of pre-irradiation of active nitrogen atoms (N*) prior to AlN growth for the control of the electronic properties of GaN/AlN/SiC heterojunctions. We found that the potential barrier was further reduced to 0.46 eV by N* pre-irradiation. The HBT structure was successfully fabricated using our newly developed process featuring ion implantation and Pd ohmic contacts to obtain a low contact resistivity to a p-SiC base at a temperature as low as 600 °C. A fabricated HBT without an AlN layer showed a low current gain (α ˜ 0.001), whereas the GaN/AlN/SiC HBT showed improved current gains of 0.1 in the case of using a 1-nm-thick AlN spacer without N* pre-irradiation and 0.2 in the case of using a 2-nm-thick AlN spacer with N* pre-irradiation.

  18. Buffer Biology.

    ERIC Educational Resources Information Center

    Morgan, Kelly

    2000-01-01

    Presents a science experiment in which students test the buffering capacity of household products such as shampoo, hand lotion, fizzies candy, and cola. Lists the standards addressed in this experiment and gives an example of a student lab write-up. (YDS)

  19. Electric and pyroelectric properties of AlN thin films deposited by reactive magnetron sputtering on Si substrate

    NASA Astrophysics Data System (ADS)

    Stan, G. E.; Botea, M.; Boni, G. A.; Pintilie, I.; Pintilie, L.

    2015-10-01

    Electric and pyroelectric properties of AlN layers deposited on Si substrates with different resistivities were investigated. The dielectric constant was found to be around 12, while the conductance determined from dc current measurements was found to be in the 10-9 to 10-10 S range. The pyroelectric measurements were performed in voltage mode using two types of IR sources: a laser diode with 800 nm wavelength and a black body at 700 °C. A peculiar behavior was observed for the signal recorded when the laser diode was used as IR source. It was found that the Si substrate is introducing a signal component, due to the photogenerated carriers, which is adding to the pyroelectric signal generated by the AlN layer. This component is strongly dependent on the resistivity of the Si substrate. For strongly doped Si (Si++) the signal generated into the substrate represents only 10% of the recorded pyroelectric voltage. For electronic grade Si the signal generated into the substrate is about 100 times larger than the pyroelectric signal generated in the AlN layer. This effect can be used as an optical amplification of the pyroelectric signal. The frequency dependence observed for the pyroelectric signal recorded when the black body is used as IR source is typical for a pyroelectric detector. A value as large as 12.4 μC m-2 K-1 was obtained for the pyroelectric coefficient using for estimation the constant signal at low modulation frequencies of the IR beam. However, the value of the pyroelectric coefficient is strongly affected by the electrical conductance of the AlN layer. As the conductance is frequency dependent it results that the value of the pyroelectric coefficient is frequency dependent, the value from above being valid only for very small frequencies of the temperature variation. It was also found that the electric and pyroelectric properties are dependent on the crystalline quality of the AlN layer.

  20. Structural and electrical properties of metal ferroelectric insulator semiconductor structure of Al/SrBi2Ta2O9/HfO2/Si using HfO2 as buffer layer

    NASA Astrophysics Data System (ADS)

    Roy, A.; Dhar, A.; Bhattacharya, D.; Ray, S. K.

    2008-05-01

    Ferroelectric SrBi2Ta2O9 (SBT) thin films have been deposited by the radio-frequency magnetron sputtering technique on bare p-Si as well as on HfO2 insulating buffer p-Si. XRD patterns revealed the formation of a well-crystallized SBT perovskite thin film on the HfO2 buffer layer. The electrical properties of the metal-ferroelectric-insulator-semiconductor (MFIS) structure were characterized by varying thicknesses of the HfO2 layer. The MFIS structure exhibits a maximum clockwise C-V memory window of 1.60 V when the thickness of the HfO2 layer was 12 nm with a lower leakage current density of 6.20 × 10-7 A cm-2 at a positive applied voltage of 7 V. However, the memory window reaches a maximum value of 0.7 V at a bias voltage of ±5 and then decreases due to charge injection in the case of the insulating buffer layer thickness of 3 nm. The density of oxide trapped charges at/near the buffer layer-ferroelectric interface is studied by the voltage stress method. Capacitance-voltage (C-V) and leakage current density (J-V) characteristics of the Al/SBT/HfO2/Si(1 0 0) capacitor indicate that the introduction of the HfO2 buffer layer prevents interfacial diffusion between the SBT thin film and the Si substrate effectively and improves the interface quality. Furthermore, the Al/SBT/HfO2/Si structures exhibit excellent retention characteristics, the high and low capacitance values clearly distinguishable for over 1 h and 30 min. This shows that the proposed Al/SrBi2Ta2O9/HfO2/Si structure is ideally suitable for high performance ferroelectric memories.

  1. Effect of surface modification of CeO2 buffer layers on Jc and defect microstructures of large-area YBCO thin films

    NASA Astrophysics Data System (ADS)

    Develos-Bagarinao, K.; Yamasaki, H.; Nakagawa, Y.

    2006-08-01

    High-quality CeO2 buffer layers are requisite for the successful growth of YBCO thin films with excellent properties on sapphire substrates. In this study, we evaluated the effect of surface modification of the CeO2 layers on the properties of the YBCO thin films prepared by large-area pulsed laser deposition (PLD), in particular the critical current density Jc and defect microstructure. High-temperature annealing (1050 °C) has been found to significantly smoothen the very rough and granular surfaces of the as-grown CeO2 layers (surface roughness rms~5-10 nm) to atomic flatness (rms~0.5 nm). However, a rather unique characteristic of the CeO2 layers deposited by large-area PLD is the development of pores when subjected to prolonged high-temperature annealing. For very short annealing periods (10-20 min), the surface morphology becomes atomically flat, along with the appearance of a high density of 'nanopores' that are ~40-100 nm in diameter and ~3-5 nm in depth. Extending the annealing period to 60 min or more results in the development of a surface subtended with enlarged pores ~0.2-0.5 µm in diameter. Compared with the YBCO thin films deposited on as-grown CeO2, YBCO thin films on annealed CeO2 exhibited better homogeneity of Jc and better crystalline texture. Among the YBCO thin films deposited on annealed CeO2, higher self-field and in-field Jc was obtained for YBCO thin films deposited on CeO2 with smooth surfaces but interspersed with nanopores. Investigation of the defect microstructure via the etch pit method in conjunction with atomic force microscopy (AFM) of the YBCO thin films revealed a high density of linear defects in the form of screw and edge dislocations, which correlated well with a high density of nanopores on annealed CeO2. Transmission electron microscopy (TEM) further confirmed the presence of threading dislocations clearly emanating from the nanopore sites. Angular dependence of Jc revealed enhanced flux pinning for YBCO thin films

  2. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    PubMed Central

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-01-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate. PMID:27756906

  3. Reduction in leakage current in AlGaN/GaN HEMT with three Al-containing step-graded AlGaN buffer layers on silicon

    NASA Astrophysics Data System (ADS)

    Yu, Xinxin; Ni, Jinyu; Li, Zhonghui; Zhou, Jianjun; Kong, Cen

    2014-05-01

    AlGaN/GaN high-electron-mobility transistor (HEMT) structures with two and three Al-containing step-graded AlGaN buffer layers (BLs) were grown on silicon (111) substrates by metal organic chemical vapor deposition. Considerable tensile stress was observed in the GaN grown with only two 0.8 µm AlGaN BLs, while a large in-plane compression in GaN grown with three 2.3 µm AlGaN BLs. The reverse gate leakage current in the HEMT with three AlGaN BLs was approximately 0.1 µA/mm, which was more than one order of magnitude smaller than that for the HEMT with two AlGaN BLs. A three-terminal off-state breakdown voltage of 265 V and a vertical gate-to-substrate breakdown voltage of 510 V were obtained in the HEMT with three AlGaN BLs. Detailed analysis was performed on the basis of the structural properties of AlGaN/GaN heterostructures.

  4. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    NASA Astrophysics Data System (ADS)

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-10-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate.

  5. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  6. Ambient CdCl{sub 2} treatment on CdS buffer layer for improved performance of Sb{sub 2}Se{sub 3} thin film photovoltaics

    SciTech Connect

    Wang, Liang; Luo, Miao; Qin, Sikai; Liu, Xinsheng; Chen, Jie; Yang, Bo; Leng, Meiying; Xue, Ding-Jiang; Zhou, Ying; Gao, Liang; Song, Haisheng; Tang, Jiang

    2015-10-05

    Antimony selenide (Sb{sub 2}Se{sub 3}) is appealing as a promising light absorber because of its intrinsically benign grain boundaries, suitable band gap (∼1.1 eV), strong absorption coefficient, and relatively environmentally friendly constituents. Recently, we achieved a certified 5.6% efficiency Sb{sub 2}Se{sub 3} thin film solar cell with the assistance of ambient CdCl{sub 2} treatment on the CdS buffer layer. Here, we focused on investigating the underlying mechanism from a combined materials and device physics perspective applying current density-voltage (J-V) fitting analysis, atomic force microscope, X-ray photoelectron spectroscopy, fluorescence, and UV–Vis transmission spectroscopy. Our results indicated that ambient CdCl{sub 2} treatment on CdS film not only improved CdS grain size and quality, but also incorporated Cl and more O into the film, both of which can significantly improve the heterojunction quality and device performance of CdS/Sb{sub 2}Se{sub 3} solar cells.

  7. Integration and structural analysis of strain relaxed bi-epitaxial zinc oxide(0001) thin film with silicon(100) using titanium nitride buffer layer

    SciTech Connect

    Gupta, Pranav; Narayan, Jagdish

    2014-01-28

    Epitaxial growth of c-plane ZnO(0001) has been demonstrated on the Si(001) by using TiN as an intermediate buffer layer. Because of different out of plane symmetry of the substrate (Si/TiN) and the film (ZnO), two orientations of ZnO domains were obtained and the ZnO film growth is of bi-epitaxial nature. The ZnO thin film was observed to be nearly strain relaxed from X-ray and Raman measurements. The interface between the ZnO and TiN was investigated by transmission electron microscopy, and atomic arrangement has been modeled to understand the crystallographic orientation and structure of the domain/grain boundaries. Reaction at ZnO/TiN interface at higher growth temperature causing zinc titanate formation was observed. The grain boundary structure between the observed domains investigated by scanning transmission electron microscopy, revealed the ZnO(0001) planes to be contiguous across the grain boundary which is significant from the perspective of conduction electron scattering. In this configuration, the TiN (being electrically conductive) can be effectively used as an electrode for novel vertically integrated device applications (like light emitting diodes) directly on Si(100) substrate.

  8. Effect of different thickness crystalline SiC buffer layers on the ordering of MgB{sub 2} films probed by extended x-ray absorption fine structure

    SciTech Connect

    Putri, W. B. K.; Tran, D. H.; Kang, B.; Lee, O. Y.; Kang, W. N.; Miyanaga, T.; Yang, D. S.

    2014-03-07

    Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful method to investigate the local structure of thin films. Here, we have studied EXAFS of MgB{sub 2} films grown on SiC buffer layers. Crystalline SiC buffer layers with different thickness of 70, 100, and 130 nm were deposited on the Al{sub 2}O{sub 3} (0001) substrates by using a pulsed laser deposition method, and then MgB{sub 2} films were grown on the SiC buffer layer by using a hybrid physical-chemical vapor deposition technique. Transition temperature of MgB{sub 2} film decreased with increasing thickness of SiC buffer layer. However, the T{sub c} dropping went no farther than 100 nm-thick-SiC. This uncommon behavior of transition temperature is likely to be created from electron-phonon interaction in MgB{sub 2} films, which is believed to be related to the ordering of MgB{sub 2} atomic bonds, especially in the ordering of Mg–Mg bonds. Analysis from Mg K-edge EXAFS measurements showed interesting ordering behavior of MgB{sub 2} films. It is noticeable that the ordering of Mg–B bonds is found to decrease monotonically with the increase in SiC thickness of the MgB{sub 2} films, while the opposite happens with the ordering in Mg–Mg bonds. Based on these results, crystalline SiC buffer layers in MgB{sub 2} films seemingly have evident effects on the alteration of the local structure of the MgB{sub 2} film.

  9. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  10. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Tsai, Cheng-Che; Hong, Cheng-Shong; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2016-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF3 (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq3) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF3 film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF3 film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF3 film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 24760 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  11. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation.

    PubMed

    Jaramillo-Fernandez, J; Ordonez-Miranda, J; Ollier, E; Volz, S

    2015-03-28

    The effect of the structural inhomogeneity and oxygen defects on the thermal conductivity of polycrystalline aluminum nitride (AlN) thin films deposited on single-crystal silicon substrates is experimentally and theoretically investigated. The influence of the evolution of crystal structure, grain size, and out-of plane disorientation along the cross plane of the films on their thermal conductivity is analyzed. The impact of oxygen-related defects on thermal conduction is studied in AlN/AlN multilayered samples. Microstructure, texture, and grain size of the films were characterized by X-ray diffraction and scanning and transmission electron microscopy. The measured thermal conductivity obtained with the 3-omega technique for a single and multiple layers of AlN is in fairly good agreement with the theoretical predictions of our model, which is developed by considering a serial assembly of grain distributions. An effective thermal conductivity of 5.92 W m(-1) K(-1) is measured for a 1107.5 nm-thick multilayer structure, which represents a reduction of 20% of the thermal conductivity of an AlN monolayer with approximately the same thickness, due to oxygen impurities at the interface of AlN layers. Our results show that the reduction of the thermal conductivity as the film thickness is scaled down, is strongly determined by the structural inhomogeneities inside the sputtered films. The origin of this non-homogeneity and the effect on phonon scattering are also discussed.

  12. Buffer layers for coated conductors

    DOEpatents

    Stan, Liliana; Jia, Quanxi; Foltyn, Stephen R.

    2011-08-23

    A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.

  13. Cadmium-free copper indium gallium diselenide hybrid solar cells comprising a 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole buffer layer

    NASA Astrophysics Data System (ADS)

    Reinhard, Manuel; Simon, Christoph; Kuhn, Johannes; Bürkert, Linda; Cemernjak, Marco; Dimmler, Bernhard; Lemmer, Uli; Colsmann, Alexander

    2013-02-01

    Copper indium gallium diselenide (CIGS) solar cells are the most efficient thin film photovoltaic devices today. In this work, we investigate CIGS/organic hybrid solar cells comprising a semi-transparent metal top electrode and a wide band gap organic semiconductor as buffer layer. Depositing the organic semiconductor from solution, we fabricate Cd-free solar cells exhibiting about the same efficiency as their counterparts comprising CdS and significantly higher open-circuit voltages as compared to buffer-free devices. Although the organic molecules do not cover the CIGS surface homogeneously, their use enables prolonged charge carrier lifetimes according to impedance spectroscopy measurements.

  14. Preparation and properties of highly (100)-oriented Pb(Zr0.2Ti0.8)O3 thin film prepared by rf magnetron sputtering with a PbOx buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, Jiagang; Zhu, Jiliang; Xiao, Dingquan; Zhu, Jianguo; Tan, Junzhe; Zhang, Qinglei

    2007-05-01

    A method for fabrication of highly (100)-oriented Pb(Zr0.2Ti0.8)O3 (PZT) thin films by rf magnetron sputtering with a special buffer of PbOx (RFMS-SBP) was developed. With this method, highly (100)-oriented Pb(Zr0.2Ti0.8)O3 thin films were prepared on the PbOx/Pt(111)/Ti/SiO2/Si(100) substrates, and the preferential (100) orientation of the Pb(Zr0.2Ti0.8)O3 film is 92%. The (100) orientation of the PbOx buffer layer leads to the (100) orientation of the PZT thin films, and the thickness of the buffer layer plays a significant role on the phase purity and electrical properties of the films. Highly (100)-oriented Pb(Zr0.2Ti0.8)O3 thin films with proper thickness of PbOx buffer layer possess good electrical properties with larger remnant polarization Pr (69.7 μC/cm2), lower coercive field Ec (92.4 kV/cm), and good pyroelectric coefficient at room temperature (2.6×10-8 C/cm2 K). The butterfly-shaped ɛ-E characteristic curve gives the evidence of the improved in-plane ferroelectric property in the films.

  15. Interfacial reaction control and its mechanism of AlN epitaxial films grown on Si(111) substrates by pulsed laser deposition

    PubMed Central

    Wang, Wenliang; Yang, Weijia; Liu, Zuolian; Wang, Haiyan; Wen, Lei; Li, Guoqiang

    2015-01-01

    High-quality AlN epitaxial films have been grown on Si substrates by pulsed laser deposition (PLD) by effective control of the interfacial reactions between AlN films and Si substrates. The surface morphology, crystalline quality and interfacial property of as-grown AlN/Si hetero-interfaces obtained by PLD have been systemically studied. It is found that the amorphous SiAlN interfacial layer is formed during high temperature growth, which is ascribed to the serious interfacial reactions between Si atoms diffused from the substrates and the AlN plasmas produced by the pulsed laser when ablating the AlN target during the high temperature growth. On the contrary, abrupt and sharp AlN/Si hetero-interfaces can be achieved by effectively controlling the interfacial reactions at suitable growth temperature. The mechanisms for the evolution of interfacial layer from the amorphous SiAlN layer to the abrupt and sharp AlN/Si hetero-interfaces by PLD are hence proposed. This work of obtaining the abrupt interfaces and the flat surfaces for AlN films grown by PLD is of paramount importance for the application of high-quality AlN-based devices on Si substrates. PMID:26089026

  16. Growth and structure of GaN layers on silicon carbide synthesized on a Si substrate by the substitution of atoms: A model of the formation of V-defects during the growth of GaN

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Rozhavskaya, M. M.; Myasoedov, A. V.; Troshkov, S. I.; Lundin, V. V.; Sorokin, L. M.; Tsatsul'nikov, A. F.

    2015-09-01

    This paper presents the results of the electron microscopic study of GaN/AlGaN/AlN/SiC/Si(111) structures grown by the metal-organic vapor phase epitaxy. A SiC epitaxial buffer nanolayer has been grown by a new method of substitution of atoms on the Si(111) substrate. It has been found that there is a strong dependence of the density of dislocations and V-defects on the synthesis conditions of SiC and the thickness of the AlN layer. It has been proved experimentally that the creation of a low-temperature AlN insert with a simultaneous decrease in the thickness of the AlN layer to values of no more than 50 nm makes it possible to almost completely prevent the formation of V-defects in the GaN layer. The density of screw and mixed dislocations in the GaN layer of the studied samples lies in the range from 5 × 109 to 1 × 1010 cm-2. A theoretical model of the formation of V-defects during the growth of GaN has been developed.

  17. Homoepitaxial seeding and growth of bulk AlN by sublimation

    NASA Astrophysics Data System (ADS)

    Hartmann, Carsten; Wollweber, Jürgen; Seitz, Christoph; Albrecht, Martin; Fornari, Roberto

    2008-03-01

    AlN boules, 35 mm in diameter and up to 25-mm long, were grown on TaC crucible lid in an inductively heated reactor. The growth rates range between 100 and 300 μm/h. The boules grown on TaC show a columnar structure mostly composed of <0 0 0 1> grains. The largest grains (4-5 mm in diameter) were sliced and used for subsequent growth runs. Successful epitaxial seeding and growth on the starting AlN wafer was demonstrated and confirmed by electron back-scatter diffraction (EBSD) measurements. Crystals were grown on both Al and N surfaces of the seeds up to a maximum diameter of about 9 mm so far. Formation of oxy-nitride layers, very detrimental to the further AlN deposition, could be avoided when starting from pre-sintered source powder. Secondary ion mass spectroscopy (SIMS) measurements on axial cuts revealed a relatively low oxygen content, with variable distribution along the growth direction (290 ppm near seed, 100 ppm near external surface).

  18. Charged vacancy induced enhanced piezoelectric response of reactive assistive IBSD grown AlN thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Neha; Rath, Martando; Ilango, S.; Ravindran, T. R.; Ramachandra Rao, M. S.; Dash, S.; Tyagi, A. K.

    2017-01-01

    Piezoelectric response of AlN thin films was investigated in a AlN/Ti/Si(1 0 0) layer structure prepared by ion beam sputter deposition (IBSD) in reactive assistance of N+/\\text{N}2+ ions. The samples were characterized for their microstructure, piezoelectric response and charged defects using high resolution x-ray diffraction (HR-XRD), piezo force microscopy (PFM) and photoluminescence (PL) spectroscopy respectively. Our results show that the films are highly textured along the a-axis and charged native point defects are present in the microstructure. Phase images of these samples obtained from PFM show that the films are predominantly N-polar. The measured values of piezoelectric coefficient d 33(eff) for these samples are as high as 206  ±  20 pm V-1 and 668  ±  60 pm V-1 calculated by piezo response loop for AlN films of a thickness of 235 nm and 294 nm respectively. A mechanism for high d 33(eff) values is proposed with a suitable model based on the charged defects induced enhanced polarization in the dielectric continuum of AlN.

  19. Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3

    NASA Astrophysics Data System (ADS)

    Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.

    2012-05-01

    The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.

  20. Reduced interface recombination in Cu{sub 2}ZnSnS{sub 4} solar cells with atomic layer deposition Zn{sub 1−x}Sn{sub x}O{sub y} buffer layers

    SciTech Connect

    Platzer-Björkman, C.; Frisk, C.; Larsen, J. K.; Ericson, T.; Li, S.-Y.; Scragg, J. J. S.; Keller, J.; Larsson, F.; Törndahl, T.

    2015-12-14

    Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cells typically include a CdS buffer layer in between the CZTS and ZnO front contact. For sulfide CZTS, with a bandgap around 1.5 eV, the band alignment between CZTS and CdS is not ideal (“cliff-like”), which enhances interface recombination. In this work, we show how a Zn{sub 1−x}Sn{sub x}O{sub y} (ZTO) buffer layer can replace CdS, resulting in improved open circuit voltages (V{sub oc}) for CZTS devices. The ZTO is deposited by atomic layer deposition (ALD), with a process previously developed for Cu(In,Ga)Se{sub 2} solar cells. By varying the ALD process temperature, the position of the conduction band minimum of the ZTO is varied in relation to that of CZTS. A ZTO process at 95 °C is found to give higher V{sub oc} and efficiency as compared with the CdS reference devices. For a ZTO process at 120 °C, where the conduction band alignment is expected to be the same as for CdS, the V{sub oc} and efficiency is similar to the CdS reference. Further increase in conduction band minimum by lowering the deposition temperature to 80 °C shows blocking of forward current and reduced fill factor, consistent with barrier formation at the junction. Temperature-dependent current voltage analysis gives an activation energy for recombination of 1.36 eV for the best ZTO device compared with 0.98 eV for CdS. We argue that the V{sub oc} of the best ZTO devices is limited by bulk recombination, in agreement with a room temperature photoluminescence peak at around 1.3 eV for both devices, while the CdS device is limited by interface recombination.

  1. The direct growth of SrTiO 3 (100) layers on silicon (100) substrates; application as a buffer layer for the growth of DyBa 2Cu 3O 7- δ thin films

    NASA Astrophysics Data System (ADS)

    Méchin, L.; Gerritsma, G. J.; Garcia Lopez, J.

    1999-10-01

    Highly (100)-oriented SrTiO 3 thin films were sputtered on Si (100) substrates. After the optimization of the deposition conditions, the fraction of (110)-oriented material in the SrTiO 3 films was about 3%, but the rocking curve of the SrTiO 3 (200) peak was quite large (full width at half maximum (FWHM) ∼2.3°). Indeed grain boundaries crossing the whole SrTiO 3 film and an amorphous layer between Si and SrTiO 3 could be observed by transmission electron microscopy. DyBa 2Cu 3O 7- δ (DBCO) films were successively sputtered on the polycrystalline SrTiO 3 layers on Si. An Auger analysis revealed the presence of barium at the Si/SrTiO 3 interface that presumably diffused along the grain boundaries through SrTiO 3 to form barium silicates. By reducing both the DBCO deposition temperature and the SrTiO 3 thickness, we could prevent this diffusion and improve the electrical properties ( R300/ R100∼1 and Tc ( R=0) in the 40-60 K range). The specific problems for the growth of DBCO thin film on SrTiO 3-buffered silicon substrates by sputter deposition are finally pointed out.

  2. Aspects of the strontium oxide-copper oxide-titanium dioxide ternary system related to the deposition of strontium titanate and copper doped strontium titanate thin film buffer layers

    NASA Astrophysics Data System (ADS)

    Ayala, Alicia

    YBa2Cu3O7-delta (YBCO) coated conductors are promising materials for large-scale superconductivity applications. One version of a YBCO coated conductor is based on ion beam assisted deposition (IBAD) of magnesium oxide (MgO) onto polycrystalline metal substrates. SrTiO3 (STO) is often deposited by physical vapor deposition (PVD) methods as a buffer layer between the YBCO and IBAD MgO due to its chemical stability and lattice mismatch of only ˜1.5% with YBCO. In this work, some aspects of the stability of STO with respect to copper (Cu) and chemical solution deposition of STO on IBAD MgO templates were examined. Solubility limits of Cu in STO were established by processing Cu-doped STO powders by conventional bulk preparation techniques. The maximum solubility of Cu in STO was ˜1% as determined by transmission electron microscopy (TEM) and Rietveld refinements of x-ray diffraction (XRD) data. XRD analysis, performed in collaboration with NIST, on powder compositions on the STO/SrCuO 2 tie line did not identify any ternary phases. SrCu0.10Ti0.90Oy buffer layers were prepared by pulsed laser deposition (PLD) and CSD on IBAD MgO flexible metallic textured tapes. TEM analysis of a ˜100 nm thick SrCu0.10Ti 0.90Oy buffer layer deposited by PLD showed a smooth Cu-doped STO/MgO interface. A ˜600 nm thick YBCO film, deposited onto the SrCu 0.10Ti0.90Oy buffer by PLD, exhibited a T c of 87 K and critical current density (Jc) of ˜1 MA/cm 2. STO and Cu-doped STO thin films by CSD were ˜30 nm thick. The in plane alignment (FWHM) after deposition of the STO improved by ˜1° while it degraded by ˜2° with the SrCu0.05TiOy buffer. YBCO was deposited by PLD on the STO and SrCu0.05TiO y buffers. The in plane alignment (FWHM) of the YBCO with the STO buffer layer slightly improved while that of the YBCO with the SrCu0.05TiO y buffer layer remained constant. A goal of the CSD approach to fabrication of coated conductors is process simplicity. In this study, single layer

  3. Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S)2 and Cu2ZnSn(Se,S)4 devices

    NASA Astrophysics Data System (ADS)

    Varley, J. B.; Lordi, V.

    2014-08-01

    We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se)2 (CIGS) or Cu2ZnSn(S,Se)4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be less effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the "red kink" effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.

  4. Effect of conductive TiN buffer layer on the growth of stoichiometric VO{sub 2} films and the out-of-plane insulator–metal transition properties

    SciTech Connect

    Mian, Md. Suruz; Okimura, Kunio

    2014-07-15

    A TiN buffer film is used with a conductive interfacial layer for stoichiometric vanadium dioxide (VO{sub 2}) film growth, creating a layered device with a VO{sub 2} insulator–metal transition. Low-temperature growth (<250 °C) of the VO{sub 2} film on a Ti layer on a Si substrate is achieved using inductively coupled plasma-assisted sputtering. It is found that Ti diffusion and oxidation degrades the VO{sub 2} film quality at higher temperatures, but the introduction of a TiN buffer layer suppresses the degradation and enables growth of a stoichiometric VO{sub 2} film even at 400 °C. The high resistance of the VO{sub 2} film grown on the TiN layer suggests the benefit of using the intrinsic insulator–metal transition of VO{sub 2}. The voltage-triggered switching properties of the layered devices are examined, and the cause of the high out-of-plane resistance in this layered structure is discussed based upon the dependence of the initial resistance as a function the electrode area.

  5. Effect of target power and composition on RE-Fe-B thin films with Cu and Nb buffer and cap layers

    SciTech Connect

    Castaldi, L.; Gibbs, M. R. J.; Davies, H. A.

    2006-11-01

    We report a systematic study of the structural, morphological, and magnetic properties of RE-Fe-B (RE=rare earth) films codeposited onto thermally oxidized Si substrates. The use of Cu and Nb buffer and cap layers was investigated. The deposition of the samples was performed by magnetron sputtering with the substrates held at 470 deg. C and using various Fe target power densities and fixed RE:Fe:B target power density. This was done in order to vary the growth rate and the Fe content of the films. The simultaneous increase of the deposition rate and Fe content influenced the c-axis texturing of the samples. For the Cu/RE:Fe:B/Cu films, as a consequence of the good perpendicular intrinisic coercivity ({approx}492 kA/m at 10 W) and very high remanent polarization ({approx}1.51 T at 110 W), very good perpendicular energy products were obtained at 10 W ({approx}133 kJ/m{sup 3}) and 110 W ({approx}136 kJ/m{sup 3}). The Nb/RE:Fe:B/Nb samples had the best combination of perpendicular energy product and intrinsic coercivity, with values of 150 kJ/m{sup 3} and 800 kA/m, respectively, for an iron target power of 20 W. This high energy product was retained up to target powers of 50 W in spite of the intrinsic coercivity decreasing rapidly with increasing power beyond 20 W, because of a marked increase in remanent polarization.

  6. A comparative study of the annealing behavior of Cu(In,Ga)(S,Se){sub 2} based solar cells with an indium sulfide buffer layer, partly submitted to wet chemical treatments

    SciTech Connect

    Hönes, C.; Hackenberg, J.; Zweigart, S.; Wachau, A.; Hergert, F.; Siebentritt, S.

    2015-03-07

    Indium sulfide thin films deposited via thermal evaporation from compound source material have been successfully utilized as a cadmium free buffer layer for Cu(In,Ga)Se{sub 2} based solar cells. However, high efficiencies are only reached after an additional annealing step. In this work, the annealing behavior of Cu(In,Ga)(S,Se){sub 2} based indium sulfide buffered solar cells is compared to the annealing behavior of similar cells, which were submitted to wet chemical treatments partly containing cadmium ions. Upon annealing a significant improvement of the initial solar cell characteristics is observed for the untreated cell and is related to the increase of activation energy for the carrier recombination process and a decrease of the ideality factor within the one diode model. It is shown here that this improvement can also be achieved by wet treatments of the absorber prior to buffer layer deposition. Upon annealing these treated cells still gain in collection length but lose open circuit voltage, which is explained here within a model including a highly p-doped absorber surface layer and supported by simulations showing that a decrease in doping density of such a surface layer would lead to the observed effects.

  7. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4}-based thin-film photovoltaics

    SciTech Connect

    Varley, J. B.; Lordi, V.; He, X.; Rockett, A.

    2016-01-14

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se{sub 2} (CIGSe) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ∼400 °C. Cu is predicted to strongly favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ∼400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.

  8. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S)2 and Cu2ZnSn(Se,S)4-based thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Varley, J. B.; Lordi, V.; He, X.; Rockett, A.

    2016-01-01

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ˜400 °C. Cu is predicted to strongly favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ˜400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.

  9. Kinetic buffers.

    PubMed

    Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio

    2015-01-12

    This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment.

  10. Spark Plasma Sintering of AlN Ceramics and Surface Metallization by Refractory Metal of Ti, Nb, Mo, Ta or W at Low Temperature

    NASA Astrophysics Data System (ADS)

    Kai, Ayako; Johkoh, Naoji; Miki, Toshikatsu

    2003-06-01

    Aluminum nitride (AlN) powder with no additives was sintered successfully at 1200°C in low-pressure N2 gas using a spark plasma sintering (SPS) process. The density value of the resultant ceramic is as high as 95% of the theoretical one. No openings were left in the grain boundary. If AlN powder is sandwiched by refractory metal (Ti, Nb, Mo, Ta and W) foils during SPS, one obtains AlN ceramics metallized by the refractory metals even at 1200°C. The adhesion strength of Ti, Mo or W to AlN ceramics is sufficiently high, but that of Nb or Ta is low. The characterization of metal/AlN interfaces by X-ray diffractometory (XRD), scanning electron microscopy (SEM) and electron-probe microanalysis (EPMA) has revealed the formation of a thin reaction layer at the Ti/AlN interface, which may be the reason for the high adhesion strength of the Ti/AlN interface. The high adhesion strengths of Mo/AlN and W/AlN might also be associated with thinner metal/AlN reaction layers, which were unfortunately undetectable in our XRD data. The weak adhesion of Nb/AlN and Ta/AlN interfaces was elucidated by large differences in the thermal-expansion coefficient between metallic Nb or Ta and the AlN ceramics.

  11. Effect of double-sided CaTiO3 buffer layers on the electrical properties of CaCu3Ti4O12 films on Pt /Ti/SiO2/Si substrates

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shen, Mingrong; Li, Zhenya

    2006-11-01

    The CaCu3Ti4O12 (CCTO) films with single- and double-sided CaTiO3 (CTO) buffer layers were grown on Pt /Ti/SiO2/Si substrates by pulsed laser deposition at 650°C, which was lower than the normal deposition temperature of the CCTO films. The CTO layer was used as seeding layer to improve the crystallization of the CCTO films and could enhance the dielectric properties of the multilayered films. In addition, the multilayered films exhibited low frequency dielectric relaxation and reduced leakage current density, which could be ascribed to the improved interfacial characteristics between the CTO layer and the electrode. The conduction mechanisms of the single layered and multilayered films were also discussed briefly.

  12. Dielectric spectroscopy of Pb0.92La0.08Zr0.52Ti0.48O3 films on hastelloy substrates with and without LaNiO3 buffer layers

    NASA Astrophysics Data System (ADS)

    Narayanan, Manoj; Ma, Beihai; Balachandran, U. (Balu); Li, Wei

    2010-01-01

    Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films were deposited by sol-gel synthesis on Hastelloy substrates with and without a LaNiO3 buffer. The dielectric properties were measured as a function of temperature and frequency to study the cause of dielectric degradation in PLZT films directly on hastelloy substrates. These measurements indicated an increased charge carrier activity in films without a buffer layer. We propose that a region of the film closer to the substrate surface is more oxygen deficient than the bulk and is responsible for the degradation in properties rather than the presence of a low parasitic secondary-phase interfacial layer such as NiOx.

  13. 1,3,5-Tris(phenyl-2-benzimidazole)-benzene cathode buffer layer thickness dependence in solution-processable organic solar cell based on 1,4,8,11,15,18,22,25-octahexylphthalocyanine

    NASA Astrophysics Data System (ADS)

    De Roméo Banoukepa, Gilles; Fujii, Akihiko; Shimizu, Yo; Ozaki, Masanori

    2015-04-01

    Studies on the insertion effects of a cathode buffer layer on bulk heterojunction organic solar cell based on 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2) and 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM) by using 1,3,5-tris(phenyl-2-benzimidazole)-benzene (TPBi) as a cathode buffer layer material have been carried out. The external quantum efficiency and the short-circuit current markedly increased, resulting in the enhancement of the power conversion efficiency. The solar cell performance has been discussed from the atomic force microscopy, photoelectron yield spectroscopy and X-ray photoelectron spectroscopy measurements.

  14. Effects of substrate nitridation and buffer layer on the crystalline improvements of semi-polar InN(101¯3) crystal on GaAs(110) by MOVPE

    NASA Astrophysics Data System (ADS)

    Cho, H. C.; Togashi, R.; Murakami, H.; Kumagai, Y.; Koukitu, A.

    2013-03-01

    In this report, effects of ammonia nitridation and low temperature InN buffer growth were investigated to improve the crystalline quality of InN(101¯3) grown on GaAs(110) by metalorganic vapor phase epitaxy (MOVPE). InN(101¯3) single crystal including less than 0.1% of differently oriented domains was successfully grown by inserting low temperature InN buffer layer. The full width at half maximum (FWHM) values of InN(101¯3) epitaxial layer were drastically decreased from 89 arcmin to 55 arcmin after processing ammonia nitridation of GaAs(110) substrate surface. Furthermore, the FWHM value was decreased to 38 arcmin by increasing growth time, and the mechanism of dislocation annihilation happened during epitaxial growth was discussed.

  15. 2D SWIR image sensor with extended wavelength cutoff of 2.5 μm on InP/InGaAs epitaxial wafers with graded buffer layers

    NASA Astrophysics Data System (ADS)

    Mushini, Prabhu; Huang, Wei; Morales, Manuel; Brubaker, Robert; Nguyen, Thuc-Uyen; Dobies, Matt; Zhang, Wei; Gustus, William; Mathews, Gary; Endicter, Scott; Paik, Namwoong

    2016-05-01

    Two-dimensional photo detector arrays with a cutoff wavelength of 2.5 μm were fabricated on InP/InGaAs epitaxial wafers with graded buffer layers in a 320x256 geometry on a 12.5μm pitch. Novel growth and fabrication techniques were employed to fabricate these arrays and optimize the performance. The dark current of the detector was investigated for a wide range of temperatures. The fabricated detector array was mated with a ROIC and packaged with a multi-stage TEC and investigated further at the FPA level. The effect of the graded buffer layers on the sensor performance was investigated and the results were compared to other methods used to develop and fabricate 2D image sensors on extended wavelength materials.

  16. Spray-Pyrolyzed Three-Dimensional CuInS2 Solar Cells on Nanocrystalline-Titania Electrodes with Chemical-Bath-Deposited Inx(OH)ySz Buffer Layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy-Cuong; Mikami, Yuki; Tsujimoto, Kazuki; Ryo, Toshihiro; Ito, Seigo

    2012-10-01

    Three-dimensional (3D) compound solar cells with the structure of have been fabricated by spray pyrolysis deposition of CuInS2 and chemical-bath deposition of Inx(OH)ySz for the light absorber and buffer layer, respectively. The effect of deposition and annealing conditions of Inx(OH)ySz on the photovoltaic properties of 3D CuInS2 solar cells was investigated. Inx(OH)ySz annealed in air ambient showed a better cell performance than those annealed in nitrogen ambient and without annealing. The improvement of the performance of cells with Inx(OH)ySz buffer layers annealed in air ambient is due to the increase in oxide concentration in the buffer layers [confirmed by X-ray photoelectron spectroscopy (XPS) measurement]. Among cells with Inx(OH)ySz buffer layers deposited for 1, 1.5, 1.75, and 2 h, that with Inx(OH)ySz deposited for 1.75 h showed the best cell performance. The best cell performance was observed for Inx(OH)ySz deposited for 1.75 h with annealing at 300 °C for 30 min in air ambient, and cell parameters were 22 mA cm-2 short-circuit photocurrent density, 0.41 V open-circuit voltage, 0.35 fill factor, and 3.2% conversion efficiency.

  17. Light-soaking effects and capacitance profiling in Cu(In,Ga)Se2 thin-film solar cells with chemical-bath-deposited ZnS buffer layers.

    PubMed

    Yu, Hye-Jung; Lee, Woo-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Chung, Yong-Duck; Kim, Tae-Soo; Song, Jung-Hoon

    2016-12-07

    We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with chemical-bath deposited (CBD) ZnS buffer layers with different deposition times. The conversion efficiency and the fill factor of the CIGS solar cells reveal a strong dependence on the deposition time of CBD-ZnS films. In order to understand the detailed relationship between the heterojunction structure and the electronic properties of CIGS solar cells with different deposition times of CBD-ZnS films, capacitance-voltage (C-V) profiling measurements with additional laser illumination were performed. The light-soaking effects on CIGS solar cells with a CBD-ZnS buffer layer were investigated in detail using current density-voltage (J-V) and C-V measurements with several different lasers with different emission wavelengths. After light-soaking, the conversion efficiency changed significantly and the double diode feature in J-V curves disappeared. We explain that the major reason for the improvement of efficiency by light-soaking is due to the fact that negatively charged and highly defective vacancies in the CIGS absorber near the interface of CBD-ZnS/CIGS were formed and became neutral due to carriers generated by ultra-violet absorption in the buffer layer.

  18. A statistical approach for optimizing parameters for electrodeposition of indium (III) sulfide (In2S3) films, potential low-hazard buffer layers for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mughal, Maqsood Ali

    Clean and environmentally friendly technologies are centralizing industry focus towards obtaining long term solutions to many large-scale problems such as energy demand, pollution, and environmental safety. Thin film solar cell (TFSC) technology has emerged as an impressive photovoltaic (PV) technology to create clean energy from fast production lines with capabilities to reduce material usage and energy required to manufacture large area panels, hence, lowering the costs. Today, cost ($/kWh) and toxicity are the primary challenges for all PV technologies. In that respect, electrodeposited indium sulfide (In2S3) films are proposed as an alternate to hazardous cadmium sulfide (CdS) films, commonly used as buffer layers in solar cells. This dissertation focuses upon the optimization of electrodeposition parameters to synthesize In2S3 films of PV quality. The work describe herein has the potential to reduce the hazardous impact of cadmium (Cd) upon the environment, while reducing the manufacturing cost of TFSCs through efficient utilization of materials. Optimization was performed through use of a statistical approach to study the effect of varying electrodeposition parameters upon the properties of the films. A robust design method referred-to as the "Taguchi Method" helped in engineering the properties of the films, and improved the PV characteristics including optical bandgap, absorption coefficient, stoichiometry, morphology, crystalline structure, thickness, etc. Current density (also a function of deposition voltage) had the most significant impact upon the stoichiometry and morphology of In2S3 films, whereas, deposition temperature and composition of the solution had the least significant impact. The dissertation discusses the film growth mechanism and provides understanding of the regions of low quality (for example, cracks) in films. In2S3 films were systematically and quantitatively investigated by varying electrodeposition parameters including bath

  19. High transmittance cadmium oxysulfide Cd(S,O) buffer layer grown by triton X-100 mediated chemical bath deposition for thin-film heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Ballipinar, Faruk; Rastogi, A. C.

    2017-01-01

    Polycrystalline 100-190 nm Cd(S,O) n-type semiconductor thin films of high transparency in the visible range are deposited by a surfactant Triton X-100 mediated chemical bath deposition process. The crystalline structure of the films revealed by X-ray diffraction data shows a cubic-CdO phase signified by (111) and (200) planes alongside the (002), (220), and (110) planes from hexagonal-CdS. The invariance of the 2θ position of the (002) CdS diffraction is interpreted in terms of the growth of the composite film essentially by the formation of a dilute interstitial alloy of CdO and CdS. This is confirmed by Raman spectra which, besides the CdS 1LO and 2LO modes at 300 and 600 cm-1, also show Raman lines from CdO at 1098 cm-1 and 952 cm-1 assigned as overtone of 2LO phonon modes and 556 cm-1 due to band crossing between LO and TO modes of CdO. Optical spectra of Cd(S,O) films show a median transmittance of >85% compared to ˜70% for CdS films in the 550-1000 nm wavelength range. The Cd(S,O) films show optical bandgap varying from 2.34 to 2.26 eV with increasing CdO fraction but retain high sub-bandgap transmission and sharp band edge threshold. The Cd(S,O) films thus offer an alternative to the CdS buffer layer in the heterojunction solar cells, which has major shortcoming of poor stability and high sub-bandgap absorption. The photoluminescence spectra of Cd(S,O) films show three green bands, of which one is the near band edge transition at 511.5 nm, the same as in CdS, the second band at 526.0 nm that red shifted from the CdS position is due to shallow donor-acceptor defects arising from structural change due to CdO, and the third band at 543.6 nm (2.28 eV) originates from direct band transition in CdO. The growth mechanism of Cd(S,O) films is described, which invokes that the Triton X-100 molecule modifies the microenvironment around adsorbed [Cd(NH3)4]2+ species, thereby inducing two concurrent reactions, one with SH- species that cause CdS formation and the

  20. Eliminating stacking faults in semi-polar GaN by AlN interlayers

    SciTech Connect

    Dadgar, A.; Ravash, R.; Veit, P.; Schmidt, G.; Mueller, M.; Dempewolf, A.; Bertram, F.; Wieneke, M.; Christen, J.; Krost, A.

    2011-07-11

    We report on the elimination of stacking faults by the insertion of low-temperature AlN interlayers in nearly (1016) and (1104) oriented semi-polar GaN grown by metalorganic vapor phase epitaxy on Si(112) and Si(113), respectively. The elimination of these defects is visualized by cathodoluminescence (CL) as well as scanning transmission electron microscopy (STEM) and STEM-CL. A possible annihilation mechanism is discussed which leads to the conclusion that the elimination mechanism is most likely valid for all layers with (1101) surfaces, enabling heteroepitaxial semi- and non-polar GaN free from stacking faults.

  1. Kerr effect enhancement and corrosion resistance improvement by AlN and AlSiN films (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Z. Y.; Miao, X. S.; Liu, X. J.; Lin, G. Q.; Wan, D. F.; Hu, Y. S.

    1990-05-01

    RE-TM amorphous thin films with perpendicular magnetic anisotropy are promising for use in erasable optical recording media. In order to improve the drawback of easy oxidation and lower C/N of RE-TM films, some protective layers such as SiO, SiO2, ZnS, AlN, and Si3N4 films were studied.1,2 We have studied the Kerr effect enhancement and corrosion resistance improvement by AlN and AlSiN films. AlN and AlSiN films were prepared on glass, PC, and PMMA substrates by a rf magnetron sputtering system with three targets using low sputtering power. The films have a high refractive index (2-2.15), high optical transparency (over 90%), and high stability. The relation between optical properties and rf reactive sputtering conditions (Ar: N2 ratio, total pressure, sputtering power, sputtering time), composition, spectral transmittance, and uniformity of sputtering AlN and AlSiN films were studied. The Kerr rotation angle was up to 1.5° in AlN/TbFeCo/glass and AlSiN/TbFeCo/glass multilayer structures (laser is incident from air). We also studied AlN/TbFeCo/AlN/glass, AlN/TbFeCo/AlN/Al/glass, AlSiN/TbFeCo/AlSiN/glass and multilayer structure films. The results show that AlN and AlSiN films provide sufficient Kerr effect enhancement and superior corrosion resistance improvement to the RE-TM films. The microstructure of those films were also studied by JEM, XRD, and XPS.

  2. Preparation and properties of highly (100)-oriented Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} thin film prepared by rf magnetron sputtering with a PbO{sub x} buffer layer

    SciTech Connect

    Wu, Jiagang; Zhu, Jiliang; Xiao, Dingquan; Zhu, Jianguo; Tan, Junzhe; Zhang, Qinglei

    2007-05-01

    A method for fabrication of highly (100)-oriented Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} (PZT) thin films by rf magnetron sputtering with a special buffer of PbO{sub x} (RFMS-SBP) was developed. With this method, highly (100)-oriented Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} thin films were prepared on the PbO{sub x}/Pt(111)/Ti/SiO{sub 2}/Si(100) substrates, and the preferential (100) orientation of the Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film is 92%. The (100) orientation of the PbO{sub x} buffer layer leads to the (100) orientation of the PZT thin films, and the thickness of the buffer layer plays a significant role on the phase purity and electrical properties of the films. Highly (100)-oriented Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} thin films with proper thickness of PbO{sub x} buffer layer possess good electrical properties with larger remnant polarization P{sub r} (69.7 {mu}C/cm{sup 2}), lower coercive field E{sub c} (92.4 kV/cm), and good pyroelectric coefficient at room temperature (2.6x10{sup -8} C/cm{sup 2} K). The butterfly-shaped {epsilon}-E characteristic curve gives the evidence of the improved in-plane ferroelectric property in the films.

  3. Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4

    NASA Astrophysics Data System (ADS)

    Yan, Chang; Liu, Fangyang; Song, Ning; Ng, Boon K.; Stride, John A.; Tadich, Anton; Hao, Xiaojing

    2014-04-01

    The heterojunctions of different n-type buffers, i.e., CdS, Zn(O,S), and In2S3 on p-type Cu2ZnSnS4 (CZTS) were investigated using X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) Measurements. The band alignment of the heterojunctions formed between CZTS and the buffer materials was carefully measured. The XPS data were used to determine the Valence Band Offsets (VBO) of different buffer/CZTS heterojunctions. The Conduction Band Offset (CBO) was calculated indirectly by XPS data and directly measured by NEXAFS characterization. The CBO of the CdS/CZTS heterojunction was found to be cliff-like with CBOXPS = -0.24 ± 0.10 eV and CBONEXAFS = -0.18 ± 0.10 eV, whereas those of Zn(O,S) and In2S3 were found to be spike-like with CBOXPS = 0.92 ± 0.10 eV and CBONEXAFS = 0.87 ± 0.10 eV for Zn(O,S)/CZTS and CBOXPS = 0.41 ± 0.10 eV for In2S3/CZTS, respectively. The CZTS photovoltaic device using the spike-like In2S3 buffer was found to yield a higher open circuit voltage (Voc) than that using the cliff-like CdS buffer. However, the CBO of In2S3/CZTS is slightly higher than the optimum level and thus acts to block the flow of light-generated electrons, significantly reducing the short circuit current (Jsc) and Fill Factor (FF) and thereby limiting the efficiency. Instead, the use of a hybrid buffer for optimization of band alignment is proposed.

  4. Structural and morphological properties of GaN buffer layers grown by ammonia molecular beam epitaxy on SiC substrates for AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Corrion, A. L.; Poblenz, C.; Wu, F.; Speck, J. S.

    2008-05-01

    The impact of growth conditions on the surface morphology and structural properties of ammonia molecular beam epitaxy GaN buffers layers on SiC substrates was investigated. The threading dislocation (TD) density was found to decrease with decreasing NH{sub 3}:Ga flux ratio, which corresponded to an increase in surface roughness and reduction in residual compressive lattice mismatch stress. Furthermore, the dislocation density and compressive stress decreased for increasing buffer thickness. TD inclination was proposed to account for these observations. Optimized surface morphologies were realized at high NH{sub 3}:Ga flux ratios and were characterized by monolayer-high steps, spiral hillocks, and pyramidal mounds, with rms roughness of {approx}1.0 nm over 2x2 {mu}m{sup 2} atomic force microscopy images. Smooth surface morphologies were realized over a large range of growth temperatures and fluxes, and growth rates of up to 1 {mu}m/h were achieved. TD densities in the buffers as low as 3x10{sup 9} cm{sup -2} were demonstrated. These buffers were highly insulating and were used in recently reported AlGaN/GaN HEMTs with power densities of >11 W/mm at 4 and 10 GHz.

  5. Preliminary study on the effect of wear process on drug release of ALN-loaded UHMWPE

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Qu, Shuxin; Lin, Sunzhong; Huang, Jie; Fu, Rong; Zhou, Zhongrong

    2012-12-01

    Ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) for anti-osteolysis was developed in our previous study. As a potential material of artificial joints, ALN-loaded UHMWPE is subjected to friction and wear which probably affect the ALN release in vivo. This study aims to explore the influence of friction and wear on the ALN release rate. For comparison, the specimens of control group, immersed motionlessly in distilled water, were not applied any friction. The morphological change of worn surface of ALN-loaded UHMWPE was observed through an independent wear test and was compared with that of control UHMWPE. The ALN release rate in the friction and wear process was higher than that of non-friction test. The cumulative mass of ALN increased slowly at the onset of wear process and then speeded up. The fibrils-like wear debris accumulated on the worn surface of ALN-loaded UHMWPE but did not appear on that of UHMWPE. The micro-pores formed during wear process, were probably favorable of the dissolution of ALN. It indicated that the ALN release of ALN-loaded UHMWPE was affected by the friction and wear. The frictional factors should be taken into account in predicting the ALN release rate of ALN-loaded UHMWPE.

  6. Behavior of Photocarriers in the Light-Induced Metastable State in the p-n Heterojunction of a Cu(In,Ga)Se2 Solar Cell with CBD-ZnS Buffer Layer.

    PubMed

    Lee, Woo-Jung; Yu, Hye-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Yoo, Jisu; Yi, Yeonjin; Song, Jung-Hoon; Chung, Yong-Duck

    2016-08-31

    We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the CIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance.

  7. Dependence of Device Characteristics of Bulk-Heterojunction Organic Thin-Film Solar Cells on Concentration of Glycerol and Sorbitol Addition in Pedot:. PSS Solutions for Fabricating Buffer Layers

    NASA Astrophysics Data System (ADS)

    Yamaki, Yusuke; Marumoto, Kazuhiro; Fujimori, Takuya; Mori, Tatsuo

    We have investigated the dependence of device characteristics of bulk-heterojunction organic thin-film solar cells on the concentration of glycerol and sorbitol addition in poly(3,4-ethylenedioxy thiophene):poly(4-styrene sulfonate) (PEDOT:PSS) solutions for fabricating buffer layers. The device structure is ITO/buffer/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methylester (PCBM)/Al. Glycerol addition is effective for increasing power conversion efficiency (PCE) from 1.25 to 1.41% because of the increase in short-circuit current density (Jsc) without decreasing open-circuit voltage (Voc). On the other hand, sorbitol addition decreases PCE from 1.25 to 1.04%, owing to the decrease in Voc. This difference in Voc behavior is ascribed to different work function of PEDOT:PSS with glycerol and sorbitol treatment.

  8. Elimination of AlGaN epilayer cracking by spatially patterned AlN mask

    NASA Astrophysics Data System (ADS)

    Sarzyński, Marcin; Kryśko, Marcin; Targowski, Grzegorz; Czernecki, Robert; Sarzyńska, Agnieszka; Libura, Adam; Krupczyński, Wiktor; Perlin, Piotr; Leszczyński, Michał

    2006-03-01

    The inherent problem in III-nitride technology is the cracking of AlGaN layers that results from lattice mismatch between AlGaN and GaN. In case of thin substrates (30-90μm), such as, bulk GaN grown by the high-pressure/high-temperature method, the bowing of AlGaN /GaN strained structures becomes an additional problem. To eliminate cracking and bowing, AlGaN layers were grown on GaN substrates with an AlN mask patterned to form 3-15μm wide windows. In the 3μm window, the AlGaN layer was not cracked, although its thickness and Al composition exceeded critical values for growth on nonpatterned substrates. Dislocation density in the windows was of 5×106/cm2.

  9. Plasma-assisted molecular beam epitaxy of Al(Ga)N layers and quantum well structures for optically pumped mid-UV lasers on c-Al2O3

    NASA Astrophysics Data System (ADS)

    Ivanov, S. V.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Yagovkina, M. A.; Rzheutskii, N. V.; Lutsenko, E. V.; Jmerik, V. N.

    2014-06-01

    This paper reports on novel approaches developed for plasma-assisted molecular beam epitaxy of Al-rich AlGaN epilayers and quantum well heterostructures on c-sapphire, which allowed us to fabricate low-threshold optically-pumped separate confinement heterostructure lasers emitting in the mid-UV spectral range (258-290 nm) with the threshold power density below 600 kW cm-2. The optimum buffer structure has been developed which provides lowering the near-surface threading dislocation density down to 1.5 × 108 and 3 × 109 cm-2 for screw and edge types, respectively, and improving the surface morphology (rms < 0.7 nm at the area of 3 × 3 μm-2). It comprises the high-temperature (780 °C) migration enhanced epitaxy growth of a (30-70) nm thick AlN nucleation layer on c-Al2O3, followed by a 2 μm thick AlN buffer grown under the metal-rich conditions in the Al-flux modulation mode and containing several (up to 6) ultra-thin (˜3 nm) GaN interlayers grown at N-rich conditions. Proper strain engineering in AlGaN single quantum well heterostructure grown atop of the AlN buffer layer enables one to preserve dominant TE polarization of both spontaneous and stimulated emission even at shortest obtained wavelength (258 nm). The threshold power density of stimulated emission as low as 150 kW cm-2 at 289 nm for a single quantum well laser structure has been demonstrated.

  10. Towards III-V solar cells on Si: Improvement in the crystalline quality of Ge-on-Si virtual substrates through low porosity porous silicon buffer layer and annealing

    SciTech Connect

    Calabrese, Gabriele; Baricordi, Stefano; Bernardoni, Paolo; Fin, Samuele; Guidi, Vincenzo; Vincenzi, Donato

    2014-09-26

    A comparison between the crystalline quality of Ge grown on bulk Si and on a low porosity porous Si (pSi) buffer layer using low energy plasma enhanced chemical vapor deposition is reported. Omega/2Theta coupled scans around the Ge and Si (004) diffraction peaks show a reduction of the Ge full-width at half maximum (FWHM) of 22.4% in presence of the pSi buffer layer, indicating it is effective in improving the epilayer crystalline quality. At the same time atomic force microscopy analysis shows an increase in root means square roughness for Ge grown on pSi from 38.5 nm to 48.0 nm, as a consequence of the larger surface roughness of pSi compared to bulk Si. The effect of 20 minutes vacuum annealing at 580°C is also investigated. The annealing leads to a FWHM reduction of 23% for Ge grown on Si and of 36.5% for Ge on pSi, resulting in a FWHM of 101 arcsec in the latter case. At the same time, the RMS roughness is reduced of 8.8% and of 46.5% for Ge grown on bulk Si and on pSi, respectively. The biggest improvement in the crystalline quality of Ge grown on pSi with respect to Ge grown on bulk Si observed after annealing is a consequence of the simultaneous reorganization of the Ge epilayer and the buffer layer driven by energy minimization. A low porosity buffer layer can thus be used for the growth of low defect density Ge on Si virtual substrates for the successive integration of III-V multijunction solar cells on Si. The suggested approach is simple and fast –thus allowing for high throughput-, moreover is cost effective and fully compatible with subsequent wafer processing. Finally it does not introduce new chemicals in the solar cell fabrication process and can be scaled to large area silicon wafers.

  11. Fluorescence of Er3+:AlN Polycrystalline Ceramic

    DTIC Science & Technology

    2012-01-01

    using heating techniques and sintering aids such as hot pressing with Ca(NO3)2•4H2O [19], spark plasma sintering with CaF2 [20], and pressureless...Cleveland, OH, U.S.A.) to determine the levels of Er before and after sintering . The starting powders (measured using Inductively Coupled Plasma ...optical spectroscopy of Er3+ doped into bulk AlN ceramic. The material was prepared via hot press sintering of AlN with Er2O3 and [NH4][ErF4], which

  12. Fabrication of Inverted Bulk-Heterojunction Organic Solar Cell with Ultrathin Titanium Oxide Nanosheet as an Electron-Extracting Buffer Layer

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Maruyama, Yasutake; Fukuda, Katsutoshi

    2012-02-01

    The contributions and deposition conditions of ultrathin titania nanosheet (TN) crystallites were studied in an inverted bulk-heterojunction (BHJ) cell in indium tin oxide (ITO)/titania nanosheet/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic devices. Only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film deposited by the layer-by-layer deposition technique effectively decreased the leakage current and increased both open circuit voltage (VOC) and fill factor (FF), and power conversion efficiency (η) was increased nearly twofold by the insertion of two TN layers. The deposition of additional TN layers caused the reduction in FF, and the abnormal S-shaped curves above VOC for the devices with three and four TN layers were ascribed to the interfacial potential barrier at the ITO/TN interface and the series resistance across the multilayers of TN and PDDA. The performance of the BHJ cell with TN was markedly improved, and the S-shaped curves were eliminated following the the insertion of anatase-phase titanium dioxide between the ITO and TN layers owing to the decrease in the interfacial potential barrier.

  13. Non-activation ZnO array as a buffering layer to fabricate strongly adhesive metal-organic framework/PVDF hollow fiber membranes.

    PubMed

    Li, Wanbin; Meng, Qin; Li, Xiaonian; Zhang, Congyang; Fan, Zheng; Zhang, Guoliang

    2014-09-04

    A non-activation (NA) ZnO array is directly grown on a PVDF hollow fiber membrane. The defect-free MOF layers can be synthesized easily on the NA-ZnO array without any activation procedure. The array and MOF layers are strongly adhered to the hollow fiber membrane. The prepared ZIF membranes exhibit excellent gas separation performances.

  14. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    SciTech Connect

    Krishnaprasad, P. S. E-mail: mkj@cusat.ac.in; Jayaraj, M. K. E-mail: mkj@cusat.ac.in; Antony, Aldrin; Rojas, Fredy

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BST thin films show significantly improved tunable performance over polycrystalline thin films.

  15. Characterization of Pt/Bi3.15Nd0.85Ti3O12/HfO2/Si structure using a hafnium oxide as buffer layer for ferroelectric-gate field effect transistors

    NASA Astrophysics Data System (ADS)

    Xie, Dan; Luo, Yafeng; Han, Xueguang; Ren, Tianling; Liu, Litian

    2009-12-01

    We have investigated the structural and electrical properties of metal-ferroelectric-insulator-semiconductor (MFIS) capacitors with Bi3.15Nd0.85Ti3O12 (BNdT) thin film deposited on Si and hafnium oxide (HfO2)/Si substrates. Microstructural analysis reveals the formation of well-crystallized BNdT perovskite film and good interface between BNdT film and HfO2 buffer layer. Pt/BNdT/HfO2/Si structure exhibits a memory window of 1.12 V at an operation voltage of 3.5 V. The width of memory window for the MFIS structure varies with increasing thickness of HfO2 layer, and 4-nm-thickness is optimum. The results from the fatigue test indicate a slight degradation of the memory window after 1010 switching cycles. These properties are encouraging for the development of ferroelectric memory transistors.

  16. Observation of hole injection boost via two parallel paths in Pentacene thin-film transistors by employing Pentacene: 4, 4″-tris(3-methylphenylphenylamino) triphenylamine: MoO{sub 3} buffer layer

    SciTech Connect

    Yan, Pingrui; Liu, Ziyang; Liu, Dongyang; Wang, Xuehui; Yue, Shouzhen; Zhao, Yi; Zhang, Shiming

    2014-11-01

    Pentacene organic thin-film transistors (OTFTs) were prepared by introducing 4, 4″-tris(3-methylphenylphenylamino) triphenylamine (m-MTDATA): MoO{sub 3}, Pentacene: MoO{sub 3}, and Pentacene: m-MTDATA: MoO{sub 3} as buffer layers. These OTFTs all showed significant performance improvement comparing to the reference device. Significantly, we observe that the device employing Pentacene: m-MTDATA: MoO{sub 3} buffer layer can both take advantage of charge transfer complexes formed in the m-MTDATA: MoO{sub 3} device and suitable energy level alignment existed in the Pentacene: MoO{sub 3} device. These two parallel paths led to a high mobility, low threshold voltage, and contact resistance of 0.72 cm{sup 2}/V s, −13.4 V, and 0.83 kΩ at V{sub ds} = − 100 V. This work enriches the understanding of MoO{sub 3} doped organic materials for applications in OTFTs.

  17. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xenogiannopoulou, E.; Tsipas, P.; Aretouli, K. E.; Tsoutsou, D.; Giamini, S. A.; Bazioti, C.; Dimitrakopulos, G. P.; Komninou, Ph.; Brems, S.; Huyghebaert, C.; Radu, I. P.; Dimoulas, A.

    2015-04-01

    Atomically-thin, inherently 2D semiconductors offer thickness scaling of nanoelectronic devices and excellent response to light for low-power versatile applications. Using small exfoliated flakes, advanced devices and integrated circuits have already been realized, showing great potential to impact nanoelectronics. Here, high-quality single-crystal MoSe2 is grown by molecular beam epitaxy on AlN(0001)/Si(111), showing the potential for scaling up growth to low-cost, large-area substrates for mass production. The MoSe2 layers are epitaxially aligned with the aluminum nitride (AlN) lattice, showing a uniform, smooth surface and interfaces with no reaction or intermixing, and with sufficiently high band offsets. High-quality single-layer MoSe2 is obtained, with a direct gap evidenced by angle-resolved photoemission spectroscopy and further confirmed by Raman and intense room temperature photoluminescence. The successful growth of high-quality MoSe2/Bi2Se3 multilayers on AlN shows promise for novel devices exploiting the non-trivial topological properties of Bi2Se3.Atomically-thin, inherently 2D semiconductors offer thickness scaling of nanoelectronic devices and excellent response to light for low-power versatile applications. Using small exfoliated flakes, advanced devices and integrated circuits have already been realized, showing great potential to impact nanoelectronics. Here, high-quality single-crystal MoSe2 is grown by molecular beam epitaxy on AlN(0001)/Si(111), showing the potential for scaling up growth to low-cost, large-area substrates for mass production. The MoSe2 layers are epitaxially aligned with the aluminum nitride (AlN) lattice, showing a uniform, smooth surface and interfaces with no reaction or intermixing, and with sufficiently high band offsets. High-quality single-layer MoSe2 is obtained, with a direct gap evidenced by angle-resolved photoemission spectroscopy and further confirmed by Raman and intense room temperature photoluminescence. The

  18. AlN Bandgap Temperature Dependence from its Optical Properties

    DTIC Science & Technology

    2008-06-07

    In the present work we report on the AlN gap energy temperature dependence studied through the optical properties of high-quality large bulk AlN...evolution of these features up to room temperature and inferred the gap energy temperature dependence using the exciton binding energy obtained by our group in the past.

  19. Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AlN Lamb wave resonators

    NASA Astrophysics Data System (ADS)

    Sun, Chengliang; Soon, Bo Woon; Zhu, Yao; Wang, Nan; Loke, Samuel Pei Hao; Mu, Xiaojing; Tao, Jifang; Gu, Alex Yuandong

    2015-06-01

    An AlN piezoelectric Lamb-wave resonator, which is excited by two dimensional electric field, is reported in this paper. Rhombus-shape electrodes are arranged on AlN thin film in a checkered formation. When out-of-phase alternating currents are applied to adjacent checkers, two dimensional acoustic Lamb waves are excited in the piezoelectric layer along orthogonal directions, achieving high electromechanical coupling coefficient, which is comparable to film bulk acoustic resonators. The electromechanical coupling coefficient of the 285.3 MHz resonator presented in this paper is 5.33%, which is the highest among AlN based Lamb-wave resonators reported in literature. Moreover, the spurious signal within a wide frequency range is significantly suppressed to be 90% lower than that of the resonance mode. By varying the electrode dimension and inter-electrode distance, resonators having different resonant frequencies can be fabricated on a single wafer, making single-chip broadband filters, duplexers, and multiplexers possible.

  20. Step buffer layer of Al0.25Ga0.75N/Al0.08Ga0.92N on P-InAlN gate normally-off high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Shrestha, Niraj M.; Li, Yiming; Chang, E. Y.

    2016-07-01

    Normally-off AlGaN/GaN high electron mobility transistors (HEMTs) are indispensable devices for power electronics as they can greatly simplify circuit designs in a cost-effective way. In this work, the electrical characteristics of p-type InAlN gate normally-off AlGaN/GaN HEMTs with a step buffer layer of Al0.25Ga0.75N/Al0.1Ga0.9N is studied numerically. Our device simulation shows that a p-InAlN gate with a step buffer layer allows the transistor to possess normally-off behavior with high drain current and high breakdown voltage simultaneously. The gate modulation by the p-InAlN gate and the induced holes appearing beneath the gate at the GaN/Al0.25Ga0.75N interface is because a hole appearing in the p-InAlN layer can effectively vary the threshold voltage positively. The estimated threshold voltage of the normally-off HEMTs explored is 2.5 V at a drain bias of 25 V, which is 220% higher than the conventional p-AlGaN normally-off AlGaN/GaN gate injection transistor (GIT). Concurrently, the maximum current density of the explored HEMT at a drain bias of 10 V slightly decreases by about 7% (from 240 to 223 mA mm-1). At a drain bias of 15 V, the current density reached 263 mA mm-1. The explored structure is promising owing to tunable positive threshold voltage and the maintenance of similar current density; notably, its breakdown voltage significantly increases by 36% (from 800 V, GIT, to 1086 V). The engineering findings of this study indicate that novel p-InAlN for both the gate and the step buffer layer can feature a high threshold voltage, large current density and high operating voltage for advanced AlGaN/GaN HEMT devices.