Science.gov

Sample records for alpha 1-adrenergic receptor

  1. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  2. Alpha 1 adrenergic receptors in canine lower genitourinary tissues: insight into development and function

    SciTech Connect

    Shapiro, E.; Lepor, H.

    1987-10-01

    Radioligand receptor binding methods were used to characterize the alpha 1-adrenergic receptor in the bladder body, bladder base, prostate and urethra of the male dog. Saturation experiments were performed in tissue homogenates using (/sup 125/iodine)-Heat, an alpha 1-adrenergic antagonist of high specific activity (2,200 Ci. per mmol.). The equilibrium dissociation constant Kd for (/sup 125/iodine)-Heat binding in the bladder body (0.56 pM.), bladder base (0.81 +/- 0.11 pM.), prostate (0.86 +/- 0.19 pM.) and urethra (0.55 pM.) was similar, suggesting homogeneity of alpha 1-adrenergic binding sites in lower genitourinary tissues. The receptor density in the bladder body, bladder base, prostate and urethra, expressed as fmol. per mg. wet weight, was 0.22 +/- 0.02, 0.82 +/- 0.09, 0.55 +/- 0.06 and 0.27 +/- 0.06, respectively (mean +/- standard error of mean). Competitive binding experiments with (/sup 125/iodine)-Heat and unlabeled prazosin and clonidine confirmed the selectivity of Heat for alpha 1-adrenergic binding sites. Anatomical dissections have revealed that a major component of the smooth muscle of the bladder base and prostate originates from the ureter, whereas a major component of the smooth muscle of the urethra originates from the bladder. The measured alpha 1-adrenergic receptor densities support these developmental theories.

  3. Identification of alpha1-adrenergic receptors and their involvement in phosphoinositide hydrolysis in the frog heart.

    PubMed

    Lazou, Antigone; Gaitanaki, Catherine; Vaxevanellis, Spiros; Pehtelidou, Anastasia

    2002-07-01

    The aim of this study was to characterize alpha(1)-adrenergic receptors in frog heart and to examine their related signal transduction pathway. alpha(1)-Adrenergic binding sites were studied in purified heart membranes using the specific alpha(1)-adrenergic antagonist [(3)H]prazosin. Analysis of the binding data indicated one class of binding sites displaying a K(d) of 4.19 +/- 0.56 nM and a B(max) of 14.66 +/- 1.61 fmol/mg original wet weight. Adrenaline, noradrenaline, or phenylephrine, in the presence of propranolol, competed with [(3)H]prazosin binding with a similar potency and a K(i) value of about 10 microM. The kinetics of adrenaline binding was closely related to its biological effect. Adrenaline concentration dependently increased the production of inositol phosphates in the heart in the presence or absence of propranolol. Maximal stimulation was about 8.5-fold, and the half-maximum effective concentration was 30 and 21 microM in the absence and presence of propranolol, respectively. These data clearly show that alpha(1)-adrenergic receptors are coupled to the phosphoinositide hydrolysis in frog heart. To our knowledge, this is the first direct evidence supporting the presence of functional alpha(1)-adrenergic receptors in the frog heart.

  4. Alpha-1 adrenergic receptor: Binding and phosphoinositide breakdown in human myometrium

    SciTech Connect

    Breuiller-Fouche, M.; Doualla-Bell Kotto Maka, F.; Geny, B.; Ferre, F. )

    1991-07-01

    Alpha-1 adrenergic receptors were examined in both inner and outer layers of human pregnant myometrium using radioligand binding of (3H)prazosin. (3H)prazosin bound rapidly and reversibly to a single class of high affinity binding sites in myometrial membrane preparations. Scatchard analysis gave similar values of equilibrium dissociation constants in both myometrial layers. In contrast, more alpha-1 adrenergic receptors were detected in the outer layer than in the inner layer. Antagonist inhibited (3H)prazosin binding with an order of potency of prazosin greater than phentolamine greater than idazoxan. Competition experiments have also revealed that a stable guanine nucleotide decreases the apparent affinity of norepinephrine for myometrial (3H)prazosin binding sites. The functional status of these alpha-1 adrenergic receptors was also assessed by measuring the norepinephrine-induced accumulation of inositol phosphates in myometrial tissue. Norepinephrine produced a concentration-dependent accumulation of inositol phosphates in both myometrial layers. However, norepinephrine-induced increases in inositol 1,4,5-triphosphate were only observed in the outer layer. These results indicate that alpha-1 adrenergic receptors in human myometrium at the end of pregnancy are linked to phosphoinositide hydrolysis and that this response occurs mainly in the outer layer.

  5. Altered hepatic vasopressin and alpha 1-adrenergic receptors after chronic endotoxin infusion

    SciTech Connect

    Roth, B.L.; Spitzer, J.A.

    1987-05-01

    Sepsis and septic shock are complicated by a number of hemodynamic and metabolic aberrations. These include catecholamine refractoriness and altered glucose metabolism. Recently, a nonshock rat model of continuous endotoxin infusion via an implanted osmotic pump was developed that reproduces some of the metabolic and cardiovascular findings of human sepsis. By using this model, we have found a decreased number of hepatic plasma membrane alpha 1-adrenergic and (Arg8)vasopressin receptors in rats continuously infused with endotoxin. There was a significant decrease in (/sup 3/H)prazosin (35 +/- 7%) and (/sup 3/H) (Arg8)vasopressin (43 +/- 8%) receptors after 30 h of continuous endotoxin infusion with no change in affinity. The ability of norepinephrine to form the high-affinity complex with alpha 1-adrenergic receptors was not altered after chronic endotoxin infusion. The results are consistent with the concept that alterations in receptor number might underlie certain of the metabolic consequences of chronic sepsis.

  6. Recent advances in the molecular pharmacology of the alpha 1-adrenergic receptors.

    PubMed

    Guarino, R D; Perez, D M; Piascik, M T

    1996-08-01

    This review is intended to discuss recent developments in the molecular pharmacology of the alpha 1-adrenergic receptor (alpha 1-AR) subtypes. After a brief historical development, we will focus on the more contemporary issues having to do with this receptor family. Emphasis will be put on recent data regarding the cloning, nomenclature, signalling mechanisms, and genomic organization of the alpha 1-AR subtypes. We will also highlight recent mutational studies that identify key amino acid residues involved in ligand binding, as well as the role of the alpha 1-AR subtypes in regulating physiologic processes.

  7. Identification and characterization of alpha 1 adrenergic receptors in the canine prostate using (/sup 125/I)-Heat

    SciTech Connect

    Lepor, H.; Baumann, M.; Shapiro, E.

    1987-11-01

    We have recently utilized radioligand receptor binding methods to characterize muscarinic cholinergic and alpha adrenergic receptors in human prostate adenomas. The primary advantages of radioligand receptor binding methods are that neurotransmitter receptor density is quantitated, the affinity of unlabelled drugs for receptor sites is determined, and receptors can be localized using autoradiography on slide-mounted tissue sections. Recently, (/sup 125/I)-Heat, a selective and high affinity ligand with high specific activity (2200 Ci/mmole) has been used to characterize alpha 1 adrenergic receptors in the brain. In this study alpha 1 adrenergic receptors in the dog prostate were characterized using (/sup 125/I)-Heat. The Scatchard plots were linear indicating homogeneity of (/sup 125/I)-Heat binding sites. The mean alpha 1 adrenergic receptor density determined from these Scatchard plots was 0.61 +/- 0.07 fmol/mg. wet wt. +/- S.E.M. The binding of (/sup 125/I)-Heat to canine prostate alpha 1 adrenergic binding sites was of high affinity (Kd = 86 +/- 19 pM). Steady state conditions were reached following an incubation interval of 30 minutes and specific binding and tissue concentration were linear within the range of tissue concentrations assayed. The specificity of (/sup 125/I)-Heat for alpha 1 adrenergic binding sites was confirmed by competitive displacement assays using unlabelled clonidine and prazosin. Retrospective analysis of the saturation experiments demonstrated that Bmax can be accurately calculated by determining specific (/sup 125/I)-Heat binding at a single ligand concentration. (/sup 125/I)-Heat is an ideal ligand for studying alpha 1 adrenergic receptors in the prostate and its favorable properties should facilitate the autoradiographic localization of alpha 1 adrenergic receptors in the prostate.

  8. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    SciTech Connect

    Weiland, N.G.; Wise, P.M.

    1987-11-01

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silastic capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.

  9. Novel alpha1-adrenergic receptor signaling pathways: secreted factors and interactions with the extracellular matrix.

    PubMed

    Shi, Ting; Duan, Zhong-Hui; Papay, Robert; Pluskota, Elzbieta; Gaivin, Robert J; de la Motte, Carol A; Plow, Edward F; Perez, Dianne M

    2006-07-01

    alpha1-Adrenergic receptor (alpha1-ARs) subtypes (alpha1A, alpha1B, and alpha1D) regulate multiple signal pathways, such as phospholipase C, protein kinase C (PKC), and mitogen-activated protein kinases. We employed oligonucleotide microarray technology to explore the effects of both short- (1 h) and long-term (18 h) activation of the alpha1A-AR to enable RNA changes to occur downstream of earlier well characterized signaling pathways, promoting novel couplings. Polymerase chain reaction (PCR) studies confirmed that PKC was a critical regulator of alpha1A-AR-mediated gene expression, and secreted interleukin (IL)-6 also contributed to gene expression alterations. We next focused on two novel signaling pathways that might be mediated through alpha1A-AR stimulation because of the clustering of gene expression changes for cell adhesion/motility (syndecan-4 and tenascin-C) and hyaluronan (HA) signaling. We confirmed that alpha1-ARs induced adhesion in three cell types to vitronectin, an interaction that was also integrin-, FGF7-, and PKC-dependent. alpha1-AR activation also inhibited cell migration, which was integrin- and PKC-independent but still required secretion of FGF7. alpha1-AR activation also increased the expression and deposition of HA, a glycosaminoglycan, which displayed two distinct structures: pericellular coats and long cable structures, as well as increasing expression of the HA receptor, CD44. Long cable structures of HA can bind leukocytes, which this suggests that alpha1-ARs may be involved in proinflammatory responses. Our results indicate alpha1-ARs induce the secretion of factors that interact with the extracellular matrix to regulate cell adhesion, motility and proinflammatory responses through novel signaling pathways.

  10. Modulation of hematopoiesis via alpha 1-adrenergic receptors on bone marrow cells.

    PubMed

    Maestroni, G J; Conti, A

    1994-03-01

    We have recently demonstrated that adrenergic agents can affect hematopoiesis after syngeneic bone marrow transplantation in mice. In particular, chemical sympathectomy by 6-hydroxydopamine (6-OHDA) and/or administration of the alpha 1-adrenergic antagonist prazosin were shown to increase the concentration of blood granulocytes, platelets, and bone marrow colony-forming units-granulocyte/macrophage (CFU-GM), and to induce a granulocytic hyperplasia of the spleen. Here we show that prazosin can also enhance myelopoiesis and platelet formation in normal mice. Furthermore, noradrenaline and the alpha 1-adrenergic agonist methoxamine could directly inhibit the in vitro growth of GM-CFU. The effect of noradrenaline was counteracted by prazosin and by other alpha-adrenergic antagonists such as phentolamine and yohimbine, in the following order of potency: prazosin > phentolamine > yohimbine. In line with these results, we were able to demonstrate that 3H-prazosin binds specifically to both bone marrow cell membranes and intact bone marrow cells. Scatchard analysis of the binding to intact cells revealed the presence of two binding sites. A kd of 0.98 +/- 0.32 nM and a B max of 5 +/- 2.9 fM/2 x 10(6) cells characterized the higher affinity site, while the lower affinity site displayed a kd of 55.9 +/- 8.2 nM and a B max of 44 +/- 7.7 fM/mg protein. These saturation studies, together with competition experiments to evaluate the ability of various adrenergic compounds to displace 3H-prazosin binding, classified the higher affinity site as an alpha 1-adrenergic receptor. The remaining low affinity binding site remains to be characterized. Furthermore, separation of bone marrow cells by counterflow centrifugal elutriation (CCE) showed that the high-affinity binding is due to a lymphoid/stem cell fraction with no blasts and no GM-CFU progenitors. The low-affinity site was apparent on the rotor-off fraction, which was enriched with GM-CFU progenitor cells. These findings

  11. Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners?

    PubMed

    Hague, Chris; Chen, Zhongjian; Uberti, Michelle; Minneman, Kenneth P

    2003-12-12

    Alpha(1)-adrenergic receptors are one of the three subfamilies of G protein coupled receptors activated by epinephrine and norepinephrine to control important functions in many target organs. Three human subtypes (alpha(1A), alpha(1B), alpha(1D)) are derived from separate genes and are highly homologous in their transmembrane domains but not in their amino or carboxyl termini. Recent advances in our understanding of these "non-identical triplets" include development of knockout mice lacking single or multiple subtypes, new insights into subcellular localization and trafficking, identification of allosteric modulators, and increasing evidence for an important role in brain function. Although all three subtypes activate the same G(q/11) signaling pathway, they also appear to interact with different protein binding partners. Recent evidence suggests they may also form dimers, and may initiate independent signals through pathways yet to be clearly elucidated. Thus, this subfamily represents a common phenomenon of a group of similar but non-identical receptor subtypes activated by the same neurotransmitter, whose individual functional roles remain to be clearly established.

  12. Alpha-1 adrenergic receptors gate rapid orientation-specific reduction in visual discrimination.

    PubMed

    Treviño, Mario; Frey, Sebastian; Köhr, Georg

    2012-11-01

    Prolonged imbalance in sensory experience leads to dramatic readjustments in cortical representation. Neuromodulatory systems play a critical role in habilitating experience-induced plasticity and regulate memory processes in vivo. Here, we show that a brief period of intense patterned visual stimulation combined with systemic activation of alpha-1 adrenergic neuromodulator receptors (α(1)-ARs) leads to a rapid, reversible, and NMDAR-dependent depression of AMPAR-mediated transmission from ascending inputs to layer II/III pyramidal cells in the visual cortex of young and adult mice. The magnitude of this form of α(1)-AR long-term depression (LTD), measured ex vivo with miniature EPSC recordings, is graded by the number of orientations used during visual experience. Moreover, behavioral tests of visual function following the induction of α(1)-AR LTD reveal that discrimination accuracy of sinusoidal drifting gratings is selectively reduced at high spatial frequencies in a reversible, orientation-specific, and NMDAR-dependent manner. Thus, α(1)-ARs enable rapid cortical synaptic depression which correlates with an orientation-specific decrease in visual discrimination. These findings contribute to our understanding of how adrenergic receptors interact with neuronal networks in response to changes in active sensory experience to produce adaptive behavior.

  13. Alpha-1 Adrenergic Receptors Gate Rapid Orientation-Specific Reduction in Visual Discrimination

    PubMed Central

    Frey, Sebastian; Köhr, Georg

    2012-01-01

    Prolonged imbalance in sensory experience leads to dramatic readjustments in cortical representation. Neuromodulatory systems play a critical role in habilitating experience-induced plasticity and regulate memory processes in vivo. Here, we show that a brief period of intense patterned visual stimulation combined with systemic activation of alpha-1 adrenergic neuromodulator receptors (α1-ARs) leads to a rapid, reversible, and NMDAR-dependent depression of AMPAR-mediated transmission from ascending inputs to layer II/III pyramidal cells in the visual cortex of young and adult mice. The magnitude of this form of α1-AR long-term depression (LTD), measured ex vivo with miniature EPSC recordings, is graded by the number of orientations used during visual experience. Moreover, behavioral tests of visual function following the induction of α1-AR LTD reveal that discrimination accuracy of sinusoidal drifting gratings is selectively reduced at high spatial frequencies in a reversible, orientation-specific, and NMDAR-dependent manner. Thus, α1-ARs enable rapid cortical synaptic depression which correlates with an orientation-specific decrease in visual discrimination. These findings contribute to our understanding of how adrenergic receptors interact with neuronal networks in response to changes in active sensory experience to produce adaptive behavior. PMID:22120418

  14. Nonlinear relationship between alpha 1-adrenergic receptor occupancy and norepinephrine-stimulated calcium flux in cultured vascular smooth muscle cells

    SciTech Connect

    Colucci, W.S.; Brock, T.A.; Gimbrone, M.A. Jr.; Alexander, R.W.

    1985-05-01

    To determine the relationship between vascular alpha 1-adrenergic receptor occupancy and receptor-coupled calcium flux, the authors have studied (/sup 3/H)prazosin binding and l-norepinephrine-induced /sup 45/Ca efflux in cultured vascular smooth muscle cells isolated from the rabbit aorta. In a crude cellular homogenate, (/sup 3/H)prazosin bound to a single high affinity site, whereas l-norepinephrine (NE) binding was best described by a two-site model. NE-stimulated /sup 45/Ca efflux was concentration-dependent (EC/sup 50/ = 108 nM) and potently inhibited by prazosin (IC/sup 50/ = 0.15 nM). For the total receptor pool identified by (/sup 3/H)prazosin binding, the relationship between receptor occupancy by NE and NE-stimulated /sup 45/Ca efflux was markedly nonlinear, such that 50% of maximum NE-stimulated efflux occurred with occupancy of only approximately 7% of receptors. These two experimental approaches provide direct evidence for the presence in cultured rabbit aortic smooth muscle cells of a sizable pool of alpha 1-adrenergic receptors in excess of those needed for maximum NE-stimulated /sup 45/Ca efflux. This evidence of ''spare'' receptors, together with the finding of two affinity states of agonist binding, raises the possibility of functional heterogeneity of alpha 1-adrenergic receptors in this system.

  15. Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.

    PubMed

    Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian

    2016-09-01

    Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.

  16. Solubilization of a guanyl nucleotide-sensitive alpha/sub 1/ adrenergic receptor from liver membranes

    SciTech Connect

    Harris, S.I.; Moss, J.

    1987-05-01

    Rat liver membranes incubated with norepinephrine before solubilization with digitonin yielded a soluble hormone-receptor complex from which the release of tightly bound norepinephrine was facilitated by guanyl nucleotides. Binding of the alpha/sub 1/-adrenergic receptor antagonist, (/sup 3/H)-prazosin, to the soluble preparation was utilized as a gauge of guanyl nucleotide-induced release of receptor-bound agonist. The following potency series was obtained with regard to the ability of guanyl nucleotides to facilitate (/sup 3/H)-prazosin binding to the solubilized preparation: guanosine 5'-0-(3-thiotriphosphate)(K/sub 1/2/ = 2.5 nM), guanylyl-imidodiphosphate (K/sub 1/2/ = 10 nM), guanosine triphosphate (K/sub 1/2/ = 34 nM) and adenylyl-imidodiphosphate (K/sub 1/2/ > 1 mM). In the presence of guanylyl-imidodiphosphate (0.4 mM), the receptor population displayed monotonic binding parameters with a K/sub d/ for (/sup 3/H)-prazosin of 1.16 nM by Scatchard analysis. Competition curves against (/sup 3/H)-prazosin with the antagonists phentolamine and yohimbine revealed respective K/sub i/'s of .089 ..mu..M and 1.8 ..mu..M; curves with the agonists norepinephrine and isoproterenol yielded respective K/sub i/'s of 6.2..mu..M and 360 ..mu..M. Competition curves performed in the absence of guanyl nucleotide were complex demonstrating an apparent increase in affinity for agonists and an apparent decrease in affinity for antagonists. These curve shifts are consistent with the conversion of receptor to and from the guanyl nucleotide-sensitive state as a function of competing ligand concentration.

  17. Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation.

    PubMed

    Jensen, Brian C; OʼConnell, Timothy D; Simpson, Paul C

    2014-04-01

    Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.

  18. Alpha-1-Adrenergic Receptors in Heart Failure: The Adaptive Arm of the Cardiac Response to Chronic Catecholamine Stimulation

    PubMed Central

    Jensen, Brian C.; O'Connell, Timothy D.; Simpson, Paul C.

    2013-01-01

    Alpha-1-adrenergic receptors are G-protein coupled receptors (GPCRs) activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the non-failing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and b□eta-AR dysfunction. Decades of evidence from gain- and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs, to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure. PMID:24145181

  19. Sympathetic denervation does not alter the density or properties of alpha-1 adrenergic receptors in rat vas deferens

    SciTech Connect

    Abel, P.W.; Johnson, R.D.; Martin, T.J.; Minneman, K.P.

    1985-06-01

    Alpha-1 adrenergic receptors in surgically denervated rat vas deferens were studied using radioligand binding assays of (/sup 125/I) BE 2254 ((/sup 125/I)BE) and contraction measurements. Scatchard analysis of saturation isotherms of specific (/sup 125/I)BE binding showed no change in the affinity or density of binding sites 4, 7 or 14 days after denervation of rat vas deferens. The potency of norepinephrine in inhibiting specific (/sup 125/I)BE binding was also unchanged 7 days after denervation of vas deferens. The potency of phenylephrine in causing contractions in vitro did not change 4, 7 or 14 days after denervation of vas deferens; however, there was a significant increase in the maximum contractile response to phenylephrine at all time points. After partial inactivation of alpha-1 adrenergic receptors in vitro with phenoxybenzamine, there was an equivalent reduction in the number of (/sup 125/I)BE binding sites in the control and 14-day denervated vas deferens. The equilibrium dissociation constants calculated from contractile measurements for norepinephrine were the same in the control and denervated tissues. However, there was a 2.2-fold increase in contractile sensitivity to norepinephrine 14 days after denervation and a 3.6-fold increase in contractile sensitivity to methacholine 7 days after denervation.

  20. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    PubMed Central

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  1. Agonist-promoted desensitization and phosphorylation of. cap alpha. /sub 1/-adrenergic receptors coupled to stimulation of phosphatidylinositol metabolism

    SciTech Connect

    Leeb-Lundberg, L.M.F.; Cotecchia, S.; Caron, M.G.; Lefkowitz, R.J.

    1986-03-05

    In the DDT/sub 1/ MF-2 hamster vas deferens smooth muscle cell line the ..cap alpha../sub 1/-adrenergic receptor (..cap alpha../sub 1/-AR) agonist norepinephrine (NE) promotes rapid attenuation of ..cap alpha../sub 1/-AR-mediated phosphatidylinositol (PI) metabolism which is paralleled by rapid phosphorylation of the ..cap alpha../sub 1/-AR. Cells were labeled by incubation with /sup 32/P/sub i/. Coincubation with NE (100 ..mu..M) significantly increases the rate of /sup 32/P-labeling of both PI and phosphatidic acid. Pretreatment of cells with 100 ..mu..M NE (in the presence of 1 ..mu..M propranolol to prevent ..beta..-AR interactions) results in a drastic attenuation of the NE response on PI metabolism. ..cap alpha../sub 1/-AR from labeled cells can be solubilized and purified by affinity chromatography on Affigel-A55414 and wheat germ agglutinin agarose chromatography. SDS-PAGE of purified ..cap alpha../sub 1/-AR shows a NE-promoted increase in phosphorylation of the M/sub r/ 80K ligand binding peptide. Stoichiometry of phosphorylation increases from approx. 1 mol phosphate/mol ..cap alpha../sub 1/-AR in the basal condition to approx. 2.5 after NE treatment. Both desensitization and phosphorylation are rapid being maximal within 10-20 min of agonist exposure. These results together with previous findings that phorbol esters promote rapid ..cap alpha../sub 1/-AR uncoupling and phosphorylation suggest that receptor phosphorylation is an important mechanism of regulation of ..cap alpha../sub 1/-AR receptor responsiveness.

  2. Stimulation of an alpha1-adrenergic receptor downregulates ecto-5' nucleotidase activity on the apical membrane of RPE cells.

    PubMed

    Reigada, David; Zhang, Xiulan; Crespo, Ana; Nguyen, Johnathan; Liu, Ji; Pendrak, Klara; Stone, Richard A; Laties, Alan M; Mitchell, Claire

    2006-09-01

    The purines ATP and adenosine play an important role in the communication between the photoreceptors and the retinal pigment epithelium (RPE). While the RPE is known to release ATP into subretinal space, the source of extracellular adenosine is unclear. In other tissues, ecto-nucleotidases mediate the consecutive dephosphorylation of ATP to AMP, and AMP is converted to adenosine by ecto-5' nucleotidase (CD73). This study identifies ecto-5' nucleotidase on RPE cells and investigates modulation of enzyme activity. The RPE was the most active site of 5'AMP dephosphorylation in the posterior rat eye. The ecto-5' nucleotidase inhibitor alphabetamADP prevented the production adenosine by the apical membrane of the bovine RPE. Cultured human ARPE-19 cells expressed mRNA and protein for ecto-5' nucleotidase. The production of phosphate from 5'AMP by ARPE-19 cells was inhibited by alphabetamADP, but the ecto-alkaline phosphatase inhibitor levamisole had no effect. Degradation of 5'AMP was blocked by norepinephrine, epinephrine and phenylephrine, with inhibition by antagonists prazosin and corynanthine implicating the alpha1 adrenergic receptor. The block of enzyme activity by norepinephrine was rapid, occurring within 1 min, and was similar at both 4 and 37 degrees C, consistent with cleavage of the enzyme from its GPI anchor. HPLC measurements indicated norepinephrine reduced levels of adenosine in the bath. In the apical face of the bovine-RPE eyecup, norepinephrine reduced the production of phosphate from 5'AMP, suggesting that both receptor and enzyme face sub-retinal space. In conclusion, RPE cells express ecto-5' nucleotidase, with activity on the apical membrane, and stimulation of alpha-1 adrenergic receptors downregulates activity. As epinephrine is released at light onset, and adenosine can inhibit phagocytosis, the corresponding decrease in subretinal adenosine levels may contribute to the enhanced the phagocytosis of rod outer segments that occurs at this time.

  3. Phorbol esters inhibit alpha/sub 1/-adrenergic receptor stimulated phosphoinositide hydrolysis and contraction in rat aorta

    SciTech Connect

    Not Available

    1986-03-01

    The mechanisms of pharmacomechanical coupling in vascular tissue are at the present time unclear. The authors and others have proposed that receptor-induced activation of phosphoinositide (PI) hydrolysis may be involved. To investigate this possibility they studied the actions of two biologically active phorbol esters: phorbol dibutyrate (PDB) and phorbol myristate diacetate (PMA) on receptor-stimulated PI hydrolysis in rat aortic rings. They found both PDB (IC/sub 5//sup 0/ approx. 5nM) and PMA (IC/sub 50/ approx. 30 nM) but not 4-..cap alpha..-phorbol (IC32%/sub 0/ > 10,000 nM) inhibited norepinephrine-stimulated PI hydrolysis. In the presence of the calcium channel antagonist nitrendipine, PDB potently inhibited both the phasic and tonic components of norepinephrine-induced vascular contraction. In the presence of 10/sup -7/M nitrendipine, PDB had an IC/sub 50/ for contraction of approximately 10nM. The results thus suggest a functional coupling between ..cap alpha../sub 1/-adrenergic receptor-stimulated PI hydrolysis and vascular contraction. The findings further imply a mode of feed-back regulation in vascular tissue involving phorbol ester and receptor-stimulated PI hydrolysis.

  4. The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates alpha1 adrenergic receptor-induced cardiomyocyte hypertrophy.

    PubMed

    Appert-Collin, Aline; Cotecchia, Susanna; Nenniger-Tosato, Monique; Pedrazzini, Thierry; Diviani, Dario

    2007-06-12

    In response to various pathological stresses, the heart undergoes a pathological remodeling process that is associated with cardiomyocyte hypertrophy. Because cardiac hypertrophy can progress to heart failure, a major cause of lethality worldwide, the intracellular signaling pathways that control cardiomyocyte growth have been the subject of intensive investigation. It has been known for more than a decade that the small molecular weight GTPase RhoA is involved in the signaling pathways leading to cardiomyocyte hypertrophy. Although some of the hypertrophic pathways activated by RhoA have now been identified, the identity of the exchange factors that modulate its activity in cardiomyocytes is currently unknown. In this study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critical for activating RhoA and transducing hypertrophic signals downstream of alpha1-adrenergic receptors (ARs). In particular, our results indicate that suppression of AKAP-Lbc expression by infecting rat neonatal ventricular cardiomyocytes with lentiviruses encoding AKAP-Lbc-specific short hairpin RNAs strongly reduces both alpha1-AR-mediated RhoA activation and hypertrophic responses. Interestingly, alpha1-ARs promote AKAP-Lbc activation via a pathway that requires the alpha subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor (GEF) involved in the signaling pathways leading to cardiomyocytes hypertrophy.

  5. Pharmacological tolerance to alpha 1-adrenergic receptor antagonism mediated by terazosin in humans.

    PubMed Central

    Vincent, J; Dachman, W; Blaschke, T F; Hoffman, B B

    1992-01-01

    Chronic administration of alpha 1-receptor antagonists is associated with loss of clinical efficacy, especially in congestive heart failure, although the mechanism is uncertain. To evaluate changes in venous alpha 1-adrenoceptor responsiveness during chronic alpha 1-adrenoceptor blockade, dose-response curves to phenylephrine and angiotensin II were constructed in 10 healthy subjects before, during, and after administration of terazosin 1 mg orally for 28 d. Terazosin initially shifted the dose-response curve of phenylephrine to the right, with a significant increase in ED50 for phenylephrine from a control value of 102 to 759 ng/min on day 1 of terazosin (P < 0.001). However, by day 28, the dose-response curve had shifted back towards baseline with an ED50 of 112 ng/min. After discontinuing terazosin, the ED50 for phenylephrine remained near the baseline value, indicating no evidence of supersensitivity to phenylephrine. There was no change in responsiveness to angiotensin II during the course of treatment with terazosin. Plasma terazosin concentrations were stable throughout the period of drug administration. The mean Kd of terazosin was estimated as 11 +/- 15 nM in the first few days of treatment. This study demonstrates that pharmacological tolerance to the alpha 1-adrenoceptor blocking action of terazosin occurs in man and may be responsible for loss in efficacy with chronic therapy. PMID:1358918

  6. The alpha1-adrenergic receptor antagonists, benoxathian and prazosin, induce apoptosis and a switch towards megakaryocytic differentiation in human erythroleukemia cells.

    PubMed

    Fuchs, Robert; Stelzer, Ingeborg; Haas, Helga S; Leitinger, Gerd; Schauenstein, Konrad; Sadjak, Anton

    2009-10-01

    The erythroleukemia cell lines K562 and human erythroleukemia (HEL) are established models to study erythroid and megakaryocytic differentiation in vitro. In this study, we show that the alpha1-adrenergic antagonists, benoxathian and prazosin, inhibit the proliferation and induce apoptosis in K562 and HEL cells. Furthermore, both tested substances induced the expression of the megakaryocytic marker CD41a, whereas the expression of the erythroid marker glycophorin-a was decreased or unchanged. Even though the expression of differentiation markers was similar after benoxathian and prazosin treatment in both cell lines, endomitosis of erythroleukemia cells was observed only after prazosin treatment. So far, benoxathian and prazosin are the first described extracellular ligands, which cause megakaryocytic differentiation in K562 and HEL cells. In summary, these results indicate a possible role of alpha1-adrenergic receptor signaling in the regulation of erythroid and megakaryocytic differentiation, even though the receptor dependence of the observed effects needs further investigation.

  7. Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Waters, Wendy W.; Ziegler, Michael G.; deBlock, Heidi F.; Mills, Paul J.; Robertson, David; Huang, Paul L.

    2004-01-01

    Although all astronauts experience symptoms of orthostatic intolerance after short-duration spaceflight, only approximately 20% actually experience presyncope during upright posture on landing day. The presyncopal group is characterized by low vascular resistance before and after flight and low norepinephrine release during orthostatic stress on landing day. Our purpose was to determine the mechanisms of the differences between presyncopal and nonpresyncopal groups. We studied 23 astronauts 10 days before launch, on landing day, and 3 days after landing. We measured pressor responses to phenylephrine injections; norepinephrine release with tyramine injections; plasma volumes; resting plasma levels of chromogranin A (a marker of sympathetic nerve terminal release), endothelin, dihydroxyphenylglycol (DHPG, an intracellular metabolite of norepinephrine); and lymphocyte beta(2)-adrenergic receptors. We then measured hemodynamic and neurohumoral responses to upright tilt. Astronauts were separated into two groups according to their ability to complete 10 min of upright tilt on landing day. Compared with astronauts who were not presyncopal on landing day, presyncopal astronauts had 1). significantly smaller pressor responses to phenylephrine both before and after flight; 2). significantly smaller baseline norepinephrine, but significantly greater DHPG levels, on landing day; 3). significantly greater norepinephrine release with tyramine on landing day; and 4). significantly smaller norepinephrine release, but significantly greater epinephrine and arginine vasopressin release, with upright tilt on landing day. These data suggest that the etiology of orthostatic hypotension and presyncope after spaceflight includes low alpha(1)-adrenergic receptor responsiveness before flight and a remodeling of the central nervous system during spaceflight such that sympathetic responses to baroreceptor input become impaired.

  8. Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight.

    PubMed

    Meck, Janice V; Waters, Wendy W; Ziegler, Michael G; deBlock, Heidi F; Mills, Paul J; Robertson, David; Huang, Paul L

    2004-04-01

    Although all astronauts experience symptoms of orthostatic intolerance after short-duration spaceflight, only approximately 20% actually experience presyncope during upright posture on landing day. The presyncopal group is characterized by low vascular resistance before and after flight and low norepinephrine release during orthostatic stress on landing day. Our purpose was to determine the mechanisms of the differences between presyncopal and nonpresyncopal groups. We studied 23 astronauts 10 days before launch, on landing day, and 3 days after landing. We measured pressor responses to phenylephrine injections; norepinephrine release with tyramine injections; plasma volumes; resting plasma levels of chromogranin A (a marker of sympathetic nerve terminal release), endothelin, dihydroxyphenylglycol (DHPG, an intracellular metabolite of norepinephrine); and lymphocyte beta(2)-adrenergic receptors. We then measured hemodynamic and neurohumoral responses to upright tilt. Astronauts were separated into two groups according to their ability to complete 10 min of upright tilt on landing day. Compared with astronauts who were not presyncopal on landing day, presyncopal astronauts had 1). significantly smaller pressor responses to phenylephrine both before and after flight; 2). significantly smaller baseline norepinephrine, but significantly greater DHPG levels, on landing day; 3). significantly greater norepinephrine release with tyramine on landing day; and 4). significantly smaller norepinephrine release, but significantly greater epinephrine and arginine vasopressin release, with upright tilt on landing day. These data suggest that the etiology of orthostatic hypotension and presyncope after spaceflight includes low alpha(1)-adrenergic receptor responsiveness before flight and a remodeling of the central nervous system during spaceflight such that sympathetic responses to baroreceptor input become impaired.

  9. Two alpha1-adrenergic receptor subtypes regulating the vasopressor response have differential roles in blood pressure regulation.

    PubMed

    Hosoda, Chihiro; Koshimizu, Taka-Aki; Tanoue, Akito; Nasa, Yoshihisa; Oikawa, Ryo; Tomabechi, Takashi; Fukuda, Shinya; Shinoura, Hitomi; Oshikawa, Sayuri; Takeo, Satoshi; Kitamura, Tadaichi; Cotecchia, Susanna; Tsujimoto, Gozoh

    2005-03-01

    To study the functional role of individual alpha1-adrenergic (AR) subtypes in blood pressure (BP) regulation, we used mice lacking the alpha1B-AR and/or alpha1D-AR with the same genetic background and further studied their hemodynamic and vasoconstrictive responses. Both the alpha1D-AR knockout and alpha1B-/alpha1D-AR double knockout mice, but not the alpha1B-AR knockout mice, had significantly (p < 0.05) lower levels of basal systolic and mean arterial BP than wild-type mice in nonanesthetized condition, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. All mutants showed a significantly (p < 0.05) reduced catecholamine-induced pressor and vasoconstriction responses. It is noteworthy that the infusion of norepinephrine did not elicit any pressor response at all in alpha1B-/alpha1D-AR double knockout mice. In an attempt to further examine alpha1-AR subtype, which is involved in the genesis or maintenance of hypertension, BP after salt loading was monitored by tail-cuff readings and confirmed at the endpoint by direct intra-arterial recording. After salt loading, alpha1B-AR knockout mice developed a comparable level of hypertension to wild-type mice, whereas mice lacking alpha1D-AR had significantly (p < 0.05) attenuated BP and lower levels of circulating catecholamines. Our data indicated that alpha1B- and alpha1D-AR subtypes participate cooperatively in BP regulation; however, the deletion of the functional alpha1D-AR, not alpha1B-AR, leads to an antihypertensive effect. The study shows differential contributions of alpha1B- and alpha1D-ARs in BP regulation.

  10. The alpha1 adrenergic receptor antagonist prazosin reduces heroin self-administration in rats with extended access to heroin administration.

    PubMed

    Greenwell, Thomas N; Walker, Brendan M; Cottone, Pietro; Zorrilla, Eric P; Koob, George F

    2009-01-01

    Previous studies have reported that noradrenergic antagonists alleviate some of the symptoms of opiate withdrawal and dependence. Clinical studies also have shown that modification of the noradrenergic system may help protect patients from relapse. The present study tested the hypothesis that a dysregulated noradrenergic system has motivational significance in heroin self-administration of dependent rats. Prazosin, an alpha1-adrenergic antagonist (0.5, 1.0, 1.5 and 2.0 mg/kg, i.p.), was administered to adult male Wistar rats with a history of limited (1 h/day; short access) or extended (12 h/day; long access) access to intravenous heroin self-administration. Prazosin dose-dependently reduced heroin self-administration in long-access rats but not short-access rats, with 2 mg/kg of systemic prazosin significantly decreasing 1 h and 2 h heroin intake. Prazosin also reversed some changes in meal pattern associated with extended heroin access, including the taking of smaller and briefer meals (at 3 h), while also increasing total food intake and slowing the eating rate within meals (both 3 h and 12 h). Thus, prazosin appears to stimulate food intake in extended access rats by restoring meals to the normal size and duration. The data suggest that the alpha1 adrenergic system may contribute to mechanisms that promote dependence in rats with extended access.

  11. Muscarinic cholinergic and alpha/sub 1/ adrenergic receptors in murine atria: phosphatidylinositol breakdown and receptor interaction

    SciTech Connect

    Scherer, R.W.

    1987-01-01

    Upon stimulation of muscarinic cholinergic receptors, there is a decrease in the force of contraction rate of firing in heart, while stimulation of ..cap alpha.. adrenergic receptors causes an increase in the force of contraction with no change in the heart rate. Yet both receptors stimulate the breakdown of phosphatidylinositol (PI). Therefore, the breakdown of PI was examined to determine how the process differed between the two receptor systems. Murine atria, prelabelled with (/sup 3/H)inositol, were stimulated with the muscarinic cholinergic agonists, carbamylcholine (CARB), and oxotremorine (OXO); and with the ..cap alpha.. adrenergic agonists, norepinephrine (NE) and phenylephrine (PE); either singly or in combination. Breakdown of PI was assessed by measurement of individual inositol phosphates by anion exchange chromatography. Binding of CARB to atrial muscarinic receptors was measured by competition with (/sup 3/H)quinuclidinyl benzilate.

  12. Mechanisms of alpha 1-adrenergic vascular desensitization in conscious dogs

    NASA Technical Reports Server (NTRS)

    Kiuchi, K.; Vatner, D. E.; Uemura, N.; Bigaud, M.; Hasebe, N.; Hempel, D. M.; Graham, R. M.; Vatner, S. F.

    1992-01-01

    To investigate the mechanisms of alpha 1-adrenergic vascular desensitization, osmotic minipumps containing either saline (n = 9) or amidephrine mesylate (AMD) (n = 9), a selective alpha 1-adrenergic receptor agonist, were implanted subcutaneously in dogs with chronically implanted arterial and right atrial pressure catheters and aortic flow probes. After chronic alpha 1-adrenergic receptor stimulation, significant physiological desensitization to acute AMD challenges was observed, i.e., pressor and vasoconstrictor responses to the alpha 1-adrenergic agonist were significantly depressed (p < 0.01) compared with responses in the same dogs studied in the conscious state before pump implantation. However, physiological desensitization to acute challenges of the neurotransmitter norepinephrine (NE) (0.1 micrograms/kg per minute) in the presence of beta-adrenergic receptor blockade was not observed for either mean arterial pressure (MAP) (30 +/- 7 versus 28 +/- 5 mm Hg) or total peripheral resistance (TPR) (29.8 +/- 4.9 versus 28.9 +/- 7.3 mm Hg/l per minute). In the presence of beta-adrenergic receptor plus ganglionic blockade after AMD pump implantation, physiological desensitization to NE was unmasked since the control responses to NE (0.1 micrograms/kg per minute) before the AMD pumps were now greater (p < 0.01) than after chronic AMD administration for both MAP (66 +/- 5 versus 32 +/- 2 mm Hg) and TPR (42.6 +/- 10.3 versus 23.9 +/- 4.4 mm Hg/l per minute). In the presence of beta-adrenergic receptor, ganglionic, plus NE-uptake blockade after AMD pump implantation, desensitization was even more apparent, since NE (0.1 micrograms/kg per minute) induced even greater differences in MAP (33 +/- 5 versus 109 +/- 6 mm Hg) and TPR (28.1 +/- 1.8 versus 111.8 +/- 14.7 mm Hg/l per minute). The maximal force of contraction induced by NE in the presence or absence of endothelium was significantly decreased (p < 0.05) in vitro in mesenteric artery rings from AMD pump dogs

  13. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells.

    PubMed

    Huan, Hong-Bo; Wen, Xu-Dong; Chen, Xue-Jiao; Wu, Lin; Wu, Li-Li; Zhang, Liang; Yang, Da-Peng; Zhang, Xia; Bie, Ping; Qian, Cheng; Xia, Feng

    2017-01-01

    The sympathetic nervous system (SNS) is known to play a significant role in tumor initiation and metastasis. Hepatocellular carcinoma (HCC) frequently occurs in cirrhotic livers after chronic inflammation, and the SNS is hyperactive in advanced liver cirrhosis. However, it remains unclear whether the SNS promotes hepatocarcinogenesis by modulating chronic liver inflammation. In this study, a retrospective pathological analysis and quantification of sympathetic nerve fiber densities (tyrosine hydroxylase, TH(+)) in HCC patients, and diethylnitrosamine (DEN)-induced hepatocarcinogenesis in rats were performed. Our data showed that high density of sympathetic nerve fibers and α1-adrenergic receptors (ARs) of Kupffer cells (KCs) were associated with a poor prognosis of HCC. Sympathetic denervation or blocking of α1-ARs decreased DEN-induced HCC incidence and tumor development. In addition, synergistic effects of interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) in hepatocarcinogenesis were observed. The suppression of the SNS reduced IL-6 and TGF-β expression, which suppressed hepatocarcinogenesis, and KCs play a key role in this process. After the ablation of KCs, IL-6 and TGF-β expression and the development of HCC were inhibited. This study demonstrates that sympathetic innervation is crucial for hepatocarcinogenesis and that the SNS promotes hepatocarcinogenesis by activating α1-ARs of KCs to boost the activation of KCs and to maintain the inflammatory microenvironment. These results indicate that sympathetic denervation or α1-ARs blockage may represent novel treatment approaches for HCC.

  14. Evidence from photoaffinity labelling studies for coupling of the alpha/sub 1/-adrenergic receptor to a guanine-nucleotide (G) binding protein

    SciTech Connect

    Graham, R.M.; Sena, L.; Schwarz, K.R.; Homcy, C.J.

    1986-05-01

    In contrast to ..beta..- and ..cap alpha../sub 2/-adrenergic receptors the role of a G-protein in signal transduction at ..cap alpha..-adrenergic receptors has been difficult to define. Using rat hepatic membranes prepared to avoid retention of endogenous nucleotides and activation of Ca/sup 2 +/-sensitive proteases, a Gpp(NH)p shift in agonist ((-)epinephrine) affinity from an IC/sub 50/ 10/sup -6/ to 5 x 10/sup -5/ M was readily demonstrable in competition studies with the ..cap alpha../sub 1/-specific radioligand (/sup 3/H)prazosin, but was not observed in membranes prepared without protease inhibitors (PIs). Labelling of these membranes with the photolabile prazosin analog, (/sup 125/I)CP65,526, followed by SDS-PAGE/autoradiography revealed a predominant, specifically labelled protein of M/sub r/ = 80,000, whereas a M/sub r/ = 59,000 peptide was evident with membranes prepared in the absence of PIs. The IC/sub 50/ for inhibition of labelling of the M/sub r/ = 80,000 peptide by (-)epinephrine, as determined by radiochromatogram scanning of autoradiographs of the photolabelled receptor, shifted from 10/sup -7/ to 10/sup -6/ in the presence of Gpp(NH)p. However, no shift in agonist affinity at the M/sub r/ = 59,000 peptide was evident in membranes prepared without PIs. This approach provides visual evidence for a G-protein-mediated shift in agonist affinity at the ..cap alpha../sub 1/-adrenergic receptor and allows a correlation between subunit size analysis and ligand binding.

  15. Impaired alpha1-adrenergic responses in aged rat hearts.

    PubMed

    Montagne, Olivier; Le Corvoisier, Philippe; Guenoun, Thierry; Laplace, Monique; Crozatier, Bertrand

    2005-06-01

    To determine age-related changes in the cardiac effect of alpha1-adrenergic stimulation, both cardiomyocyte Ca2+-transient and cardiac protein kinase C (PKC) activity were measured in 3-month- (3MO) and 24-month- (24MO) old Wistar rats. Ca2+ transients obtained under 1 Hz pacing by microfluorimetry of cardiomyocyte loaded with indo-1 (405/480 nm fluorescence ratio) were compared in control conditions (Kreb's solution alone) and after alpha1-adrenergic stimulation (phenylephrine or cirazoline, an alpha1-specific agonist). PKC activity and PKC translocation index (particulate/total activity) were also assayed before and after alpha1-adrenergic stimulation. In 3MO, cirazoline induced a significant increase in Ca2+ transient for a 10(-9) M concentration which returned to control values for larger concentrations. In contrast, in 24MO, we observed a constant negative effect of cirazoline on the Ca2+ transient with a significant decrease at 10(-6) M compared with both baseline and Kreb's solution. Preliminary experiments showed that, in a dose-response curve to phenylephrine, the response of Ca2+ transient was maximal at 10(-7) M. This concentration induced a significant increase in Ca2+ transient in 3MO and a significant decrease in 24MO. The same concentration was chosen to perform PKC activity measurements under alpha1-adrenergic stimulation. In the basal state, PKC particulate activity was higher in 24MO than that in 3MO but was not different in cytosolic fractions; so that the translocation index was higher in 24MO (P < 0.01). After phenylephrine, a translocation of PKC toward the particulate fraction was observed in 3MO but not in 24MO. In conclusion, cardiac alpha1-adrenoceptor response was found to be impaired in aged hearts. The negative effect of alpha1-adrenergic stimulation on Ca2+ transient in cardiomyocytes obtained from old rats can be related to an absence of alpha1-adrenergic-induced PKC translocation.

  16. Effects of Combination Treatment of Alpha 1-Adrenergic Receptor Antagonists on Voiding Dysfunction: Study on Target Organs in Overactive Bladder Rats

    PubMed Central

    2016-01-01

    Purpose Overactive bladder (OAB) causes urinary urgency, usually accompanied by frequency and nocturia. Alpha 1-adrenergic receptor (α1-AR) antagonists are known to improve lower urinary tract symptoms associated with OAB. The α1-AR antagonists constitute a variety of drugs according to the receptor subtype affinity. This study investigated the efficacy of tamsulosin, naftopidil, and a combination of the two on OAB rats. Methods The OAB rat model was induced by an intraperitoneal injection of cyclophosphamide for 14 days. The experimental groups were divided into 5 groups: control group, OAB-induction group, OAB-induction and tamsulosin monotherapy group, OAB-induction and naftopidil monotherapy group, and OAB-induction and tamsulosin-naftopidil combination therapy group. For the drug-treated groups, each drug was administrated for 14 days after the OAB induction. Cystometry for urodynamic evaluation and immunohistochemical stain for c-Fos and nerve growth factor (NGF) expressions in the central micturition centers were performed. Results Increased contraction pressure and time with enhanced c-Fos and NGF expressions in the central micturition centers were found in the OAB rats. Tamsulosin suppressed contraction pressure and time while inhibiting c-Fos and NGF expressions. Naftopidil showed no significant effect and combination therapy showed less of an effect on contraction pressure and time. Naftopidil and combination therapy exerted no significant effect on the c-Fos and NGF expressions. Conclusions Tamsulosin showed the most prominent efficacy for the treatment of OAB compared to the naftopidil and combination. The combination of tamsulosin with naftopidil showed no synergistic effects on OAB; however, further studies of addon therapy might provide opportunities to find a new modality. PMID:27915481

  17. Role of a guanine nucleotide-binding protein in. cap alpha. /sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells

    SciTech Connect

    Cornett, L.E.; Norris, J.S.

    1987-11-01

    In this study the mechanisms involved in ..cap alpha../sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization at the level of the plasma membrane were investigated. Stimulation of /sup 45/Ca/sup 2 +/ efflux from saponin-permeabilized DDT/sub 1/ MF-2 cells was observed with the addition of either the ..cap alpha../sub 1/-adrenergic agonist phenylephrine and guanosine-5'-triphosphate or the nonhydrolyzable guanine nucleotide guanylyl-imidodiphosphate. In the presence of (/sup 32/P) NAD, pertussis toxin was found to catalyze ADP-ribosylation of a M/sub r/ = 40,500 (n = 8) peptide in membranes prepared from DDT/sub 1/, MF-2 cells, possibly the ..cap alpha..-subunit of N/sub i/. However, stimulation of unidirectional /sup 45/Ca/sup 2 +/ efflux by phenylephrine was not affected by previous treatment of cells with 100 ng/ml pertussis toxin. These data suggest that the putative guanine nucleotide-binding protein which couples the ..cap alpha../sub 1/-adrenergic receptor to Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells is not a pertussis toxin substrate and may possibly be an additional member of guanine nucleotide binding protein family.

  18. Alpha 1-adrenergic agonists selectively suppress voltage-dependent K+ current in rat ventricular myocytes.

    PubMed Central

    Apkon, M; Nerbonne, J M

    1988-01-01

    The effects of alpha 1-adrenergic agonists on the waveforms of action potentials and voltage-gated ionic currents were examined in isolated adult rat ventricular myocytes by the whole-cell patch-clamp recording technique. After "puffer" applications of either of two alpha 1 agonists, phenylephrine and methoxamine, action-potential durations were increased. In voltage-clamped cells, phenylephrine (5-20 microM) or methoxamine (5-10 microM) reduced the amplitudes of Ca2+-independent voltage-activated outward K+ currents (Iout); neither the kinetics nor the voltage-dependent properties of Iout were significantly affected. The effects of phenylephrine or methoxamine on Iout were larger and longer-lasting at higher concentrations and after prolonged or repeated exposures; in all experiments, however, Iout recovered completely when puffer applications were discontinued. The suppression of Iout is attributed to the activation of alpha 1-adrenergic receptors, as neither beta- nor alpha 2-adrenergic agonists had measurable effects on Iout; in addition, the effect of phenylephrine was attenuated in the presence of the alpha antagonist phentolamine (10 microM), but not in the presence of the beta antagonist propranolol (10 microM). Voltage-gated Ca2+ currents, in contrast, were not altered measurably by phenylephrine or methoxamine and no currents were activated directly by these agents. Suppression of Iout was also observed during puffer applications of either of two protein kinase C activators, phorbol 12-myristate 13-acetate (10 nM-1 microM) and 1-oleoyl-2-acetylglycerol (60 microM). We conclude that the activation of alpha 1-adrenergic receptors in adult rat ventricular myocytes leads to action-potential prolongation as a result of the specific suppression of Iout and that this effect may be mediated by activation of protein kinase C. PMID:2903506

  19. Effects of single and repeated treatment with antidepressants on apomorphine-induced yawning in the rat: the implication of alpha-1 adrenergic mechanisms in the D-2 receptor function.

    PubMed

    Delini-Stula, A; Hunn, C

    1990-01-01

    Acute (10 or 20 mg/kg IP) and subchronic (2 x 5 or 10 mg/kg IP daily for 7 days) effects of desipramine, imipramine, maprotiline, (+)- and (-)-oxaprotiline enantiomers as well as selective 5-HT-uptake inhibitors citalopram and ifoxetine on yawning, induced by low doses of apomorphine, were investigated in the rat. In addition, the effects of alpha-1 receptor agonist adrafinil and antagonist prazosin were also tested. After acute treatment, desipramine, the stereoselective NA-uptake inhibiting (+)-enantiomer of oxaprotiline, and the alpha-1 agonist adrafinil, markedly and significantly suppressed yawning. Prazosin, in contrast, clearly potentiated it. This potentiating effect was abolished by the pretreatment with (+)-oxaprotiline and adrafinil. Other drugs were inactive. After subchronic administration, yawning was antagonized by NA-uptake-inhibiting antidepressants, including imipramine and maprotiline. By comparison to the acute treatment, the inhibitory effects of desipramine and (+)-oxaprotiline were considerably enhanced. Neither selective 5-HT-uptake inhibitors nor (-)-oxaprotiline (levoprotiline) were active. Antidepressants therefore modulate the functional activity of D-2 receptors, activated by low doses of apomorphine, predominantly by the virtue of their noradrenergic enhancing properties. This modulatory effect appears to be mediated by alpha-1 adrenergic receptors.

  20. Pharmacophore development for antagonists at α1 adrenergic receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bremner, J. B.; Coban, B.; Griffith, R.

    1996-12-01

    Many receptors, including α1 adrenergic receptors, have a range of subtypes. This offers possibilities for the development of highly selective antagonists with potentially fewer detrimental effects. Antagonists developed for α1A receptors, for example, would have potential in the treatment of benign prostatic hyperplasia. As part of the molecular design process, structural features necessary for the selective affinity for α1A and α1B adrenergic receptors have been investigated. The molecular modelling software (particularly the Apex module) of Molecular Simulations, Inc. was used to develop pharmacophore models for these two subtypes. Low-energy conformations of a set of known antagonists were used as input, together with a classification of the receptor affinity data. The biophores proposed by the program were evaluated and pharmacophores were proposed. The pharmacophore models were validated by testing the fit of known antagonists, not included in the training set. The critical structural feature for selectivity between the α1A and α1B adrenergic receptor sites is the distance between the basic nitrogen atom and the centre of an aromatic ring system. This will be exploited in the design and synthesis of structurally new selective antagonists for these sites.

  1. Effect of aging on alpha-1 adrenergic stimulation of phosphoinositide hydrolysis in various regions of rat brain

    SciTech Connect

    Burnett, D.M.; Bowyer, J.F.; Masserano, J.M.; Zahniser, N.R. )

    1990-12-01

    The effects of aging were examined on the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis in three brain regions. Tissue minces of thalamus, cerebral cortex and hippocampus from 3-, 18- and 28-month-old male Fischer 344 rats were prelabeled with ({sup 3}H)myoinositol. Exposure of these prelabeled minces to phenylephrine and (-)-norepinephrine revealed that accumulation of ({sup 3}H)inositol phosphates was selectively reduced by 20 to 30% in the thalamus and cerebral cortex of the oldest age group. Analysis of concentration-response and competition binding curves indicated that this decrease was due to diminished agonist efficacy rather than diminished receptor affinity. The reduction in responsiveness to phenylephrine and (-)-norepinephrine in the cerebral cortex and the lack of any changes in the hippocampus parallel previously reported changes in the density of alpha-1 adrenergic receptors with aging. These data indicate that the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis is reduced in some, but not all, brain regions of aged Fischer 344 rats.

  2. Binding kinetics and sequencing of hepatic alpha1-adrenergic receptors in two marine teleosts, mackerel (Scomber scombrus) and anchovy (Engraulis encrasicolus).

    PubMed

    Fabbri, Elena; Chen, Xi; Capuzzo, Antonio; Moon, Thomas W

    2008-03-01

    Liver alpha(1)-adrenoceptors (ARs) are demonstrated, or at least hypothesized, in freshwater and brackish-water teleosts, whereas no data are available for marine teleosts. This study evaluates the presence of alpha(1)-ARs in the liver of two marine teleosts, the anchovy Engraulis encrasicolus and the mackerel Scomber scombrus, and examines on a broad scale the possibility that habitats posing different challenges also influence phenotypic trait selection. Binding assays were performed also on liver membranes from the carp Cyprinus carpio as a direct comparison with a freshwater species. Scatchard analysis of [(3)H]prazosin binding to purified liver membranes from anchovy, mackerel and carp resulted in K(d) values of 1.51+/-0.085, 1.26+/-0.098, and 2.61+/-0.22 nM, and B(max) values of 87.4+/-9.12, 77+/-8.29, and 115.22+/-3.31 fmol/mg protein, respectively. Thus, alpha(1)-ARs of the two marine teleosts showed higher [(3)H]prazosin affinity compared with those of the freshwater/brackish-water fish studied thus far, whereas the number of liver binding sites did not differ significantly from that of carp, eel or trout. A preliminary phylogeny based on amino acid sequence analysis indicated the presence of at least an alpha(1A)-AR in mackerel and an alpha(1D)-AR in both anchovy and mackerel. This is the first indication of alpha(1)-AR subtypes in any marine species, but further studies are needed to ascertain the physiological role of these alpha(1)-ARs in these two marine species.

  3. Developmental changes in the role of a pertussis toxin sensitive guanine nucleotide binding protein in the rat cardiac alpha sub 1 -adrenergic system

    SciTech Connect

    Han, H.M.

    1989-01-01

    During development, the cardiac alpha{sub 1}-adrenergic chronotropic response changes from positive in the neonate to negative in the adult. This thesis examined the possibility of a developmental change in coupling of a PT-sensitive G-protein to the alpha{sub 1}-adrenergic receptor. Radioligand binding experiments performed with the iodinated alpha{sub 1}-selective radioligand ({sup 125}I)-I-2-({beta}-(4-hydroxphenyl)ethylaminomethyl)tetralone (({sup 125}I)-IBE 2254) demonstrated that the alpha{sub 1}-adrenergic receptor is coupled to a G-protein in both neonatal and adult rat hearts. However, in the neonate the alpha{sub 1}-adrenergic receptor is coupled to a PT-insensitive G-protein, whereas in the adult the alpha{sub 1}-adrenergic receptor is coupled to both a PT-insensitive and a PT-sensitive G-protein. Consistent with the results from binding experiments, PT did not have any effect on the alpha{sub 1}-mediated positive chronotropic response in the neonate, whereas in the adult the alpha{sub 1}-mediated negative chronotropic response was completely converted to a positive one after PT-treatment. This thesis also examined the possibility of an alteration in coupling of the alpha{sub 1}-adrenergic receptor to its effector under certain circumstances such as high potassium (K{sup +}) depolarization in nerve-muscle (NM) co-cultures, a system which has been previously shown to be a convenient in vitro model to study the mature inhibitory alpha{sub 1}-response.

  4. Diaphragm arterioles are less responsive to alpha1- adrenergic constriction than gastrocnemius arterioles.

    PubMed

    Aaker, Aaron; Laughlin, M H

    2002-05-01

    The sympathetic nervous system has greater influence on vascular resistance in low-oxidative, fast-twitch skeletal muscle than in high-oxidative skeletal muscle (17). The purpose of this study was to test the hypothesis that arterioles isolated from low-oxidative, fast-twitch skeletal muscle [the white portion of gastrocnemius (WG)] possess greater responsiveness to adrenergic constriction than arterioles isolated from high-oxidative skeletal muscle [red portion of the gastrocnemius muscle (RG) and diaphragm (Dia)]. Second-order arterioles (2As) were isolated from WG, RG, and Dia of rats and reactivity examined in vitro. Results reveal that Dia 2As constrict less to norepinephrine (NE) (10(-9) to 10 (-4) M) than 2As from RG and WG, which exhibited similar NE-induced constrictions. This difference was not endothelium dependent, because responses of denuded 2As were similar to those of intact arterioles. The blunted NE-induced constrictor response of Dia 2As appears to be the result of differences in alpha1-receptor effects because 1) arterioles from Dia also responded less to selective alpha1-receptor stimulation with phenylephrine than RG and WG arterioles; 2) arterioles from Dia, RG, and WG dilated similarly to isoproterenol (10(-9) to 10(-4) M) and did not respond to selective alpha2-receptor stimulation with UK-14304; and 3) endothelin-1 produced similar constriction in 2As from Dia, RG, and WG. We conclude that differences in oxidative capacity and/or fiber type composition of muscle tissue do not explain different NE responsiveness of Dia 2As compared with 2As from gastrocnemius muscle. Differences in alpha1-adrenergic constrictor responsiveness among arterioles in skeletal muscle may contribute to nonuniform muscle blood flow responses observed during exercise and serve to maintain blood flow to Dia during exercise-induced increases in sympathetic nerve activity.

  5. Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes.

    PubMed

    Chen, Hsiao-Huei; Mullett, Steven J; Stewart, Alexandre F R

    2004-07-16

    Cardiac and skeletal muscle genes are regulated by the transcriptional enhancer factor (TEF-1) family of transcription factors. In skeletal muscle, TEF-1 factors interact with a skeletal muscle-specific cofactor called Vestigial-like 2 (Vgl-2) that is related to the Drosophila protein Vestigial. Here, we characterize Vgl-4, the only member of the Vestigial-like family expressed in the heart. Unlike other members of the Vgl family that have a single TEF-1 interaction domain called the tondu (TDU) motif, Vgl-4 has two TDU motifs in its carboxyl-terminal domain. Like other Vgl factors, Vgl-4 physically interacts with TEF-1 in an immunoprecipitation assay. Vgl-4 functionally interacts with TEF-1 and also with myocyte enhancer factor 2 in a mammalian two-hybrid assay. Overexpression of Vgl-4 in cardiac myocytes interfered with the basal expression and alpha1-adrenergic receptor-dependent activation of a TEF-1-dependent skeletal alpha-actin promoter. In cardiac myocytes cultured in serum and in serum-free medium, a myc-tagged Vgl-4 protein was located in the nucleus and cytoplasm but was exported from the nucleus when cells were treated with alpha1-adrenergic receptor agonist. A chimeric nuclear-retained Vgl-4 protein inhibited alpha1-adrenergic receptor-dependent activation. In contrast, deletion of the TDU motifs of Vgl-4 prevented Vgl-4 nuclear localization, relieved Vgl-4 interference of basal activity, and enhanced alpha1-adrenergic up-regulation of the skeletal alpha-actin promoter. Nuclear export of Vgl-4 is dependent on the nuclear exportin CRM-1. These results suggest that Vgl-4 modulates the activity of TEF-1 factors and counteracts alpha1-adrenergic activation of gene expression in cardiac myocytes.

  6. Synthesis and structure-activity relationships of a new model of arylpiperazines. 5. Study of the physicochemical influence of the pharmacophore on 5-HT(1a)/alpha(1)-adrenergic receptor affinity: synthesis of a new derivative with mixed 5-HT(1a)/d(2) antagonist properties.

    PubMed

    López-Rodríguez, M L; Morcillo, M J; Fernández, E; Porras, E; Orensanz, L; Beneytez, M E; Manzanares, J; Fuentes, J A

    2001-01-18

    In this paper we have designed and synthesized a test series of 32 amide arylpiperazine derivatives VI in order to gain insight into the physicochemical influence of the pharmacophores of 5-HT(1A) and alpha(1)-adrenergic receptors. The training set was designed applying a fractional factorial design using six physicochemical descriptors. The amide moiety is a bicyclohydantoin or a diketopiperazine (X = -(CH(2))(3)-, -(CH(2))(4)-; m = 0, 1), the spacer length is 3 or 4 methylene units, which are the optimum values for both receptors, and the aromatic substituent R occupies the ortho- or meta-position and has been selected from a database of 387 substituents using the EDISFAR program. The 5-HT(1A) and alpha(1)-adrenergic receptor binding affinities of synthesized compounds VI (1-32) have been determined. This data set has been used to derive classical quantitative structure-activity relationships (QSAR) and neural networks models for both receptors (following paper). A comparison of these models gives information for the design of the new ligand EF-7412 (46) (5-HT(1A): K(i) = 27 nM; alpha(1): K(i) > 1000 nM). This derivative displays affinity for the dopamine D(2) receptor (K(i) = 22 nM) and is selective versus all other receptors examined (5-HT(2A), 5-HT(3), 5-HT(4) and Bz; K(i) > 1000 nM). EF-7412 (46) acts as an antagonist in vivo in pre- and postsynaptic 5-HT(1A) receptor sites and as an antagonist in the dopamine D(2) receptor. Thus, EF-7412 (46) is a derivative with mixed 5-HT(1A)/D(2) antagonist properties and this derivative could be useful as a pharmacological tool.

  7. Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium

    PubMed Central

    1992-01-01

    Intracellular microelectrode techniques were used to characterize the electrical responses of the bovine retinal pigment epithelium (RPE)- choroid to epinephrine (EP) and several other catecholamines that are putative paracrine signals between the neural retina and the RPE. Nanomolar amounts of EP or norepinephrine (NEP), added to the apical bath, caused a series of conductance and voltage changes, first at the basolateral or choroid-facing membrane and then at the apical or retina- facing membrane. The relative potency of several adrenergic agonists and antagonists indicates that EP modulation of RPE transport begins with the activation of apical alpha-1-adrenergic receptors. The membrane-permeable calcium (Ca2+) buffer, amyl-BAPTA (1,2-bis(o- aminophenoxy)-ethane-N,N,N',N' tetraacetic acid) inhibited the EP- induced voltage and conductance changes by approximately 50-80%, implicating [Ca2+]i as a second messenger. This conclusion is supported by experiments using the Ca2+ ionophore A23187, which mimics the effects of EP. The basolateral membrane voltage response to EP was blocked by lowering cell Cl, by the presence of DIDS (4,4'- diisothiocyanostilbene-2,2'-disulfonic acid) in the basal bath, and by current clamping VB to the Cl equilibrium potential. In the latter experiments the EP-induced conductance changes were unaltered, indicating that EP increases basolateral membrane Cl conductance independent of voltage. The EP-induced change in basolateral Cl conductance was followed by a secondary decrease in apical membrane K conductance (approximately 50%) as measured by delta [K]o-induced diffusion potentials. Decreasing apical K from 5 to 2 mM in the presence of EP mimicked the effect of light on RPE apical and basolateral membrane voltage. These results indicate that EP may be an important paracrine signal that provides exquisite control of RPE physiology. PMID:1319462

  8. The protein acyl transferase ZDHHC21 modulates α1 adrenergic receptor function and regulates hemodynamics

    PubMed Central

    Marin, Ethan P.; Jozsef, Levente; Di Lorenzo, Annarita; Held, Kara F.; Luciano, Amelia K.; Melendez, Jonathan; Milstone, Leonard M.; Velazquez, Heino; Sessa, William C.

    2016-01-01

    Objective Palmitoylation, the reversible addition of the lipid palmitate to a cysteine, can alter protein localization, stability, and function. The ZDHHC family of protein acyl transferases catalyzes palmitoylation of numerous proteins. The role of ZDHHC enzymes in intact tissue and in vivo is largely unknown. Herein, we characterize vascular functions in a mouse that expresses a nonfunctional ZDHHC21 (“F233Δ”). Approach and Results Physiological studies of isolated aortae and mesenteric arteries from F233Δ mice revealed an unexpected defect in responsiveness to phenylephrine, an α1 adrenergic receptor agonist. In vivo, F233Δ mice displayed a blunted response to infusion of phenylephrine and were found to have elevated catecholamine levels and elevated vascular α1 adrenergic receptor gene expression. Telemetry studies showed that the F233Δ mice were tachycardic and hypotensive at baseline, consistent with diminished vascular tone. In biochemical studies, ZDHHC21 was shown to palmitoylate the α1D adrenoceptor, and to interact with it in a molecular complex, thus suggesting a possible molecular mechanism by which the receptor can be regulated by ZDHHC21. Conclusions Together the data support a model in which ZDHHC21 F233Δ diminishes the function of vascular α1 adrenergic receptors, leading to reduced vascular tone which manifests in vivo as hypotension and tachycardia. This is to our knowledge the first demonstration of a ZDHHC isoform affecting vascular function in vivo and identifies a novel molecular mode of regulation of vascular tone and blood pressure. PMID:26715683

  9. Immobility from administration of the alpha1-adrenergic antagonist, terazosin, in the IVth ventricle in rats.

    PubMed

    Stone, Eric A; Lin, Yan; Quartermain, David

    2003-12-26

    Brain alpha1-adrenoceptors have been shown to be essential for motor activity and movement in mice using intraventricular injection of alpha1-antagonists. To facilitate subsequent neuroanatomical mapping of these receptors, the present study was undertaken to replicate these effects in the rat. Rats were administered the alpha1-antagonist, terazosin, in the absence and presence of the alpha1-agonist, phenylephrine, in the IVth ventricle and were tested for their motor activity responses to an environmental change. Terazosin was found to produce a dose-dependent, virtually complete cessation of behavioral activity that was reversed by coinfusion of phenylephrine. The results could not be explained by sedation. It is concluded that central alpha1-adrenoceptors are essential for behavioral activation in rats as in mice.

  10. Iron-56 irradiation diminishes muscarinic but not {alpha}{sub 1}-adrenergic-stimulated low-K{sub m} GTPase in rat brain

    SciTech Connect

    Villalobos-Molina, R.; Joseph, J.A.; Rabin, B.M.; Kandasamy, S.B.; Dalton, T.K.; Roth, G.S.

    1994-12-01

    Initial findings from our laboratory have indicated that muscarinic enhancement of K{sup +}-evoked release of dopamine from perifused striatal slices is reduced after exposure to {sup 56}Fe-particle irradiation. This finding suggested that there is a radiation-induced deficit in muscarinic receptor sensitivity. Subsequent findings have indicated that at least part of the loss in sensitivity may occur as a result of alterations in the initial steps of the signal transduction process and involve muscarinic receptor-G protein coupling/uncoupling. The present study was carried out to localize this deficit further by determining carbachol-stimulated low-K{sub m} guanosine triphosphatase (GTPase) activity in striatal and hippocampal tissue obtained from rats exposed to 0, 0.1 or 1.0 Gy of {sup 56}Fe-particle irradiation. In addition, to examine the specificity of the effect of {sup 56}Fe-particle irradiation, {alpha}{sub 1}-adrenergic-stimulated low-K{sub m} GTPase activity was also examined in these tissues. The results showed that there was a high degree of specificity in the effects of {sup 56}Fe particles. Decrements were observed in muscarinic-stimulated low-K{sub m} GTPase in striatum but not in hippocampus, and {sup 56}Fe-particle irradiation did not affect {alpha}{sub 1}-adrenergic low-K{sub m} GTPase activity in either brain tissue. 24 refs., 2 figs.

  11. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor.

    PubMed

    Warne, Tony; Moukhametzianov, Rouslan; Baker, Jillian G; Nehmé, Rony; Edwards, Patricia C; Leslie, Andrew G W; Schertler, Gebhard F X; Tate, Christopher G

    2011-01-13

    β-adrenergic receptors (βARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit βARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) β(1)-adrenergic receptor (β(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.

  12. β1-adrenergic receptor activation enhances memory in Alzheimer's disease model

    PubMed Central

    Coutellier, Laurence; Ardestani, Pooneh Memar; Shamloo, Mehrdad

    2014-01-01

    Objective Deficits in social recognition and learning of social cues are major symptoms of neurodegenerative disorders such as Alzheimer's disease (AD). Here, we studied the role of β1-noradrenergic signaling in cognitive function to determine whether it could be used as a potential therapeutic target for AD. Methods Using pharmacological, biochemical, and behavioral tools, we assessed social recognition and the β1-adrenergic receptor (ADR) and its downstream protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signaling cascade in the medial amygdala (MeA) in Thy1-hAPPLond/Swe+(APP) mouse model of AD. Results Our results demonstrated that APP mice display a significant social recognition deficit which is dependent on the β1-adrenergic system. Moreover, betaxolol, a selective β1-ADR antagonist, impaired social but not object/odor learning in C57Bl/6 mice. Our results identifies activation of the PKA/pCREB downstream of β1-ADR in MeA as responsible signaling cascade for learning of social cues in MeA. Finally, we found that xamoterol, a selective β1-ADR partial agonist, rescued the social recognition deficit of APP mice by increasing nuclear pCREB. Interpretation Our data indicate that activation of β1-ADR in MeA is essential for learning of social cues, and that an impairment of this cascade in AD may contribute to pathogenesis and cognitive deficits. Therefore, selective activation of β1-ADR may be used as a therapeutic approach to rescue memory deficits in AD. Further safety and translational studies will be needed to ensure the safety of this approach. PMID:24883337

  13. β(1) Adrenergic receptor is key to cold- and diet-induced thermogenesis in mice.

    PubMed

    Ueta, Cintia B; Fernandes, Gustavo W; Capelo, Luciane P; Fonseca, Tatiane L; Maculan, Flávia D'Angelo; Gouveia, Cecilia H A; Brum, Patrícia C; Christoffolete, Marcelo A; Aoki, Marcelo S; Lancellotti, Carmen L; Kim, Brian; Bianco, Antonio C; Ribeiro, Miriam O

    2012-09-01

    Brown adipose tissue (BAT) is predominantly regulated by the sympathetic nervous system (SNS) and the adrenergic receptor signaling pathway. Knowing that a mouse with triple β-receptor knockout (KO) is cold intolerant and obese, we evaluated the independent role played by the β(1) isoform in energy homeostasis. First, the 30  min i.v. infusion of norepinephrine (NE) or the β(1) selective agonist dobutamine (DB) resulted in similar interscapular BAT (iBAT) thermal response in WT mice. Secondly, mice with targeted disruption of the β(1) gene (KO of β(1) adrenergic receptor (β(1)KO)) developed hypothermia during cold exposure and exhibited decreased iBAT thermal response to NE or DB infusion. Thirdly, when placed on a high-fat diet (HFD; 40% fat) for 5 weeks, β(1)KO mice were more susceptible to obesity than WT controls and failed to develop diet-induced thermogenesis as assessed by BAT Ucp1 mRNA levels and oxygen consumption. Furthermore, β(1)KO mice exhibited fasting hyperglycemia and more intense glucose intolerance, hypercholesterolemia, and hypertriglyceridemia when placed on the HFD, developing marked non-alcoholic steatohepatitis. In conclusion, the β(1) signaling pathway mediates most of the SNS stimulation of adaptive thermogenesis.

  14. Anti-β1-adrenergic receptor autoantibodies in patients with chronic Chagas heart disease

    PubMed Central

    Labovsky, V; Smulski, C R; Gómez, K; Levy, G; Levin, M J

    2007-01-01

    Chronic Chagas heart disease (cChHD), a chronic manifestation of the Trypanosoma cruzi infection, is characterized by high antibody levels against the C-terminal region of the ribosomal P proteins (i.e. peptide R13, EEEDDDMGFGLFD) which bears similarity with the second extracellular loop of β1-adrenergic receptor (β1-AR, peptide H26R HWWRAESDEARRCYNDPKCCDFVTNR). Because it has not been demonstrated clearly that IgGs from cChHD patients bind to native human β1-AR, the aim of this study was to investigate further the physical interaction between cChHD IgGs and the human β1-AR. Immunofluorescence assays demonstrated the binding of these antibodies to the receptor expressed on stably transfected cells, together with a β1-AR agonist-like effect. In addition, immunoadsorption of the serum samples from cChHD patients with a commercially available matrix, containing peptides representing the first and the second extracellular loop of the β1-AR, completely abolished reactivity against the H26R peptide and the physiological response to the receptor. The follow-up of this specificity after in vitro immunoadsorption procedures suggests that this treatment might be used to diminish significantly the serum levels of anti-β1-AR antibodies in patients with Chagas heart disease. PMID:17419712

  15. The Specific α1-Adrenergic Receptor Antagonist Prazosin Influences the Urine Proteome

    PubMed Central

    Zhao, Mindi; Wu, Jianqiang; Gao, Youhe

    2016-01-01

    Urine, reflecting many changes in the body, is a better source than blood for biomarker discovery. However, even under physiological conditions, the urine proteome often varies. Understanding how various regulating factors affect urine proteome helps link changes to urine proteome with urinary biomarkers of physiological conditions as well as corresponding diseases. To evaluate the possible impact of α1-adrenergic receptor on urine proteome, this study investigated effects of the specific inhibitor prazosin on the urine proteome in a rat model by using tandem mass tagging and two-dimensional liquid chromatography-tandem mass spectrometry. A total of 775 proteins were identified, approximately half of which were influenced by prazosin treatment, indicating that the sympathetic nervous system exerts a significant impact on urine proteome. Eight significantly changed proteins were previously annotated as urinary candidate biomarkers. Angiotensinogen, haptoglobin, and beta-2 microglobulin, which were reported to be associated with blood pressure, were validated via Western blot. Prazosin is widely used in clinical practice; thus, these protein changes should be considered when studying corresponding diseases such as hypertension, post-traumatic stress disorder and benign prostatic hyperplasia. The related physiological activities of α1-receptors, controlling blood pressure and fear response might significantly affect the urine proteome and warrant further biomarker studies. PMID:27780262

  16. Cloning of the cDNA for the human. beta. /sub 1/-adrenergic receptor

    SciTech Connect

    Frielle, T.; Collins, S.; Daniel, K.W.; Caron, M.G.; Lefkowitz, R.J.; Kobilka, B.K.

    1987-11-01

    Screening of a human placenta lambdagt11 library has led to the isolation of the cDNA for the human ..beta../sub 1/-adrenergic receptor (..beta../sub 1/AR). Used as the probe was the human genomic clone termed G-21. This clone, which contains an intronless gene for a putative receptor, was previously isolated by virtue of its cross hybridization with the human ..beta../sub 2/-adrenergic receptor (..beta../sub 2/AR). The 2.4-kilobase cDNA for the human ..beta../sub 1/AR encodes a protein of 477 amino acid residues that is 69% homologous with the avian ..beta..AR but only 54% homologous with the human ..beta../sub 2/AR. This suggests that the avian gene encoding ..beta..AR and the human gene encoding ..beta../sub 1/AR evolved from a common ancestral gene. RNA blot analysis indicates a message of 2.5 kilobases in rat tissues, with a pattern of tissue distribution consistent with ..beta../sub 1/AR binding. This pattern is quite distinct from the pattern obtained when the ..beta../sub 2/AR cDNA is used as a probe. Expression of receptor protein in Xenopus laevis oocytes conveys adenylate cyclase responsiveness to catecholamines with a typical ..beta../sub 1/AR specificity. This contrasts with the typical ..beta../sub 2/ subtype specificity observed when the human ..beta../sub 2/AR cDNA is expressed in this system. Mammalian ..beta../sub 1/AR and ..beta../sub 2/AR are thus products of distinct genes, both of which are apparently related to the putative G-21 receptor.

  17. β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals

    PubMed Central

    Mani, Bharath K.; Osborne-Lawrence, Sherri; Vijayaraghavan, Prasanna; Hepler, Chelsea; Zigman, Jeffrey M.

    2016-01-01

    Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction–associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell–expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker–associated hypoglycemia in susceptible individuals, such as young children. PMID:27548523

  18. Pharmacogenetics of beta1-adrenergic receptors in heart failure and hypertension.

    PubMed

    Mialet-Perez, J; Liggett, S B

    2006-06-01

    Currently it is generally accepted that an individual's genetic makeup can modify the efficacy of drug treatment or the risk of adverse reactions. Although not a new concept, the availability of human genome sequence and rapid genotyping at variable loci in drug targets or metabolizing genes has provided new opportunities for the field termed "pharmacogenetics". Somewhat surprisingly, multiple studies have shown the existence of common variants (polymorphisms) in members of the G-protein coupled receptor superfamily, which constitute around 50% of all the targets of currently prescribed drugs. The beta1-adrenergic receptors (beta1ARs) are interesting candidates for pharmacogenetic studies in two complex cardiovascular disease, heart failure and hypertension, since they mediate the effects of catecholamines in the sympathetic nervous system. These receptors are involved in the progression and treatment (beta-blockers therapy) of both diseases, and have polymorphisms that show altered function or regulation as compared to their allelic counterparts in recombinant expression systems and genetically modified mice. These results have prompted prospective and retrospective clinical studies examining whether polymorphisms of these genes are risk factors, disease modifiers, or predictors of b-blocker response in heart failure and hypertension. To date, it appears that beta1AR variants are very likely one genetic component that defines responsiveness to beta-blockers in heart failure and hypertension. Altogether, results are promising, but discrepancies between studies require resolution before these polymorphisms can be utilized in practice. With the goal of personalizing therapy based on an individual's genetic makeup, additional adequately powered, multiethnic, multi-drug studies will be needed.

  19. Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol–Bound β1-Adrenergic Receptor

    PubMed Central

    Sato, Tomomi; Baker, Jillian; Warne, Tony; Brown, Giles A.; Leslie, Andrew G.W.; Congreve, Miles

    2015-01-01

    Comparisons between structures of the β1-adrenergic receptor (AR) bound to either agonists, partial agonists, or weak partial agonists led to the proposal that rotamer changes of Ser5.46, coupled to a contraction of the binding pocket, are sufficient to increase the probability of receptor activation. (RS)-4-[3-(tert-butylamino)-2-hydroxypropoxy]-1H-indole-2-carbonitrile (cyanopindolol) is a weak partial agonist of β1AR and, based on the hypothesis above, we predicted that the addition of a methyl group to form 4-[(2S)-3-(tert-butylamino)-2-hydroxypropoxy]-7-methyl-1H-indole-2-carbonitrile (7-methylcyanopindolol) would dramatically reduce its efficacy. An eight-step synthesis of 7-methylcyanopindolol was developed and its pharmacology was analyzed. 7-Methylcyanopindolol bound with similar affinity to cyanopindolol to both β1AR and β2AR. As predicted, the efficacy of 7-methylcyanopindolol was reduced significantly compared with cyanopindolol, acting as a very weak partial agonist of turkey β1AR and an inverse agonist of human β2AR. The structure of 7-methylcyanopindolol–bound β1AR was determined to 2.4-Å resolution and found to be virtually identical to the structure of cyanopindolol-bound β1AR. The major differences in the orthosteric binding pocket are that it has expanded by 0.3 Å in 7-methylcyanopindolol–bound β1AR and the hydroxyl group of Ser5.46 is positioned 0.8 Å further from the ligand, with respect to the position of the Ser5.46 side chain in cyanopindolol-bound β1AR. Thus, the molecular basis for the reduction in efficacy of 7-methylcyanopindolol compared with cyanopindolol may be regarded as the opposite of the mechanism proposed for the increase in efficacy of agonists compared with antagonists. PMID:26385885

  20. Structural Insights into Conformational Stability of Wild-Type and Mutant β1-Adrenergic Receptor

    PubMed Central

    Balaraman, Gouthaman S.; Bhattacharya, Supriyo; Vaidehi, Nagarajan

    2010-01-01

    Abstract Recent experiments to derive a thermally stable mutant of turkey beta-1-adrenergic receptor (β1AR) have shown that a combination of six single point mutations resulted in a 20°C increase in thermal stability in mutant β1AR. Here we have used the all-atom force-field energy function to calculate a stability score to detect stabilizing point mutations in G-protein coupled receptors. The calculated stability score shows good correlation with the measured thermal stability for 76 single point mutations and 22 multiple mutants in β1AR. We have demonstrated that conformational sampling of the receptor for various mutants improve the prediction of thermal stability by 50%. Point mutations Y227A5.58, V230A5.61, and F338M7.48 in the thermally stable mutant m23-β1AR stabilizes key microdomains of the receptor in the inactive conformation. The Y227A5.58 and V230A5.61 mutations stabilize the ionic lock between R1393.50 on transmembrane helix3 and E2856.30 on transmembrane helix6. The mutation F338M7.48 on TM7 alters the interaction of the conserved motif NPxxY(x)5,6F with helix8 and hence modulates the interaction of TM2-TM7-helix8 microdomain. The D186-R317 salt bridge (in extracellular loops 2 and 3) is stabilized in the cyanopindolol-bound wild-type β1AR, whereas the salt bridge between D184-R317 is preferred in the mutant m23. We propose that this could be the surrogate to a similar salt bridge found between the extracellular loop 2 and TM7 in β2AR reported recently. We show that the binding energy difference between the inactive and active states is less in m23 compared to the wild-type, which explains the activation of m23 at higher norepinephrine concentration compared to the wild-type. Results from this work throw light into the mechanism behind stabilizing mutations. The computational scheme proposed in this work could be used to design stabilizing mutations for other G-protein coupled receptors. PMID:20643076

  1. Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in alpha 1-adrenergic action.

    PubMed Central

    García-Sáinz, J A; Hernández-Sotomayor, S M

    1985-01-01

    We have previously suggested that the effects of alpha 1-adrenergic agents on hepatocyte metabolism involve two mechanisms: (i) a calcium-independent insulin-sensitive process that is modulated by glucocorticoids and (ii) a calcium-dependent insulin-insensitive process that is modulated by thyroid hormones. We have studied the effect of epinephrine (plus propranolol) on gluconeogenesis from lactate and dihydroxyacetone. It was observed that the adrenergic stimulation of gluconeogenesis from lactate seemed to occur through both mechanisms, whereas when the substrate was dihydroxyacetone the action took place exclusively through the calcium-independent insulin-sensitive process. This effect was absent in hepatocytes from adrenalectomized rats, suggesting that it is modulated by glucocorticoids. PMID:2995981

  2. Impairment of contextual conditioned fear extinction after microinjection of alpha-1-adrenergic blocker prazosin into the medial prefrontal cortex.

    PubMed

    Do-Monte, Fabrício H M; Allensworth, Melody; Carobrez, Antônio P

    2010-07-29

    Long-lasting memories of aversive or stressful events have been associated with the noradrenergic system activation. Alpha-1-adrenergic antagonist prazosin has successfully been used in the last years to treat anxiety disorders related to aversive memories recurrence in humans. Contextual conditioned fear extinction paradigm in rats has been used to better understand the mechanisms involved in the attenuation of defensive behaviour after a traumatic situation. Here we investigated the effects of systemic administration of prazosin in the fear extinction processes. Rats were previously paired in a contextual fear conditioning box (1 footshock, 1 mA, 2s duration), further returning to the same box during three consecutive days receiving an intraperitoneal injection of vehicle or prazosin 30 min before (acquisition of extinction; 0.1 or 0.5mg/kg) or immediately after (consolidation of extinction, 0.5 or 1.5mg/kg) each extinction session (10 min). On the last day, all animals were re-exposed undrugged to the apparatus. Since the medial prefrontal cortex (mPFC) has been described as a key structure in the modulation of conditioned fear extinction, the effects of intra-mPFC microinjection (0.2 microl per side) of vehicle (PBS) or prazosin (0.75 or 2.5 nmol) in the acquisition of fear extinction (10 min before extinction session 1) were further evaluated. Subjects were drug-free re-exposed to the same box in the next day (extinction session 2). The percentage of freezing time was used as the memory retention parameter. The results showed that either systemic or intra-mPFC-alpha-1-adrenergic blockade increased the freezing time in the last extinction sessions, suggesting impairment of the extinction of contextual conditioned fear in rats.

  3. Contribution of both Ca2+ entry and Ca2+ sensitization to the alpha1-adrenergic vasoconstriction of rat penile small arteries.

    PubMed

    Villalba, Nuria; Stankevicius, Edgaras; Garcia-Sacristán, Albino; Simonsen, Ulf; Prieto, Dolores

    2007-02-01

    Sympathetic adrenergic nerves maintain the flaccid state of the penis through the tonic release of norepinephrine that contracts trabecular and arterial smooth muscle. Simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and tension and experiments with alpha-toxin-permeabilized arteries were performed in branches of the rat dorsal penile artery to investigate the intracellular Ca(2+) signaling pathways underlying alpha(1)-adrenergic vasoconstriction. Phenylephrine increased both [Ca(2+)](i) and tension, these increases being abolished by extracellular Ca(2+) removal and reduced by about 50% by the L-type Ca(2+) channel blocker nifedipine (0.3 microM). Non-L-type Ca(2+) entry through store-operated channels was studied by inhibiting the sarcoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid (CPA). CPA (30 microM) induced variable phasic contractions that were abolished by extracellular Ca(2+) removal and by the store-operated channels antagonist 2-aminoethoxydiphenyl borate (2-APB, 50 microM) and largely inhibited by nifedipine (0.3 microM). CPA induced a sustained increase in [Ca(2+)](i) that was reduced in a Ca(2+)-free medium. Under conditions of L-type channels blockade, Ca(2+) readmission after store depletion with CPA evoked a sustained and marked elevation in [Ca(2+)](i) not coupled to contraction. 2-APB (50 microM) inhibited the rise in [Ca(2+)](i) evoked by CPA and the nifedipine-insensitive increases in both [Ca(2+)](i) and contraction elicited by phenylephrine. In alpha-toxin-permeabilized penile arteries, activation of G proteins with guanosine 5'-O-(3-thiotriphosphate) and of the alpha(1)-adrenoceptor with phenylephrine both enhanced the myofilament sensitivity to Ca(2+). This Ca(2+) sensitization was reduced by selective inhibitors of PKC, tyrosine kinase (TK), and Rho kinase (RhoK) by 43%, 67%, and 82%, respectively. As a whole, the present data suggest the alpha(1)-adrenergic vasoconstriction in penile small arteries

  4. Co-translational formation and pharmacological characterization of beta1-adrenergic receptor/nanodisc complexes with different lipid environments.

    PubMed

    Rues, Ralf-Bernhardt; Dötsch, Volker; Bernhard, Frank

    2016-06-01

    G protein-coupled receptors are of key significance for biomedical research. Streamlined approaches for their efficient recombinant production are of pivotal interest in order to explore their intrinsic conformational dynamics and complex ligand binding behavior. We have systematically optimized the co-translational association and folding of G protein-coupled receptors with defined membranes of nanodiscs by cell-free expression approaches. Each optimization step was quantified and the ligand binding active fraction of the receptor samples could drastically be improved. The strategy was exemplified with a stabilized and a non-stabilized derivative of the turkey beta1-adrenergic receptor. Systematic lipid screens with preformed nanodiscs revealed that generation of ligand binding active conformations of the analyzed beta1-adrenergic receptors strongly depends on lipid charge, flexibility and chain length. The lipid composition of the nanodisc membranes modulates the affinities to a variety of ligands of both receptor derivatives. In addition, the thermostabilization procedure had a significant impact on specific ligand affinities of the receptor and abolished or reduced the binding of certain antagonists. Both receptors were highly stable after purification with optimized nanodisc membranes. The procedure avoids any detergent contact of the receptors and sample production takes less than two days. Moreover, even non-stabilized receptors can be analyzed and their prior purification is not necessary for the formation of nanodisc complexes. The established process appears therefore to be suitable as a new platform for the functional or even structural characterization of recombinant G protein-coupled receptors associated with defined lipid environments.

  5. Modification of certain pharmacological effects of ethanol by lipophilic alpha-1 adrenergic agonists

    SciTech Connect

    Menon, M.K.; Dinovo, E.C.; Haddox, V.G.

    1987-09-28

    The influence of four centrally-acting alpha-1 adrenoceptor agonists, namely, 2(2-chloro-5-trifluoromethylphenylimino) imidazolidine (St 587), cirazoline, (-) 1,2,3,4-tetrahydro-8-methoxy-5-methylthio-2-naphthalenamine ((-)SKF 89748A) and 2-(2-methylindazol-4-imino)imidazolidine (Sgd 101/75) on the pharmacological effects of ethanol was investigated. All four drugs reduced the duration of ethanol-induced hypnosis in C57B1/6 mice, this effect being proportional to their relative potencies to exert central alpha-1 agonism. In prazosin-pretreated mice, St 587 failed to reduce the hypnotic effect of ethanol, which provided strong evidence for the role of alpha-1 agonism for the hypnosis reducing effect of St 587. Hyperactivity induced in C57B1/6 mice by a subhypnotic dose of ethanol and St 587 was reported earlier. In the present study, St 587, cirazoline and (-)SKF 89748A produced similar response, but no correlation between this effect and ethanol hypnosis blockade could be established. 19 references, 8 figures, 2 tables.

  6. Correlation between phosphatidylinositol labeling and contraction in rabbit aorta: effect of alpha-1 adrenergic activation

    SciTech Connect

    Villalobos-Molina, R.; Uc, M.; Hong, E.; Garcia-Sainz, J.A.

    1982-07-01

    Activation of rabbit aortic strips with alpha adrenergic agonists increased the labeling (with (/sup 32/P)Pi) of phosphatidylinositol (PI) and phosphatidic acid and contracted the vascular preparations in dose-related fashion. Epinephrine, norepinephrine and methoxamine produced maximal effects, whereas clonidine behaved as partial agonist and B-HT 933 (2-amino-6-ethyl-4,5,7,8-tetrahydro-6H-oxazole-(5,4-d) azepin dihydrochloride) was almost without activity in the two experimental models used. Phenylephrine was a full agonist in producing contraction, but failed to elicit the maximal increase in PI labeling. The EC50 values to produce contraction of aortic strips were lower for all agonists than those required to increase the incorporation of radioactive phosphate into PI, but there was a good correlation between the two sets of data. The increased PI labeling and contraction of aortic strips induced by epinephrine were antagonized by prazosin and yohimbine in dose-related fashion, but the first alpha blocker was about three orders of magnitude more potent than the second in antagonizing the two effects. The present results indicate that both stimulation of PI labeling and contraction are mediated through activation of alpha-1 adrenoceptors in rabbit aorta.

  7. Evidence for Alpha Receptors in the Human Ureter

    NASA Astrophysics Data System (ADS)

    Madeb, Ralph; Knopf, Joy; Golijanin, Dragan; Bourne, Patricia; Erturk, Erdal

    2007-04-01

    An immunohistochemical and western blot expression analysis of human ureters was performed in order to characterize the alpha-1-adrenergic receptor distribution along the length of the human ureteral wall. Mapping the distribution will assist in understanding the potential role alpha -1-adrenergic receptors and their subtype density might have in the pathophysiology of ureteral colic and stone passage. Patients diagnosed with renal cancer or bladder cancer undergoing nephrectomy, nephroureterectomy, or cystectomy had ureteral specimens taken from the proximal, mid, distal and tunneled ureter. Tissues were processed for fresh frozen examination and fixed in formalin. None of the ureteral specimens were involved with cancer. Serial histologic sections and immunohistochemical studies were performed using antibodies specific for alpha-1-adrenergic receptor subtypes (alpha 1a, alpha 1b, alpha 1d). The sections were examined under a light microscope and scored as positive or negative. In order to validate and quantify the alpha receptor subtypes along the human ureter. Western blotting techniques were applied. Human ureter stained positively for alpha -1-adrenergic receptors. Immunostaining appeared red, with intense reaction in the smooth muscle of the ureter and endothelium of the neighboring blood vessels. There was differential expression between all the receptors with the highest staining for alpha-1D subtype. The highest protein expression for all three subtypes was in the renal pelvis and decreased with advancement along the ureter to the distal ureter. At the distal ureter, there was marked increase in expression as one progressed towards the ureteral orifice. The same pattern of protein expression was exhibited for all three alpha -1-adrenergic receptor subtypes. We provide preliminary evidence for the ability to detect and quantify the alpha-1-receptor subtypes along the human ureter which to the best of our knowledge has never been done with

  8. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine

    PubMed Central

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na+ current (INa), and is known to reduce the Na+-dependent Ca2+ overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na+ channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca2+ calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  9. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.

    PubMed

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-12-10

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine.

  10. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  11. Women at altitude: short-term exposure to hypoxia and/or alpha(1)-adrenergic blockade reduces insulin sensitivity.

    PubMed

    Braun, B; Rock, P B; Zamudio, S; Wolfel, G E; Mazzeo, R S; Muza, S R; Fulco, C S; Moore, L G; Butterfield, G E

    2001-08-01

    After short-term exposure to high altitude (HA), men appear to be less sensitive to insulin than at sea level (SL). We hypothesized that the same would be true in women, that reduced insulin sensitivity would be directly related to the rise in plasma epinephrine concentrations at altitude, and that the addition of alpha-adrenergic blockade would potentiate the reduction. To test the hypotheses, 12 women consumed a high-carbohydrate meal at SL and after 16 h at simulated 4,300-m elevation (HA). Subjects were studied twice at each elevation: once with prazosin (Prz), an alpha(1)-adrenergic antagonist, and once with placebo (Pla). Mathematical models were used to assess insulin resistance based on fasting [homeostasis model assessment of insulin resistance (HOMA-IR)] and postprandial [composite model insulin sensitivity index (C-ISI)] glucose and insulin concentrations. Relative to SL-Pla (HOMA-IR: 1.86 +/- 0.35), insulin resistance was greater in HA-Pla (3.00 +/- 0.45; P < 0.05), SL-Prz (3.46 +/- 0.51; P < 0.01), and HA-Prz (2.82 +/- 0.43; P < 0.05). Insulin sensitivity was reduced in HA-Pla (C-ISI: 4.41 +/- 1.03; P < 0.01), SL-Prz (5.73 +/- 1.01; P < 0.05), and HA-Prz (4.18 +/- 0.99; P < 0.01) relative to SL-Pla (8.02 +/- 0.92). Plasma epinephrine was significantly elevated in HA-Pla (0.57 +/- 0.08 ng/ml; P < 0.01), SL-Prz (0.42 +/- 0.07; P < 0.05), and HA-Prz (0.82 +/- 0.07; P < 0.01) relative to SL-Pla (0.28 +/- 0.04), but correlations with HOMA-IR, HOMA-beta-cell function, and C-ISI were weak. In women, short-term exposure to simulated HA reduced insulin sensitivity compared with SL. The change does not appear to be directly mediated by a concurrent rise in plasma epinephrine concentrations.

  12. The Polymorphisms of Ser49Gly and Gly389Arg in Beta-1-Adrenergic Receptor Gene in Major Depression

    PubMed Central

    KOKUT, Süleyman; ATAY, İnci Meltem; UZ, Efkan; AKPINAR, Abdullah; DEMİRDAŞ, Arif

    2015-01-01

    Introduction It was reported that the genetic susceptibility of major depressive disorder (MDD) is related with genetic polymorphisms. The aim of this study was to investigate the possible association of the genotype and allele frequencies of Ser49Gly and Arg389Gly polymorphisms in MDD by comparing them with healthy subjects. Methods A total of 144 patients with MDD diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) criteria and 105 healthy controls were included in the study. Polymerase chain reaction (PCR) with restriction fragment length polymorphism (RFLP) was used for genotyping. Results Of the 144 participants in the MDD group, 77 (53.5%) had homozygous wild type (AA), 57 (39.6%) had heterozygous type (AG), and 10 (6.9%) had mutant (GG) genotype for Ser49Gly, whereas 75 (52.1%) had homozygous wild type (GG), 59 (41.0%) had heterozygous (GC) type, and 10 (6.9%) had mutant homozygous (CC) genotype for Gly386Arg. There were no significant difference in the allele and genotype frequencies of the beta-1-adrenergic receptor (ADRB1) gene for Ser49Gly and Arg389Gly polymorphisms after comparing with healthy controls (p=0.626; p=0.863 and p=0.625; p=0.914). Conclusion The results of our study did not reveal a major effect of the polymorphism of Ser49Gly and Gly389Arg in the ADRB1 gene in MDD. Further studies with larger sample size are required to elucidate the role of other beta-1 adrenergic gene polymorphisms in MDD. PMID:28360691

  13. Effect of alpha(1)-adrenergic antagonist prazosin on behavioral alterations induced by MK-801 in a spatial memory task in Long-Evans rats.

    PubMed

    Stuchlík, A; Petrásek, T; Vales, K

    2009-01-01

    Animal models of neuropsychiatric disorders are current topics in behavioral neuroscience. Application of non-competitive antagonists of NMDA receptors (such as MK-801) was proposed as a model of schizophrenia, as it leads to specific behavioral alterations, which are partly analogous to human psychotic symptoms. This study examined an animal model of schizophrenia induced by a systemic application of MK-801 (0.15 and 0.20 mg/kg) into rats tested in the active allothetic place avoidance (AAPA) task. Previous studies suggested that MK-801 may interact in vivo with other neurotransmitter systems, including noradrenergic system. Our experiments therefore evaluated the hypothesis that both locomotor stimulation and deficit in avoidance behavior in AAPA task induced by this drug would be reversible by application of alpha(1)-adrenergic antagonist prazosin (1 and 2 mg/kg). The results showed that both doses of prazosin partially reversed hyperlocomotion induced by higher doses of MK-801 and an avoidance deficit measured as number of entrances into the shock sector. Interestingly, no effect of prazosin on the MK-801-induced decrease of maximum time between two entrances (another measure of cognitive performance) was observed. These results support previous data showing that prazosin can compensate for the hyperlocomotion induced by MK-801 and newly show that this partial reduction sustains even in the forced locomotor conditions, which are involved in the AAPA task. The study also shows that certain parameters of avoidance efficiency may be closely related to locomotor activity, whereas other measures of cognition may more selectively reflect cognitive changes.

  14. Effect of {beta}{sub 1} adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity

    SciTech Connect

    Boettcher, M.; Czernin, J.; Sun, K.

    1997-03-01

    The {beta}{sub 1} receptor blockade reduces cardiac work and may thereby lower myocardial blood flow (MBF) at rest. The effect of {beta}{sub 1} receptor blockade on hyperemic MBF is unknown. To evaluate the effect of selective {beta}{sub 1} receptor blockade on MBF at rest and during dipyridamole induced hyperemia, 10 healthy volunteers (8 men, 2 women, mean age 24 {+-} 5 yr) were studied using {sup 13}N-ammonia PET (two-compartment model) under control conditions and again during metoprolol (50 mg orally 12 hr and 1 hr before the study). The resting rate pressure product (6628 {+-} 504 versus 5225 {+-} 807) and heart rate (63 {+-} 6-54 {plus_minus} 5 bpm) declined during metoprolol (p < 0.05). Similarly, heart rate and rate pressure product declined from the baseline dipyridamole study to dipyridamole plus metoprolol (p < 0.05). Resting MBF declined in proportion to cardiac work by approximately 20% from 0.61 {+-} 0.09-0.51 {+-} 0.10 ml/g/min (p < 0.05). In contrast, hyperemic MBF increased when metoprolol was added to dipyridamole (1.86 {plus_minus} 0.27 {+-} 0.45 ml/g/min; p<0.05). The decrease in resting MBF together with the increase in hyperemic MBF resulted in a significant increase in the myocardial flow reserve during metoprolol (3.14 {+-} 0.80-4.61 {+-} 0.68; p<0.01). The {beta}{sub 1} receptor blockade increases coronary vasodilatory capacity and myocardial flow reserve. However, the mechanisms accounting for this finding remain uncertain. 32 refs., 2 figs., 2 tabs.

  15. SYNAPTIC TRANSLATION OF STRIATAL-ENRICHED TYROSINE PHOSPHATASE (STEP) AFTER β1-ADRENERGIC RECEPTOR STIMULATION

    PubMed Central

    Hu, Yaer; Zhang, Yang; Venkitaramani, Deepa V.; Lombroso, Paul J.

    2009-01-01

    The β-adrenergic system is implicated in long-term synaptic plasticity in the central nervous system, a process that requires protein synthesis. To identify proteins that are translated in response to β-adrenergic receptor stimulation and the pathways that regulate this process, we investigated the effects of isoproterenol on the translation of striatal-enriched protein tyrosine phosphatase (STEP) in both cortico-striatal slices and primary neuronal cultures. Isoproterenol stimulation induced a rapid dose-dependent increase in STEP expression. Anisomycin blocked the increase in STEP expression while actinomycin D had no effect, suggesting a translation-dependent mechanism. Isoproterenol-induced STEP translation required activation of β1 receptors. Application of the MEK inhibitor SL327 blocked both isoproterenol-induced activation of pERK and subsequent STEP translation. Inhibitors of PI3K (LY294002) or mTOR (rapamycin) also completely blocked STEP translation. These results suggest that co-activation of both the ERK and PI3K-Akt-mTOR pathways are required for STEP translation. As the substrates of STEP include ERK itself, these results suggest that STEP is translated upon β-adrenergic activation as part of a negative feedback mechanism. PMID:17623046

  16. Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects.

    PubMed Central

    Rohrer, D K; Desai, K H; Jasper, J R; Stevens, M E; Regula, D P; Barsh, G S; Bernstein, D; Kobilka, B K

    1996-01-01

    At least three distinct beta-adrenergic receptor (beta-AR) subtypes exist in mammals. These receptors modulate a wide variety of processes, from development and behavior, to cardiac function, metabolism, and smooth muscle tone. To understand the roles that individual beta-AR subtypes play in these processes, we have used the technique of gene targeting to create homozygous beta 1-AR null mutants (beta 1-AR -/-) in mice. The majority of beta 1-AR -/- mice die prenatally, and the penetrance of lethality shows strain dependence. Beta l-AR -/- mice that do survive to adulthood appear normal, but lack the chronotropic and inotropic responses seen in wild-type mice when beta-AR agonists such as isoproterenol are administered. Moreover, this lack of responsiveness is accompanied by markedly reduced stimulation of adenylate cyclase in cardiac membranes from beta 1-AR -/- mice. These findings occur despite persistent cardiac beta 2-AR expression, demonstrating the importance of beta 1-ARs for proper mouse development and cardiac function, while highlighting functional differences between beta-AR subtypes. Images Fig. 1 Fig. 3 PMID:8693001

  17. Molecular mimicry between the immunodominant ribosomal protein P0 of Trypanosoma cruzi and a functional epitope on the human beta 1- adrenergic receptor

    PubMed Central

    1995-01-01

    Sera from chagasic patients possess antibodies recognizing the carboxy- terminal part of the ribosomal P0 protein of Trypanosoma cruzi and the second extracellular loop of the human beta 1-adrenergic receptor. Comparison of both peptides showed that they contain a pentapeptide with very high homology (AESEE in P0 and AESDE in the human beta 1- adrenergic receptor). Using a competitive immunoenzyme assay, recognition of the peptide corresponding to the second extracellular loop (H26R) was inhibited by both P0-14i (AAAESEEEDDDDDF) and P0-beta (AESEE). Concomitantly, recognition of P0-beta was inhibited with the H26R peptide. Recognition of P0 in Western blots was inhibited by P0- 14i, P0-beta, and H26R, but not by a peptide corresponding to the second extracellular loop of the human beta 2-adrenergic receptor or by an unrelated peptide. Autoantibodies affinity purified with the immobilized H26R peptide were shown to exert a positive chronotropic effect in vitro on cardiomyocytes from neonatal rats. This effect was blocked by both the specific beta 1 blocker bisoprolol and the peptide P0-beta. These results unambiguously prove that T. cruzi is able to induce a functional autoimmune response against the cardiovascular human beta 1-adrenergic receptor through a molecular mimicry mechanism. PMID:7790824

  18. Molecular mimicry between the immunodominant ribosomal protein P0 of Trypanosoma cruzi and a functional epitope on the human beta 1-adrenergic receptor.

    PubMed

    Ferrari, I; Levin, M J; Wallukat, G; Elies, R; Lebesgue, D; Chiale, P; Elizari, M; Rosenbaum, M; Hoebeke, J

    1995-07-01

    Sera from chagasic patients possess antibodies recognizing the carboxy-terminal part of the ribosomal P0 protein of Trypanosoma cruzi and the second extracellular loop of the human beta 1-adrenergic receptor. Comparison of both peptides showed that they contain a pentapeptide with very high homology (AESEE in P0 and AESDE in the human beta 1-adrenergic receptor). Using a competitive immunoenzyme assay, recognition of the peptide corresponding to the second extracellular loop (H26R) was inhibited by both P0-14i (AAAESEEEDDDDDF) and P0-beta (AESEE). Concomitantly, recognition of P0-beta was inhibited with the H26R peptide. Recognition of P0 in Western blots was inhibited by P0-14i, P0-beta, and H26R, but not by a peptide corresponding to the second extracellular loop of the human beta 2-adrenergic receptor or by an unrelated peptide. Autoantibodies affinity purified with the immobilized H26R peptide were shown to exert a positive chronotropic effect in vitro on cardiomyocytes from neonatal rats. This effect was blocked by both the specific beta 1 blocker bisoprolol and the peptide P0-beta. These results unambiguously prove that T. cruzi is able to induce a functional autoimmune response against the cardiovascular human beta 1-adrenergic receptor through a molecular mimicry mechanism.

  19. Activating autoantibodies to the beta1-adrenergic and M2 muscarinic receptors facilitate atrial fibrillation in patients with Graves’ hyperthyroidism

    PubMed Central

    Stavrakis, Stavros; Yu, Xichun; Patterson, Eugene; Huang, Shijun; Hamlett, Sean R.; Chalmers, Laura; Pappy, Reji; Cunningham, Madeleine W.; Morshed, Syed A.; Davies, Terry F.; Lazzara, Ralph; Kem, David C.

    2009-01-01

    Objectives We studied activating autoantibodies to β1-adrenergic (AAβ1AR) and M2 muscarinic receptors (AAM2R) in the genesis of atrial fibrillation (AF) in Graves’ hyperthyroidism. Background AF frequently complicates hyperthyroidism. AAβ1AR and AAM2R have been described in some patients with dilated cardiomyopathy and AF. We hypothesized their co-presence would facilitate AF in autoimmune Graves’ hyperthyroidism. Methods IgG purified from 38 patients with Graves’ hyperthyroidism with AF (n=17) or sinus rhythm (n=21) and 10 healthy controls was tested for its effects on isolated canine Purkinje fiber contractility with and without atropine and nadolol. IgG electrophysiologic effects were studied using intracellular recordings from isolated canine pulmonary veins. Potential cross-reactivity of AAβ1AR and AAM2R with stimulating thyrotropin receptor (TSHR) antibodies was evaluated before and after adsorption to CHO cells expressing human TSHRs using flow cytometry and enzyme-linked immunosorbent assays. Results The frequency of AAβ1AR and/or AAM2R differed significantly between patients with AF and sinus rhythm (AAβ1AR = 94% vs. 38%, p<0.001; AAM2R = 88% vs. 19%, p<0.001; and AAβ1AR+AAM2R = 82% vs. 10%, p<0.001). The co-presence of AAβ1AR and AAM2R was the strongest predictor of AF (odds ratio 33.61, 95% CI 1.17 - 964.11, p=0.04). IgG from autoantibody-positive patients induced hyperpolarization, decreased action potential duration, enhanced early afterdepolarization formation and facilitated triggered firing in pulmonary veins by local autonomic nerve stimulation. Imunoadsorption studies demonstrated that AAβ1AR and AAM2R were immunologically distinct from TSHR antibodies. Conclusions AAβ1AR and AAM2R when present in patients with Graves’ hyperthyroidism facilitate development of AF. PMID:19778674

  20. Functional supersensitivity of alpha 1-adrenergic system in spinal ventral horn is due to absence of an uptake system and not to postsynaptic change.

    PubMed

    Hirayama, T; Ono, H; Fukuda, H

    1991-01-25

    The excitatory effects of adrenoceptor agonists on ventral horn cells were compared using an extracellular recording technique in spinal cord slices isolated from non-treated and 6-hydroxydopamine (6-OHDA)-treated rats (intracisternally 14 days previously). In spinal cord slices isolated from 6-OHDA-treated rats, the concentration-response curves for the alpha 1-adrenoceptor-mediated facilitatory effects produced by noradrenaline and phenylephrine but not those produced by methoxamine and isoproterenol were shifted to the left. 6-OHDA pretreatment decreased the level and uptake of noradrenaline and increased the number of [3H]prazosin binding sites in the spinal cord. These results suggest that in 6-OHDA-induced denervation, functional supersensitivity of the alpha 1-adrenergic system in the spinal ventral horn is due to absence of an uptake system, and not to postsynaptic change.

  1. DNA immunizations with M2 muscarinic and beta1 adrenergic receptor coding plasmids impair cardiac function in mice.

    PubMed

    Giménez, Luis E D; Hernández, Ciria C Q; Mattos, Elisabete C; Brandão, Izaira Tincani; Olivieri, Bianca; Campelo, Roberto P; Araújo-Jorge, Tânia; Silva, Célio Lopes; Campos de Carvalho, Antônio C; Kurtenbach, Eleonora

    2005-05-01

    Autoimmune mediated myocardial damage is likely to be a pathogenic mechanism for acquired dilated cardiomyopathies. Evidence confirms that autoantibodies that bind to M(2) muscarinic (M(2)AChR) and beta(1) adrenergic receptors (beta(1)AR) are present in idiopathic dilated cardiomyopathy and Chagasic patients' sera. To elucidate the role of these antibodies in cardiac functional impairment, we used a murine model immunized with plasmids encoding the M(2)AChR or beta(1)AR via gene-gun bombardment. Anti-M(2)AChR and beta(1)AR antibodies were detected over the course of 37 weeks. These antibodies were directed to the second extracellular loop (el2) of both receptors and the third intracellular loop (il3) of the M(2)AChR. Peak antibody titers from weeks 2 to 5 against M(2)AChR-el2 and beta(1)AR-el2 as well as elevated titers against M(2)AChR-il3 were detected. Anti-M(2)AChR-il3 and anti-beta(1)AR-el2 antibodies were predominant in IgG1 subclass immunoglobulins, suggesting a T-helper-2 biased lymphocyte response. Heart morphology and function was assessed by echocardiography over the course of 42 weeks. Data showed progressive decrease in left ventricular (LV) wall thickness and LV mass that was mostly evident for beta(1)AR-immunized mice albeit a small change in LV dimensions. Fractional shortening was altered and values of 41%, 37% and 48% were observed at week 42 for the M(2)AChR, beta(1)AR and control groups respectively. In support of autonomic deregulation, a twofold increase in M(2)AChR and a similar decrease in beta(1)AR density were observed in radioligand saturation assays for both experimental groups. Histological analysis revealed myofibril disarray and fibrosis, pointing towards remodeling as a consequence of the long-term presence of anti-receptor antibodies.

  2. SAP97 Controls the Trafficking and Resensitization of the Beta-1-Adrenergic Receptor through Its PDZ2 and I3 Domains

    PubMed Central

    Nooh, Mohammed M.; Naren, Anjaparavanda P.; Kim, Sung-Jin; Xiang, Yang K.; Bahouth, Suleiman W.

    2013-01-01

    Previous studies have determined that the type-1 PDZ sequence at the extreme carboxy-terminus of the ß1-adrenergic receptor (ß1-AR) binds SAP97 and AKAP79 to organize a scaffold involved in trafficking of the ß1-AR. In this study we focused on characterizing the domains in SAP97 that were involved in recycling and resensitization of the ß1-AR in HEK-293 cells. Using a SAP97 knockdown and rescue strategy, we determined that PDZ-deletion mutants of SAP97 containing PDZ2 rescued the recycling and resensitization of the ß1-AR. Among the three PDZs of SAP97, PDZ2 displayed the highest affinity in binding to the ß1-AR. Expression of isolated PDZ2, but not the other PDZs, inhibited the recycling of the ß1-AR by destabilizing the macromolecular complex involved in trafficking and functional resensitization of the ß1-AR. In addition to its PDZs, SAP97 contains other protein interacting domains, such as the I3 sequence in the SRC homology-3 (SH3) domain, which binds to AKAP79. Deletion of I3 from SAP97 (ΔI3-SAP97) did not affect the binding of SAP97 to the ß1-AR. However, ΔI3-SAP97 could not rescue the recycling of the ß1-AR because it failed to incorporate AKAP79/PKA into the SAP97-ß1-AR complex. Therefore, bipartite binding of SAP97 to the ß1-AR and to AKAP79 is necessary for SAP97-mediated effects on recycling, externalization and functional resensitization of the ß1-AR. These data establish a prominent role for PDZ2 and I3 domains of SAP97 in organizing the ß1-adrenergic receptosome involved in connecting the ß1-AR to trafficking and signaling networks. PMID:23696820

  3. Effects of alpha-1 adrenergic receptor antagonist, terazosin, on cardiovascular functions in anaesthetised dogs.

    PubMed

    Sharma, R; Ahuja, V M; Fahim, M

    2004-12-01

    Initially a dose-response curve of phenylephrine was constructed at dose strengths of 1-16 microg/kg in a cumulative manner. Phenylephrine caused a significant rise in the mean arterial pressure, left ventricular systolic pressure, left ventricular contractility, stroke volume and a significant decline in the heart rate. Terazosin was administered in three selected doses of 10, 100 and 300 microg/kg. Following each dose of terazosin, dose-response curve of phenylephrine was constructed. Terazosin, per se, decreased the basal mean arterial pressure, left ventricular systolic pressure, left ventricular contractility and stroke volume significantly in a dose dependent manner with an increase in the heart rate with no significant change in the cardiac output. The baroreflex sensitivity at all the three doses remained unchanged. In conclusion, the present findings support the view that terazosin reduces the blood pressure in a physiologically more favorable manner by maintaining the neural integrity of the cardiovascular system.

  4. cap alpha. -2 adrenergic receptor: a radiohistochemical study

    SciTech Connect

    Unnerstall, J.R.

    1984-01-01

    ..cap alpha..-2 adrenergic agents have been shown to influence blood pressure, heart rate and other physiological and behavioral functions through interactions with adrenergic pathways within the central nervous system. Pharmacologically relevant ..cap alpha..-1 adrenergic receptors were biochemically characterized and radiohistochemically analyzed in intact tissue sections of the rat and human central nervous system. The anatomical distribution of the ..cap alpha..-2 receptors, labeled with the agonist (/sup 3/H)para-aminoclonidine, verified the concept that ..cap alpha..-2 receptors are closely associated with adrenergic nerve terminals and that ..cap alpha..-2 agents can influence autonomic and endocrine function through an action in the central nervous system. Since ..cap alpha..-2 agonists can influence sympathetic outflow, ..cap alpha..-2 binding sites were closely analyzed in the intermediolateral cell column of the thoracic spinal cord. The transport of putative presynaptic ..cap alpha..-2 binding sites in the rat sciatic nerve was analyzed by light microscopic radiohistochemical techniques. Finally, in intact tissue section of the rat central nervous system, the biochemical characteristics of (/sup 3/H)rauwolscine binding were analyzed. Data were also shown which indicates that the synthetic ..cap alpha..-2 antagonist (/sup 3/H)RX781094 also binds to ..cap alpha..-2 receptors with high-affinity. Further, the distribution of (/sup 3/H)RX781094 binding sites in the rat central nervous system was identical to the distribution seen when using (/sup 3/H)para-aminoclonidine.

  5. Excitatory drive onto dopaminergic neurons in the rostral linear nucleus is enhanced by norepinephrine in an α1 adrenergic receptor-dependent manner.

    PubMed

    Williams, Megan A; Li, Chia; Kash, Thomas L; Matthews, Robert T; Winder, Danny G

    2014-11-01

    Dopaminergic innervation of the extended amygdala regulates anxiety-like behavior and stress responsivity. A portion of this dopamine input arises from dopamine neurons located in the ventral lateral periaqueductal gray (vlPAG) and rostral (RLi) and caudal linear nuclei of the raphe (CLi). These neurons receive substantial norepinephrine input, which may prime them for involvement in stress responses. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase promoter, we explored the physiology and responsiveness to norepinephrine of these neurons. We find that RLi dopamine neurons differ from VTA dopamine neurons with respect to membrane resistance, capacitance and the hyperpolarization-activated current, Ih. Further, we found that norepinephrine increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) on RLi dopamine neurons. This effect was mediated through the α1 adrenergic receptor (AR), as the actions of norepinephrine were mimicked by the α1-AR agonist methoxamine and blocked by the α1-AR antagonist prazosin. This action of norepinephrine on sEPSCs was transient, as it did not persist in the presence of prazosin. Methoxamine also increased the frequency of miniature EPSCs, indicating that the α1-AR action on glutamatergic transmission likely has a presynaptic mechanism. There was also a modest decrease in sEPSC frequency with the application of the α2-AR agonist UK-14,304. These studies illustrate a potential mechanism through which norepinephrine could recruit the activity of this population of dopaminergic neurons.

  6. 3D structure prediction of human β1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing.

    PubMed

    Ul-Haq, Zaheer; Saeed, Maria; Halim, Sobia Ahsan; Khan, Waqasuddin

    2015-01-01

    Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR) signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1). This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein.

  7. Real-time optical recording of β1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol

    PubMed Central

    Rochais, Francesca; Vilardaga, Jean-Pierre; Nikolaev, Viacheslav O.; Bünemann, Moritz; Lohse, Martin J.; Engelhardt, Stefan

    2007-01-01

    Antagonists of β-adrenergic receptors (β-ARs) have become a main therapeutic regimen for the treatment of heart failure even though the mechanisms of their beneficial effects are still poorly understood. Here, we used fluorescent resonance energy transfer–based (FRET-based) approaches to directly monitor activation of the β1-AR and downstream signaling. While the commonly used β-AR antagonists metoprolol, bisoprolol, and carvedilol displayed varying degrees of inverse agonism on the Gly389 variant of the receptor (i.e., actively switching off the β1-AR), surprisingly, only carvedilol showed very specific and marked inverse agonist effects on the more frequent Arg389 variant. These specific effects of carvedilol on the Arg389 variant of the β1-AR were also seen for control of beating frequency in rat cardiac myocytes expressing the 2 receptor variants. This FRET sensor permitted direct observation of activation of the β1-AR in living cells in real time. It revealed that β1-AR variants dramatically differ in their responses to diverse beta blockers, with possible consequences for their clinical use. PMID:17200720

  8. The Roles of Dopamine and α1-Adrenergic Receptors in Cocaine Preferences in Female and Male Rats

    PubMed Central

    Perry, Adam N; Westenbroek, Christel; Jagannathan, Lakshmikripa; Becker, Jill B

    2015-01-01

    Cocaine dependence is characterized by compulsive drug taking and reduced involvement in social, occupational, or recreational activities. Unraveling the diverse mechanisms contributing to the loss-of-interest in these ‘non-drug' pursuits is essential for understanding the neurobiology of addiction and could provide additional targets for treating addiction. The study objectives were to examine changes in cocaine-induced dopamine (DA) overflow in the nucleus accumbens (NAc) over the course of self-administration and determine the roles of α1- and β-adrenergic receptors (AR) in the loss-of-interest in food rewards following the development of an addicted phenotype in male and female rats. Subjects were given access to cocaine and palatable food pellets in a choice self-administration paradigm to identify ‘addicted' cocaine-preferring (CP) individuals and resistant pellet-preferring (PP) individuals based on their patterns of self-administration over 7 weeks. Cocaine-induced DA overflow in the NAc was examined with microdialysis early and late during self-administration (weeks 2 and 7). Subjects were treated in counter-balanced order with propranolol (β-AR antagonist), terazosin (α1-AR antagonist), or vehicle for an additional 3 weeks of self-administration. CP rats displayed increased motivation for cocaine and attenuated motivation for pellets following the development of cocaine preferences. In females, the estrous cycle affected pellet, but not cocaine, self-administration. CP rats displayed attenuated cocaine-induced DA overflow in the NAc. Propranolol enhanced cocaine reinforcement and reduced pellet intake, whereas terazosin enhanced motivation for pellets and reversed preferences in a subset of CP rats. The implications of these results for the treatment of addiction are discussed. PMID:25900120

  9. Doxazosin, an α-1-adrenergic-receptor Antagonist, for Nightmares in Patients with Posttraumatic Stress Disorder and/or Borderline Personality Disorder: a Chart Review.

    PubMed

    Roepke, Stefan; Danker-Hopfe, Heidi; Repantis, Dimitris; Behnia, Behnoush; Bernard, Florian; Hansen, Marie-Luise; Otte, Christian

    2017-01-01

    Objective: Centrally active α-1-adrenergic-receptor antagonists such as prazosin are effective in the treatment of nightmares in patients with posttraumatic stress disorder (PTSD). A pharmacological alternative is doxazosin, which has a longer half-life and fewer side effects. However, doxazosin is currently being used without solid empirical evidence. Furthermore, no study so far has assessed the effects of α-1-antagonists on nightmares in patients with borderline personality disorder (BPD). We retrospectively assessed the effectiveness of doxazosin on nightmares in PTSD and BPD. Method: A retrospective chart review of patients treated with doxazosin for trauma-associated nightmares in our clinic was performed. As in previous prazosin studies, the B2 score of the Clinician-Administered PTSD Scale (CAPS) was used as the primary outcome measure. Furthermore, the Pittsburgh Sleep Quality Index-Addendum for PTSD (PSQI-A) and sleep logs were analyzed. Results: We identified 51 patients with PTSD and/or BPD (mean age 35.7 years, 92.3% women) who received doxazosin for nightmares. Of these, 46 patients continued doxazosin over a 4-week period and 31 patients over a 12-week period. Within the 12-week period, doxazosin treatment significantly reduced nightmares regardless of PTSD/BPD. 25 percent of patients treated for 12 weeks had full remission of nightmares. PSQI-A scores indicated that additional trauma-associated sleep symptoms improved over 12 weeks. Furthermore, recuperation of sleep improved with doxazosin within the first 4 weeks of treatment. Conclusion: Doxazosin might improve trauma associated nightmares and more general sleep parameters in patients with PTSD and BPD. Randomized controlled trials are warranted.

  10. Comprehensive Behavioral Phenotyping of Ts65Dn Mouse Model of Down Syndrome: Activation of β1-Adrenergic Receptor by Xamoterol as a Potential Cognitive Enhancer

    PubMed Central

    Faizi, Mehrdad; Bader, Patrick L.; Tun, Christine; Encarnacion, Angelo; Kleschevnikov, Alexander; Belichenko, Pavel; Saw, Nay; Priestley, Matthew; Tsien, Richard W; Mobley, William C; Shamloo, Mehrdad

    2012-01-01

    Down Syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits. Significant abnormalities in noradrenergic (NE-ergic) afferents from the locus coeruleus to the hippocampus, as well as deficits in NE-ergic neurotransmission are detected in these animals. In the current study we characterized in detail the behavioral phenotype of Ts65Dn mice, in addition to using pharmacological tools for identification of target receptors mediating the learning and memory deficits observed in this model of DS. We undertook a comprehensive approach to mouse phenotyping using a battery of standard and novel tests encompassing: i) locomotion (Activity Chamber, PhenoTyper, and CatWalk), ii) learning and memory (spontaneous alternation, delayed matching-to-place water maze, fear conditioning, and Intellicage), and iii) social behavior. Ts65Dn mice showed increased locomotor activity in novel and home cage environments. There were significant and reproducible deficits in learning and memory tests including spontaneous alternation, delayed matching-to-place water maze, Intellicage place avoidance and contextual fear conditioning. Although Ts65Dn mice showed no deficit in sociability in the 3-chamber test, a marked impairment in social memory was detected. Xamoterol, a β1-adrenergic receptor (β1-ADR) agonist, effectively restored the memory deficit in contextual fear conditioning, spontaneous alternation and novel object recognition. These behavioral improvements were reversed by betaxolol, a selective β1-ADR antagonist. In conclusion, our results demonstrate that this mouse model of Down Syndrome display cognitive deficits which is mediated by imbalance in noradrenergic

  11. Comprehensive behavioral phenotyping of Ts65Dn mouse model of Down syndrome: activation of β1-adrenergic receptor by xamoterol as a potential cognitive enhancer.

    PubMed

    Faizi, Mehrdad; Bader, Patrick L; Tun, Christine; Encarnacion, Angelo; Kleschevnikov, Alexander; Belichenko, Pavel; Saw, Nay; Priestley, Matthew; Tsien, Richard W; Mobley, William C; Shamloo, Mehrdad

    2011-08-01

    Down syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits. Significant abnormalities in noradrenergic (NE-ergic) afferents from the locus coeruleus to the hippocampus, as well as deficits in NE-ergic neurotransmission are detected in these animals. In the current study we characterized in detail the behavioral phenotype of Ts65Dn mice, in addition to using pharmacological tools for identification of target receptors mediating the learning and memory deficits observed in this model of DS. We undertook a comprehensive approach to mouse phenotyping using a battery of standard and novel tests encompassing: (i) locomotion (Activity Chamber, PhenoTyper, and CatWalk), (ii) learning and memory (spontaneous alternation, delayed matching-to-place water maze, fear conditioning, and Intellicage), and (iii) social behavior. Ts65Dn mice showed increased locomotor activity in novel and home cage environments. There were significant and reproducible deficits in learning and memory tests including spontaneous alternation, delayed matching-to-place water maze, Intellicage place avoidance and contextual fear conditioning. Although Ts65Dn mice showed no deficit in sociability in the 3-chamber test, a marked impairment in social memory was detected. Xamoterol, a β1-adrenergic receptor (β1-ADR) agonist, effectively restored the memory deficit in contextual fear conditioning, spontaneous alternation and novel object recognition. These behavioral improvements were reversed by betaxolol, a selective β1-ADR antagonist. In conclusion, our results demonstrate that this mouse model of Down syndrome displays cognitive deficits which are mediated by an imbalance in the

  12. (Arylpiperazinyl)cyclohexylsufonamides: discovery of alpha(1a/1d)-selective adrenergic receptor antagonists for the treatment of Benign Prostatic Hyperplasia/Lower Urinary Tract Symptoms (BPH/LUTS).

    PubMed

    Chiu, George; Li, Shengjian; Connolly, Peter J; Pulito, Virginia; Liu, Jingchun; Middleton, Steven A

    2007-06-15

    Benign Prostatic Hyperplasia/Lower Urinary Tract Symptoms (BPH/LUTS) can be effectively treated by alpha(1)-adrenergic receptor antagonists. Unfortunately, all currently marketed alpha(1) blockers produced CV related side effects that are caused by the subtype non-selective nature of the drugs. To overcome this problem, it was postulated that a alpha(1a/1d) subtype selective antagonist would bring more benefit for the treatment of BPH/LUTS. In developing selective alpha(1a/1d) ligands, (arylpiperazinyl)cyclohexylsulfonamides were synthesized and their binding profiles against three cloned human alpha(1)-adrenergic receptor subtypes were evaluated. Many compounds show equal affinity for both alpha(1a) and alpha(1d) subtypes with good selectivity against the alpha(1b) subtype. They also overcome the problem of dopamine receptor affinity that previous analogues had exhibited.

  13. Cloning, sequencing, and expression of the gene coding for the human platelet. cap alpha. /sub 2/-adrenergic receptor

    SciTech Connect

    Kobilka, B.K.; Matsui, H.; Kobilka, T.S.; Yang-Feng, T.L.; Francke, U.; Caron, M.G.; Lefkowitz, R.J.; Regan, J.W.

    1987-10-30

    The gene for the human platelet ..cap alpha../sub 2/-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the purified receptor. The identity of this gene has been confirmed by the binding of ..cap alpha../sub 2/-adrenergic ligands to the cloned receptor expressed in Xenopus laevis oocytes. The deduced amino acid sequence is most similar to the recently cloned human ..beta../sub 2/- and ..beta../sub 1/-adrenergic receptors; however, similarities to the muscarinic cholinergic receptors are also evident. Two related genes have been identified by low stringency Southern blot analysis. These genes may represent additional ..cap alpha../sub 2/-adrenergic receptor subtypes.

  14. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage.

    PubMed

    Goth, Christoffer K; Tuhkanen, Hanna E; Khan, Hamayun; Lackman, Jarkko J; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H; Overall, Christopher M; Clausen, Henrik; Schjoldager, Katrine T; Petäjä-Repo, Ulla E

    2017-03-17

    The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases.

  15. Changes in number of alpha-adrenergic receptor subtypes in hepatocytes from rats fed 3'-methyl-4-dimethylaminoazobenzene.

    PubMed

    Miyamoto, K; Sanae, F; Kohei, K; Nomura, M; Koshiura, R

    1990-01-01

    Changes in numbers of alpha 1- and alpha 2-adrenergic receptors in the plasma membranes of hepatocytes from female Donryu rats given feed containing 0.06% of the carcinogen 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB), were examined. alpha 1-Adrenergic receptors, measured in terms of [3H]prazosin binding, decreased to half of the control 2 weeks after the start of this diet, then gradually decreased for the next 22 weeks. alpha 2-Adrenergic receptors, measured in terms of [3H]clonidine binding, transiently increased 3-fold over the control at 2 weeks. These changes in the early period of the 3'-MeDAB diet intake may be related to hepatocarcinogenesis.

  16. A-kinase anchoring protein (AKAP)-Lbc anchors a PKN-based signaling complex involved in α1-adrenergic receptor-induced p38 activation.

    PubMed

    Cariolato, Luca; Cavin, Sabrina; Diviani, Dario

    2011-03-11

    The mitogen-activated protein kinases (MAPKs) pathways are highly organized signaling systems that transduce extracellular signals into a variety of intracellular responses. In this context, it is currently poorly understood how kinases constituting these signaling cascades are assembled and activated in response to receptor stimulation to generate specific cellular responses. Here, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critically involved in the activation of the p38α MAPK downstream of α(1b)-adrenergic receptors (α(1b)-ARs). Our results indicate that AKAP-Lbc can assemble a novel transduction complex containing the RhoA effector PKNα, MLTK, MKK3, and p38α, which integrates signals from α(1b)-ARs to promote RhoA-dependent activation of p38α. In particular, silencing of AKAP-Lbc expression or disrupting the formation of the AKAP-Lbc·p38α signaling complex specifically reduces α(1)-AR-mediated p38α activation without affecting receptor-mediated activation of other MAPK pathways. These findings provide a novel mechanistic hypothesis explaining how assembly of macromolecular complexes can specify MAPK signaling downstream of α(1)-ARs.

  17. Role of alpha 1- and alpha 2-adrenergic receptors in the growth hormone and prolactin response to insulin-induced hypoglycemia in man.

    PubMed

    Tatár, P; Vigas, M

    1984-09-01

    The effects of intravenous infusion of the nonselective alpha-adrenergic antagonist phentolamine or of the selective alpha 2-adrenergic antagonist yohimbine on growth hormone (GH), prolactin (PRL) and cortisol secretion during insulin-induced hypoglycemia were studied in 11 healthy young men. The GH response was blunted following each antagonist used, PRL secretion was higher after yohimbine and diminished after phentolamine when compared to controls. The plasma cortisol response was not influenced by either compound. In another series of experiments no effect of an oral administration of prazosin, a selective alpha 1-adrenergic antagonist, on the secretion of GH, PRL and cortisol was found in any of 7 subjects. Prazosin inhibited blood pressure increase during hypoglycemia and induced slight drowsiness and fatigue in the subjects. It is concluded that in man alpha-adrenergic stimulation of GH secretion during hypoglycemia is transmitted via alpha 2-receptors, PRL secretion is mediated via alpha 1-receptors, whereas inhibition of PRL release is mediated via alpha 2-receptors. In this experiment no effect of alpha 1- or alpha 2-blockade on cortisol response to hypoglycemia was seen.

  18. The alpha(2C)-adrenergic receptor mediates hyperactivity of coloboma mice, a model of attention deficit hyperactivity disorder.

    PubMed

    Bruno, Kristy J; Hess, Ellen J

    2006-09-01

    Drugs that modify noradrenergic transmission such as atomoxetine and clonidine are increasingly prescribed for the treatment of attention deficit hyperactivity disorder (ADHD). However, the therapeutic targets of these compounds are unknown. Norepinephrine is also implicated in the hyperactivity exhibited by coloboma mice. To identify the receptor subtypes that regulate the hyperactivity, coloboma mice were systematically challenged with adrenergic drugs. The beta-adrenergic receptor antagonist propranolol and the alpha(1)-adrenergic receptor antagonist prazosin each had little effect on the hyperactivity. Conversely, the alpha(2)-adrenergic receptor antagonist yohimbine reduced the activity of coloboma mice but not control mice. Subtype-selective blockade of alpha(2C)-, but not alpha(2A)- or alpha(2B)-adrenergic receptors, ameliorated hyperactivity of coloboma mice without affecting activity of control mice, suggesting that alpha(2C)-adrenergic receptors mediate the hyperactivity. Localized in the basal ganglia, alpha(2C)-adrenergic receptors are in a prime position to impact locomotor activity and are, therefore, potential targets of pharmacotherapy for ADHD.

  19. An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice

    PubMed Central

    Montgomery, Megan D.; Chan, Trevor; Swigart, Philip M.; Myagmar, Bat-erdene; Dash, Rajesh; Simpson, Paul C.

    2017-01-01

    Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35–40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies. PMID:28081170

  20. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    PubMed

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5

  1. Different pathways of ( sup 3 H)inositol phosphate formation mediated by. alpha. 1a- and. alpha. 1b-adrenergic receptors

    SciTech Connect

    Wilson, K.M.; Minneman, K.P. )

    1990-10-15

    The types of inositol phosphates (InsPs) formed in response to activation of alpha 1-adrenergic receptor subtypes were determined in collagenase-dispersed renal cells and hepatocytes by high pressure liquid chromatography separation. In hepatocytes, which contain only the alpha 1b subtype, norepinephrine stimulated rapid (10-s) formation of (3H)Ins(1,4,5)P3 and (3H)Ins(1,3,4)P3 and slower (5-min) formation of Ins(1,4)P2 and Ins(1)P. Selective inactivation of alpha 1b receptors by chloroethylclonidine almost completely blocked the effects of norepinephrine in hepatocytes. In renal cells, which contain both alpha 1a and alpha 1b receptors in a 60:40 ratio, norepinephrine did not significantly increase the size of any peaks until 5 min after agonist activation. At this time, only a peak eluting with Ins(1)P and one eluting shortly after Ins(1,4)P2 were significantly elevated. Incubation with norepinephrine for 2 h caused small but significant increases in peaks co-eluting with Ins(1)P and Ins(1,4,5)P3 in renal cells; however, only the increase in Ins(1)P was inhibited by chloroethylclonidine pretreatment. Extraction under neutral conditions suggested that cyclic InsPs may be the primary compounds formed in response to norepinephrine in renal cells. Removal of extracellular Ca2+ caused a 60% reduction in the InsP response to norepinephrine in renal cells but had no effect in hepatocytes. These results suggest that activation of alpha 1a and alpha 1b receptor subtypes results in formation of different InsPs and that the response to alpha 1a activation may require influx of extracellular Ca2+.

  2. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor

    SciTech Connect

    Takeda, K.; Taniyama, K.; Kuno, T.; Sano, I.; Ishikawa, T.; Ohmura, I.; Tanaka, C. )

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10{sup {minus} 8} M to 10{sup {minus} 5} M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: (1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. (2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  3. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    SciTech Connect

    Jones, S.B.; Toews, M.L.; Turner, J.T.; Bylund, D.B.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-time for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.

  4. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    SciTech Connect

    Petrash, A.; Bylund, D.

    1986-03-01

    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  5. Indenopyrazole oxime ethers: synthesis and β1-adrenergic blocking activity.

    PubMed

    Angelone, Tommaso; Caruso, Anna; Rochais, Christophe; Caputo, Angela Maria; Cerra, Maria Carmela; Dallemagne, Patrick; Filice, Elisabetta; Genest, David; Pasqua, Teresa; Puoci, Francesco; Saturnino, Carmela; Sinicropi, Maria Stefania; El-Kashef, Hussein

    2015-03-06

    This paper reports the synthesis and cardiac activity of new β-blockers derived from (Z/E)-indeno[1,2-c]pyrazol-4(1H)-one oximes (5a,b). The latter compounds were allowed to react with epichlorohydrin, followed by reacting the oxiranyl derivatives formed (6a,b) with some aliphatic amines to give the target compounds (Z/E)-1-phenyl-1H-indeno[1,2-c]pyrazol-4-one O-((2-hydroxy-3-(substituted amino)propyl)oxime (7a-c) and (Z/E)-1-methyl-1H-indeno[1,2-c]pyrazol-4-one O-((2-hydroxy-3-(substituted amino)propyl)oxime (8a-c). These final products 7a-c and 8a-c were evaluated for their ability to modulate the cardiac performance of a prototype mammalian heart. The results showed that, out of these molecules tested, 7b elicits a more potent depressant effect on contractility and relaxation, and competitively antagonizes β1-adrenergic receptors.

  6. [Estrogen receptor alpha in obesity and diabetes].

    PubMed

    Cahua-Pablo, José Ángel; Flores-Alfaro, Eugenia; Cruz, Miguel

    2016-01-01

    Estradiol (E2) is an important hormone in reproductive physiology, cardiovascular, skeletal and in the central nervous system (CNS). In human and rodents, E2 and its receptors are involved in the control of energy and glucose metabolism in health and metabolic diseases. The estrogen receptor (ER) belongs to the superfamily of nuclear receptors (NR), which are transcription factors that regulate gene expression. Three ER, ER-alpha, ER-beta and the G protein-coupled ER (GPER; also called GPR30) in tissues are involved in glucose and lipid homeostasis. Also, it may have important implications for risk factors associated with metabolic syndrome (MS), insulin resistance (IR), obesity and type 2 diabetes (T2D).

  7. Targeting folate receptor alpha for cancer treatment

    PubMed Central

    Josephs, Debra H.; Ilieva, Kristina M.; Pellizzari, Giulia; Opzoomer, James; Bloomfield, Jacinta; Fittall, Matthew; Grigoriadis, Anita; Figini, Mariangela; Canevari, Silvana; Spicer, James F.; Tutt, Andrew N.; Karagiannis, Sophia N.

    2016-01-01

    Promising targeted treatments and immunotherapy strategies in oncology and advancements in our understanding of molecular pathways that underpin cancer development have reignited interest in the tumor-associated antigen Folate Receptor alpha (FRα). FRα is a glycosylphosphatidylinositol (GPI)-anchored membrane protein. Its overexpression in tumors such as ovarian, breast and lung cancers, low and restricted distribution in normal tissues, alongside emerging insights into tumor-promoting functions and association of expression with patient prognosis, together render FRα an attractive therapeutic target. In this review, we summarize the role of FRα in cancer development, we consider FRα as a potential diagnostic and prognostic tool, and we discuss different targeted treatment approaches with a specific focus on monoclonal antibodies. Renewed attention to FRα may point to novel individualized treatment approaches to improve the clinical management of patient groups that do not adequately benefit from current conventional therapies. PMID:27248175

  8. Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling.

    PubMed

    Goertz, Richard Brandon; Wanat, Matthew J; Gomez, Jorge A; Brown, Zeliene J; Phillips, Paul E M; Paladini, Carlos A

    2015-03-13

    Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine.

  9. The muscle-specific laminin receptor alpha7 beta1 integrin negatively regulates alpha5 beta1 fibronectin receptor function.

    PubMed

    Tomatis, D; Echtermayer, F; Schöber, S; Balzac, F; Retta, S F; Silengo, L; Tarone, G

    1999-02-01

    alpha7 beta1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the alpha7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with alpha7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the alpha7 beta1. alpha7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of alpha7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the alpha5 beta1 fibronectin receptor. Although cell surface expression of alpha5 beta1 was reduced by a factor of 20-25% in alpha7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of 125I-fibronectin for its surface receptor was decreased by 50% in alpha7 transfectants, indicating that the alpha5 beta1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+ restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in alpha7 transfectants. These data indicate that alpha7 expression leads to the functional down regulation of alpha5beta1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of a negative cooperativity between alpha7 and alpha5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.

  10. Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure.

    PubMed

    Rokosh, D Gregg; Simpson, Paul C

    2002-07-09

    alpha 1-adrenergic receptors (ARs) play a major role in blood pressure regulation. The three alpha 1-AR subtypes (A/C, B, and D) stimulate contraction of isolated arteries, but it is uncertain how different subtypes contribute to blood pressure regulation in the intact animal. We studied the role of the alpha 1A/C subtype by using gene knockout. alpha 1A/C knockout (KO) mice were viable and overtly normal. The LacZ reporter gene replaced alpha 1A/C coding sequence in the KO, and beta-galactosidase staining was present in resistance arteries and arterioles, but not in the thoracic aorta or its main branches. By tail cuff manometer and arterial catheter in conscious mice, alpha 1A/C KO mice were hypotensive at rest, with an 8-12% reduction of blood pressure dependent on alpha 1A/C gene copy number. A61603, an alpha 1A/C-selective agonist, caused a pressor response that was lost in the KO and reduced but significant in heterozygous mice with a single copy of the alpha 1A/C. A subtype-nonselective agonist [phenylephrine (PE)] caused a pressor response in KO mice, but the final arterial pressure was only 85% of wild type. The baroreflex was reset in the KO, and heart rate variability was decreased. After baroreflex blockade with atropine, PE increased blood pressure but did not change heart rate. Cardiac and vascular responses to the beta-AR agonist isoproterenol were unchanged, and the arterial lumen area was not altered. We conclude that the alpha 1A/C-AR subtype is a vasopressor expressed in resistance arteries and is required for normal arterial blood pressure regulation. alpha 1A/C-selective antagonists might be desirable antihypertensive agents.

  11. p-( sup 125 I)iodoclonidine, a novel radiolabeled agonist for studying central alpha 2-adrenergic receptors

    SciTech Connect

    Baron, B.M.; Siegel, B.W. )

    1990-09-01

    Unlabeled p-iodoclonidine was efficacious in attenuating forskolin-stimulated cAMP accumulation in SK-N-SH neuroblastoma cells. Maximal attenuation was 76 +/- 3%, with an EC50 of 347 +/- 60 nM. Comparable values of epinephrine were 72 +/- 3% and 122 +/- 22 nM. Responses to both agonists were abolished by 10 microM phentolamine. Therefore, p-iodoclonidine is an agonist in a cell culture model system of the neuronal alpha 2-adrenergic receptor. p-(125I)Iodoclonidine binding to membranes were measured using various regions of the rat brain. The agonist labeled a single population of sites present on cerebral cortical membranes, which was saturable (Bmax = 230 fmol/mg of protein) and possessed high affinity for the ligand (Kd = 0.6 nM). Binding was largely specific (93% at 0.6 nM). A variety of alpha 2-adrenergic agonists and antagonists were shown to compete for the binding of the radioligand. The binding of p-(125I)iodoclonidine was much less sensitive to agents that interact with alpha 1-adrenergic, serotonergic, and dopaminergic receptors. Approximately 65% of the binding was sensitive to guanine nucleotides. Association kinetics using 0.4 nM radioligand were biphasic (37% associate rapidly, with kobs = 0.96 min-1, with the remainder binding more slowly, with kobs = 0.031 min-1) and reached a plateau by 90 min at 25 degrees. Dissociation kinetics were also biphasic, with 30% of the binding dissociating rapidly (k1 = 0.32 min-1) and the remainder dissociating 50-fold more slowly (k2 = 0.006 min-1). Agonist binding is, therefore, uniquely complex and probably reflects the conformational changes that accompany receptor activation.

  12. Molecular characterization of an. alpha. sub 2B -adrenergic receptor

    SciTech Connect

    Harrison, J.K.; Dewan Zeng; D'Angelo, D.D.; Tucker, A.L.; Zhihong Lu; Barber, C.M.; Lynch, K.R. )

    1990-02-26

    {alpha}{sub 2}-Adrenergic receptors comprise a heterogeneous population based on pharmacologic and molecular evidence. The authors have isolated a cDNA clone (pRNG{alpha}2) encoding a previously undescribed third subtype of an {alpha}{sub 2}-adrenergic receptor from a rat kidney cDNA library. The library was screened with an oligonucleotide encoding a highly conserved region found in all biogenic amine receptors described to date. The deduced amino acid sequence displays many features of G-protein coupled receptors with exception of the absence of the consensus N-linked glycosylation site at the amino terminus. Membranes prepared from COS-1 cells transfected with pRNG{alpha}2 display high affinity and saturable binding to {sup 3}H-rauwolscine (K{sub d}=2 nM).Competition curve data analysis shows that pRNG{alpha}2 protein binds to a variety of adrenergic drugs with the following rank order of potency: yohimbine {ge} cholorpromazine > prazosin {ge} clonidine > norepinephrine {ge} oxymetazoline. pRNG{alpha}2 RNA accumulates in both adult rat kidney and rat neonatal lung (predominant species is 4.0 kb). They conclude that pRNG{alpha}2 likely represents a cDNA for the {alpha}{sub 2B}-adrenergic receptor.

  13. α1-adrenergic receptor signaling in osteoblasts regulates clock genes and bone morphogenetic protein 4 expression through up-regulation of the transcriptional factor nuclear factor IL-3 (Nfil3)/E4 promoter-binding protein 4 (E4BP4).

    PubMed

    Hirai, Takao; Tanaka, Kenjiro; Togari, Akifumi

    2014-06-13

    Several studies have demonstrated that the α1-adrenergic receptor (AR) plays an important role in regulating cell growth and function in osteoblasts. However, the physiological role of α1-AR signaling in bone metabolism is largely unknown. In this study, the stimulation of phenylephrine (PHE), a nonspecific α1-AR agonist, increased the transcriptional factor Nfil3/E4BP4 and led to the rhythmic expression of bone morphogenetic protein 4 (Bmp4) in MC3T3-E1 osteoblastic cells. We also showed that Bmp4 mRNA expression peaked in bone near zeitgeber time 8 in a 24-h rhythm. Furthermore, the expression of Nfil3 and Bmp4 displayed a circadian pattern with opposing phases, which suggested that Nfil3 repressed the expression of the Bmp4 gene during a circadian cycle. On a molecular level, both loss-of-function and gain-of-function experiments demonstrated that Nfil3/E4BP4 negatively regulated Bmp4 expression in osteoblasts. Furthermore, the systemic administration of PHE increased the expression of Nfil3 mRNA in bone, whereas it decreased that of Bmp4 mRNA. The expression of Bmp4 mRNA was decreased significantly by exposure to PHE, and this was concomitant with the increase in Nfil3 binding to the D-box-containing Bmp4 promoter region in MC3T3-E1 cells, which indicates that the expression of Nfil3 by α1-AR signaling can bind directly to the Bmp4 promoter and inhibit Bmp4 expression in osteoblasts. Our results suggest that α1-AR signaling regulates clock genes and Bmp4 expression in osteoblasts. Moreover, α1-AR signaling negatively regulated Bmp4 expression by up-regulating the transcriptional factor Nfil3/E4BP4 in osteoblasts.

  14. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    SciTech Connect

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with (/sup 3/H)yohimbine, whereas (/sup 3/H)clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, (/sup 3/H) clonidine and (/sup 3/H)yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of (/sup 3/H)clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations.

  15. Estrogen Receptor Alpha G525L Knock-In-Mice

    DTIC Science & Technology

    2006-03-01

    Padilla-Banks E, Clark G, Newbold RR. Assessing estrogenic activity of phytochemicals using transcriptional activation and immature mouse...AD_________________ Award Number: W81XWH-04-1-0347 TITLE: Estrogen Receptor Alpha G525L...TITLE AND SUBTITLE Estrogen Receptor Alpha G525L Knock-In Mice 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-04-1-0347 5c. PROGRAM ELEMENT

  16. Phosphorylation and function of alpha4beta2 receptor.

    PubMed

    Bermudez, Isabel; Moroni, Mirko

    2006-01-01

    The neuronal nicotinic acetylcholine receptor (nAChR) alpha4 and beta2 subunits expressed in heterologous expression systems assemble into high- and low-affinity receptors (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003), which reflects the assembly of two distinct subunit stoichiometries of alpha4beta2 receptor (Nelson et al., 2003). The high-affinity receptor ([alpha4]2[beta2]3) is about 100-fold more sensitive to ACh than the low-affinity receptor ([alpha4]3[beta2]2) (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003). Recent evidence implicated 14-3-3 proteins as modulators of the relative abundance of nAChR subunits in the endoplasmic reticulum (ER), where ligand-gated ion channels assemble. The 14-3-3 proteins influence ER-to-plasma membrane trafficking of multimeric cell-surface proteins (O'Kelly et al., 2002). 14-3-3 proteins bind components of these multimeric proteins, and this interaction overrides dibasic COP1 retention signal to permit forward transport of the protein (O'Kelly et al., 2002). In the case of alpha4beta2 nAChRs, 14-3-3 binds the alpha4 subunit, and this association is dependent on phosphorylation of a serine residue within a protein kinase A(PKA) consensus sequence in the large cytoplasmic domain of the alpha4 subunit, which is also a binding motif recognized by 14-3-3 (Jeancloss et al., 2001; O'Kelly et al., 2002). The interplay among PKA, alpha4 subunits, and 14-3-3 proteins increases cell-surface expression of alpha4beta2 nAChRs by increasing steady-state levels of the alpha4 subunit available for assembly with beta2 subunits (Jeancloss et al., 2001). Because it is not known how 14-3-3-dependent changes in the steady-state levels of the alpha4 subunit might affect the functional type of alpha4beta2 receptors, we have investigated the effects of mutations of the 14-3-3 binding motif in the alpha4 subunit on alpha4beta2 nAChR function.

  17. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    SciTech Connect

    Yao, Congjun; Evans, Chheng-Orn; Stevens, Victoria L.; Owens, Timothy R.; Oyesiku, Nelson M.

    2009-11-01

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  18. The Alpha-1A Adrenergic Receptor in the Rabbit Heart

    PubMed Central

    Myagmar, Bat-Erdene; Swigart, Philip M.; Baker, Anthony J.; Simpson, Paul C.

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  19. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse.

    PubMed

    Tanabe, Mitsuo; Takasu, Keiko; Kasuya, Noriyo; Shimizu, Shinobu; Honda, Motoko; Ono, Hideki

    2005-03-01

    1. To gain further insight into the mechanisms underlying the antihyperalgesic and antiallodynic actions of gabapentin, a chronic pain model was prepared by partially ligating the sciatic nerve in mice. The mice then received systemic or local injections of gabapentin combined with either central noradrenaline (NA) depletion by 6-hydroxydopamine (6-OHDA) or alpha-adrenergic receptor blockade. 2. Intraperitoneally (i.p.) administered gabapentin produced antihyperalgesic and antiallodynic effects that were manifested by elevation of the withdrawal threshold to a thermal (plantar test) or mechanical (von Frey test) stimulus, respectively. 3. Similar effects were obtained in both the plantar and von Frey tests when gabapentin was injected intracerebroventricularly (i.c.v.) or intrathecally (i.t.), suggesting that it acts at both supraspinal and spinal loci. This novel supraspinal analgesic action of gabapentin was only obtained in ligated neuropathic mice, and gabapentin (i.p. and i.c.v.) did not affect acute thermal and mechanical nociception. 4. In mice in which central NA levels were depleted by 6-OHDA, the antihyperalgesic and antiallodynic effects of i.p. and i.c.v. gabapentin were strongly suppressed. 5. The antihyperalgesic and antiallodynic effects of systemic gabapentin were reduced by both systemic and i.t. administration of yohimbine, an alpha2-adrenergic receptor antagonist. By contrast, prazosin (i.p. or i.t.), an alpha1-adrenergic receptor antagonist, did not alter the effects of gabapentin. 6. It was concluded that the antihyperalgesic and antiallodynic effects of gabapentin are mediated substantially by the descending noradrenergic system, resulting in the activation of spinal alpha2-adrenergic receptors.

  20. The integrin alpha 6 beta 4 is a laminin receptor

    PubMed Central

    1992-01-01

    In this study, the putative laminin receptor function of the alpha 6 beta 4 integrin was assessed. For this purpose, we used a human cell line, referred to as clone A, that was derived from a highly invasive, colon adenocarcinoma. This cell line, which expresses the alpha 6 beta 4 integrin, adheres to the E8 and not to the P1 fragment of laminin. The adhesion of clone A cells to laminin is extremely rapid with half- maximal adhesion observed at 5 min after plating. Adhesion to laminin is blocked by GoH3, and alpha 6 specific antibody (60% inhibition), as well as by A9, a beta 4 specific antibody (30% inhibition). Most importantly, we demonstrate that alpha 6 beta 4 binds specifically to laminin-Sepharose columns in the presence of either Mg2+ or Mn2+ and it is eluted from these columns with EDTA but not with NaCl. The alpha 6 beta 4 integrin does not bind to collagen-Sepharose, but the alpha 2 beta 1 integrin does bind. Clone A cells do not express alpha 6 beta 1 as evidenced by the following observations: (a) no beta 1 integrin is detected in beta 1 immunoblots of GoH3 immunoprecipitates; and (b) no alpha 6 beta 1 integrin is seen in GoH3 immunoprecipitates of clone A extracts that had been immunodepleted of all beta 4 containing integrin using the A9 antibody. These data establish that laminin is a ligand for the alpha 6 beta 4 integrin and that this integrin can function as a laminin receptor independently of alpha 6 beta 1. PMID:1533398

  1. Human GABAA receptor alpha 1 and alpha 3 subunits genes and alcoholism.

    PubMed

    Parsian, A; Cloninger, C R

    1997-05-01

    gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. GABA effects are largely mediated by binding to the postsynaptic GABAA receptor, causing the opening of an integral chloride-ion channel. The GABAA antagonists picrotoxin and bicuculline reduce some ethanol-induced behaviors, such as motor impairment, sedation, and hypnosis. The role of this receptor in alcoholism is further supported by effective alleviation of alcohol withdrawal symptoms by GABAA agonists. To determine the role of the GABAA receptor (GABR) genes in the development of alcoholism, we have used alpha 1 and alpha 3 simple sequence repeat polymorphisms in a sample of unrelated alcoholics, alcoholic probands with both parents, and psychiatrically normal controls. For the GABR alpha 1 gene, the differences between allele frequencies, when all alleles were compared together, were not significant between total alcoholics, subtypes of alcoholics, and normal controls. However, for GABR alpha 3, the differences between total alcoholics and normal controls were significant when all alleles were compared together. The differences between subtypes of alcoholics and normal controls were not significant. The results of haplotype relative risk analysis for both genes, GABR alpha 1 and GABR alpha 3, were also negative. It is possible that the sample size in the haplotype relative risk is too small to have power to detect the differences in transmitted versus nontransmitted alleles. There is a need for a replication study in a large family sample that will allow haplotype relative risk or affected sib-pair analysis.

  2. Peroxisome proliferator-activated receptor alpha and the ketogenic diet.

    PubMed

    Cullingford, Tim

    2008-11-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a drug/fatty acid-activated trans cription factor involved in the starvation response, and is thus relevant to the ketogenic diet (KD). This article summarizes research indicating the role of PPARalpha in central and peripheral nervous system function with particular reference to downstream targets relevant to anticonvulsant action.

  3. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells.

    PubMed

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif.

  4. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    PubMed Central

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  5. Engineered secreted T-cell receptor alpha beta heterodimers.

    PubMed Central

    Grégoire, C; Rebaï, N; Schweisguth, F; Necker, A; Mazza, G; Auphan, N; Millward, A; Schmitt-Verhulst, A M; Malissen, B

    1991-01-01

    We have produced a soluble form of a mouse alpha beta T-cell antigen receptor (TCR) by shuffling its variable (V) and constant (C) domains to the C region of an immunoglobulin kappa light chain. These chimeric molecules composed of V alpha C alpha C kappa and V beta C beta C kappa chains were efficiently secreted (up to 1 micrograms/ml) by transfected myeloma cells as noncovalent heterodimers of about 95-kDa molecular mass. In the absence of direct binding measurement, we have refined the epitopic analysis of the soluble V alpha C alpha C kappa-V beta C beta C kappa dimers and shown that they react with an anti-clonotypic antibody and two antibodies directed to the C domain of the TCR alpha and beta chains. Conversely, we have raised three distinct monoclonal antibodies against the soluble TCR heterodimers and shown that they recognize surface-expressed TCRs. Two of these antibodies were found to react specifically with the products of the V alpha 2 (V delta 8) and V beta 2 gene segments, respectively. When considered together, these data suggest that these soluble TCR molecules are folded in a conformation indistinguishable from that which they assume at the cell surface. Images PMID:1716770

  6. 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha.

    PubMed

    Abdelrahim, Maen; Ariazi, Eric; Kim, Kyounghyun; Khan, Shaheen; Barhoumi, Rola; Burghardt, Robert; Liu, Shengxi; Hill, Denise; Finnell, Richard; Wlodarczyk, Bogdan; Jordan, V Craig; Safe, Stephen

    2006-02-15

    3-Methylcholanthrene (3MC) is an aryl hydrocarbon receptor (AhR) agonist, and it has been reported that 3MC induces estrogenic activity through AhR-estrogen receptor alpha (ER alpha) interactions. In this study, we used 3MC and 3,3',4,4',5-pentachlorobiphenyl (PCB) as prototypical AhR ligands, and both compounds activated estrogen-responsive reporter genes/gene products (cathepsin D) in MCF-7 breast cancer cells. The estrogenic responses induced by these AhR ligands were inhibited by the antiestrogen ICI 182780 and by the transfection of a small inhibitory RNA for ER alpha but were not affected by the small inhibitory RNA for AhR. These results suggest that 3MC and PCB directly activate ER alpha, and this was confirmed in a competitive ER alpha binding assay and in a fluorescence resonance energy transfer experiment in which PCB and 3MC induced CFP-ER alpha/YFP-ER alpha interactions. In a chromatin immunoprecipitation assay, PCB and 3MC enhanced ER alpha (but not AhR) association with the estrogen-responsive region of the pS2 gene promoter. Moreover, in AhR knockout mice, 3MC increased uterine weights and induced expression of cyclin D1 mRNA levels. These results show that PCB and 3MC directly activate ER alpha-dependent transactivation and extend the number of ligands that activate both AhR and ER alpha.

  7. Activation of human alpha1 and alpha2 homomeric glycine receptors by taurine and GABA.

    PubMed

    De Saint Jan, D; David-Watine, B; Korn, H; Bregestovski, P

    2001-09-15

    1. Two ligand binding alpha subunits, alpha1 and alpha2, of the human (H) glycine receptor (GlyR) are involved at inhibitory synapses in the adult and neonatal spinal cord, respectively. The ability of homomeric alphaH1 and alphaH2 GlyRs to be activated by glycine, taurine and GABA was studied in Xenopus oocytes or in the human embryonic kidney HEK-293 cell line. 2. In outside-out patches from HEK cells, glycine, taurine and GABA activated both GlyRs with the same main unitary conductance, i.e. 85 +/- 3 pS (n = 6) for alphaH1, and 95 +/- 5 pS (n = 4) for alphaH2. 3. The sensitivity of both alphaH1 and alphaH2 GlyRs to glycine was highly variable. In Xenopus oocytes the EC50 for glycine (EC50gly) was between 25 and 280 microM for alphaH1 (n = 44) and between 46 and 541 microM for alphaH2 (n = 52). For both receptors, the highest EC50gly values were found on cells with low maximal glycine responses. 4. The actions of taurine and GABA were dependent on the EC50gly: (i) their EC50 values were linearly correlated to EC50gly, with EC50tau approximately 10 EC50gly and EC50GABA approximately 500-800 EC50gly; (ii) they could act either as full or weak agonists depending on the EC50gly. 5. The Hill coefficient (n(H)) of glycine remained stable regardless of the EC50gly whereas n(H) for taurine decreased with increasing EC50tau. 6. The degree of desensitization, evaluated by fast application of saturating concentrations of agonist on outside-out patches from Xenopus oocytes, was similar for glycine and taurine on both GlyRs and did not exceed 50 %. 7. Our data concerning the variations of EC50gly and the subsequent behaviour of taurine and GABA could be qualitatively described by the simple del Castillo-Katz scheme, assuming that the agonist gating constant varies whereas the binding constants are stable. However, the stability of the Hill coefficient for glycine was not explained by this model, suggesting that other mechanisms are involved in the modulation of EC50.

  8. Phospholipase D1 is involved in α1-adrenergic contraction of murine vascular smooth muscle.

    PubMed

    Wegener, Jörg W; Loga, Florian; Stegner, David; Nieswandt, Bernhard; Hofmann, Franz

    2014-03-01

    α1-Adrenergic stimulation increases blood vessel tone in mammals. This process involves a number of intracellular signaling pathways that include signaling via phospholipase C, diacylglycerol (DAG), and protein kinase C. So far, it is not certain whether signaling via phospholipase D (PLD) and PLD-derived DAG is involved in this process. We asked whether PLD participates in the α1-adrenergic-mediated signaling in vascular smooth muscle. α1-Adrenergic-induced contraction was assessed by myography of isolated aortic rings and by pressure recordings using the hindlimb perfusion model in mice. The effects of the PLD inhibitor 1-butanol (IC50 0.15 vol%) and the inactive congener 2-butanol were comparatively studied. Inhibition of PLD by 1-butanol reduced specifically the α1-adrenergic-induced contraction and the α1-adrenergic-induced pressure increase by 10 and 40% of the maximum, respectively. 1-Butanol did not influence the aortic contractions induced by high extracellular potassium, by the thromboxane analog U46619, or by a phorbol ester. The effects of 1-butanol were absent in mice that lack PLD1 (Pld1(-/-) mice) or that selectively lack the CaV1.2 channel in smooth muscle (sm-CaV1.2(-/-) mice) but still present in the heterozygous control mice. α1-Adrenergic contraction of vascular smooth muscle involves activation of PLD1, which controls a portion of the α1-adrenergic-induced CaV1.2 channel activity.

  9. Solution structure of {alpha}-conotoxin PIA, a novel antagonist of {alpha}6 subunit containing nicotinic acetylcholine receptors

    SciTech Connect

    Chi, Seung-Wook; Lee, Si-Hyung; Kim, Do-Hyoung; Kim, Jae-Sung; Olivera, Baldomero M.; McIntosh, J. Michael; Han, Kyou-Hoon . E-mail: khhan600@kribb.re.kr

    2005-12-30

    {alpha}-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing {alpha}6 and {alpha}3 subunits. {alpha}-conotoxin PIA displays 75-fold higher affinity for rat {alpha}6/{alpha}3{beta}2{beta}3 nAChRs than for rat {alpha}3{beta}2 nAChRs. We have determined the three-dimensional structure of {alpha}-conotoxin PIA by nuclear magnetic resonance spectroscopy. The {alpha}-conotoxin PIA has an '{omega}-shaped' overall topology as other {alpha}4/7 subfamily conotoxins. Yet, unlike other neuronally targeted {alpha}4/7-conotoxins, its N-terminal tail Arg{sup 1}-Asp{sup 2}-Pro{sup 3} protrudes out of its main molecular body because Asp{sup 2}-Pro{sup 3}-Cys{sup 4}-Cys{sup 5} forms a stable type I {beta}-turn. In addition, a kink introduced by Pro{sup 15} in the second loop of this toxin provides a distinct steric and electrostatic environment from those in {alpha}-conotoxins MII and GIC. By comparing the structure of {alpha}-conotoxin PIA with other functionally related {alpha}-conotoxins we suggest structural features in {alpha}-conotoxin PIA that may be associated with its unique receptor recognition profile.

  10. Integrin alpha v beta 3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor alpha 5 beta 1

    PubMed Central

    1994-01-01

    The plasma protein fibronectin is an important opsonin in wound repair and host defense. To better understand the process of fibronectin- mediated phagocytosis, we have transfected K562 cells, which endogenously express alpha 5 beta 1, with alpha v beta 3. In these transfectants, antibodies to alpha v beta 3 block phagocytosis of fibronectin-opsonized beads completely, even though half the ingestion occurs through endogenous alpha 5 beta 1 receptors. alpha 5 beta 1- mediated adhesion to fibronectin-coated surfaces is unaffected by alpha v beta 3 ligation. Neither alpha v beta 5 nor alpha M beta 2 ligation affects alpha 5 beta 1 phagocytic function in transfectants expressing these receptors. Pharmacologic data suggest that alpha v beta 3 ligation suppresses the phagocytic competence of high affinity alpha 5 beta 1 receptors through a signal transduction pathway, perhaps involving protein kinase C. In addition to its significance for phagocytosis, alpha v beta 3 regulation of alpha 5 beta 1 function may be significant for its roles in cell migration, metastasis, and angiogenesis. PMID:7525603

  11. Solution conformation of a neuronal nicotinic acetylcholine receptor antagonist {alpha}-conotoxin OmIA that discriminates {alpha}3 vs. {alpha}6 nAChR subtypes

    SciTech Connect

    Chi, Seung-Wook; Kim, Do-Hyoung; Olivera, Baldomero M.; McIntosh, J. Michael; Han, Kyou-Hoon . E-mail: khhan600@kribb.re.kr

    2006-06-23

    {alpha}-Conotoxin OmIA from Conus omaria is the only {alpha}-conotoxin that shows a {approx}20-fold higher affinity to the {alpha}3{beta}2 over the {alpha}6{beta}2 subtype of nicotinic acetylcholine receptor. We have determined a three-dimensional structure of {alpha}-conotoxin OmIA by nuclear magnetic resonance spectroscopy. {alpha}-Conotoxin OmIA has an '{omega}-shaped' overall topology with His{sup 5}-Asn{sup 12} forming an {alpha}-helix. Structural features of {alpha}-conotoxin OmIA responsible for its selectivity are suggested by comparing its surface characteristics with other functionally related {alpha}4/7 subfamily conotoxins. Reduced size of the hydrophilic area in {alpha}-conotoxin OmIA seems to be associated with the reduced affinity towards the {alpha}6{beta}2 nAChR subtype.

  12. alpha-latrotoxin action probed with recombinant toxin: receptors recruit alpha-latrotoxin but do not transduce an exocytotic signal.

    PubMed Central

    Ichtchenko, K; Khvotchev, M; Kiyatkin, N; Simpson, L; Sugita, S; Südhof, T C

    1998-01-01

    alpha-Latrotoxin stimulates neurotransmitter release probably by binding to two receptors, CIRL/latrophilin 1 (CL1) and neurexin Ialpha. We have now produced recombinant alpha-latrotoxin (LtxWT) that is as active as native alpha-latrotoxin in triggering synaptic release of glutamate, GABA and norepinephrine. We have also generated three alpha-latrotoxin mutants with substitutions in conserved cysteine residues, and a fourth mutant with a four-residue insertion. All four alpha-latrotoxin mutants were found to be unable to trigger release. Interestingly, the insertion mutant LtxN4C exhibited receptor-binding affinities identical to wild-type LtxWT, bound to CL1 and neurexin Ialpha as well as LtxWT, and similarly stimulated synaptic hydrolysis of phosphatidylinositolphosphates. Therefore, receptor binding by alpha-latrotoxin and stimulation of phospholipase C are insufficient to trigger exocytosis. This conclusion was confirmed in experiments with La3+ and Cd2+. La3+ blocked release triggered by LtxWT, whereas Cd2+ enhanced it. Both cations, however, had no effect on the stimulation by LtxWT of phosphatidylinositolphosphate hydrolysis. Our data show that receptor binding by alpha-latrotoxin and activation of phospholipase C do not by themselves trigger exocytosis. Thus receptors recruit alpha-latrotoxin to its point of action without activating exocytosis. Exocytosis probably requires an additional receptor-independent activity of alpha-latrotoxin that is selectively inhibited by the LtxN4C mutation and by La3+. PMID:9799228

  13. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor.

    PubMed Central

    Neumann, D; Barchan, D; Safran, A; Gershoni, J M; Fuchs, S

    1986-01-01

    Synthetic peptides and their respective antibodies have been used in order to map the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. By using antibodies to a synthetic peptide corresponding to residues 169-181 of the alpha subunit, we demonstrate that this sequence is included within the 18-kDa toxin binding fragment previously reported. Furthermore, the 18-kDa fragment was also found to bind a monoclonal antibody (5.5) directed against the cholinergic binding site. Sequential proteolysis of the acetylcholine receptor with trypsin, prior to Staphylococcus aureus V8 protease digestion, resulted in a 15-kDa toxin binding fragment that is included within the 18-kDa fragment but is shorter than it only at its carboxyl terminus. This 15-kDa fragment therefore initiates beyond Asp-152 and terminates in the region of Arg-313/Lys-314. In addition, experiments are reported that indicate that in the intact acetylcholine receptor, Cys-128 and/or Cys-142 are not crosslinked by disulfide bridges with any of the cysteines (at positions 192, 193, and 222) that reside in the 15-kDa toxin binding fragment. Finally, the synthetic dodecapeptide Lys-His-Trp-Val-Tyr-Tyr-Thr-Cys-Cys-Pro-Asp-Thr, which is present in the 15-kDa fragment (corresponding to residues 185-196 of the alpha subunit) was shown to bind alpha-bungarotoxin directly. This binding was completely inhibited by competition with d-tubocurarine. Images PMID:3458258

  14. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor.

    PubMed

    Neumann, D; Barchan, D; Safran, A; Gershoni, J M; Fuchs, S

    1986-05-01

    Synthetic peptides and their respective antibodies have been used in order to map the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. By using antibodies to a synthetic peptide corresponding to residues 169-181 of the alpha subunit, we demonstrate that this sequence is included within the 18-kDa toxin binding fragment previously reported. Furthermore, the 18-kDa fragment was also found to bind a monoclonal antibody (5.5) directed against the cholinergic binding site. Sequential proteolysis of the acetylcholine receptor with trypsin, prior to Staphylococcus aureus V8 protease digestion, resulted in a 15-kDa toxin binding fragment that is included within the 18-kDa fragment but is shorter than it only at its carboxyl terminus. This 15-kDa fragment therefore initiates beyond Asp-152 and terminates in the region of Arg-313/Lys-314. In addition, experiments are reported that indicate that in the intact acetylcholine receptor, Cys-128 and/or Cys-142 are not crosslinked by disulfide bridges with any of the cysteines (at positions 192, 193, and 222) that reside in the 15-kDa toxin binding fragment. Finally, the synthetic dodecapeptide Lys-His-Trp-Val-Tyr-Tyr-Thr-Cys-Cys-Pro-Asp-Thr, which is present in the 15-kDa fragment (corresponding to residues 185-196 of the alpha subunit) was shown to bind alpha-bungarotoxin directly. This binding was completely inhibited by competition with d-tubocurarine.

  15. Chronic stress enhances progression of periodontitis via α1-adrenergic signaling: a potential target for periodontal disease therapy.

    PubMed

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan

    2014-10-17

    This study assessed the roles of chronic stress (CS) in the stimulation of the sympathetic nervous system and explored the underlying mechanisms of periodontitis. Using an animal model of periodontitis and CS, the expression of tyrosine hydroxylase (TH) and the protein levels of the α1-adrenergic receptor (α1-AR) and β2-adrenergic receptor (β2-AR) were assessed. Furthermore, human periodontal ligament fibroblasts (HPDLFs) were stimulated with lipopolysaccharide (LPS) to mimic the process of inflammation. The proliferation of the HPDLFs and the expression of α1-AR and β2-AR were assessed. The inflammatory-related cytokines interleukin (IL)-1β, IL-6 and IL-8 were detected after pretreatment with the α1/β2-AR blockers phentolamine/propranolol, both in vitro and in vivo. Results show that periodontitis under CS conditions enhanced the expression of TH, α1-AR and β2-AR. Phentolamine significantly reduced the inflammatory cytokine levels. Furthermore, we observed a marked decrease in HPDLF proliferation and the increased expression of α1-ARfollowing LPS pretreatment. Pretreatment with phentolamine dramatically ameliorated LPS-inhibited cell proliferation. In addition, the blocking of α1-ARsignaling also hindered the upregulation of the inflammatory-related cytokines IL-1β, IL-6 and IL-8. These results suggest that CS can significantly enhance the pathological progression of periodontitis by an α1-adrenergic signaling-mediated inflammatory response. We have identified a potential therapeutic target for the treatment of periodontal disease, particularly in those patients suffering from concurrent CS.

  16. Direct evidence for a β1-adrenergic receptor–directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy

    PubMed Central

    Jahns, Roland; Boivin, Valérie; Hein, Lutz; Triebel, Sven; Angermann, Christiane E.; Ertl, Georg; Lohse, Martin J.

    2004-01-01

    Today, dilated cardiomyopathy (DCM) represents the main cause of severe heart failure and disability in younger adults and thus is a challenge for public health. About 30% of DCM cases are genetic in origin; however, the large majority of cases are sporadic, and a viral or immune pathogenesis is suspected. Following the established postulates for pathogenesis of autoimmune diseases, here we provide direct evidence that an autoimmune attack directed against the cardiac β1-adrenergic receptor may play a causal role in DCM. First, we immunized inbred rats against the second extracellular β1-receptor loop (β1-ECII; 100% sequence identity between human and rat) every month. All these rats developed first, receptor-stimulating anti–β1-ECII Ab’s and then, after 9 months, progressive severe left ventricular dilatation and dysfunction. Second, we transferred sera from anti–β1-ECII–positive and Ab-negative animals every month to healthy rats of the same strain. Strikingly, all anti–β1-ECII–transferred rats also developed a similar cardiomyopathic phenotype within a similar time frame, underlining the pathogenic potential of these receptor Ab’s. As a consequence, β1-adrenergic receptor–targeted autoimmune DCM should now be categorized with other known receptor Ab-mediated autoimmune diseases, such as Graves disease or myasthenia gravis. Although carried out in an experimental animal model, our findings should further encourage the development of therapeutic strategies that combat harmful anti–β1-ECII in receptor Ab–positive DCM patients. PMID:15146239

  17. Nootropic alpha7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators.

    PubMed

    Ng, Herman J; Whittemore, Edward R; Tran, Minhtam B; Hogenkamp, Derk J; Broide, Ron S; Johnstone, Timothy B; Zheng, Lijun; Stevens, Karen E; Gee, Kelvin W

    2007-05-08

    Activation of brain alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of alpha7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective alpha7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-alpha-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at alpha7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of alpha7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction.

  18. Acetylcholine receptors at neuromuscular synapses: phylogenetic differences detected by snake alpha-neurotoxins.

    PubMed Central

    Burden, S J; Hartzell, H C; Yoshikami, D

    1975-01-01

    Phylogenetic differences in acetylcholine receptors from skeletal neuromuscular synapses of various species of snakes and lizards have been investigated, using the snake venom alpha-neurotoxins alpha-atratoxin (cobrotoxin) and alpha-bungarotoxin. The acetylcholine receptors of the phylogenetically primitive lizards, like those from all other vertebrates previously tested, are blocked by these alpha-neurotoxins. In contrast, receptors from snakes and advanced lizards are insensitive to one or both of the toxins. It is suggested that toxin-resistant acetylcholine receptors appeared early in the evolution of Squamata and preceded the appearance of alpha-neurotoxins. Images PMID:1081230

  19. Studies on the receptors to 5alpha-androst-16-en-3-one and 5alpha-androst-16-en-3alpha-ol in sow nasal mucosa.

    PubMed

    Gennings, J N; Gower, D B; Bannister, L H

    1977-02-28

    The presence of receptors to the "boar taint" pheromones 5alpha-androst-16-en-3-one and 5alpha-androst-16-en-3alpha-ol has been demonstrated in sow olfactory mucosa. Binding studies indicated that a sufficiently low concentration of olfactory tissue homogenate exhibited saturation of binding of 5alpha-androst-16-en-3-one, and this was of high affinity compared with control tissues of non-olfactory and heated olfactory tissues. Analysis of receptor binding of 5alpha-androst-16-en-3-one gave a value for the affinity constant (Ka) of approx. 8.3-10(8) M-1 and the value for the molar concentration of binding sites (n[M]) was approx. 3.3 pmol/mg protein. Almost identical values of Ka and n [M] were obtained when receptor binding of 5alpha-[5alpha-3H]androst-16-en-3alpha-ol was investigated (Ka 8.4-10(8) M-1; n [M] 3.7 pmol/mg protein). This suggests that the same receptor binds both 5alpha-androst-16-en-3-one and 5alpha-androst-16-en-3alpha-ol with equally high affinity. In a preliminary investigation to establish the specificity of the receptor, the binding of 17beta-hydroxy-5alpha-androstan-3-one was assayed; this steroid is odourless but has a similar structure except in ring D to 5alpha-androst-16-en-3-one. Binding was of the low affinity, non-specific type only, indicating that the sow olfactory receptors are not sensitive to this androgen.

  20. Alpha adrenergic modulation on effects of norepinephrine transporter inhibitor reboxetine in five-choice serial reaction time task

    PubMed Central

    Liu, Yia-Ping; Lin, Yu-Lung; Chuang, Chia-Hsin; Kao, Yu-Cheng; Chang, Shang-Tang; Tung, Che-Se

    2009-01-01

    The study examined the effects of a norepinephrine transporter (NET) inhibitor reboxetine (RBX) on an attentional performance test. Adult SD rats trained with five-choice serial reaction time task (5-CSRTT) were administered with RBX (0, 3.0 and 10 mg/kg) in the testing day. Alpha-1 adrenergic receptor antagonist PRA and alpha-2 adrenergic receptor antagonist RX821002 were used to clarify the RBX effect. Results revealed that rat received RBX at 10 mg/kg had an increase in the percentage of the correct response and decreases in the numbers of premature response. Alpha-1 adrenergic receptor antagonist Prazosin (PRA) at 0.1 mg/kg reversed the RBX augmented correct responding rate. However, alpha-2 adrenergic receptor antagonist RX821002 at 0.05 and 0.1 mg/kg dose dependently reversed the RBX reduced impulsive responding. Our results suggested that RBX as a norepinephrine transporter inhibitor can be beneficial in both attentional accuracy and response control and alpha-1 and alpha-2 adrenergic receptors might be involved differently. PMID:19678962

  1. Large Conductance Ca2+-Activated K+ Channels Modulate Uterine α1-Adrenergic Sensitivity in Ovine Pregnancy

    PubMed Central

    Hynan, Linda S.; Liu, Xiao-tie; Roy, Timothy

    2014-01-01

    The uteroplacental vasculature is refractory to α-adrenergic stimulation, and large conductance Ca2+-activated K+ channels (BKCa) may contribute. We examined the effects of uterine artery (UA) BKCa inhibition with tetraethylammonium (TEA) on hemodynamic responses to phenylephrine (PE) at 101 to 117 days and 135 to 147 days of ovine gestation, obtaining dose responses for mean arterial pressure (MAP), heart rate (HR), and uteroplacental blood flow (UPBF) and vascular resistance (UPVR) before and during UA TEA infusions. The UA α1-adrenergic receptors (α1-ARs) were assessed. The PE increased MAP and UPVR and decreased HR and UPBF dose dependently at both gestations (P < .001, analysis of variance). The %▵MAP was less at 135 to 147 days before and during TEA infusions (P ≤ .008); however, responses during TEA were greater (P ≤ .002). The PE increased %▵UPVR>>%▵MAP, thus %▵UPBF fell. The TEA enhanced PE-mediated increases in %▵UPVR at 135 to 147 days (P ≤ .03). The UA α1-AR expression was unchanged in pregnancy. Uterine vascular responses to PE exceed systemic vascular responses throughout pregnancy and are attenuated by BKCa activation, suggesting BKCa protect UPBF. PMID:24026311

  2. Estrogen-related receptor alpha and cancer: axis of evil.

    PubMed

    Ranhotra, Harmit S

    2015-01-01

    Cancer is perhaps the fastest growing non-communicable disease in the human population worldwide. Although the molecular mechanism of cancer initiation and progression is known to some extent, however, the majority of pathways responsible for its onset, development and progression are largely unknown. Many members of the nuclear receptors (NRs) superfamily of transcriptional factors have key roles in cancer. Estrogen-related receptor alpha (ERRα) is one of the members of the NR superfamily and studies have linked it with a wide variety of cancers. In endocrine-related cancers such as breast cancer, ERRα regulates a number of target genes directing cell proliferation and growth independent of estrogen receptor alpha (ERα). Knockdown of ERRα in a number of cancer tissues and cell lines significantly reduced tumor growth and malignancy indicating dependence on ERRα activity. The pro-angiogenesis factor vascular endothelial growth factor expression has been shown to be regulated by ERRα and has implications in several types of cancer. The effect of ERRα on cancers seems to be multipronged via regulation of cell cycle regulators, osteopontin, hypoxia inducible factor-1 as well as several energy metabolism genes that are part of glycolysis, TCA cycle, lipogenesis, etc., providing a metabolic twist to cancer. In this article, the action of ERRα on various types of cancers including new developments in this field shall be reviewed.

  3. KRÜPPEL-LIKE FACTOR 9 AND REGULATION OF ENDOMETRIAL ESTROGEN RECEPTOR-ALPHA SIGNALING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endometrial cancer risk is linked to aberrant estrogen receptor-alpha (ER alpha) signaling caused by increased ER alpha activation due to hyper-estrogenic environments or mutations in growth-regulatory factors. We had shown that ER alpha signaling is attenuated by the Sp1-related transcription facto...

  4. Definition of the molecular basis for estrogen receptor-related receptor-alpha-cofactor interactions.

    PubMed

    Gaillard, Stéphanie; Dwyer, Mary A; McDonnell, Donald P

    2007-01-01

    Estrogen receptor-related receptor-alpha (ERRalpha) is an orphan nuclear receptor that does not appear to require a classical small molecule ligand to facilitate its interaction with coactivators and/or hormone response elements within target genes. Instead, the apo-receptor is capable of interacting in a constitutive manner with coactivators that stimulate transcription by acting as protein ligands. We have screened combinatorial phage libraries for peptides that selectively interact with ERRalpha to probe the architecture of the ERRalpha-coactivator pocket. In this manner, we have uncovered a fundamental difference in the mechanism by which this receptor interacts with peroxisome proliferator-activated receptor-gamma coactivator-1alpha, as compared with members of the steroid receptor coactivator subfamily of coactivators. Our findings suggest that it may be possible to develop ERRalpha ligands that exhibit different pharmacological activities as a consequence of their ability to differentially regulate coactivator recruitment. In addition, these findings have implications beyond ERRalpha because they suggest that subtle alterations in the structure of the activation function-2 pocket within any nuclear receptor may enable differential recruitment of coactivators, an observation of notable pharmaceutical importance.

  5. T-cell receptor V alpha and C alpha alleles associated with multiple and myasthenia gravis.

    PubMed Central

    Oksenberg, J R; Sherritt, M; Begovich, A B; Erlich, H A; Bernard, C C; Cavalli-Sforza, L L; Steinman, L

    1989-01-01

    Polymorphic markers in genes encoding that alpha chain of the human T-cell receptor (TcR) have been detected by Southern blot analysis in Pss I digests. Polymorphic bands were observed at 6.3 and 2.0 kilobases (kb) with frequencies of 0.30 and 0.44, respectively, in the general population. Using the polymerase chain reaction (PCR) method, we amplified selected sequences derived from the full-length TcR alpha cDNA probe. These PCR products were used as specific probes to demonstrate that the 6.3-kb polymorphic fragment hybridizes to the variable (V)-region probe and the 2.0-kb fragment hybridizes to the constant (C)-region probe. Segregation of the polymorphic bands was analyzed in family studies. To look for associations between these markers and autoimmune diseases, we have studied the restriction fragment length polymorphism distribution of the Pss I markers in patients with multiple sclerosis, myasthenia gravis, and Graves disease. Significant differences in the frequency of the polymorphic V alpha and C alpha markers were identified between patients and healthy individuals. Images PMID:2915992

  6. Effects of wortmannin on alpha-1/alpha-2 adrenergic receptor-mediated contractile responses in rabbit vascular tissues.

    PubMed

    Waen-Safranchik, V I; Deth, R C

    1994-06-01

    The inhibitory effect of wortmannin (WO), a fungus-derived protein kinase inhibitor, was assessed on contractile responses elicited by phenylephrine-induced alpha 1-(alpha 1 R) and UK 14304-induced alpha 2-adrenergic receptor (alpha 2R) stimulation in the rabbit aorta and saphenous vein, respectively. In agonist dose-response studies, WO caused a noncompetitive inhibition of both alpha 1R and alpha 2R responses, but was more potent against alpha 2R. Maximally effective single-dose responses at both receptors were less sensitive to WO. The initial alpha 1R contractile response, associated with intracellular Ca2+ release and myosin light chain kinase activation, was relatively insensitive to WO, while the Ca2+ influx-dependent tonic contraction was more sensitive. Contractions induced by high K+ buffer were relatively insensitive to WO in both the aorta and saphenous vein. These results indicate that WO inhibits receptor-initiated Ca2+ influx-dependent contractile responses such as those caused by alpha 2R stimulation and the sustained phase of alpha 1R stimulation more readily than Ca2+ release-dependent responses.

  7. Peroxisome proliferator-activated receptor alpha target genes.

    PubMed

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  8. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    PubMed Central

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well. PMID:20936127

  9. Interleukin-13 Receptor Alpha 2-Targeted Glioblastoma Immunotherapy

    PubMed Central

    Crawford, Andrew C.

    2014-01-01

    Glioblastoma (GBM) is the most lethal primary brain tumor, and despite several refinements in its multimodal management, generally has very poor prognosis. Targeted immunotherapy is an emerging field of research that shows great promise in the treatment of GBM. One of the most extensively studied targets is the interleukin-13 receptor alpha chain variant 2 (IL13Rα2). Its selective expression on GBM, discovered almost two decades ago, has been a target for therapy ever since. Immunotherapeutic strategies have been developed targeting IL13Rα2, including monoclonal antibodies as well as cell-based strategies such as IL13Rα2-pulsed dendritic cells and IL13Rα2-targeted chimeric antigen receptor-expressing T cells. Advanced therapeutic development has led to the completion of several clinical trials with promising outcomes. In this review, we will discuss the recent advances in the IL13Rα2-targeted immunotherapy and evaluate the most promising strategy for targeted GBM immunotherapy. PMID:25247196

  10. Noncontiguous domains of the alpha-factor receptor of yeasts confer ligand specificity.

    PubMed

    Sen, M; Marsh, L

    1994-01-14

    The Saccharomyces cerevisiae alpha-factor receptor has a 3400-fold higher affinity for the S. cerevisiae alpha-factor peptide (c-alpha-f) than for the Saccharomyces kluyveri alpha-factor peptide (k-alpha-f) as determined by competition for [3H] c-alpha-f binding. The S. kluyveri alpha-factor receptor has an approximately 2-fold higher affinity for k-alpha-f than for c-alpha-f. The S. kluyveri receptor gene (k-STE2) is incompletely regulated by S. cerevisiae mating type and poorly expressed on the surface of an S. cerevisiae mating type a strain. A chimeric receptor (c/k1) with amino acid residues 1-45 derived from S. cerevisiae and amino acid residues 46-427 from S. kluyveri exhibits the binding specificity of the S. kluyveri receptor. However, chimeric receptors containing residues 1-168 (c/k2) or 1-250 (c/k3) from S. cerevisiae and the remainder from the S. kluyveri receptor exhibit specificities similar to one another, but intermediate between the parent S. cerevisiae and S. kluyveri receptors. The relative ability of c-alpha-f and k-alpha-f to induce growth arrest in strains expressing chimeric receptors parallels relative affinity. Thus, two noncontiguous domains that include putative extracellular loops 1 and 3 and associated transmembrane segments, but exclude the extracellular NH2 terminus and loop 2, appear to contribute to alpha-factor receptor ligand specificity. COOH-terminal regions of the S. kluyveri receptor appear to confer a desensitization defect when expressed in S. cerevisiae. The S. cerevisiae receptor truncated at residue 296 retains ligand specificity for growth arrest.

  11. Adrenergic receptor subtypes in the cerebral circulation of newborn piglets

    SciTech Connect

    Wagerle, L.C.; Delivoria-Papadopoulos, M.

    1987-06-01

    The purpose of this study was to identify the ..cap alpha..-adrenergic receptor subtype mediating cerebral vasoconstriction during sympathetic nerve stimulation in the newborn piglet. The effect of ..cap alpha../sub 1/- and ..cap alpha../sub 2/-antagonists prazosin and yohimbine on the cerebrovascular response to unilateral electrical stimulation (15 Hz, 15 V) of the superior cervical sympathetic trunk was studied in 25 newborn piglets. Regional cerebral blood flow was measured with tracer microspheres. Sympathetic stimulation decreased blood flow to the ipsilateral cerebrum hippocampus, choroid plexus, and masseter muscle. ..cap alpha../sub 1/-Adrenergic receptor blockade with prazosin inhibited the sympathetic vasoconstriction in the cerebrum, hippocampus, and masseter muscle and abolished it in the choroid plexus. ..cap alpha../sub s/-Adrenergic receptor blockade with yohimbine had no effect. Following the higher dose of yohimbine, however, blood flow to all brain regions was increased by approximately two-fold, possibly due to enhanced cerebral metabolism. These data demonstrate that vascular ..cap alpha../sub 1/-adrenergic receptors mediate vasoconstriction to neuroadrenergic stimulation in cerebral resistance vessels in the newborn piglet.

  12. Alpha-conotoxin-ImI: a competitive antagonist at alpha-bungarotoxin-sensitive neuronal nicotinic receptors in hippocampal neurons.

    PubMed

    Pereira, E F; Alkondon, M; McIntosh, J M; Albuquerque, E X

    1996-09-01

    In the present study, the patch-clamp technique was applied to rat hippocampal neurons or myoballs in culture to study the actions of alpha-conotoxin-ImI on the native alpha-bungarotoxin-sensitive, presumably alpha 7-bearing, neuronal nicotinic receptor and on other ligand-gated channels. Preexposure of the neurons for 5 min to alpha-conotoxin-ImI decreased the peak amplitude of alpha-BGT-sensitive currents (referred to as type IA currents) in a concentration-dependent fashion. Several lines of evidence revealed that the inhibitory effect of alpha-conotoxin-ImI was competitive with respect to the agonist (IC50 approximately 85 nM) and reversible by washing. At 300 nM, alpha-conotoxin-ImI decreased by only 15% the peak amplitude of ACh-evoked currents in rat myoballs, did not affect the activation of currents gated by gamma-aminobutyric acid, glycine, N-methyl-D-aspartate, kainate, or quisqualate in hippocampal neurons, but reduced to approximately 60% the peak amplitude and shortened the decay phase of curare-sensitive, serotonin-gated currents in these neurons. The competitive and reversible nature of the alpha-conotoxin-ImI-induced inhibition of native alpha 7-bearing neuronal nicotinic receptors makes this peptide a valuable new tool for the functional and structural characterization of these receptors in the central nervous system.

  13. Bioisosteric phentolamine analogs as potent alpha-adrenergic antagonists.

    PubMed

    Hong, Seoung-Soo; Bavadekar, Supriya A; Lee, Sang-Il; Patil, Popat N; Lalchandani, S G; Feller, Dennis R; Miller, Duane D

    2005-11-01

    The synthesis and biological evaluation of a new series of bioisosteric phentolamine analogs are described. Replacement of the carbon next to the imidazoline ring of phentolamine with a nitrogen atom provides compounds (2, 3) that are about 1.6 times and 4.1 times more potent functionally than phentolamine on rat alpha1-adrenergic receptors, respectively. In receptor binding assays, the affinities of phentolamine and its bioisosteric analogs were determined on the human embryonic kidney (HEK) and Chinese Hamster ovary (CHO) cell lines expressing the human alpha1- and alpha2-AR subtypes, respectively. Analogs 2 and 3, both, displayed higher binding affinities at the alpha2- versus the alpha1-ARs, affinities being the least at the alpha1B-AR. Binding affinities of the methoxy ether analog 2 were greater than those of the phenolic analog 3 at all six alpha-AR subtypes. One of the nitrogen atoms in the imidazoline ring of phentolamine was replaced with an oxygen atom to give compounds 4 and 5, resulting in a 2-substituted oxazoline ring. The low functional antagonist activity on rat aorta, and binding potencies of these two compounds on human alpha1A- and alpha2A-AR subtypes indicate that a basic functional group is important for optimum binding to the alpha1- and alpha2A-adrenergic receptors.

  14. Obesity and diabetes in TNF-alpha receptor- deficient mice.

    PubMed Central

    Schreyer, S A; Chua, S C; LeBoeuf, R C

    1998-01-01

    TNF-alpha may play a role in mediating insulin resistance associated with obesity. This concept is based on studies of obese rodents and humans, and cell culture models. TNF elicits cellular responses via two receptors called p55 and p75. Our purpose was to test the involvement of TNF in glucose homeostasis using mice lacking one or both TNF receptors. C57BL/6 mice lacking p55 (p55(-)/-), p75, (p75(-)/-), or both receptors (p55(-)/-p75(-)/-) were fed a high-fat diet to induce obesity. Marked fasting hyperinsulinemia was seen for p55(-)/-p75(-)/- males between 12 and 16 wk of feeding the high-fat diet. Insulin levels were four times greater than wild-type mice. In contrast, p55(-)/- and p75(-)/- mice exhibited insulin levels that were similar or reduced, respectively, as compared with wild-type mice. In addition, high-fat diet-fed p75(-)/- mice had the lowest body weights and leptin levels, and improved insulin sensitivity. Obese (db/db) mice, which are not responsive to leptin, were used to study the role of p55 in severe obesity. Male p55(-)/-db/db mice exhibited threefold higher insulin levels and twofold lower glucose levels at 20 wk of age than control db/db expressing p55. All db/db mice remained severely insulin resistant based on fasting plasma glucose and insulin levels, and glucose and insulin tolerance tests. Our data do not support the concept that TNF, acting via its receptors, is a major contributor to obesity-associated insulin resistance. In fact, data suggest that the two TNF receptors work in concert to protect against diabetes. PMID:9664082

  15. A photoregulated ligand for the nuclear import receptor karyopherin alpha.

    PubMed

    Park, S B; Standaert, R F

    2001-12-01

    The ability to orchestrate the transport of proteins between nucleus and cytoplasm provides cells with a powerful regulatory mechanism. Selective translocation between these compartments is often used to propagate cellular signals, and it is an intimate part of the processes that control cell division, viral replication, and other cellular events. Therefore, precise experimental control over protein localization, through the agency of light, would provide a powerful tool for the study and manipulation of these events. To this end, a prototype photoregulated nuclear localization signal (NLS) was derived from a native NLS. A library of 30 mutants of the bipartite NLS from Xenopus laevis nucleoplasmin containing a novel, photoisomerizable amino acid was prepared by parallel, solid-phase synthesis and screened in vitro for binding to the nuclear import receptor karyopherin alpha, which mediates the nuclear import of cellular proteins. A single peptide was identified in which the cis and trans photoisomers bind the receptor differentially. The strategy used to obtain this peptide is systematic and empirical; therefore, it is potentially applicable to any peptide-receptor system.

  16. Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors.

    PubMed

    Mishra, Neerad C; Rir-sima-ah, Jules; Boyd, R Thomas; Singh, Shashi P; Gundavarapu, Sravanthi; Langley, Raymond J; Razani-Boroujerdi, Seddigheh; Sopori, Mohan L

    2010-07-01

    Smokers are less likely to develop some inflammatory and allergic diseases. In Brown-Norway rats, nicotine inhibits several parameters of allergic asthma, including the production of Th2 cytokines and the cysteinyl leukotriene LTC(4). Cysteinyl leukotrienes are primarily produced by mast cells, and these cells play a central role in allergic asthma. Mast cells express a high-affinity receptor for IgE (FcepsilonRI). Following its cross-linking, cells degranulate and release preformed inflammatory mediators (early phase) and synthesize and secrete cytokines/chemokines and leukotrienes (late phase). The mechanism by which nicotine modulates mast cell activation is unclear. Using alpha-bungarotoxin binding and quantitative PCR and PCR product sequencing, we showed that the rat mast/basophil cell line RBL-2H3 expresses nicotinic acetylcholine receptors (nAChRs) alpha7, alpha9, and alpha10; exposure to exceedingly low concentrations of nicotine (nanomolar), but not the biologically inactive metabolite cotinine, for > or = 8 h suppressed the late phase (leukotriene/cytokine production) but not degranulation (histamine and hexosaminidase release). These effects were unrelated to those of nicotine on intracellular free calcium concentration but were causally associated with the inhibition of cytosolic phospholipase A(2) activity and the PI3K/ERK/NF-kappaB pathway, including phosphorylation of Akt and ERK and nuclear translocation of NF-kappaB. The suppressive effect of nicotine on the late-phase response was blocked by the alpha7/alpha9-nAChR antagonists methyllycaconitine and alpha-bungarotoxin, as well as by small interfering RNA knockdown of alpha7-, alpha9-, or alpha10-nAChRs, suggesting a functional interaction between alpha7-, alpha9-, and alpha10-nAChRs that might explain the response of RBL cells to nanomolar concentrations of nicotine. This "hybrid" receptor might serve as a target for novel antiallergic/antiasthmatic therapies.

  17. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  18. β1-Adrenergic and M2 Muscarinic Autoantibodies and Thyroid Hormone Facilitate Induction of Atrial Fibrillation in Male Rabbits.

    PubMed

    Li, Hongliang; Murphy, Taylor; Zhang, Ling; Huang, Bing; Veitla, Vineet; Scherlag, Benjamin J; Kem, David C; Yu, Xichun

    2016-01-01

    Activating autoantibodies to the β1-adrenergic and M2 muscarinic receptors are present in a very high percentage of patients with Graves' disease and atrial fibrillation (AF). The objective of this study was to develop a reproducible animal model and thereby to examine the impact of these endocrine-like autoantibodies alone and with thyroid hormone on induction of thyroid-associated atrial tachyarrhythmias. Five New Zealand white rabbits were coimmunized with peptides from the second extracellular loops of the β1-adrenergic and M2 muscarinic receptors to produce both sympathomimetic and parasympathomimetic antibodies. A catheter-based electrophysiological study was performed on anesthetized rabbits before and after immunization and subsequent treatment with thyroid hormone. Antibody expression facilitated the induction of sustained sinus, junctional and atrial tachycardias, but not AF. Addition of excessive thyroid hormone resulted in induced sustained AF in all animals. AF induction was blocked acutely by the neutralization of these antibodies with immunogenic peptides despite continued hyperthyroidism. The measured atrial effective refractory period as one parameter of AF propensity shortened significantly after immunization and was acutely reversed by peptide neutralization. No further decrease in the effective refractory period was observed after the addition of thyroid hormone, suggesting other cardiac effects of thyroid hormone may contribute to its role in AF induction. This study demonstrates autonomic autoantibodies and thyroid hormone potentiate the vulnerability of the heart to AF, which can be reversed by decoy peptide therapy. These data help fulfill Witebsky's postulates for an increased autoimmune/endocrine basis for Graves' hyperthyroidism and AF.

  19. Nebivolol, a β1-adrenergic blocker, protects from peritoneal membrane damage induced during peritoneal dialysis

    PubMed Central

    Abensur, Hugo; Albar-Vizcaino, Patricia; Parra, Emilio González; Sandoval, Pilar; Ramírez, Laura García; del Peso, Gloria; Acedo, Juan Manuel; Bajo, María A.; Selgas, Rafael; Tomero, José A. Sánchez; López-Cabrera, Manuel; Aguilera, Abelardo

    2016-01-01

    Peritoneal dialysis (PD) is a form of renal replacement treatment, which employs the peritoneal membrane (PM) to eliminate toxins that cannot be removed by the kidney. The procedure itself, however, contributes to the loss of the PM ultrafiltration capacity (UFC), leading consequently to the technique malfunction. β-blockers have been considered deleterious for PM due to their association with loss of UFC and induction of fibrosis. Herein we analyzed the effects of Nebivolol, a new generation of β1-blocker, on PM alterations induced by PD fluids (PDF). In vitro: We found that mesothelial cells (MCs) express β1-adrenergic receptor. MCs were treated with TGF-β to induce mesothelial-to-mesenchymal transition (MMT) and co-treated with Nebivolol. Nebivolol reversed the TGF-β effects, decreasing extracellular matrix synthesis, and improved the fibrinolytic capacity, decreasing plasminogen activator inhibitor-1 (PAI-1) and increasing tissue-type plasminogen activator (tPA) supernatant levels. Moreover, Nebivolol partially inhibited MMT and decreased vascular endothelial growth factor (VEGF) and IL-6 levels in supernatants. In vivo: Twenty-one C57BL/6 mice were divided into 3 groups. Control group carried a catheter without PDF infusion. Study group received intraperitoneally PDF and oral Nebivolol during 30 days. PDF group received PDF alone. Nebivolol maintained the UFC and reduced PM thickness, MMT and angiogenesis promoted by PDF. It also improved the fibrinolytic capacity in PD effluents decreasing PAI-1 and IL-8 and increased tPA levels. Conclusion: Nebivolol protects PM from PDF-induced damage, promoting anti-fibrotic, anti-angiogenic, anti-inflammatory and pro-fibrinolytic effects. PMID:27102153

  20. Use of radioactive 7alpha, 17alpha-dimethyl-19-nortestosterone (mibolerone) in the assay of androgen receptors

    SciTech Connect

    Schilling, K.; Liao, S.

    1984-01-01

    Tritiated 7alpha, 17alpha-dimethyl-19-nortestosterone (DMNT; mibolerone), a synthetic androgen stable to metabolic conversion in the rat ventral prostate, is an excellent radioactive ligand for the quantitation and characterization of androgen receptors in prostate, liver, and cultured cells. DMNT is more receptor-selective than 17alpha-methyl-17beta-hydroxy-estra-4,9,11-trien-3-one (R1881); DMNT interacts with glucocorticoid and progestin receptors much less strongly than R1881. Unlike 5alpha-dihydrotestosterone, DMNT does not bind tightly to testosterone-estradiol binding globulin of human serum. The hydroxylapatite-filter assay employed clearly distinguished between DMNT binding to androgen receptors of rat ventral prostate and interaction of DMNT with androgen binding protein of epididymides. The prostate cytosol (/sup 3/H)DMNT-receptor complex sediments in two forms (4 and 8 S) in a low salt medium. In 0.4 M KCl, both the prostate cytosol and nuclear (/sup 3/H)DMNT-receptor complexes migrated as 3-4 S components. The formation of both the cytosol and nuclear DMNT-receptor complexes is inhibited by antiandrogens and 17beta-estradiol.

  1. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by (/sup 3/H) dihydroergocryptine binding

    SciTech Connect

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-07-15

    The radioactive alpha-adrenergic antagonist (/sup 3/H) dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). (/sup 3/H) Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for (/sup 3/H) dihydroergocryptine binding sites stereo-selectively ((-)-norepinephrine is 100 times as potent as (+)-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for (/sup 3/H) dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. (/sup 3/H) dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response.

  2. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    ERIC Educational Resources Information Center

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  3. Dual Modulators of GABA-A and Alpha7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2014-08-01

    and Alpha7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR: Kelvin W. Gee RECIPIENT: University of California Irvine...Aug 2014 4. TITLE AND SUBTITLE Dual Modulators of GABA-A and Alpha7 Nicotinic Receptors for Treating Autism 5a. CONTRACT NUMBER 5b. GRANT NUMBER...DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autism

  4. Fast skeletal muscle troponin I is a co-activator of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Li Yuping; Chen Bin; Chen Jian; Lou Guiyu; Chen Shiuan; Zhou Dujin

    2008-05-16

    ERR{alpha} (estrogen receptor-related receptor {alpha}) is a member of the nuclear receptor superfamily. To further our understanding of the detailed molecular mechanism of transcriptional regulation by ERR{alpha}, we searched for ERR{alpha}-interacting proteins using a yeast two-hybrid system by screening a human mammary gland cDNA expression library with the ligand-binding domain (LBD) of ERR{alpha} as the 'bait'. Fast skeletal muscle troponin I (TNNI2), along with several known nuclear receptor co-activators, were isolated. We demonstrated that TNNI2 localizes to the cell nucleus and interacts with ERR{alpha} in co-immunoprecipitation experiments. GST pull-down assays also revealed that TNNI2 interacts directly with ERR{alpha}. Through luciferase reporter gene assays, TNNI2 was found to enhance the transactivity of ERR{alpha}. Combining mutagenesis and yeast two-hybrid assays, we mapped the ERR{alpha}-interacting domain on TNNI2 to a region encompassing amino acids 1-128. These findings reveal a new function for TNNI2 as a co-activator of ERR{alpha}.

  5. Homology model of human interferon-alpha 8 and its receptor complex.

    PubMed Central

    Seto, M. H.; Harkins, R. N.; Adler, M.; Whitlow, M.; Church, W. B.; Croze, E.

    1995-01-01

    Human interferon-alpha 8 (HuIFN alpha 8), a type I interferon (IFN), is a cytokine belonging to the hematopoietic super-family that includes human growth hormone (HGH). Recent data identified two human type I IFN receptor components. One component (p40) was purified from human urine by its ability to bind to immobilized type I IFN. A second receptor component (IFNAR), consisting of two cytokine receptor-like domains (D200 and D200'), was identified by expression cloning. Murine cells transfected with a gene encoding this protein were able to produce an antiviral response to human IFN alpha 8. Both of these receptor proteins have been identified as members of the immunoglobulin superfamily of which HGH receptor is a member. The cytokine receptor-like structural motifs present in p40 and IFNAR were modeled based on the HGH receptor X-ray structure. Models of the complexes of HuIFN alpha 8 with the receptor subunits were built by superpositioning the conserved C alpha backbone of the HuIFN alpha 8 and receptor subunit models with HGH and its receptor complex. The HuIFN alpha 8 model was constructed from the C alpha coordinates of murine interferon-beta crystal structure. Electrostatic potentials and hydrophobic interactions appear to favor the model of HuIFN alpha 8 interacting with p40 at site 1 and the D200' domain of IFNAR at site 2 because there are regions of complementary electrostatic potential and hydrophobic interactions at both of the proposed binding interfaces. Some of the predicted receptor binding residues within HuIFN alpha 8 correspond to functionally important residues determined previously for human IFN alpha 1, IFN alpha 2, and IFN alpha 4 subtypes by site-directed mutagenesis studies. The models predict regions of interaction between HuIFN alpha 8 and each of the receptor proteins, and provide insights into interactions between other type I IFNs (IFN-alpha subtypes and IFN-beta) and their respective receptor components. PMID:7613464

  6. The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-Beta glycine receptor function.

    PubMed

    Ahrens, Jörg; Demir, Reyhan; Leuwer, Martin; de la Roche, Jeanne; Krampfl, Klaus; Foadi, Nilufar; Karst, Matthias; Haeseler, Gertrud

    2009-01-01

    Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. Cannabidiol is a nonpsychotropic plant constituent of Cannabis sativa. As we hypothesized that non-CB receptor mechanisms of cannabidiol might contribute to its anti-inflammatory and neuroprotective effects, we investigated the interaction of cannabidiol with strychnine-sensitive alpha(1 )and alpha(1)beta glycine receptors by using the whole-cell patch clamp technique. Cannabidiol showed a positive allosteric modulating effect in a low micromolar concentration range (EC(50) values: alpha(1) = 12.3 +/- 3.8 micromol/l and alpha(1)beta = 18.1 +/- 6.2 micromol/l). Direct activation of glycine receptors was observed at higher concentrations above 100 micromol/l (EC(50) values: alpha(1) = 132.4 +/- 12.3 micromol/l and alpha(1)beta = 144.3 +/- 22.7 micromol/l). These in vitro results suggest that strychnine-sensitive glycine receptors may be a target for cannabidiol mediating some of its anti-inflammatory and neuroprotective properties.

  7. The neuronal nicotinic acetylcholine receptors alpha 4* and alpha 6* differentially modulate dopamine release in mouse striatal slices.

    PubMed

    Meyer, Erin L; Yoshikami, Doju; McIntosh, J Michael

    2008-06-01

    Striatal dopamine (DA) plays a major role in the regulation of motor coordination and in the processing of salient information. We used voltammetry to monitor DA-release evoked by electrical stimulation in striatal slices, where interneurons continuously release acetylcholine. Use of the alpha6-selective antagonist alpha-conotoxin MII[E11A] and alpha4 knockout mice enabled identification of two populations of DA-ergic fibers. The first population had a low action potential threshold, and action potential-evoked DA-release from these fibers was modulated by alpha6. The second population had a higher action potential threshold, and only alpha4(non-alpha6) modulated action potential-evoked DA-release. Striatal DA-ergic neurons fire in both tonic and phasic patterns. When stimuli were applied in a train to mimic phasic firing, more DA-release was observed in alpha4 knockout versus wild-type mice. Furthermore, block of alpha4(non-alpha6), but not of alpha6, increased DA release evoked by a train. These results indicate that there are different classes of striatal DA-ergic fibers that express different subtypes of nicotinic receptors.

  8. Expression of Estrogen Receptor Alpha in Malignant Melanoma

    PubMed Central

    Rajabi, Parvin; Bagheri, Marzieh; Hani, Mohsen

    2017-01-01

    Background: Features of malignant melanoma (MM) vary in the different geographic regions of the world. This may be attributable to environmental, ethnic, and genetic factors. The aim of this study was to determine the expression of estrogen receptor alpha (ER-α) in MM in Isfahan, Iran. Materials and Methods: This study was planned as a descriptive, analytical, cross-sectional investigation. During this study, paraffin-embedded tissue blocks of patients with a histopathologic diagnosis of MM was studied for ER-α using immunohistochemistry (IHC). Results: In this study, 38 patients (female/male; 20/18) with a definite diagnosis of malignant cutaneous melanoma and mean age of 52.4 ± 11.2 years were investigated. Using envision IHC staining, there were not any cases with ER-α expression. Conclusion: In confirmation to the most previous studies, expression of ER-α was negative in MM. It is recommended to investigate the expression of estrogen receptor beta and other markers in MM. PMID:28299306

  9. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.

  10. Involvement of central alpha1-adrenoceptors on renal responses to central moxonidine and alpha-methylnoradrenaline.

    PubMed

    de Andrade, Carina A F; de Andrade, Glaucia M F; De Paula, Patricia M; De Luca, Laurival A; Menani, José V

    2009-04-01

    Moxonidine (alpha2-adrenoceptor/imidazoline receptor agonist) injected into the lateral ventricle induces diuresis, natriuresis and renal vasodilation. Moxonidine-induced diuresis and natriuresis depend on central imidazoline receptors, while central alpha1-adrenoceptors are involved in renal vasodilation. However, the involvement of central alpha1-adrenoceptors on diuresis and natriuresis to central moxonidine was not investigated yet. In the present study, the effects of moxonidine, alpha-methylnoradrenaline (alpha2-adrenoceptor agonist) or phenylephrine (alpha1-adrenoceptor agonist) alone or combined with previous injections of prazosin (alpha1-adrenoceptor antagonist), yohimbine or RX 821002 (alpha2-adrenoceptor antagonists) intracerebroventricularly (i.c.v.) on urinary sodium, potassium and volume were investigated. Male Holtzman rats (n = 5-18/group) with stainless steel cannula implanted into the lateral ventricle and submitted to gastric water load (10% of body weight) were used. Injections of moxonidine (20 nmol) or alpha-methylnoradrenaline (80 nmol) i.c.v. induced natriuresis (196 +/- 25 and 171 +/- 30, respectively, vs. vehicle: 101 +/- 9 microEq/2 h) and diuresis (9.0 +/- 0.4 and 12.3 +/- 1.6, respectively, vs. vehicle: 5.2 +/- 0.5 ml/2 h). Pre-treatment with prazosin (320 nmol) i.c.v. abolished the natriuresis (23 +/- 4 and 76 +/- 11 microEq/2 h, respectively) and diuresis (5 +/- 1 and 7.6 +/- 0.8 ml/2 h, respectively) produced by i.c.v. moxonidine or alpha-methylnoradrenaline. RX 821002 (320 nmol) i.c.v. abolished the natriuretic effect of alpha-methylnoradrenaline, however, yohimbine (320 nmol) did not change renal responses to moxonidine. Phenylephrine (80 nmol) i.c.v. induced natriuresis and kaliuresis that were blocked by prazosin. Therefore, the present data suggest that moxonidine and alpha-methylnoradrenaline acting on central imidazoline receptors and alpha2-adrenoceptors, respectively, activate central alpha1-adrenergic mechanisms to

  11. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling.

    PubMed Central

    Ruthardt, M; Testa, U; Nervi, C; Ferrucci, P F; Grignani, F; Puccetti, E; Grignani, F; Peschle, C; Pelicci, P G

    1997-01-01

    Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein

  12. Rat alpha6beta2delta GABAA receptors exhibit two distinct and separable agonist affinities.

    PubMed

    Hadley, Stephen H; Amin, Jahanshah

    2007-06-15

    The onset of motor learning in rats coincides with exclusive expression of GABAA receptors containing alpha6 and delta subunits in the granule neurons of the cerebellum. This development temporally correlates with the presence of a spontaneously active chloride current through alpha6-containing GABAA receptors, known as tonic inhibition. Here we report that the coexpression of alpha6, beta2, and delta subunits produced receptor-channels which possessed two distinct and separable states of agonist affinity, one exhibiting micromolar and the other nanomolar affinities for GABA. The high-affinity state was associated with a significant level of spontaneous channel activity. Increasing the level of expression or the ratio of beta2 to alpha6 and delta subunits increased the prevalence of the high-affinity state. Comparative studies of alpha6beta2delta, alpha1beta2delta, alpha6beta2gamma2, alpha1beta2gamma2 and alpha4beta2delta receptors under equivalent levels of expression demonstrated that the significant level of spontaneous channel activity is uniquely attributable to alpha6beta2delta receptors. The pharmacology of spontaneous channel activity arising from alpha6beta2delta receptor expression corresponded to that of tonic inhibition. For example, GABAA receptor antagonists, including furosemide, blocked the spontaneous current. Further, the neuroactive steroid 5alpha-THDOC and classical glycine receptor agonists beta-alanine and taurine directly activated alpha6beta2delta receptors with high potency. Specific mutation within the GABA-dependent activation domain (betaY157F) impaired both low- and high-affinity components of GABA agonist activity in alpha6betaY157Fdelta receptors, but did not attenuate the spontaneous current. In comparison, a mutation located between the second and third transmembrane segments of the delta subunit (deltaR287M) significantly diminished the nanomolar component and the spontaneous activity. The possibility that the high affinity state

  13. Spinal alpha3beta2* nicotinic acetylcholine receptors tonically inhibit the transmission of nociceptive mechanical stimuli.

    PubMed

    Young, Tracey; Wittenauer, Shannon; McIntosh, J Michael; Vincler, Michelle

    2008-09-10

    The presence of non-alpha4beta2, non-alpha7 nicotinic acetylcholine receptors (nAChR) in the rat spinal cord has been suggested previously, but the identity of these nAChRs had not been shown. Intrathecal administration of the alpha3beta2*/alpha6beta2* selective alpha-conotoxin MII (alpha-CTX MII) dose- and time-dependently reduced paw withdrawal thresholds to mechanical pressure in normal rats. The pronociceptive effect of alpha-CTX MII was partially blocked by NMDA receptor antagonism and lost completely following ablation of C-fibers. The effect of spinal nerve ligation on alpha-CTX MII-induced mechanical hypersensitivity was also assessed. Sensitivity was lost in the hind paw ipsilateral to spinal nerve ligation, but maintained in the contralateral hind paw at control levels. Radioligand binding in spinal cord membranes revealed high and low affinity alpha-CTX MII binding sites. Spinal nerve ligation did not significantly alter alpha-CTX MII binding ipsilateral to ligation. Finally, no evidence for the presence of alpha6-containing nAChRs was identified. The results of these studies show the presence of 2 populations of alpha-CTX MII-sensitive nAChRs containing the alpha3 and beta2, but not the alpha6, subunits in the rat spinal cord that function to inhibit the transmission of nociceptive mechanical stimuli via inhibiting the release of glutamate from C-fibers. Spinal nerve ligation produces a unilateral loss of alpha-CTX MII-induced mechanical hypersensitivity without altering alpha-CTX MII binding sites. Our data support a peripheral injury-induced loss of a cholinergic inhibitory tone at spinal alpha3beta2* nAChRs, without the loss of the receptors themselves, which may contribute to mechanical hypersensitivity following spinal nerve ligation.

  14. Rabies virus binding to an acetylcholine receptor alpha-subunit peptide.

    PubMed

    Lentz, T L

    1990-04-01

    The binding of 125I-labeled rabies virus to a synthetic peptide comprising residues 173-204 of the alpha 1-subunit of the nicotinic acetylcholine receptor was investigated. Binding of rabies virus to the receptor peptide was dependent on pH, could be competed with by unlabeled homologous virus particles, and was saturable. Synthetic peptides of snake venom, curaremimetic neurotoxins and of the structurally similar segment of the rabies virus glycoprotein, were effective in competing with labeled virus binding to the receptor peptide at micromolar concentrations. Similarly, synthetic peptides of the binding domain on the acetylcholine receptor competed for binding. These findings suggest that both rabies virus and neurotoxins bind to residues 173-204 of the alpha 1-subunit of the acetylcholine receptor. Competition studies with shorter alpha-subunit peptides within this region indicate that the highest affinity virus binding determinants are located within residues 179-192. A rat nerve alpha 3-subunit peptide, that does not bind alpha-bungarotoxin, inhibited binding of virus to the alpha 1 peptide, suggesting that rabies binds to neuronal nicotinic acetylcholine receptors. These studies indicate that synthetic peptides of the glycoprotein binding domain and of the receptor binding domain may represent useful antiviral agents by targeting the recognition event between the viral attachment protein and the host cell receptor, and inhibiting attachment of virus to the receptor.

  15. Alpha 2 adrenergic receptors in hyperplastic human prostate: identification and characterization using (/sup 3/H) rauwolscine

    SciTech Connect

    Shapiro, E.; Lepor, H.

    1986-05-01

    (/sup 3/H)Rauwolscine ((/sup 3/H)Ra), a selective ligand for the alpha 2 adrenergic receptor, was used to identify and characterize alpha 2 adrenergic receptors in prostate glands of men with benign prostatic hyperplasia. Specific binding of (/sup 3/H)Ra to prostatic tissue homogenates was rapid and readily reversible by addition of excess unlabelled phentolamine. Scatchard analysis of saturation experiments demonstrates a single, saturable class of high affinity binding sites (Bmax = 0.31 +/- 0.04 fmol./microgram. DNA, Kd = 0.9 +/- 0.11 nM.). The relative potency of alpha adrenergic drugs (clonidine, alpha-methylnorepinephrine and prazosin) in competing for (/sup 3/H)Ra binding sites was consistent with the order predicted for an alpha 2 subtype. The role of alpha 2 adrenergic receptors in normal prostatic function and in men with bladder outlet obstruction secondary to BPH requires further investigation.

  16. Ligand specificities of recombinant retinoic acid receptors RAR alpha and RAR beta.

    PubMed Central

    Crettaz, M; Baron, A; Siegenthaler, G; Hunziker, W

    1990-01-01

    Binding of retinoic acid (RA) to specific RA receptors alpha and beta (RAR alpha and RAR beta) was studied. Receptors were obtained in two ways: (1) full-length receptors were produced by transient expression of the respective human cDNAs in COS 1 cells; and (2) the ligand-binding domains of RAR alpha and RAR beta were produced in Escherichia coli. RA binding to the wild-type and truncated forms of the receptor was identical for both RAR alpha and RAR beta, indicating that the ligand-binding domains have retained the binding characteristics of the intact receptors. Furthermore, RA bound with the same affinity to both RAR alpha and RAR beta. Only retinoid analogues with an acidic end-group were able to actively bind to both receptors. On measuring the binding of various retinoids, we have found that the properties of the ligand-binding sites of RAR alpha and RAR beta were rather similar. Two retinoid analogues were capable of binding preferentially to either RAR alpha or RAR beta, suggesting that it may be possible to synthesize specific ligands for RAR alpha and RAR beta. PMID:2176462

  17. Whole-genome cartography of estrogen receptor alpha binding sites.

    PubMed

    Lin, Chin-Yo; Vega, Vinsensius B; Thomsen, Jane S; Zhang, Tao; Kong, Say Li; Xie, Min; Chiu, Kuo Ping; Lipovich, Leonard; Barnett, Daniel H; Stossi, Fabio; Yeo, Ailing; George, Joshy; Kuznetsov, Vladimir A; Lee, Yew Kok; Charn, Tze Howe; Palanisamy, Nallasivam; Miller, Lance D; Cheung, Edwin; Katzenellenbogen, Benita S; Ruan, Yijun; Bourque, Guillaume; Wei, Chia-Lin; Liu, Edison T

    2007-06-01

    Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha binding and gene

  18. The mongoose acetylcholine receptor alpha-subunit: analysis of glycosylation and alpha-bungarotoxin binding.

    PubMed

    Asher, O; Jensen, B S; Lupu-Meiri, M; Oron, Y; Fuchs, S

    1998-04-17

    The mongoose AChR alpha-subunit has been cloned and shown to be highly homologous to other AChR alpha-subunits, with only six differences in amino acid residues at positions that are conserved in animal species that bind alpha-bungarotoxin (alpha-BTX). Four of these six substitutions cluster in the ligand binding site, and one of them, Asn-187, forms a consensus N-glycosylation site. The mongoose glycosylated alpha-subunit has a higher apparent molecular mass than that of the rat glycosylated alpha-subunit, probably resulting from the additional glycosylation at Asn-187 of the mongoose subunit. The in vitro translated mongoose alpha-subunit, in a glycosylated or non-glycosylated form, does not bind alpha-BTX, indicating that lack of alpha-BTX binding can be achieved also in the absence of glycosylation.

  19. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  20. A comparison of locomotor responses to some psychotropic drugs and cerebral receptors in the Acomys cahirinus and the laboratory mouse.

    PubMed

    Marona-Lewicka, D; Michaluk, J; Antkiewicz-Michaluk, L; Vetulani, J

    1987-01-01

    Comparative studies of the laboratory mouse and Acomys cahirinus have shown differences in their motor activity patterns and motor responses to morphine, apomorphine and clonidine. The two species also differed in respect of the density of cerebral alpha 2-adrenergic receptors, but no significant differences between other types of receptors (alpha 1-adrenergic, beta-adrenergic, opiate mu and delta, and spiroperidol binding sites) were found. It is suggested that the high excitability of the Acomys may be related to a deficit in the inhibitory noradrenergic transmission in the central nervous system.

  1. Resistance to thyroid hormone due to defective thyroid receptor alpha

    PubMed Central

    Moran, Carla; Chatterjee, Krishna

    2015-01-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. PMID:26303090

  2. The role of phosphorylation in activation of the alpha 6A beta 1 laminin receptor.

    PubMed

    Hogervorst, F; Kuikman, I; Noteboom, E; Sonnenberg, A

    1993-09-05

    The phorbol ester phorbol 12-myristate 13-acetate (PMA) induces phosphorylation of serine residues in the cytoplasmic domain of the alpha 6A integrin subunit, as well as activation of the alpha 6A beta 1 laminin receptor. We examined whether phosphorylation correlates with the induction of high affinity binding of laminin by the alpha 6A beta 1 receptor. Two potential phosphorylation sites for protein kinase C, serine 1041 and serine 1048, are present in the cytoplasmic domain of the alpha 6A subunit. We introduced point mutations into the alpha 6A cDNA, replacing either one or both of the serine residues with alanine. Wild-type and mutant alpha 6A cDNAs were transfected into K562 cells. All alpha 6A subunit mutants were expressed at levels similar to those of wild-type alpha 6A and formed heterodimers with endogenous beta 1. Analysis of the phosphorylation state of wild-type and mutant alpha 6A subunits in resting K562 cells and after treatment with PMA showed that serine 1041, but not serine 1048, is the target residue of PMA-induced phosphorylation. Cells expressing alpha 6A mutant subunits or wild-type alpha 6A transfectants all bound laminin in the presence, but not in the absence of PMA; however, the extent of binding differed. Cells transfected with alpha 6A containing the serine to alanine mutation showed a 2-3-fold higher binding to laminin than cells transfected with alpha 6A containing serine 1041. The results indicate that phosphorylation of the alpha 6A cytoplasmic domain is not required for the induction of high affinity of the alpha 6A beta 1 receptor by PMA, and suggest that, in contrast, it may reduce the affinity of this integrin for ligand.

  3. N alpha-methylhistamine inhibits intestinal transit in mice by central histamine H1 receptor activation.

    PubMed

    Oishi, R; Adachi, N; Saeki, K

    1993-06-24

    The effects of (R)alpha-methylhistamine and N alpha-methylhistamine on intestinal transit were examined in mice. The passage of a charcoal meal in the gastrointestinal tract was dose dependently inhibited by N alpha-methylhistamine (1-20 mg/kg i.p.), but not by a selective H3 receptor agonist (R)alpha-methyl-histamine (1-50 mg/kg i.p.). The inhibitory effect of N alpha-methylhistamine (20 mg/kg) was attenuated by pretreatment with H1 receptor antagonists (mepyramine 5 mg/kg i.p. or 5 micrograms i.c.v. and triprolidine 5 mg/kg i.p.), but not by cimetidine (10 mg/kg i.p.), zolantidine (5 mg/kg i.p.), a brain-penetrating H2 receptor antagonist, or thioperamide (5 mg/kg i.p.), a selective H3 receptor antagonist. The effect of N alpha-methylhistamine was also attenuated by combined treatment with phentolamine and propranolol (5 and 15 mg/kg s.c., respectively) and by pretreatment with 6-hydroxydopamine (20 mg/kg i.p., 2 days before). N alpha-Methylhistamine markedly decreased histamine turnover in the mouse brain. These findings suggest that intestinal transit is inhibited by N alpha-methylhistamine via stimulation of central H1 but not H3 receptors and that stimulation of the sympathetic system is involved in this effect.

  4. Present state of alpha- and beta-adrenergic drugs I. The adrenergic receptor.

    PubMed

    Ahlquist, R P

    1976-11-01

    The cardiovascular alpha adrenergic receptors evoke vasoconstriction, the cardiovascular beta receptors evoke vasodilation and cardiac stimulation. All blood vessels have both alpha and beta receptors. In some areas, for example skin and kidney, the alpha receptors predominate. In some vascular beds, for example the nutrient vessels in skeletal muscle, beta receptors predominate. In other beds, such as coronary, visceral, and connective tissue both receptors are active. The cardiovascular effects of adrenergic agonists depend on which receptor they act on. Phenylephrine is specific for alpha receptors. Isoproterenol is specific for beta receptors. Epinephrine and norepinephrine act on both. The real value of knowing the receptor specificity of each agonist is that side effects can more easily be predicted. For example, adrenergic cardiac stimulants are antiasthmatics. Therefore, adrenergic antiasthmatics can produce excessive cardiac stimulation. For the future, agonists that are not only receptor-specific but also tissue-specific will be developed. The first of these in the United States is terbutaline. The rest of the world has in addition a similar drug, salbutamol. No one knows if this drug will be approved for use by American physicians.

  5. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions.

    PubMed Central

    Luoma, J; Hiltunen, T; Särkioja, T; Moestrup, S K; Gliemann, J; Kodama, T; Nikkari, T; Ylä-Herttuala, S

    1994-01-01

    Macrophage- and smooth muscle cell (SMC)-derived foam cells are typical constituents of human atherosclerotic lesions. At least three receptor systems have been characterized that could be involved in the development of foam cells: alpha 2-macroglobulin receptor/LDL receptor-related protein (alpha 2 MR/LRP), scavenger receptor, and LDL receptor. We studied the expression of these receptors in human atherosclerotic lesions with in situ hybridization and immunocytochemistry. An abundant expression of alpha 2MR/LRP mRNA and protein was found in SMC and macrophages in both early and advanced lesions in human aortas. alpha 2MR/LRP was also present in SMC in normal aortas. Scavenger receptor mRNA and protein were expressed in lesion macrophages but no expression was found in lesion SMC. LDL receptor was absent from the lesion area but was expressed in some aortas in medial SMC located near the adventitial border. The results demonstrate that (a) alpha 2MR/LRP is, so far, the only lipoprotein receptor expressed in lesions SMC in vivo; (b) scavenger receptors are expressed only in lesion macrophages; and (c) both receptors may play important roles in the development of human atherosclerotic lesions. Images PMID:8182133

  6. The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction.

    PubMed

    Tanoue, Akito; Nasa, Yoshihisa; Koshimizu, Takaaki; Shinoura, Hitomi; Oshikawa, Sayuri; Kawai, Takayuki; Sunada, Sachie; Takeo, Satoshi; Tsujimoto, Gozoh

    2002-03-01

    To investigate the physiological role of the alpha(1D)-adrenergic receptor (alpha(1D)-AR) subtype, we created mice lacking the alpha(1D)-AR (alpha(1D)(-/-)) by gene targeting and characterized their cardiovascular function. In alpha(1D)-/- mice, the RT-PCR did not detect any transcript of the alpha(1D)-AR in any tissue examined, and there was no apparent upregulation of other alpha(1)-AR subtypes. Radioligand binding studies showed that alpha(1)-AR binding capacity in the aorta was lost, while that in the heart was unaltered in alpha(1D)-/- mice. Non-anesthetized alpha(1D)-/- mice maintained significantly lower basal systolic and mean arterial blood pressure conditions, relative to wild-type mice, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. Besides hypotension, the pressor responses to phenylephrine and norepinephrine were decreased by 30-40% in alpha(1D)-/- mice. Furthermore, the contractile response of the aorta and the pressor response of isolated perfused mesenteric arterial beds to alpha(1)-AR stimulation were markedly reduced in alpha(1D)-/- mice. We conclude that the alpha(1D)-AR participates directly in sympathetic regulation of systemic blood pressure by vasoconstriction.

  7. Nicotine enhances the cyclic AMP-dependent protein kinase-mediated phosphorylation of alpha4 subunits of neuronal nicotinic receptors.

    PubMed

    Hsu, Y N; Edwards, S C; Wecker, L

    1997-12-01

    Studies determined whether alpha4beta2 or alpha3beta2 neuronal nicotinic receptors expressed in Xenopus oocytes are substrates for cyclic AMP-dependent protein kinase (PKA) and whether nicotine affects receptor phosphorylation. The cRNAs for the subunits were coinjected into oocytes, and cells were incubated for 24 h in the absence or presence of nicotine (50 nM for alpha4beta2 and 500 nM for alpha3beta2 receptors). Nicotine did not interfere with the isolation of the receptors. When receptors isolated from oocytes expressing alpha4beta2 receptors were incubated with [gamma-32P]ATP and the catalytic subunit of PKA, separated by electrophoresis, and visualized by autoradiography, a labeled phosphoprotein with the predicted molecular size of the alpha4 subunit was present. Phosphorylation of alpha4 subunits of alpha4beta2 receptors increased within the first 5 min of incubation with nicotine and persisted for 24 h. In contrast, receptors isolated from oocytes expressing alpha3beta2 receptors did not exhibit a labeled phosphoprotein corresponding to the size of the alpha3 subunit. Results suggest that the PKA-mediated phosphorylation of alpha4 and not alpha3 subunits may explain the differential inactivation by nicotine of these receptor subtypes expressed in oocytes.

  8. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy.

    PubMed

    MacLennan, A J; Devlin, B K; Neitzel, K L; McLaurin, D L; Anderson, K J; Lee, N

    1999-01-01

    Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of

  9. Differential agonist sensitivity of glycine receptor alpha2 subunit splice variants.

    PubMed

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-09-01

    1. The glycine receptor (GlyR) alpha2A and alpha2B splice variants differ by a dual, adjacent amino acid substitution from alpha2A(V58,T59) to alpha2B(I58,A59) in the N-terminal extracellular domain. 2. Comparing the effects of the GlyR agonists, glycine, beta-alanine and taurine, on the GlyR alpha2 isoforms, revealed a significant increase in potency for all three agonists at the alpha2B variant. 3. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn(2+), were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR alpha2A compared to GlyR alpha2B receptors. 4. Coexpression of alpha2A or alpha2B subunits with the GlyR beta subunit revealed that the higher agonist potencies observed with the alpha2B homomer were retained for the alpha2Bbeta heteromer. 5. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR alpha2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. 6. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. 7. The existence of a spasmodic mouse phenotype linked to a GlyR alpha1(A52S) mutation, the equivalent position to the source of the alpha2 splice variation, raises the possibility that the GlyR alpha2 splice variants may be responsible for distinct roles in neuronal function.

  10. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY.
    MC Cardon, PC Hartig,LE Gray, Jr. and VS Wilson.
    U.S. EPA, ORD, NHEERL, RTD, Research Triangle Park, NC, USA.
    Typically, in vitro hazard assessments for ...

  11. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay
    Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  12. Expression and function of the human granulocyte-macrophage colony-stimulating factor receptor alpha subunit.

    PubMed

    Jubinsky, P T; Laurie, A S; Nathan, D G; Yetz-Aldepe, J; Sieff, C A

    1994-12-15

    To determine the expression and function of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha chain (GMR alpha) during hematopoiesis and on leukemic cells, monoclonal antibodies were raised by immunizing mice with cells expressing high levels of human GMR alpha. A pool of five antibodies isolated from three different mice was used to characterize GMR alpha. This antibody pool (anti-GMR alpha) immunoprecipitated a protein with the expected molecular weight of GMR alpha from COS cells transiently transfected with the GMR alpha gene. In factor-dependent cells, GMR alpha existed as a phosphoprotein. However, its phosphorylation was not stimulated by the presence of GM-CSF. Anti-GMR alpha inhibited the GM-CSF-dependent growth of cell lines and normal bone marrow cells and inhibited the binding of iodinated GM-CSF to its receptor. Cell surface expression of GMR alpha was examined using anti-GMR alpha and flow cytometry. GMR alpha was readily detectable on both blood monocytes and neutrophils. In adherence-depleted normal bone marrow, two separate populations expressed GMR alpha. The most positive cells were predominantly macrophages, whereas the cells that expressed less GMR alpha were largely myelocytes and metamyelocytes. A small population of lin-CD34+ or CD34+CD38- cells also expressed GMR alpha, but they were not capable of significant growth in colony-forming assays. In contrast, the majority of lin-CD34+ and CD34+CD38- cells were GMR alpha-, yet they produced large numbers of myeloid and erythroid colonies in the same assay. Malignant cells from patients with leukemia were also tested for GMR alpha expression. All of the myeloid leukemias and only rare lymphoid leukemias surveyed tested positive for GMR alpha. These results show that anti-GMR alpha is useful for the functional characterization of the GMR alpha and for the detection of myeloid leukemia and that GMR alpha is expressed on certain lineages throughout hematopoietic

  13. Ligand interaction of human alpha 2-macroglobulin-alpha 2-macroglobulin receptor studied by partitioning in aqueous two-phase systems.

    PubMed

    Birkenmeier, G; Kunath, M

    1996-05-17

    Alpha 2-macroglobulin (alpha 2-M) is a major proteinase inhibitor in human blood and tissue. Besides its antiproteolytic potential, alpha 2-M was found to modulate antigen- and mitogen-driven immune responses and cell growth by binding and transporting distinct cytokines, growth factors and hormones. The inhibitor is cleared from circulation by binding to a multifunctional cellular receptor present on different cell types. Alpha 2-M, as well as its receptor, are capable of binding a variety of ligands. In the present study we have applied aqueous two-phase systems to analyze the interaction of IL-1 beta and alpha 2-M receptor to different forms of alpha 2-M. The partition of IL-1 beta was changed by addition of transformed alpha 2-M to the two-phase systems rather than by the native inhibitor. The interaction between IL-1 beta and alpha 2-M was enhanced by divalent cations. In addition, the complex formation between 125I-labelled receptor and alpha 2-M could clearly be demonstrated by partitioning. In the presence of divalent cations, transformed alpha 2-M, in contrast to the native inhibitor, effectively changed the partition of the receptor. However, the observed alteration of the partition coefficient was found to be less compared with the values obtained by partitioning of the receptor in the presence of whole plasma containing the inhibitor in equivalent concentrations. The results indicate that other components of the plasma exist which competitively bind to the receptor but independent of Ca2+-ions.

  14. Relation of central alpha-adrenoceptor and other receptors to the control of renin secretion.

    PubMed

    Ganong, W F

    1983-02-01

    The location and nature of the receptors in the brain on which clonidine acts to decrease renin secretion have been investigated in dogs. Clonidine was injected into the vertebral and carotid arteries, and its effects were compared with those of norepinephrine and epinephrine when injected into the third ventricle. It was also injected intravenously (IV) after transection of the brain stem and following treatment with intraventricular 6-hydroxydopamine. The results suggest that the renin-regulating receptors are located in the brain stem in a region different from the receptors mediating the depressor response, that they are alpha 2-adrenoceptors, and that they are postsynaptic in location. Central alpha 1-adrenoceptors appear to mediate increased renin secretion. Central serotonergic receptors also mediate increased renin secretion, but it is not known how the alpha 1- and alpha 2-adrenoceptors interact with the serotonergic systems.

  15. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    PubMed

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  16. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    SciTech Connect

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  17. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  18. Some properties of human neuronal alpha 7 nicotinic acetylcholine receptors fused to the green fluorescent protein.

    PubMed

    Palma, Eleonora; Mileo, Anna M; Martinez-Torres, Ataulfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-03-19

    The functional properties and cellular localization of the human neuronal alpha7 nicotinic acetylcholine (AcCho) receptor (alpha7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutalpha7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtalpha7 receptors decay much faster than those elicited by the mutalpha7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated alpha7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable "run-down" of the AcCho currents generated by mutalpha7-GFP receptors, whereas those of the wtalpha7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutalpha7-GFP oocytes was accompanied by a marked decrease of alpha-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtalpha7 and mutalpha7 receptors provides powerful tools to study the distribution and function of alpha7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.

  19. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    SciTech Connect

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  20. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of pr...

  1. Estrogen receptor alpha polymorphisms and the risk of malignancies.

    PubMed

    Anghel, Andrei; Narita, Diana; Seclaman, Edward; Popovici, Emilian; Anghel, Mariana; Tamas, Liviu

    2010-12-01

    Estrogens represent risk factors for endocrine-related cancers and play also an important role in the development and progression of other malignancies. In order to analyze the associations between estrogen receptor gene alpha polymorphisms and cancers susceptibility, we genotyped six single nucleotide polymorphisms (SNPs) in 163 Caucasian cancer patients--103 breast cancers and 60 other malignancies (colorectal, bladder, hepatocellular carcinoma and acute myeloid leukemia)--and 114 healthy controls using hybridization probes. We performed Armitage`s association trend-test to evaluate the risk. Linkage disequilibrium (LD) was assessed for each pair of markers. The genotypes CC and CT of rs3798577 were significantly associated with the cancers risk (p-trend breast = 4 × 10(-5); p-trend cancers = 1 × 10(-5)); in discrepancy with breast cancer where the C-allele represented the risk allele, for bladder, hepatocellular carcinomas and leukemia, the T allele seems to confer susceptibility. The minor G allele of rs1801132 was protective in our cases (p = 1 × 10(-4)); for rs2228480, the heterozygous frequency was higher for cancer groups (p = 0.03); the SNP pairs rs2228480&rs3798577 and rs2234693&rs9340799 were in low LD; the haplotypes T-A of rs2234693&rs9340799 and G-C of rs2228480&rs3798577 showed a trend to be higher represented in breast cancers; T allele of rs2234693 was higher expressed in breast, colon cancers and leukemia; rs2077647 was associated with colon (p = 0.008, C-risk allele) and bladder (p = 0.01, T-risk allele) cancers. We concluded that ESR1 polymorphisms may have distinct impact in carcinogenesis and further genotyping will establish whether these findings remain significant in larger cohorts.

  2. Functional characterization of mongoose nicotinic acetylcholine receptor alpha-subunit: resistance to alpha-bungarotoxin and high sensitivity to acetylcholine.

    PubMed

    Asher, O; Lupu-Meiri, M; Jensen, B S; Paperna, T; Fuchs, S; Oron, Y

    1998-07-24

    The mongoose is resistant to snake neurotoxins. The mongoose muscle nicotinic acetylcholine receptor (AChR) alpha-subunit contains a number of mutations in the ligand-binding domain and exhibits poor binding of alpha-bungarotoxin (alpha-BTX). We characterized the functional properties of a hybrid (alpha-mongoose/beta gamma delta-rat) AChR. Hybrid AChRs, expressed in Xenopus oocytes, respond to acetylcholine with depolarizing current, the mean maximal amplitude of which was greater than that mediated by the rat AChR. The IC50 of alpha-BTX to the hybrid AChR was 200-fold greater than that of the rat, suggesting much lower affinity for the toxin. Hybrid AChRs exhibited an apparent higher rate of desensitization and higher affinity for ACh (EC50 1.3 vs. 23.3 microM for the rat AChR). Hence, changes in the ligand-binding domain of AChR not only affect the binding properties of the receptor, but also result in marked changes in the characteristics of the current.

  3. Differential regulation of constitutive androstane receptor expression by hepatocyte nuclear factor4alpha isoforms.

    PubMed

    Pascussi, Jean Marc; Robert, Agnes; Moreau, Amelie; Ramos, Jeanne; Bioulac-Sage, Paulette; Navarro, Francis; Blanc, Pierre; Assenat, Eric; Maurel, Patrick; Vilarem, Marie Jose

    2007-05-01

    Constitutive androstane receptor (CAR; NR1I3) controls the metabolism and elimination of endogenous and exogenous toxic compounds by up-regulating a battery of genes. In this work, we analyzed the expression of human CAR (hCAR) in normal liver during development and in hepatocellular carcinoma (HCC) and investigated the effect of hepatocyte nuclear factor 4alpha isoforms (HNF4alpha1 and HNF4alpha7) on the hCAR gene promoter. By performing functional analysis of hCAR 5'-deletions including mutants, chromatin immunoprecipitation in human hepatocytes, electromobility shift and cotransfection assays, we identified a functional and species-conserved HNF4alpha response element (DR1: ccAGGCCTtTGCCCTga) at nucleotide -144. Both HNF4alpha isoforms bind to this element with similar affinity. However, HNF4alpha1 strongly enhanced hCAR promoter activity whereas HNF4alpha7 was a poor activator and acted as a repressor of HNF4alpha1-mediated transactivation of the hCAR promoter. PGC1alpha stimulated both HNF4alpha1-mediated and HNF4alpha7-mediated hCAR transactivation to the same extent, whereas SRC1 exhibited a marked specificity for HNF4alpha1. Transduction of human hepatocytes by HNF4alpha7-expressing lentivirus confirmed this finding. In addition, we observed a positive correlation between CAR and HNF4alpha1 mRNA levels in human liver samples during development, and an inverse correlation between CAR and HNF4alpha7 mRNA levels in HCC. These observations suggest that HNF4alpha1 positively regulates hCAR expression in normal developing and adult livers, whereas HNF4alpha7 represses hCAR gene expression in HCC.

  4. Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise.

    PubMed

    Fernandes, Igor A; Mattos, João D; Campos, Monique O; Machado, Alessandro C; Rocha, Marcos P; Rocha, Natalia G; Vianna, Lauro C; Nobrega, Antonio C L

    2016-06-01

    Handgrip-induced increases in blood flow through the contralateral artery that supplies the cortical representation of the arm have been hypothesized as a consequence of neurovascular coupling and a resultant metabolic attenuation of sympathetic cerebral vasoconstriction. In contrast, sympathetic restraint, in theory, inhibits changes in perfusion of the cerebral ipsilateral blood vessels. To confirm whether sympathetic nerve activity modulates cerebral blood flow distribution during static handgrip (SHG) exercise, beat-to-beat contra- and ipsilateral internal carotid artery blood flow (ICA; Doppler) and mean arterial pressure (MAP; Finometer) were simultaneously assessed in nine healthy men (27 ± 5 yr), both at rest and during a 2-min SHG bout (30% maximal voluntary contraction), under two experimental conditions: 1) control and 2) α1-adrenergic receptor blockade. End-tidal carbon dioxide (rebreathing system) was clamped throughout the study. SHG induced increases in MAP (+31.4 ± 10.7 mmHg, P < 0.05) and contralateral ICA blood flow (+80.9 ± 62.5 ml/min, P < 0.05), while no changes were observed in the ipsilateral vessel (-9.8 ± 39.3 ml/min, P > 0.05). The reduction in ipsilateral ICA vascular conductance (VC) was greater compared with contralateral ICA (contralateral: -0.8 ± 0.8 vs. ipsilateral: -2.6 ± 1.3 ml·min(-1)·mmHg(-1), P < 0.05). Prazosin was effective to induce α1-blockade since phenylephrine-induced increases in MAP were greatly reduced (P < 0.05). Under α1-adrenergic receptor blockade, SHG evoked smaller MAP responses (+19.4 ± 9.2, P < 0.05) but similar increases in ICAs blood flow (contralateral: +58.4 ± 21.5 vs. ipsilateral: +54.3 ± 46.2 ml/min, P > 0.05) and decreases in VC (contralateral: -0.4 ± 0.7 vs. ipsilateral: -0.4 ± 1.0 ml·min(-1)·mmHg(-1), P > 0.05). These findings indicate a role of sympathetic nerve activity in the regulation of cerebral blood flow distribution during SHG.

  5. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas.

    PubMed

    Griffith, Obi L; Chan, Szeman Ruby; Griffith, Malachi; Krysiak, Kilannin; Skidmore, Zachary L; Hundal, Jasreet; Allen, Julie A; Arthur, Cora D; Runci, Daniele; Bugatti, Mattia; Miceli, Alexander P; Schmidt, Heather; Trani, Lee; Kanchi, Krishna-Latha; Miller, Christopher A; Larson, David E; Fulton, Robert S; Vermi, William; Wilson, Richard K; Schreiber, Robert D; Mardis, Elaine R

    2016-09-27

    Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.

  6. Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: Evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin.

    PubMed

    Kawataki, Tomoyuki; Yamane, Tetsu; Naganuma, Hirofumi; Rousselle, Patricia; Andurén, Ingegerd; Tryggvason, Karl; Patarroyo, Manuel

    2007-11-01

    Glioma cell infiltration of brain tissue often occurs along the basement membrane (BM) of blood vessels. In the present study we have investigated the role of laminins, major structural components of BMs and strong promoters of cell migration. Immunohistochemical studies of glioma tumor tissue demonstrated expression of alpha2-, alpha3-, alpha4- and alpha5-, but not alpha1-, laminins by the tumor vasculature. In functional assays, alpha3 (Lm-332/laminin-5)- and alpha5 (Lm-511/laminin-10)-laminins strongly promoted migration of all glioma cell lines tested. alpha1-Laminin (Lm-111/laminin-1) displayed lower activity, whereas alpha2 (Lm-211/laminin-2)- and alpha4 (Lm-411/laminin-8)-laminins were practically inactive. Global integrin phenotyping identified alpha3beta1 as the most abundant integrin in all the glioma cell lines, and this laminin-binding integrin exclusively or largely mediate the cell migration. Moreover, pretreatment of U251 glioma cells with blocking antibodies to alpha3beta1 integrin followed by intracerebral injection into nude mice inhibited invasion of the tumor cells into the brain tissue. The cell lines secreted Lm-211, Lm-411 and Lm-511, at different ratios. The results indicate that glioma cells secrete alpha2-, alpha4- and alpha5-laminins and that alpha3- and alpha5-laminins, found in brain vasculature, selectively promote glioma cell migration. They identify alpha3beta1 as the predominant integrin and laminin receptor in glioma cells, and as a brain invasion-mediating integrin.

  7. The Golgi apparatus is a functionally distinct Ca2+ store regulated by PKA and Epac branches of the β1-adrenergic signaling pathway

    PubMed Central

    Yang, Zhaokang.; Kirton, Hannah M.; MacDougall, David A.; Boyle, John P.; Deuchars, James; Frater, Brenda; Ponnambalam, Sreenivasan; Hardy, Matthew E.; White, Edward; Calaghan, Sarah C.; Peers, Chris; Steele, Derek S.

    2016-01-01

    Ca2+ release from the Golgi apparatus regulates key functions of the organelle, including vesicle trafficking. However, the signaling pathways that control this form of Ca2+ release are poorly understood and evidence of discrete Golgi Ca2+ release events is lacking. Here, we identified the Golgi apparatus as the source of prolonged Ca2+ release events that originate from the nuclear ‘poles’ of primary cardiac cells. Once initiated, Golgi Ca2+ release was unaffected by global depletion of sarcoplasmic reticulum Ca2+, and disruption of the Golgi apparatus abolished Golgi Ca2+ release without affecting sarcoplasmic reticulum function, suggesting functional and anatomical independence of Golgi and sarcoplasmic reticulum Ca2+ stores. Maximal activation of β1-adrenoceptors had only a small stimulating effect on Golgi Ca2+ release. However, inhibition of phosphodiesterase (PDE) 3 or 4, or downregulation of PDE 3 and 4 in heart failure markedly potentiated β1-adrenergic stimulation of Golgi Ca2+ release, consistent with compartmentalization of cAMP signaling within the Golgi apparatus microenvironment. β1-adrenergic stimulation of Golgi Ca2+ release involved activation of both Epac and PKA signaling pathways and CaMKII. Interventions that stimulated Golgi Ca2+ release induced trafficking of vascular growth factor receptor-1 (VEGFR-1) from the Golgi apparatus to the surface membrane. These data establish the Golgi apparatus as a juxtanuclear focal point for Ca2+ and β1-adrenergic signaling, which functions independently from the sarcoplasmic reticulum and the global Ca2+ transients that underlie the primary contractile function of the cell. PMID:26462734

  8. Histamine receptors on adult rat cardiomyocytes: antagonism of alpha/sub 1/-receptor stimulation of cAMP degradation

    SciTech Connect

    Buxton, I.L.O.; Bowen, S.M.

    1986-03-01

    Incubation of intact cardiomyocytes with the histamine antagonist (/sup 3/H)mepyramine results in rapid reversible binding to a single class of high affinity sites (K/sub D/ = 1.2nM; 50,000 sites/myocyte). In membranes from purified myocytes histamine competition of (/sup 3/H)mepyramine binding (K/sub D/ = 300nM) is not altered by GTP (10..mu..M). Competition of (/sup 3/H)mepyramine binding by H-receptor subtype-selective antagonists suggests the presence of a single class of H/sub 1/-receptors. Incubation of intact myocytes with histamine (luM, H/sub 1/ receptor activation) plus norepinephrine (NE 1uM, alpha/sub 1/ + beta/sub 1/ receptor activation) for 3 min leads to significantly more cAMP accumulation (36.5 pmol/10/sup 6/ myocytes) than NE alone (30 pmol/10/sup 6/ myocytes). Histamine alone does not alter basal cAMP = 10.4 pmol/10/sup 6/ myocytes, or beta/sub 1/ stimulation (isoproternol, 1uM) = 39.6 pmol/10/sup 6/ myocytes. Cyclic AMP accumulation with NE plus prazosin 10nM, (alpha/sub 1/ + beta/sub 1/ + alpha/sub 1/ blockade) is indistinguishable from NE + histamine, (alpha/sub 1/ + beta/sub 1/ + H/sub 1/) stimulation. Histamine competition for (/sup 3/H)prazosin binding suggests that histamine does not block alpha/sub 1/ receptors on the myocyte. These data suggest that H/sub 1/ receptor activation leads to antagonism of the alpha/sub 1/ receptor mediated activation of cAMP phosphodiesterase the authors have recently described.

  9. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  10. Platelet alpha 2-adrenergic receptors in major depressive disorder. Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment

    SciTech Connect

    Garcia-Sevilla, J.A.; Zis, A.P.; Hollingsworth, P.J.; Greden, J.F.; Smith, C.B.

    1981-12-01

    The specific binding of tritiated (3H)-clonidine, an alpha 2-adrenergic receptor agonist, to platelet membranes was measured in normal subjects and in patients with major depressive disorder. The number of platelet alpha 2-adrenergic receptors from the depressed group was significantly higher than that found in platelets obtained from the control population. Treatment with tricyclic antidepressant drugs led to significant decreases in the number of platelet alpha 2-adrenergic receptors. These results support the hypothesis that the depressive syndrome is related to an alpha 2-adrenergic receptor supersensitivity and that the clinical effectiveness of tricyclic antidepressant drugs is associated with a decrease in the number of these receptors.

  11. The role of palmitoylation in functional expression of nicotinic alpha7 receptors.

    PubMed

    Drisdel, Renaldo C; Manzana, Ehrine; Green, William N

    2004-11-17

    Neuronal alpha-bungarotoxin receptors (BgtRs) are nicotinic receptors that require as yet unidentified post-translational modifications to achieve functional expression. In this study, we examined the role of protein palmitoylation in BgtR expression. BgtR alpha7 subunits are highly palmitoylated in neurons from brain and other cells capable of BgtR expression, such as pheochromocytoma 12 (PC12) cells. In PC12 cells, alpha7 subunits are palmitoylated with a stoichiometry of approximately one palmitate per subunit, and inhibition of palmitoylation blocks BgtR expression. In cells incapable of BgtR expression, such as human embryonic kidney cells, alpha7 subunits are not significantly palmitoylated. However, in these same cells, chimeric subunits with the N-terminal half of alpha7 fused to the C-terminal half of serotonin-3A receptor (alpha7/5-HT3A) subunits form functional BgtRs that are palmitoylated to an extent similar to that of BgtRalpha7 subunits in PC12 cells. Palmitoylation of PC12 and alpha7/5-HT3A BgtRs occurred during assembly in the endoplasmic reticulum (ER). In conclusion, our data indicate a function for protein palmitoylation in which palmitoylation of assembling alpha7 subunits in the ER has a role in the formation of functional BgtRs.

  12. Sustained nicotine exposure differentially affects alpha 3 beta 2 and alpha 4 beta 2 neuronal nicotinic receptors expressed in Xenopus oocytes.

    PubMed

    Hsu, Y N; Amin, J; Weiss, D S; Wecker, L

    1996-02-01

    To determine whether prolonged exposure to nicotine differentially affects alpha 3 beta 2 versus alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes, oocytes were coinjected with subunit cRNAs, and peak responses to agonist, evoked by 0.7 or 7 microM nicotine for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively, were determined before and following incubation for up to 48 h with nanomolar concentrations of nicotine. Agonist responses of alpha 4 beta 2 receptors decreased in a concentration-dependent manner with IC50 values in the 10 nM range following incubation for 24 h and in the 1 nM range following incubation for 48 h. In contrast, responses of alpha 3 beta 2 receptors following incubation for 24-48 h with 1,000 nM nicotine decreased by only 50-60%, and total ablation of responses could not be achieved. Attenuation of responses occurred within the first 5 min of nicotine exposure and was a first-order process for both subtypes; half-lives for inactivation were 4.09 and 2.36 min for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively. Recovery was also first-order for both subtypes; half-lives for recovery were 21 and 7.5 h for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively. Thus, the responsiveness of both receptors decreased following sustained exposure to nicotine, but alpha 4 beta 2 receptors recovered much slower. Results may explain the differential effect of sustained nicotine exposure on nicotinic receptor-mediated neurotransmitter release.

  13. Mast cells express novel functional IL-15 receptor alpha isoforms.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Krause, Hans; Paus, Ralf; Bulfone-Paus, Silvia

    2003-05-15

    Mast cells previously have been reported to be regulated by IL-15 and to express a distinct IL-15R, termed IL-15RX. To further examine IL-15 binding and signaling in mast cells, we have studied the nature of the IL-15R and some of its biological activities in these cells. In this study, we report the existence of three novel isoforms of the IL-15R alpha chain in murine bone marrow-derived mast cells as a result of an alternative exon-splicing mechanism within the IL-15R alpha gene. These correspond to new mRNA transcripts lacking exon 4; exons 3 and 4; or exons 3, 4, and 5 (IL-15R alpha Delta 4, IL-15R alpha Delta 3,4, IL-15R alpha Delta 3,4,5). After transient transfection in COS-7 cells, all IL-15R alpha isoforms associate with the Golgi apparatus, the endoplasmic reticulum, the perinuclear space, and the cell membrane. Analysis of glycosylation pattern demonstrates the usage of a single N-glycosylation site, while no O-glycosylation is observed. Importantly, IL-15 binds with high affinity to, and promotes the survival of, murine BA/F3 cells stably transfected with the IL-15R alpha isoforms. Furthermore, we report that signaling mediated by IL-15 binding to the newly identified IL-15R alpha isoforms involves the phosphorylation of STAT3, STAT5, STAT6, Janus kinase 2, and Syk kinase. Taken together, our data indicate that murine mast cells express novel, fully functional IL-15R alpha isoforms, which can explain the selective regulatory effects of IL-15 on these cells.

  14. Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide

    SciTech Connect

    Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.; Biegon, A. )

    1990-11-01

    In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measured by autoradiography.

  15. Both estrogen receptor alpha and estrogen receptor beta agonists enhance cell proliferation in the dentate gyrus of adult female rats.

    PubMed

    Mazzucco, C A; Lieblich, S E; Bingham, B I; Williamson, M A; Viau, V; Galea, L A M

    2006-09-15

    This study investigated the involvement of estrogen receptors alpha and beta in estradiol-induced enhancement of hippocampal neurogenesis in the adult female rat. Subtype selective estrogen receptor agonists, propyl-pyrazole triol (estrogen receptor alpha agonist) and diarylpropionitrile (estrogen receptor beta agonist) were examined for each receptor's contribution, individual and cooperative, for estradiol-enhanced hippocampal cell proliferation. Estradiol increases hippocampal cell proliferation within 4 h [Ormerod BK, Lee TT, Galea LA (2003) Estradiol initially enhances but subsequently suppresses (via adrenal steroids) granule cell proliferation in the dentate gyrus of adult female rats. J Neurobiol 55:247-260]. Therefore, animals received s.c. injections of estradiol (10 microg), propyl-pyrazole triol and diarylpropionitrile alone (1.25, 2.5, 5.0 mg/0.1 ml dimethylsulfoxide) or in combination (2.5 mg propyl-pyrazole triol+2.5 mg diarylpropionitrile/0.1 ml dimethylsulfoxide) and 4 h later received an i.p. injection of the cell synthesis marker, bromodeoxyuridine (200 mg/kg). Diarylpropionitrile enhanced cell proliferation at all three administered doses (1.25 mg, P<0.008; 2.5 mg, P<0.003; 5 mg, P<0.005), whereas propyl-pyrazole triol significantly increased cell proliferation (P<0.0002) only at the dose of 2.5 mg. Our results demonstrate both estrogen receptor alpha and estrogen receptor beta are individually involved in estradiol-enhanced cell proliferation. Furthermore both estrogen receptor alpha and estrogen receptor beta mRNA was found co-localized with Ki-67 expression in the hippocampus albeit at low levels, indicating a potential direct influence of each receptor subtype on progenitor cells and their progeny. Dual receptor activation resulted in reduced levels of cell proliferation, supporting previous studies suggesting that estrogen receptor alpha and estrogen receptor beta may modulate each other's activity. Our results also suggest that a component

  16. The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype.

    PubMed

    Hernandez, Susan C; Vicini, Stefano; Xiao, Yingxian; Dávila-García, Martha I; Yasuda, Robert P; Wolfe, Barry B; Kellar, Kenneth J

    2004-10-01

    The rat pineal gland contains a high density of neuronal nicotinic acetylcholine receptors (nAChRs). We characterized the pharmacology of the binding sites and function of these receptors, measured the nAChR subunit mRNA, and used subunit-specific antibodies to establish the receptor subtype as defined by subunit composition. In ligand binding studies, [3H]epibatidine ([3H]EB) binds with an affinity of approximately 100 pM to nAChRs in the pineal gland, and the density of these sites is approximately 5 times that in rat cerebral cortex. The affinities of nicotinic drugs for binding sites in the pineal gland are similar to those at alpha3beta4 nAChRs heterologously expressed in human embryonic kidney 293 cells. In functional studies, the potencies and efficacies of nicotinic drugs to activate or block whole-cell currents in dissociated pinealocytes match closely their potencies and efficacies to activate or block 86Rb+ efflux in the cells expressing heterologous alpha3beta4 nAChRs. Measurements of mRNA indicated the presence of transcripts for alpha3, beta2, and beta4 nAChR subunits but not those for alpha2, alpha4, alpha5, alpha6, alpha7, or beta3 subunits. Immunoprecipitation with subunit-specific antibodies showed that virtually all [3H]EB-labeled nAChRs contained alpha3 and beta4 subunits associated in one complex. The beta2 subunit was not associated with this complex. Taken together, these results indicate that virtually all of the nAChRs in the rat pineal gland are the alpha3beta4 nAChR subtype and that the pineal gland can therefore serve as an excellent and convenient model in which to study the pharmacology and function of these receptors in a native tissue.

  17. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    PubMed

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  18. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  19. Potent and selective agonists of alpha-melanotropin (alphaMSH) action at human melanocortin receptor 5; linear analogs of alpha-melanotropin.

    PubMed

    Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana

    2007-05-01

    Alpha-melanotropin, Ac-Ser(1)-Tyr-Ser-Met-Glu-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2)(1), is a non-selective endogenous agonist for the melanocortin receptor 5; the receptor present in various peripheral tissues and in the brain, cortex and cerebellum. Most of the synthetic analogs of alphaMSH, including a broadly used and more potent the NDP-alphaMSH peptide, Ac-Ser(1)-Tyr-Ser-Nle(4)-Glu-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2), are also not particularly selective for MC5R. To elucidate physiological functions of the melanocortin receptor 5 in rodents and humans, the receptor subtype selective research tools are needed. We report herein syntheses and pharmacological evaluation in vitro of several analogs of NDP-alphaMSH which are highly potent and specific agonists for the human MC5R. The new linear peptides, of structures and solubility properties similar to those of the endogenous ligand alphaMSH, are exemplified by compound 7, Ac-Ser(1)-Tyr-Ser-Met-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2) (Oic: octahydroindole-2-COOH, 4,4'-Bip: 4,4'-biphenylalanine, Pip: pipecolic acid), shortly NODBP-alphaMSH, which has an IC(50)=0.74 nM (binding assay) and EC(50)=0.41 (cAMP production assay) at hMC5R nM and greater than 3500-fold selectivity with respect to the melanocortin receptors 1b, 3 and 4. A shorter peptide derived from NODBP-alphaMSH: Ac-Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9) -NH(2) (17) was measured to be an agonist only 10-fold less potent at hMC5R than the full length parent peptide. In the structure of this smaller analog, the Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8) segment was found to be critical for high agonist potency, while the C-terminal Trp(9) residue was shown to be required for high hMC5R selectivity versus hMC1b,3,4R.

  20. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    SciTech Connect

    Kazmi, S.M.; Mishra, R.K.

    1989-02-15

    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  1. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  2. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130.

    PubMed

    Sanae, F; Miyamoto, K; Koshiura, R

    1989-11-15

    Adenylate cyclase activation through adrenergic receptors in rat ascites hepatoma (AH) 130 cells in response to adrenergic drugs was studied, and receptor binding and displacement were compared with those of normal rat hepatocytes. Epinephrine (Epi) and norepinephrine (NE) activated AH130 adenylate cyclase about half as much as isoproterenol (IPN) but equaled IPN after treatment with the alpha-antagonist phentolamine or islet-activating protein (IAP). The three catecholamines in hepatocytes were similar regardless of phentolamine or IAP. These catecholamines activated adenylate cyclase in order of IPN greater than NE greater than Epi in AH130 cells but IPN greater than Epi greater than NE in hepatocytes. We then used the alpha 1-selective ligand [3H]prazosin, the alpha 2-selective ligand [3H]clonidine, and the beta-ligand [125I]iodocyanopindolol [( 125I]ICYP), and found that AH130 cells had few prazosin-binding sites, about eight times as many clonidine-binding sites with high affinity, and many more ICYP-binding sites than in hepatocytes. The dissociation constant (Ki) of the beta 1-selective drug metoprolol by Hofstee plots for AH130 cells was lower than that for hepatocytes. The inhibition of specific ICYP binding by the beta 2-selective agonist salbutamol for AH130 cells gave only one Ki value which was much higher than both high and low Ki values of the drug for hepatocytes. These findings indicate that the alpha- and beta-adrenergic receptors in hepatocytes are predominantly alpha 1-type and beta 2-type, but that those in AH130 cells are predominantly alpha 2-type and beta 1-type, and the low adrenergic response of AH130 cells is due to the dominant appearance of alpha 2-adrenergic receptors, linked with the inhibitory guanine-nucleotide binding regulatory protein, instead of alpha 1-adrenergic receptors, and beta 1-adrenergic receptors with low affinity for the hormone.

  3. Stoichiometry and pharmacology of two human alpha4beta2 nicotinic receptor types.

    PubMed

    Moroni, Mirko; Bermudez, Isabel

    2006-01-01

    The alpha4beta2 nicotinic acetylcholine receptor (nAChR) is the most abundant nAChR subtype in the brain, where it forms the high-affinity binding site for nicotine. The alpha4beta2 nAChR belongs to a gene family of ligand-gated ion channels that also includes muscle nAChRs, GABAA receptors, and glycine receptors and that assembles into pentameric structures. alpha4 and beta2 nAChR subunits expressed heterologously in Xenopus laevis oocytes assemble into a mixture of high- and low-affinity functional receptors, giving rise to biphasic ACh concentration-response curves (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001). High- and low-affinity alpha4beta2 nAChRs differ significantly in their functional and pharmacological properties (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003) and result from the assembly of alpha4 and beta2 subunits into two distinct stoichiometric arrangements: (alpha4)2(beta2)3(high-affinity subtype) and (alpha4)3(beta2)2 (low-affinity subtype) (Nelson et al., 2003). In this study we have examined the functional and pharmacological properties of high- and low-affinity alpha4beta2 receptors using two-electrode voltage clamp procedures on Xenopus oocytes transfected with high (1:10) or low (10:1) ratios of alpha4/beta2 cDNAs, which yield high (1:10)- or low (10:1)- affinity receptors with monophasic ACh concentration- response curves. Furthermore, to determine the stoichiometry of high- and low-affinity receptors expressed heterologously by Xenopus oocytes, we have determined the stoichiometry of high- and low-affinity alpha4beta2 receptors by mutating a highly conserved hydrophobic residue in the middle (position 9') of the pore-lining domain, which increases agonist potency in a manner that allows predictions on subunit composition (Cooper et al., 1991; Revah et al., 1991; Labarca et al., 1995; Boorman et al., 2000).

  4. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications.

    PubMed

    Hilmas, C; Pereira, E F; Alkondon, M; Rassoulpour, A; Schwarcz, R; Albuquerque, E X

    2001-10-01

    The tryptophan metabolite kynurenic acid (KYNA) has long been recognized as an NMDA receptor antagonist. Here, interactions between KYNA and the nicotinic system in the brain were investigated using the patch-clamp technique and HPLC. In the electrophysiological studies, agonists were delivered via a U-shaped tube, and KYNA was applied in admixture with agonists and via the background perfusion. Exposure (>/=4 min) of cultured hippocampal neurons to KYNA (>/=100 nm) inhibited activation of somatodendritic alpha7 nAChRs; the IC(50) for KYNA was approximately 7 microm. The inhibition of alpha7 nAChRs was noncompetitive with respect to the agonist and voltage independent. The slow onset of this effect could not be accounted for by an intracellular action because KYNA (1 mm) in the pipette solution had no effect on alpha7 nAChR activity. KYNA also blocked the activity of preterminal/presynaptic alpha7 nAChRs in hippocampal neurons in cultures and in slices. NMDA receptors were less sensitive than alpha7 nAChRs to KYNA. The IC(50) values for KYNA-induced blockade of NMDA receptors in the absence and presence of glycine (10 microm) were approximately 15 and 235 microm, respectively. Prolonged (3 d) exposure of cultured hippocampal neurons to KYNA increased their nicotinic sensitivity, apparently by enhancing alpha4beta2 nAChR expression. Furthermore, as determined by HPLC with fluorescence detection, repeated systemic treatment of rats with nicotine caused a transient reduction followed by an increase in brain KYNA levels. These results demonstrate that nAChRs are targets for KYNA and suggest a functionally significant cross talk between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  5. Parathyroid-specific interaction of the calcium-sensing receptor and G alpha q.

    PubMed

    Pi, Min; Chen, Ling; Huang, MinZhao; Luo, Qiang; Quarles, L Darryl

    2008-12-01

    The calcium-sensing receptor regulates various parathyroid gland functions, including hormone secretion, gene transcription, and chief cell hyperplasia through G alpha q- and G alpha i-dependent signaling pathways. To determine the specific function of G alpha q in these processes, we generated transgenic mice using the human parathyroid hormone promoter to drive overexpression of a dominant negative G alpha q loop minigene to selectively disrupt G alpha q function in the parathyroid gland. The G alpha q loop mRNA was highly expressed in the parathyroid gland but not in other tissues of these transgenic mice. Gross appearance, body weight, bone mineral density, and survival of the transgenic mice were indistinguishable from those of their wild-type littermates. Adult transgenic mice, however, exhibited an increase in parathyroid hormone mRNA and in its basal serum level as well as in gland size. The response of the parathyroid gland to hypocalcemia was found to be reduced in sensitivity in the transgenic mice when compared to their wild-type controls. Abnormalities of the parathyroid gland function in these transgenic mice were similar to those of heterozygous G alpha q(+/-) and calcium sensing receptor(+/-) mice. These studies demonstrate the feasibility of selectively targeting the parathyroid gland to investigate signaling mechanisms downstream of the calcium receptor.

  6. The serotonin 5-Hydroxytryptaphan1A receptor agonist, (+)8-hydroxy-2-(di-n-propylamino)-tetralin, stimulates sympathetic-dependent increases in venous tone during hypovolemic shock.

    PubMed

    Tiniakov, Ruslan; Scrogin, Karie E

    2006-11-01

    Adjuvant treatment of hypovolemic shock with vasoconstrictors is controversial due to their propensity to raise arterial resistance and exacerbate ischemia. A more advantageous therapeutic approach would use agents that also promote venoconstriction to augment perfusion pressure through increased venous return. Recent studies indicate that 5-hydroxytryptophan (5-HT)(1A) receptor agonists increase blood pressure by stimulating sympathetic drive when administered after acute hypotensive hemorrhage. Given that venous tone is highly dependent upon sympathetic activation of alpha(2)-adrenergic receptors, we hypothesized that the 5-HT(1A) receptor agonist, (+)8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), would increase venous tone in rats subject to hypovolemic shock through sympathetic activation of alpha(2)-adrenergic receptors. Systemic administration of 8-OH-DPAT produced a sustained rise in blood pressure (+44 +/- 3 mm Hg 35 min after injection, P < 0.01 versus saline) and mean circulatory filling pressure (+4.2 +/- 0.7 mm Hg, P < 0.01 versus saline) in conscious rats subjected to hypovolemic shock. An equipressor infusion of epinephrine failed to influence mean circulatory filling pressure (MCFP). Ganglionic blockade, alpha(1)-, or peripheral alpha(2)-adrenergic receptor blockade prevented the rise in MCFP observed with 8-OH-DPAT, but only alpha(1)-adrenergic receptor blockade diminished the pressor effect of the drug (P < 0.01). 8-OH-DPAT raises blood pressure in rats in hypovolemic shock through both direct vascular activation and sympathetic activation of alpha(1)-adrenergic receptors. The sympathoexcitatory effect of 8-OH-DPAT contributes to elevated venous tone through concurrent activation of both alpha(1)- and alpha(2)-adrenergic receptors. The data suggest that 5-HT(1A) receptor agonists may provide an advantageous alternative to currently therapeutic interventions used to raise perfusion pressure in hypovolemic shock.

  7. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor.

    PubMed Central

    Marshall, J; Buckingham, S D; Shingai, R; Lunt, G G; Goosey, M W; Darlison, M G; Sattelle, D B; Barnard, E A

    1990-01-01

    We report the isolation and sequence of a cDNA clone that encodes a locust (Schistocerca gregaria) nervous system nicotinic acetylcholine receptor (AChR) subunit (alpha L1). The calculated molecular weight of the unglycosylated polypeptide, which contains in the proposed extracellular domain two adjacent cysteine residues which are characteristic of alpha (ligand binding) subunits, is 60,641 daltons. Injection into Xenopus oocytes, of RNA synthesized from this clone in vitro, results in expression of functional nicotinic receptors in the oocyte membrane. In these, nicotine opens a cation channel; the receptors are blocked by both alpha-bungarotoxin (alpha-Bgt) and kappa-bungarotoxin (kappa-Bgt). Reversible block of the expressed insect AChR by mecamylamine, d-tubocurarine, tetraethylammonium, bicuculline and strychnine has also been observed. These data are entirely consistent with previously reported electrophysiological studies on in vivo insect nicotinic receptors and also with biochemical studies on an alpha-Bgt affinity purified locust AChR. Thus, a functional receptor exhibiting the characteristic pharmacology of an in vivo insect nicotinic AChR can be expressed in Xenopus oocytes by injection with a single subunit RNA. PMID:1702381

  8. Alpha2 receptor binding in the medulla oblongata in the sudden infant death syndrome.

    PubMed

    Mansouri, J; Panigrahy, A; Filiano, J J; Sleeper, L A; St John, W M; Kinney, H C

    2001-02-01

    The sudden infant death syndrome (SIDS) is the leading cause of postnatal infant mortality in the United States. Its etiology remains unknown. We propose that SIDS, or a subset of SIDS, is due to a failure of autoresuscitation, a protective brainstem response to asphyxia or hypoxia, in a vulnerable infant during a critical developmental period. Gasping is an important component of autoresuscitation that is thought to be mediated by the "gasping center" in the lateral tegmentum of the medulla, a region homologous in its cytoarchitecture and chemical anatomy to the intermediate reticular zone (IRZ) in the human. Since we found that [3H]para-aminoclonidine ([3H]PAC) binding to alpha2-adrenergic receptors localizes to this region in human infants and, thereby provides a neurochemical marker for it, we tested the hypothesis that [3H]PAC binding to alpha2-adrenergic receptors is decreased in the IRZ in SIDS victims. Using quantitative tissue autoradiography with [3H]PAC as the radioligand and phentolamine as the displacer, we analyzed alpha2-receptor binding density in the IRZ, as well as in 7 additional sites for comparison, in 10 SIDS and 10 control medullae. There were no significant differences in alpha2 receptor binding in the IRZ, vagal nuclei, or other medullary sites examined between SIDS and control cases. These results suggest that the putative gasping defect in the IRZ in SIDS victims is not related to [3H]PAC binding to alpha2-adrenergic receptors.

  9. Isolation of rat genomic clones encoding subtypes of the alpha 2-adrenergic receptor. Identification of a unique receptor subtype.

    PubMed

    Lanier, S M; Downing, S; Duzic, E; Homcy, C J

    1991-06-05

    alpha 2-Adrenergic receptors (alpha 2-AR) exist as subtypes that are expressed in a tissue-specific manner and differ in 1) their ligand recognition properties, 2) their extent of receptor protein glycosylation, and possible 3) their mechanism of signal transduction. Genomic or cDNA clones encoding three receptor subtypes have been characterized; however, both functional and radioligand binding studies in rodents suggest the existence of a fourth receptor subtype. To isolate the rat genes encoding receptor subtypes we screened a rat genomic library with an oligonucleotide probe encompassing the third membrane span of the human C-4 alpha 2-AR. Two intronless rat genes were isolated that encode distinct receptor subtypes (RG10, RG20). RG10 and RG20 encode proteins of 458 and 450 amino acids, respectively, that are 56% homologous and possess the structural features expected of this class of membrane-bound receptors. RG10 identifies a mRNA species of approximately 2500 nucleotides that is found primarily in brain, whereas RG20 identifies a larger mRNA species (approximately 4000 nucleotides) that is found in several tissues including brain, kidney, and salivary gland. RG10 is 88% homologous to the human C-4 alpha 2-AR and exhibits similar binding properties ( [3H]rauwolscine KD = 0.7 +/- 0.3 nM) as determined following transient expression of the receptor in COS-1 cells. RG20 exhibits ligand binding properties distinct from the three receptor subtypes identified by molecular cloning. Saturation binding studies indicate an affinity constant of 15 +/- 1.2 nM for the alpha 2-AR antagonist [3H]rauwolscine, a value 6-20 times higher than that observed for the three cloned receptor subtypes. In competition binding studies the potency order of competing ligands for RG20 is phentolamine greater than idazoxan greater than yohimbine greater than rauwolscine greater than prazosin. Of the three previously cloned alpha 2-AR, RG20 is most closely related to the human C-10 alpha 2-AR

  10. Nicotine trapping causes the persistent desensitization of alpha4beta2 nicotinic receptors expressed in oocytes.

    PubMed

    Jia, Li; Flotildes, Karen; Li, Maureen; Cohen, Bruce N

    2003-02-01

    To determine whether prolonged nicotine exposure persistently inactivates rat alpha4beta2 nicotinic receptors expressed in Xenopus oocytes, we measured the voltage-clamped alpha4beta2 response to acetylcholine (ACh) before and 24 h after, 1-h or 12-h incubations in 10 microm nicotine. A 12-h incubation in 10 microm nicotine depressed the alpha4beta2 ACh response for 24 h without affecting total or surface alpha4beta2 expression. To determine whether oocyte-mediated nicotine release caused this depression, we co-incubated an alpha4beta2-expressing oocyte with an un-injected one (pre-incubated in 10 microm nicotine for 12 h) for 24 h and measured the change in the alpha4beta2 ACh response. The response decreased by the same factor after the co-incubation as it did after a 12-h incubation in 10 microm nicotine and a 24-h incubation in nicotine-free media. Thus, oocyte-mediated nicotine release caused the persistent desensitization we observed after a 12-h incubation in 10 microm nicotine. Consistent with this result, measurements of [3H]nicotine release show that oocytes release enough nicotine into the wash media to desensitize alpha4beta2 receptors and that prolonged incubation in 300 microm ACh (which cannot readily cross the membrane or accumulate in acidic vesicles) did not persistently depress the alpha4beta2 response.

  11. Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy.

    PubMed

    Zuscik, M J; Sands, S; Ross, S A; Waugh, D J; Gaivin, R J; Morilak, D; Perez, D M

    2000-12-01

    Progress toward elucidating the function of alpha1B-adrenergic receptors (alpha1BARs) in the central nervous system has been constrained by a lack of agonists and antagonists with adequate alpha1B-specificity. We have obviated this constraint by generating transgenic mice engineered to overexpress either wild-type or constitutively active alpha1BARs in tissues that normally express the receptor, including the brain. All transgenic lines showed granulovacular neurodegeneration, beginning in alpha1B-expressing domains of the brain and progressing with age to encompass all areas. The degeneration was apoptotic and did not occur in non-transgenic mice. Correspondingly, transgenic mice showed an age-progressive hindlimb disorder that was parkinsonian-like, as demonstrated by rescue of the dysfunction by 3, 4-dihydroxyphenylalanine and considerable dopaminergic-neuronal degeneration in the substantia nigra. Transgenic mice also had a grand mal seizure disorder accompanied by a corresponding dysplasia and neurodegeneration of the cerebral cortex. Both behavioral phenotypes (locomotor impairment and seizure) could be partially rescued with the alpha1AR antagonist terazosin, indicating that alpha1AR signaling participated directly in the pathology. Our results indicate that overstimulation of alpha1BAR leads to apoptotic neurodegeneration with a corresponding multiple system atrophy indicative of Shy-Drager syndrome, a disease whose etiology is unknown.

  12. Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom.

    PubMed

    Nakib, Imene; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2016-10-01

    Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation.

  13. Correlation between chemical structure, receptor binding, and biological activity of some novel, highly active, 16 alpha, 17 alpha-acetal-substituted glucocorticoids.

    PubMed

    Dahlberg, E; Thalén, A; Brattsand, R; Gustafsson, J A; Johansson, U; Roempke, K; Saartok, T

    1984-01-01

    The affinity for the glucocorticoid receptor in rat skeletal muscle of some glucocorticoids with a new type of 16 alpha, 17 alpha-acetal substituent has been estimated and correlated to the glucocorticoid activities in three in vivo systems in rats. Budesonide (an approximately 1:1 mixture of the C(22) epimers of 11 beta, 21-dihydroxy-16 alpha, 17 alpha-[(22R,S)-propylmethylenedioxy]-pregna-1,4-diene-3,20-dione) and the isolated (22R)- and (22S)-epimers bound to the same binding site as the potent glucocorticoids dexamethasone (DEX) or triamcinolone 16 alpha, 17 alpha-acetonide (TA), but with even higher affinity than DEX or TA, despite the lack of a 9 alpha-fluoro atom in budesonide and its epimers. The (22R)-epimer was twice as active as the (22S)-epimer, 4 times more active than TA, and 14 times more active than DEX. The introduction of a 9 alpha-fluoro atom slightly decreased the binding affinity of the (22R)-epimer of budesonide, in contrast to the positive effect of 9 alpha-fluorination of, e.g., 16 alpha, 17 alpha-acetonides. The negative influence of 9 alpha-fluorination of the (22R)-epimer was partially reversed in the 6 alpha, 9 alpha-difluorinated (22R)-epimer. Nevertheless, the fluorinated compounds were more active than DEX and TA (8 and 11 times more active than DEX, and 2 and 3 times more active than TA, in case of the 9 alpha-fluoro- and 6 alpha, 9 alpha-difluoro-derivatives of the (22R)-epimer, respectively). Budesonide is metabolized mainly to 16 alpha-hydroxyprednisolone (11 beta, 16 alpha, 17 alpha, 21-tetrahydroxy-pregna-1,4-diene-3,20-dione) and 6 beta-hydroxy-budesonide. Both metabolites were very weak competitors for the ligand-binding sites on the receptor (3% and 6% of the affinity of DEX, respectively). The affinity for the receptor in vitro was closely correlated to the topical glucocorticoid activity in vivo for the 12 steroids compared (r = 0.98; R = 0.98), which supports the contention that in vitro tests for receptor affinity are

  14. Cat carotid body chemoreceptor responses before and after nicotine receptor blockade with alpha-bungarotoxin.

    PubMed

    Mulligan, E; Lahiri, S

    1987-01-01

    The nature of nicotine receptors in the carotid body was studied in anesthetized, paralyzed and artificially ventilated cats. Chemoreceptor discharge in single or few-fiber preparations of the carotid sinus nerve was measured during isocapnic hypoxia, hyperoxic hypercapnia and in response to nicotine injections before and after administration of alpha-bungarotoxin (10 cats) and after alpha-bungarotoxin plus mecamylamine (7 cats) which binds to neuromuscular-type nicotine cholinergic receptors. alpha-Bungarotoxin caused a slight enhancement of the chemoreceptor response to hypoxia without affecting the chemoreceptor stimulation by nicotine. Mecamylamine (1-5 mg, i.v.), a ganglionic-type nicotinic receptor blocker, had no further effect on the response to hypoxia while it completely abolished the chemoreceptor stimulation by nicotine. Thus the nicotinic receptors in the cat carotid body which elicit excitation of chemosensory fibers appear to be of the ganglionic-type. Blockade of neuromuscular and ganglionic types of nicotinic receptors in the carotid body by alpha-bungarotoxin and mecamylamine does not attenuate the chemosensory responses to either hypoxia or hypercapnia. These nicotinic receptors therefore, do not appear to play an essential role in hypoxic or hypercapnic chemoreception in the cat carotid body.

  15. Ligand-induced interaction between. alpha. - and. beta. -type platelet-derived growth factor (PDGF) receptors: Role of receptor heterodimers in kinase activation

    SciTech Connect

    Kanakaraj, P.; Raj, S.; Bishayee, S. ); Khan, S.A. )

    1991-02-19

    Two types of PDGF receptors have been cloned and sequenced. Both receptors are transmembrane glycoproteins with a ligand-stimulatable tyrosine kinase site. The authors have shown earlier that ligand-induced activation of the {beta}-type PDGF receptor is due to the conversion of the monomeric form of the receptor to the dimeric form. In the present studies, they have established the ligand-binding specificity of two receptor types and extended it further to investigate the ligand-induced association state of the {alpha}-receptor and the role of {alpha}-receptor in the activation of {beta}-receptor. These studies were conducted with cells that express one or the other type of PDGF receptor as well as with cells that express both types of receptors. Moreover, ligand-binding characteristics of the receptor were confirmed by immunoprecipitation of the receptor-{sup 125}I-PDGF covalent complex with type-specific anti-PDGF receptor antibodies. These studies revealed that all three isoforms of PDGF bind to {alpha}-receptor, and such binding leads to dimerization as well as activation of the receptor. In contrast, {beta}-receptor can be activated only by PDGF BB and not by PDGF AB or PDGF AA. However, by using antipeptide antibodies that are specific for {alpha}- or {beta}-type PDGF receptor, they demonstrated that in the presence of {alpha}-receptor, {beta}-receptor kinase can be activated by PDGF AB. They present here direct evidence that strongly suggests that such PDGF AB induced activation of {beta}-receptor is due to the formation of a noncovalently linked {alpha}-{beta} receptor heterodimer.

  16. alpha7 nicotinic acetylcholine receptors and modulation of gabaergic synaptic transmission in the hippocampus.

    PubMed

    Alkondon, M; Braga, M F; Pereira, E F; Maelicke, A; Albuquerque, E X

    2000-03-30

    The present report provides new findings regarding modulation of gamma-aminobutyric acid (GABA) transmission by alpha7 nicotinic receptor activity in CA1 interneurons of rat hippocampal slices. Recordings were obtained from tight-seal cell-attached patches of the CA1 interneurons, and agonists were delivered to the neurons via a modified U-tube. Application for 6 s of the alpha7 nicotinic receptor-selective agonist choline (> or =1 mM) to all CA1 interneurons tested triggered action potentials that were detected as fast current transients. The activity triggered by choline terminated well before the end of the agonist pulse, was blocked by the alpha7 nicotinic receptor antagonist methyllycaconitine (50 nM) and was concentration dependent; the higher the concentration of choline the higher the frequency of events and the shorter the delay for detection of the first event. In 40% of the neurons tested, choline-triggered action potentials decreased in amplitude progressively until no more events could be detected despite the presence of the agonist. Primarily, this finding could be explained by Na(+)-channel inactivation associated with membrane depolarization induced by alpha7 nicotinic receptor activation. In 60% of the neurons, the amplitude of choline-induced action potentials was sustained at the intial level, but again the activity did not last as long as the agonist pulse, in this case apparently because of agonist-induced receptor desensitization. These results altogether demonstrate that agonists interacting with alpha7 nicotinic receptors, including the natural transmitter acetylcholine and its metabolite choline, influence GABAergic transmission, not only by activating these receptors, but also by controlling the rate of Na(+)-channel inactivation and/or by inducing receptor desensitization.

  17. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  18. Characterization of peroxisome proliferator-activiated receptor alpha (PPARalpha)-independent effects of PPARalpha activators in the rodent liver: Di(2-ethylehexyl) phthalate activates the constitutive activated receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Recent studies indicate that the plasticizer di-2-ethylhexyl ph...

  19. Mode of action framework analysis for receptor-mediated toxicity: the Peroxisome Proliferator-Activated Receptor alpha (PPARα) as a case study

    EPA Science Inventory

    Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Research has elucidated the cellular and molecular events by w...

  20. Barium permeability of neuronal nicotinic receptor alpha 7 expressed in Xenopus oocytes.

    PubMed Central

    Sands, S B; Costa, A C; Patrick, J W

    1993-01-01

    The rat alpha 7 neuronal nicotinic acetylcholine receptor was expressed and studied in Xenopus oocytes. The magnitude and reversal potential of instantaneous whole cell currents were examined in solutions containing varying concentrations of either calcium or barium, and in the presence or absence of the intracellular calcium chelator BAPTA. In external barium, application of nicotine elicits an inwardly rectifying response; in calcium the response is larger and has a linear IV relation. Pretreatment of oocytes with BAPTA-AM could not prevent activation of calcium-dependent chloride channels in external Ringer containing calcium. Using an extended GHK equation, the permeability ratio PBa/PNa of the alpha 7 receptor was determined to be about 17. Our results suggest that alpha 7 nicotinic receptors are highly permeable to divalent cations. PMID:8312496

  1. Inhibitory effects of tramadol on nicotinic acetylcholine receptors in adrenal chromaffin cells and in Xenopus oocytes expressing alpha 7 receptors.

    PubMed

    Shiraishi, Munehiro; Minami, Kouichiro; Uezono, Yasuhito; Yanagihara, Nobuyuki; Shigematsu, Akio; Shibuya, Izumi

    2002-05-01

    1. Tramadol has been used clinically as an analgesic; however, the mechanism of its analgesic effects is still unknown. 2. We used bovine adrenal chromaffin cells to investigate effects of tramadol on catecholamine secretion, nicotine-induced cytosolic Ca(2+) concentration ([Ca(2+)](i)) increases and membrane current changes. We also investigated effects of tramadol on alpha7 nicotinic acetylcholine receptors (AChRs) expressed in Xenopus oocytes. 3. Tramadol concentration-dependently suppressed carbachol-induced catecholamine secretion to 60% and 27% of the control at the concentration of 10 and 100 microM, respectively, whereas it had little effect on veratridine- or high K(+)-induced catecholamine secretion. 4. Tramadol also suppressed nicotine-induced ([Ca(2+)](i)) increases in a concentration-dependent manner. Tramadol inhibited nicotine-induced inward currents, and the inhibition was unaffected by the opioid receptor antagonist naloxone. 5. Tramadol inhibited nicotinic currents carried by alpha7 receptors expressed in Xenopus oocytes. 6. Tramadol inhibited both alpha-bungarotoxin-sensitive and -insensitive nicotinic currents in bovine adrenal chromaffin cells. 7. In conclusion, tramadol inhibits catecholamine secretion partly by inhibiting nicotinic AChR functions in a naloxone-insensitive manner and alpha7 receptors are one of those inhibited by tramadol.

  2. Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine.

    PubMed

    Fenster, C P; Whitworth, T L; Sheffield, E B; Quick, M W; Lester, R A

    1999-06-15

    It is hypothesized that desensitization of neuronal nicotinic acetylcholine receptors (nAChRs) induced by chronic exposure to nicotine initiates upregulation of nAChR number. To test this hypothesis directly, oocytes expressing alpha4beta2 receptors were chronically incubated (24-48 hr) in nicotine, and the resulting changes in specific [3H]nicotine binding to surface receptors on intact oocytes were compared with functional receptor desensitization. Four lines of evidence strongly support the hypothesis. (1) The half-maximal nicotine concentration necessary to produce desensitization (9.7 nM) was the same as that needed to induce upregulation (9.9 nM). (2) The concentration of [3H]nicotine for half-maximal binding to surface nAChRs on intact oocytes was also similar (11.1 nM), as predicted from cyclical desensitization models. (3) Functional desensitization of alpha3beta4 receptors required 10-fold higher nicotine concentrations, and this was mirrored by a 10-fold shift in concentrations necessary for upregulation. (4) Mutant alpha4beta2 receptors that do not recover fully from desensitization, but not wild-type channels, were upregulated after acute (1 hr) applications of nicotine. Interestingly, the nicotine concentration required for half-maximal binding of alpha4beta2 receptors in total cell membrane homogenates was 20-fold lower than that measured for surface nAChRs in intact oocytes. These data suggest that cell homogenate binding assays may not accurately reflect the in vivo desensitization affinity of surface nAChRs and may account for some of the previously reported differences in the efficacy of nicotine for inducing nAChR desensitization and upregulation.

  3. alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release.

    PubMed

    Luo, S; Kulak, J M; Cartier, G E; Jacobsen, R B; Yoshikami, D; Olivera, B M; McIntosh, J M

    1998-11-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) with putative alpha3 beta4-subunits have been implicated in the mediation of signaling in various systems, including ganglionic transmission peripherally and nicotine-evoked neurotransmitter release centrally. However, progress in the characterization of these receptors has been hampered by a lack of alpha3 beta4-selective ligands. In this report, we describe the purification and characterization of an alpha3 beta4 nAChR antagonist, alpha-conotoxin AuIB, from the venom of the "court cone," Conus aulicus. We also describe the total chemical synthesis of this and two related peptides that were also isolated from the venom. alpha-Conotoxin AuIB blocks alpha3 beta4 nAChRs expressed in Xenopus oocytes with an IC50 of 0.75 microM, a kon of 1.4 x 10(6) min-1 M-1, a koff of 0.48 min-1, and a Kd of 0.5 microM. Furthermore, alpha-conotoxin AuIB blocks the alpha3 beta4 receptor with >100-fold higher potency than other receptor subunit combinations, including alpha2 beta2, alpha2 beta4, alpha3 beta2, alpha4 beta2, alpha4 beta4, and alpha1 beta1 gamma delta. Thus, AuIB is a novel, selective probe for alpha3 beta4 nAChRs. AuIB (1-5 microM) blocks 20-35% of the nicotine-stimulated norepinephrine release from rat hippocampal synaptosomes, whereas nicotine-evoked dopamine release from striatal synaptosomes is not affected. Conversely, the alpha3 beta2-specific alpha-conotoxin MII (100 nM) blocks 33% of striatal dopamine release but not hippocampal norepinephrine release. This suggests that in the respective systems, alpha3 beta4-containing nAChRs mediate norepinephrine release, whereas alpha3 beta2-containing receptors mediate dopamine release.

  4. Role of. alpha. sub 2 -adrenergic receptors in the carotid body response to hypoxia

    SciTech Connect

    Kou, Y.R.; Ernsberger, P.; Cherniack, N.S.; Prabhakar, N.R. )

    1990-02-26

    Clonidine, which acts in part as an {alpha}{sub 2}-adrenergic receptor agonist, depresses ventilation. The authors examined the role of {alpha}{sub 2}-receptors in carotid chemoreceptor activity. The density of {alpha}{sub 2}-receptors was determined in membrane fractions of 18 cat carotid bodies using {sup 125}I-iodoclonidine with 0.1 mM epinephrine or 10 {mu}M SKF-86466 defining nonspecific binding. {alpha}{sub 2}-Adrenergic receptor density averaged 0.6{plus minus}0.1 fmol/carotid body (mean {plus minus} SEM) and was comparable to other sympathetic target tissues. The authors then studied the effects of an agonist (guanabenz) and an antagonist (SKF-86466; 6-Cl-N-methyl-2,3,4,5-tetrahydro-1-H3-benzazepine) specific for {alpha}{sub 2}-receptors on baseline and hypoxia-stimulated carotid body discharge, in 10 anesthetized, paralyzed and artificially ventilated cats. Intracarotid infusion of guanabenz for 5 minutes caused a dose-dependent depression of the baseline activity and reduced the chemoreceptor response to hypoxia by 88.0{plus minus}5.8% of the vehicle-injected controls. Intravenous administration of SKF-86466 reversed the effects of guanabenz on the carotid body activity. in contrast, chemoreceptor depression caused by dopamine was unaffected by SKF-86466. SKF-86466 alone increased baseline discharge and potentiated the chemoreceptor response to hypoxia by 34.0 {plus minus} 9.6% of the controls. These results demonstrate that {alpha}{sub 2}-adrenergic receptors are present in the cat carotid body and they exert an inhibitory influence on the chemoreceptor response to hypoxia.

  5. Evidence that nicotinic alpha(7) receptors are not involved in the hyperlocomotor and rewarding effects of nicotine.

    PubMed

    Grottick, A J; Trube, G; Corrigall, W A; Huwyler, J; Malherbe, P; Wyler, R; Higgins, G A

    2000-09-01

    Neuronal nicotinic receptors are comprised of combinations of alpha(2-9) and beta(2-4) subunits arranged to form a pentameric receptor. Currently, the principal central nervous system (CNS) subtypes are believed to be alpha(4)beta(2) and a homomeric alpha(7) receptor, although other combinations almost certainly exist. The identity of the nicotinic receptor subtype(s) involved in the rewarding effects of nicotine are unknown. In the present study, using some recently described subtype selective nicotinic agonists and antagonists, we investigated the role of the alpha(7) nicotinic receptor in the mediation of nicotine-induced hyperactivity and self-administration in rats. The alpha(7) receptor agonists AR-R 17779 and DMAC failed to stimulate locomotor activity in both nicotine-nontolerant and -sensitized rats. In contrast, nicotine and the putative alpha(4)beta(2) subtype selective agonist SIB1765F increased activity in both experimental conditions. In nicotine-sensitized rats, the high affinity (including the alpha(4)beta(2) subtype) nicotinic antagonist dihydro-beta-erythroidine (DHbetaE), but not the selective alpha(7) antagonist methyllycaconitine (MLA), antagonized a nicotine-induced hyperactivity. Similarly, DHbetaE, but not MLA, pretreatment reduced nicotine self-administration. Electrophysiology experiments using Xenopus oocytes expressing the human alpha(7) receptor confirmed AR-R 17779 and DMAC to be potent agonists at this site, and further studies demonstrated the ability of systemically administered AR-R 17779 to penetrate into the CNS. Taken together, these results indicate a negligible role of alpha(7) receptors in nicotine-induced hyperlocomotion and reward in the rat, and support the view for an involvement of a member from the high-affinity nicotinic receptor subclass, possibly alpha(4)beta(2). Issues such as drug potency, CNS penetration, and desensitization of the alpha(7) receptor are discussed.

  6. Alpha/sub 1/ receptor stimulated phosphatidylinositol hydrolysis in rat cerebral cortex

    SciTech Connect

    Raulli, R.; Crews, F.T.

    1986-03-05

    The potency of various alpha adrenergic compounds on stimulation of phosphatidylinositol (PI) hydrolysis was determined using (/sup 3/H)-inositol labelled cerebral cortical slices. Norepinephrine-induced PI hydrolysis was inhibited by the alpha/sub 1/ selective antagonist prazosin (1 ..mu..M) but not the beta receptor antagonist propranolol (1 ..mu..M). Tramazoline, (-)-ephedrine, and (+/-)-phenylpropanolamine were all found to be partial agonists at 1 mM concentrations. Clonidine, naphazoline, trazodone, and the novel antidepressant mianserin at concentrations of 100 ..mu..M to 1 mM produced no significant increase in PI hydrolysis above control levels. The relationship between responses and receptor binding will be discussed.

  7. T-cell receptor V sub. alpha. and C sub. alpha. alleles associated with multiple sclerosis and myasthenia gravis

    SciTech Connect

    Oksenberg, J.R.; Cavalli-Sforza, L.L.; Steinman, L. ); Sherritt, M.; Bernard, C.C. ); Begovich, A.B.; Erlich, H.A. )

    1989-02-01

    Polymorphic markers in genes encoding the {alpha} chain of the human T-cell receptor (TcR) have been detected by Southern blot analysis in Pss I digests. Polymorphic bands were observed at 6.3 and 2.0 kilobases (kb) with frequencies of 0.30 and 0.44, respectively, in the general population. Using the polymerase chain reaction (PCR) method, the authors amplified selected sequences derived from the full-length TcR {alpha} cDNA probe. These PcR products were used as specific probes to demonstrate that the 6.3-kb polymorphic fragment hybridizes to the variable (V)-region probe and the 2.0-kb fragment hybridizes to the constant (C)-region probe. Segregation of the polymorphic bands was analyzed in family studies. To look for associations between these markers and autoimmune diseases, the authors have studied the restriction fragment length polymorphism distribution of the Pss I markers in patients with multiple sclerosis, myasthenia gravis, and Graves disease. Significant differences in the frequency of the polymorphic V{sub {alpha}} and C{sub {alpha}} markers were identified between patients and healthy individuals.

  8. Statins enhance peroxisome proliferator-activated receptor gamma coactivator-1alpha activity to regulate energy metabolism.

    PubMed

    Wang, Wenxian; Wong, Chi-Wai

    2010-03-01

    Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) serves as an inducible coactivator for a number of transcription factors to control energy metabolism. Insulin signaling through Akt kinase has been demonstrated to phosphorylate PGC-1alpha at serine 571 and downregulate its activity in the liver. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors that reduce cholesterol synthesis in the liver. In this study, we found that statins reduced the active form of Akt and enhanced PGC-1alpha activity. Specifically, statins failed to activate an S571A mutant of PGC-1alpha. The activation of PGC-1alpha by statins selectively enhanced the expression of energy metabolizing enzymes and regulators including peroxisome proliferator-activated receptor alpha, acyl-CoA oxidase, carnitine palmitoyl transferase-1A, and pyruvate dehydrogenase kinase 4. Importantly, a constitutively active form of Akt partially reduced the statin-enhanced gene expression. Our study thus provides a plausible mechanistic explanation for the hypolipidemic effect of statin through elevating the rate of beta-oxidation and mitochondrial Kreb's cycle capacity to enhance fatty acid utilization while reducing the rate of glycolysis.

  9. Effects of iodoproxyfan, a potent and selective histamine H3 receptor antagonist, on alpha 2 and 5-HT3 receptors.

    PubMed

    Schlicker, E; Pertz, H; Bitschnau, H; Purand, K; Kathmann, M; Elz, S; Schunack, W

    1995-07-01

    We determined the affinity and/or potency of the novel H3 receptor antagonist iodoproxyfan at alpha 2 and 5-HT3 receptors. Iodoproxyfan and rauwolscine (a reference alpha 2 ligand) (i) monophasically displaced 3H-rauwolscine binding to rat brain cortex membranes (pKi 6.79 and 8.59); (ii) facilitated the electrically evoked tritium overflow from superfused mouse brain cortex slices preincubated with 3H-noradrenaline (pEC50 6.46 and 7.91) and (iii) produced rightward shifts of the concentration-response curve (CRC) of (unlabelled) noradrenaline for its inhibitory effect on the evoked overflow (pA2 6.65 and 7.88). In the guinea-pig ileum, iodoproxyfan 6.3 mumol/l failed to evoke a contraction by itself but depressed the maximum of the CRC of 5-hydroxytryptamine (pD'2 5.24). Tropisetron (a reference 5-HT3 antagonist) produced rightward shifts of the CRC of 5-hydroxytryptamine (pA2 7.84). In conclusion, the affinity/potency of iodoproxyfan at H3 receptors (range 8.3-9.7 [1]) exceeds that at alpha 2 receptors by at least 1.5 log units and that at 5-HT3 receptors by at least 3 log units.

  10. Purification and characterization of the human platelet. cap alpha. /sub 2/-adrenergic receptor

    SciTech Connect

    Shreeve, S.M.; Kerlavage, A.R.; Fraser, C.M.; Mariani, A.P.; Venter, J.C.

    1986-05-01

    The ..cap alpha../sub 2/-receptor (..cap alpha../sub 2/-R) from human platelets has been purified to homogeneity using a four step process. An affinity column was prepared by coupling p-aminoclonidine to CH-Sepharose 4B via the p-NH/sub 2/ group. Digitonin solubilized ..cap alpha../sub 2/-R bound to the affinity matrix were eluted with 100 ..mu..M phentolamine and directly applied to a DEAE-Sepharose column. Bound receptors were eluted with a linear gradient of 0-500 mM NaCl, pooled and chromatographed on HPLC size exclusion columns. Three peaks of ..cap alpha../sub 2/-R binding were eluted from HPLC columns (t = 33, 42, 47 min). Radioiodination of HPLC eluates and analysis by SDS-PAGE indicated that ..cap alpha../sub 2/-R binding was associated with a 75-85 kDa protein. These data suggest that the ..cap alpha../sub 2/-R may exist in monomeric and oligomeric forms in the purified state and support previous target size data which indicate that the ..cap alpha../sub 2/-R exists as a dimer in the native membrane. The pure radioiodinated ..cap alpha../sub 2/-R (77-85 kDa) is a glycoprotein with terminal sialic acid or N-acetylglucosamine residues and has a pI of 4.1 on column isoelectric focusing. These data are consistent with those previously reported on the partially purified ..cap alpha../sub 2/-R. Electron micrographs confirm the oligomeric nature and size of the pure ..cap alpha../sub 2/-R.

  11. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology.

    PubMed

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B; Mikkelsen, Jens D

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha nAChR and the cognitive effects of alpha(7) nAChR activation, focusing on the translational aspects in the development of these drugs. The functional properties and anatomical localization of the alpha(7) nAChR makes it well suited to modulate cognitive function. Accordingly, systemic administration of alpha(7) nAChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this has been a major concern in the development of alpha(7) nAChR agonists as putative drugs. Our review of the existing literature shows that development of tolerance to the behavioral effects of alpha(7) nAChR agonists does not occur in animal models or humans. However, the long-term memory-enhancing effects seen in animal models are not mimicked in healthy humans and schizophrenic patients, where attentional improvement predominates. This discrepancy may result from inherent differences in testing methods or from species differences in the level of expression of alpha(7) nAChRs in limbic brain regions, and may hamper preclinical evaluation of alpha(7) nAChR activation. It is therefore important to consider the translational power of the animal models used before entering into a clinical evaluation of the pro-cognitive effects of alpha(7) nAChR activation.

  12. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  13. Estrogen-related receptor {alpha} is essential for the expression of antioxidant protection genes and mitochondrial function

    SciTech Connect

    Rangwala, Shamina M. . E-mail: shamina.rangwala@novartis.com; Li, Xiaoyan; Lindsley, Loren; Wang, Xiaomei; Shaughnessy, Stacey; Daniels, Thomas G.; Szustakowski, Joseph; Nirmala, N.R.; Wu, Zhidan; Stevenson, Susan C.

    2007-05-25

    Estrogen-related receptor {alpha} (ERR{alpha}) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERR{alpha} null mice. Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) stimulated mitochondrial gene expression program in control cells, but not in the ERR{alpha} null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1{alpha} levels was dependent on ERR{alpha}. Furthermore, we found that the PGC-1{alpha}-mediated induction of estrogen-related receptor {gamma} and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERR{alpha}. Basal levels of NRF-2 were decreased in the absence of ERR{alpha}. The absence of ERR{alpha} resulted in a decrease in citrate synthase enzyme activity in response to PGC-1{alpha} overexpression. Our results indicate an essential role for ERR{alpha} as a key regulator of oxidative metabolism.

  14. Alpha-2 adrenergic and serotonin-1B receptors in the OK cell, an opossum kidney cell line

    SciTech Connect

    Murphy, T.J.

    1988-01-01

    Alpha-2 adrenergic and serotonin-1B (5HT{sub 1B}) receptors, both negatively-coupled to adenylyl cyclase, were characterized in the OK cell line, a renal proximal tubule epithelial cell line derived from the kidney of a North American opossum. In membrane saturation radioligand binding experiments, ({sup 3}H)yohimbine and ({sup 3}H)rauwolscine labeled an equivalent number of binding sites. Detailed pharmacological analysis of OK cell alpha-2 adrenergic receptors in competition binding assays indicate this receptor is neither an alpha-2A nor an alpha-2B adrenergic receptor subtype, although the alpha-2B receptor subtype-selective drugs prazosin, ARC-239 and chlorpromazine have affinities for OK cell alpha-2 adrenergic receptors similar to those at the alpha-2B receptor subtype. Determinations of agonist potency for inhibition of PTH-stimulated cyclic AMP production and radioligand binding analysis using ({sup 125}I)({minus})-cyanopindolol indicate that a 5HT{sub 1B} receptor is expressed in the OK cell line. A biochemical effector system coupled to this receptor subtype has not been previously described. Several compounds appear to be potent agonists at the 5TH{sub 1B} receptor including the beta adrenergic antagonists cyanopindolol, pindolol, propranolol and alprenolol.

  15. Contribution of valine 7' of TMD2 to gating of neuronal alpha3 receptor subtypes.

    PubMed

    Nieves-Cintrón, Madeline; Caballero-Rivera, Daniel; Navedo, Manuel F; Lasalde-Dominicci, José A

    2006-12-01

    The second transmembrane domain (TMD2) of the Cys-loop family of ligand-gated ion channels forms the channel pore. The functional role of the amino acid residues contributing to the channel pore in neuronal nicotinic alpha3 receptors is not well understood. We characterized the contribution of TMD2 position V7' to channel gating in neuronal nicotinic alpha3 receptors. Site-directed mutagenesis was used to substitute position alpha3 (V7') with four different amino acids (A, F, S, or Y) and coexpressed each mutant subunit with wild-type (WT) beta2 or beta4 subunits in Xenopus oocytes. Whole-cell voltage clamp experiments show that substitution for an alanine, serine, or phenylalanine decreased by 2.3-6.2-fold the ACh-EC(50) for alpha3beta2 and alpha3beta4 receptor subtypes. Interestingly, mutation V7'Y did not produce a significant change in ACh-EC(50) when coexpressed with the beta2 subunit but showed a significant approximately two-fold increase with beta4. Similar responses were obtained with nicotine as the agonist. The antagonist sensitivity of the mutant channels was assessed by using dihydro-beta-erythroidine (DHbetaE) and methyllycaconitine (MLA). The apparent potency of DHbetaE as an antagonist increased by approximately 3.7- and 11-fold for the alpha3beta2 V7'S and V7'F mutants, respectively, whereas no evident changes in antagonist potency were observed for the V7'A and V7'Y mutants. The V7'S and V7'F mutations increase MLA antagonist potency for the alpha3beta4 receptor by approximately 6.2- and approximately 9.3-fold, respectively. The V7'A mutation selectively increases the MLA antagonist potency for the alpha3beta4 receptor by approximately 18.7-fold. These results indicate that position V7' contributes to channel gating kinetics and pharmacology of the neuronal nicotinic alpha3 receptors.

  16. Structural Basis for Hormone Recognition by the Human CRFR2[alpha] G Protein-coupled Receptor

    SciTech Connect

    Pal, Kuntal; Swaminathan, Kunchithapadam; Xu, H. Eric; Pioszak, Augen A.

    2012-05-09

    The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2{alpha} isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2{alpha} ECD bound to each of the Ucn peptides. The CRFR2{alpha} ECD forms the same fold observed for the CRFR1 and mouse CRFR2{beta} ECDs but contains a unique N-terminal {alpha}-helix formed by its pseudo signal peptide. The CRFR2{alpha} ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the {alpha}-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2{alpha} Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.

  17. The role of tumour necrosis factor alpha and soluble tumour necrosis factor alpha receptors in the symptomatology of schizophrenia.

    PubMed

    Turhan, Levent; Batmaz, Sedat; Kocbiyik, Sibel; Soygur, Arif Haldun

    2016-07-01

    Background Immunological mechanisms may be responsible for the development and maintenance of schizophrenia symptoms. Aim The aim of this study is to measure tumour necrosis factor-alpha (TNF-α), soluble tumour necrosis factor-alpha receptor I (sTNF-αRI), and soluble tumour necrosis factor-alpha receptor II (sTNF-αRII) levels in patients with schizophrenia and healthy individuals, and to determine their relationship with the symptoms of schizophrenia. Methods Serum TNF-α, sTNF-αRI and sTNF-αRII levels were measured. The Positive and Negative Syndrome Scale (PANSS) was administered for patients with schizophrenia (n = 35), and the results were compared with healthy controls (n = 30). Hierarchical regression analyses were undertaken to predict the levels of TNF-α, sTNF-αRI and sTNF-αRII. Results No significant difference was observed in TNF-α levels, but sTNF-αRI and sTNF-αRII levels were lower in patients with schizophrenia. Serum sTNF-αRI and sTNF-αRII levels were found to be negatively correlated with the negative subscale score of the PANSS, and sTNF-αRI levels were also negatively correlated with the total score of the PANSS. Smoking, gender, body mass index were not correlated with TNF-α and sTNF-α receptor levels. Conclusions These results suggest that there may be a change in anti-inflammatory response in patients with schizophrenia due to sTNF-αRI and sTNF-αRII levels. The study also supports low levels of TNF activity in schizophrenia patients with negative symptoms.

  18. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  19. Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferator-activated receptor {alpha}

    SciTech Connect

    Lee, Hyunghee; Gonzalez, Frank J.; Yoon, Michung . E-mail: yoon60@mokwon.ac.kr

    2006-01-06

    We investigated whether ginseng regulates lipoprotein metabolism by altering peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})-mediated pathways, using a PPAR{alpha}-null mouse model. Administration of ginseng extract, ginsenosides, and ginsenoside Rf (Rf) to wild-type mice not only significantly increased basal levels of hepatic apolipoprotein (apo) A-I and C-III mRNA compared with wild-type controls, but also substantially reversed the reductions in mRNA levels of apo A-I and C-III expected following treatment with the potent PPAR{alpha} ligand Wy14,643. In contrast, no effect was detected in the PPAR{alpha}-null mice. Testing of eight main ginsenosides on PPAR{alpha} reporter gene expression indicated that Rf was responsible for the effects of ginseng on lipoprotein metabolism. Furthermore, the inhibition of PPAR{alpha}-dependent transactivation by Rf seems to occur at the level of DNA binding. These results demonstrate that ginseng component Rf regulates apo A-I and C-III mRNA and the actions of Rf on lipoprotein metabolism are mediated via interactions with PPAR{alpha}.

  20. Suppression of estrogen receptor-alpha transactivation by thyroid transcription factor-2 in breast cancer cells

    SciTech Connect

    Park, Eunsook; Gong, Eun-Yeung; Romanelli, Maria Grazia; Lee, Keesook

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer TTF-2 was expressed in mammary glands and breast cancer cells. Black-Right-Pointing-Pointer TTF-2 repressed ER{alpha} transactivation. Black-Right-Pointing-Pointer TTF-2 inhibited the proliferation of breast cancer cells. -- Abstract: Estrogen receptors (ERs), which mediate estrogen actions, regulate cell growth and differentiation of a variety of normal tissues and hormone-responsive tumors through interaction with cellular factors. In this study, we show that thyroid transcription factor-2 (TTF-2) is expressed in mammary gland and acts as ER{alpha} co-repressor. TTF-2 inhibited ER{alpha} transactivation in a dose-dependent manner in MCF-7 breast cancer cells. In addition, TTF-2 directly bound to and formed a complex with ER{alpha}, colocalizing with ER{alpha} in the nucleus. In MCF-7/TTF-2 stable cell lines, TTF-2 repressed the expression of endogenous ER{alpha} target genes such as pS2 and cyclin D1 by interrupting ER{alpha} binding to target promoters and also significantly decreased cell proliferation. Taken together, these data suggest that TTF-2 may modulate the function of ER{alpha} as a corepressor and play a role in ER-dependent proliferation of mammary cells.

  1. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  2. The binding site of the nicotinic acetylcholine receptor in animal species resistant to alpha-bungarotoxin.

    PubMed

    Barchan, D; Ovadia, M; Kochva, E; Fuchs, S

    1995-07-18

    The ligand binding site of the nicotinic acetylcholine receptor (AChR) is located in the alpha-subunit, within a small fragment containing the tandem cysteines at positions 192 and 193. We have been analyzing the binding site domain of AChRs from several animal species exhibiting various degrees of resistance to alpha-bungarotoxin (alpha-BTX). Our earlier work on the snake and mongoose AChR, both of which do not bind alpha-BTX, suggested that amino acid substitutions at positions 187, 189, and 194 of the AChR alpha-subunit are important in determining the resistance of these AChRs to alpha-BTX. In the present study, we have examined the correlation between alpha-BTX binding and the structure of the binding site domain of AChR from the hedgehog, shrew, cat, and human. Fragments of the AChR alpha-subunit corresponding to residues 122-205 from these species were cloned, sequenced, and expressed in Escherichia coli. The hedgehog fragment does not bind alpha-BTX, in common with the snake and mongoose AChR, and the human fragment is a partial binder. The shrew and cat fragments bind alpha-BTX to a similar extent as the mouse fragment. The hedgehog and human AChRs have nonaromatic amino acid residues at positions 187 and 189 of the alpha-subunit, as is seen with the "toxin resistant" snake and mongoose, and in contrast with the "toxin binders", which have aromatic residues at these two positions.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. O Mannosylation of alpha-dystroglycan is essential for lymphocytic choriomeningitis virus receptor function.

    PubMed

    Imperiali, Mauro; Thoma, Claudio; Pavoni, Ernesto; Brancaccio, Andrea; Callewaert, Nico; Oxenius, Annette

    2005-11-01

    Alpha-dystroglycan (alpha-DG) was identified as a common receptor for lymphocytic choriomeningitis virus (LCMV) and several other arenaviruses including the human pathogenic Lassa fever virus. Initial work postulated that interactions between arenavirus glycoproteins and alpha-DG are based on protein-protein interactions. We found, however, that susceptibility toward LCMV infection differed in various cell lines despite them expressing comparable levels of DG, suggesting that posttranslational modifications of alpha-DG would be involved in viral receptor function. Here, we demonstrate that glycosylation of alpha-DG, and in particular, O mannosylation, which is a rare type of O-linked glycosylation in mammals, is essential for LCMV receptor function. Cells that are defective in components of the O-mannosylation pathway showed strikingly reduced LCMV infectibility. As defective O mannosylation is associated with severe clinical symptoms in mammals such as congenital muscular dystrophies, it is likely that LCMV and potentially other arenaviruses may have selected this conserved and crucial posttranslational modification as the primary target structure for cell entry and infection.

  4. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons.

    PubMed

    Massey, Kerri A; Zago, Wagner M; Berg, Darwin K

    2006-12-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing alpha7 subunits (alpha7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of alpha7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABA(A) receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased alpha7-nAChR clusters were most prominent on interneuron subtypes known to directly innervate excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling alpha7-nAChR levels.

  5. The human alpha 2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of alpha 2-macroglobulin

    PubMed Central

    1990-01-01

    Ligand affinity chromatography was used to purify a cell surface alpha 2-macroglobulin (alpha 2M) receptor. Detergent extracts of human placenta were applied to an affinity matrix consisting of alpha 2M, previously reacted with methylamine, coupled to Sepharose. Elution with EDTA specifically released polypeptides with apparent molecular masses of 420 and 39 kD. In some preparations, small amounts of a 90-kD polypeptide were observed. The 420- and 39-kD polypeptides appear specific for the forms of alpha 2M activated by reaction with proteinases or methylamine and do not bind to an affinity matrix consisting of native alpha 2M coupled to Sepharose. Separation of these two polypeptides was accomplished by anion exchange chromatography, and binding activity was exclusively associated with the 420-kD polypeptide. The purified 420-kD protein binds to the conformationally altered forms of alpha 2M that are known to specifically interact with alpha 2M receptors and does not bind to native alpha 2M. Binding of the 420-kD polypeptide to immobilized wheat germ agglutinin indicates that this polypeptide is a glycoprotein. The cell surface localization of the 420-kD glycoprotein was confirmed by affinity chromatography of extracts from surface radioiodinated fibroblasts. These properties suggest that the 420-kD polypeptide is a cell surface receptor for the activated forms of alpha 2M. PMID:1691187

  6. Demonstration of. cap alpha. /sub 2/-adrenergic receptors in rat pancreatic islets using radioligand binding

    SciTech Connect

    Cherksey, B.; Mendelsohn, S.; Zadunaisky, J.; Altszuler, N.

    1982-11-01

    The type of the ..cap alpha..-adrenergic receptors on rat pancreatic islet cells was characterized directly using specific radioligands and displacement agonists and antagonists. Scatchard plots for binding of (/sup 3/H)clonidine (..cap alpha../sub 2/-agonist) revealed a dissociation constant, K/sub d/ of 0.542 +/- 0.1 nM and density of binding sites (B/sub max/) of 50.4 +/- 3.6 fmole/mg protein. Similar values were obtained with (/sup 3/H)dihydroergocryptine (antagonist). The various agonists displaced (/sup 3/H)clonidine with the following order of potency: clonidine > epinephrine approx. = norepinephrine > isoproterenol. Yohimbine, the ..cap alpha../sub 2/-antagonist, was very effective in displacing (/sup 3/H)clonidine, whereas the ..cap alpha../sub 1/-antagonist, prazosin, was much less effective. The data indicate that the ..cap alpha..-adrenergic receptors on rat pancreatic islets are of the ..cap alpha../sub 2/ subtype.

  7. Glucocorticoid receptor (GR) {beta} has intrinsic, GR{alpha}-independent transcriptional activity

    SciTech Connect

    Kino, Tomoshige; Manoli, Irini; Kelkar, Sujata; Wang, Yonghong; Su, Yan A.; Chrousos, George P.

    2009-04-17

    The human glucocorticoid receptor (GR) gene produces C-terminal GR{beta} and GR{alpha} isoforms through alternative use of specific exons 9{beta} and {alpha}, respectively. We explored the transcriptional activity of GR{beta} on endogenous genes by developing HeLa cells stably expressing EGFP-GR{beta} or EGFP. Microarray analyses revealed that GR{beta} had intrinsic gene-specific transcriptional activity, regulating mRNA expression of a large number of genes negatively or positively. Majority of GR{beta}-responsive genes was distinct from those modulated by GR{alpha}, while GR{beta} and GR{alpha} mutually modulated each other's transcriptional activity in a subpopulation of genes. We did not observe in HCT116 cells nuclear translocation of GR{beta} and activation of this receptor by RU 486, a synthetic steroid previously reported to bind GR{beta} and to induce nuclear translocation. Our results indicate that GR{beta} has intrinsic, GR{alpha}-independent, gene-specific transcriptional activity, in addition to its previously reported dominant negative effect on GR{alpha}-induced transactivation of GRE-driven promoters.

  8. Antipsychotic clozapine inhibits the function of alpha7-nicotinic acetylcholine receptors.

    PubMed

    Singhal, Sachin K; Zhang, Li; Morales, Marisela; Oz, Murat

    2007-02-01

    The effects of the antipsychotic clozapine on the function of the cloned alpha(7) subunit of the nicotinic acetylcholine (nACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Clozapine reversibly inhibited nicotine (10 microM)-induced currents in a concentration-dependent manner (300 nM to 90 microM), with an IC(50) value of 3.2+/-0.4 microM. The effect of clozapine was not dependent on the membrane potential. Clozapine did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels since the inhibition by clozapine was unaltered by the intracellularly injected Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Clozapine decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on alpha(7)-nACh receptors. In hippocampal slices, the whole-cell recordings from CA1 pyramidal neurons indicated that the increases in the frequency and amplitudes of the GABA-mediated spontaneous inhibitory postsynaptic currents induced by bath application of 2 mM choline, a specific agonist for alpha(7)-nACh receptors, were abolished after 10 min application of 5 microM clozapine. In conclusion, these results demonstrate that clozapine inhibits the function of alpha(7)-nACh receptors expressed in Xenopus oocytes and in hippocampal neurons.

  9. Developmental toxicity of perfluorononanoic acid is dependent on peroxisome proliferator activated receptor-alpha.

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one of the predominant perfluoroalkyl acids in the environment and in tissues of humans and wildlife. PFNA strongly activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) in vitro and negatively impacts development ...

  10. Neuropeptide Y inhibits spontaneous alpha-melanocyte-stimulating hormone (alpha-MSH) release via a Y(5) receptor and suppresses thyrotropin-releasing hormone-induced alpha-MSH secretion via a Y(1) receptor in frog melanotrope cells.

    PubMed

    Galas, Ludovic; Tonon, Marie-Christine; Beaujean, Delphine; Fredriksson, Robert; Larhammar, Dan; Lihrmann, Isabelle; Jegou, Sylvie; Fournier, Alain; Chartrel, Nicolas; Vaudry, Hubert

    2002-05-01

    In amphibians, the secretion of alpha-MSH by melanotrope cells is stimulated by TRH and inhibited by NPY. We have previously shown that NPY abrogates the stimulatory effect of TRH on alpha-MSH secretion. The aim of the present study was to characterize the receptor subtypes mediating the action of NPY and to investigate the intracellular mechanisms involved in the inhibitory effect of NPY on basal and TRH-induced alpha-MSH secretion. Y(1) and Y(5) receptor mRNAs were detected by RT-PCR and visualized by in situ hybridization histochemistry in the intermediate lobe of the pituitary. Various NPY analogs inhibited in a dose-dependent manner the spontaneous secretion of alpha-MSH from perifused frog neurointermediate lobes with the following order of potency porcine peptide YY (pPYY) > frog NPY (fNPY) > porcine NPY (pNPY)-2-36) > pNPY-(13-36) > [D-Trp(32)]pNPY > [Leu(31),Pro(34)]pNPY. The stimulatory effect of TRH (10(-8)6 M) on alpha-MSH release was inhibited by fNPY, pPYY, and [Leu(31),Pro(34)]pNPY, but not by pNPY-(13-36) and [D-Trp(32)]pNPY. These data indicate that the inhibitory effect of fNPY on spontaneous alpha-MSH release is preferentially mediated through Y(5) receptors, whereas the suppression of TRH-induced alpha-MSH secretion by fNPY probably involves Y(1) receptors. Pretreatment of neurointermediate lobes with pertussis toxin (PTX; 1 microg/ml; 12 h) did not abolish the inhibitory effect of fNPY on cAMP formation and spontaneous alpha-MSH release, but restored the stimulatory effect of TRH on alpha-MSH secretion, indicating that the adenylyl cyclase pathway is not involved in the action of fNPY on TRH-evoked alpha-MSH secretion. In the majority of melanotrope cells, TRH induces a sustained and biphasic increase in cytosolic Ca(2+) concentration. Preincubation of cultured cells with fNPY (10(-7) M) or omega-conotoxin GVIA (10(-7) M) suppressed the plateau phase of the Ca(2+) response induced by TRH. However, although fNPY abrogated TRH-evoked alpha

  11. Heterodimeric interaction between retinoid X receptor alpha and orphan nuclear receptor OR1 reveals dimerization-induced activation as a novel mechanism of nuclear receptor activation.

    PubMed Central

    Wiebel, F F; Gustafsson, J A

    1997-01-01

    OR1 is a member of the steroid/thyroid hormone nuclear receptor superfamily which has been described to mediate transcriptional responses to retinoids and oxysterols. On a DR4 response element, an OR1 heterodimer with the nuclear receptor retinoid X receptor alpha (RXR alpha) has been described to convey transcriptional activation in both the absence and presence of the RXR ligand 9-cis retinoic acid, the mechanisms of which have remained unclear. Here, we dissect the effects of RXR alpha and OR1 ligand-binding domain interaction on transcriptional regulation and the role of the respective carboxy-terminal activation domains (AF-2s) in the absence and presence of the RXR ligand, employing chimeras of the nuclear receptors containing the heterologous GAL4 DNA-binding domain as well as natural receptors. The results show that the interaction of the RXR and OR1 ligand-binding domains unleashes a transcription activation potential that is mainly dependent on the AF-2 of OR1, indicating that interaction with RXR activates OR1. This defines dimerization-induced activation as a novel function of heterodimeric interaction and mechanism of receptor activation not previously described for nuclear receptors. Moreover, we present evidence that activation of OR1 occurs by a conformational change induced upon heterodimerization with RXR. PMID:9199332

  12. Identification of regions involved in the binding of alpha-bungarotoxin to the human alpha7 neuronal nicotinic acetylcholine receptor using synthetic peptides.

    PubMed Central

    Marinou, Martha; Tzartos, Socrates J

    2003-01-01

    The neuronal alpha7 nicotinic acetylcholine receptor (AChR) binds the neurotoxin alpha-bungarotoxin (alpha-Bgt). Fine mapping of the alpha-Bgt-binding site on the human alpha7 AChR was performed using synthetic peptides covering the entire extracellular domain of the human alpha7 subunit (residues 1-206). Screening of these peptides for (125)I-alpha-Bgt binding resulted in the identification of at least two toxin-binding sites, one at residues 186-197, which exhibited the best (125)I-alpha-Bgt binding, and one at residues 159-165, with weak toxin-binding capacity; these correspond, respectively, to loops C and IV of the agonist-binding site. Toxin binding to the alpha7(186-197) peptide was almost completely inhibited by unlabelled alpha-Bgt or d -tubocurarine. Alanine substitutions within the sequence 186-198 revealed a predominant contribution of aromatic and negatively charged residues to the binding site. This sequence is homologous to the alpha-Bgt binding site of the alpha1 subunit (residues 188-200 in Torpedo AChR). In competition experiments, the soluble peptides alpha7(186-197) and Torpedo alpha1(184-200) inhibited the binding of (125)I-alpha-Bgt to the immobilized alpha7(186-197) peptide, to native Torpedo AChR, and to the extracellular domain of the human alpha1 subunit. These results suggest that the toxin-binding sites of the neuronal alpha7 and muscle-type AChRs bind to identical or overlapping sites on the alpha-Bgt molecule. In support of this, when synthetic alpha-Bgt peptides were tested for binding to the recombinant extracellular domains of the human alpha7 and alpha1 subunits, and to native Torpedo and alpha7 AChR, the results indicated that alpha-Bgt interacts with both neuronal and muscle-type AChRs through its central loop II and C-terminal tail. PMID:12614199

  13. Altered catecholamine receptor affinity in rabbit aortic intimal hyperplasia

    SciTech Connect

    O'Malley, M.K.; Cotecchia, S.; Hagen, P.O. )

    1991-08-01

    Intimal thickening is a universal response to endothelial denudation and is also thought to be a precursor of atherosclerosis. The authors have demonstrated selective supersensitivity in arterial intimal hyperplasia to norepinephrine and they now report a possible mechanism for this. Binding studies in rabbit aorta with the selective alpha 1-adrenergic radioligand 125I-HEAT demonstrated that there was no change in receptor density (20 {plus minus} 4 fmole/10(6) cells) in intact vascular smooth muscle cells at either 5 or 14 days after denudation. However, competition studies showed a 2.6-fold increase in alpha 1-adrenergic receptor affinity for norepinephrine in intimal hyperplastic tissue (P less than 0.05). This increased affinity for norepinephrine was associated with a greater increase in 32P-labeled phosphatidylinositol (148% intimal thickening versus 76% control) and phosphatidic acid (151% intimal thickening versus 56% control) following norepinephrine stimulation of free floating rings of intimal hyperplastic aorta. These data suggest that the catecholamine supersensitivity in rabbit aortic intimal hyperplasia is receptor mediated and may be linked to the phosphatidylinositol cycle.

  14. The outline structure of the T-cell alpha beta receptor.

    PubMed Central

    Chothia, C; Boswell, D R; Lesk, A M

    1988-01-01

    From an analysis of the immunoglobulins of known structure we derive a list of 40 sites crucial for the conserved structure of the variable domains. We show that, with marginal exceptions, the sequences of the T-cell alpha beta receptors contain, at sites homologous to these 40, the same or very similar residues. Thus the V alpha-V beta dimer has a framework structure very close to that of the immunoglobulins. Further comparisons show that parts of the surface of the V alpha-V beta framework are hypervariable. They also show that the loops that form the antigen-binding site are similar in size to those commonly found in the immunoglobulins but have different conformations. Only limited sequence variations occur in the first loop of the antigen-binding site in both V alpha and V beta. This, and their geometrical arrangement, suggest that they mainly interact with the MHC proteins. PMID:3208747

  15. Presynaptic Inhibition of Glutamate Transmission by Alpha-2 Receptors in the VTA

    PubMed Central

    Jiménez-Rivera, Carlos A.; Figueroa, Johnny; Vázquez, Rafael; Vélez, María; Schwarz, David; Velásquez-Martinez, María C.; Arencibia-Albite, Francisco

    2013-01-01

    The ventral tegmental area (VTA) forms part of the mesocorticolimbic system and plays a pivotal role in reward and reinforcing actions of drugs of abuse. Glutamate transmission within the VTA controls important aspects of goal-directed behavior and motivation. Noradrenergic receptors also present in the VTA have important functions in the modulation of neuronal activity. Here we studied the effects of alpha-2 noradrenergic receptor activation in the alteration of glutamate neurotransmission in VTA dopaminergic neurons from male Sprague-Dawley rats. We used whole cell patch clamp recordings from putative VTA dopaminergic neurons and measured excitatory postsynaptic currents. Clonidine (40 μM) and UK 13,408 (40 μM), both alpha-2 receptor agonists, reduced (~ 40%) the amplitude of glutamate-induced excitatory postsynaptic currents. After clonidine administration, there was a dose-dependent reduction over the concentration range of 15–40 μM. Using yohimbine (20μM) and two other alpha-2 adrenergic receptor antagonists, idaxozan (40 μM) and atipemazole (20μM), we demonstrated that the inhibitory action is specifically mediated by alpha-2 receptors. Moreover, by inhibiting protein kinases with H-7 (75 μM), Rp-adenosine 3′,5′-cyclic (11 μM) and chelerythrine (1 μM) it was shown that the clonidine-induced inhibition seems to involve a selective activation of the protein kinase C intracellular pathway. An increased paired-pulse ratios and changes in spontaneous and miniature excitatory postsynaptic currents frequencies but not amplitudes indicated that the alpha-2 agonist’s effect was presynaptically mediated. It is suggested that the suppression of glutamate excitatory inputs onto VTA dopaminergic neurons might be relevant in the regulation of reward and drug seeking behaviors. PMID:22564071

  16. Lack of positive allosteric modulation of mutated alpha(1)S267I glycine receptors by cannabinoids.

    PubMed

    Foadi, Nilufar; Leuwer, Martin; Demir, Reyhan; Dengler, Reinhard; Buchholz, Vanessa; de la Roche, Jeanne; Karst, Matthias; Haeseler, Gertrud; Ahrens, Jörg

    2010-05-01

    Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. Ajulemic acid and HU210 are non-psychotropic, synthetic cannabinoids. Cannabidiol is a non-psychotropic plant constituent of cannabis sativa. There are hints that non-cannabinoid receptor mechanisms of these cannabinoids might be mediated via glycine receptors. In this study, we investigated the impact of the amino acid residue serine at position 267 on the glycine-modulatory effects of ajulemic acid, cannabidiol and HU210. Mutated alpha(1)S267I glycine receptors transiently expressed in HEK293 cells were studied by utilising the whole-cell clamp technique. The mutation of the alpha(1) subunit TM2 serine residue to isoleucine abolished the co-activation and the direct activation of the glycine receptor by the investigated cannabinoids. The nature of the TM2 (267) residue of the glycine alpha(1) subunit is crucial for the glycine-modulatory effect of ajulemic acid, cannabidiol and HU210. An investigation of the impact of such mutations on the in vivo interaction of cannabinoids with glycine receptors should permit a better understanding of the molecular determinants of action of cannabinoids.

  17. Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Young, Gareth T; Zwart, Ruud; Walker, Alison S; Sher, Emanuele; Millar, Neil S

    2008-09-23

    Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.

  18. Synthesis and characterization of a high affinity radioiodinated probe for the alpha 2-adrenergic receptor

    SciTech Connect

    Lanier, S.M.; Hess, H.J.; Grodski, A.; Graham, R.M.; Homcy, C.J.

    1986-03-01

    The availability of radioiodinated probes has facilitated the localization and molecular characterization of cell membrane receptors for hormones and neurotransmitters. However, such probes are not available for the study of the alpha 2-adrenergic receptor. This report describes the synthesis and characterization of functionalized derivatives of the selective alpha 2-adrenergic antagonists, rauwolscine and yohimbine, which can be radiolabeled to high specific activity with 125I. Following demethylation of rauwolscine or yohimbine, the resultant carboxylic acid derivatives were reacted with 4-aminophenethylamine to yield the respective 4-aminophenethyl carboxamides, 17 alpha-hydroxy-20 alpha-yohimban-16 beta-(N-4-amino-phenethyl)carboxamide (rau-pAPC) and 17 alpha-hydroxy-20 beta-yohimban-16 alpha-(N-4-aminophenethyl)carboxamide. In competitive inhibition studies using rat renal membranes and the radioligand (3H)rauwolscine, rau-pAPC (Ki = 11 +/- 1 nM) exhibited a 14-fold greater affinity than the corresponding yohimbine derivative (Ki = 136 +/- 45 nM). The higher affinity compound, rau-pAPC, was radioiodinated by the chloramine T method, and the product, 125I-rau-pAPC (17 alpha-hydroxy-20 alpha-yohimban-16 beta-(N-4-amino-3 -(125I)iodophenethyl)carboxamide), was purified by reverse phase HPLC to high specific activity (2175 Ci/mmol) and its binding characteristics were investigated in rat kidney membranes. Specific binding of 125I-rau-pAPC was saturable and of high affinity as determined by Scatchard analysis (KD = 1.8 +/- 0.3 nM) or from kinetic studies (KD = k2/k1 = 0.056 +/- 0.013 min-1)/4.3 +/- 0.2 X 10(7) M-1 min-1 = 1.3 +/- 0.3 nM).

  19. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ER{alpha}) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    SciTech Connect

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-12-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [{sup 14}C]CD or [{sup 14}C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor {alpha} (ER{alpha}) in a concentration-dependent manner (0-50 {mu}M). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice.

  20. Structural Basis of Natural Promoter Recognition by a Unique Nuclear Receptor, HNF4[alpha

    SciTech Connect

    Lu, Peng; Rha, Geun Bae; Melikishvili, Manana; Wu, Guangteng; Adkins, Brandon C.; Fried, Michael G.; Chi, Young-In

    2010-11-09

    HNF4{alpha} (hepatocyte nuclear factor 4{alpha}) plays an essential role in the development and function of vertebrate organs, including hepatocytes and pancreatic {beta}-cells by regulating expression of multiple genes involved in organ development, nutrient transport, and diverse metabolic pathways. As such, HNF4{alpha} is a culprit gene product for a monogenic and dominantly inherited form of diabetes, known as maturity onset diabetes of the young (MODY). As a unique member of the nuclear receptor superfamily, HNF4{alpha} recognizes target genes containing two hexanucleotide direct repeat DNA-response elements separated by one base pair (DR1) by exclusively forming a cooperative homodimer. We describe here the 2.0 {angstrom} crystal structure of human HNF4{alpha} DNA binding domain in complex with a high affinity promoter element of another MODY gene, HNF1{alpha}, which reveals the molecular basis of unique target gene selection/recognition, DNA binding cooperativity, and dysfunction caused by diabetes-causing mutations. The predicted effects of MODY mutations have been tested by a set of biochemical and functional studies, which show that, in contrast to other MODY gene products, the subtle disruption of HNF4{alpha} molecular function can cause significant effects in afflicted MODY patients.

  1. Concomitant T-cell receptor alpha and delta gene rearrangements in individual T-cell precursors.

    PubMed Central

    Thompson, S D; Pelkonen, J; Hurwitz, J L

    1990-01-01

    A debate has recently surfaced concerning the degree of precommitment attained by alpha beta and gamma delta T-cell precursors prior to T-cell receptor (TCR) gene rearrangement. It has been suggested that precursors may be precommitted to rearrange either alpha or delta genes, but not both, thus giving rise to alpha beta- and gamma delta-producing T cells, respectively. Alternatively, the precursors may be flexible with regard to potential TCR gene rearrangements. To address this controversy, the gene rearrangements among a group of T-cell hybridomas from fetal, newborn, and early postnatal mouse thymi were examined. Six probes spanning the delta and alpha loci were used in Southern blot analyses to characterize the rearrangements which occurred on homologous chromosomes in each cell. Although homologous chromosomes often rearranged in synchrony within the alpha locus, a number of hybridomas were found which had retained a delta rearrangement on one chromosome and an alpha rearrangement on the second. Results show that a precommitment by T cells to rearrange delta or alpha genes in a mutually exclusive manner is not an absolute feature of mouse thymocyte development. Images PMID:2164690

  2. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    SciTech Connect

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.; Pessin, J.E.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.

  3. Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886.

    PubMed Central

    Kehrer, J P; Biswal, S S; La, E; Thuillier, P; Datta, K; Fischer, S M; Vanden Heuvel, J P

    2001-01-01

    Although MK886 was originally identified as an inhibitor of 5-lipoxygenase activating protein (FLAP), recent data demonstrate that this activity does not underlie its ability to induce apoptosis [Datta, Biswal and Kehrer (1999) Biochem. J. 340, 371--375]. Since FLAP is a fatty-acid binding protein, it is conceivable that MK886 may affect other such proteins. A family of nuclear receptors that are activated by fatty acids and their metabolites, the peroxisome-proliferator-activated receptors (PPARs), have been implicated in apoptosis and may represent a target for MK886. The ability of MK886 to inhibit PPAR-alpha, -beta and -gamma activity was assessed using reporter assay systems (peroxisome-proliferator response element--luciferase). Using a transient transfection system in monkey kidney fibroblast CV-1 cells, mouse keratinocyte 308 cells and human lung adenocarcinoma A549 cells, 10--20 microM MK886 inhibited Wy14,643 activation of PPAR alpha by approximately 80%. Similar inhibition of PPAR alpha by MK886 was observed with a stable transfection reporter system in CV-1 cells. Only minimal inhibitory effects were seen on PPAR beta and PPAR gamma. MK886 inhibited PPAR alpha by a non-competitive mechanism as shown by its effects on the binding of arachidonic acid to PPAR alpha protein, and a dose-response study using a transient transfection reporter assay in COS-1 cells. An assay assessing PPAR ligand-receptor interactions showed that MK886 prevents the conformational change necessary for active-complex formation. The expression of keratin-1, a protein encoded by a PPAR alpha-responsive gene, was reduced by MK886 in a culture of mouse primary keratinocytes, suggesting that PPAR inhibition has functional consequences in normal cells. Although Jurkat cells express all PPAR isoforms, various PPAR alpha and PPAR gamma agonists were unable to prevent MK886-induced apoptosis. This is consistent with MK886 functioning as a non-competitive inhibitor of PPAR alpha, but may

  4. Characterization of the retina in the alpha7 nicotinic acetylcholine receptor knockout mouse

    NASA Astrophysics Data System (ADS)

    Smith, Marci L.

    Acetylcholine receptors (AChRs) are involved in visual processing and are expressed by inner retinal neurons in all species studied to date (Keyser et al., 2000; Dmitrieva et al., 2007; Liu et al., 2009), but their distribution in the mouse retina remains unknown. Reductions in alpha7 nicotinic AChRs (nAChRs) are thought to contribute to memory and visual deficits observed in Alzheimer's and schizophrenia (Coyle et al., 1983; Nordberg et al., 1999; Leonard et al., 2006). However, the alpha7 nAChR knockout (KO) mouse has a mild phenotype (Paylor et al., 1998; Fernandes et al., 2006; Young et al., 2007; Origlia et al., 2012). The purpose of this study was to determine the expression of AChRs in wildtype (WT) mouse retina and to assess whether up-regulation of other AChRs in the alpha7 nAChR KO retina may explain the minimal deficits described in the KO mouse. Reverse-transcriptase PCR (RT-PCR) showed that mRNA transcripts for alpha2-7, alpha 9, alpha10, beta2-4 nAChR subunits and m1-m5 muscarinic AChR (mAChR) subtypes were present in WT murine retina. Western blot analysis confirmed the presence of alpha3-5, alpha9, and m1-m5 AChR proteins and immunohistochemical analysis demonstrated nAChR and mAChR proteins expressed by subsets of bipolar, amacrine and ganglion cells. This is the first reported expression of alpha9 and alpha10 nAChR transcripts and alpha9 nAChR proteins in the retina of any species. Quantitative RT-PCR (qPCR) showed changes in AChR transcript expression in the alpha7 nAChR KO mouse retina relative to WT. Within whole retina alpha2, alpha9, alpha10, beta4, m1 and m4 AChR transcripts were up-regulated, while alpha5 nAChR transcripts were down-regulated. However, cell populations showed subtle differences; m4 mAChR transcripts were up-regulated in the ganglion cell layer and outer portion of the inner nuclear layer (oINL),while beta4 nAChR transcript up-regulation was limited to the oINL. Surprisingly, alpha2, alpha9, beta4, m2 and m4 transcripts were

  5. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    PubMed

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  6. Alpha/sub 1/ receptor coupling events initiated by methoxy-substituted tolazoline partial agonists

    SciTech Connect

    Wick, P.; Keung, A.; Deth, R.

    1986-03-01

    A series of mono- and dimethyoxy substituted tolazoline derivatives, known to be partial agonists at the alpha/sub 1/ receptor, were compared with the ..cap alpha../sub 1/ selective full agonist phenylephrine (PE) on isolated strips of rabbit aorta Agonist activity was evaluated in contraction, /sup 45/Ca influx, /sup 45/Ca efflux, and /sup 32/P-Phospholipid labelling studies. Maximum contractile responses for the 2-, 3-, and 3, 5- methoxy substituted tolazoline derivatives (10/sup -5/M) were 53.8, 67.6 and 99.7% of the PE (10/sup -5/M) response respectively. These same partial agonists caused a stimulation of /sup 45/Ca influx to the extent of 64, 86, and 95% of the PE response respectively. In /sup 45/Ca efflux studies, (a measure of the intracellular Ca/sup +2/ release) the tolazolines caused: 30%, 63%, and 78% of the PE stimulated level. /sup 32/P-Phosphatidic acid (PA) labelling was measured as an index of PI turnover after ..cap alpha../sub 1/ receptor stimulation. Compared to PE, the 2-, 3-, and 3,5- methoxy substituted tolazoline derivatives caused 22, 46, and 72% PA labelling. The above values are all in reasonable accord with the rank order or agonist activity shown in maximum contractile responses. The results of this investigation suggest that partial agonists stimulate ..cap alpha.. receptor coupling events at a level which is quantitatively comparable to their potencies in causing contraction of arterial smooth muscle.

  7. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor Alpha Selective

    SciTech Connect

    Li, J.; Kennedy, L; Shi, Y; Tao, S; Ye, X; Chen, S; Wang, Y; Hernandez, A; Wang, W; et al.

    2010-01-01

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and {approx}410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

  8. α1-Adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH.

    PubMed

    Ives, Stephen J; Andtbacka, Robert H I; Noyes, R Dirk; Morgan, R Garrett; Gifford, Jayson R; Park, Song-Young; Symons, J David; Richardson, Russell S

    2013-01-01

    Graded exercise results not only in the modulation of adrenergic mediated smooth muscle tone and a preferential increase in blood flow to the active skeletal muscle termed 'functional sympatholysis', but is also paralleled by metabolically induced reductions in pH. We therefore sought to determine whether pH attenuates α(1)-adrenergic receptor sensitivity in human feed arteries. Feed arteries (560 ± 31 μm i.d.) were harvested from 24 humans (55 ± 4 years old) and studied using the isometric tension technique. Vessel function was assessed using KCl, phenylephrine (PE), ACh and sodium nitroprusside (SNP) concentration-response curves to characterize non-receptor-mediated and receptor-mediated vasocontraction, as well as endothelium-dependent and -independent vasorelaxation, respectively. All concentration-response curves were obtained from (originally contiguous) vessel rings in separate baths with a pH of 7.4, 7.1, 6.8 or 6.5. Reduction of the pH, via HCl, reduced maximal PE-induced vasocontraction (pH 7.4 = 85 ± 19, pH 7.1 = 57 ± 16, pH 6.8 = 34 ± 15 and pH 6.5 = 16 ± 5% KCl(max)), which was partly due to reduced smooth muscle function, as assessed by KCl (pH 7.4 = 88 ± 13, pH 7.1 = 67 ± 8, pH 6.8 = 67 ± 9 and pH 6.5 = 58 ± 8% KCl(max)). Graded acidosis had no effect on maximal vasorelaxation. In summary, these data reveal that reductions in extracellular pH attenuate α(1)-mediated vasocontraction, which is partly explained by reduced smooth muscle function, although vasorelaxation in response to ACh and SNP remained intact. These findings support the concept that local acidosis is likely to contribute to functional sympatholysis and exercise hyperaemia by opposing sympathetically mediated vasoconstriction while not impacting vasodilatation.

  9. A T-cell specific transcriptional enhancer element 3 prime of C sub. alpha. in the human T-cell receptor. alpha. locus

    SciTech Connect

    Ho, Icheng; Yang, Lihsuan; Morle, G.; Leiden, J.M. )

    1989-09-01

    A transcriptional enhancer element has been identified 4.5 kilobases 3{prime} of C{sub {alpha}} (constant region {alpha} chain) in the human T-cell receptor (TCR) {alpha}-chain locus. This enhancer is active on both a TCR V{sub {alpha}} (variable region {alpha} chain) promoter and the minimal simian virus 40 promoter in TCR {alpha}/{beta} Jurkat and EL4 cells but is inactive on a V{sub {alpha}} promoter TCR {gamma}/{delta} PEER and Molt-13 cells, clone 13 B cells, and HeLa fibroblasts. The enhancer has been localized to a 116-base-pair BstXI/Dra I restriction enzyme fragment, which lacks immunoglobulin octamer and {kappa}B enhancer motifs but does contain a consensus cAMP-response element (CRE). DNase I footprint analyses demonstrated that the minimal enhancer contains two binding sites for Jurkat nuclear proteins. One of these sites corresponds to the CRE, while the other does not correspond to a known transcriptional enhancer motif. These data support a model in which TCR {alpha} gene transcription is regulated by a unique set of cis-acting sequences and trans-acting factors, which are differentially active in cells of the TCR {alpha}/{beta} lineage. In addition, the TCR {alpha} enhancer may play a role in activating oncogene expression in T-lymphoblastoid tumors that have previously been shown to display chromosomal translocations into the human TCR {alpha} locus.

  10. Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin.

    PubMed

    Tippmann, Frank; Hundt, Jana; Schneider, Anja; Endres, Kristina; Fahrenholz, Falk

    2009-06-01

    Late-onset Alzheimer's disease is often connected with nutritional misbalance, such as enhanced cholesterol intake, deficiency in polyunsaturated fatty acids, or hypovitaminosis. The alpha-secretase ADAM10 has been found to be regulated by retinoic acid, the bioreactive metabolite of vitamin A. Here we show that retinoids induce gene expression of ADAM10 and alpha-secretase activity by nonpermissive retinoid acid receptor/retinoid X receptor (RAR/RXR) heterodimers, whereby alpha- and beta-isotypes of RAR play a major role. However, ligands of other RXR binding partners, such as the vitamin D receptor, do not stimulate alpha-secretase activity. On the basis of these findings, we examined the effect of synthetic retinoids and found a strong enhancement of nonamyloidogenic processing of the amyloid precursor protein by the vitamin A analog acitretin: it stimulated ADAM10 promoter activity with an EC(50) of 1.5 microM and led to an increase of mature ADAM10 protein that resulted in a two- to three-fold increase of the ratio between alpha- and beta-secretase activity in neuroblastoma cells. The alpha-secretase stimulation by acitretin was completely inhibited by the ADAM10-specific inhibitor GI254023X. Intracerebral injection of acitretin in APP/PS1-21 transgenic mice led to a reduction of Abeta(40) and Abeta(42). The results of this study may have clinical relevance because acitretin has been approved for the treatment of psoriasis since 1997 and found generally safe for long-term use in humans.

  11. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha.

    PubMed

    LoVerme, Jesse; Russo, Roberto; La Rana, Giovanna; Fu, Jin; Farthing, Jesse; Mattace-Raso, Giuseppina; Meli, Rosaria; Hohmann, Andrea; Calignano, Antonio; Piomelli, Daniele

    2006-12-01

    Severe pain remains a major area of unmet medical need. Here we report that agonists of the nuclear receptor PPAR-alpha (peroxisome proliferator-activated receptor-alpha) suppress pain behaviors induced in mice by chemical tissue injury, nerve damage, or inflammation. The PPAR-alpha agonists GW7647 [2-(4-(2-(1-cyclohexanebutyl)-3-cyclohexylureido)ethyl)phenylthio)-2-methylpropionic acid], Wy-14643 [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid], and palmitoylethanolamide (PEA) reduced nocifensive behaviors elicited in mice by intraplantar (i.pl.) injection of formalin or i.p. injection of magnesium sulfate. These effects were absent in PPAR-alpha-null mice yet occurred within minutes of agonist administration in wild-type mice, suggesting that they were mediated through a transcription-independent mechanism. Consistent with this hypothesis, blockade of calcium-operated IK(ca) (K(Ca)3.1) and BK(ca) (K(Ca)1.1) potassium channels prevented the effects of GW7647 and PEA in the formalin test. Three observations suggest that PPAR-alpha agonists may inhibit nocifensive responses by acting on peripheral PPAR-alpha. (i) PEA reduced formalin-induced pain at i.pl. doses that produced no increase in systemic PEA levels; (ii) PPAR-alpha was expressed in dorsal root ganglia neurons of wild-type but not PPAR-alpha-null mice; and (ii) GW7647 and PEA prevented formalin-induced firing of spinal cord nociceptive neurons in rats. In addition to modulating nociception, GW7647 and PEA reduced hyperalgesic responses in the chronic constriction injury model of neuropathic pain; these effects were also contingent on PPAR-alpha expression and were observed following either acute or subchronic PPAR-alpha agonist administration. Finally, acute administration of GW7647 and PEA reduced hyperalgesic responses in the complete Freund's adjuvant and carrageenan models of inflammatory pain. Our results suggest that PPAR-alpha agonists may represent a novel class of analgesics.

  12. Phytol directly activates peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) and regulates gene expression involved in lipid metabolism in PPAR{alpha}-expressing HepG2 hepatocytes

    SciTech Connect

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo . E-mail: fat@kais.kyoto-u.ac.jp

    2005-11-18

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPAR{alpha}-specific activator. Phytol induced the increase in PPAR{alpha}-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPAR{alpha}. Moreover, the addition of phytol upregulated the expression of PPAR{alpha}-target genes at both mRNA and protein levels in PPAR{alpha}-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPAR{alpha} ligand and that it stimulates the expression of PPAR{alpha}-target genes in intact cells. Because PPAR{alpha} activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism.

  13. Distinct functions for thyroid hormone receptors alpha and beta in brain development indicated by differential expression of receptor genes.

    PubMed Central

    Forrest, D; Hallböök, F; Persson, H; Vennström, B

    1991-01-01

    Thyroid hormones are essential for correct brain development, and since vertebrates express two thyroid hormone receptor genes (TR alpha and beta), we investigated TR gene expression during chick brain ontogenesis. In situ hybridization analyses showed that TR alpha mRNA was widely expressed from early embryonic stages, whereas TR beta was sharply induced after embryonic day 19 (E19), coinciding with the known hormone-sensitive period. Differential expression of TR mRNAs was striking in the cerebellum: TR beta mRNA was induced in white matter and granule cells after the migratory phase, suggesting a main TR beta function in late, hormone-dependent glial and neuronal maturation. In contrast, TR alpha mRNA was expressed in the earlier proliferating and migrating granule cells, and in the more mature granular and Purkinje cell layers after hatching, indicating a role for TR alpha in both immature and mature neural cells. Surprisingly, both TR genes were expressed in early cerebellar outgrowth at E9, before known hormone requirements, with TR beta mRNA restricted to the ventricular epithelium of the metencephalon and TR alpha expressed in migrating cells and the early granular layer. The results implicate TRs with distinct functions in the early embryonic brain as well as in the late phase of hormone requirement. Images PMID:1991448

  14. Afr1p regulates the Saccharomyces cerevisiae alpha-factor receptor by a mechanism that is distinct from receptor phosphorylation and endocytosis.

    PubMed Central

    Davis, C; Dube, P; Konopka, J B

    1998-01-01

    The alpha-factor pheromone receptor activates a G protein signaling pathway that induces the conjugation of the yeast Saccharomyces cerevisiae. Our previous studies identified AFR1 as a gene that regulates this signaling pathway because overexpression of AFR1 promoted resistance to alpha-factor. AFR1 also showed an interesting genetic relationship with the alpha-factor receptor gene, STE2, suggesting that the receptor is regulated by Afr1p. To investigate the mechanism of this regulation, we tested AFR1 for a role in the two processes that are known to regulate receptor signaling: phosphorylation and down-regulation of ligand-bound receptors by endocytosis. AFR1 overexpression diminished signaling in a strain that lacks the C-terminal phosphorylation sites of the receptor, indicating that AFR1 acts independently of phosphorylation. The effects of AFR1 overexpression were weaker in strains that were defective in receptor endocytosis. However, AFR1 overexpression did not detectably influence receptor endocytosis or the stability of the receptor protein. Instead, gene dosage studies showed that the effects of AFR1 overexpression on signaling were inversely proportional to the number of receptors. These results indicate that AFR1 acts independently of endocytosis, and that the weaker effects of AFR1 in strains that are defective in receptor endocytosis were probably an indirect consequence of their increased receptor number caused by the failure of receptors to undergo ligand-stimulated endocytosis. Analysis of the ligand binding properties of the receptor showed that AFR1 overexpression did not alter the number of cell-surface receptors or the affinity for alpha-factor. Thus, Afr1p prevents alpha-factor receptors from activating G protein signaling by a mechanism that is distinct from other known pathways. PMID:9504911

  15. Effects of PGF{sub 2{alpha}} on human melanocytes and regulation of the FP receptor by ultraviolet radiation

    SciTech Connect

    Scott, Glynis . E-mail: Glynis_Scott@urmc.rochester.edu; Jacobs, Stacey; Leopardi, Sonya; Anthony, Frank A.; Learn, Doug; Malaviya, Rama; Pentland, Alice

    2005-04-01

    Prostaglandins are potent lipid hormones that activate multiple signaling pathways resulting in regulation of cellular growth, differentiation, and apoptosis. In the skin, prostaglandins are rapidly released by keratinocytes following ultraviolet radiation and are chronically present in inflammatory skin lesions. We have shown previously that melanocytes, which provide photoprotection to keratinocytes through the production of melanin, express several receptors for prostaglandins, including the PGE{sub 2} receptors EP{sub 1} and EP{sub 3} and the PGF{sub 2{alpha}} receptor FP, and that PGF{sub 2{alpha}} stimulates melanocyte dendricity. We now show that PGF{sub 2{alpha}} stimulates the activity and expression of tyrosinase, the rate-limiting enzyme in melanin synthesis. Analysis of FP receptor regulation showed that the FP receptor is regulated by ultraviolet radiation in melanocytes in vitro and in human skin in vivo. We also show that ultraviolet irradiation stimulates production of PGF{sub 2{alpha}} by melanocytes. These results show that PGF{sub 2{alpha}} binding to the FP receptor activates signals that stimulate a differentiated phenotype (dendricity and pigmentation) in melanocytes. The regulation of the FP receptor and the stimulation of production of PGF{sub 2{alpha}} in melanocytes in response to ultraviolet radiation suggest that PGF{sub 2{alpha}} could act as an autocrine factor for melanocyte differentiation.

  16. New melanocortin 1 receptor binding motif based on the C-terminal sequence of alpha-melanocyte-stimulating hormone.

    PubMed

    Schiöth, Helgi B; Muceniece, Ruta; Mutule, Ilga; Wikberg, Jarl E S

    2006-10-01

    The C-terminal tripeptide of the alpha-melanocyte stimulating hormone (alpha-MSH11-13) possesses strong antiinflammatory activity without known cellular target. In order to better understand the structural requirements for function of such motif, we designed, synthesized and tested out Trp- and Tyr-containing analogues of the alpha-MSH11-13. Seven alpha-MSH11-13 analogues were synthesized and characterized for their binding to the melanocortin receptors recombinantly expressed in insect (Sf9) cells, infected with baculovirus carrying corresponding MC receptor DNA. We also tested these analogues on B16-F1 mouse melanoma cells endogenously expressing the MC1 receptor for binding and for ability to increase cAMP levels as well as on COS-7 cells transfected with the human MC receptors. The data indicate that HS401 (Ac-Tyr-Lys-Pro-Val-NH2) and HS402 (Ac-Lys-Pro-Val-Tyr-NH2) selectively bound to the MC1 receptor and stimulated cAMP generation in a concentration dependent way while the other Tyr- and Trp-containing alpha-MSH11-13 analogues neither bound to MC receptors nor stimulated cAMP. We have thus identified new MC receptor binding motif derived from the C-terminal sequence of alpha-MSH. The tetrapeptides have novel properties as the both act via MC-ergic pathways and also carry the anti-inflammatory alpha-MSH11-13 message sequence.

  17. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    SciTech Connect

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao; Han, Xiang Hua; Lee, Dong-Ho; Lee, Hak-Ju; Hwang, Bang Yeon; Lee, Sung-Joon

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  18. Role of selective alpha and beta adrenergic receptor mechanisms in rat jejunal longitudinal muscle contractility.

    PubMed

    Seiler, Roland; Rickenbacher, Andreas; Shaw, Sidney; Haefliger, Simon; Balsiger, Bruno M

    2008-06-01

    Gut motility is modulated by adrenergic mechanisms. The aim of our study was to examine mechanisms of selective adrenergic receptors in rat jejunum. Spontaneous contractile activity of longitudinal muscle strips from rat jejunum was measured in 5-ml tissue chambers. Dose-responses (six doses, 10(-7) -3 x 10(-5)M) to norepinephrine (NE, nonspecific), phenylephrine (PH, alpha1), clonidine (C, alpha2), prenalterol (PR, beta1), ritodrine (RI, beta2), and ZD7714 (ZD, beta3) were evaluated with and without tetrodotoxin (TTX, nerve blocker). NE(3 x 10(-5)M) inhibited 74 +/- 5% (mean +/- SEM) of spontaneous activity. This was the maximum effect. The same dose of RI(beta2), PH(alpha1), or ZD(beta(3)) resulted in an inhibition of only 56 +/- 5, 43 +/- 4, 33 +/- 6, respectively. The calculated concentration to induce 50% inhibition (EC50) of ZD(beta3) was similar to NE, whereas higher concentrations of PH(alpha1) or RI(beta2) were required. C(alpha2) and PR(beta1) had no effect. TTX changed exclusively the EC50 of RI from 4.4 +/- 0.2 to 2.7 +/- 0.8% (p < 0.04). Contractility was inhibited by NE (nonspecific). PH(alpha1), RI(beta2), and ZD(beta3) mimic the effect of NE. TTX reduced the inhibition by RI. Our results suggest that muscular alpha1, beta2, and beta3 receptor mechanisms mediate adrenergic inhibition of contractility in rat jejunum. beta2 mechanisms seem to involve also neural pathways.

  19. Definition of the interferon-alpha receptor-binding domain on the TYK2 kinase.

    PubMed

    Yan, H; Piazza, F; Krishnan, K; Pine, R; Krolewski, J J

    1998-02-13

    Interferons and cytokines modulate gene expression via a simple, direct signaling pathway containing receptors, JAK tyrosine kinases, and STAT transcription factors. The interferon-alpha pathway is a model for these cascades. Two receptors, IFNaR1 and IFNaR2, associate exclusively in a constitutive manner with two JAK proteins, TYK2 and JAK1, respectively. Defining the molecular interface between JAK proteins and their receptors is critical to understanding the signaling pathway and may contribute to the development of novel therapeutics. This report defines the IFNaR1 interaction domain on TYK2. In vitro binding studies demonstrate that the amino-terminal half of TYK2, which is approximately 600 amino acids long and contains JAK homology (JH) domains 3-7, comprises the maximal binding domain for IFNaR1. A fragment containing amino acids 171-601 (JH3-6) also binds IFNaR1, but with reduced affinity. Glutathione S-transferase-TYK2 fusion proteins approximating either the JH6 or JH3 domain affinity-precipitate IFNaR1, suggesting that these are major sites of interaction within the larger binding domain. TYK2 amino acids 1-601 act in a dominant manner to inhibit the transcription of an interferon-alpha-dependent reporter gene, presumably by displacing endogenous TYK2 from the receptor. This same fragment inhibits interferon-alpha-dependent tyrosine phosphorylation of TYK2, STAT1, and STAT2.

  20. Activation and desensitization of nicotinic alpha7-type acetylcholine receptors by benzylidene anabaseines and nicotine.

    PubMed

    Papke, Roger L; Kem, William R; Soti, Ferenc; López-Hernández, Gretchen Y; Horenstein, Nicole A

    2009-05-01

    Nicotinic receptor activation is inextricably linked to desensitization. This duality affects our ability to develop useful therapeutics targeting nicotinic acetylcholine receptor (nAChR). Nicotine and some alpha7-selective experimental partial agonists produce a transient activation of alpha7 receptors followed by a period of prolonged residual inhibition or desensitization (RID). The object of the present study was to determine whether RID was primarily due to prolonged desensitization or due to channel block. To make this determination, we used agents that varied significantly in their production of RID and two alpha7-selective positive allosteric modulators (PAMs): 5-hydroxyindole (5HI), a type 1 PAM that does not prevent desensitization; and 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596), a type 2 PAM that reactivates desensitized receptors. The RID-producing compounds nicotine and 3-(2,4-dimethoxybenzylidene)anabaseine (diMeOBA) could obscure the potentiating effects of 5HI. However, through the use of nicotine, diMeOBA, and the RID-negative compound 3-(2,4-dihydroxybenzylidene)anabaseine (diOHBA) in combination with PNU-120596, we confirmed that diMeOBA produces short-lived channel block of alpha7 but that RID is because of the induction of a desensitized state that is stable in the absence of PNU-120596 and activated in the presence of PNU-120596. In contrast, diOHBA produced channel block but only readily reversible desensitization, whereas nicotine produced desensitization that could be converted into activation by PNU-120596 but no demonstrable channel block. Steady-state currents through receptors that would otherwise be desensitized could also be produced by the application of PNU-120596 in the presence of a physiologically relevant concentration of choline (60 microM), which may be significant for the therapeutic development of type 2 PAMs.

  1. Regulation of TNF-alpha secretion by a specific melanocortin-1 receptor peptide agonist.

    PubMed

    Ignar, Diane M; Andrews, John L; Jansen, Marilyn; Eilert, Michelle M; Pink, Heather M; Lin, Peiyuan; Sherrill, Ronald G; Szewczyk, Jerzy R; Conway, James G

    2003-05-01

    The lack of specific pharmacological tools has impeded the evaluation of the role of each melanocortin receptor (MCR) subtype in the myriad physiological effects of melanocortins. 154N-5 is an octapeptide (MFRdWFKPV-NH(2)) that was first identified as an MC1R antagonist in Xenopus melanophores [J. Biol. Chem. 269 (1994) 29846]. In this manuscript, we show that 154N-5 is a specific agonist for human and murine MC1R. The peptide has negligible activity at MC3R and MC4R and is 25-fold less potent and a weak agonist at MC5R. 154N-5 was tested in both a cellular and an animal model of tumor necrosis factor-alpha (TNF-alpha) secretion. The inhibitory efficacy of 154N-5 on TNF-alpha secretion in both models was similar to the nonselective agonist NDP-alpha-melanocyte stimulating hormone (NDP-alphaMSH), thus, we conclude that inhibition of TNF-alpha secretion by melanocortin peptides is mediated by MC1R. 154N-5 is a valuable new tool for the evaluation of specific contribution of MC1R agonism to physiological and pathological processes.

  2. Genomic organization of the human T-cell antigen-receptor alpha/delta locus.

    PubMed

    Satyanarayana, K; Hata, S; Devlin, P; Roncarolo, M G; De Vries, J E; Spits, H; Strominger, J L; Krangel, M S

    1988-11-01

    Two clusters of overlapping cosmid clones comprising about 100 kilobases (kb) at the human T-cell antigen-receptor alpha/delta locus were isolated from a genomic library. The structure of the germ-line V delta 1 variable gene segment was determined. V delta 1 is located 8.5 kb downstream of the V alpha 13.1 gene segment, and both V segments are arranged in the same transcriptional orientation. The V alpha 17.1 segment is located between V delta 1 and the D delta, J delta, C delta region (containing the diversity, joining, and constant gene segments). Thus, V delta and V alpha segments are interspersed along the chromosome. The germ-line organization of the D delta 2, J delta 1, and J delta 2 segments was determined. Linkage of C delta to the J alpha region was established by identification of J alpha segments within 20 kb downstream of C delta. The organization of the locus was also analyzed by field-inversion gel electrophoresis. The unrearranged V delta 1 and D delta, J delta, C delta regions are quite distant from each other, apparently separated by a minimum of 175-180 kb.

  3. Alpha 2-adrenergic receptors influence tyrosine hydroxylase activity in retinal dopamine neurons.

    PubMed

    Iuvone, P M; Rauch, A L

    1983-12-12

    Dopamine (DA) is a putative neurotransmitter in a population of interneurons in the mammalian retina that are activated by photic stimulation. Pharmacological studies were conducted to determine if alpha 2-adrenergic receptors influence the activity of retinal tyrosine hydroxylase (TH), a biochemical indicator of changes in the activity of the DA-containing neurons. TH activity was low in dark-adapted retinas and high in light-exposed retinas. Systemic administration of the alpha 2-adrenoceptor antagonists, yohimbine and piperoxane, to dark-adapted rats significantly stimulated TH activity. This effect was apparently mediated locally within the retina because the response could also be elicited by direct injection of yohimbine into the vitreous. The dose-response relationships for the effects of alpha 2-adrenoceptor antagonists on retinal TH activity were similar to those for the effects on brain noradrenergic neurons, where alpha 2-adrenoceptors have been shown to be involved in the autoregulation of neuronal activity. Clonidine, an alpha 2-adrenoceptor agonist, had no effect when administered alone to dark-adapted rats, but it attenuated the stimulatory effect of yohimbine. In contrast, clonidine decreased TH activity of light-exposed retinas, an effect that was reversed by yohimbine. These observations suggest that alpha 2-adrenoceptors influence the activity of retinal DA-containing neurons.

  4. The Golgi apparatus is a functionally distinct Ca2+ store regulated by the PKA and Epac branches of the β1-adrenergic signaling pathway.

    PubMed

    Yang, Zhaokang; Kirton, Hannah M; MacDougall, David A; Boyle, John P; Deuchars, James; Frater, Brenda; Ponnambalam, Sreenivasan; Hardy, Matthew E; White, Edward; Calaghan, Sarah C; Peers, Chris; Steele, Derek S

    2015-10-13

    Ca(2+) release from the Golgi apparatus regulates key functions of the organelle, including vesicle trafficking. We found that the Golgi apparatus was the source of prolonged Ca(2+) release events that originated near the nuclei of primary cardiomyocytes. Golgi Ca(2+) release was unaffected by depletion of sarcoplasmic reticulum Ca(2+), and disruption of the Golgi apparatus abolished Golgi Ca(2+) release without affecting sarcoplasmic reticulum function, suggesting functional and spatial independence of Golgi and sarcoplasmic reticulum Ca(2+) stores. β1-Adrenoceptor stimulation triggers the production of the second messenger cAMP, which activates the Epac family of Rap guanine nucleotide exchange factors and the kinase PKA (protein kinase A). Phosphodiesterases (PDEs), including those in the PDE3 and PDE4 families, degrade cAMP. Activation of β1-adrenoceptors stimulated Golgi Ca(2+) release, an effect that required activation of Epac, PKA, and the kinase CaMKII. Inhibition of PDE3s or PDE4s potentiated β1-adrenergic-induced Golgi Ca(2+) release, which is consistent with compartmentalization of cAMP signaling near the Golgi apparatus. Interventions that stimulated Golgi Ca(2+) release appeared to increase the trafficking of vascular endothelial growth factor receptor-1 (VEGFR-1) from the Golgi apparatus to the surface membrane of cardiomyocytes. In cardiomyocytes from rats with heart failure, decreases in the abundance of PDE3s and PDE4s were associated with increased Golgi Ca(2+) release events. These data suggest that the Golgi apparatus is a focal point for β1-adrenergic-stimulated Ca(2+) signaling and that the Golgi Ca(2+) store functions independently from the sarcoplasmic reticulum and the global Ca(2+) transients that trigger contraction in cardiomyocytes.

  5. Synthesis of four stereoisomers of 1-azabiocyclo[2.2.2]OCT-3-YL-{alpha}-fluoroalkyl-{alpha}-hydroxy-{alpha}-phenylacetate (FQNPe): Potential imaging ligands for the muscarinic-cholinergic receptor (m-AChR) by PET

    SciTech Connect

    Luo, H.; McPherson, D.W.; Knapp, F.F. Jr.

    1996-10-01

    Earlier studies with the racemic 1-azabiocyclo[2.2.2]oct-3-yl {alpha}-fluoroalkyl-{alpha}-hydroxy-{alpha}-phenylacetate (FQNPe) mixture had demonstrated high in vitro binding affinity for the muscarinic-cholinergic receptor (m-AChR). Pre-treatment of rats with this new agent significantly blocked receptor localization of subsequently injected [I-131]-Z-(-,-)-IQNP, which is an established high affinity m-AChR ligand. Syntheses and characterization of the four FQNPe stereoisomers: (-)(-) FQNPe, (-)(+) FQNPe, (+)(-) FQNPe, and (+)(+) FQNPe will be presented. The interesting NMR spectra of the diastereomeric salts formed in the resolution of racemic {alpha}-(1-chloropent-5-yl)-{alpha}-hydroxy {alpha}-phenylacetic acid will also be discussed.

  6. New substituted 1-(2,3-dihydrobenzo[1, 4]dioxin-2-ylmethyl)piperidin-4-yl derivatives with alpha(2)-adrenoceptor antagonist activity.

    PubMed

    Mayer, P; Brunel, P; Chaplain, C; Piedecoq, C; Calmel, F; Schambel, P; Chopin, P; Wurch, T; Pauwels, P J; Marien, M; Vidaluc, J L; Imbert, T

    2000-10-05

    The emergence of a novel theory concerning the role of noradrenaline in the progression and the treatment of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases has provided a new impetus toward the discovery of novel compounds acting at alpha(2)-adrenoceptors. A series of substituted 1-(2, 3-dihydrobenzo[1,4]dioxin-2-ylmethyl)piperidin-4-yl derivatives bearing an amide, urea, or imidazolidinone moiety was studied. Some members of this series of compounds proved to be potent alpha(2)-adrenoceptor antagonists with good selectivity versus alpha(1)-adrenergic and D(2)-dopamine receptors. Particular emphasis is given to compound 33g which displays potent alpha(2)-adrenoceptor binding affinity in vitro and central effects in vivo following oral administration.

  7. Alpha-Bulges in G Protein-Coupled Receptors

    PubMed Central

    van der Kant, Rob; Vriend, Gert

    2014-01-01

    Agonist binding is related to a series of motions in G protein-coupled receptors (GPCRs) that result in the separation of transmembrane helices III and VI at their cytosolic ends and subsequent G protein binding. A large number of smaller motions also seem to be associated with activation. Most helices in GPCRs are highly irregular and often contain kinks, with extensive literature already available about the role of prolines in kink formation and the precise function of these kinks. GPCR transmembrane helices also contain many α-bulges. In this article we aim to draw attention to the role of these α-bulges in ligand and G-protein binding, as well as their role in several aspects of the mobility associated with GPCR activation. This mobility includes regularization and translation of helix III in the extracellular direction, a rotation of the entire helix VI, an inward movement of the helices near the extracellular side, and a concerted motion of the cytosolic ends of the helices that makes their orientation appear more circular and that opens up space for the G protein to bind. In several cases, α-bulges either appear or disappear as part of the activation process. PMID:24806342

  8. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    PubMed Central

    Müller, Cristina; Reber, Josefine; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based α-radionuclide therapy in tumor-bearing mice. PMID:24633429

  9. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit.

    PubMed Central

    Neumann, D; Barchan, D; Horowitz, M; Kochva, E; Fuchs, S

    1989-01-01

    The acetylcholine receptor (AcChoR) at the neuromuscular junction of elapid snakes binds cholinergic ligands but unlike other muscle AcChoRs does not bind alpha-bungarotoxin. Numerous studies indicate that the ligand-binding site of the AcChoR includes cysteine residues at positions 192 and 193 of the alpha subunit. We have previously shown that a synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo AcChoR alpha subunit contains the essential elements of the ligand-binding site. In an attempt to elucidate the structural basis for the precise binding properties of snake AcChoR, we sequenced a portion of the snake AcChoR alpha subunit. First, a mouse AcChoR alpha-subunit cDNA probe was used to screen a size-selected snake (Natrix tessellata) genomic library. A genomic clone was isolated and was found to contain sequences homologous to the exon including the first two cysteines (Cys-128 and -142) of AcChoR alpha subunit. The domain of the alpha subunit from Natrix and cobra AcChoR (amino acid residues 119-222), which contains the four extracellular cysteines (128, 142, 192, and 193), was amplified by reverse transcription of mRNA and the polymerase chain reaction and then sequenced. The deduced amino acid sequence showed that the snake alpha subunit contains the two tandem cysteines at positions 192 and 193, resembling all other AcChoR alpha subunits. Sequence comparison revealed that the cloned region of the snake alpha subunit is highly homologous (75-80%) to other muscle AcChoRs and not to neuronal AcChoR, which also does not bind alpha-bungarotoxin. In the presumed ligand-binding site, in the vicinity of Cys-192 and Cys-193, four major substitutions occur in the snake sequence--at positions 184 (Trp----Phe), 185 (Lys----Trp), 187 (Trp----Ser), and 194 (Pro----Leu). In addition, Asn-189 is a putative N-glycosylation site, present only in the snake. These changes, or part of them, may explain the lack of alpha-bungarotoxin-binding to snake Ac

  10. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit.

    PubMed

    Neumann, D; Barchan, D; Horowitz, M; Kochva, E; Fuchs, S

    1989-09-01

    The acetylcholine receptor (AcChoR) at the neuromuscular junction of elapid snakes binds cholinergic ligands but unlike other muscle AcChoRs does not bind alpha-bungarotoxin. Numerous studies indicate that the ligand-binding site of the AcChoR includes cysteine residues at positions 192 and 193 of the alpha subunit. We have previously shown that a synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo AcChoR alpha subunit contains the essential elements of the ligand-binding site. In an attempt to elucidate the structural basis for the precise binding properties of snake AcChoR, we sequenced a portion of the snake AcChoR alpha subunit. First, a mouse AcChoR alpha-subunit cDNA probe was used to screen a size-selected snake (Natrix tessellata) genomic library. A genomic clone was isolated and was found to contain sequences homologous to the exon including the first two cysteines (Cys-128 and -142) of AcChoR alpha subunit. The domain of the alpha subunit from Natrix and cobra AcChoR (amino acid residues 119-222), which contains the four extracellular cysteines (128, 142, 192, and 193), was amplified by reverse transcription of mRNA and the polymerase chain reaction and then sequenced. The deduced amino acid sequence showed that the snake alpha subunit contains the two tandem cysteines at positions 192 and 193, resembling all other AcChoR alpha subunits. Sequence comparison revealed that the cloned region of the snake alpha subunit is highly homologous (75-80%) to other muscle AcChoRs and not to neuronal AcChoR, which also does not bind alpha-bungarotoxin. In the presumed ligand-binding site, in the vicinity of Cys-192 and Cys-193, four major substitutions occur in the snake sequence--at positions 184 (Trp----Phe), 185 (Lys----Trp), 187 (Trp----Ser), and 194 (Pro----Leu). In addition, Asn-189 is a putative N-glycosylation site, present only in the snake. These changes, or part of them, may explain the lack of alpha-bungarotoxin-binding to snake AcChoR.

  11. Physical and functional interaction of the Epstein-Barr virus BZLF1 transactivator with the retinoic acid receptors RAR alpha and RXR alpha.

    PubMed Central

    Sista, N D; Barry, C; Sampson, K; Pagano, J

    1995-01-01

    Epstein-Barr virus (EBV) reactivation, indicated by induction of EBV early antigens from latently infected lymphoid cell lines by phorbol esters, is inhibited by retinoic acid (RA). Viral reactivation, which is triggered by the immediate-early BZLF-1 (Z) viral gene product, is repressed by retinoic acid receptors (RARs) RAR alpha and RXR alpha. These proteins negatively regulate Z-mediated transactivation of the promoter for an EBV early gene product, early antigen-diffuse (EaD). Here we confirm a direct physical interaction between the AP1-like protein Z and RXR alpha and map the domains of interaction in the Z protein and RXR alpha. The domain required for homodimerization of Z is separate from that required for its interaction with RXR alpha. Z also has the effect of repressing activation of an RAR-responsive cellular promoter (BRE). Point mutants in the dimerization domain of Z unable to interact with RXR alpha do not repress RXR alpha-mediated transactivation of BRE, the promoter for RAR beta, which suggests that interaction between the two proteins is required for this repressor effect. The domain of RXR alpha required for interaction with Z has been mapped, and is again separate from that required for homodimerization. These results indicate that a 'cross-coupling' or direct interaction between Z and RAR alpha and RXR alpha can modulate the reactivation of latent EBV infection and suggest that, reciprocally, the viral protein Z may influence cellular regulatory pathways. Images PMID:7784177

  12. 5{alpha}-Bile alcohols function as farnesoid X receptor antagonists

    SciTech Connect

    Nishimaki-Mogami, Tomoko . E-mail: mogami@nihs.go.jp; Kawahara, Yosuke; Tamehiro, Norimasa; Yoshida, Takemi; Inoue, Kazuhide; Ohno, Yasuo; Nagao, Taku; Une, Mizuho

    2006-01-06

    The farnesoid X receptor (FXR) is a bile acid/alcohol-activated nuclear receptor that regulates lipid homeostasis. Unlike other steroid receptors, FXR binds bile acids in an orientation that allows the steroid nucleus A to face helix 12 in the receptor, a crucial domain for coactivator-recruitment. Because most naturally occurring bile acids and alcohols contain a cis-oriented A, which is distinct from that of other steroids and cholesterol metabolites, we investigated the role of this 5{beta}-configuration in FXR activation. The results showed that the 5{beta}-(A/B cis) bile alcohols 5{beta}-cyprinol and bufol are potent FXR agonists, whereas their 5{alpha}-(A/B trans) counterparts antagonize FXR transactivation and target gene expression. Both isomers bound to FXR, but their ability to induce coactivator-recruitment and thereby induce transactivation differed. These findings suggest a critical role for the A orientation of bile salts in agonist/antagonist function.

  13. PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene.

    PubMed Central

    Hohaus, S; Petrovick, M S; Voso, M T; Sun, Z; Zhang, D E; Tenen, D G

    1995-01-01

    Growth factor receptors play an important role in hematopoiesis. In order to further understand the mechanisms directing the expression of these key regulators of hematopoiesis, we initiated a study investigating the transcription factors activating the expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha gene. Here, we demonstrate that the human GM-CSF receptor alpha promoter directs reporter gene activity in a tissue-specific fashion in myelomonocytic cells, which correlates with its expression pattern as analyzed by reverse transcription PCR. The GM-CSF receptor alpha promoter contains an important functional site between positions -53 and -41 as identified by deletion analysis of reporter constructs. We show that the myeloid and B cell transcription factor PU.1 binds specifically to this site. Furthermore, we demonstrate that a CCAAT site located upstream of the PU.1 site between positions -70 and -54 is involved in positive-negative regulation of the GM-CSF receptor alpha promoter activity. C/EBP alpha is the major CCAAT/enhancer-binding protein (C/EBP) form binding to this site in nuclear extracts of U937 cells. Point mutations of either the PU.1 site or the C/EBP site that abolish the binding of the respective factors result in a significant decrease of GM-CSF receptor alpha promoter activity in myelomonocytic cells only. Furthermore, we demonstrate that in myeloid and B cell extracts, PU.1 forms a novel, specific, more slowly migrating complex (PU-SF) when binding the GM-CSF receptor alpha promoter PU.1 site. This is the first demonstration of a specific interaction with PU.1 on a myeloid PU.1 binding site. The novel complex is distinct from that described previously as binding to B cell enhancer sites and can be formed by addition of PU.1 to extracts from certain nonmyeloid cell types which do not express PU.1, including T cells and epithelial cells, but not from erythroid cells. Furthermore, we demonstrate that the PU

  14. The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor.

    PubMed

    Casa, Angelo J; Hochbaum, Daniel; Sreekumar, Sreeja; Oesterreich, Steffi; Lee, Adrian V

    2015-11-05

    Fulvestrant, a selective estrogen receptor down-regulator (SERD) is a pure competitive antagonist of estrogen receptor alpha (ERα). Fulvestrant binds ERα and reduces the receptor's half-life by increasing protein turnover, however, its mechanism of action is not fully understood. In this study, we show that removal of the ERα nuclear localization sequence (ERΔNLS) resulted in a predominantly cytoplasmic ERα that was degraded in response to 17-β-estradiol (E2) but was resistant to degradation by fulvestrant. ERΔNLS bound the ligands and exhibited receptor interaction similar to ERα, indicating that the lack of degradation was not due to disruption of these processes. Forcing ERΔNLS into the nucleus with a heterologous SV40-NLS did not restore degradation, suggesting that the NLS domain itself, and not merely receptor localization, is critical for fulvestrant-induced ERα degradation. Indeed, cloning of the endogenous ERα NLS onto the N-terminus of ERΔNLS significantly restored both its nuclear localization and turnover in response to fulvestrant. Moreover, mutation of the sumoylation targets K266 and K268 within the NLS impaired fulvestrant-induced ERα degradation. In conclusion, our study provides evidence for the unique role of the ERα NLS in fulvestrant-induced degradation of the receptor.

  15. Receptor-recognized alpha 2-macroglobulin-methylamine elevates intracellular calcium, inositol phosphates and cyclic AMP in murine peritoneal macrophages.

    PubMed Central

    Misra, U K; Chu, C T; Rubenstein, D S; Gawdi, G; Pizzo, S V

    1993-01-01

    Human plasma alpha 2-macroglobulin (alpha 2M) is a tetrameric proteinase inhibitor, which undergoes a conformational change upon reaction with either a proteinase or methylamine. As a result, a receptor recognition site is exposed on each subunit of the molecule enabling it to bind to its receptors on macrophages. We have used Fura-2-loaded murine peritoneal macrophages and digital video fluorescence microscopy to examine the effects of receptor binding on second messenger levels. alpha 2M-methylamine caused a rapid 2-4-fold increase in intracellular Ca2+ concentration ([Ca2+]i) within 5 s of binding to receptors. The agonists induced a focal increase in [Ca2+]i that spread out to other areas of the cell. The increase in [Ca2+]i was dependent on the alpha 2M-methylamine concentration and on the extracellular [Ca2+]. Both sinusoidal and transitory oscillations were observed, which varied from cell to cell. Neither alpha 2M nor boiled alpha 2M-methylamine, forms that are not recognized by the receptor, affected [Ca2+]i in peritoneal macrophages under identical conditions of incubation. The alpha 2M-methylamine-induced rise in [Ca2+]i was accompanied by a rapid and transient increase in macrophage inositol phosphates, including inositol tris- and tetrakis-phosphates. Native alpha 2M did not stimulate a rise in inositol phosphates. Finally, binding of alpha 2M-methylamine to macrophages increased cyclic AMP transiently. Thus receptor-recognized alpha-macroglobulins behave as agonists whose receptor binding causes stimulation of signal transduction pathways. Images Figure 2 PMID:7681282

  16. alpha(2)-adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction.

    PubMed

    Zou, A P; Cowley, A W

    2000-09-01

    The present study was designed to investigate the role of nitric oxide (NO) in modulating the adrenergic vasoconstrictor response of the renal medullary circulation. In anesthetized rats, intravenous infusion of norepinephrine (NE) at a subpressor dose of 0.1 microgram. kg(-1). min(-1) did not alter renal cortical (CBF) and medullary (MBF) blood flows measured by laser-Doppler flowmetry nor medullary tissue PO(2) (P(m)O(2)) as measured by a polarographic microelectrode. In the presence of the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME) in the renal medulla, intravenous infusion of NE significantly reduced MBF by 30% and P(m)O(2) by 37%. With the use of an in vivo microdialysis-oxyhemoglobin NO-trapping technique, we found that intravenous infusion of NE increased interstitial NO concentrations by 43% in the renal medulla. NE-stimulated elevations of tissue NO were completely blocked either by renal medullary interstitial infusion of L-NAME or the alpha(2)-antagonist rauwolscine (30 microgram. kg(-1). min(-1)). Concurrently, intavenous infusion of NE resulted in a significant reduction of MBF in the presence of rauwolscine. The alpha(1)-antagonist prazosin (10 microgram. kg(-1). min(-1) renal medullary interstitial infusion) did not reduce the NE-induced increase in NO production, and NE increased MBF in the presence of prazosin. Microdissection and RT-PCR analyses demonstrated that the vasa recta expressed the mRNA of alpha(2B)-adrenergic receptors and that medullary thick ascending limb and collecting duct expressed the mRNA of both alpha(2A)- and alpha(2B)-adrenergic receptors. These subtypes of alpha(2)-adrenergic receptors may mediate NE-induced NO production in the renal medulla. We conclude that the increase in medullary NO production associated with the activation of alpha(2)-adrenergic receptors counteracts the vasoconstrictor effects of NE in the renal medulla and may play an important role in maintaining a constancy of MBF and medullary

  17. Estrogen Receptors Alpha (ERα) and Beta (ERβ): Subtype-Selective Ligands and Clinical Potential

    PubMed Central

    Paterni, Ilaria; Granchi, Carlotta; Katzenellenbogen, John A.; Minutolo, Filippo

    2014-01-01

    Estrogen receptors alpha (ERα) and beta (ERβ) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. Modulation of these receptors by prospective therapeutic agents is currently being considered for prevention and treatment of a wide variety of pathological conditions, such as, cancer, metabolic and cardiovascular diseases, neurodegeneration, inflammation, and osteoporosis. This review provides an overview and update of compounds that have been recently reported as modulators of ERs, with a particular focus on their potential clinical applications. PMID:24971815

  18. Characterization of alpha-conotoxin interactions with the nicotinic acetylcholine receptor and monoclonal antibodies.

    PubMed Central

    Ashcom, J D; Stiles, B G

    1997-01-01

    The venoms of predatory marine cone snails, Conus species, contain numerous peptides and proteins with remarkably diverse pharmacological properties. One group of peptides are the alpha-conotoxins, which consist of 13-19 amino acids constrained by two disulphide bonds. A biologically active fluorescein derivative of Conus geographus alpha-conotoxin GI (FGI) was used in novel solution-phase-binding assays with purified Torpedo californica nicotinic acetylcholine receptor (nAchR) and monoclonal antibodies developed against the toxin. The binding of FGI to nAchR or antibody had apparent dissociation constants of 10-100 nM. Structure-function studies with alpha-conotoxin GI analogues composed of a single disulphide loop revealed that different conformational restraints are necessary for effective toxin interactions with nAchR or antibodies. PMID:9359860

  19. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder.

    PubMed

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD.

  20. Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated alpha-subunit.

    PubMed Central

    Sawruk, E; Schloss, P; Betz, H; Schmitt, B

    1990-01-01

    Two genes, ard and als, are known to encode subunits of the nicotinic acetylcholine receptor (nAChR) in Drosophila. Here we describe the isolation of cDNA clones encoding a novel member (SAD, or alpha 2) of this receptor protein family. The deduced amino acid sequence displays high homology to the ALS protein and shares structural features with ligand binding nAChR alpha-subunits. Sad transcripts accumulate during major periods of neuronal differentiation and, in embryos, are localized in the central nervous system. Expression of SAD cRNA in Xenopus oocytes generates cation channels that are gated by nicotine. These data indicate heterogeneity of nAChRs in Drosophila. Images Fig. 3. Fig. 4. PMID:1697262

  1. Photoaffinity labeling of alpha- and beta- scorpion toxin receptors associated with rat brain sodium channel.

    PubMed

    Darbon, H; Jover, E; Couraud, F; Rochat, H

    1983-09-15

    Azido nitrophenylaminoacetyl [125I]iodo derivative of toxin II from Centruroides suffusus suffusus, a beta-toxin, and azido nitrophenylaminoacetyl [125I]iodo derivative of toxin V from Leiurus quinquestriatus quinquestriatus, an alpha-toxin, have been covalently linked after binding to their receptor sites that are related to the voltage sensitive sodium channel present in rat brain synaptosomes. Both derivatives labeled two polypeptides of 253000 +/- 20000 and 35000 +/- 2000 mol. wt. Labeling was blocked for each derivative by a large excess of the corresponding native toxin but no cross inhibition was obtained. These results suggest that both alpha - and beta - scorpion toxin receptors are located on or near the same two membrane polypeptides which may be part of the voltage dependent sodium channel.

  2. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder

    PubMed Central

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD. PMID:26322115

  3. Prothymosin Alpha Selectively Enhances Estrogen Receptor Transcriptional Activity by Interacting with a Repressor of Estrogen Receptor Activity

    PubMed Central

    Martini, Paolo G. V.; Delage-Mourroux, Regis; Kraichely, Dennis M.; Katzenellenbogen, Benita S.

    2000-01-01

    We find that prothymosin alpha (PTα) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTα interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTα, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTα increases the magnitude of ERα transcriptional activity three- to fourfold. It shows lesser enhancement of ERβ transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTα or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTα (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTα or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTα, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTα to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain its ability to selectively enhance

  4. Structural Basis for Iloprost as a Dual Peroxisome Proliferator-activated Receptor [alpha/delta] Agonist

    SciTech Connect

    Jin, Lihua; Lin, Shengchen; Rong, Hui; Zheng, Songyang; Jin, Shikan; Wang, Rui; Li, Yong

    2012-03-15

    Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural and functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.

  5. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production.

    PubMed

    Lesné, Sylvain; Ali, Carine; Gabriel, Cecília; Croci, Nicole; MacKenzie, Eric T; Glabe, Charles G; Plotkine, Michel; Marchand-Verrecchia, Catherine; Vivien, Denis; Buisson, Alain

    2005-10-12

    Acute brain injuries have been identified as a risk factor for developing Alzheimer's disease (AD). Because glutamate plays a pivotal role in these pathologies, we studied the influence of glutamate receptor activation on amyloid-beta (Abeta) production in primary cultures of cortical neurons. We found that sublethal NMDA receptor activation increased the production and secretion of Abeta. This effect was preceded by an increased expression of neuronal Kunitz protease inhibitory domain (KPI) containing amyloid-beta precursor protein (KPI-APP) followed by a shift from alpha-secretase to beta-secretase-mediated APP processing. This shift is a result of the inhibition of the alpha-secretase candidate tumor necrosis factor-alpha converting enzyme (TACE) when associated with neuronal KPI-APPs. This KPI-APP/TACE interaction was also present in AD brains. Thus, our findings reveal a cellular mechanism linking NMDA receptor activation to neuronal Abeta secretion. These results suggest that even mild deregulation of the glutamatergic neurotransmission may increase Abeta production and represent a causal risk factor for developing AD.

  6. Profile of the alpha-bungarotoxin-binding regions on the extracellular part of the alpha-chain of Torpedo californica acetylcholine receptor.

    PubMed Central

    Mulac-Jericevic, B; Atassi, M Z

    1987-01-01

    The continuous alpha-neurotoxin-binding regions on the extracellular part (residues 1-210) of the alpha-chain of Torpedo californica acetylcholine receptor were localized by reaction of 125I-labelled alpha-bungarotoxin with synthetic overlapping peptides spanning this entire part of the chain. The specificity of the binding was confirmed by inhibition with unlabelled toxin and, for appropriate peptides, with unlabelled anti-(acetylcholine receptor) antibodies. Five toxin-binding regions were localized within residues 1-10, 32-41, 100-115, 122-150 and 182-198. The third, fourth and fifth (and to a lesser extent the first and second) toxin-binding regions overlapped with regions recognized by anti-(acetylcholine receptor) antibodies. The five toxin-binding regions may be distinct sites or, alternatively, different 'faces' in one (or more) sites. PMID:3435488

  7. Binding sites for. alpha. -bungarotoxin and the noncompetitive inhibitor phencyclidine on a synthetic peptide comprising residues 172-227 of the. alpha. -subunit of the nicotinic acetylcholine receptor

    SciTech Connect

    Donnelly-Roberts, D.L.; Lentz, T.L. )

    1991-07-30

    The binding of the competitive antagonist {alpha}-bungarotoxin ({alpha}-Btx) and the noncompetitive inhibitor phencyclidine (PCP) to a synthetic peptide comprising residues 172-227 of the {alpha}-subunit of the Torpedo acetylcholine receptor has been characterized. {sup 125}I-{alpha}-Btx bound to the 172-227 peptide in a solid-phase assay and was competed by {alpha}-Btx d-tubocurarine and NaCl. In the presence of 0.02% sodium dodecyl sulfate, {sup 125}I-{alpha}-Btx bound to the 56-residue peptide with a K{sub D} of 3.5 nM, as determined by equilibrium saturation binding studies. Because {alpha}Btx binds to a peptide comprising residues 173-204 with the same affinity and does not bind to a peptide comprising residues 205-227, the competitive antagonist and hence agonist binding site lies between residues 173 and 204. After photoaffinity labeling, ({sup 3}H)PCP was bound to the 172-227 peptide. ({sup 3}H)PCP binding was inhibited by chlorpromazine, tetracaine, and dibucaine. It is concluded that a high-affinity binding site for PCP is located between residues 205 and 227, which includes the first 18 residues of transmembrane segment M1, and that a low-affinity site is located in the competitive antagonist binding site between residues 173 and 204. These results show that a synthetic peptide comprising residues 172-227 of the {alpha} subunit contains three binding sites, one for {alpha}-Btx and two for PCP. Previous studies on the intact receptor indicate high-affinity PCP binding occurs in the receptor channel.

  8. Estrogen receptor binding radiopharmaceuticals: II. Tissue distribution of 17. cap alpha. -methylestradiol in normal and tumor-bearing rats

    SciTech Connect

    Feenstra, A.; Vaalburg, W.; Nolten, G.M.J.; Reiffers, S.; Talma, A.G.; Wiegman, T.; van der Molen, H.D.; Woldring, M.G.

    1983-06-01

    Tritiated 17..cap alpha..-methylestradiol was synthesized to investigate the potential of the carbon-11-labeled analog as an estrogen-receptor-binding radiopharmaceutical. In vitro, 17..cap alpha..-methylestradiol is bound with high affinity to the cytoplasmic estrogen receptor from rabbit uterus (K/sub d/ = 1.96 x 10/sup -10/M), and it sediments as an 8S hormone-receptor complex in sucrose gradients. The compound shows specific uptake in the uterus of the adult rat, within 1 h after injection. In female rats bearing DMBA-induced tumors, specific uterine and tumor uptakes were observed, although at 30 min the tumor uptake was only 23 to 30% of the uptake in the uterus. Tritiated 17..cap alpha..-methylestradiol with a specific activity of 6 Ci/mmole showed a similar tissue distribution. Our results indicate that a 17 ..cap alpha..-methylestradiol is promising as an estrogen-receptor-binding radiopharmaceutical.

  9. Alpha-adrenergic regulation of androgen receptor concentration in the preoptic area of the rat.

    PubMed

    Handa, R J; Resko, J A

    1989-04-03

    We examined the effect of the pharmacological disruption of the catecholaminergic system on the concentration of nuclear androgen receptor, as measured by the in vitro binding of methyltrienolone ([3H]R1881) to salt extracts of anterior pituitary (AP), preoptic area (POA) and medial basal hypothalamus (MBH). Treatment of gonadectomized male and female rats with the dopamine-beta-hydroxylase inhibitor, diethyldithiocarbamate (400 mg/kg b. wt.), 30 min before treatment with dihydrotestosterone (1 mg/animal) produced a decrease in the number of nuclear androgen receptor compared with saline-treated controls (P less than 0.05). This effect was specific for the POA and was not present 15 h after DHT treatment. There was no effect on cytosolic androgen receptor nor was there a drug effect on the apparent dissociation constant (Kd) of [3H]R1881 binding to hypothalamus-preoptic area cytosols. Treatment of intact males and castrated, testosterone-treated males with the alpha 1- and alpha 2-adrenergic antagonists, prazosin (5 mg/kg b. wt.) and yohimbine (2 mg/kg b. wt.), respectively, resulted in a significant decrease in the number of nuclear AR 2 h following drug treatment (P less than 0.05). There was no effect of the beta-adrenergic receptor antagonist propranolol (10 mg/kg b. wt.) when given to intact animals, nor was there an effect of idazoxan (5 mg/kg) when given to testosterone-treated animals. The effects of yohimbine and prazosin were restricted to the POA. None of the drugs competed with the binding of [3H]R1881 for the androgen receptor nor did they alter the Kd of cytosol or nuclear androgen receptor. These data provide evidence for an adrenergic interaction with the POA androgen receptor and suggest a role for catecholamines in modulating androgen sensitivity in the rat brain.

  10. AP-2{alpha} suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity

    SciTech Connect

    Mitchell, Darrion L.; DiMario, Joseph X.

    2010-01-15

    Skeletal muscle development is partly characterized by myoblast proliferation and subsequent differentiation into postmitotic muscle fibers. Developmental regulation of expression of the fibroblast growth factor receptor 1 (FGFR1) gene is required for normal myoblast proliferation and muscle formation. As a result, FGFR1 promoter activity is controlled by multiple transcriptional regulatory proteins during both proliferation and differentiation of myogenic cells. The transcription factor AP-2{alpha} is present in nuclei of skeletal muscle cells and suppresses myoblast proliferation in vitro. Since FGFR1 gene expression is tightly linked to myoblast proliferation versus differentiation, the FGFR1 promoter was examined for candidate AP-2{alpha} binding sites. Mutagenesis studies indicated that a candidate binding site located at - 1035 bp functioned as a repressor cis-regulatory element. Furthermore, mutation of this site alleviated AP-2{alpha}-mediated repression of FGFR1 promoter activity. Chromatin immunoprecipitation studies demonstrated that AP-2{alpha} interacted with the FGFR1 promoter in both proliferating myoblasts and differentiated myotubes. In total, these results indicate that AP-2{alpha} is a transcriptional repressor of FGFR1 gene expression during skeletal myogenesis.

  11. Cobalt chloride-induced estrogen receptor alpha down-regulation involves hypoxia-inducible factor-1alpha in MCF-7 human breast cancer cells.

    PubMed

    Cho, Jungyoon; Kim, Dukkyung; Lee, SeungKi; Lee, YoungJoo

    2005-05-01

    The estrogen receptor (ER) is down-regulated under hypoxia via a proteasome-dependent pathway. We studied the mechanism of ERalpha degradation under hypoxic mimetic conditions. Cobalt chloride-induced ERalpha down-regulation was dependent on the expression of newly synthesized protein(s), one possibility of which was hypoxia-inducible factor-1alpha (HIF-1alpha). To examine the role of HIF-1alpha expression in ERalpha down-regulation under hypoxic-mimetic conditions, we used a constitutively active form of HIF-1alpha, HIF-1alpha/herpes simplex viral protein 16 (VP16), constructed by replacing the transactivation domain of HIF-1alpha with that of VP16. Western blot analysis revealed that HIF-1alpha/VP16 down-regulated ERalpha in a dose-dependent manner via a proteasome-dependent pathway. The kinase pathway inhibitors PD98059, U0126, wortmannin, and SB203580 did not affect the down-regulation. A mammalian two-hybrid screen and immunoprecipitation assays indicated that ERalpha interacted with HIF-1alpha physically. These results suggest that ERalpha down-regulation under hypoxia involves protein-protein interactions between the ERalpha and HIF-1alpha.

  12. Functional effect of point mutations in the alpha-folate receptor gene of CABA I ovarian carcinoma cells.

    PubMed

    Mangiarotti, F; Miotti, S; Galmozzi, E; Mazzi, M; Sforzini, S; Canevari, S; Tomassetti, A

    2001-01-01

    The alpha-folate receptor (alpha FR) is overexpressed in 90% of nonmucinous ovarian carcinomas. In addition to the known role of alpha FR binding and mediating the internalization of folates, functional interaction of alpha FR with signaling molecules was recently shown. To identify a model to study the role of alpha FR in ovarian carcinoma, we characterized the alpha FR gene in the ovarian carcinoma cell line CABA I in comparison to a reference line, IGROV1. In CABA I cells, Northern blot analysis revealed an alpha FR transcript of the expected length and FACS analysis indicated receptor expression on the cell membrane; however, RNase protection assay revealed no specific signals. Southern blot and genomic PCR analysis suggested the presence of a rearrangement(s) involving the 5' region of the gene in CABA I cells as compared to IGROV1 cells. Cloning and sequencing of CABA I alpha FR cDNA revealed several point mutations. The partitioning of alpha FR in membrane microdomains from CABA I cells and its association with regulatory molecules was comparable to that of IGROV1 cells. By contrast, the alpha FR expressed on the CABA I cell membrane bound folic acid with lower affinity, and ectopic expression of the corresponding cDNA in CHO cells confirmed impaired folic acid binding. Thus, CABA I cells may provide a tool to delineate functional domains of the alpha FR.

  13. Hypoxia-inducible factor-1alpha suppresses the expression of macrophage scavenger receptor 1.

    PubMed

    Shirato, Ken; Kizaki, Takako; Sakurai, Takuya; Ogasawara, Jun-Etsu; Ishibashi, Yoshinaga; Iijima, Takehiko; Okada, Chikako; Noguchi, Izumi; Imaizumi, Kazuhiko; Taniguchi, Naoyuki; Ohno, Hideki

    2009-11-01

    Macrophages are distributed in all peripheral tissues and play a critical role in the first line of the innate immune defenses against bacterial infection by phagocytosis of bacterial pathogens through the macrophage scavenger receptor 1 (MSR1). Within tissues, the partial pressure of oxygen (pO2) decreases depending on the distance of cells from the closest O2-supplying blood vessel. However, it is not clear how the expression of MSR1 in macrophages is regulated by low pO2. On the other hand, hypoxia-inducible factor (HIF)-1alpha is well known to control hypoxic responses through regulation of hypoxia-inducible genes. Therefore, we investigated the effects of hypoxia and HIF-1alpha on MSR1 expression and function in the macrophage cell line RAW264. Exposure to 1% O2 or treatment with the hypoxia-mimetic agent cobalt chloride (CoCl2) significantly suppressed the expression of MSR1 mRNA, accompanied by a markedly increase in levels of nuclear HIF-1alpha protein. The overexpression of HIF-1alpha in RAW264 cells suppressed the expression of MSR1 mRNA and protein, transcriptional activity of the MSR1 gene, and phagocytic capacity against the Gram-positive bacteria Listeria monocytogenes. The suppression of MSR1 mRNA by hypoxia or CoCl2 was inhibited by YC-1, an inhibitor of HIF-1alpha, or by the depletion of HIF-1alpha expression by small interference RNA. These results indicate that hypoxia transcriptionally suppresses MSR1 expression through HIF-1alpha.

  14. Prostaglandin F{sub 2{alpha}} regulates cytokine responses of mast cells through the receptors for prostaglandin E

    SciTech Connect

    Kaneko, Izumi; Hishinuma, Takanori; Suzuki, Kaori; Owada, Yuji; Kitanaka, Noriko; Kondo, Hisatake; Goto, Junichi; Furukawa, Hiroshi; Ono, Masao

    2008-03-14

    There is an increasing body of evidence that prostanoids modulate mast cell functions and contribute to the development of allergic inflammation. The present study aimed to identify an undetermined function of prostaglandin (PG) F{sub 2{alpha}} in mast cell activation and the signaling mechanism involved in it. Simultaneous quantification of prostanoids by liquid chromatography/tandem mass spectrometry revealed the constitutive release of PGF{sub 2{alpha}}, thromboxane B{sub 2}, and 6-keto-PGF{sub 1{alpha}} from bone marrow-derived mast cells (BMMCs). Upon activation of BMMCs by lipopolysaccharide, the cytokine production in BMMCs was enhanced when the culture was supplemented with PGF{sub 2{alpha}}. However, F prostanoid receptor-a selective receptor for PGF{sub 2{alpha}}-was not detected in BMMCs. Further investigations performed using prostanoid receptor antagonists revealed an alternative mechanism wherein the receptors for PGE species-E prostanoid receptors-mediated the PGF{sub 2{alpha}} signal in BMMCs. The present study provides an insight into a novel function of PGF{sub 2{alpha}}, i.e., an autocrine accelerator for mast cell activation.

  15. Contribution of position alpha4S336 on functional expression and up-regulation of alpha4beta2 neuronal nicotinic receptors.

    PubMed

    López-Hernández, Gretchen Y; Biaggi-Labiosa, Nilza M; Torres-Cintrón, Alexis; Ortiz-Acevedo, Alejandro; Lasalde-Dominicci, José A

    2009-02-01

    Phosphorylation of the nicotinic acetylcholine receptor (nAChR) is believed to play a critical role in its nicotine-induced desensitization and up-regulation. We examined the contribution of a consensus PKC site in the alpha4 M3/M4 intracellular loop (alpha4S336) on the desensitization and up-regulation of alpha4beta2 nAChRs expressed in oocytes. Position alpha4S336 was replaced with either alanine to abolish potential phosphorylation at this site or with aspartic acid to mimic phosphorylation at this same site. Mutations alpha4S336A and alpha4S336D displayed a threefold increase in the ACh-induced response and an increase in ACh EC(50). Epibatidine binding revealed a three and sevenfold increase in surface expression for the alpha4S336A and alpha4S336D mutations, respectively, relative to wild-type, therefore, both mutations enhanced expression of the alpha4beta2 nAChR. Interestingly, the EC(50)'s and peak currents for nicotine activation remained unaffected in both mutants. Both mutations abolished the nicotine-induced up-regulation that is normally observed in the wild-type. The present data suggest that adding or removing a negative charge at this phosphorylation site cannot be explained by a simple straightforward on-and-off mechanism; rather a more complex mechanism(s) may govern the functional expression of the alpha4beta2 nAChR. Along the same line, our data support the idea that phosphorylation at multiple consensus sites in the alpha4 subunit could play a remarkable role on the regulation of the functional expression of the alpha4beta2 nAChR.

  16. Alpha adrenoceptor antagonists in the year 2000: is there anything new?

    PubMed

    Chapple, C R

    2001-01-01

    Selective alpha1-adrenergic blockade is now a well accepted and widely used therapeutic treatment for patients presenting with symptomatic bladder outlet obstruction thought to be associated with benign prostatic hyperplasia. This review summarizes the recent developments in this field relating to the subject of receptor subtype selectivity and the potential relevance of this to clinical usefulness of existing drug therapy. Whilst a number of unanswered questions remain as to the exact mechanisms of both drug action and side-effect profile, nevertheless it is clear that existing clinically available alpha1-antagonists provide a safe, effective and generally well tolerated therapy for patients with lower urinary tract symptoms thought to be associated with benign prostatic obstruction. The implications of the ALLHAT study are discussed.

  17. Repeated effects of asenapine on adrenergic and cholinergic muscarinic receptors.

    PubMed

    Choi, Yong Kee; Wong, Erik H F; Henry, Brian; Shahid, Mohammed; Tarazi, Frank I

    2010-04-01

    Adrenergic (alpha1 and alpha2) and cholinergic muscarinic (M1-M5) receptor binding in rat forebrain was quantified after 4 wk of twice-daily subcutaneous administration of asenapine or vehicle. Asenapine (0.03, 0.1, and 0.3 mg/kg) produced increases in [3H]prazosin binding to alpha1-adrenergic receptors in the medial prefrontal cortex (mPFC: 30%, 39%, 57%) and dorsolateral frontal cortex (DFC: 27%, 37%, 53%) and increased [3H]RX821002 binding to alpha2-adrenergic receptors in mPFC (36%, 43%, 50%) and DFC (41%, 44%, 52%). Despite showing no appreciable affinity for muscarinic receptors, asenapine produced regionally selective increases in binding of [3H]QNB to M1-M5 receptors in mPFC (26%, 31%, 43%), DFC (27%, 34%, 41%), and hippocampal CA1 (40%, 44%, 42%) and CA3 (25%, 52%, 48%) regions. These regionally selective effects of asenapine on adrenergic and cholinergic muscarinic receptor subtypes may contribute to its beneficial clinical effects in the treatment of schizophrenia and bipolar disorder.

  18. EGF AND TGF-{alpha} motogenic activities are mediated by the EGF receptor via distinct matrix-dependent mechanisms

    SciTech Connect

    Ellis, Ian R.; Schor, Ana M.; Schor, Seth L. . E-mail: s.l.schor@dundee.ac.uk

    2007-02-15

    EGF and TGF-{alpha} induce an equipotent stimulation of fibroblast migration and proliferation. In spite of their homologous structure and ligation by the same receptor (EGFR), we report that their respective motogenic activities are mediated by different signal transduction intermediates, with p70{sup S6K} participating in EGF signalling and phospholipase C{gamma} in TGF-{alpha} signalling. We additionally demonstrate that EGF and TGF-{alpha} motogenic activities may be resolved into two stages: (a) cell 'activation' by a transient exposure to either cytokine, and (b) the subsequent 'manifestation' of an enhanced migratory phenotype in the absence of cytokine. The cell activation and manifestation stages for each cytokine are mediated by distinct matrix-dependent mechanisms: motogenetic activation by EGF requires the concomitant functionality of EGFR and the hyaluronan receptor CD44, whereas activation by TGF-{alpha} requires EGFR and integrin {alpha}v{beta}3. Manifestation of elevated migration no longer requires the continued presence of exogenous cytokine and functional EGFR but does require the above mentioned matrix receptors, as well as their respective ligands, i.e., hyaluronan in the case of EGF, and vitronectin in the case of TGF-{alpha}. In contrast, the mitogenic activities of EGF and TGF-{alpha} are independent of CD44 and {alpha}v{beta}3 functionality. These results demonstrate clear qualitative differences between EGF and TGF-{alpha} pathways and highlight the importance of the extracellular matrix in regulating cytokine bioactivity.

  19. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes.

    PubMed

    Oz, Murat; Ravindran, Arippa; Diaz-Ruiz, Oscar; Zhang, Li; Morales, Marisela

    2003-09-01

    The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of 229.7 +/- 20.4 nM. The effect of anandamide was neither dependent on the membrane potential nor meditated by endogenous Ca2+ dependent Cl- channels since it was unaffected by intracellularly injected BAPTA and perfusion with Ca2+-free bathing solution containing 2 mM Ba2+. Anandamide decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on nicotinic acetylcholine (nACh) alpha7 receptors. This effect was not mediated by CB1 or CB2 receptors, as neither the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) nor CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethyl-bicyclo-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR 144528) reduced the inhibition by anandamide. In addition, inhibition of nicotinic responses by anandamide was not sensitive to either pertussis toxin treatment or to the membrane permeable cAMP analog 8-Br-cAMP (0.2 mM). Inhibitors of enzymes involved in anandamide metabolism including phenylmethylsulfonyl fluoride, superoxide dismutase, and indomethacin, or the anandamide transport inhibitor AM404 did not prevent anandamide inhibition of nicotinic responses, suggesting that anandamide itself acted on nicotinic receptors. In conclusion, these results demonstrate that the endogenous cannabinoid anandamide inhibits the function of nACh alpha7 receptors expressed in Xenopus oocytes in a cannabinoid receptor-independent and

  20. Alpha-adrenergic receptor blockade by phentolamine increases the efficacy of vasodilators in penile corpus cavernosum.

    PubMed

    Kim, N N; Goldstein, I; Moreland, R B; Traish, A M

    2000-03-01

    Penile trabecular smooth muscle tone, a major determinant of erectile function, is highly regulated by numerous inter- and intracellular pathways. The interaction between pathways mediating contraction and relaxation has not been studied in detail. To this end, we investigated the functional effects of alpha adrenergic receptor blockade with phentolamine and its interaction with vasodilators (sildenafil, vasoactive intestinal polypeptide (VIP) and PGE1) that elevate cyclic nucleotides on penile cavernosal smooth muscle contractility. In organ bath preparations of cavernosal tissue strips contracted with phenylephrine, phentolamine significantly enhanced relaxation induced by sildenafil, VIP and PGE1. Sildenafil, VIP or PGE1 also significantly enhanced relaxation induced by phentolamine in cavernosal tissue strips contracted with phenylephrine. To study the effects of alpha adrenergic receptor blockade and modification of cyclic nucleotide metabolism during active neurogenic input, cavernosal tissue strips in organ bath preparations were contracted with the non-adrenergic agonist endothelin-1 and subjected to electrical field stimulation (EFS) in the absence or presence of phentolamine and/or sildenafil. EFS (5-40Hz) typically caused biphasic relaxation and contraction responses. Phentolamine alone enhanced relaxation and reduced or prevented contraction to EFS. Sildenafil enhanced relaxation to EFS at lower frequencies (< or = 5 Hz). The combination of phentolamine and sildenafil enhanced EFS-induced relaxation at all frequencies tested. EFS, in the presence of 10 nM phentolamine and 30 nM sildenafil, produced enhanced relaxation responses which were quantitatively similar to those obtained in the presence of 50 nM sildenafil alone. Thus, blockade of alpha-adrenergic receptors with phentolamine increases the efficacy of cyclic nucleotide-dependent vasodilators. Furthermore, phentolamine potentiates relaxation and attenuates contraction in response to endogenous

  1. Alpha/sub 2/-adrenergic receptors on a platelet precursor cell line, HEL

    SciTech Connect

    McKernan, R.M.; Motulsky, H.J.; Rozansky, D.; Insel, P.A.

    1986-03-01

    The authors have identified ..cap alpha../sub 2/-adrenergic receptors on human erythroleukemia HEL cells, a suspension-growing, bone-marrow-derived cell line related to human platelets. Intact HEL cells were studied using radioligand binding and cAMP accumulation assays. The authors identified saturable specific binding of the ..cap alpha../sub 2/-antagonist (/sup 3/H)yohimbine (yoh) in cells incubated at 37/sup 0/C for 1 hr (B/sub max/ 5900 +/- 2100 sites/cell, K/sub d/ 3.6 +/- 0.9 nM, n = 7). Competition for (/sup 3/H)yoh binding sites with antagonists confirmed that these sites were similar to human ..cap alpha../sub 2/-adrenoceptors from platelets and other resources, as typified by their high affinity for WY-26392, yohimbine and idazoxan, and very low affinity for prazosin. Studies at 37/sup 0/C revealed a low affinity of these sites for catecholamines (K/sub i/ for (-)-epinephrine, 21 ..mu..M; (-)-norepinephrine, 45 ..mu..M, (+)-epinephrine, 80 ..mu..M). When experiments were conducted at 4 /sup 0/C, (-)-epinephrine was able to compete for only 50-60% of the sites specifically labelled by (/sup 3/H)yoh at 37/sup 0/, but (-)-epinephrine had an approximately 10-fold greater affinity for these sites (K/sub i/ at 4 /sup 0/C = 2.4 ..mu..M). In addition, epinephrine inhibited cAMP accumulation stimulated by forskolin and PGE/sub 1/ in HEL cells; this response was inhibited by pertussis toxin. The authors conclude that HEL cells possess ..cap alpha../sub 2/-adrenergic receptors linked to G/sub i/ and thus should serve as a useful model to explore metabolism and regulation of these receptors in human cells.

  2. Retrograde inflammatory signaling from neutrophils to endothelial cells by soluble interleukin-6 receptor alpha.

    PubMed Central

    Modur, V; Li, Y; Zimmerman, G A; Prescott, S M; McIntyre, T M

    1997-01-01

    Endothelial cells initiate the inflammatory response by recruiting and activating leukocytes. IL-6 is not an agonist for this, but we found soluble IL-6 receptor alpha-subunit (IL-6Ralpha), with their constitutive IL-6 synthesis, stimulated endothelial cells to synthesize E-selectin, intracellular adhesion molecule-1, vascular cellular adhesion molecule-1, IL-6, and IL-8, and to bind neutrophils. Neutrophils express significant amounts of IL-6Ralpha and upon stimulation shed it: this material activates endothelial cells through a newly constituted IL-6 receptor. Retrograde signaling from PMN activated in the extravascular compartment to surrounding endothelial cells will recruit more and a wider variety of leukocytes. The limiting signal is a soluble receptor, not a cytokine. PMID:9389739

  3. Loss of platelet alpha 2-adrenergic receptors during simulated extracorporeal circulation: prevention with prostaglandin E1

    SciTech Connect

    Wachtogel, Y.T.; Musial, J.; Jenkin, B.; Niewiarowski, S.; Edmunds, L.H. Jr.; Colman, R.W.

    1985-05-01

    Cardiopulmonary bypass prolongs bleeding time and increases postoperative blood loss. During in vitro recirculation in an extracorporeal circuit containing a membrane oxygenator and primed with fresh heparinized human blood, the authors previously observed thrombocytopenia, impaired platelet aggregation, and depletion of granular contents, all of which were prevented with prostaglandin E1 (PGE1). To investigate these changes further, they studied the number and affinity of platelet alpha 2-adrenergic receptors by measuring the binding of /sup 3/H-yohimbine. Before recirculation, they found 235 alpha 2-adrenergic receptors per platelet, a Kd of 3.37 nmol/L, complete aggregation with 1.04 mumol/L epinephrine, and a platelet count of 281,000 microliters/sup -1/. After 2 minutes of recirculation, 9.44 mumol/L epinephrine was required to produce complete aggregation, and the platelet count was 104,000 microliters-1 (44% of control). After 2 hours of recirculation, the platelet count had increased to 123,000 microliters/sup -1/. However, epinephrine did not induce platelet aggregation even at 100 mumol/L. Moreover, alpha 2-adrenergic binding sites were not detectable, and affinity for yohimbine could not be calculated. Two minutes after PGE1 0.3 mumol/L was added to the circuit, platelet numbers, response to epinephrine, alpha 2-adrenergic binding sites per platelet, and affinity for yohimbine were not significantly different from control values. At 2 hours, the number of alpha 2-adrenergic sites was not significantly changed from control, but the affinity of yohimbine for platelets was significantly decreased 2.5-fold.

  4. In vivo modulation of alpha7 nicotinic receptors on striatal glutamate release induced by anatoxin-A.

    PubMed

    Campos, F; Alfonso, M; Durán, R

    2010-01-01

    In vitro studies suggest that alpha7 nicotinic receptors located on striatal glutamatergic terminals stimulate the release of glutamate which in turn acts at ionotropic glutamate receptors on dopaminergic terminals to increase dopamine release. However, this mechanism has never been observed in in vivo studies. In the present work, the effect of the nicotinic receptors agonist, anatoxin-a, on striatal glutamate and dopamine release has been studied. Using in vivo microdialysis technique, our results have shown that anatoxin-a evokes glutamate release in a dependent way of activation alpha7 nicotinic receptors. The increase of glutamate is followed by an increase on dopamine levels. These results represent a clear in vivo evidence of the striatal modulation of dopamine by means of glutamate release through alpha7 nicotinic receptors.

  5. Estrogen receptor-alpha gene expression in the cortex: sex differences during development and in adulthood.

    PubMed

    Wilson, Melinda E; Westberry, Jenne M; Trout, Amanda L

    2011-03-01

    17β-estradiol is a hormone with far-reaching organizational, activational and protective actions in both male and female brains. The organizational effects of early estrogen exposure are essential for long-lasting behavioral and cognitive functions. Estradiol mediates many of its effects through the intracellular receptors, estrogen receptor-alpha (ERα) and estrogen receptor-beta (ERβ). In the rodent cerebral cortex, estrogen receptor expression is high early in postnatal life and declines dramatically as the animal approaches puberty. This decline is accompanied by decreased expression of ERα mRNA. This change in expression is the same in both males and females in the developing isocortex and hippocampus. An understanding of the molecular mechanisms involved in the regulation of estrogen receptor alpha (ERα) gene expression is critical for understanding the developmental, as well as changes in postpubertal expression of the estrogen receptor. One mechanism of suppressing gene expression is by the epigenetic modification of the promoter regions by DNA methylation that results in gene silencing. The decrease in ERα mRNA expression during development is accompanied by an increase in promoter methylation. Another example of regulation of ERα gene expression in the adult cortex is the changes that occur following neuronal injury. Many animal studies have demonstrated that the endogenous estrogen, 17β-estradiol, is neuroprotective. Specifically, low levels of estradiol protect the cortex from neuronal death following middle cerebral artery occlusion (MCAO). In females, this protection is mediated through an ERα-dependent mechanism. ERα expression is rapidly increased following MCAO in females, but not in males. This increase is accompanied by a decrease in methylation of the promoter suggesting a return to the developmental program of gene expression within neurons. Taken together, during development and in adulthood, regulation of ERα gene expression in the

  6. Potentiation of alpha7-containing nicotinic acetylcholine receptors by select albumins.

    PubMed

    Conroy, William G; Liu, Qing-Song; Nai, Qiang; Margiotta, Joseph F; Berg, Darwin K

    2003-02-01

    Nicotinic receptors containing alpha7 subunits are ligand-gated ion channels widely distributed in the nervous system; they influence a diverse array of events because of their high relative calcium permeability. We show here that nicotine-induced whole-cell responses generated by such receptors can be dramatically potentiated in a rapidly reversible manner by some but not all albumins. The potentiation involves increases both in potency and efficacy with no obvious differences in rise and fall times of the response. The potentiation is not reduced by removing absorbed components; it is abolished by proteolysis, suggesting that the albumin protein backbone is essential. The fact that some albumins are ineffective indicates that minor differences in amino acid sequence may be critical. Experiments with open channel blockers indicate that the potentiation involves increased responses from active receptors rather than recruitment of receptors from a previously silent pool. Single channel recordings reveal that the potentiation correlates with increased single channel opening probability, reflected in increased frequency of channel opening and increased mean channel open time. The potentiation can be exploited to overcome blockade by noncompetitive inhibitors such as beta-amyloid peptide. The results raise the possibility that endogenous compounds use the site to modulate receptor function in vivo, and suggest that the receptors may represent useful targets for therapeutic intervention in cases where they have been implicated in neuropathologies such as Alzheimer's disease.

  7. Distinct modes of interaction of the retinoic acid receptor alpha with natural and synthetic retinoids.

    PubMed

    Lefebvre, B; Mouchon, A; Formstecher, P; Lefebvre, P

    1998-04-30

    Retinoids regulate key cellular processes through their binding to their cognate nuclear receptors, RARs and RXRs. Synthetic ligands mimic most of their biological effects and alteration of their chemical structure confers selectivity for RAR isotypes alpha, beta or gamma. In this study, we have examined the contribution of a domain (L box) of hRARalpha located at the C-terminus of the ligand binding domain (LBD), between helices H11 and H12, to the ligand binding activity of this receptor. By site-directed mutagenesis, we demonstrate that, in the absence of the ligand-dependent activation domain 2 (AF2-AD), the receptor discriminates between classes of structurally distinct retinoids. This property was lost in the presence of the AF2-AD domain, evidencing major structural transitions in this part of the receptor. We propose that ligand binding occurs in two steps: first, the ligand interacts with the LBD in its opened, holo-receptor conformation in which the L box plays a crucial role in defining the ligand binding repertoire of hRARalpha; secondly, the LBD adopts its closed conformation in which the ligand interacts with the receptor mostly through its carboxylic moiety.

  8. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  9. Cloning and mapping of the mouse {alpha}7-neuronal nicotinic acetylcholine receptor

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1995-03-20

    We report the isolation of cDNA clones for the mouse {alpha}7 neuronal nicotinic acetylcholine receptor subunit (gene symbol Acra7), the only nicotinic receptor subunit known to bind a-bungarotoxin in mammalian brain. This gene may have relevance to nicotine sensitivity and to some electrophysiologic findings in schizophrenia. The mouse {alpha}7 subunit gene encodes a protein of 502 amino acids with substantial identity to the rat (99.6%), human (92.8%), and chicken (87.5%) amino acid sequences. The {alpha}7 gene was mapped to mouse chromosome 7 near the p locus with the following gene order from proximal to distal: Myod1-3.5 {+-}1.7 cM-Gas2-0.9 cM {+-} 0.9 cM-D7Mit70-1.8 {+-} 1.2 cM- Acra7-4.4 {+-}1.0 cM-Hras1-ps11/Igf1r/Snrp2a. The human gene was confirmed to map to the homologous region of human chromosome 15q13-q14. 26 refs., 3 figs.

  10. Untranslated region-dependent exclusive expression of high-sensitivity subforms of alpha4beta2 and alpha3beta2 nicotinic acetylcholine receptors.

    PubMed

    Briggs, Clark A; Gubbins, Earl J; Marks, Michael J; Putman, C Brent; Thimmapaya, Rama; Meyer, Michael D; Surowy, Carol S

    2006-07-01

    alpha4beta2 nicotinic acetylcholine receptors (nAChRs) are recognized as the principal nicotine binding site in brain. Recombinant alpha4beta2 nAChR demonstrate biphasic concentration-response relationships with low- and high-EC50 components. This study shows that untranslated regions (UTR) can influence expression of high-sensitivity subforms of alpha4beta2 and alpha3beta2 nAChR. Oocytes injected with alpha4 and beta2 RNA lacking UTR expressed biphasic concentration-response relationships for acetylcholine with high-sensitivity EC50 values of 0.5 to 2.5 microM (14-24% of the population) and low-sensitivity EC50 values of 110 to 180 microM (76-86%). In contrast, message with UTR expressed exclusively the high-sensitivity alpha4beta2 nAChR subform with an acetylcholine EC50 value of 2.2 microM. Additional studies revealed pharmacological differences between high- and low-sensitivity alpha4beta2 subforms. Whereas the antagonists dihydro-beta-erythroidine (IC50 of 3-6 nM) and methyllycaconitine (IC50 of 40-135 nM) were not selective between high- and low-sensitivity alpha4beta2, chlorisondamine, mecamylamine, and d-tubocurarine were, respectively, 100-, 8-, and 5-fold selective for the alpha4beta2 subform with low sensitivity to acetylcholine. Conversely, agonists that selectively activated the high-sensitivity alpha4beta2 subform with respect to efficacy as well as potency were identified. Furthermore, two of these agonists were shown to activate mouse brain alpha4beta2 as well as the ferret high-sensitivity alpha4beta2 expressed in Xenopus laevis oocytes. With the use of UTR-containing RNA, exclusive expression of a novel high-sensitivity alpha3beta2 nAChR was also achieved. These studies 1) provide further evidence for the existence of multiple subforms of alpha4beta2 nAChR, 2) extend that to alpha3beta2 nAChR, 3) demonstrate UTR influence on beta2-containing nAChR properties, and 4) reveal compounds that interact with alpha4beta2 in a subform-selective manner.

  11. Interaction between Ca/sup + +/-channel antagonists and. cap alpha. /sub 2/-adrenergic receptors in rabbit ileal cell membrane

    SciTech Connect

    Homeidan, F.R.; Wicks, J.; Cusolito, S.; El-Sabban, M.E.; Sharp, G.W.G.; Donowitz, M.

    1986-03-05

    An interaction between Ca/sup + +/-channel antagonists and the ..cap alpha../sub 2/-adrenergic receptor on active electrolyte transport was demonstrated in rabbit ileum. Clonidine, an ..cap alpha../sub 2/-agonist, stimulated NaCl absorption apparently by Ca/sup + +/-channel antagonism since it inhibited /sup 45/Ca/sup + +/ uptake across the basolateral membrane and decreased total ileal calcium content. This stimulation was inhibited by the Ca/sup + +/-channel antagonists dl- and l-verapamil and cadmium but not by nifedipine. The binding of /sup 3/H-yohimbine, a specific ..cap alpha../sub 2/-adrenergic antagonist, was studied on purified ileal cell membranes using a rapid filtration technique. dl-Verapamil and Cd/sup + +/ inhibited the specific binding of /sup 3/H-yohimbine over the same concentration range in which they affected transport. In contrast, nifedipine had no effect on binding, just as it had no effect on clonidine-stimulated NaCl absorption. These data demonstrate that there is an interaction between Ca/sup + +/-channels and ..cap alpha../sub 2/-adrenergic receptors in ileal basolateral membranes. Some Ca/sup + +/-channel antagonists alter ..cap alpha../sub 2/-adrenergic binding to the receptor and ..cap alpha../sub 2/-agonist binding leads to changes in Ca/sup + +/ entry. A close spatial relationship between the Ca/sup + +/-channel and the ..cap alpha../sub 2/-receptor could explain the data.

  12. Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor.

    PubMed Central

    Konopka, J B; Margarit, S M; Dube, P

    1996-01-01

    The alpha-factor pheromone receptor stimulates MATa yeast cells to undergo conjugation. The receptor contains seven transmembrane domains that function in ligand binding and in transducing a signal to the cytoplasmic receptor sequences to mediate G protein activation. A genetic screen was used to isolate receptor mutations that constitutively signal in the absence of alpha-factor. The Pro-258-->Leu (P258L) mutation caused constitutive receptor signaling that was equivalent to about 45% of the maximum level observed in wild-type cells stimulated with alpha-factor. Mutations of both Pro-258 and the adjacent Ser-259 to Leu increased constitutive signaling to > or = 90% of the maximum level. Since Pro-258 occurs in the central portion of transmembrane domain 6, and since proline residues are expected to cause a kink in alpha-helical domains, the P258L mutation is predicted to alter the structure of transmembrane domain 6. The P258L mutation did not result in a global distortion of receptor structure because alpha-factor bound to the mutant receptors with high affinity and induced even higher levels of signaling. These results suggest that sequences surrounding Pro-258 may be involved in ligand activation of the receptor. Conformational changes in transmembrane domain 6 may effect a change in the adjacent sequences in the third intracellular loop that are thought to function in G protein activation. Greater than 90% of all G protein-coupled receptors contain a proline residue at a similar position in transmembrane domain 6, suggesting that this aspect of receptor activation may be conserved in other receptors. Images Fig. 3 PMID:8692892

  13. Estrogen-related Receptor alpha (ERR (alpha))-Coactivator Interactions as Targets for Discovery of New Anti-breast Cancer Therapeutics

    DTIC Science & Technology

    2008-03-01

    will respond to hormonal therapies, such as aromatase inhibitors and the selective estrogen receptor modulator (SERM) tamoxifen. However, drug...transcription (alpha-amanitin), translation (cycloheximide), and of proteosome activity (MG-132). We also tested a non-specific compound ( resveratrol ...and the compound XCT-790, which potentiates the degradation of ERRα. Increasing concentrations of all the compounds, except resveratrol

  14. Integrated Summary Report: Validation of Two Binding Assays Using Human Recombinant Estrogen Receptor Alpha (hrERa)

    EPA Science Inventory

    This Integrated Summary Report (ISR) summarizes, in a single document, the results from an international multi-laboratory validation study conducted for two in vitro estrogen receptor (ER) binding assays. These assays both use human recombinant estrogen receptor, alpha subtype (h...

  15. Selective perrhenate recognition in pure water by halogen bonding and hydrogen bonding alpha-cyclodextrin based receptors.

    PubMed

    Cornes, Stuart P; Sambrook, Mark R; Beer, Paul D

    2017-03-20

    Alpha-cyclodextrin based anion receptors functionalised with pendant arms containing halogen and hydrogen bond donor motifs display selective association of perrhenate in aqueous media at neutral pH. NMR and ITC anion binding investigations reveal the halogen bonding receptor to be the superior host.

  16. Denopamine, a beta(1)-adrenergic agonist, increases alveolar fluid clearance in ex vivo rat and guinea pig lungs.

    PubMed

    Sakuma, T; Tuchihara, C; Ishigaki, M; Osanai, K; Nambu, Y; Toga, H; Takahashi, K; Ohya, N; Kurihara, T; Matthay, M A

    2001-01-01

    The effect of denopamine, a selective beta(1)-adrenergic agonist, on alveolar fluid clearance was determined in both ex vivo rat and guinea pig lungs. Alveolar fluid clearance was measured by the progressive increase in the concentration of Evans blue-labeled albumin over 1 h at 37 degrees C. Denopamine (10(-6) to 10(-3) M) increased alveolar fluid clearance in a dose-dependent manner in ex vivo rat lungs. Denopamine also stimulated alveolar fluid clearance in guinea pig lungs. Atenolol, a selective beta(1)-adrenergic antagonist, and amiloride, a sodium channel inhibitor, inhibited denopamine-stimulated alveolar fluid clearance. The potency of denopamine was similar to that of similar doses of isoproterenol or terbutaline. Short-term hypoxia (100% nitrogen for 1-2 h) did not alter the stimulatory effect of denopamine. Denopamine (10(-4), 10(-3) M) increased intracellular adenosine 3',5'-cyclic monophosphate levels in cultured rat alveolar type II cells. In summary, denopamine, a selective beta(1)-adrenergic agonist, stimulates alveolar fluid clearance in both ex vivo rat and guinea pig lungs.

  17. Regulated intramembrane proteolysis of the interleukin-1 receptor II by alpha-, beta-, and gamma-secretase.

    PubMed

    Kuhn, Peer-Hendrik; Marjaux, Els; Imhof, Axel; De Strooper, Bart; Haass, Christian; Lichtenthaler, Stefan F

    2007-04-20

    Ectodomain shedding and intramembrane proteolysis of the amyloid precursor protein (APP) by alpha-, beta- and gamma-secretase are involved in the pathogenesis of Alzheimer disease (AD). Increased proteolytic processing and secretion of another membrane protein, the interleukin-1 receptor II (IL-1R2), have also been linked to the pathogenesis of AD. IL-1R2 is a decoy receptor that may limit detrimental effects of IL-1 in the brain. At present, the proteolytic processing of IL-1R2 remains little understood. Here we show that IL-1R2 can be proteolytically processed in a manner similar to APP. IL-1R2 expressed in human embryonic kidney 293 cells first undergoes ectodomain shedding in an alpha-secretase-like manner, resulting in secretion of the IL-1R2 ectodomain and the generation of an IL-1R2 C-terminal fragment. This fragment undergoes further intramembrane proteolysis by gamma-secretase, leading to the generation of the soluble intracellular domain of IL-1R2. Intramembrane cleavage of IL-1R2 was abolished by a highly specific inhibitor of gamma-secretase and was absent in mouse embryonic fibroblasts deficient in gamma-secretase activity. Surprisingly, the beta-secretase BACE1 and its homolog BACE2 increased IL-1R2 secretion resulting in C-terminal fragments nearly identical to the ones generated by the alpha-secretase-like cleavage. This suggests that both proteases may act as alternative alpha-secretase-like proteases. Importantly, BACE1 and BACE2 did not cleave several other membrane proteins, demonstrating that both proteases do not contribute to general membrane protein turnover but only cleave specific proteins. This study reveals a similar proteolytic processing of IL-1R2 and APP and may provide an explanation for the increased IL-1R2 secretion observed in AD.

  18. Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle

    PubMed Central

    1996-01-01

    Muscular dysgenesis (mdg/mdg), a mutation of the skeletal muscle dihydropyridine receptor (DHPR) alpha 1 subunit, has served as a model to study the functions of the DHPR in excitation-contraction coupling and its role in triad formation. We have investigated the question of whether the lack of the DHPR in dysgenic skeletal muscle results in a failure of triad formation, using cell lines (GLT and NLT) derived from dysgenic (mdg/mdg) and normal (+/+) muscle, respectively. The lines were generated by transfection of myoblasts with a plasmid encoding a Large T antigen. Both cell lines express muscle-specific proteins and begin organization of sarcomeres as demonstrated by immunocytochemistry. Similar to primary cultures, dysgenic (GLT) myoblasts show a higher incidence of cell fusion than their normal counterparts (NLT). NLT myotubes develop spontaneous contractile activity, and fluorescent Ca2+ recordings show Ca2+ release in response to depolarization. In contrast, GLTs show neither spontaneous nor depolarization-induced Ca2+ transients, but do release Ca2+ from the sarcoplasmic reticulum (SR) in response to caffeine. Despite normal transverse tubule (T-tubule) formation, GLT myotubes lack the alpha 1 subunit of the skeletal muscle DHPR, and the alpha 2 subunit is mistargeted. Nevertheless, the ryanodine receptor (RyR) frequently develops its normal, clustered organization in the absence of both DHPR alpha subunits in the T-tubules. In EM, these RyR clusters correspond to T-tubule/SR junctions with regularly spaced feet. These findings provide conclusive evidence that interactions between the DHPR and RyR are not involved in the formation of triad junctions or in the normal organization of the RyR in the junctional SR. PMID:8707823

  19. Regulation of neuronal function by choline and 4OH-GTS-21 through alpha 7 nicotinic receptors.

    PubMed

    Uteshev, Vladimir V; Meyer, Edwin M; Papke, Roger L

    2003-04-01

    A unique feature of alpha7 nicotinic acetylcholine receptor physiology is that, under normal physiological conditions, alpha7 receptors are constantly perfused with their natural selective agonist, choline. Studying neurons of hypothalamic tuberomammillary (TM) nucleus, we show that choline and the selective alpha7 receptor agonist 4OH-GTS-21 can regulate neuronal functions directly, via activation of the native alpha7 receptors, and indirectly, via desensitizing those receptors or transferring them into a state "primed" for desensitization. The direct action produces depolarization and thereby increases the TM neuron spontaneous firing (SF) rate. The regulation of the spontaneous firing rate is robust in a nonphysiological range of choline concentrations >200 microM. However, modest effects persist at concentrations of choline that are likely to be attained perineuronally under some conditions (20-100 microM). At high physiological concentration levels, the indirect choline action reduces or even eliminates the responsiveness of alpha7 receptors and their availability to other strong cholinergic inputs. Similarly to choline, 4OH-GTS-21 increases the TM neuron spontaneous firing rate via activation of alpha7 receptors, and this regulation is robust in the range of clinically relevant concentrations of 4OH-GTS-21. We conclude that factors that regulate choline accumulation in the brain and in experimental slices such as choline uptake, hydrolysis of ACh, membrane phosphatidylcholine catabolism, and solution perfusion rate influence alpha7 nAChR neuronal and synaptic functions, especially under pathological conditions such as stroke, seizures, Alzheimer's disease, and head trauma, when the choline concentration in the CSF is expected to rise.

  20. Nicotine-induced up-regulation and desensitization of alpha4beta2 neuronal nicotinic receptors depend on subunit ratio.

    PubMed

    López-Hernández, Gretchen Y; Sánchez-Padilla, Javier; Ortiz-Acevedo, Alejandro; Lizardi-Ortiz, José; Salas-Vincenty, Janice; Rojas, Legier V; Lasalde-Dominicci, José A

    2004-09-03

    Desensitization induced by chronic nicotine exposure has been hypothesized to trigger the up-regulation of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) in the central nervous system. We studied the effect of acute and chronic nicotine exposure on the desensitization and up-regulation of different alpha4beta2 subunit ratios (1alpha:4beta, 2alpha:3beta, and 4alpha:1beta) expressed in Xenopus oocytes. The presence of alpha4 subunit in the oocyte plasmatic membrane increased linearly with the amount of alpha4 mRNA injected. nAChR function and expression were assessed during acute and after chronic nicotine exposure using a two-electrode voltage clamp and whole-mount immunofluorescence assay along with confocal imaging for the detection of the alpha4 subunit. The 2alpha4:3beta2 subunit ratio displayed the highest ACh sensitivity. Nicotine dose-response curves for the 1alpha4:4beta2 and 2alpha4:3beta2 subunit ratios displayed a biphasic behavior at concentrations ranging from 0.1 to 300 microm. A biphasic curve for 4alpha4:1beta2 was obtained at nicotine concentrations higher than 300 microm. The 1alpha4:4beta2 subunit ratio exhibited the lowest ACh- and nicotine-induced macroscopic current, whereas 4alpha4:1beta2 presented the largest currents at all agonist concentrations tested. Desensitization by acute nicotine exposure was more evident as the ratio of beta2:alpha4 subunits increased. All three alpha4beta2 subunit ratios displayed a reduced state of activation after chronic nicotine exposure. Chronic nicotine-induced up-regulation was obvious only for the 2alpha4: 3beta2 subunit ratio. Our data suggest that the subunit ratio of alpha4beta2 determines the functional state of activation, desensitization, and up-regulation of this neuronal nAChR. We propose that independent structural sites regulate alpha4beta2 receptor activation and desensitization.

  1. Alpha-Adrenergic receptors in cerebral microvessels of normotensive and spontaneously hypertensive rats

    SciTech Connect

    Kobayashi, H.; Wada, A.; Izumi, F.; Magnoni, M.S.; Trabucchi, M.

    1985-03-01

    In rat cerebral microvessels, we characterized alpha 1- and alpha 2-adrenergic receptors, using (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine as radioligands. (/sup 3/H)Prazosin binding to the cerebral microvessels was saturable and of high affinity (dissociation constant of 78 pM), with a maximum binding of 48 fmol/mg protein. (/sup 3/H)Prazosin binding reached equilibrium within 15 minutes and was dissociated by the addition of 10 microM phentolamine. The inhibitory effects of isomers of norepinephrine and epinephrine on the binding showed that l-isomers were over 10 times more potent than d-isomers. (/sup 3/H)-p-Amino-clonidine binding to the cerebral microvessels was saturable and of high affinity (K/sub D/ . 0.61 nM) with a B/sub max/ of 73 fmol/mg protein. The binding reached equilibrium within 30 minutes, and was dissociated by the addition of 100 microM l-norepinephrine. l-Isomers of norepinephrine and epinephrine were over 10 times more potent than d-isomers in displacing the binding. Thus, both (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine bindings to the cerebral microvessels were characterized by saturability, high affinity, reversibility, and stereo-specificity. Furthermore, the specificity of both binding sites was pharmacologically evaluated by the inhibitory effects of various adrenergic agonists and antagonists on the bindings. These data indicate the existence of alpha-adrenergic receptors in the cerebral microvessels and are consistent with the hypothesis that the cerebral microcirculation is regulated by adrenergic innervation. Furthermore, the receptors were measured in cerebral microvessels of spontaneously hypertensive rats and Wistar-Kyoto controls.

  2. PGC-1{beta} regulates mouse carnitine-acylcarnitine translocase through estrogen-related receptor {alpha}

    SciTech Connect

    Gacias, Mar; Perez-Marti, Albert; Pujol-Vidal, Magdalena; Marrero, Pedro F.; Haro, Diego; Relat, Joana

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer The Cact gene is induced in mouse skeletal muscle after 24 h of fasting. Black-Right-Pointing-Pointer The Cact gene contains a functional consensus sequence for ERR. Black-Right-Pointing-Pointer This sequence binds ERR{alpha} both in vivo and in vitro. Black-Right-Pointing-Pointer This ERRE is required for the activation of Cact expression by the PGC-1/ERR axis. Black-Right-Pointing-Pointer Our results add Cact as a genuine gene target of these transcriptional regulators. -- Abstract: Carnitine/acylcarnitine translocase (CACT) is a mitochondrial-membrane carrier proteins that mediates the transport of acylcarnitines into the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. CACT deficiency causes a variety of pathological conditions, such as hypoketotic hypoglycemia, cardiac arrest, hepatomegaly, hepatic dysfunction and muscle weakness, and it can be fatal in newborns and infants. Here we report that expression of the Cact gene is induced in mouse skeletal muscle after 24 h of fasting. To gain insight into the control of Cact gene expression, we examine the transcriptional regulation of the mouse Cact gene. We show that the 5 Prime -flanking region of this gene is transcriptionally active and contains a consensus sequence for the estrogen-related receptor (ERR), a member of the nuclear receptor family of transcription factors. This sequence binds ERR{alpha}in vivo and in vitro and is required for the activation of Cact expression by the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1/ERR axis. We also demonstrate that XTC790, the inverse agonist of ERR{alpha}, specifically blocks Cact activation by PGC-1{beta} in C2C12 cells.

  3. First and second transmembrane segments of alpha3, alpha4, beta2, and beta4 nicotinic acetylcholine receptor subunits influence the efficacy and potency of nicotine.

    PubMed

    Rush, Ray; Kuryatov, Alexander; Nelson, Mark E; Lindstrom, Jon

    2002-06-01

    The first three transmembrane segments (M1-M3) of human nicotinic acetylcholine receptors (nAChRs) have been implicated in determining the efficacy of nicotine by studies of alpha3/alpha4 subunit chimeras. Nicotine has full efficacy on the alpha4beta2 nAChR and partial efficacy on the alpha3beta2 nAChR. Now, we have exchanged individually three amino acids between the alpha4 and the alpha3 subunits at positions 226(M1), 258(M2), and 262(M2). Also, similar exchanges were made in the beta2 and beta4 subunits at positions 224(M1), 226(M1), and 254(M2) (using alpha subunit numbering). Expression of these mutated nAChRs in Xenopus laevis oocytes showed that the mutated M1 amino acids were important in influencing the potency of ACh and nicotine. It is hypothesized that these M1 amino acids affect the stability between the resting and activated states of the nAChR. M2 amino acids altered the efficacy of nicotine, usually without altering its potency. When the residue located at position 258 in the M2 region of the alpha subunit was valine (as in the alpha3 subunit), the resulting nAChR exhibited partial efficacy for nicotine that was voltage-dependent. Therefore, we believe that these M2 amino acids contribute to the formation of a binding site for nicotine in the alpha3beta2 nAChR channel, which results in a low-affinity channel block, causing the lower efficacy of nicotine on this nAChR.

  4. TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60

    SciTech Connect

    Sato, Tomonobu; Okumura, Fumihiko; Iguchi, Akihiro; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer TRIM32 enhanced RAR{alpha}-mediated transcriptional activity even in the absence of RA. Black-Right-Pointing-Pointer TRIM32 stabilized RAR{alpha} in the human promyelogenous leukemic cell line HL60. Black-Right-Pointing-Pointer Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. Black-Right-Pointing-Pointer TRIM32 may function as a coactivator for RAR{alpha}-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor {alpha} (RAR{alpha}). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RAR{alpha} and enhances transcriptional activity of RAR{alpha} in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RAR{alpha}, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RAR{alpha}-mediated transcriptional activity even in the absence of RA and stabilizes RAR{alpha} in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RAR{alpha}-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  5. Triclocarban Mediates Induction of Xenobiotic Metabolism through Activation of the Constitutive Androstane Receptor and the Estrogen Receptor Alpha

    PubMed Central

    Yueh, Mei-Fei; Li, Tao; Evans, Ronald M.; Hammock, Bruce; Tukey, Robert H.

    2012-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide, TCC) is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs). To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR) and estrogen receptor alpha (ERα) activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR) because no induction occurred in hUGT1Car−/− mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for potential human

  6. Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription.

    PubMed

    Li, Tiangang; Chiang, John Y L

    2005-01-01

    Bile acids, steroids, and drugs activate steroid and xenobiotic receptor pregnane X receptor (PXR; NR1I2), which induces human cytochrome P4503A4 (CYP3A4) in drug metabolism and cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis in the liver. Rifampicin, a human PXR agonist, inhibits bile acid synthesis and has been used to treat cholestatic diseases. The objective of this study is to elucidate the mechanism by which PXR inhibits CYP7A1 gene transcription. The mRNA expression levels of CYP7A1 and several nuclear receptors known to regulate the CYP7A1 gene were assayed in human primary hepatocytes by quantitative real-time PCR (Q-PCR). Rifampicin reduced CYP7A1 and small heterodimer partner (SHP; NR02B) mRNA expression suggesting that SHP was not involved in PXR inhibition of CYP7A1. Rifampicin inhibited CYP7A1 reporter activity and a PXR binding site was localized to the bile acid response element-I. Mammalian two-hybrid assays revealed that PXR interacted with hepatic nuclear factor 4 alpha (HNF4 alpha, NR2A1) and rifampicin was required. Coimmunoprecipitation assay confirmed PXR interaction with HNF4 alpha. PXR also interacted with peroxisome proliferator-activated receptor gamma coactivator (PGC-1 alpha), which interacted with HNF4 alpha and induced CYP7A1 gene transcription. Rifampicin enhanced PXR interaction with HNF4 alpha and reduced PGC-1 alpha interaction with HNF4 alpha. Chromatin immunoprecipitation assay showed that PXR, HNF4 alpha, and PGC-1 alpha bound to CYP7A1 chromatin, and rifampicin dissociated PGC-1 alpha from chromatin. These results suggest that activation of PXR by rifampicin promotes PXR interaction with HNF4 alpha and blocks PGC-1 alpha activation with HNF4 alpha and results in inhibition of CYP7A1 gene transcription. Rifampicin inhibition of bile acid synthesis may be a protective mechanism against drug and bile acid-induced cholestasis.

  7. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    PubMed

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  8. How a cytokine is chaperoned through the secretory pathway by complexing with its own receptor: lessons from interleukin-15 (IL-15)/IL-15 receptor alpha.

    PubMed

    Duitman, Erwin H; Orinska, Zane; Bulanova, Elena; Paus, Ralf; Bulfone-Paus, Silvia

    2008-08-01

    While it is well appreciated that receptors for secreted cytokines transmit ligand-induced signals, little is known about additional roles for cytokine receptor components in the control of ligand transport and secretion. Here, we show that interleukin-15 (IL-15) translocation into the endoplasmic reticulum occurs independently of the presence of IL-15 receptor alpha (IL-15R alpha). Subsequently, however, IL-15 is transported through the Golgi apparatus only in association with IL-15R alpha and then is secreted. This intracellular IL-15/IL-15R alpha complex already is formed in the endoplasmic reticulum and, thus, enables the further trafficking of complexed IL-15 through the secretory pathway. Just transfecting IL-15R alpha in cells, which transcribe but normally do not secrete IL-15, suffices to induce IL-15 secretion. Thus, we provide the first evidence of how a cytokine is chaperoned through the secretory pathway by complexing with its own high-affinity receptor and show that IL-15/IL-15R alpha offers an excellent model system for the further exploration of this novel mechanism for the control of cytokine secretion.

  9. The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism

    PubMed Central

    REN, Chao; TONG, Ya-lin; LI, Jun-cong; LU, Zhong-qiu; YAO, Yong-ming

    2017-01-01

    Critical illnesses and injuries are recognized as major threats to human health, and they are usually accompanied by uncontrolled inflammation and dysfunction of immune response. The alpha 7 nicotinic acetylcholine receptor (α7nAchR), which is a primary receptor of cholinergic anti-inflammatory pathway (CAP), exhibits great benefits for critical ill conditions. It is composed of 5 identical α7 subunits that form a central pore with high permeability for calcium. This putative structure is closely associated with its functional states. Activated α7nAChR exhibits extensive anti-inflammatory and immune modulatory reactions, including lowered pro-inflammatory cytokines levels, decreased expressions of chemokines as well as adhesion molecules, and altered differentiation and activation of immune cells, which are important in maintaining immune homeostasis. Well understanding of the effects and mechanisms of α7nAChR will be of great value in exploring effective targets for treating critical diseases. PMID:28123345

  10. Oestrogen receptor-alpha and -beta expression in breast implant capsules: experimental findings and clinical correlates.

    PubMed

    Persichetti, Paolo; Segreto, Francesco; Carotti, Simone; Marangi, Giovanni Francesco; Tosi, Daniele; Morini, Sergio

    2014-03-01

    Myofibroblasts provide a force to decrease the surface area of breast implant capsules as the collagen matrix matures. 17-β-Oestradiol promotes myofibroblast differentiation and contraction. The aim of the study was to investigate the expression of oestrogen receptors α and β in capsular tissue. The study enrolled 70 women (80 capsules) who underwent expander or implant removal, following breast reconstruction. Specimens were stained with haematoxylin/eosin, Masson trichrome and immunohistochemistry and immunofluorescence stainings for alpha-smooth muscle actin (α-SMA), oestrogen receptor-alpha (ER-α) and oestrogen receptor-beta (ER-β). The relationship between anti-oestrogenic therapy and capsular severity was evaluated. A retrospective analysis of 233 cases of breast reconstruction was conducted. Myofibroblasts expressed ER-α, ER-β or both. In the whole sample, α-SMA score positively correlated with ER-α (p = 0.022) and ER-β expression (p < 0.004). ER-β expression negatively correlated with capsular thickness (p < 0.019). In capsules surrounding expanders α-SMA and ER-α, expressions negatively correlated with time from implantation (p = 0.002 and p = 0.016, respectively). The incidence of grade III-IV contracture was higher in patients who did not have anti-oestrogenic therapy (p < 0.036); retrospective analysis of 233 cases confirmed this finding (p < 0.0001). This study demonstrates the expression of oestrogen receptors in myofibroblasts of capsular tissue. A lower contracture severity was found in patients who underwent anti-oestrogenic therapy.

  11. Repression of gamma-aminobutyric acid type A receptor alpha1 polypeptide biosynthesis requires chronic agonist exposure.

    PubMed

    Miranda, J D; Barnes, E M

    1997-06-27

    Although it is well established that the number of gamma-aminobutyric acid type A (GABAA) receptors declines in cortical neurons exposed to GABAA receptor agonists, the mechanisms responsible for this use-dependent down-regulation remain unclear. Two hypotheses have been proposed: (i) agonist-evoked sequestration and degradation of surface GABAA receptors and (ii) repression of receptor subunit biosynthesis. We have addressed this problem using [35S]Met/Cys pulse-chase labeling of chick cortical neurons in culture and immunoprecipitation and immunoblotting with an antibody (RP4) directed against a GABAA receptor alpha1-(331-381) fusion protein. Exposure of the cells to GABA or isoguvacine for 2 h to 4 days had no effect on the initial rate of 35S incorporation into the GABAA receptor 51-kDa alpha1 polypeptide, but this rate declined by 33% after a 7-day treatment. This is consistent with a previous report (Baumgartner, B. J., Harvey, R. J., Darlison, M. G., and Barnes, E. M. (1994) Mol. Brain Res. 26, 9-17) that a 7-day GABA treatment of this preparation produced a 45% reduction in the alpha1 subunit mRNA level, while a 4-day exposure had no detectable effect. On the other hand, after a 4-day exposure to these agonists, a 30% reduction in the level of the alpha1 polypeptide was observed on immunoblots, similar to that found previously for down-regulation of GABAA receptor ligand-binding sites. Thus, the de novo synthesis of GABAA receptor alpha1 subunits is subject to a delayed use-dependent repression that was observed after, rather than before, the decline in neuronal levels of the polypeptide. Pulse-chase experiments showed a monophasic degradation of the GABAA receptor 35S-alpha1 subunit with a t1/2 = 7.7 h, a process that was unaffected by the addition of GABA to neurons during the chase period. These nascent 35S-labeled polypeptides are presumably diluted into the neuronal pool of unlabeled unassembled alpha1 subunits, which was found to exceed by a 4:1 molar

  12. Actin/alpha-actinin-dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL.

    PubMed

    Schulz, Torsten W; Nakagawa, Terunaga; Licznerski, Pawel; Pawlak, Verena; Kolleker, Alexander; Rozov, Andrei; Kim, Jinhyun; Dittgen, Tanjew; Köhr, Georg; Sheng, Morgan; Seeburg, Peter H; Osten, Pavel

    2004-09-29

    The efficacy of excitatory transmission in the brain depends to a large extent on synaptic AMPA receptors, hence the importance of understanding the delivery and recycling of the receptors at the synaptic sites. Here we report a novel regulation of the AMPA receptor transport by a PDZ (postsynaptic density-95/Drosophila disc large tumor suppressor zona occludens 1) and LIM (Lin11/rat Isl-1/Mec3) domain-containing protein, RIL (reversion-induced LIM protein). We show that RIL binds to the AMPA glutamate receptor subunit GluR-A C-terminal peptide via its LIM domain and to alpha-actinin via its PDZ domain. RIL is enriched in the postsynaptic density fraction isolated from rat forebrain, strongly localizes to dendritic spines in cultured neurons, and coprecipitates, together with alpha-actinin, in a protein complex isolated by immunoprecipitation of AMPA receptors from forebrain synaptosomes. Functionally, in heterologous cells, RIL links AMPA receptors to the alpha-actinin/actin cytoskeleton, an effect that appears to apply selectively to the endosomal surface-internalized population of the receptors. In cultured neurons, an overexpression of recombinant RIL increases the accumulation of AMPA receptors in dendritic spines, both at the total level, as assessed by immunodetection of endogenous GluR-A-containing receptors, and at the synaptic surface, as assessed by recording of miniature EPSCs. Our results thus indicate that RIL directs the transport of GluR-A-containing AMPA receptors to and/or within dendritic spines, in an alpha-actinin/actin-dependent manner, and that such trafficking function promotes the synaptic accumulation of the receptors.

  13. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    SciTech Connect

    Dwyer, B.P. )

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  14. Heterogeneity of alpha1 receptors associated with vascular smooth muscle: evidence from functional and ligand binding studies

    SciTech Connect

    Babich, M.; Pedigo, N.W.; Butler, B.T.; Piascik, M.T.

    1987-08-10

    The nature of the alpha1 receptor associated with rabbit aorta has been examined in functional and receptor binding studies. In isolated aortic rings the dose-response curve for (-)metaraminol was not parallel to that of (-)epinephrine, (-)norepinephrine or (-)phenylephrine. Following inactivation of a portion of the alpha receptors with phenoxybenzamine, the occupancy versus response relationship for metaraminol, in contrast to the other test agonists, was biphasic. In microsomes prepared from aorta, metaraminol bound to two classes of sites labelled by the selective alpha1 antagonist (TH) prazosin. Norepinephrine also bound to two sites on the alpha receptor in all three preparations tested. The Scatchard plot of (TH)prazosin binding to microsomes prepared from frozen aorta was curvilinear. Estimates of the affinities and site densities were 49.6 +/- 15.3 pM and 44.8 +/- 11.8 pmol/gm protein and 1.0 +/- 0.2 nM and 43.8 +/- 17.4 pmol/gm for the high and low affinity sites, respectively. These data are consistent with the idea that there are subtypes of the alpha1 receptor. 33 references, 5 figures.

  15. Estrogen receptor alpha inhibits RLR-mediated immune response via ubiquitinating TRAF3.

    PubMed

    Wang, Changxing; Huang, Yue; Sheng, Jianzhong; Huang, Hefeng; Zhou, Jun

    2015-10-01

    RIG-I-like receptors (RLRs) function as key sentinel receptor for invading viruses. Moderate activation of RLR signaling is critical for efficient viral clearance without harmful immunopathology. Estrogen receptor alpha (ERα) is a member of the nuclear receptor superfamily of ligand-activated transcription factors and is involved in the regulation of innate immune responses. However, the effects of ERα on RLR signaling and the molecular mechanisms are poorly understood. In this study, we identify ERα as a negative regulator of RLR-triggered antiviral immune responses. The expression level of ERα is upregulated following RLR activation in macrophages. In the absence of ligand, VSV infection phosphorylates ERα at serine 167. ERα inhibits VSV-induced IRF3 activation. We further demonstrate that ERα directly interacts with TRAF3 and promotes K48-linked proteasomal degradation of TRAF3. Consistently, ERα inhibits VSV-triggered IFN-β production in macrophages in a ligand independent mechanism. Thus, ERα functions as a negative feedback regulator of RLR-triggered antiviral immune responses. These findings also provide the insights that separate the immune effects of ERα from its ligand-induced hormonal effects.

  16. The orphan estrogen-related receptor alpha and metabolic regulation: new frontiers.

    PubMed

    Ranhotra, Harmit S

    2015-01-01

    Metabolic homeostasis during long-term adaptation in animals is primarily achieved by controlling the expression of metabolic genes by a plethora of cellular transcription factors. The nuclear receptor (NR) superfamily in eukaryotes is an assembly of diverse receptors working as transcriptional regulators of multiple genes. The orphan estrogen-related receptor alpha (ERRα) is one such receptor of the NR superfamily with significant influence on numerous metabolic and other genes. Although it is presently unknown as to which endogenous hormones or ligands activate ERRα, nevertheless it regulates a host of genes whose products participate in various metabolic pathways. Studies over the years show new and interesting data that add to the growing knowledge on ERRα and metabolic regulation. For instance, novel findings indicate existence of mTOR/ERRα regulatory axis and also that ERRα control PGC-1α expression which potentially have significant impact on cellular metabolism. Data show that ERRα exerts its metabolic control by regulating the expression of SIRT5 that influences oxygen consumption and ATP generation. Moreover, ERRα has a role in creatine and lactate uptake in skeletal muscle which is important towards energy generation and contraction. This review is focused on the new insights gained into ERRα regulation of metabolism, networks and pathways that have important consequences in maintaining metabolic homeostasis including development of cancer.

  17. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    SciTech Connect

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  18. E-17 alpha(/sup 125/I)iodovinylestradiol: an estrogen-receptor-seeking radiopharmaceutical

    SciTech Connect

    Hanson, R.N.; Seitz, D.E.; Botarro, J.C.

    1982-05-01

    Through the use of radioiododestannylation, the specifically labeled E-17 alpha-(/sup 125/I)iodovinylestradiol ((/sup 125/I)VE2) was synthesized rapidly and in high yield from the stable precursor E-17 alpha-tributylstannylvinylestradiol (SnVE2), and its biodistribution was determined in immature female rats. The agent accumulated in the uterus, achieving a peak uptake of 0.465% ID-kg/g at 2 hr. Uterus-to-blood ratios of 19 and 16 occurred at 1 and 2 hr, respectively, declining to 7 by 4 hr after injection. The uptake of (/sup 125/I)VE2 by the uterus at 2 hr was reduced 58--65% by pretreatment of the immature rats with estradiol (5 micrograms) or tamoxifen (100 micrograms), and compared with 16 alpha-(/sup 125/I)iodoestradiol, (/sup 125/I)VE2 showed greater uterine uptake and similar uterus-to-blood ratios. The ease of preparation of the radioligand represents an advantage over the synthetic procedures for other estrogen-receptor-seeking agents.

  19. Effects of superior cervical ganglionectomy on alpha 2 adrenergic receptors in dog cerebral arteries

    SciTech Connect

    Fujiwara, M.; Tsukahara, T.; Taniguchi, T.; Usui, H.

    1986-03-01

    Norepinephrine (NE)- and clonidine-induced contractions of dog cerebral arteries were attenuated by yohimbine but not affected by prazosin. There was no detectable /sup 3/H-prazosin binding site in the cerebral arteries. On the other hand, /sup 3/H-yohimbine binding studies revealed the presence of two binding sites with high and low affinities in the cerebral arteries. After superior cervical ganglionectomy, NE- and clonidine-induced contractions of the denervated cerebral arteries were not altered compared with the control arteries. The binding study revealed that there was low affinity /sup 3/H-yohimbine binding sites, whereas high affinity sites were not detectable. These results suggest that there are two different NE binding sites in alpha 2 adrenergic receptors, and that the high affinity sites are presynaptically located and low affinity sites are postsynaptic. It is also suggested that NE-induced contractions are mediated by postsynaptic low affinity sites of alpha 2 adrenergic receptors in the dog cerebral arteries.

  20. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation

    PubMed Central

    de Jonge, W J; Ulloa, L

    2007-01-01

    The physiological regulation of the immune system encompasses comprehensive anti-inflammatory mechanisms that can be harnessed for the treatment of infectious and inflammatory disorders. Recent studies indicate that the vagal nerve, involved in control of heart rate, hormone secretion and gastrointestinal motility, is also an immunomodulator. In experimental models of inflammatory diseases, vagal nerve stimulation attenuates the production of proinflammatory cytokines and inhibits the inflammatory process. Acetylcholine, the principal neurotransmitter of the vagal nerve, controls immune cell functions via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). From a pharmacological perspective, nicotinic agonists are more efficient than acetylcholine at inhibiting the inflammatory signaling and the production of proinflammatory cytokines. This ‘nicotinic anti-inflammatory pathway' may have clinical implications as treatment with nicotinic agonists can modulate the production of proinflammatory cytokines from immune cells. Nicotine has been tested in clinical trials as a treatment for inflammatory diseases such as ulcerative colitis, but the therapeutic potential of this mechanism is limited by the collateral toxicity of nicotine. Here, we review the recent advances that support the design of more specific receptor-selective nicotinic agonists that have anti-inflammatory effects while eluding its collateral toxicity. PMID:17502850

  1. Role of the large cytoplasmic loop of the alpha 7 neuronal nicotinic acetylcholine receptor subunit in receptor expression and function.

    PubMed

    Valor, Luis M; Mulet, José; Sala, Francisco; Sala, Salvador; Ballesta, Juan J; Criado, Manuel

    2002-06-25

    The role of the large intracellular loop of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in the expression of functional channels was studied. For this purpose, systematic deletions and substitutions were made throughout the loop and the ability of the mutated alpha7 subunits to support expression of functional nAChRs at the Xenopus oocyte membrane was tested. Surface nAChR expression was abolished upon removal of sequences at two regions, a 29-amino acid segment close to the N-terminus of the loop (amino acids 297-325) and adjacent to the third transmembrane region and an 11-amino acid segment near the fourth transmembrane region. Some residues (amino acids 317-322) within the 29 amino acids N-terminal segment could be substituted by others but not deleted without loss of expression, suggesting that a certain structure, determined by the number of amino acids rather than by their identity, has to be maintained in this region. The contiguous sequence M323 K324 R325 did not tolerate deletions and substitutions. Removal of the rest of the cytoplasmic loop was not deleterious; even higher expression levels (2-4-fold) were obtained upon large deletions of the loop (Delta399-432 and Delta339-370). High expression levels were observed provided that a minimal sequence of three amino acids (E371, G372, and M373) was present. In addition, some electrophysiological properties of mutant nAChRs were modified. Substitution of the EGM sequence by other protein segments produced a variety of effects, but, in general, insertions were not well tolerated, suggesting the existence of tight structural restrictions in the large cytoplasmic region of the rat alpha7 subunit.

  2. Estrogen receptor-beta, estrogen receptor-alpha, and progesterone resistance in endometriosis.

    PubMed

    Bulun, Serdar E; Cheng, You-Hong; Pavone, Mary Ellen; Xue, Qing; Attar, Erkut; Trukhacheva, Elena; Tokunaga, Hideki; Utsunomiya, Hiroki; Yin, Ping; Luo, Xia; Lin, Zhihong; Imir, Gonca; Thung, Stephen; Su, Emily J; Kim, J Julie

    2010-01-01

    Loss of progesterone signaling in the endometrium may be a causal factor in the development of endometriosis, and progesterone resistance is commonly observed in women with this disease. In endometriotic stromal cells, the levels of progesterone receptor (PR), particularly the PR-B isoform, are significantly decreased, leading to a loss of paracrine signaling. PR deficiency likely underlies the development of progesterone resistance in women with endometriosis who no longer respond to progestin therapy. Here we review the complex epigenetic and transcriptional mechanisms leading to PR deficiency. The initial event may involve deficient methylation of the estrogen receptor (ER)beta promoter resulting in pathologic overexpression of ERbeta in endometriotic stromal cells. We speculate that alterations in the relative levels of ERbeta and ERalpha in endometrial tissue dictate E2-regulated PR expression, such that a decreased ERalpha-tauomicron-ERbeta ratio may result in suppression of PR. In this review, we propose a molecular model that may be responsible for changes in ERbeta and ERalpha leading to PR loss and progesterone resistance in endometriosis.

  3. Regional brain distribution of noradrenaline uptake sites, and of alpha1-alpha2- and beta-adrenergic receptors in PCD mutant mice: a quantitative autoradiographic study.

    PubMed

    Strazielle, C; Lalonde, R; Hébert, C; Reader, T A

    1999-01-01

    The mouse "Purkinje cell degeneration" (pcd) is characterized by a primary loss of Purkinje cells, as well as by retrograde and secondary partial degeneration of cerebellar granule cells and inferior olivary neurons; this neurological mutant can be considered as an animal model of human degenerative ataxia. To determine the consequences of this cerebellar pathology on the noradrenergic system, noradrenaline transporters as well as alpha1-, alpha2- and beta-adrenergic receptors were evaluated by quantitative ligand binding autoradiography in adult control and pcd mice using, respectively, [3H]nisoxetine, [3H]prazosin, [3H]idazoxan and [3H]CGP12177. In cerebellar cortex and deep nuclei of pcd mutants, [3H]nisoxetine labelling of noradrenaline transporters was higher than in control mice. However, when binding densities were corrected by surface area, they remained unchanged in the cerebellar cortex but associated with 25% and 40% lower levels of labelling of alpha1 and beta receptors, as well as a very important increase (275%) of alpha2 receptors. In deep cerebellar nuclei, surface corrections did not reveal any changes either in transporter or in receptor densities. Higher densities of [3H]nisoxetine labelling were found in several regions related with the cerebellum, namely inferior olive, inferior colliculus, vestibular, reticular, pontine, raphe and red nuclei, as well as in primary motor and sensory cerebral cortex; they may reflect an increased noradrenergic innervation related to motor adjustments for the cerebellar dysfunction. Increased [3H]nisoxetine labelling was also measured in vegetative brainstem regions and in dorsal hypothalamus, implying altered autonomic functions and possible compensation in pcd mutants. Other changes found in extracerebellar regions affected by the mutation, such as thalamus and the olfactory system implicated both noradrenaline transporters and adrenergic receptors. In contrast to the important alterations of the noradrenergic

  4. Differential modulation of alpha 3 beta 2 and alpha 3 beta 4 neuronal nicotinic receptors expressed in Xenopus oocytes by flufenamic acid and niflumic acid.

    PubMed

    Zwart, R; Oortgiesen, M; Vijverberg, H P

    1995-03-01

    Effects of flufenamic acid (FFA) and niflumic acid (NFA), which are often used to block Ca(2+)-activated Cl- current, have been investigated in voltage-clamped Xenopus oocytes expressing alpha 3 beta 2 and alpha 3 beta 4 nicotinic ACh receptors (nAChRs). NFA and FFA inhibit alpha 3 beta 2 nAChR-mediated inward currents and potentiate alpha 3 beta 4 nAChR-mediated inward currents in normal, Cl(-)-free and Ca(2+)-free solutions to a similar extent. The concentration-dependence of the inhibition of alpha 3 beta 2 nAChR-mediated ion current yields IC50 values of 90 microM for FFA and of 260 microM for NFA. The potentiation of alpha 3 beta 4 nAChR-mediated ion current by NFA yields an EC50 value of 30 microM, whereas the effect of FFA does not saturate for concentrations of up to 1 mM. At 100 microM, FFA reduces the maximum of the concentration-effect curve of ACh for alpha 3 beta 2 nAChRs, but leaves the EC50 of ACh unaffected. The same concentration of FFA potentiates alpha 3 beta 4 nAChR-mediated ion currents for all ACh concentrations and causes a small shift of the concentration-effect curve of ACh to lower agonist concentrations. The potentiation, like the inhibition, is most likely due to a noncompetitive effect of FFA. Increasing ACh-induced inward current either by raising the agonist concentration from 10 microM to 200 microM or by coapplication of 10 microM ACh and 200 microM FFA causes a similar enhancement of block of the alpha 3 beta 4 nAChR-mediated ion current by Mg2+. This suggests that the effects of FFA and of an increased agonist concentration result in a similar functional modification of the alpha 3 beta 4 nAChR-operated ion channel. It is concluded that alpha 3 beta 4 and alpha 3 beta 2 nAChRs are oppositely modulated by FFA and NFA through a direct beta-subunit-dependent effect.

  5. Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic alpha 7/125I-alpha-bungarotoxin receptor subtypes.

    PubMed

    de Fiebre, C M; Meyer, E M; Henry, J C; Muraskin, S I; Kem, W R; Papke, R L

    1995-01-01

    Investigation of the naturally occurring, nicotinic agonist anabaseine and novel derivatives has shown that these compounds have cytoprotective and memory-enhancing effects. The hypothesis that these arise at least in part through actions on brain nicotinic receptors was evaluated by examining the ability of these compounds to displace the binding of nicotinic ligands and to affect the function of the alpha 4 beta 2 and alpha 7 receptor subtypes expressed in Xenopus oocytes. The derivative 3-(4)-dimethylaminocinnamylidine anabaseine (DMAC) was found to be a selective alpha 7 receptor agonist; it was more potent than nicotine, acetylcholine, anabaseine, and other derivatives at activating the alpha 7 receptor subtype, while displaying little agonist activity at alpha 4 beta 2 and other receptor subtypes. Compared with anabaseine and the other derivatives, DMAC was the most potent at displacing 125I-alpha-bungarotoxin binding (putative alpha 7) and the least potent at displacing [3H]cytisine binding (putative alpha 4 beta 2) to brain membranes. Independently of agonist activities, all of the novel compounds displayed secondary inhibitory activity at both receptor subtypes. At the alpha 4 beta 2 receptor subtype, inhibition by the 3-(2,4)-dimethoxybenzylidene derivative was enhanced by coapplication of acetylcholine, suggesting a noncompetitive form of inhibition. Anabaseine and nicotine prolonged the time course of activation of alpha 4 beta 2 receptors, compared with acetylcholine, suggesting sequential channel-blocking activity. As selective agonists, anabaseine derivatives such as DMAC may be useful for elucidating the function of alpha 7 nicotinic receptors, including their potential role(s) in the cytoprotective and memory-enhancing effects of nicotinic agents.

  6. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    PubMed

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  7. Peroxisome proliferator-activated receptor alpha controls hepatic heme biosynthesis through ALAS1.

    PubMed

    Degenhardt, Tatjana; Väisänen, Sami; Rakhshandehroo, Maryam; Kersten, Sander; Carlberg, Carsten

    2009-05-01

    Heme is an essential prosthetic group of proteins involved in oxygen transport, energy metabolism and nitric oxide production. ALAS1 (5-aminolevulinate synthase) is the rate-limiting enzyme in heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target for the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). In primary human hepatocytes and in HepG2 cells, PPARalpha agonists induced an increase in ALAS1 mRNA levels, which was abolished by PPARalpha silencing. These effects are mediated by two functional PPAR binding sites at positions -9 and -2.3 kb relative to the ALAS1 transcription start site. PPARalpha ligand treatment also up-regulated the mRNA levels of the genes ALAD (5-aminolevulinate dehydratase), UROS (uroporphyrinogen III synthase), UROD (uroporphyrinogen decarboxylase), CPOX (coproporphyrinogen oxidase) and PPOX (protoporphyrinogen oxidase) encoding for enzymes controlling further steps in heme biosynthesis. In HepG2 cells treated with PPARalpha agonists and in mouse liver upon fasting, the association of PPARalpha, its partner retinoid X receptor, PPARgamma co-activator 1alpha and activated RNA polymerase II with the transcription start site region of all six genes was increased, leading to higher levels of the metabolite heme. In conclusion, these data strongly support a role of PPARalpha in the regulation of human ALAS1 and of five additional genes of the pathway, consequently leading to increased heme synthesis.

  8. Receptor reserve analysis of the human alpha(2C)-adrenoceptor using.

    PubMed

    Umland, S P; Wan, Y; Shah, H; Billah, M; Egan, R W; Hey, J A

    2001-01-12

    Here we determine for norepinephrine, (5-bromo-6-(2-imidazolin-2-ylamino)quinoxaline) (UK14,304), 5,6,7,8-tetrahydro-6-(2-propenyl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (BHT-920), (2-[3-hydroxy-2,6-dimethyl-4-t-butylbenzyl]-2-imidazoline) (oxymetazoline), and ((R)-3-Hydroxy-alpha-[(methylamino)methyl]-benzenemethanol hydrochloride) (phenylephrine), affinities using a radiolabeled agonist and antagonist, and potency and efficacy values in membrane [(35)S]guanosine-5'-O-(3-thiotriphosphate) ([(35)S]GTP gamma S) binding and cAMP cellular inhibition assays, in Chinese hamster ovary cells (CHO-K1) expressing the human alpha(2c)-adrenoceptor. These cells express a high ratio of receptor to G-protein because each agonist, but not several antagonists, displaced [(3)H]UK14,304 with higher affinity than [(3)H]rauwolscine. The rank order of potency of high affinity K(i) and EC(50) in both functional assays was norepinephrine > or =UK14,304>BHT-920>oxymetazoline>phenylephrine. The receptor reserve of G-protein activation and cAMP responses was measured with the irreversible antagonist, benextramine; K(A) values of norepinephrine or UK14,304 were similar (289, 271 or 150, 163 nM, respectively). A 20-fold greater receptor occupancy was required for agonist-induced half-maximal [(35)S]GTP gamma S binding compared to cAMP inhibition, indicating significant signal amplification in cells. Therefore, the G-protein activation assay is better at distinguishing full and partial agonists.

  9. Binding of a soluble alpha beta T-cell receptor to superantigen/major histocompatibility complex ligands.

    PubMed Central

    Kappler, J; White, J; Kozono, H; Clements, J; Marrack, P

    1994-01-01

    The genes for the alpha and beta chains of a murine T-cell receptor were truncated just prior to the portions encoding the transmembrane regions and introduced into baculovirus by recombination. Insect cells infected with the virus secreted a soluble form of the receptor that could be purified to homogeneity. This soluble receptor reacted with a set of six monoclonal antibodies originally raised to different epitopes on the natural transmembrane-region-containing receptor and bound with appropriate specificity to a cell surface complex of the human major histocompatibility complex class II molecule DR1 with the bacterial superantigen staphylococcal enterotoxin B. Images PMID:8078904

  10. The signal peptide of the IgE receptor alpha-chain prevents surface expression of an immunoreceptor tyrosine-based activation motif-free receptor pool.

    PubMed

    Platzer, Barbara; Fiebiger, Edda

    2010-05-14

    The high affinity receptor for IgE, Fc epsilon receptor I (FcepsilonRI), is an activating immune receptor and key regulator of allergy. Antigen-mediated cross-linking of IgE-loaded FcepsilonRI alpha-chains induces cell activation via immunoreceptor tyrosine-based activation motifs in associated signaling subunits, such as FcepsilonRI gamma-chains. Here we show that the human FcepsilonRI alpha-chain can efficiently reach the cell surface by itself as an IgE-binding receptor in the absence of associated signaling subunits when the endogenous signal peptide is swapped for that of murine major histocompatibility complex class-I H2-K(b). This single-chain isoform of FcepsilonRI exited the endoplasmic reticulum (ER), trafficked to the Golgi and, subsequently, trafficked to the cell surface. Mutational analysis showed that the signal peptide regulates surface expression in concert with other described ER retention signals of FcepsilonRI-alpha. Once the FcepsilonRI alpha-chain reached the cell surface by itself, it formed a ligand-binding receptor that stabilized upon IgE contact. Independently of the FcepsilonRI gamma-chain, this single-chain FcepsilonRI was internalized after receptor cross-linking and trafficked into a LAMP-1-positive lysosomal compartment like multimeric FcepsilonRI. These data suggest that the single-chain isoform is capable of shuttling IgE-antigen complexes into antigen loading compartments, which plays an important physiologic role in the initiation of immune responses toward allergens. We propose that, in addition to cytosolic and transmembrane ER retention signals, the FcepsilonRI alpha-chain signal peptide contains a negative regulatory signal that prevents expression of an immunoreceptor tyrosine-based activation motif-free IgE receptor pool, which would fail to induce cell activation.

  11. Effects of local alpha2-adrenergic receptor blockade on adipose tissue lipolysis during prolonged systemic adrenaline infusion in normal man.

    PubMed

    Simonsen, Lene; Enevoldsen, Lotte H; Stallknecht, Bente; Bülow, Jens

    2008-03-01

    During prolonged adrenaline infusion, lipolysis peaks within 30 min and thereafter tends to decline, and we hypothesized that the stimulation of local adipose tissue alpha2-adrenergic receptors accounts for this decline. The lipolytic effect of a prolonged intravenous adrenaline infusion combined with local infusion of the alpha2-blocker phentolamine in superficial and deep abdominal subcutaneous adipose tissue and in preperitoneal adipose tissue was studied in seven healthy subjects. The interstitial glycerol concentration in the three adipose tissue depots was measured by the microdialysis method. Regional adipose tissue blood flow was measured by the (133)Xe clearance technique. Regional glycerol output (lipolytic rate) was calculated from these measurements and simultaneous measurements of arterial glycerol concentrations. Adrenaline infusion increased lipolysis in all three depots (data previously published). Phentolamine infusion did not augment lipolysis in the subcutaneous depots while it increased the lipolytic rate in the preperitoneal depot. It is concluded that alpha2-adrenergic receptors do not have a significant effect on subcutaneous adipose tissue lipolysis during high circulating adrenaline concentrations, and the decrease in lipolysis in subcutaneous adipose tissue under prolonged adrenaline stimulation is thus not attributed to alpha2-adrenergic receptor inhibition of lipolysis. However, in the preperitoneal adipose tissue depot, alpha2-adrenergic receptor tone plays a role for the lipolytic rate obtained during prolonged adrenaline stimulation.

  12. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse.

    PubMed

    Jain, S; Maltepe, E; Lu, M M; Simon, C; Bradfield, C A

    1998-04-01

    The basic helix-loop-helix-PAS (bHLH-PAS) protein ARNT is a dimeric partner of the Ah receptor (AHR) and hypoxia inducible factor 1 alpha(HIF1 alpha). These dimers mediate biological responses to xenobiotic exposure and low oxygen tension. The recent cloning of ARNT and HIF1(homologues (ARNT2 and HIF2 alpha) indicates that at least six distinct bHLH-PAS heterodimeric combinations can occur in response to a number of environmental stimuli. In an effort to understand the biological relevance of this combinatorial complexity, we characterized their relative expression at a number of developmental time points by parallel in situ hybridization of adjacent tissue sections. Our results reveal that in general there is limited redundancy in the expression of these six transcription factors and that each of these bHLH-PAS members displays a unique pattern of developmental expression emerging as early as embryonic day 9.5.

  13. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    SciTech Connect

    Tachibana, Keisuke; Takeuchi, Kentaro; Inada, Hirohiko; Yamasaki, Daisuke; Ishimoto, Kenji; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Doi, Takefumi

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  14. Investigating the role of protein folding and assembly in cell-type dependent expression of alpha7 nicotinic receptors using a green fluorescent protein chimera.

    PubMed

    Lee, H K; Gwalani, L; Mishra, V; Anandjiwala, P; Sala, F; Sala, S; Ballesta, J J; O'Malley, D; Criado, M; Loring, R H

    2009-03-09

    To test the hypothesis that cell-dependent expression of alpha7 receptors is due to differences in protein folding or assembly, we constructed a chimeric rat alpha7 subunit with green fluorescent protein (GFP) at the receptor C-terminal. Expression of alpha7-GFP in Xenopus oocytes resulted in currents that were indistinguishable from wild type receptors but were only 33% of control. (125)I-alpha-bungarotoxin (alphaBGT) binding at the oocyte surface was reduced to 23% of wild type. Transfection of alpha7-GFP into GH4C1 cells produced fluorescence that was less intense than GFP alone, but showed significant alpha-BGT binding compared to transfection with GFP. In contrast, alpha7-GFP transfection in SH-EP1, HEK293 and CHO-CAR cells produced fluorescence without alphaBGT binding. Flow cytometry of cells transfected with alpha7-GFP indicated fluorescence in both SH-EP1 and GH4C1 cells, but surface toxin binding sites and sites immunoprecipitated using anti-GFP antibodies were undetectable in SH-EP1 cells, suggesting a problem in folding/assembly rather than trafficking. Surprisingly, integrated fluorescence intensities in GH4C1 cells transfected with alpha7-GFP did not correlate with amounts of cell surface or immunoprecipitable alphaBGT binding. Therefore, GFP folding at the C-terminal of the alpha7-GFP chimera is cell-line independent, but toxin binding is highly cell-line dependent, suggesting that if altered protein folding is involved in the cell-type dependence of alpha7 receptor expression, the phenomenon is restricted to specific protein domains. Further, C-terminal GFP-labeled alpha7 receptors decreased the efficiency of folding/assembly not only of chimeric subunits, but also wild-type subunits, suggesting that the C-terminal is an important domain for alpha7 receptor assembly.

  15. Multimeric complexes of the PML-retinoic acid receptor alpha fusion protein in acute promyelocytic leukemia cells and interference with retinoid and peroxisome-proliferator signaling pathways.

    PubMed Central

    Jansen, J H; Mahfoudi, A; Rambaud, S; Lavau, C; Wahli, W; Dejean, A

    1995-01-01

    The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells. Images Fig. 1 Fig. 2 Fig. 3 PMID:7638205

  16. Tumor necrosis factor-alpha inhibits pre-osteoblast differentiation through its type-1 receptor.

    PubMed

    Abbas, Sabiha; Zhang, Yan-Hong; Clohisy, John C; Abu-Amer, Yousef

    2003-04-01

    Tumor necrosis factor-alpha (TNF) is a pro-inflammatory cytokine with a profound role in many skeletal diseases. The cytokine has been described as a mediator of bone loss in osteolysis and other inflammatory bone diseases. In addition to its known bone resorptive action, TNF reduces bone formation by inhibiting osteoblast differentiation. Using primary and transformed osteoblastic cells, we first document that TNF inhibits expression of alkaline phosphatase and matrix deposition, both considered markers of osteoblast differentiation. The effects are dose- and time-dependent. Core-binding factor A1 (cbfa1) is a transcription factor critical for osteoblast differentiation, and we show here that it is activated by the osteoblast differentiation agent, beta-glycerophosphate. Therefore, we investigated whether the inhibitory effects of TNF were associated with altered activity of this transcription factor. Using retardation assays, we show that TNF significantly inhibits cbfal activation by beta-glycerophosphate, manifested by reduced DNA-binding activity. Next, we turned to determine the signaling pathway by which TNF inhibits osteoblast differentiation. Utilizing animals lacking individual TNF receptors, we document that TNFr1 is required for transmitting the cytokine's inhibitory effect. In the absence of this receptor, TNF failed to impact all osteoblast differentiation markers tested. In summary, TNF blocks expression of osteoblast differentiation markers and inhibits beta-glycerophosphate-induced activation of the osteoblast differentiation factor cbfa1. Importantly, these effects are mediated via a mechanism requiring the TNF type-1 receptor.

  17. Pharmacological Profiles of Alpha 2 Adrenergic Receptor Agonists Identified Using Genetically Altered Mice and Isobolographic Analysis

    PubMed Central

    Fairbanks, Carolyn A.; Stone, Laura S.; Wilcox, George L.

    2009-01-01

    Endogenous, descending noradrenergic fibers convey powerful analgesic control over spinal afferent circuitry mediating the rostrad transmission of pain signals. These fibers target alpha 2 adrenergic receptors (α2ARs) on both primary afferent terminals and secondary neurons, and their activation mediates substantial inhibitory control over this transmission, rivaling that of opioid receptors which share similar a similar pattern of distribution. The terminals of primary afferent nociceptive neurons and secondary spinal dorsal horn neurons express α2AAR and α2CAR subtypes, respectively. Spinal delivery of these agents serves to reduce their side effects, which are mediated largely at supraspinal sites, by concentrating the drugs at the spinal level. Targeting these spinal α2ARs with one of five selective therapeutic agonists, clonidine, dexmedetomidine, brimonidine, ST91 and moxonidine, produces significant antinociception that can work in concert with opioid agonists to yield synergistic antinociception. Application of several genetically altered mouse lines had facilitated identification of the primary receptor subtypes that likely mediate the antinociceptive effects of these agents. This review provides first an anatomical description of the localization of the three subtypes in the central nervous system, second a detailed account of the pharmacological history of each of these six primary agonists, and finally a comprehensive report of the specific interactions of other GPCR agonists with each of the six principal α2AR agonists featured. PMID:19393691

  18. A novel GABA(A) alpha 5 receptor inhibitor with therapeutic potential.

    PubMed

    Ling, István; Mihalik, Balázs; Etherington, Lori-An; Kapus, Gábor; Pálvölgyi, Adrienn; Gigler, Gábor; Kertész, Szabolcs; Gaál, Attila; Pallagi, Katalin; Kiricsi, Péter; Szabó, Éva; Szénási, Gábor; Papp, Lilla; Hársing, László G; Lévay, György; Spedding, Michael; Lambert, Jeremy J; Belelli, Delia; Barkóczy, József; Volk, Balázs; Simig, Gyula; Gacsályi, István; Antoni, Ferenc A

    2015-10-05

    Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development.

  19. Role of the scavenger receptor in the uptake of methylamine-activated alpha 2-macroglobulin by rat liver.

    PubMed Central

    van Dijk, M C; Boers, W; Linthorst, C; van Berkel, T J

    1992-01-01

    Alpha 2-Macroglobulin (alpha 2M) requires activation by small nucleophiles (e.g. methylamine; giving alpha 2M-Me) or proteolytic enzymes (e.g. trypsin; giving alpha 2M-Tr) in order to be rapidly removed from the circulation by the liver. Separation of rat liver cells into parenchymal, endothelial and Kupffer cells at 10 min after injection indicates that liver uptake of alpha 2M-Me is shared between parenchymal and endothelial cells, with relative contributions of 51.3% and 48.3% respectively of total liver-associated radioactivity. In contrast, alpha 2M-Tr is almost exclusively taken up by the parenchymal cells (90.1% of liver-associated radioactivity). A preinjection of 5 mg of poly(inosinic acid) decreased liver uptake of alpha 2M-Me to 39.9% of the control value, while it had no effect on liver uptake of alpha 2M-Tr. It appears that poly(inosinic acid) specifically reduces the uptake of alpha 2M-Me in vivo by endothelial cells, leaving uptake by parenchymal cells unaffected. In vitro studies with isolated liver cells indicate that the association of alpha 2M-Me with endothelial cells is 21-fold higher per mg of cell protein than with parenchymal cells. The capacity of endothelial cells to degrade alpha 2M-Me appears to be 46 times higher than that of parenchymal cells. Competition studies show that poly(inosinic acid) or acetylated low-density lipoprotein effectively competes with the association of alpha 2M-Me with endothelial and Kupffer cells, but association with parenchymal cells is unaffected. It is suggested that activation of alpha 2M by methylamine induces a charge distribution on the protein which triggers specific uptake by the scavenger receptor on endothelial cells. It is concluded that the uptake of alpha 2M-Me by the scavenger receptor might function as an additional system for the uptake of activated alpha 2M. Images Fig. 11. PMID:1280102

  20. Factors associated with estrogen receptors-alpha (ER-alpha) and -beta (ER-beta) and progesterone receptor abundance in obese and non obese pre- and post-menopausal women.

    PubMed

    Meza-Muñoz, Dalia Edith; Fajardo, Martha E; Pérez-Luque, Elva Leticia; Malacara, Juan Manuel

    2006-06-01

    There is scarce information about the factors associated with estrogen receptors (ER) at menopause. In 113 volunteers pre- and post-menopausal healthy women, grouped as with and without obesity, estrogen receptors-alpha and -beta, and progesterone receptor (PR) were measured by immunohistochemistry in skin punch biopsies obtained from the external gluteal area. In pre-menopausal women, biopsies and a blood sample were performed between days 7 and 14 of the cycle. Serum hormone levels were measured by immunoradiometric assay or radioimmunoassay. After menopause, ER and PR amounts decreased significantly. At pre-menopause, obese women had lower PR levels than non obese (P<.006). In the post-menopausal group, obese women showed higher ER-alpha (P<.03) and ER-beta (P<.02) levels than the non obese group. In the analysis of factors associated with the amount of steroid receptors for the total group, log[ER-alpha], log[ER-beta], and log[PR] were associated with age (P<.002, <.005, and <.004, respectively). The log[ER-alpha] was also associated with log[FSH] (P<.0008); meanwhile, the log[PR] showed a marginal correlation with log[FSH]. In pre-menopausal women no factor associated with any of the three receptors was found. In post-menopausal women log[ER-alpha] was associated with log[estrone] and log[DHEAS] (P<.003 and <.02, respectively). log[PR] was associated with BMI (P<.002), years since menopause (P<.05), and log[DHEAS] (P<.003). We concluded that ER and PR diminish sharply at post-menopause. At this stage the amount of receptors depends on several factors such as BMI, years since menopause, and androgen precursors.

  1. Increased alpha-melanocyte-stimulating hormone (alpha-MSH) levels and melanocortin receptors expression associated with pigmentation in an NC/Nga mouse model of atopic dermatitis.

    PubMed

    Hiramoto, Keiichi; Kobayashi, Hiromi; Ishii, Masamitsu; Sato, Eisuke; Inoue, Masayasu

    2010-02-01

    Patients with a specific subtype of atopic dermatitis (AD) display particular patterns of pigmentation, such as ripple pattern pigmentation on the neck, pigmented macules on the lip and diffuse pigmentation. However, the mechanism underlying these patterns has not been determined. The purpose of our research is to investigate the factors influencing this type of pigmentation in AD. We observed that AD model mice (NC/Nga mice) displayed an increase in the number of 3, 4-dihydroxyphenylalanine (Dopa)-positive melanocytes in the epidermis and intestine (jejunum and colon) while in the inflammatory state. The plasma levels of alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocoticotropin (ACTH) also increased in NC/Nga mice with dermatitis. Furthermore, the expression of melanocortin receptor 5 and melanocortin receptor 1 (MC1R) increased in the skin, and melanocortin receptor 3 (MC3R) expression increased in the intestine. However, the changes in the Dopa-positive cells of conventional NC/Nga mice were not induced by treatment with either agouti (an MC1R antagonist) or agouti-related protein (an MC3R antagonist). These results indicate that the pigmentation of AD is related to increased levels of alpha-MSH, MC1R (in the skin) and MC3R (in the intestines).

  2. Regulation of constitutive androstane receptor and its target genes by fasting, cAMP, hepatocyte nuclear factor alpha, and the coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha.

    PubMed

    Ding, Xunshan; Lichti, Kristin; Kim, Insook; Gonzalez, Frank J; Staudinger, Jeff L

    2006-09-08

    Animal studies reveal that fasting and caloric restriction produce increased activity of specific metabolic pathways involved in resistance to weight loss in liver. Evidence suggests that this phenomenon may in part occur through the action of the constitutive androstane receptor (CAR, NR1I3). Currently, the precise molecular mechanisms that activate CAR during fasting are unknown. We show that fasting coordinately induces expression of genes encoding peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), CAR, cytochrome P-450 2b10 (Cyp2b10), UDP-glucuronosyltransferase 1a1 (Ugt1a1), sulfotransferase 2a1 (Sult2a1), and organic anion-transporting polypeptide 2 (Oatp2) in liver in mice. Treatments that elevate intracellular cAMP levels also produce increased expression of these genes in cultured hepatocytes. Our data show that PGC-1alpha interaction with hepatocyte nuclear factor 4alpha (HNF4alpha, NR2A1) directly regulates CAR gene expression through a novel and evolutionarily conserved HNF4-response element (HNF4-RE) located in its proximal promoter. Expression of PGC-1alpha in cells increases CAR expression and ligand-independent CAR activity. Genetic studies reveal that hepatic expression of HNF4alpha is required to produce fasting-inducible CAR expression and activity. Taken together, our data show that fasting produces increased expression of genes encoding key metabolic enzymes and an uptake transporter protein through a network of interactions involving cAMP, PGC-1alpha, HNF4alpha, CAR, and CAR target genes in liver. Given the recent finding that mice lacking CAR exhibit a profound decrease in resistance to weight loss during extended periods of caloric restriction, our findings have important implications in the development of drugs for the treatment of obesity and related diseases.

  3. Antibodies to synthetic peptides as probes for the binding site on the alpha subunit of the acetylcholine receptor.

    PubMed Central

    Neumann, D; Gershoni, J M; Fridkin, M; Fuchs, S

    1985-01-01

    Synthetic peptides and their respective antibodies were used in an attempt to localize and identify the ligand-binding site of the nicotinic acetylcholine receptor. Two peptides of the receptor alpha subunit were synthesized, the first corresponding to the NH2-terminal domain (positions 1-20) and the other, to a segment (residues 126-143) that contains the first two cysteine residues. Specific antipeptide antibodies were elicited in rabbits after immunization with the peptides conjugated to bovine serum albumin. The antipeptide antibodies thus obtained cross-reacted with the receptor and bound specifically to its alpha subunit. The antipeptide antibodies were used to test whether the peptide sequences corresponded to the alpha-bungarotoxin (alpha-BTX)-binding site. Staphylococcus aureus V8-protease digestion of the isolated receptor alpha subunit generated several fragments. Antipeptide (1-20) and antipeptide (126-143) both bound a 26-kDa fragment, whereas only antipeptide (126-143) bound a 17-kDa fragment. None of these fragments were found to bind alpha-BTX. On the other hand, alpha-BTX bound to an 18-kDa fragment that did not react with either of the antipeptide antibodies. Moreover, the 26-kDa and 17-kDa fragments were also found to contain the endoglycosidase H-susceptible oligosaccharide chain. Our results indicate that the toxin-binding site lies beyond the first possible V8 protease cleavage site after residues 126-143: i.e., Asp-152. This location is in agreement with the possibility that cysteine residues 192 and/or 193 are in close proximity to or contiguous with the ligand-binding site. Images PMID:2582416

  4. Involvement of Human Estrogen Related Receptor Alpha 1 (hERR 1) in Breast Cancer and Hormonally Insensitive Disease

    DTIC Science & Technology

    2000-08-01

    Coutts, A., and Watson , P. The pathophysiological role of estrogen receptor variants in human breast cancer, J Steroid Biochem Mol Biol. 65: 175-80, 1998...breast cancer, Clin Cancer Res. 6: 512-8, 2000. 37. Leygue, E., Dotzlaw, H., Watson , P. H., and Murphy, L. C. Altered estrogen receptor alpha and beta...amphiregulin and CRIPTO in human normal and malignant breast tissues, Int J Cancer. 65: 51-6, 1996. 124. Depowski, P. L., Brien, T. P., Sheehan, C. E

  5. Construction of transforming growth factor alpha (TGF-alpha) phage library and identification of high binders of epidermal growth factor receptor (EGFR) by phage display.

    PubMed

    Tang, X B; Dallaire, P; Hoyt, D W; Sykes, B D; O'Connor-McCourt, M; Malcolm, B A

    1997-10-01

    TGF-alpha, a 50 amino acid growth factor containing 3 disulfide bonds, was fused to the N-terminal domain of the pIII protein of fusN, a derivative of phagemid fd-tet, to form a TGF-alpha phage. The fusion phage showed binding activity to epidermal growth factor receptor (EGFR). A library of approximately 4 x 10(7) variants of TGF-alpha was generated with substitutions of total of 10 amino acids located in the C-loop region. This C-loop subdomain of TGF-alpha consists of a small antiparallel double hairpin structure involving interactions between intra-polypeptide segments. Mutants isolated from the phage library with greatly increased binding affinity were selected through panning with A431 cells (a cell line expressing an elevated number of EGFRs). Following two rounds of stringent selection, variant phages with higher binding affinity than wild type TGF-alpha were identified and the phage DNAs were sequenced for the alignment analysis. Absolute selection at position 42 as Arg, preferential selection at position 38 and 45 as Tyr or Phe with aromatic side chain and selection at position 41 with acidic residues, were obtained. Although an amino acid residue with smaller side chain at position 35 and one with larger side chain at position 36 were preferred, the steric hindering of the structure in side chains was minimized between these adjacent amino acids.

  6. AFM imaging of ligand binding to platelet integrin alphaIIbbeta3 receptors reconstituted into planar lipid bilayers.

    PubMed

    Hussain, Mohammad A; Agnihotri, Aashiish; Siedlecki, Christopher A

    2005-07-19

    The platelet integrin alphaIIbbeta3 plays a key role in platelet adhesion, activation, and aggregation at the subendothelium and at protein-coated synthetic biomaterials. In this study, interactions between alphaIIbbeta3 and both protein and peptide ligands for the receptor were imaged under physiological conditions by high-resolution atomic force microscopy (AFM). To directly image the ligand-receptor interactions, alphaIIbbeta3 receptors were reconstituted into a supported lipid bilayer formed on a mica surface in the AFM fluid cell assembly and subsequently activated with Mn2+. Fibrinogen, the natural protein ligand for the integrin, as well as a nanogold-labeled peptide ligand (an RGD-containing heptamer) were infused into the AFM fluid cell, incubated with the reconstituted and activated receptors, and imaged under buffer. Height images illustrating topographical features showed the integrin reconstituted in the bilayer. Fibrinogen molecules binding to the receptors were easily observed in the height images, with fibrinogen showing its characteristic trinodular structure and occasionally bridging integrin receptors. Fibrinogen was observed to bind to integrins at the D-domain consistent with the location of the gamma-chain dodecapeptide, while fibrinogen bridging integrins bound to receptors on opposite sides of the protein consistent with a 2-fold axis of symmetry. Peptide ligands were not visible in height images; however, phase images that map the mechanical properties detected the nanogold labels and demonstrated the presence of peptide ligands bound to the receptors. The results demonstrate the ability of this high-resolution microscopy technique to directly visualize single ligand/receptor interactions in a dynamic and physiologically relevant environment, and establish a framework for future fundamental studies of single protein/receptor interactions during normal pathological processes as well as biomaterial surface-induced thrombosis.

  7. Contribution of nicotinic receptors to the function of synapses in the central nervous system: the action of choline as a selective agonist of alpha 7 receptors.

    PubMed

    Albuquerque, E X; Pereira, E F; Braga, M F; Alkondon, M

    1998-01-01

    The alpha 7-nicotinic receptor (nAChR)-selective agonist choline and nAChR-subtype-selective antagonists led to the discovery that activation of both alpha 7 and alpha 4 beta 2 nAChRs located in CA1 interneurons in slices taken from the rat hippocampus facilitates the tetrodotoxin (TTX)-sensitive release of gamma-aminobutyric acid (GABA). Experiments carried out in cultured hippocampal neurons not only confirmed that preterminal alpha 7 and alpha 4 beta 2 nAChRs modulate the TTX-sensitive release of GABA, but also demonstrated that evoked release of GABA is reduced by rapid exposure of the neurons to acetylcholine (ACh, 10 microM-1 mM) in the presence of the muscarinic receptor antagonist atropine (1 microM). This effect of ACh, which is fully reversible and concentration-dependent, is partially blocked by superfusion of the cultured neurons with external solution containing either the alpha 7-nAChR-selective antagonist methyllycaconitine (MLA, 1 nM) or the alpha 4 beta 2-nAChR-selective antagonist dihydro-beta-erythroidine (DH beta E, 100 nM). A complete blockade of ACh-induced reduction of evoked release of GABA was achieved only when the neurons were perfused with external solution containing both MLA and DH beta E, suggesting that activation of both alpha 7 and alpha 4 beta 2 nAChRs modulates the evoked release of GABA from hippocampal neurons. Such mechanisms may account for the apparent involvement of nAChRs in the psychological effects of tobacco smoking, in brain disorders (e.g., schizophrenia and epilepsy), and in physiological processes, including cognition and nociception.

  8. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    PubMed

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-16

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  9. Behavioral Disturbances in Estrogen-Related Receptor alpha-Null Mice

    PubMed Central

    Cui, Huxing; Lu, Yuan; Khan, Michael Z.; Anderson, Rachel M.; McDaniel, Latisha; Wilson, Hannah E.; Yin, Terry C.; Radley, Jason J.; Pieper, Andrew A.; Lutter, Michael

    2015-01-01

    SUMMARY Eating disorders, such as anorexia nervosa and bulimia nervosa, are common and severe mental illnesses of unknown etiology. Recently, we identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) that is associated with the development of eating disorders. However, little is known about ESRRA function in the brain. Here, we report that Esrra is expressed in the mouse brain and demonstrate that Esrra levels are regulated by energy reserves. Esrra-null female mice display a reduced operant response to a high-fat diet, compulsivity/behavioral rigidity, and social deficits. Selective Esrra knockdown in the prefrontal and orbitofrontal cortices of adult female mice recapitulates reduced operant response and increased compulsivity, respectively. These results indicate that Esrra deficiency in the mouse brain impairs behavioral responses in multiple functional domains. PMID:25865889

  10. Memo interacts with c-Src to control Estrogen Receptor alpha sub-cellular localization.

    PubMed

    Frei, Anna; MacDonald, Gwen; Lund, Ingrid; Gustafsson, Jan-Åke; Hynes, Nancy E; Nalvarte, Ivan

    2016-08-30

    Understanding the complex interaction between growth factor and steroid hormone signaling pathways in breast cancer is key to identifying suitable therapeutic strategies to avoid progression and therapy resistance. The interaction between these two pathways is of paramount importance for the development of endocrine resistance. Nevertheless, the molecular mechanisms behind their crosstalk are still largely obscure. We previously reported that Memo is a small redox-active protein that controls heregulin-mediated migration of breast cancer cells. Here we report that Memo sits at the intersection between heregulin and estrogen signaling, and that Memo controls Estrogen Receptor alpha (ERα) sub-cellular localization, phosphorylation, and function downstream of heregulin and estrogen in breast cancer cells. Memo facilitates ERα and c-Src interaction, ERα Y537 phosphorylation, and has the ability to control ERα extra-nuclear localization. Thus, we identify Memo as an important key mediator between the heregulin and estrogen signaling pathways, which affects both breast cancer cell migration and proliferation.

  11. Exon-intron structure of the human neuronal nicotinic acetylcholine receptor {alpha}4 subunit (CHRNA4)

    SciTech Connect

    Steinlein, O.; Weiland, S.; Stoodt, J.; Propping, P.

    1996-03-01

    The human neuronal nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) is located in the candidate region for three different phenotypes: benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, and low-voltage EEG. Recently, a missense mutation in transmembrane domain 2 of CHRNA4 was found to be associated with autosomal dominant nocturnal frontal lobe epilepsy in one extended pedigree. We have determined the genomic organization of CHRNA4, which consists of six exons distributed over approximately 17 kb of genomic DNA. The nucleotide sequence obtained from the genomic regions adjacent to the exon boundaries enabled us to develop a set of primer pairs for PCR amplification of the complete coding region. The sequence analysis provides the basis for a comprehensive mutation screening of CHRNA4 in the above-mentioned phenotypes and possibly in other types of idopathic epilepsies. 29 refs., 3 figs., 1 tab.

  12. Genomic organization and chromosomal localization of the human and mouse genes encoding the alpha receptor component for ciliary neurotrophic factor.

    PubMed

    Valenzuela, D M; Rojas, E; Le Beau, M M; Espinosa, R; Brannan, C I; McClain, J; Masiakowski, P; Ip, N Y; Copeland, N G; Jenkins, N A

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor alpha (CNTFR alpha). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR alpha. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain is encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4.

  13. Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit.

    PubMed Central

    Neumann, D; Barchan, D; Fridkin, M; Fuchs, S

    1986-01-01

    A synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo acetylcholine receptor alpha subunit, which contains the adjacent cysteine residues at positions 192 and 193, was recently shown by us to contain the essential elements for alpha-bungarotoxin binding. In the present study, we have used Sepharose-linked peptides for quantitative analysis of the cholinergic binding properties of this and other synthetic peptides. Sepharose-linked peptides corresponding to residues 1-20, 126-143, 143-158, 169-181, 185-196, 193-210, and 394-409 of the alpha subunit of Torpedo acetylcholine receptor, as well as a peptide corresponding to residues 185-196 of the alpha subunit of human acetylcholine receptor, were tested for their toxin-binding capacity. Of these immobilized peptides, only peptide 185-196 of the Torpedo acetylcholine receptor bound toxin significantly, thus verifying that this synthetic peptide contains essential components of the receptor toxin-binding site. Analysis of toxin binding to the peptide yielded a dissociation constant of 3.5 X 10(-5) M. This binding was inhibited by various cholinergic ligands. The inhibition potency obtained was alpha-bungarotoxin greater than Naja naja siamensis toxin greater than d-tubocurarine greater than decamethonium greater than acetylcholine greater than carbamoylcholine. This pharmacological profile resembles that of the nicotinic acetylcholine receptor and therefore suggests that the synthetic dodecapeptide also includes the neurotransmitter binding site. Reduction and carboxymethylation of the cysteine residues on peptide 185-196 inhibit its capacity to bind toxin, demonstrating that an intact disulfide is required for toxin binding. A decrease in toxin binding was also obtained following chemical modification of the tryptophan residue at position 187, thus implying its possible involvement in toxin binding. The failure to detect binding of toxin to the corresponding human sequence 185-196, in which the

  14. Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit.

    PubMed

    Neumann, D; Barchan, D; Fridkin, M; Fuchs, S

    1986-12-01

    A synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo acetylcholine receptor alpha subunit, which contains the adjacent cysteine residues at positions 192 and 193, was recently shown by us to contain the essential elements for alpha-bungarotoxin binding. In the present study, we have used Sepharose-linked peptides for quantitative analysis of the cholinergic binding properties of this and other synthetic peptides. Sepharose-linked peptides corresponding to residues 1-20, 126-143, 143-158, 169-181, 185-196, 193-210, and 394-409 of the alpha subunit of Torpedo acetylcholine receptor, as well as a peptide corresponding to residues 185-196 of the alpha subunit of human acetylcholine receptor, were tested for their toxin-binding capacity. Of these immobilized peptides, only peptide 185-196 of the Torpedo acetylcholine receptor bound toxin significantly, thus verifying that this synthetic peptide contains essential components of the receptor toxin-binding site. Analysis of toxin binding to the peptide yielded a dissociation constant of 3.5 X 10(-5) M. This binding was inhibited by various cholinergic ligands. The inhibition potency obtained was alpha-bungarotoxin greater than Naja naja siamensis toxin greater than d-tubocurarine greater than decamethonium greater than acetylcholine greater than carbamoylcholine. This pharmacological profile resembles that of the nicotinic acetylcholine receptor and therefore suggests that the synthetic dodecapeptide also includes the neurotransmitter binding site. Reduction and carboxymethylation of the cysteine residues on peptide 185-196 inhibit its capacity to bind toxin, demonstrating that an intact disulfide is required for toxin binding. A decrease in toxin binding was also obtained following chemical modification of the tryptophan residue at position 187, thus implying its possible involvement in toxin binding. The failure to detect binding of toxin to the corresponding human sequence 185-196, in which the

  15. T-cell receptor alpha chain plays a critical role in antigen-specific suppressor cell function.

    PubMed Central

    Kuchroo, V K; Byrne, M C; Atsumi, Y; Greenfield, E; Connolly, J B; Whitters, M J; O'Hara, R M; Collins, M; Dorf, M E

    1991-01-01

    Antigen-specific suppressor T-cell hybridomas release soluble suppressor factors (TsF) in the supernatant that modulate both in vivo delayed-type hypersensitivity and in vitro plaque-forming cell responses in an antigen-specific manner. To study the relationship between the T-cell receptor (TcR) and TsF, we developed a series of TcR alpha- or TcR beta- expression variants from suppressor T-cell hybridomas that expressed the CD3-TcR alpha/beta complex. We demonstrate that loss of TcR alpha but not TcR beta mRNA was accompanied by the concomitant loss of suppressor bioactivity. Homologous transfection of TcR alpha cDNA into a TcR alpha- beta+ clone reconstituted both CD3-TcR expression and suppressor function. Furthermore, suppressor activity from TcR beta- variants was specifically absorbed by antigen and anti-TcR alpha antibodies, but not by anti-CD3 or anti-TcR beta affinity columns. These data directly establish a role for the TcR alpha chain in suppressor T-cell function and suggest that the TcR alpha chain is part of the antigen-specific TsF molecule. Images PMID:1833764

  16. Intrathecal alpha2 adrenoceptor agonist clonidine inhibits mechanical transmission in mouse spinal cord via activation of muscarinic M1 receptors.

    PubMed

    Honda, Kenji; Koga, Kohei; Moriyama, Tomoko; Koguchi, Masako; Takano, Yukio; Kamiya, Hiro-o

    2002-04-12

    We examined the role of the spinal muscarinic receptor subtype in the anti-nociceptive effect of intrathecal (i.t.) alpha2 adrenoceptor agonist clonidine in mice. I.t. injection of the muscarinic receptor antagonist atropine completely inhibited i.t. clonidine-induced increase in the mechanical threshold, but did not affect the increase in tail-flick latency induced by i.t. clonidine. The clonidine-induced increase in mechanical threshold was inhibited by i.t. injection of the M1 receptor antagonist pirenzepine in a dose-dependent manner, and by the M3 receptor antagonist 4-DAMP, but not by the M2 receptor antagonist methoctramine. The potency of pirenzepine was greater than that of 4-DAMP. These results suggest that the clonidine-induced increase in mechanical threshold is mediated via the activation of M1 receptors in the spinal cord.

  17. The inhibition of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor alpha and peroxisome proliferator-activated receptor alpha heterodimer.

    PubMed

    Gbaguidi, G Franck; Agellon, Luis B

    2004-01-01

    In previous work, we showed that the binding of the liver x receptor alpha:peroxisome proliferator-activated receptor alpha (LXRalpha:PPARalpha) heterodimer to the murine Cyp7a1 gene promoter antagonizes the stimulatory effect of their respective ligands. In this study, we determined if LXRalpha:PPARalpha can also regulate human CYP7A1 gene promoter activity. Co-expression of LXRalpha and PPARalpha in McArdle RH7777 hepatoma cells decreased the activity of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol. In vitro, the human CYP7A1 Site I bound LXRalpha:PPARalpha, although with substantially less affinity compared with the murine Cyp7a1 Site I. The binding of LXRalpha:PPARalpha to human CYP7A1 Site I was increased in the presence of either LXRalpha or PPARalpha ligands. In HepG2 hepatoblastoma cells, fibrates and 25-hydroxycholesterol inhibited the expression of the endogenous CYP7A1 gene as well as the human CYP7A1 gene promoter when co-transfected with plasmids encoding LXRalpha and PPARalpha. However, a derivative of the human CYP7A1 gene promoter that contains a mutant form of Site I that does not bind LXRalpha:PPARalpha was not inhibited by WY 14,643 or 25-hydroxycholesterol in both McArdle RH7777 and HepG2 cells. The ligand-dependent recruitment of LXRalpha:PPARalpha heterodimer onto the human CYP7A1 Site I can explain the inhibition of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol.

  18. The association between estrogen receptor alpha polymorphisms and the risk of prostate cancer in Slovak population.

    PubMed

    Jurečeková, Jana; Sivoňová, Monika Kmetová; Evinová, Andrea; Kliment, Ján; Dobrota, Dušan

    2013-09-01

    The aim of our study was to evaluate the effect of two polymorphisms in the estrogen receptor alpha, PvuII and XbaI, on the development of prostate cancer within Slovak population, as well as their correlation with selected clinical characteristics. The study was performed using 311 prostate cancer patients and 256 healthy male controls. Both polymorphisms were significantly associated with higher risk of prostate cancer development. At the same time, the CC genotype of PvuII polymorphism (OR = 1.98; 95% CI 0.94-4.21; p = 0.05) and the AG genotype of XbaI polymorphism (OR = 1.74; 95% CI 1.0-3.02; p = 0.04) significantly contributed to the development of low-grade carcinoma, while the AG and GG genotypes of the XbaI polymorphism contributed mainly to the development of high-grade prostate cancer (OR = 1.83; 95% CI 1.12-3.01; p = 0.01 and OR = 2.13; 95% CI 1.06-4.19; p = 0.03,