DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumagai, T.; Abe, E.; Nakamura, M.
1997-12-31
Microstructural development of an extremely fine {alpha}{sub 2}-Ti{sub 32}Al/{gamma}-TiAl lamellar structure, which was formed by ice water quenching after solution-treatment in a high-temperature {alpha}-Ti phase field for a long period of time, was examined during isothermal treatment. In an as-quenched Ti-48at.%Al alloy, the massively transformed {gamma} ({gamma}{sub m}) and untransformed (meaning massively untransformed) fine {alpha}{sub 2}/{gamma} lamellar regions were observed. Fine {gamma} grains, which were similar to {gamma}{sub m}, were generated both within the fine {alpha}{sub 2}/{gamma} lamellae and at the boundary area between the {gamma}{sub m} and the fine {alpha}{sub 2}/{gamma} lamellar regions by aging at low-temperature (1,173 K)more » for a short time (180s). Further aging (1.8ks) caused the coarsening of these newly generated fine {gamma} grains. On the other hand, the coarsening of the {gamma} grains occurred by a high-temperature (1,323 K) aging treatment even for 180s. Fine {alpha}{sub 2} plates and particles, which were aligned to a particular direction, were observed in the {gamma} grain interiors, indicating that the newly generated {gamma} grains grew at the expense of the fine {alpha}{sub 2}/{gamma} lamellae. It can be considered that the {gamma} grain formation through the fine {alpha}{sub 2}/{gamma} lamellae is closely related to the {alpha}{sub 2}{yields}{gamma} reaction of the {alpha}{sub 2} plates sandwiched by the {gamma} plates, and needs the fast heating rate enough to overcome the {alpha}{sub 2}/{gamma}{yields}{gamma}/{gamma} lamellae reaction.« less
Atomic Clocks and Variations of the FIne Structure Constant
NASA Technical Reports Server (NTRS)
Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute
1995-01-01
We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.
Precision measurement of the three 2(3)P(J) helium fine structure intervals.
Zelevinsky, T; Farkas, D; Gabrielse, G
2005-11-11
The three 2(3)P fine structure intervals of 4H are measured at an improved accuracy that is sufficient to test two-electron QED theory and to determine the fine structure constant alpha to 14 parts in 10(9). The more accurate determination of alpha, to a precision higher than attained with the quantum Hall and Josephson effects, awaits the reconciliation of two inconsistent theoretical calculations now being compared term by term. A low pressure helium discharge presents experimental uncertainties quite different than for earlier measurements and allows direct measurements of light pressure shifts.
21-cm radiation: a new probe of variation in the fine-structure constant.
Khatri, Rishi; Wandelt, Benjamin D
2007-03-16
We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.
Further evidence for cosmological evolution of the fine structure constant.
Webb, J K; Murphy, M T; Flambaum, V V; Dzuba, V A; Barrow, J D; Churchill, C W; Prochaska, J X; Wolfe, A M
2001-08-27
We describe the results of a search for time variability of the fine structure constant alpha using absorption systems in the spectra of distant quasars. Three large optical data sets and two 21 cm and mm absorption systems provide four independent samples, spanning approximately 23% to 87% of the age of the universe. Each sample yields a smaller alpha in the past and the optical sample shows a 4 sigma deviation: Delta alpha/alpha = -0.72+/-0.18 x 10(-5) over the redshift range 0.5
Methods for constraining fine structure constant evolution with OH microwave transitions.
Darling, Jeremy
2003-07-04
We investigate the constraints that OH microwave transitions in megamasers and molecular absorbers at cosmological distances may place on the evolution of the fine structure constant alpha=e(2)/ variant Planck's over 2pi c. The centimeter OH transitions are a combination of hyperfine splitting and lambda doubling that can constrain the cosmic evolution of alpha from a single species, avoiding systematic errors in alpha measurements from multiple species which may have relative velocity offsets. The most promising method compares the 18 and 6 cm OH lines, includes a calibration of systematic errors, and offers multiple determinations of alpha in a single object. Comparisons of OH lines to the HI 21 cm line and CO rotational transitions also show promise.
Fine structure of heliumlike ions and determination of the fine structure constant.
Pachucki, Krzysztof; Yerokhin, Vladimir A
2010-02-19
We report a calculation of the fine-structure splitting in light heliumlike atoms, which accounts for all quantum electrodynamical effects up to order alpha{5} Ry. For the helium atom, we resolve the previously reported disagreement between theory and experiment and determine the fine-structure constant with an accuracy of 31 ppb. The calculational results are extensively checked by comparison with the experimental data for different nuclear charges and by evaluation of the hydrogenic limit of individual corrections.
New determination of the fine structure constant from the electron value and QED.
Gabrielse, G; Hanneke, D; Kinoshita, T; Nio, M; Odom, B
2006-07-21
Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment of the electron (g) and the fine structure constant (alpha). A new measurement of g using a one-electron quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams, determine alpha(-1)=137.035 999 710 (96) [0.70 ppb]. The uncertainties are 10 times smaller than those of nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g test QED most stringently, and set a limit on internal electron structure.
A simple cosmology with a varying fine structure constant.
Sandvik, Håvard Bunes; Barrow, John D; Magueijo, João
2002-01-21
We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure "constant," alpha, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in alpha, while fitting the observed accelerating Universe and evidence for small alpha variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eötvös experiments, are proposed.
On the fine-structure constant in a plasma model of the fluctuating vacuum substratum
NASA Technical Reports Server (NTRS)
Cragin, B. L.
1986-01-01
The existence of an intimate connection between the quivering motion of electrons and positrons (Zitterbewegung), predicted by the Dirac equation, and the zero-point fluctuations of the vacuum is suggested. The nature of the proposed connection is discussed quantitatively, and an approximate self-consistency relation is derived, supplying a purely mathematical expression that relates the dimensionless coupling strengths (fine-structure constants) alpha sub e and alpha sub g of electromagnetism and gravity. These considerations provide a tentative explanation for the heretofore puzzling number 1/alpha sub e of about 137.036 and suggest that attempts to unify gravity with the electroweak and strong interactions will ultimately prove successful.
New measurement of the electron magnetic moment and the fine structure constant.
Hanneke, D; Fogwell, S; Gabrielse, G
2008-03-28
A measurement using a one-electron quantum cyclotron gives the electron magnetic moment in Bohr magnetons, g/2=1.001 159 652 180 73 (28) [0.28 ppt], with an uncertainty 2.7 and 15 times smaller than for previous measurements in 2006 and 1987. The electron is used as a magnetometer to allow line shape statistics to accumulate, and its spontaneous emission rate determines the correction for its interaction with a cylindrical trap cavity. The new measurement and QED theory determine the fine structure constant, with alpha{-1}=137.035 999 084 (51) [0.37 ppb], and an uncertainty 20 times smaller than for any independent determination of alpha.
Liapidevskiĭ, V K
2001-01-01
The variations in the fine structure of distributions of the results of alpha-radioactivity measurements are explained by changes in the velocity of Earth's movement relative to some selected frame of reference.
Fortier, T M; Ashby, N; Bergquist, J C; Delaney, M J; Diddams, S A; Heavner, T P; Hollberg, L; Itano, W M; Jefferts, S R; Kim, K; Levi, F; Lorini, L; Oskay, W H; Parker, T E; Shirley, J; Stalnaker, J E
2007-02-16
We report tests of local position invariance and the variation of fundamental constants from measurements of the frequency ratio of the 282-nm 199Hg+ optical clock transition to the ground state hyperfine splitting in 133Cs. Analysis of the frequency ratio of the two clocks, extending over 6 yr at NIST, is used to place a limit on its fractional variation of <5.8x10(-6) per change in normalized solar gravitational potential. The same frequency ratio is also used to obtain 20-fold improvement over previous limits on the fractional variation of the fine structure constant of |alpha/alpha|<1.3x10(-16) yr-1, assuming invariance of other fundamental constants. Comparisons of our results with those previously reported for the absolute optical frequency measurements in H and 171Yb+ vs other 133Cs standards yield a coupled constraint of -1.5x10(-15)
Re/Os constraint on the time variability of the fine-structure constant.
Fujii, Yasunori; Iwamoto, Akira
2003-12-31
We argue that the accuracy by which the isochron parameters of the decay 187Re-->187Os are determined by dating iron meteorites may constrain the possible time dependence of the decay rate and hence of the fine-structure constant alpha, not directly but only in a model-dependent manner. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the quasistellar-object absorption lines are reexamined.
Flambaum, V V; Kozlov, M G
2007-10-12
Sensitivity to temporal variation of the fundamental constants may be strongly enhanced in transitions between narrow close levels of different nature. This enhancement may be realized in a large number of molecules due to cancellation between the ground state fine-structure omega{f} and vibrational interval omega{v} [omega=omega{f}-nomega{v} approximately 0, delta omega/omega=K(2delta alpha/alpha+0.5 delta mu/mu), K>1, mu=m{p}/m{e}]. The intervals between the levels are conveniently located in microwave frequency range and the level widths are very small. Required accuracy of the shift measurements is about 0.01-1 Hz. As examples, we consider molecules Cl(+)(2), CuS, IrC, SiBr, and HfF(+).
Assessing the dependency of the fine structure constant on gravity using hot DA white dwarfs
NASA Astrophysics Data System (ADS)
Barstow, Martin
2016-10-01
Variation of fundamental constants is a common theme of many theories of quantum gravity and Grand Unification. Using spectra obtained with the Hubble Space Telescope, it has been shown by Berengut et al. (2013), and Bagdonaite et al. (2014), that it is possible to place strong constraints on gravitational variations of the fine structure constant (alpha), and the proton to electron mass ratio (mu) in white dwarf stars.As part of the UV initiative, we propose to observe four hot DA white dwarf stars using STIS with the E140H grating, totalling 12 orbits. These four stars have been chosen so as to have a wide range of masses, allowing a full exploration of the compactness parameter space (M/R). We will measure several absorption features of Fe V and Ni V, and extract any potential variation in alpha in a manner similar to Berengut et al. (2013).This proposal will be a significant advance in the effort to detect gravitational variations in alpha. A confirmed detection of alpha variation would have extensive consequences for fundamental physics, cosmology, and would also signal the breakdown of Einstein's Equivalence principle, and hence, general relativity. Furthermore, a null detection would also allow strong limits to be placed on any potential alpha variation in a strong gravitational field.
Carilli, C L; Menten, K M; Stocke, J T; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn , A G; Conway, J; Moore, C P
2000-12-25
We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alpha<3.5x10(-15) yr(-1), to a look-back time of 4.8 Gyr. In the context of string theory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ R<10(-15) yr(-1). Including terrestrial and other astronomical measurements places 2sigma limits on slow oscillations of R from the present to the epoch of cosmic nucleosynthesis, just seconds after the big bang, of DeltaR /R<10(-5).
NASA Technical Reports Server (NTRS)
Zhang, Shou; Eckart, Megan E.; Jaeckel, Felix; Kripps, Kari L.; McCammon, Dan; Zhou, Yu; Morgan, Kelsey M.
2017-01-01
We have measured the resistance R (T, I, B(sub ext) of a superconducting transition edge sensor over the entire transition region on a fine scale, producing a four-dimensional map of the resistance surface. The dimensionless temperature and current sensitivities (alpha equivalence partial derivative log R/partial derivative log T|(sub I) and beta equivalence partial derivative log R/partial derivative log I|(sub T) of the TES resistance have been determined at each point. alpha and beta are closely related to the sensor performance, but show a great deal of complex, large amplitude fine structure over large portions of the surface that is sensitive to the applied magnetic field. We discuss the relation of this structure to the presence of Josephson weak link fringes.
NASA Technical Reports Server (NTRS)
Mendiratta, M. G.
1973-01-01
Appreciable strength levels were retained to 650 C in a Ti-10Al-1Si alloy aged in the (alpha + alpha sub 2) phase field to yield optimum room temperature strength and ductility. The aging treatment precipitated a uniform distribution of alpha sub 2-particles such that, at room temperature, dislocations bypassed instead of shearing the particles at low strains. Specimens fractured at room temperature exhibited fine uniform dimples even for those aging conditions that imparted no macroscopic ductility. The main crack appeared to propagate through the planar slip bands that had cut through the alpha sub 2-particles. A two-step aging process produced a higher volume fraction of bimodally distributed alpha sub 2-particles that led to higher strength levels at elevated temperatures. Both for the single size and the bimodal alpha sub 2-particle distributions, elevated-temperature deformation structures consisted mainly of planar slip bands that sheared through the alpha sub 2-particles.
Limit on the present temporal variation of the fine structure constant.
Peik, E; Lipphardt, B; Schnatz, H; Schneider, T; Tamm, Chr; Karshenboim, S G
2004-10-22
The comparison of different atomic transition frequencies over time can be used to determine the present value of the temporal derivative of the fine structure constant alpha in a model-independent way without assumptions on constancy or variability of other parameters, allowing tests of the consequences of unification theories. We have measured an optical transition frequency at 688 THz in 171Yb+ with a cesium atomic clock at 2 times separated by 2.8 yr and find a value for the fractional variation of the frequency ratio f(Yb)/f(Cs) of (-1.2+/-4.4)x10(-15) yr(-1), consistent with zero. Combined with recently published values for the constancy of other transition frequencies this measurement sets an upper limit on the present variability of alpha at the level of 2.0x10(-15) yr(-1) (1sigma), corresponding so far to the most stringent limit from laboratory experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mandeep; Thanh, Dong Nguyen, E-mail: Dong.Nguyen.Thanh@vscht.c; Ulbrich, Pavel
2010-12-15
Single-phase {alpha}-MnO{sub 2} nanorods and {delta}-MnO{sub 2} nano-fiber clumps were synthesized using manganese pentahydrate in an aqueous solution. These nanomaterials were characterized using the Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FE-SEM), Powder X-ray diffraction (XRD) and the Brunauer-Elmet-Teller nitrogen adsorption technique (BET-N{sub 2} adsorption). The structural analysis shows that {alpha}-MnO{sub 2} (2x2 tunnel structure) has the form of needle-shaped nanorods and {delta}-MnO{sub 2} (2D-layered structure) consists of fine needle-like fibers arranged in ball-like aggregates. Batch adsorption experiments were carried out to determine the effect of pH on adsorption kinetics and adsorption capacity for the removal of As(V)more » from aqueous solution onto these two types of nanoadsorbents. The adsorption capacity of As(V) was found to be highly pH dependent. The adsorption of As(V) onto {alpha}-MnO{sub 2} reached equilibrium more rapidly with higher adsorption capacity compared to {delta}-MnO{sub 2}. -- Graphical abstract: {alpha}-MnO{sub 2} (2x2 tunnel structure) nanorods and {delta}-MnO{sub 2} (2-D layered structure) nano-fiber clumps were synthesized in a facile way in an aqueous solution and characterized by TEM, FE-SEM, XRD and BET-N{sub 2} adsorption techniques. The structural analysis shows that {alpha}-MnO{sub 2} is needle shaped nanorods and {delta}-MnO{sub 2} consists of 2-D platelets of fine needle-like fibers arranged in ball-like aggregates. Further batch experiments confirmed that both nanoadsorbents are potential candidates for the adsorption of As(V) with a capacity of 19.41 and 15.33 mg g{sup -1} for {alpha}-MnO{sub 2} and {delta}-MnO{sub 2}, respectively. The presence of As3d peak in XPS study indicates that arsenic on the surface of nanoadsorbents is in the stable form of As(V) with a percentage of arsenate onto {alpha}-MnO{sub 2} is 0.099% as compared to 0.021% onto {delta}-MnO{sub 2}, clearly indicating the higher adsorption of As(V) in case of {alpha}-MnO{sub 2} as compared to {delta}-MnO{sub 2}, which is in good agreement with the adsorption studies results. Display Omitted« less
Quark mass variations of nuclear forces, BBN, and all that
NASA Astrophysics Data System (ADS)
Meissner, Ulf-G.
2014-03-01
In this talk, I discuss the modifications of the nuclear forces due to variations of the light quark masses and of the fine structure constant. This is based on the chiral nuclear effective field theory, that successfully describes a large body of data. The generation of the light elements in the Big Bang Nucleosynthesis provides important constraints on these modifications. In addition, I discuss the role of the anthropic principle in the triple-alpha process that underlies carbon and oxygen generation in hot stars. It appears that a fine-tuning of the quark masses and the fine structure constant within 2 to 3 per cent is required to make life on Earth viable. Supported in part by DFG, HGF and the BMBF.
Flambaum, V V
2006-09-01
The relative effects of the variation of the fine structure constant alpha = e2/variant Planck's over 2pi c and the dimensionless strong interaction parameter m(q)/LambdaQCD are enhanced by 5-6 orders of magnitude in a very narrow ultraviolet transition between the ground and the first excited states in the 229Th nucleus. It may be possible to investigate this transition with laser spectroscopy. Such an experiment would have the potential of improving the sensitivity to temporal variation of the fundamental constants by many orders of magnitude.
Morphological relationships in the chromospheric H-alpha fine structure
NASA Technical Reports Server (NTRS)
Foukal, P.
1971-01-01
A continuous relationship is proposed between the basic elements of the dark fine structure of the quiet and active chromosphere. A progression from chromospheric bushes to fibrils, then to chromospheric threads and active region filaments, and finally to diffuse quiescent filaments, is described. It is shown that the horizontal component of the field on opposite sides of an active region quiescent filament can be in the same direction and closely parallel to the filament axis. Consequently, it is unnecessary to postulate twisted or otherwise complex field configurations to reconcile the support mechanism of filaments with the observed motion along their axis.
NASA Technical Reports Server (NTRS)
Smialek, James L.; Garg, Anita
2010-01-01
The surface structure of scales formed on Ni(Pt)Al coatings was characterized by SEM/EDS/BSE in plan view. Two nominally identical {100} samples of aluminide coated CMSX4 single crystal were oxidized at 1150 C for 2000 1-h cycles and were found to produce somewhat disparate behavior. One sample, with less propensity for coating grain boundary ridge deformation, presented primarily alpha-Al2O3 scale structures, with minimal weight loss and spallation. The original scale structure, still retained over most of the sample, consisted of the classic theta-alpha transformation-induced ridge network structure, with approx. 25 nm crystallographic steps and terraces indicative of surface rearrangement to low energy alumina planes. The scale grain boundary ridges were often decorated with a fine, uniform distribution of (Hf,Ti)O2 particles. Another sample, producing steady state weight losses, exhibited much interfacial spallation and a complex assortment of different structures. Broad areas of interfacial spalling, crystallographically-faceted (Ni,Co)(Al,Cr)2O4 spinel, with an alpha-Al2O3 base scale, were the dominant features. Other regions exhibited nodular spinel grains, with fine or (Ta,Ti)-rich (rutile) particles decorating or interspersed with the spinel. While these features were consistent with a coating that presented more deformation at extruded grain boundaries, the root cause of the different behavior between the duplicate samples could not be conclusively identified.
Limit on the temporal variation of the fine-structure constant using atomic dysprosium.
Cingöz, A; Lapierre, A; Nguyen, A-T; Leefer, N; Budker, D; Lamoreaux, S K; Torgerson, J R
2007-01-26
Over 8 months, we monitored transition frequencies between nearly degenerate, opposite-parity levels in two isotopes of atomic dysprosium (Dy). These frequencies are sensitive to variation of the fine-structure constant (alpha) due to relativistic corrections of opposite sign for the opposite-parity levels. In this unique system, in contrast to atomic-clock comparisons, the difference of the electronic energies of the opposite-parity levels can be monitored directly utilizing a rf electric-dipole transition between them. Our measurements show that the frequency variation of the 3.1-MHz transition in (163)Dy and the 235-MHz transition in (162)Dy are 9.0+/-6.7 Hz/yr and -0.6+/-6.5 Hz/yr, respectively. These results provide a rate of fractional variation of alpha of (-2.7+/-2.6) x 10(-15) yr(-1) (1 sigma) without assumptions on constancy of other fundamental constants, indicating absence of significant variation at the present level of sensitivity.
Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y
2010-01-01
This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.
Effect of processing on fracture toughness of silicon carbide as determined by Vickers indentations
NASA Technical Reports Server (NTRS)
Dannels, Christine M.; Dutta, Sunil
1989-01-01
Several alpha-SiC materials were processed by hot isostatic pressing (HIPing) and by sintering an alpha-SiC powder containing boron and carbon. Several beta-SiC materials were processed by HIPing a beta-SiC powder with boron and carbon additions. The fracture toughnesses K(sub 1c) of these beta- and alpha-SiC materials were estimated from measurements of Vickers indentations. The three formulas used to estimate K(sub 1c) from the indentation fracture patterns resulted in three ranges of K(sub 1c) estimates. Furthermore, each formula measured the effects of processing differently. All three estimates indicated that fine-grained HIPed alpha-SiC has a higher K(sub 1c) than coarsed-grained sintered alpha-SiC. Hot isostatically pressed beta-SiC, which had an ultrafine grain structure, exhibited a K(sub 1c) comparable to that of HIPed alpha-SiC.
Chen, Xuemei; Fried, Eliot
2008-10-01
Lundgren's vortex model for the intermittent fine structure of high-Reynolds-number turbulence is applied to the Navier-Stokes alphabeta equations and specialized to the Navier-Stokes alpha equations. The Navier-Stokes alphabeta equations involve dispersive and dissipative length scales alpha and beta, respectively. Setting beta equal to alpha reduces the Navier-Stokes alphabeta equations to the Navier-Stokes alpha equations. For the Navier-Stokes alpha equations, the energy spectrum is found to obey Kolmogorov's -5/3 law in a range of wave numbers identical to that determined by Lundgren for the Navier-Stokes equations. For the Navier-Stokes alphabeta equations, Kolmogorov's -5/3 law is also recovered. However, granted that beta < alpha, the range of wave numbers for which this law holds is extended by a factor of alphabeta . This suggests that simulations based on the Navier-Stokes alphabeta equations may have the potential to resolve features smaller than those obtainable using the Navier-Stokes alpha equations.
HCP to FCT + precipitate transformations in lamellar gamma-titanium aluminide alloys
NASA Astrophysics Data System (ADS)
Karadge, Mallikarjun Baburao
Fully lamellar gamma-TiAl [alpha2(HCP) + gamma(FCT)] based alloys are potential structural materials for aerospace engine applications. Lamellar structure stabilization and additional strengthening mechanisms are major issues in the ongoing development of titanium aluminides due to the microstructural instability resulting from decomposition of the strengthening alpha 2 phase. This work addresses characterization of multi-component TiAl systems to identify the mechanism of lamellar structure refinement and assess the effects of light element additions (C and Si) on creep deformation behavior. Transmission electron microscopy studies directly confirmed for the first time that, fine lamellar structure is formed by the nucleation and growth of a large number of basal stacking faults on the 1/6<112¯0> dislocations cross slipping repeatedly into and out of basal planes. This lamellar structure can be tailored by modifying jog heights through chemistry and thermal processing. alpha 2 → gamma transformation during heating (investigated by differential scanning calorimetry and X-ray diffraction) is a two step process involving the formation of a novel disordered FCC gamma' TiAl [with a(gamma') = c(gamma)] as an intermediate phase followed by ordering. Addition of carbon and silicon induced Ti2AlC H-type carbide precipitation inside the alpha2 lath and Ti 5(Al,Si)3 zeta-type silicide precipitation at the alpha 2/gamma interface. The H-carbides preserve alpha2/gamma type interfaces, while zeta-silicide precipitates restrict ledge growth and interfacial sliding enabling strong resistance to creep deformation.
New Quasar Studies Keep Fundamental Physical Constant Constant
NASA Astrophysics Data System (ADS)
2004-03-01
Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold atoms together and the way light interacts with atoms. But are these fundamental physical constants really constant? Are those numbers always the same, everywhere in the Universe and at all times? This is not as naive a question as it may seem. Contemporary theories of fundamental interactions, such as the Grand Unification Theory or super-string theories that treat gravity and quantum mechanics in a consistent way, not only predict a dependence of fundamental physical constants with energy - particle physics experiments have shown the fine structure constant to grow to a value of about 1/128 at high collision energies - but allow for their cosmological time and space variations. A time dependence of the fundamental constants could also easily arise if, besides the three space dimensions, there exist more hidden dimensions. Already in 1955, the Russian physicist Lev Landau considered the possibility of a time dependence of alpha. In the late 1960s, George Gamow in the United States suggested that the charge of the electron, and therefore also alpha, may vary. It is clear however that such changes, if any, cannot be large or they would already have been detected in comparatively simple experiments. Tracking these possible changes thus requires the most sophisticated and precise techniques. Looking back in time In fact, quite strong constraints are already known to exist for the possible variation of the fine structure constant alpha. One such constraint is of geological nature. It is based on measures taken in the ancient natural fission reactor located near Oklo (Gabon, West Africa) and which was active roughly 2,000 million years ago. By studying the distribution of a given set of elements - isotopes of the rare earths, for example of samarium - which were produced by the fission of uranium, one can estimate whether the physical process happened at a faster or slower pace than we would expect it nowadays. Thus we can measure a possible change of the value of the fundamental constant at play here, alpha. However, the observed distribution of the elements is consistent with calculations assuming that the value of alpha at that time was precisely the same as the value today. Over the 2 billion years, the change of alpha has therefore to be smaller than about 2 parts per 100 millions. If present at all, this is a rather small change indeed. But what about changes much earlier in the history of the Universe? To measure this we must find means to probe still further into the past. And this is where astronomy can help. Because, even though astronomers can't generally do experiments, the Universe itself is a huge atomic physics laboratory. By studying very remote objects, astronomers can look back over a long time span. In this way it becomes possible to test the values of the physical constants when the Universe had only 25% of is present age, that is, about 10,000 million years ago. Very far beacons To do so, astronomers rely on spectroscopy - the measurement of the properties of light emitted or absorbed by matter. When the light from a flame is observed through a prism, a rainbow is visible. When sprinkling salt on the flame, distinct yellow lines are superimposed on the usual colours of the rainbow, so-called emission lines. Putting a gas cell between the flame and the prism, one sees however dark lines onto the rainbow: these are absorption lines. The wavelength of these emission and absorption lines is directly related to the energy levels of the atoms in the salt or in the gas. Spectroscopy thus allows us to study atomic structure. The fine structure of atoms can be observed spectroscopically as the splitting of certain energy levels in those atoms. So if alpha were to change over time, the emission and absorption spectra of these atoms would change as well. One way to look for any changes in the value of alpha over the history of the Universe is therefore to measure the spectra of distant quasars, and compare the wavelengths of certain spectral lines with present-day values. Quasars are here only used as a beacon - the flame - in the very distant Universe. Interstellar clouds of gas in galaxies, located between the quasars and us on the same line of sight and at distances varying from six to eleven thousand of million light years, absorb parts of the light emitted by the quasars. The resulting spectrum consequently presents dark "valleys" that can be attributed to well-known elements. If the fine-structure constant happens to change over the duration of the light's journey, the energy levels in the atoms would be affected and the wavelengths of the absorption lines would be shifted by different amounts. By comparing the relative gaps between the valleys with the laboratory values, it is possible to calculate alpha as a function of distance from us, that is, as a function of the age of the Universe. These measures are however extremely delicate and require a very good modelling of the absorption lines. They also put exceedingly strong requirements on the quality of the astronomical spectra. They must have enough resolution to allow very precise measurement of minuscule shifts in the spectra. And a sufficient number of photons must be captured in order to provide a statistically unambiguous result. For this, astronomers have to turn to the most advanced spectral instruments on the largest telescopes. This is where the Ultra-violet and Visible Echelle Spectrograph (UVES) and ESO's Kueyen 8.2-m telescope at the Paranal Observatory is unbeatable, thanks to the unequalled spectral quality and large collecting mirror area of this combination. Constant or not? ESO PR Photo 07/04 ESO PR Photo 07/04 Relative Changes with Redshift of the Fine Structure Constant [Preview - JPEG: 496 x 400 pix - 36k] [Normal - JPEG: 991 x 800 pix - 320k] Captions: ESO PR Photo 07/04 shows measured values of the relative change of alpha from the sample of absorption systems studied by Hum Chand and his colleagues, plotted as a function of the redshift and the corresponding look-back time. The open circle is the measurement from the Oklo natural reactor. The horizontal long dashed lines show the area of the previous claim of variation of the fine structure constant. Clearly, the new UVES data are inconsistent with this range. A team of astronomers [1], led by Patrick Petitjean (Institut d'Astrophysique de Paris and Observatoire de Paris, France) and Raghunathan Srianand (IUCAA Pune, India) very carefully studied a homogeneous sample of 50 absorption systems observed with UVES and Kueyen along 18 distant quasars lines of sight. They recorded the spectra of quasars over a total of 34 nights to achieve the highest possible spectral resolution and the best signal-to-noise ratio. Sophisticated automatic procedures specially designed for this programme were applied. In addition, the astronomers used extensive simulations to show that they can correctly model the line profiles to recover a possible variation of alpha. The result of this extensive study is that over the last 10,000 million years, the relative variation of alpha must be less than 0.6 part per million. This is the strongest constraint from quasar absorption lines studies to date. More importantly, this new result does not support previous claims of a statistically significant change of alpha with time. Interestingly, this result is supported by another - less extensive - analysis, also conducted with the UVES spectrometer on the VLT [2]. Even though those observations were only concerned with one of the brightest known quasar HE 0515-4414, this independent study lends further support to the hypothesis of no variation of alpha. Even though these new results represent a significant improvement in our knowledge of the possible (non-) variation of one of the fundamental physical constants, the present set of data would in principle still allow variations that are comparatively large compared to those resulting from the measurements from the Oklo natural reactor. Nevertheless, further progress in this field is expected with the new very-high-accuracy radial velocity spectrometer HARPS on ESO's 3.6-m telescope at the La Silla Observatory (Chile). This spectrograph works at the limit of modern technology and is mostly used to detect new planets around stars other than the Sun - it may provide an order of magnitude improvement on the determination of the variation of alpha. Other fundamental constants can be probed using quasars. In particular, by studying the wavelengths of molecular hydrogen in the remote Universe, one can probe the variations of the ratio between the masses of the proton and the electron. The same team is now engaged in such a large survey with the Very Large Telescope that should lead to unprecedented constraints on this ratio. More Information The research presented in this Press Release is based on papers published in Physical Review Letters ("Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars" by Raghunathan Srianand, Hum Chand, Patrick Petitjean, and Bastien Aracil) and in the leading European astronomy journal Astronomy & Astrophysics ("Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample" by Hum Chand, Raghunathan Srianand, Patrick Petitjean, and Bastien Aracil).
Reaction process of {alpha} {yields} {gamma} massive transformation in Ti-rich TiAl alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumagai, T.; Abe, E.; Nakamura, M.
1995-08-01
Reaction sequence of the massive transformation from the high-temperature {alpha}-Ti phase to the {gamma}-TiAl phase ({gamma}{sub m}) in a Ti-48at.% Al alloy has been examined in terms of optical and transmission electron microscopes. Both transformed and untransformed regions were macroscopically observed in the sample quenched from the high-temperature {alpha} phase field, when the sample was held there for a extended period of time prior to quenching. The transformed region consists of randomly oriented fine {gamma} single phase grains, in which many thermal anti-phase domains (TAPDs), together with a number of stacking faults were observed. In contrast, the untransformed region comprisesmore » extremely fine lamellae of the {gamma} and {alpha}{sub 2}-Ti{sub 3}Al phases, and the {gamma} plates were found to run through the TAPDs caused by {alpha} {yields} {alpha}{sub 2} ordering. Subsequent aging at 1,273 K causes the microstructure change in the untransformed region from {alpha}{sub 2}/{gamma} lamellae to {gamma}/{gamma} lamellae spontaneously and expands the {gamma}{sub m} region. These observations suggest that the {alpha} {yields} {gamma}{sub m} transformation proceeds through formation of fine {gamma} plates.« less
Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François
2006-01-27
We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).
Cadoret, Malo; de Mirandes, Estefania; Cladé, Pierre; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François
2008-12-05
We report a new experimental scheme which combines atom interferometry with Bloch oscillations to provide a new measurement of the ratio h/mRb. By using Bloch oscillations, we impart to the atoms up to 1600 recoil momenta and thus we improve the accuracy on the recoil velocity measurement. The deduced value of h/mRb leads to a new determination of the fine structure constant alpha(-1) =137.03599945 (62) with a relative uncertainty of 4.6 x 10(-9). The comparison of this result with the value deduced from the measurement of the electron anomaly provides the most stringent test of QED.
Carbon recombination lines as a diagnostic of photodissociation regions
NASA Technical Reports Server (NTRS)
Natta, A.; Walmsley, C. M.; Tielens, A. G. G. M.
1994-01-01
We have observed the C91 alpha radio recombination line toward the Orion H II region. This narrow (approximately 3-5 km per sec full width at half maximum (FWHM)) line is spatially very extended (approximately 8 arcmin or 1 pc). These charateristics compare well with the observed characteristics of the C II fine structure line at 158 microns. Thus, the C91 alpha line originates in the predominantly neutral photodissociation regions separating the H II region from the molecular cloud. We have developed theoretical models for the C II radio recombination lines from photodissociation regions. The results show that the I(C91 alpha)/I(C158) intensity ratio is a sensitive function of the temperature and density of the emitting gas. We have also extended theoretical models for photodissociation regions to include the C II recombination lines. Comparison with these models show that, in the central portion of the Orion region, the C91 alpha line originates in dense (10(exp 6) per cu cm), warm (500-1000 K) gas. Even at large projected distances (approximately 1 pc), the inferred density is still high (10(exp 5) per cu cm) and implies extremely high thermal pressures. As in the case of the (C II) 158 microns line, the large extent of the C91 alpha line shows that (FUV) photons can penetrate to large distances from the illuminating source. The decline of the intensity of the incident radiation field with distance from Theta(sup 1) C seems to be dominated by geometrical dilution, rather than dust extinction. Finally, we have used our models to calculate the intensity of the 9850 A recombination line of C II. The physical conditions inferred from this line are in good agreement with those determined from the radio recombination and the far-infrared fine-structure lines. We show that the ratio of the 9850 A to the C91 alpha lines is a very good probe of very high density clumps.
Cold molecule spectroscopy for constraining the evolution of the fine structure constant.
Hudson, Eric R; Lewandowski, H J; Sawyer, Brian C; Ye, Jun
2006-04-14
We report precise measurements of ground-state, Lambda-doublet microwave transitions in the hydroxyl radical molecule (OH). Utilizing slow, cold molecules produced by a Stark decelerator we have improved over the precision of the previous best measurement 25-fold for the F'=2-->F=2 transition, yielding (1 667 358 996 +/- 4)Hz, and by tenfold for the F'=1-->F=1 transition, yielding (1 665 401 803 +/-12)Hz. Comparing these laboratory frequencies to those from OH megamasers in interstellar space will allow a sensitivity of 1 ppm for Delta(alpha/alpha) over approximately 10(10) yr.
[Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].
Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang
2007-03-01
The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (< or = 1 mm in diameter) played effective roles on the improvement of soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots.
Modeling of Iron K Lines: Radiative and Auger Decay Data for Fe II-Fe IX
NASA Technical Reports Server (NTRS)
Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; Melendez, M.
2003-01-01
A detailed analysis of the radiative and Auger de-excitation channels of K-shell vacancy states in Fe II-Fe IX has been carried out. Level energies, wavelengths, A-values, Auger rates and fluorescence yields have been calculated for the lowest fine-structure levels populated by photoionization of the ground state of the parent ion. Different branching ratios, namely K alpha 2/K alpha 1, K beta/K alpha, KLM/KLL, KMM/KLL, and the total K-shell fluorescence yields, omega(sub k), obtained in the present work have been compared with other theoretical data and solid-state measurements, finding good general agreement with the latter. The Kalpha 2/K alpha l ratio is found to be sensitive to the excitation mechanism. From these comparisons it has been possible to estimate an accuracy of approx.10% for the present transition probabilities.
Srianand, R; Chand, H; Petitjean, P; Aracil, B
2004-03-26
We present the results of a detailed many-multiplet analysis performed on a new sample of Mg ii systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in alpha derived from our analysis over the redshift range 0.4=z=2.3 is Deltaalpha/alpha=(-0.06+/-0.06)x10(-5). The median redshift of our sample (z approximately 1.55) corresponds to a look-back time of 9.7 Gyr in the most favored cosmological model today. This gives a 3sigma limit, -2.5 x 10(-16)=(Deltaalpha/alphaDeltat)=+1.2 x 10(-16) yr(-1), for the time variation of alpha, that forms the strongest constraint obtained based on high redshift quasar absorption line systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco
2011-02-15
We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less
Factor analysis of the contextual fine motor questionnaire in children.
Lin, Chin-Kai; Meng, Ling-Fu; Yu, Ya-Wen; Chen, Che-Kuo; Li, Kuan-Hua
2014-02-01
Most studies treat fine motor as one subscale in a developmental test, hence, further factor analysis of fine motor has not been conducted. In fact, fine motor has been treated as a multi-dimensional domain from both clinical and theoretical perspectives, and therefore to know its factors would be valuable. The aim of this study is to analyze the internal consistency and factor validity of the Contextual Fine Motor Questionnaire (CFMQ). Based on the ecological observation and literature, the Contextual Fine Motor Questionnaire (CFMQ) was developed and includes 5 subscales: Pen Control, Tool Use During Handicraft Activities, the Use of Dining Utensils, Connecting and Separating during Dressing and Undressing, and Opening Containers. The main purpose of this study is to establish the factorial validity of the CFMQ through conducting this factor analysis study. Among 1208 questionnaires, 904 were successfully completed. Data from the children's CFMQ submitted by primary care providers was analyzed, including 485 females (53.6%) and 419 males (46.4%) from grades 1 to 5, ranging in age from 82 to 167 months (M=113.9, SD=16.3). Cronbach's alpha was used to measure internal consistency and explorative factor analysis was applied to test the five factor structures within the CFMQ. Results showed that Cronbach's alpha coefficient of the CFMQ for 5 subscales ranged from .77 to .92 and all item-total correlations with corresponding subscales were larger than .4 except one item. The factor loading of almost all items classified to their factor was larger than .5 except 3 items. There were five factors, explaining a total of 62.59% variance for the CFMQ. In conclusion, the remaining 24 items in the 5 subscales of the CFMQ had appropriate internal consistency, test-retest reliability and construct validity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Raman structural studies of the nickel electrode
NASA Technical Reports Server (NTRS)
Cornilsen, Bahne C.
1994-01-01
The objectives of this investigation have been to define the structures of charged active mass, discharged active mass, and related precursor materials (alpha-phases), with the purpose of better understanding the chemical and electrochemical reactions, including failure mechanisms and cobalt incorporation, so that the nickel electrode may be improved. Although our primary tool has been Raman spectroscopy, the structural conclusions drawn from the Raman data have been supported and augmented by three other analysis methods: infrared spectroscopy, powder X-ray Diffraction (XRD), and x-ray absorption spectroscopy (in particular EXAFS, Extended X-ray Absorption Fine Structure spectroscopy).
Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Linehan, J.C.; Matson, D.W.
1993-06-01
Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ([alpha]-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.
Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Linehan, J.C.; Matson, D.W.
1993-06-01
Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ({alpha}-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.
In situ measurements of the mesosphere and stratosphere
NASA Technical Reports Server (NTRS)
Crosky, C.
1976-01-01
The operation of a subsonic, Gerdien condenser probe for in situ measurements of the mesosphere and stratosphere is presented. The inclusion of a flashing Lyman alpha ultraviolet source provides an artifically produced ionization of particular constituents. Detailed theory of operation is presented and the data results from two flights are shown. A great deal of fine structure in mobility is observed due to the presence of various hydrated positive ions. The effect of the Lyman alpha source in the 35 km region was to dissociate a light hydrate ion rather than produce additional ionization. At the 70 km region, photodissociation of the heaviest ions (probably ice crystals) was also observed.
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
2015-10-01
We modify Newtonian gravity to probabilistic quantum mechanical gravity to derive strong coupling. If this approach is valid, we should be able to extend it to the physical body (life) as follows. Using Boltzmann equation, we get the entropy of the universe (137) as if its reciprocal, the fine structure constant (ALPHA), is the hidden candidate representing the negative entropy of the universe which is indicative of the binary information as its basis (http://www.arXiv.org/pdf/physics0210040v5). Since ALPHA relates to cosmology, it must relate to molecular biology too, with the binary system as the fundamental source of information for the nucleotides of the DNA as implicit in the book by the author: ``Quantum Consciousness - The Road to Reality.'' We debate claims of anthropic principle based on the negligible variation of ALPHA and throw light on thermodynamics. We question constancy of G in multiple ways.
Limits on variations in fundamental constants from 21-cm and ultraviolet Quasar absorption lines.
Tzanavaris, P; Webb, J K; Murphy, M T; Flambaum, V V; Curran, S J
2005-07-22
Quasar absorption spectra at 21-cm and UV rest wavelengths are used to estimate the time variation of x [triple-bond] alpha(2)g(p)mu, where alpha is the fine structure constant, g(p) the proton g factor, and m(e)/m(p) [triple-bond] mu the electron/proton mass ratio. Over a redshift range 0.24 < or = zeta(abs) < or = 2.04, (Deltax/x)(weighted)(total) = (1.17 +/- 1.01) x 10(-5). A linear fit gives x/x = (-1.43 +/- 1.27) x 10(-15) yr(-1). Two previous results on varying alpha yield the strong limits Deltamu/mu = (2.31 +/- 1.03) x 10(-5) and Deltamu/mu=(1.29 +/- 1.01) x10(-5). Our sample, 8 x larger than any previous, provides the first direct estimate of the intrinsic 21-cm and UV velocity differences 6 km s(-1).
Microbial nitrilases: versatile, spiral forming, industrial enzymes.
Thuku, R N; Brady, D; Benedik, M J; Sewell, B T
2009-03-01
The nitrilases are enzymes that convert nitriles to the corresponding acid and ammonia. They are members of a superfamily, which includes amidases and occur in both prokaryotes and eukaryotes. The superfamily is characterized by having a homodimeric building block with a alpha beta beta alpha-alpha beta beta alpha sandwich fold and an active site containing four positionally conserved residues: cys, glu, glu and lys. Their high chemical specificity and frequent enantioselectivity makes them attractive biocatalysts for the production of fine chemicals and pharmaceutical intermediates. Nitrilases are also used in the treatment of toxic industrial effluent and cyanide remediation. The superfamily enzymes have been visualized as dimers, tetramers, hexamers, octamers, tetradecamers, octadecamers and variable length helices, but all nitrilase oligomers have the same basic dimer interface. Moreover, in the case of the octamers, tetradecamers, octadecamers and the helices, common principles of subunit association apply. While the range of industrially interesting reactions catalysed by this enzyme class continues to increase, research efforts are still hampered by the lack of a high resolution microbial nitrilase structure which can provide insights into their specificity, enantioselectivity and the mechanism of catalysis. This review provides an overview of the current progress in elucidation of structure and function in this enzyme class and emphasizes insights that may lead to further biotechnological applications.
Solar dynamic power systems for space station
NASA Technical Reports Server (NTRS)
Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.
1986-01-01
The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.
Prediction of alpha factor values for fine pore aeration systems.
Gillot, S; Héduit, A
2008-01-01
The objective of this work was to analyse the impact of different geometric and operating parameters on the alpha factor value for fine bubble aeration systems equipped with EPDM membrane diffusers. Measurements have been performed on nitrifying plants operating under extended aeration and treating mainly domestic wastewater. Measurements performed on 14 nitrifying plants showed that, for domestic wastewater treatment under very low F/M ratios, the alpha factor is comprised between 0.44 and 0.98. A new composite variable (the Equivalent Contact Time, ECT) has been defined and makes it possible for a given aeration tank, knowing the MCRT, the clean water oxygen transfer coefficient and the supplied air flow rate, to predict the alpha factor value. ECT combines the effect on mass transfer of all generally accepted factors affecting oxygen transfer performances (air flow rate, diffuser submergence, horizontal flow). (c) IWA Publishing 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury
Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap}more » (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozzi, Roberta; De Berardis, Barbara; Paoletti, Luigi
2005-11-15
Epidemiological data show an association between exposure to elevated levels of particulate matter (PM), in particular the fine fraction (<2.5{mu}m in diameter), and an increase in cardiovascular mortality and respiratory symptoms. The aim of this study was to compare the in vitro toxicity of coarse and fine particulate matter collected with a cascade impactor during winter in an urban area of Rome in relation to their physicochemical characterization (size distribution and chemical composition) as assessed by analytical electron microscopy (SEM/EDX). The X-ray microanalysis data of single particles of coarse and fine matter were analyzed by hierarchical cluster analysis to determinemore » the principal component of the two granulometric fractions. The main chemical difference between the two fractions was the greater abundance of carbonaceous particles in the fine fraction. We compared the ability of coarse and fine fractions, carbon black (CB), and residual oil fly ash (ROFA) to induce arachidonic acid release and tumor necrosis factor-{alpha} (TNF-{alpha}) production in the monocytic-macrophagic RAW 264.7 cell line at concentrations of 30 and 120{mu}g/mL. Our results showed that CB and ROFA were consistently less effective than both fractions of urban particles at inducing an inflammatory reaction in RAW 264.7 cells. Both PM fractions dose-dependently increased TNF-{alpha} production in RAW 264.7 cells after 5 and 24h of incubation, and only the TNF-{alpha} production induced by coarse particles at 30{mu}g/mL decreased significantly (P<0.01) after 24h of treatment. In our in vitro model the winter fine fraction was more reactive than the winter coarse fraction, in contrast to a previously examined summer sample. In the summer sample, coarse particles produced higher levels of inflammatory mediators than fine particles and the CB was consistently less effective than the urban particles. The different behaviors between summer and winter urban fractions may be due to their different physicochemical characteristics; in fact, the comparison of the two samples' characterization by SEM/EDX and X-ray photoelectron spectroscopy (XPS) analysis showed that in winter the carbonaceous particles are more abundant than in summer and that winter particles carry a greater quantity of organic compounds. We suggest that the higher concentration of organic compounds on fine carbonaceous particles may partially explain the higher activation of RAW 264.7 cells by fine particles.« less
Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
McBriarty, Martin E.
Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.
Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter
NASA Technical Reports Server (NTRS)
Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko;
2015-01-01
In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the alpha-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned following four steps in order to reduce standing time alignment me. 1: is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm). 2: The mirror structure CLASP before mounting unit standing, dummy slit and camera standing prescribed position in leading frame is, to complete the internal alignment adjustment. 3: CLASP structure F mirror unit and by attaching the visible light filter, as will plague the focus is carried out in standing position adjustment visible flight products camera. 4: Replace the Lyman alpha transmission filter, it is confirmed by Lyman alpha wavelength (under vacuum) the requested optical performance have come. Currently, up to 3 of the steps completed, it was confirmed in the visible light optical performance that satisfies the required value sufficiently extended. Also, put in Slit-jaw optical system the sunlight through the telescope of CLASP, it is also confirmed that and that stray light rejection no vignetting is in the field of view meets request standing.
On the upstream boundary of electron foreshocks in the solar wind
NASA Technical Reports Server (NTRS)
Zimbardo, G.; Veltri, P.
1995-01-01
The upstream boundary of electron foreshocks is defined as the path of the fastest electrons reflected by collisionless shocks and moving along the magnetic field in the solar wind. Considerable levels of magnetic fluctuations are found in these regions of the solar wind, and their effect is to create both a broadening and a fine structure of the electron foreshock boundary. The magnetic structure is studied by means of a 3-D numerical simulation of a turbulent magnetic field. Enhanced, anomalous diffusion is found, (Delta x(exp 2)) varies as s(sup alpha), where alpha is greater than 1 for typical values of the parameters (here, Delta x(exp 2) is the mean square width of the tangent magnetic surface and s is the field line length). This corresponds to a Levy flight regime for the magnetic field line random walk, and allows very efficient electron propagation perpendicular to the magnetic field. Implications on the observations of planetary foreshocks and of the termination shock foreshock are considered.
Multielement mapping of alpha-SiC by scanning Auger microscopy
NASA Technical Reports Server (NTRS)
Browning, Ray; Smialek, James L.; Jacobson, Nathan S.
1987-01-01
Fine second-phase particles, numerous in sintered alpha-SiC, were analyzed by scanning Auger microscopy and conventional techniques. The Auger analysis utilized computer-controlled data acquisition, multielement correlation diagrams, and a high spatial resolution of 100 nm. This procedure enabled construction of false color maps and the detection of fine compositional details within these particles. Carbon, silicon oxide, and boron-rich particles (qualitatively as BN or B4C) predominated. The BN particles, sometimes having a carbon core, are believed to result from reaction between B4C additives and nitrogen sintering atmospheres.
Havton, L A; Kellerth, J O
2001-08-01
Permanent transection of a peripheral motor nerve induces a gradual elimination of whole axon collateral systems in the axotomized spinal motoneurons. There is also an initial concurrent decrease in the amount of recurrent inhibition exerted by these arbors in the spinal cord for up to 6 weeks after the injury, whereas the same reflex action returns to normal by the 12-week postoperative state. The aim of the present investigation was to study the fine structure of the intramedullary axonal arbors of axotomized alpha-motoneurons in the adult cat spinal cord following a permanent peripheral motor nerve lesion. For this purpose, single axotomized alpha-motoneurons were labeled intracellularly with horseradish peroxidase at 12 weeks after permanent transection of their peripheral motor nerve. The intramedullary portions of their motor axon and axon collateral arbors were first reconstructed at the light microscopic level and subsequently studied ultrastructurally. This study shows that the synaptic contacts made by the intramedullary axon collateral arbors of axotomized motoneurons have undergone a change in synaptic vesicle ultrastructure from spherical and clear vesicles to spherical and dense-cored vesicles at 12 weeks after the transection of their peripheral axons. We suggest that the present transformation in synaptic vesicle fine structure may also correspond to a change in the contents of these boutons. This may, in turn, be responsible for the strengthening and recovery of the recurrent inhibitory reflex action exerted by the axotomized spinal motoneurons following a prolonged permanent motor nerve injury.
Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter
NASA Technical Reports Server (NTRS)
Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko;
2015-01-01
In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the a-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned 'following four steps in order to reduce standing time alignment me. 1. is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm).2. The mirror structure CLASP before mounting unit standing, dummy slit and camera standing prescribed position in leading frame is, to complete the internal alignment adjustment. 3. CLASP structure F mirror unit and by attaching the visible light filter, as will plague the focus is carried out in standing position adjustment visible flight products camera. 4. Replace the Lyman alpha transmission filter, it is confirmed by Lyman alpha wavelength (under vacuum) the requested optical performance have come. Currently, up to 3 of the steps completed, it was confirmed in the visible light optical performance that satisfies the required value sufficiently extended. Also, put in Slit-jaw optical system the sunlight through the telescope of CLASP, it is also confirmed that and that stray light rejection no vignetting is in the field of view meets request standing.
Ground-based observation of aerosol optical properties in Lanzhou, China.
Yu, Xingna; Zhu, Bin; Fan, Shuxian; Yin, Yan; Bu, Xiaoli
2009-01-01
Aerosol optical properties from August 2006 to July 2007 were obtained from ground-based and sky radiance measurements in Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), China. High aerosol optical thickness (AOT) associated with low Angström exponent (alpha) was mainly observed in spring, which was consistent with the seasonal dust production from Hexi Corridor. The maximum monthly average value of AOT 0.56 occurred in March of 2007, which was two times larger than the minimum value of 0.28 in October of 2006. Approximately 60% of the AOT ranged between 0.3 and 0.5, and nearly 93% of alpha value varied from 0.1 to 0.8, which occurred in spring. The significant correlation between aerosol properties and water vapor content was not observed. The aerosol volume size distribution can be characterized by the bimodal logarithm normal structure: fine mode (r < 0.6 microm) and coarse mode (r > 0.6 microm). Aerosols in spring of SACOL were dominated by large particles with the volume concentration ratio of coarse to fine modes being 7.85. The average values of asymmetry factor (g) in the wavelength range 440-1020 nm were found to be 0.71, 0.67, 0.67 and 0.69 in spring, summer, autumn and winter, respectively.
Do the Constants of Nature Couple to Strong Gravitational Fields?
NASA Astrophysics Data System (ADS)
Preval, Simon P.; Barstow, Martin A.; Holberg, Jay B.; Barrow, John; Berengut, Julian; Webb, John; Dougan, Darren; Hu, Jiting
2015-06-01
Recently, white dwarf stars have found a new use in the fundamental physics community. Many prospective theories of the fundamental interactions of Nature allow traditional constants, like the fine structure constant α, to vary in some way. A study by Berengut et al. (2013) used the Fe/Ni v line measurements made by Preval et al. (2013) from the hot DA white dwarf G191-B2B, in an attempt to detect any variation in α. It was found that the Fe v lines indicated an increasing alpha, whereas the Ni v lines indicated a decreasing alpha. Possible explanations for this could be misidentification of the lines, inaccurate atomic data, or wavelength dependent distortion in the spectrum. We examine the first two cases by using a high S/N reference spectrum from the hot sdO BD+28°4211 to calibrate the Fe/Ni v atomic data. With this new data, we re-evaluate the work of Berengut et al. (2013) to derive a new constraint on the variation of alpha in a gravitational field.
How changing physical constants and violation of local position invariance may occur?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flambaum, V. V.; Shuryak, E. V.
2008-04-04
Light scalar fields very naturally appear in modern cosmological models, affecting such parameters of Standard Model as electromagnetic fine structure constant {alpha}, dimensionless ratios of electron or quark mass to the QCD scale, m{sub e,q}/{lambda}{sub QCD}. Cosmological variations of these scalar fields should occur because of drastic changes of matter composition in Universe: the latest such event is rather recent (redshift z{approx}0.5), from matter to dark energy domination. In a two-brane model (we use as a pedagogical example) these modifications are due to changing distance to 'the second brane', a massive companion of 'our brane'. Back from extra dimensions, massivemore » bodies (stars or galaxies) can also affect physical constants. They have large scalar charge Q{sub d} proportional to number of particles which produces a Coulomb-like scalar field {phi} = Q{sub d}/r. This leads to a variation of the fundamental constants proportional to the gravitational potential, e.g. {delta}{alpha}/{alpha} = k{sub {alpha}}{delta}(GM/rc{sup 2}). We compare different manifestations of this effect, which is usually called violation of local position invariance. The strongest limits k{sub {alpha}}+0.17k{sub e} (-3.5{+-}6)*10{sup -7} are obtained from the measurements of dependence of atomic frequencies on the distance from Sun (the distance varies due to the ellipticity of the Earth's orbit)« less
Biofiltration for control of volatile organic compounds (VOCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, D.F.; Govind, R.
1995-10-01
Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size andmore » geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.« less
Friedman, M; Boyd, W A
1977-01-01
Studies were carried out on the effect of decoupling, deuterium labeling, concentration, temperature, and solvent media on the NMR parameters of the vinyl phosphonate adduct of phenylalanine, C6H5CH2CH(COO-)NH2+CH2CH2PO(OCH2CH2C1)2. The results permit assignments of chemical shifts and coupling constants to the various protons of this molecule which contains unique structural features. The NH2+-CH2-protons are deshielded by more than 1 ppm than the CH2-PO-protons. The -OCH2-protons are nonequivalent exhibiting a fine split. Possible sources of the fine split include NH...O=P hydrogen bonding. The deuterium-labeling method should be applicable for synthesizing deuterium-and tritium-labeled crosslinked amino acids such as lysinoalanine and lanthionine and demonstrating analgous dehydroalanine-alpha-amino group-crosslinking.
Interstellar absorption along the line of sight to Theta Carinae using Copernicus observations
NASA Technical Reports Server (NTRS)
Allen, M. M.; Jenkins, E. B.; Snow, T. P.
1992-01-01
A profile fitting technique is employed to identify the velocities and Doppler b values for H I and H II clouds along the line of sight to Theta Car. Total abundances and depletions for 12 elements, plus column densities for the J = 0 to J = 5 rotational levels of H2 are obtained. Electron densities for both clouds are calculated from the ratios of the fine-structure levels of C II and N II, obtaining 0.08/cu cm and 1.2/cu cm. The fine-structure levels of C I, which led to 120/cu cm, are used to calculate the neutral hydrogen density for the H I region. D I is also present in the data from the Theta Car line of sight, yielding a D/H ratio of 5 x 10 exp -6. Elemental depletions are calculated for the H I region as well. Comparison of the results for Theta Car and those for Zeta Oph and Alpha Vir shows that the absolute depletions are different; however, the relative depletions are remarkably stable for different physical conditions.
THE FAILURE OF STRUCTURAL METALS SUBJECTED TO STRAIN-CYCLING CONDITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindeman, R.W.; Douglas, D.A.
1958-11-01
Data showing the isothermal strain-cycling capacity of three metals, inconel, Hastelloy "B," and beryllium, are presented. It is noted that at frequencies of 0.5 cycles per minute the data satisfied am equation of the form N/ sup alpha / epsilon /sub p/ = K, where N is the number of cycles to failure, epsilon /sub p/ is the plastic strain per cycle, and alpha and K are constants whose values depend on the structure and test conditions. Data on Ihconel are given to establish the effect of grain size, specimen geometry, temperature, and frequency. It is found that at temperaturesmore » above 1300 F, grain sine amd frequency exert a pronounced effect on the rupture life. Fine-gralned metal survives more cycles before failure than coarsegrained material. Lomg time cycles shorten the number of cycles to failure when the strain per cycle is low. Thermal strain cycling dain for ihconel are compared to strain cycling data at the same mean temperature. Good correlation is found to exist between the two types of data. (auth)« less
Prominence and tornado dynamics observed with IRIS and THEMIS
NASA Astrophysics Data System (ADS)
Schmieder, Brigitte; Levens, Peter; Labrosse, Nicolas; Mein, Pierre; Lopez Ariste, Arturo; Zapior, Maciek
2017-08-01
Several prominences were observed during campaigns in September 2013 and July 2014 with the IRIS spectrometer and the vector magnetograph THEMIS (Tenerife). SDO/AIA and IRIS provided images and spectra of prominences and tornadoes corresponding to different physical conditions of the transition region between the cool plasma and the corona. The vector magnetic field was derived from THEMIS observations by using the He D3 depolarisation due to the magnetic field. The inversion code (PCA) takes into account the Hanle and Zeeman effects and allows us to compute the strength and the inclination of the magnetic field which is shown to be mostly horizontal in prominences as well as in tornadoes. Movies from SDO/AIA in 304 A and Hinode/SOT in Ca II show the highly dynamic nature of the fine structures. From spectra in Mg II and Si IV lines provided by IRIS and H-alpha observed by the Multi-channel Subtractive Double Pass (MSDP) spectrograph in the Meudon Solar Tower we derived the Doppler shifts of the fine structures and reconstructed the 3D structure of tornadoes. We conclude that the apparent rotation of AIA tornadoes is due to large-scale quasi-periodic oscillations of the plasma along more or less horizontal magnetic structures.
Background: We previously reported that total fine particulate matter (PM2.5) was associated with flow-mediated dilation (FMD), interleukin-6 (lL-6) and tumor-necrosisfactor-alpha (TNFa) in 22 individuals with type 2 diabetes. Objectives: We now compare two laboratory methods of ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Pei; Fang, Zhigang Zak; Koopman, Mark
The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H-2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well establishedmore » to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine alpha/alpha(2) within coarse beta grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of beta -> alpha + delta d at approximately 473 K (200 degrees C). (C) The Minerals, Metals & Materials Society and ASM International 2015« less
Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein.
Fleming, Sheila M; Salcedo, Jonathan; Fernagut, Pierre-Olivier; Rockenstein, Edward; Masliah, Eliezer; Levine, Michael S; Chesselet, Marie-Françoise
2004-10-20
Accumulation of alpha-synuclein in brain is a hallmark of synucleinopathies, neurodegenerative diseases that include Parkinson's disease. Mice overexpressing alpha-synuclein under the Thy-1 promoter (ASO) show abnormal accumulation of alpha-synuclein in cortical and subcortical regions of the brain, including the substantia nigra. We examined the motor deficits in ASO mice with a battery of sensorimotor tests that are sensitive to alterations in the nigrostriatal dopaminergic system. Male wild-type and ASO mice were tested every 2 months for 8 months for motor performance and coordination on a challenging beam, inverted grid, and pole, sensorimotor deficits in an adhesive removal test, spontaneous activity in a cylinder, and gait. Fine motor skills were assessed by the ability to grasp cotton from a bin. ASO mice displayed significant impairments in motor performance and coordination and a reduction in spontaneous activity as early as 2 months of age. Motor performance and coordination impairments became progressively worse with age and sensorimotor deficits appeared at 6 months. Fine motor skills were altered at 4 months and worsened at 8 months. These data indicate that overexpression of alpha-synuclein induced an early and progressive behavioral phenotype that can be detected in multiple tests of sensorimotor function. These behavioral deficits provide a useful way to assess novel drug therapy in genetic models of synucleinopathies.
NASA Technical Reports Server (NTRS)
Moskowitz, B. M.; Hargraves, R. B.
1982-01-01
It is found that the thermal treatment of nontronite in air, for long periods at 700 C or short periods at 900 C, results in the destruction of the nontronite structure, a distinct reddening in color, and a large increase in magnetic susceptibility and saturation magnetization. Measurements and calculations of the magnetic properties suggest that the magnetism is due to the presence of ultrafine particles of alpha or gamma Fe2O3. The highly magnetic thermally treated nontronite is amorphous to X-rays consistent with an ultrafine grain size. Prolonged heating results in the growth of alpha Fe2O3, while reflectivity spectra of a sample heated for 1 hr at 900 C indicate the presence of an opaque, magnetite-like phase in addition to alpha Fe2O3. It is found that the thermally treated nontronite has chemical, color, and magnetic properties similar to those found by Viking on Mars. It is concluded that these results indicate an origin for the fine grained Martian surface material by repeated impacts into an Fe-rich smectite-charged regolith (Weldon et al., 1980).
NASA Astrophysics Data System (ADS)
Noda, Masafumi; Kawamura, Yoshihito; Sakurai, Hiroshi; Funami, Kunio
Mg-Zn-Y alloys are well known to possess greatly enhanced strength during plastic deformation because of the presence of kink bands in the LPSO phase and refinement of the grains of the alpha Mg phase. On the other hand, Mg-rare earth (RE) and Mg-Zn-RE alloys with a long period stacking order (LPSO) phase show a high tensile yield strength when subjected to an extrusion process but it is not known whether the LPSO and alpha Mg phases develop during plastic deformation. We examined the effect of the finely dispersed LPSO phase and the alpha Mg phase on the development of high strength in sheets of Mg96Zn2Y2 subjected to a few passes of rolling. The mechanical properties and thermal stability of the alloy were also investigated. The tensile yield strength of rolled sheets of Mg96Zn2Y2 was 360 MPa and its elongation was 5% when the material was subjected to thermomechanically controlled processing at 673 K with a four-pass rolling schedule. However, the tensile yield strength decreased and the elongation increased at annealing temperature of 623 K or above, because of the presence of grain growth in the alpha Mg phase and the restoration of kink bands in the LPSO phase.
Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers.
Odize, Victory O; Novak, John; De Clippeleir, Haydee; Al-Omari, Ahmed; Smeraldi, Joshua D; Murthy, Sudhir; Rosso, Diego
2017-10-01
Achieving energy neutrality has shifted focus towards aeration system optimization, due to the high energy consumption of aeration processes in modern advanced wastewater treatment plants. A study on fine bubble diffuser fouling and mitigation, quantified by dynamic wet pressure (DWP), oxygen transfer efficiency and alpha was carried out in Blue Plains, Washington, DC. Four polyurethane fine bubble diffusers were installed in a pilot reactor column fed with high rate activated sludge from a full scale system. A mechanical cleaning method, reverse flexing (RF), was used to treat two diffusers (RF1, RF2), while two diffusers were kept as a control (i.e., no reverse flexing). There was a 45% increase in DWP of the control diffuser after 17 months of operation, an indication of fouling. RF treated diffusers (RF1 and RF2) did not show significant increase in DWP, and in comparison to the control diffuser prevented about 35% increase in DWP. Hence, reverse flexing potentially saves blower energy, by reducing the pressure burden on the air blower which increases blower energy requirement. However, no significant impact of the RF treatment in preventing a decrease in alpha-fouling (αF) of the fine pore diffusers, over time in operation was observed.
Structure and magnetic properties of Nd2Fe14B fine particles produced by spark erosion
NASA Astrophysics Data System (ADS)
Wan, H.; Berkowitz, A. E.
1994-11-01
At present Nd2Fe14B is the best permanent magnet because of its extremely high coercivity and energy product. Optimum properties of Nd2Fe14B magnets can be attained by producing single domain particles, and then aligning and compacting them. Due to the reactivity of the Nd constitutent, it is challenging to produce and handle a large amount of fine particles of this material. We have prepared fine particles of Nd2Fe14B by spark erosion with various dielectric media. Yield, size, size distribution, structure, and magnetic properties are discussed. The Nd2Fe14B particles were made by the sharker pot spark erosion method. Relaxation oscillators or a pulse generator were used to power the park erosion. Commercial Neomax 35 was employed as the primary material. The dielectric media were liquid Ar, Ar gas, and hydrocarbons, which provided an oxygen free environment. Structure and size were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffraction. Magnetic properties were measured by vibrating sample magnetometer (VSM) with temperatures in range of 4.2-1200 K. The particles produced in these three different dielectric media had different microstructures and crystal structures. The particles made in Ar gas were pure Nd2Fe14B phase. The particles made in liquid Ar were a mixture of amorphous and crystalline Nd2Fe14B, because the liquid Ar provided a much higher quench rate than Ar gas, which produced some amorphous Nd2Fe14B. Upon annealing, the amorphous particles became crystalline. The fine particles produced in hydrocarbons, such as pentane and dodecane, had more complex mixed phases, since the rare earth reacted with the hydrocarbons during the sparking process. The phases were NdC2, alpha-Fe, and amorphous and crystalline Nd2Fe14B. The effects of power parameters, such as voltage and capacitance, on particle size were investigated. Particle sizes from 20 nm to 50 microns were obtained.
Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma
2010-04-01
X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds. (c) 2009 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Harf, F. H.
1981-01-01
Specimens of gamma/gamma-prime-alpha (Mo) eutectic alloy were thermally cycled or isothermally exposed at temperatures of 1075 to 1100 C. Transmission electron microscopy examination of cycled specimens indicated that even an exposure of 10 minutes effected noticeable changes in the shape of the alpha phase, and that the changes were cumulative as more cycles were added. The cross sections of fine, smooth fibers changed from rectangles to octagons, while lamellae and irregular shapes spheroidized. These effects are attributed to the differences in thermal expansion coefficients between the alpha phase and the gamma/gamma-prime matrix, and to the higher diffusion rates prevailing at elevated temperatures. Where the configuration of the alpha phase is a simple shape, such as a fiber, increasing the temperature eventually brings about a stress free interface between the alpha phase and the matrix by differential thermal expansion. Where the shape of the alpha phase is more complex, a stressed interface persists to higher temperatures where diffusion produces the more drastic morphological changes.
Ion and electron temperatures in the SUMMA mirror device by emission spectroscopy
NASA Technical Reports Server (NTRS)
Patch, R. W.; Voss, D. E.; Reinmann, J. J.; Snyder, A.
1974-01-01
Ion and electron temperatures, and ion drift were measured in a superconducting magnetic mirror apparatus by observing the Doppler-broadened charge-exchange component of the 667.8 and 587.6 nanometer He lines in He plasma, and the H sub alpha and H sub beta lines in H2 plasma. The second moment of the line profiles was used as the parameter for determining ion temperature. Corrections for magnetic splitting, fine structure, monochromator slit function, and variation in charge-exchange cross section with energy are included. Electron temperatures were measured by the line ratio method for the corona model, and correlations of ion and electron temperatures with plasma parameters are presented.
Surfactant effects on alpha-factors in aeration systems.
Rosso, Diego; Stenstrom, Michael K
2006-04-01
Aeration in wastewater treatment processes accounts for the largest fraction of plant energy costs. Aeration systems function by shearing the surface (surface aerators) or releasing bubbles at the bottom of the tank (coarse- or fine-bubble aerators). Surfactant accumulation on gas-liquid interfaces reduces mass transfer rates, and this reduction in general is larger for fine-bubble aerators. This study evaluates mass transfer effects on the characterization and specification of aeration systems in clean and process water conditions. Tests at different interfacial turbulence regimes show higher gas transfer depression for lower turbulence regimes. Contamination effects can be offset at the expense of operating efficiency, which is characteristic of surface aerators and coarse-bubble diffusers. Results describe the variability of alpha-factors measured at small scale, due to uncontrolled energy density. Results are also reported in dimensionless empirical correlations describing mass transfer as a function of physiochemical and geometrical characteristics of the aeration process.
NASA Astrophysics Data System (ADS)
Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.
2014-11-01
In order to evaluate the age from the equivalent dose and to obtain an optimized and efficient procedure for thermoluminescence (TL) dating, it is necessary to obtain the values of both the internal and the external dose rates from dated samples and from their environment. The measurements described and compared in this paper refer to bricks from historic buildings and a fine-grain dating method. The external doses are therefore negligible, if the samples are taken from a sufficient depth in the wall. However, both the alpha dose rate and the beta and gamma dose rates must be taken into account in the internal dose. The internal dose rate to fine-grain samples is caused by the concentrations of natural radionuclides 238U, 235U, 232Th and members of their decay chains, and by 40K concentrations. Various methods can be used for determining trace concentrations of these natural radionuclides and their contributions to the dose rate. The dose rate fraction from 238U and 232Th can be calculated, e.g., from the alpha count rate, or from the concentrations of 238U and 232Th, measured by neutron activation analysis (NAA). The dose rate fraction from 40K can be calculated from the concentration of potassium measured, e.g., by X-ray fluorescence analysis (XRF) or by NAA. Alpha counting and XRF are relatively simple and are accessible for an ordinary laboratory. NAA can be considered as a more accurate method, but it is more demanding regarding time and costs, since it needs a nuclear reactor as a neutron source. A comparison of these methods allows us to decide whether the time- and cost-saving simpler techniques introduce uncertainty that is still acceptable.
The Magnetic Structure of H-Alpha Macrospicules in Solar Coronal Holes
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.; Sakuri, T.
2003-01-01
Measurements by Ulysses in the high-speed polar solar wind have shown the wind to carry some fine-scale structures in which the magnetic field reverses direction by having a switchback fold in it. The lateral span of these magnetic switchbacks, translated to the Sun, is of the scale of the lanes and cells of the magnetic network in which the open magnetic flux of the polar coronal hole and polar solar wind are rooted. This suggests that the magnetic switchbacks might be formed from network-scale magnetic loops that erupt into the corona and then undergo reconnection with the open field. This possibility motivated us to undertake the study reported here of the structure of H-alpha macrospicules observed at the limb in polar coronal holes, to determine whether a significant fraction of these eruptions appear to be erupting loops. From a search of the polar-coronal holes in 6 days of image-processed full-disk H-alpha movies from Big Bear Solar Observatory, we found a total of 35 macrospicules. Nearly all of these (32) were of one or the other of two different forms: 15 were in the form of an erupting loop, and 17 were in the form of a single-column spiked jet. The erupting-loop macrospicules are appropriate for producing the magnetic switchbacks in the polar wind. The spiked-jet macrospicules show the appropriate structure and evolution to be driven by reconnection between network-scale closed field (a network bipole) and the open field rooted against the closed field. This evidence for reconnection in a large fraction of our macrospicules (1) suggests that many spicules may be generated by similar but smaller reconnection events, and (2) supports the view that coronal heating and solar wind acceleration in coronal holes and in quiet regions and corona are driven by explosive reconnection events in the magnetic network.
NASA Technical Reports Server (NTRS)
Hathaway, David H.
1998-01-01
The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood despite decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. Two basic processes are involved in dynamo activity. When the fluid stresses dominate the magnetic stresses (high plasma beta = 8(pi)rho/B(sup 2)), shear flows can stretch magnetic field lines in the direction of the shear (the "alpha effect") and helical flows can lift and twist field lines into orthogonal planes (the "alpha effect"). These two processes can be active anywhere in the solar convection zone but with different results depending upon their relative strengths and signs. Little is known about how and where these processes occur. Other processes, such as magnetic diffusion and the effects of the fine scale structure of the solar magnetic field, pose additional problems.
Kaplun, Marina; Nordin, Agneta; Persson, Per
2008-01-15
The structure of palladium(II) ethylenediaminetetraacetate (edta) in aqueous solutions and its adsorption on the surface of goethite (alpha-FeOOH) were studied using extended X-ray absorption fine structure spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. The obtained results show that in aqueous solutions, Pd-edta exists as a 1:1 complex, [Pd(edta)]2-, with edta acting as a quadridentate ligand. On the surface of goethite, [Pd(edta)]2- forms two different types of complexes over a pH range of 3.40-8.12. At pH < 5, [Pd(edta)]2- adsorbs as an outer-sphere species with possible hydrogen bonding. At higher pH values, the formation of inner-sphere complexes of the cation-type sets in after a cleavage of one glycinate ring and the formation of an (edta)Pd-O-Fe linkage.
Experimentally observed conformation-dependent geometry and hidden strain in proteins.
Karplus, P. A.
1996-01-01
A database has been compiled documenting the peptide conformations and geometries from 70 diverse proteins refined at 1.75 A or better. Analysis of the well-ordered residues within the database shows phi, psi-distributions that have more fine structure than is generally observed. Also, clear evidence is presented that the peptide covalent geometry depends on conformation, with the interpeptide N-C alpha-C bond angle varying by nearly +/-5 degrees from its standard value. The observed deviations from standard peptide geometry are greatest near the edges of well-populated regions, consistent with strain occurring in these conformations. Minimization of such hidden strain could be an important factor in thermostability of proteins. These empirical data describing how equilibrium peptide geometry varies as a function of conformation confirm and extend quantum mechanics calculations, and have predictive value that will aid both theoretical and experimental analyses of protein structure. PMID:8819173
Recent progress in the study of protective rust-layer formation on weathering steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, M.; Misawa, T.
Latest understanding of protective rust layer on weathering steel and its application for structural steels is discussed. Phase transformation of the weathering steel rust layer during long-time exposure brings {alpha}-(Fe{sub 1{minus}x},Cr{sub x})OOH, Cr-substituted goethite, as the final protective rust layer. It is said that the Cr content in the Cr-substituted goethite layer increases gradiently with reaching the rust-steel interface. This increase in the Cr content gives densely packed fine crystal structure end cation selective ability, which impedes the penetration of aggressive corrosives including anions such as Cl{sup {minus}} and SO{sub 4}{sup 2{minus}}. Quite recently, new surface-treatment technique employing Cr{sub 2}(SO{submore » 4}){sub 3}, was proposed, which provides a possibility for obtaining the protective rust layer in a relatively short period even in the severe environment such as coastal region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathuri, P.; Nguyen, E.T.; Svard, S.G.
2007-07-12
Alpha-11 giardin is a member of the multi-gene alpha-giardin family in the intestinal protozoan, Giardia lamblia. This gene family shares an ancestry with the annexin super family, whose common characteristic is calcium-dependent binding to membranes that contain acidic phospholipids. Several alpha giardins are highly expressed during parasite-induced diarrhea in humans. Despite being a member of a large family of proteins, little is known about the function and cellular localization of alpha-11 giardin, although giardins are often associated with the cytoskeleton. It has been shown that Giardia exhibits high levels of alpha-11 giardin mRNA transcript throughout its life cycle; however, constitutivemore » over-expression of this protein is lethal to the parasite. Determining the three-dimensional structure of an alpha-giardin is essential to identifying functional domains shared in the alpha-giardin family. Here we report the crystal structures of the apo and Ca{sup 2+}-bound forms of alpha-11 giardin, the first alpha giardin to be characterized structurally. Crystals of apo and Ca{sup 2+}-bound alpha-11 giardin diffracted to 1.1 angstroms and 2.93 angstroms, respectively. The crystal structure of selenium-substituted apo alpha-11 giardin reveals a planar array of four tandem repeats of predominantly {alpha}-helical domains, reminiscent of previously determined annexin structures, making this the highest-resolution structure of an annexin to date. The apo alpha-11 giardin structure also reveals a hydrophobic core formed between repeats I/IV and II/III, a region typically hydrophilic in other annexins. Surprisingly, the Ca{sup 2+}-bound structure contains only a single calcium ion, located in the DE loop of repeat I and coordinated differently from the two types of calcium sites observed in previous annexin structures. The apo and Ca{sup 2+}-bound alpha-11 giardin structures assume overall similar conformations; however, Ca2+-bound alpha-11 giardin crystallized in a lower-symmetry space group with four molecules in the asymmetric unit. Vesicle-binding studies suggest that alpha-11 giardin, unlike most other annexins, does not bind to vesicles composed of acidic phospholipids in a calcium-dependent manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remiens, D.; Ponchel, F.; Legier, J. F.
2011-06-01
A complete study is given in this paper on the structural properties of Ba(Sr,Ti)O{sub 3} (BST) thin films which present various preferred orientations: (111) and (001) fiber and epitaxial textures. The films are deposited in situ at 800 deg. C by sputtering on Si/SiO{sub 2}/TiO{sub x}/Pt substrates and the orientation is controlled by monitoring the concentration of O{sub 2} in the reactive plasma or by prior deposition of a very thin TiO{sub x} buffer layer between BST films and substrates. The epitaxial films are obtained on (001)-alpha-Al{sub 2}O{sub 3} substrates covered with TiO{sub x} buffer layers. In order to analyzemore » finely the preferred orientations, the texture, the microstructural features, and the anisotropy-related quantities such as residual stresses in the films, the conventional Bragg-Brentano {theta} - 2{theta} x-ray diffraction diagrams is shown not to be sufficient. So, we systematically used x-ray combined analysis, a recently developed methodology which gives access to precise determination of the structure (cell parameters and space group) of the films, their orientation distributions (texture strengths and types) and mean crystallite sizes, their residual stresses. This fine structural analysis shows important modifications between the film qualities which induce differences in BST films electrical behavior, permittivity, loss tangent, and tunability.« less
Jang, C; Adam, S; Chen, J-H; Williams, E D; Das Sarma, S; Fuhrer, M S
2008-10-03
We reduce the dimensionless interaction strength alpha in graphene by adding a water overlayer in ultrahigh vacuum, thereby increasing dielectric screening. The mobility limited by long-range impurity scattering is increased over 30%, due to the background dielectric constant enhancement leading to a reduced interaction of electrons with charged impurities. However, the carrier-density-independent conductivity due to short-range impurities is decreased by almost 40%, due to reduced screening of the impurity potential by conduction electrons. The minimum conductivity is nearly unchanged, due to canceling contributions from the electron-hole puddle density and long-range impurity mobility. Experimental data are compared with theoretical predictions with excellent agreement.
A simple pre-treatment of aluminium cookware to minimize aluminium transfer to food.
Karbouj, Rim; Desloges, I; Nortier, P
2009-03-01
In this work, we studied aluminium leaching from cookware to food under the effect of citric acid that is commonly found in foods and beverages. The authors showed that boiling the cookware in water prior to cooking is suitable for the decrease of aluminium leaching into food by a factor up to sixty (with a corresponding decrease of the aluminium intake by consumers). The effect of the pre-treatment has been studied by scanning electron microscopy and X-Ray diffraction and the effect has been attributed to changes in the structure and morphology of the passivation layer, from an initial heterogeneous layer to a surface uniformly covered with fine needles of Boehmite (alpha-AlOOH).
Acoustic fine structure may encode biologically relevant information for zebra finches.
Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J
2018-04-18
The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.
Mehlert, A; Varon, L; Silman, I; Homans, S W; Ferguson, M A
1993-01-01
The structure of the glycan moiety of the glycosyl-phosphatidylinositol (GPI) membrane anchor from Torpedo californica (electric fish) electric-organ acetylcholinesterase was solved using n.m.r., methylation analysis and chemical and enzymic micro-sequencing. Two structures were found to be present: Glc alpha 1-2Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol and Glc alpha 1-2Man alpha 1-2Man alpha 1-6(GalNAc beta 1-4)Man alpha 1-4GlcN alpha 1-6myo-inositol. The presence of glucose in this GPI anchor structure is a novel feature. The anchor was also shown to contain 2.3 residues of ethanolamine per molecule. PMID:8257440
Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception
Helfrich, Randolph F.; Huang, Melody; Wilson, Guy; Knight, Robert T.
2017-01-01
Conscious visual perception is proposed to arise from the selective synchronization of functionally specialized but widely distributed cortical areas. It has been suggested that different frequency bands index distinct canonical computations. Here, we probed visual perception on a fine-grained temporal scale to study the oscillatory dynamics supporting prefrontal-dependent sensory processing. We tested whether a predictive context that was embedded in a rapid visual stream modulated the perception of a subsequent near-threshold target. The rapid stream was presented either rhythmically at 10 Hz, to entrain parietooccipital alpha oscillations, or arrhythmically. We identified a 2- to 4-Hz delta signature that modulated posterior alpha activity and behavior during predictive trials. Importantly, delta-mediated top-down control diminished the behavioral effects of bottom-up alpha entrainment. Simultaneous source-reconstructed EEG and cross-frequency directionality analyses revealed that this delta activity originated from prefrontal areas and modulated posterior alpha power. Taken together, this study presents converging behavioral and electrophysiological evidence for frontal delta-mediated top-down control of posterior alpha activity, selectively facilitating visual perception. PMID:28808023
Geomorphological and ecological effects of check dams in mountain torrents of Southern Italy
NASA Astrophysics Data System (ADS)
Zema, Demetrio Antonio; Bombino, Giuseppe; Denisi, Pietro; Tamburino, Vincenzo; Marcello Zimbone, Santo
2017-04-01
It is known that installation of check dams noticeably influences torrent morphology and ecology. However, the effects of check dams on channel section and riparian vegetation of torrents are not yet completely understood. This paper provides a further contribution to a better comprehension of the actions played by check dams on hydrological and geomorphological processes in headwaters and their effects on riparian ecosystem. Field surveys on channel morphology, bed material and riparian vegetation were carried out close to five check dams in each of four mountain reaches of Calabria (Southern Italy). For each check dam three transects (one upstream, one downstream and one far from the check dam, located in the undisturbed zone and adopted as control) were identified; at each transect, a set of geomorphological and ecological indicators were surveyed as follows. Channel section morphology was assessed by the width/depth ratio (w/d); the median particle size (D50) and the finer sediment fraction (%fines) were chosen to characterize channel bed material; the specific discharge (q, the discharge per channel unit width) was assumed as measure of the flow regime. Vegetation cover and structure were evaluated by Global Canopy Cover (GCC) and Weighted Canopy Height (WCH) respectively (Bombino et al., 2008); the index of alpha-diversity (H-alpha, Hill, 1973) and the ratio between the number of alien species and the number of native species (NSA/NSN) were chosen as indicators of species richness/abundance and degree of vegetation integrity, respectively. Compared to the control transects, the values of w/d were higher upstream of check dams and lower downstream; conversely, q was lower upstream and higher in downstream sites. Upstream of the check dams D50 of bed material was lower and %fines was higher compared to the control transects; vice versa, the downstream transects showed higher D50 and lower %fines. The differences in the riparian vegetation among transects were found as the torrent ecological response to the strong contrasts surveyed in hydrological (q) and geomorphological (w/d, D50 and %fines) characteristics. Compared to control transects, vegetation was more extensive (higher GCC) and developed (higher WCH) in the upstream zones; the reverse pattern was noticed in the downstream transects (lower GCC and WCH). The indexes H-alpha and NSA/NSN were higher upstream of check dams: the presence of the check dams induced higher species richness and evenness, with alien species prevailing over native ones in the sedimentation wedge. Conversely, downstream of check dams H-alpha and NSA/NSN were lower: here, riparian vegetation lost some herbaceous species and assumed a terrestrial character. Overall, this study confirms on a quantitative approach that check dams have far reaching effects on geomorphology and ecology of mountain torrent channels; as a consequence, important and complex changes occur not only in the extent and development of riparian vegetation, but also in the species diversity and distribution. REFERENCES - Bombino G., Gurnell A.M., Tamburino V., Zema D.A., Zimbone S.M. 2008. Sediment size variation in torrents with check-dams: effects on riparian vegetation. Ecological Engineering 32(2), 166-177. - Hill MO. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427-431.
Oginsky, Max F; Rodgers, Edmund W; Clark, Merry C; Simmons, Robert; Krenz, Wulf-Dieter C; Baro, Deborah J
2010-02-01
Dopamine (DA) modulates motor systems in phyla as diverse as nematodes and arthropods up through chordates. A comparison of dopaminergic systems across a broad phylogenetic range should reveal shared organizing principles. The pyloric network, located in the stomatogastric ganglion (STG), is an important model for neuromodulation of motor networks. The effects of DA on this network have been well characterized at the circuit and cellular levels in the spiny lobster, Panulirus interruptus. Here we provide the first data about the physical organization of the DA signaling system in the STG and the function of D(2) receptors in pyloric neurons. Previous studies showed that DA altered intrinsic firing properties and synaptic output in the pyloric dilator (PD) neuron, in part by reducing calcium currents and increasing outward potassium currents. We performed single cell reverse transcriptase-polymerase chain reaction (RT-PCR) experiments to show that PD neurons exclusively expressed a type 2 (D(2alphaPan)) DA receptor. This was confirmed by using confocal microscopy in conjunction with immunohistochemistry (IHC) on STG whole-mount preparations containing dye-filled PD neurons. Immunogold electron microscopy showed that surface receptors were concentrated in fine neurites/terminal swellings and vesicle-laden varicosities in the synaptic neuropil. Double-label IHC experiments with tyrosine hydroxylase antiserum suggested that the D(2alphaPan) receptors received volume neurotransmissions. Receptors were further mapped onto three-dimensional models of PD neurons built from Neurolucida tracings of confocal stacks from the IHC experiments. The data showed that D(2alphaPan) receptors were selectively targeted to approximately 40% of synaptic structures in any given PD neuron, and were nonuniformly distributed among neurites.
Meyer, W; Luz, S; Schnapper, A
2009-08-01
Using lectin histochemistry, the study characterizes basic functional aspects of the mucus produced by the oesophageal epithelium of the Reticulated python (Python reticulatus). Reaction staining varied as related to the two epithelium types present, containing goblet cells and ciliary cells. Remarkable intensities were achieved especially in the luminal mucus layer and the fine mucus covering the epithelial ciliary border for Con A (alpha-D-Man; alpha-D-Glc) as part of neutral glycoproteins, Limax flavus agglutinin (NeuNac = NeuNgc), emphasizing that water binding hyaluronan provides a hydrated interface conductive to the passage of material and UEA-I (alpha-L-Fuc), corroborating the view that fucose-rich highly viscous mucus is helpful against mechanical stress during prey transport.
Navarre, Laure; Martinez, Rémi; Genet, Jean-Pierre; Darses, Sylvain
2008-05-14
Conjugate addition of potassium trifluoro(organo)borates 2 to dehydroalanine derivatives 1, mediated by a chiral rhodium catalyst and in situ enantioselective protonation, afforded straightforward access to a variety of protected alpha-amino esters 3 with high yields and enantiomeric excesses up to 95%. Among the tested chiral ligands and proton sources, Binap, in combination with guaiacol (2-methoxyphenol), an inexpensive and nontoxic phenol, afforded the highest asymmetric inductions. Organostannanes have also shown to participate in this reaction. By a fine-tuning of the ester moiety, and using Difluorophos as chiral ligand, increased levels of enantioselectivity, generally close to 95%, were achieved. Deuterium labeling experiments revealed, and DFT calculation supported, an unusual mechanism involving a hydride transfer from the amido substituent to the alpha carbon explaining the high levels of enantioselectivity attained in controlling this alpha chiral center.
Synthesis of fine-grained .alpha.-silicon nitride by a combustion process
Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.
1990-01-01
A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.
Rzayev, Zakir M O; Söylemez, A Ernur
2011-04-01
We have developed a new approach for the synthesis of polymer nanocomposites using a bifunctional reversible addition-fragmentation chain transfer (RAFT) agent, two types of organo-montmorillonites, such as a non-reactive dimethyldodecyl ammonium (DMDA)-MMT and a reactive octadecylamine (ODA)-MMT organoclays, and a radical initiator. The method includes the following stages: (1) synthesis of RAFT intercalated O-MMTs by a physical or chemical interaction of the RAFT agent having two pendant carboxylic groups [S,S-bis(alpha,alpha'-dimethyl-alpha"-acetic acid)trithiocarbonate] with surface alkyl amines of O-MMT containing tertiary ammonium cation or primary amine groups through strong H-bonding and complexing/amidization reactions, respectively, and (2) utilization of these well-dispersed and intercalated RAFT ... O-MMT complexes and their amide derivatives as new modified RAFT agents in radical-initiated interlamellar controlled/living copolymerization of itaconic acid (IA)-n-butylmethacrylate (BMA) monomer pair. The structure and compositions of the synthesized RAFT ... O-MMT complexes and functional copolymer/O-MMT hybrids were confirmed by FTIR, XRD, thermal (DSC-TGA), SEM and TEM morphology analyses. It was demonstrated that the degree of interaction/exfoliation, morphology and thermal behavior of nanocomposites significantly depended on the type of organoclay and in situ interaction, as well as on the content of flexible butyl-ester linkages as a internal plasticizer. The results of the comparative analysis of the nanocomposites structure-composition-property relations show that the functional copolymer-organoclay hybrids prepared with reactive RAFT ... ODA-MMT complex and containing a combination of partially intercalated and predominantly exfoliated nano-structures exhibit relatively higher thermal stability and fine dispersed morphology. These effects were explained by in situ interfacial chemical reactions through amidization of RAFT with surface alkyl amine of MMT clay in interlamellar copolymerization. This simple and versatile method can be applied to a wide range of functional monomer/comonomer systems and mono- and bifunctional RAFT compounds for preparation new generation of nanomaterials.
Fourier transform millimeter-wave spectroscopy of the ethyl radical in the electronic ground state.
Kim, Eunsook; Yamamoto, Satoshi
2004-02-15
The pure rotational spectrum of the ethyl radical (C2H5) has been detected for the first time with the Fourier transform millimeter-wave spectrometer. The ethyl radical is produced by discharging the C2H5I gas diluted in Ar. The 1(01)-0(00) rotational transition of the ethyl radical is observed in the frequency range from 43,680 to 43,780 MHz. The observed spectrum shows a very complicated pattern of the fine and hyperfine structures of a doublet radical with the nuclear spins of five protons. The fine and hyperfine components are assigned with the aid of measurements of the Zeeman splittings. As a result, the 22 lines are ascribed to the transitions in the ground vibronic state (A2"). The rotational constant, the spin-rotation interaction constant, and hyperfine interaction constants are determined by the least-squares fit. The Fermi contact term of the alpha-proton is determined to be -64.1654 MHz in the gas phase, indicating that the structure of the -CH2 is essentially planar. The present rotational spectroscopic study further supports that the methyl group of the ethyl radical can be regarded as a nearly free internal rotor with a low energy barrier. A few unassigned lines still remain, which may be vibrational satellites of the internal rotation mode. Copyright 2004 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Seung-Wook; Lee, Si-Hyung; Kim, Do-Hyoung
2005-12-30
{alpha}-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing {alpha}6 and {alpha}3 subunits. {alpha}-conotoxin PIA displays 75-fold higher affinity for rat {alpha}6/{alpha}3{beta}2{beta}3 nAChRs than for rat {alpha}3{beta}2 nAChRs. We have determined the three-dimensional structure of {alpha}-conotoxin PIA by nuclear magnetic resonance spectroscopy. The {alpha}-conotoxin PIA has an '{omega}-shaped' overall topology as other {alpha}4/7 subfamily conotoxins. Yet, unlike other neuronally targeted {alpha}4/7-conotoxins, its N-terminal tail Arg{sup 1}-Asp{sup 2}-Pro{sup 3} protrudes out of its main molecular body because Asp{sup 2}-Pro{sup 3}-Cys{sup 4}-Cys{sup 5} forms a stable type I {beta}-turn. In addition, amore » kink introduced by Pro{sup 15} in the second loop of this toxin provides a distinct steric and electrostatic environment from those in {alpha}-conotoxins MII and GIC. By comparing the structure of {alpha}-conotoxin PIA with other functionally related {alpha}-conotoxins we suggest structural features in {alpha}-conotoxin PIA that may be associated with its unique receptor recognition profile.« less
Qin, Zhao; Fabre, Andrea; Buehler, Markus J
2013-05-01
The stability of alpha helices is important in protein folding, bioinspired materials design, and controls many biological properties under physiological and disease conditions. Here we show that a naturally favored alpha helix length of 9 to 17 amino acids exists at which the propensity towards the formation of this secondary structure is maximized. We use a combination of thermodynamical analysis, well-tempered metadynamics molecular simulation and statistical analyses of experimental alpha helix length distributions and find that the favored alpha helix length is caused by a competition between alpha helix folding, unfolding into a random coil and formation of higher-order tertiary structures. The theoretical result is suggested to be used to explain the statistical distribution of the length of alpha helices observed in natural protein structures. Our study provides mechanistic insight into fundamental controlling parameters in alpha helix structure formation and potentially other biopolymers or synthetic materials. The result advances our fundamental understanding of size effects in the stability of protein structures and may enable the design of de novo alpha-helical protein materials.
Ha, Sung Chul; Choi, Jongkeun; Hwang, Hye-Yeon; Rich, Alexander; Kim, Yang-Gyun; Kim, Kyeong Kyu
2009-02-01
The Z-DNA conformation preferentially occurs at alternating purine-pyrimidine repeats, and is specifically recognized by Z alpha domains identified in several Z-DNA-binding proteins. The binding of Z alpha to foreign or chromosomal DNA in various sequence contexts is known to influence various biological functions, including the DNA-mediated innate immune response and transcriptional modulation of gene expression. For these reasons, understanding its binding mode and the conformational diversity of Z alpha bound Z-DNAs is of considerable importance. However, structural studies of Z alpha bound Z-DNA have been mostly limited to standard CG-repeat DNAs. Here, we have solved the crystal structures of three representative non-CG repeat DNAs, d(CACGTG)(2), d(CGTACG)(2) and d(CGGCCG)(2) complexed to hZ alpha(ADAR1) and compared those structures with that of hZ alpha(ADAR1)/d(CGCGCG)(2) and the Z alpha-free Z-DNAs. hZ alpha(ADAR1) bound to each of the three Z-DNAs showed a well conserved binding mode with very limited structural deviation irrespective of the DNA sequence, although varying numbers of residues were in contact with Z-DNA. Z-DNAs display less structural alterations in the Z alpha-bound state than in their free form, thereby suggesting that conformational diversities of Z-DNAs are restrained by the binding pocket of Z alpha. These data suggest that Z-DNAs are recognized by Z alpha through common conformational features regardless of the sequence and structural alterations.
The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350 deg. C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun; Zou Hong; Li Cong
2008-05-15
The influence of aging time on the microstructure evolution of 17-4 PH martensitic stainless steel was studied by transmission electron microscopy (TEM). Results showed that the martensite decomposed by a spinodal decomposition mechanism after the alloy was subjected to long-term aging at 350 deg. C. The fine scale spinodal decomposition of {alpha}-ferrite brought about a Cr-enriched bright stripe and a Fe-enriched dark stripe, i.e., {alpha}' and {alpha} phases, separately, which were perpendicular to the grain boundary. The spinodal decomposition started at the grain boundary. Then with prolonged aging time, the decomposition microstructure expanded from the grain boundary to interior. Themore » wavelength of the spinodally decomposed microstructure changed little with extended aging time.« less
Pasta, Saloni Yatin; Raman, Bakthisaran; Ramakrishna, Tangirala; Rao, Ch Mohan
2002-11-29
Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.
1984-07-01
phase. The second step, swabbing with a 1 ml HF, 2 ml HN0 3 , 97 ml water solution, removed the stain, leaving a light field of alpha phase material in...microscope (SEM), the beta phase appeared as finely dispersed light lines in a dark - field of alpha phase material. 4.2 Ultrasonic Measurements The...appropriate couplants were used in this research. Aerotech couplant • (a light oil) was used for the wave velocity measurements. A 2 mm thick elastomer
The influence of heat treatment on the structure and properties of a near-α titanium alloy
NASA Astrophysics Data System (ADS)
Sridhar, G.; Kutumbarao, V. V.; Sarma, D. S.
1987-06-01
The microstructure and tensile properties of a near-α titanium alloy, IMI-829 (Ti-6.1 wt pct Al-3.2 wt pct Zr-3.3 wt pct Sn-0.5 wt pct Mo-1 wt pct Nb-0.32 wt pct Si) have been studied after solutionizing (and no subsequent aging) at two different temperatures separately, one above the β transus (1050 °C) and another below the β transus (975 °C) followed by various cooling rates (furnace, air, oil, or water). While 1050 °C treatment resulted in coarse Widmanstätten structures on furnace or air cooling, fine Widmanstätten structure on oil quenching and martensitic structure on water quenching, 975 °C treatment produced duplex microstructures consisting of equiaxed alpha and partially transformed beta phases. Transmission electron microscopy studies revealed the morphology, size, and distribution of the α, β, and martensite phases and also the presence of small ellipsoidal suicide particles and an interface phase with fcc structure at almost all α-β interfaces. The oil quenched structure from 1050 °C has been found to be a mixture of fine Widmanstätten α coexisting with martensite laths and retained beta at the lath boundaries. Silicides with hcp structure of about 0.4 μm size were observed in specimens solution treated at 975 °C. The interface phase is seen in all slowly-cooled specimens. The YS and UTS are superior for 975 °C treatment compared to 1050 °C treatment after water quenching or oil quenching. The tensile ductility values are superior for any cooling rate after 975 °C solution treatment as compared to 1050 °C solution treatment. The specimens failed in tension diagonally by shear after 1050 °C treatment and by cup and cone fracture after 975 °C treatment. In all cases fracture has taken place by microvoid coalescence and in most cases, along the α-β boundaries.
EEG resolutions in detecting and decoding finger movements from spectral analysis
Xiao, Ran; Ding, Lei
2015-01-01
Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720
Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peak, Derek
2008-06-09
Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO{sub 4}{sup 2-}) and selenite (SeO{sub 3}{sup 2-}) on hydrous aluminum oxide (HAO) over a wide range of reaction pH using extended X-ray absorption fine structure (EXAFS) spectroscopy. Additionally, selenate adsorption on corundum ({alpha}-Al{sub 2}O{sub 3}) was studied to determine if adsorption mechanisms change as the aluminum oxide surfacemore » structure changes. The overall findings were that selenite forms a mixture of outer-sphere and inner-sphere bidentate-binuclear (corner-sharing) surface complexes on HAO, selenate forms primarily outer-sphere surface complexes on HAO, and on corundum selenate forms outer-sphere surface complexes at pH 3.5 but inner-sphere monodentate surface complexes at pH 4.5 and above. It is possible that the lack of inner-sphere complex formation at pH 3.5 is caused by changes in the corundum surface at low pH or secondary precipitate formation. The results are consistent with a structure-based reactivity for metal oxides, wherein hydrous metal oxides form outer-sphere complexes with sulfate and selenate, but inner-sphere monodentate surface complexes are formed between sulfate and selenate and {alpha}-Me{sub 2}O{sub 3}.« less
Yu, L; Ishida, T; Ozawa, K; Akutsu, H; Horiike, K
2001-03-01
Two distinct forms of acetate kinase were purified to homogeneity from a sulfate-reducing bacterium Desulfovibrio vulgaris Miyazaki F. The enzymes were separated from the soluble fraction of the cells on anion exchange columns. One acetate kinase (AK-I) was a homodimer (alpha(S)(2)) and the other (AK-II) was a heterodimer (alpha(S)alpha(L)). On SDS-PAGE, alpha(L) and alpha(S) subunits migrated as bands of 49.3 and 47.8 kDa, respectively, but they had an identical N-terminal amino acid sequence. A rapid HPLC method was developed to directly measure ADP and ATP in assay mixtures. Initial velocity data for AK-I and AK-II were collected by this method and analyzed based on a random sequential mechanism, assuming rapid equilibrium for the substrate binding steps. All kinetic parameters for both the forward acetyl phosphate formation and the reverse ATP formation catalyzed by AK-I and AK-II were successfully determined. The two enzymes showed similar kinetic properties in Mg(2+) requirement, pH-dependence and magnitude of kinetic parameters. These results suggest that two forms of acetate kinase are produced to finely regulate the enzyme function by post-translational modifications of a primary gene product in Desulfovibrio vulgaris.
M553 sphere forming experiment: Pure nickel specimen evaluation
NASA Technical Reports Server (NTRS)
Johnson, P. C.; Peters, E. T.
1973-01-01
A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.
Functional and genomic analyses of alpha-solenoid proteins.
Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A
2013-01-01
Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.
Glomus tumor of the liver in a cow
HORIUCHI, Noriyuki; KOMAGATA, Makoto; SHITAMURA, Keiichi; CHIBA, Shiori; MATSUMOTO, Kotaro; INOKUMA, Hisashi; MATSUI, Takane; KOBAYASHI, Yoshiyasu
2015-01-01
An 11-year-old Holstein-Friesian cow exhibited anorexia and jaundice. A large mass was found in the liver during necropsy. Macroscopically, the mass was composed of dark red multilobular tissue and a centrally located abscess, which was connected to the hepatic duct. Histologically, the mass consisted of proliferation of small neoplastic cells and was demarcated from the hepatic parenchyma by a thick region of granulation tissue. The neoplastic cells were predominantly arranged in solid sheets, but they also formed blood-filled cancellous structures, and proliferating foci were seen around blood vessels. Periodic acid-Schiff reaction demonstrated that a fine basement membrane-like structure surrounded the neoplastic cells. Immunohistochemically, the neoplastic cells were positive for vimentin and alpha smooth muscle actin and negative for cytokeratin, factor VIII-related antigen, chromogranin and desmin. Based on its histopathological features, the hepatic neoplasm was diagnosed as a primary glomus tumor. This is the first report about a primary glomus tumor of the liver in a cow. PMID:25715802
Tice, Michael M
2009-12-01
Three morphotypes of microbial mats are preserved in rocks deposited in shallow-water facies of the 3.42 Ga Buck Reef chert (BRC). Morphotype alpha consists of fine anastomosing and bifurcating carbonaceous laminations, which loosely drape underlying detrital grains or form silica-filled lenses. Morphotype beta consists of meshes of fine carbonaceous strands intergrown with detrital grains and dark laminations, which loosely drape coarse detrital grains. Morphotype gamma consists of fine, even carbonaceous laminations that tightly drape underlying detrital grains. Preservation of nearly uncompacted mat morphologies and detrital grains deposited during mat growth within a well-characterized sedimentary unit makes quantitative correlation between morphology and paleoenvironment possible. All mats are preserved in the shallowest-water interval of those rocks deposited below normal wave base and above storm wave base. This interval is bounded below by a transgressive lag formed during regional flooding and above by a small condensed section that marks a local relative sea-level maximum. Restriction of all mat morphotypes to the shallowest interval of the storm-active layer in the BRC ocean reinforces previous interpretations that these mats were constructed primarily by photosynthetic organisms. Morphotypes alpha and beta dominate the lower half of this interval and grew during deposition of relatively coarse detrital carbonaceous grains, while morphotype gamma dominates the upper half and grew during deposition of fine detrital carbonaceous grains. The observed mat distribution suggests that either light intensity or, more likely, small variations in ambient current energy acted as a first-order control on mat morphotype distribution. These results demonstrate significant environmental control on biological morphogenetic processes independent of influences from siliciclastic sedimentation.
Janecek, S.
1996-01-01
The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the existing evolutionary division of the entire family of (alpha/beta)8-barrel proteins. PMID:8762144
Janecek, S
1996-06-01
The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the existing evolutionary division of the entire family of (alpha/beta)8-barrel proteins.
Surfactant effects on alpha factors in full-scale wastewater aeration systems.
Rosso, D; Larson, L E; Stenstrom, M K
2006-01-01
Aeration is an essential process in the majority of wastewater treatment processes, and accounts for the largest fraction of plant energy costs. Aeration systems can achieve wastewater oxygenation by shearing the surface (surface aerators) or releasing bubbles at the bottom of the tank (coarse- or fine-bubble aerators). Surfactants accumulate on gas-liquid interfaces and reduce mass transfer rates. This reduction in general is larger for fine-bubble aerators. This study was conducted to evaluate mass transfer effects on the characterization and specification of aeration systems in clean and process water conditions. Tests at different interfacial turbulence regimes were analysed, showing higher gas transfer depression for lower turbulence regimes. Higher turbulence regimes can offset contamination effects, at the expense of operating efficiency. This phenomenon is characteristic of surface aerators and coarse bubble diffusers and is here discussed. The results explain the variability of alpha factors measured at small scale, due to uncontrolled energy density. Results are also reported in dimensionless empirical correlations that describe mass transfer as a function of physiochemical and geometrical characteristics of the aeration process.
Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure
NASA Technical Reports Server (NTRS)
Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.
2004-01-01
Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.
Functional and Genomic Analyses of Alpha-Solenoid Proteins
Fournier, David; Palidwor, Gareth A.; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H.; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A.
2013-01-01
Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/. PMID:24278209
Summary of the Third AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.
2007-01-01
The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.
NASA Astrophysics Data System (ADS)
Au, Peter
A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are discussed in detail. Beyond the review, the results of experiments are described for determining the alpha transus temperature, the phase transformation kinetics in this region and the effects of heat treatment time and cooling rate on microstructure. Based on this preliminary work, a heat treatment to achieve a FGFL microstructure with grain sizes in the range of 50 mum to 150 mum is proposed and confirmed. The room temperature and high temperature mechanical properties of these materials are compared with those of conventional duplex and fully lamellar structures. The results of this experimentation are discussed in terms of the fundamental mechanisms for controlling microstructure and mechanical properties in these materials. The potential for applying cyclic heat treatments to cast and wrought materials to improve the mechanical property balance in engineering practice is discussed.
NASA Technical Reports Server (NTRS)
Ruzdjak, Vladimir (Editor); Tandberg-Hanssen, Einar (Editor)
1990-01-01
Topics discussed include formation of a filament around a magnetic region, evolution of fine structures in a filament, the spatial distribution of prominence threads, high resolution analysis of quiescent prominences at NSO/Sacramento Peak Observatory, small-scale Doppler velocities in a quiescent prominence, Doppler velocity oscillations in quiescent prominences, oscillatory relaxation of an eruptive prominence, and matter flow velocities in an active region emission loop observed in H-alpha. Attention is also given to an automated procedure for measurement of prominence transverse velocities, the nonlinear evolution of magnetized filaments, thermal equilibrium of coronal loops and prominence formation, thermal instability in planar coronal strucutres, radiative transfer in cylindrical prominence threads, numerical simulation of a catastrophe model for prominence eruptions, and the law of evolution and destruction of solar prominences.
Dayal, B; Tint, G S; Batta, A K; Shefer, S; Salen, G; Bose, A K; Pramanik, B N
1983-02-01
This paper describes the chemical synthesis of 3 alpha,7 alpha,12 alpha,25-tetrahydroxy-5 beta-cholestan-24-one via selective oxidation of 5 beta-cholestane-3 alpha,7 alpha,12 alpha, 24 xi,25-pentol with silver carbonate on celite. The structure of this 24-keto bile alcohol was confirmed by gas-liquid chromatography and mass spectrometry. Synthesis of this compound via pyridinium chlorochromate oxidation of the triacetoxy derivative of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24 xi,25-pentol followed by saponification further established its structure. 3 alpha,7 alpha,12 alpha,25-Tetrahydroxy-5 beta-cholestan-24-one was required for the in vivo and in vitro studies of side-chain oxidation and cleavage in the 25-hydroxylation pathway of cholic acid biosynthesis.
Roy, Amrita; Zhou, Xingding; Chong, Ming Zhi; D'hoedt, Dieter; Foo, Chun Shin; Rajagopalan, Nandhakishore; Nirthanan, Selvanayagam; Bertrand, Daniel; Sivaraman, J; Kini, R Manjunatha
2010-03-12
Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (alphabetagammadelta) and neuronal (alpha(7), alpha(3)beta(2), and alpha(4)beta(2)) nicotinic acetylcholine receptors (nAChRs) with highest affinity for alpha(7)-nAChRs. The high resolution (1.5 A) crystal structure revealed haditoxin to be a homodimer, like kappa-neurotoxins, which target neuronal alpha(3)beta(2)- and alpha(4)beta(2)-nAChRs. Interestingly however, the monomeric subunits of haditoxin were composed of a three-finger protein fold typical of curaremimetic short-chain alpha-neurotoxins. Biochemical studies confirmed that it existed as a non-covalent dimer species in solution. Its structural similarity to short-chain alpha-neurotoxins and kappa-neurotoxins notwithstanding, haditoxin exhibited unique blockade of alpha(7)-nAChRs (IC(50) 180 nm), which is recognized by neither short-chain alpha-neurotoxins nor kappa-neurotoxins. This is the first report of a dimeric short-chain alpha-neurotoxin interacting with neuronal alpha(7)-nAChRs as well as the first homodimeric three-finger toxin to interact with muscle nAChRs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, S.; Masubuchi, Y.; Nakazawa, Y.
2012-10-15
Slight enhancement of saturation magnetization to 219 A m{sup 2} kg{sup -1} was observed from 199 A m{sup 2} kg{sup -1} for the original {alpha}-Fe on the intermediate nitrided mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' with residual {alpha}-Fe among the low temperature ammonia nitridation products under 5 T magnetic field at room temperature. The value changed not linearly against the yield as had been expected. Crystal structure refinement indicated that the phase similar to {alpha} Prime Prime -Fe{sub 16}N{sub 2} had deviations on its lattice constants and positional parameters, compared to previously reported values for {alpha} Prime Primemore » -Fe{sub 16}N{sub 2}. Spin-polarized total energy calculations were performed using the projector-augmented wave method as implemented in the Vienna ab-initio simulation package (VASP) to calculate magnetic moment on the refined crystal structure of the intermediate '{alpha} Prime Prime -Fe{sub 16}N{sub 2}'. The calculations supported the observed magnetization enhancement in the intermediate nitridation product. - Graphical abstract: Crystal structural parameters slightly change in the intermediate nitrided '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' from those in {alpha} Prime Prime -Fe{sub 16}N{sub 2} to show the magnetization maxima in the mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' and the residual {alpha}-F. Highlights: Black-Right-Pointing-Pointer Larger magnetization was observed than the value of Fe{sub 16}N{sub 2} on its intermediate nitrided mixture with residual {alpha}-Fe. Black-Right-Pointing-Pointer The enhancement was related to the crystal structural deviation from Fe{sub 16}N{sub 2} on the intermediate nitride. Black-Right-Pointing-Pointer It was supported by spin-polarized total energy calculation using the deviated structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Seung-Wook; Kim, Do-Hyoung; Olivera, Baldomero M.
2006-06-23
{alpha}-Conotoxin OmIA from Conus omaria is the only {alpha}-conotoxin that shows a {approx}20-fold higher affinity to the {alpha}3{beta}2 over the {alpha}6{beta}2 subtype of nicotinic acetylcholine receptor. We have determined a three-dimensional structure of {alpha}-conotoxin OmIA by nuclear magnetic resonance spectroscopy. {alpha}-Conotoxin OmIA has an '{omega}-shaped' overall topology with His{sup 5}-Asn{sup 12} forming an {alpha}-helix. Structural features of {alpha}-conotoxin OmIA responsible for its selectivity are suggested by comparing its surface characteristics with other functionally related {alpha}4/7 subfamily conotoxins. Reduced size of the hydrophilic area in {alpha}-conotoxin OmIA seems to be associated with the reduced affinity towards the {alpha}6{beta}2 nAChR subtype.
Ołdziej, S; Czaplewski, C; Liwo, A; Chinchio, M; Nanias, M; Vila, J A; Khalili, M; Arnautova, Y A; Jagielska, A; Makowski, M; Schafroth, H D; Kaźmierkiewicz, R; Ripoll, D R; Pillardy, J; Saunders, J A; Kang, Y K; Gibson, K D; Scheraga, H A
2005-05-24
Recent improvements in the protein-structure prediction method developed in our laboratory, based on the thermodynamic hypothesis, are described. The conformational space is searched extensively at the united-residue level by using our physics-based UNRES energy function and the conformational space annealing method of global optimization. The lowest-energy coarse-grained structures are then converted to an all-atom representation and energy-minimized with the ECEPP/3 force field. The procedure was assessed in two recent blind tests of protein-structure prediction. During the first blind test, we predicted large fragments of alpha and alpha+beta proteins [60-70 residues with C(alpha) rms deviation (rmsd) <6 A]. However, for alpha+beta proteins, significant topological errors occurred despite low rmsd values. In the second exercise, we predicted whole structures of five proteins (two alpha and three alpha+beta, with sizes of 53-235 residues) with remarkably good accuracy. In particular, for the genomic target TM0487 (a 102-residue alpha+beta protein from Thermotoga maritima), we predicted the complete, topologically correct structure with 7.3-A C(alpha) rmsd. So far this protein is the largest alpha+beta protein predicted based solely on the amino acid sequence and a physics-based potential-energy function and search procedure. For target T0198, a phosphate transport system regulator PhoU from T. maritima (a 235-residue mainly alpha-helical protein), we predicted the topology of the whole six-helix bundle correctly within 8 A rmsd, except the 32 C-terminal residues, most of which form a beta-hairpin. These and other examples described in this work demonstrate significant progress in physics-based protein-structure prediction.
The Structure of Neurexin 1[alpha] Reveals Features Promoting a Role as Synaptic Organizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Fang; Venugopal, Vandavasi; Murray, Beverly
{alpha}-Neurexins are essential synaptic adhesion molecules implicated in autism spectrum disorder and schizophrenia. The {alpha}-neurexin extracellular domain consists of six LNS domains interspersed by three EGF-like repeats and interacts with many different proteins in the synaptic cleft. To understand how {alpha}-neurexins might function as synaptic organizers, we solved the structure of the neurexin 1{alpha} extracellular domain (n1{alpha}) to 2.65 {angstrom}. The L-shaped molecule can be divided into a flexible repeat I (LNS1-EGF-A-LNS2), a rigid horseshoe-shaped repeat II (LNS3-EGF-B-LNS4) with structural similarity to so-called reelin repeats, and an extended repeat III (LNS5-EGF-B-LNS6) with controlled flexibility. A 2.95 {angstrom} structure of n1{alpha}more » carrying splice insert SS3 in LNS4 reveals that SS3 protrudes as a loop and does not alter the rigid arrangement of repeat II. The global architecture imposed by conserved structural features enables {alpha}-neurexins to recruit and organize proteins in distinct and variable ways, influenced by splicing, thereby promoting synaptic function.« less
Fine-scale structure in the far-infrared Milky-Way
NASA Technical Reports Server (NTRS)
Waller, William H.; Wall, William F.; Reach, William T.; Varosi, Frank; Ebert, Rick; Laughlin, Gaylin; Boulanger, Francois
1995-01-01
This final report summarizes the work performed and which falls into five broad categories: (1) generation of a new data product (mosaics of the far-infrared emission in the Milky Way); (2) acquisition of associated data products at other wavelengths; (3) spatial filtering of the far-infrared mosaics and resulting images of the FIR fine-scale structure; (4) evaluation of the spatially filtered data; (5) characterization of the FIR fine-scale structure in terms of its spatial statistics; and (6) identification of interstellar counterparts to the FIR fine-scale structure.
{alpha}+{sup 6,8}He resonant scattering and exotic structures in {sup 10,12}Be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Makoto; Itagaki, Naoyuki
2008-05-21
The {alpha}+{sup 6}He low-energy reactions and the structural changes of {sup 10}Be in the microscopic {alpha}+{alpha}+2N model are studied by the generalized two-center cluster model with the Kohn-Hulthen-Kato variation method. It is found that, in the inelastic scattering to the {alpha}+{sup 6}He(2{sub 1}{sup +}) channel, characteristic enhancements are expected as the results of the parity-dependent non-adiabatic dynamics. The similar method is applied to the resonant scattering of {alpha}+{sup 8}He, and the coupling with the compound configurations of {alpha}+{alpha}+4N are discussed.
An empirical approach to predicting long term behavior of metal particle based recording media
NASA Technical Reports Server (NTRS)
Hadad, Allan S.
1992-01-01
Alpha iron particles used for magnetic recording are prepared through a series of dehydration and reduction steps of alpha-Fe2O3-H2O resulting in acicular, polycrystalline, body centered cubic (bcc) alpha-Fe particles that are single magnetic domains. Since fine iron particles are pyrophoric by nature, stabilization processes had to be developed in order for iron particles to be considered as a viable recording medium for long term archival (i.e., 25+ years) information storage. The primary means of establishing stability is through passivation or controlled oxidation of the iron particle's surface. A study was undertaken to examine the degradation in magnetic properties as a function of both temperature and humidity on silicon-containing iron particles between 50-120 C and 3-89 percent relative humidity. The methodology to which experimental data was collected and analyzed leading to predictive capability is discussed.
Spectral Variability in the Aged Brain during Fine Motor Control
Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E.; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C.
2016-01-01
Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role. PMID:28066231
Zhang, Guihang; Jiang, Xiaosong; Qiao, ChangJun; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao; Valcarcel, Victor
2018-06-11
Single-crystal α-Al₂O₃ fibres can be utilized as a novel reinforcement in high-temperature composites owing to their high elastic modulus, chemical and thermal stability. Unlike non-oxide fibres and polycrystalline alumina fibres, high-temperature oxidation and polycrystalline particles boundary growth will not occur for single-crystal α-Al₂O₃ fibres. In this work, single-crystal α-Al₂O₃ whiskers and Al₂O₃ particles synergistic reinforced copper-graphite composites were fabricated by mechanical alloying and hot isostatic pressing techniques. The phase compositions, microstructures, and fracture morphologies of the composites were investigated using X-ray diffraction, a scanning electron microscope equipped with an X-ray energy-dispersive spectrometer (EDS), an electron probe microscopic analysis equipped with wavelength-dispersive spectrometer, and a transmission electron microscope equipped with EDS. The mechanical properties have been measured by a micro-hardness tester and electronic universal testing machine. The results show that the reinforcements were unevenly distributed in the matrix with the increase of their content and there were some micro-cracks located at the interface between the reinforcement and the matrix. With the increase of the Al₂O₃ whisker content, the compressive strength of the composites first increased and then decreased, while the hardness decreased. The fracture and strengthening mechanisms of the composite materials were explored on the basis of the structure and composition of the composites through the formation and function of the interface. The main strengthening mechanism in the composites was fine grain strengthening and solid solution strengthening. The fracture type of the composites was brittle fracture.
Microstructural characterization and mechanical properties of Excel alloy pressure tube material
NASA Astrophysics Data System (ADS)
Sattari, Mohammad
Microstructural characterization and mechanical properties of Excel (Zr-3.5%Sn-0.8%Mo-0.8%Nb), a dual phase alphaZr -hcp and betaZr-bcc pressure tube material, is discussed in the current study which is presented in manuscript format. Chapter 3 discusses phase transformation temperatures using different techniques such as quantitative metallography, differential scanning calorimetry (DSC), and electrical resistivity. It was found that the alphaZr → alphaZr+beta Zr and alphaZr+betaZr → betaZr transformation temperatures are in the range of 600-690°C and 960-970°C respectively. Also it was observed that upon quenching from temperatures below ˜860°C the martensitic transformation of betaZr to alpha'--hcp is halted and instead the microstructure transforms into retained Zr with o hexagonal precipitates inside betaZr grains. Chapter 4 deals with aging response of Excel alloy. Precipitation hardening was observed in samples water-quenched from high in the alphaZr+beta Zr or betaZr regions followed by aging. The optimum aging conditions were found to be 450°C for 1 hour. Transmission electron microscopy (TEM) showed dispersion of fine precipitates (˜10nm) inside the martensitic phase. Energy dispersive X-ray spectroscopy (EDS) showed the chemical composition of precipitates to be Zr-30wt%Mo-25wt%Nb-2wt%Fe. Electron crystallography using whole pattern symmetry of the convergent beam electron diffraction (CBED) patterns together with selected area diffraction (SAD) polycrystalline ring patterns, suggests the -6m2 point group for the precipitates belonging to hexagonal crystal structure, with a= 2.936 A and c=4.481 A, i.e. c/a =1.526. Crystallographic texture and high temperature tensile properties as well as creep-rupture properties of different microstructures are discussed in Chapter 5. Texture analysis showed that solution treatment high in the alpha Zr+betaZr or betaZr regions followed by water quenching or air cooling results in a more random texture compared to typical pressure tube texture. Variant selection was observed upon water quenching while partial memory effect and some transformation texture with variant selection was observed in the air-cooled sample. The results of creep-rupture tests suggest that fully martensitic and aged microstructure has better creep properties at high stress levels (>700 MPa) while the microstructure from air cooling from high in the alphaZr+betaZr region is less sensitive to stress and shows better creep properties compared to the as-received annealed microstructure at lower stresses (<560 MPa).
Grindability of alpha-case formed on cast titanium.
Koike, Marie; Jacobson, David; Chan, Kwai S; Okabe, Toru
2009-09-01
The hardened alpha-case (alpha-case) layer inevitably forms on the surface of titanium castings when prepared by investment casting. Because the hardness of the alpha-case is incomparable to that of the interior structure, the perception exists that the alpha-case is difficult to remove during cutting, grinding and polishing. Grindability (ease of grinding) of cast cpTi and cast Ti-6Al-4V was evaluated by grinding cast specimens incrementally using a SiC abrasive wheel. The present study revealed that the presence of the brittle alpha-case with lower fracture toughness is beneficial in grinding titanium. The alpha-case on the ductile cpTi can be ground much easier than its bulk interior structure. In less ductile Ti-6Al-4V, the grinding rate is much higher than that of cpTi, and the alpha-case and its interior structure are at similar levels since the fracture toughness of its alpha-case and the bulk material is not large enough.
Microstructural evolution in a 17-4 PH stainless steel after aging at 400 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murayama, M.; Hono, K.; Katayama, Y.
1999-02-01
The microstructure of 17-4 PH stainless steel at various stages of heat treatment, i.e., after solution heat treatment, tempering at 580 C, and long-term aging at 400 C, have been studied by atom probe field ion microscopy (APFIM) and transmission electron microscopy (TEM). The solution-treated specimen consists largely of martensite with a small fraction of {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. After tempering for 4 hours as 580 C, coherent Cumore » particles precipitate in the martensite phase. At this stage, the Cr concentration in the martensite phase is still uniform. After 5000 hours aging at 400 C, the martensite spinodaly decomposes into Fe-rich {alpha} and Cr-enriched {alpha}{prime}. In addition, fine particles of the G-phase (structure type D8{sub a}, space group Fm{bar 3}m) enriched in Si, Ni, and Mn have been found in intimate contact with the Cu precipitates. Following spinodal decomposition of the martensite phase, G-phase precipitation occurs after long-term aging.« less
Du, Haijuan; Massiah, Michael A.
2011-01-01
Alpha4 is a regulatory subunit of the protein phosphatase family of enzymes and plays an essential role in regulating the catalytic subunit of PP2A (PP2Ac) within the rapamycin-sensitive signaling pathway. Alpha4 also interacts with MID1, a microtubule-associated ubiquitin E3 ligase that appears to regulate the function of PP2A. The C-terminal region of alpha4 plays a key role in the binding interaction of PP2Ac and MID1. Here we report on the solution structure of a 45-amino acid region derived from the C-terminus of alpha4 (alpha45) that binds tightly to MID1. In aqueous solution, alpha45 has properties of an intrinsically unstructured peptide although chemical shift index and dihedral angle estimation based on chemical shifts of backbone atoms indicate the presence of a transient α-helix. Alpha45 adopts a helix-turn-helix HEAT-like structure in 1% SDS micelles, which may mimic a negatively charged surface for which alpha45 could bind. Alpha45 binds tightly to the Bbox1 domain of MID1 in aqueous solution and adopts a structure consistent with the helix-turn-helix structure observed in 1% SDS. The structure of alpha45 reveals two distinct surfaces, one that can interact with a negatively charged surface, which is present on PP2A, and one that interacts with the Bbox1 domain of MID1. PMID:22194938
Majdak, Piotr; Laback, Bernhard; Baumgartner, Wolf-Dieter
2006-10-01
Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.
Structure-property relationship of cast Ti-Nb alloys.
Lee, C M; Ju, C P; Chern Lin, J H
2002-04-01
The present work is a study of the microstructure, mechanical properties and corrosion behaviour of a series of binary Ti-Nb alloys with Nb contents up to 35 wt%, with emphasis placed on the structure-property relationship of the alloys. The results indicate that crystal structure and morphology of the Ti-Nb alloys are sensitive to the Nb content. The cast c.p. Ti has a hexagonal alpha phase with a lath type morphology. The alloys containing 15 wt% or less Nb are dominated by a hexagonal alpha' phase with an acicular, martensitic structure. When containing 17.5-25 wt% Nb, the alloys are primarily comprised of an orthorhombic alpha" phase. With 27.5 wt% Nb, metastable beta phase starts to be retained. With Nb contents higher than 30 wt%, the equi-axed beta phase is almost entirely retained. Small amounts of omega phase are detected in alloys containing 27.5 and 30 wt% Nb. Among all present alloys, Ti-10Nb and Ti-27.5Nb exhibit the highest strengths, while the alpha"-dominated (17.5 and 20Nb) and beta-dominated (> 30Nb) alloys have the lowest moduli. All Ti-Nb alloys show excellent corrosion resistance in Hank's solution at 37 degrees C. From the present data, the microhardness, bending strength and modulus of the various phases in Ti-Nb alloys are compared and tentatively summarized as follows: Microhardness: omega > alpha' > alpha" > beta > alpha (c.p. Ti) Bending strength: omega > alpha' > alpha" > beta > alpha (c.p. Ti) Bending modulus: omega > alpha (c.p. Ti) > alpha' > alpha" > beta
[The role of temporal fine structure in tone recognition and music perception].
Zhou, Q; Gu, X; Liu, B
2017-11-07
The sound signal can be decomposed into temporal envelope and temporal fine structure information. The temporal envelope information is crucial for speech perception in quiet environment, and the temporal fine structure information plays an important role in speech perception in noise, Mandarin tone recognition and music perception, especially the pitch and melody perception.
Willis Lamb, Jr., the Hydrogen Atom, and the Lamb Shift
1955, Lamb won the Nobel Prize in Physics for his discoveries concerning "the fine structure of , May 7 - September 30, 1979 Fine Structure of the Hydrogen Atom, Part I; Part II; Part III; Part IV ; Part V; Part VI (from Physical Review 1950-1953) Microwave Technique for Determining the Fine Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silvaggi,N.; Zhang, C.; Lu, Z.
2006-01-01
Carbohydrate-deficient glycoprotein syndrome type 1a (CDG-1a) is a congenital disease characterized by severe defects in nervous system development. It is caused by mutations in alpha -phosphomannomutase (of which there are two isozymes, {alpha}-PMM1 and {alpha}-PPM2). Here we report the X-ray crystal structures of human {alpha}-PMM1 in the open conformation, with and without the bound substrate, {alpha}-D-mannose 1-phosphate. {alpha}-PMM1, like most Haloalkanoic Acid Dehalogenase Superfamily (HADSF) members, consists of two domains, the cap and core, which open to bind substrate and then close to provide a solvent exclusive environment for catalysis. The substrate phosphate group is observed at a positively chargedmore » site of the cap domain, rather than at the core domain phosphoryl-transfer site defined by the D19 nucleophile and Mg{sup 2+} cofactor. This suggests that substrate binds first to the cap and then is swept into the active site upon cap closure. The orientation of the acid/base residue D21 suggests that {alpha}-PMM uses a different method of protecting the aspartylphosphate from hydrolysis than the HADSF member {beta}-phosphoglucomutase. It is hypothesized that the electrostatic repulsion of positive charges at the interface of the cap and core domains stabilizes {alpha}-PMM1 in the open conformation, and that the negatively charged substrate binds to the cap, thereby facilitating its closure over the core domain. The two isozymes {alpha}-PMM1 and {alpha}-PMM2 are shown to have a conserved active-site structure and to display similar kinetic properties. Analysis of the known mutation sites in the context of the structures reveals the genotype-phenotype relationship underlying CDG-1a.« less
Sequence diagrams and the presentation of structural and evolutionary relationships among proteins.
Thomas, B R
1975-01-01
Protein sequences mapped on two-dimensional diagrams show characteristic patterns that should be of value in visualising sequence information and in distinguishing simpler structures. A convenient map form for comparative purposes is the alpha-helix diagram with aminoacid distribution analogous to the surface of an alpha-helix oriented so that an alpha-helix structure corresponds on the diagram to a vertical band 3.6 residues wide. The sequence diagram for an alpha-keratin, high-sulphur protein suggests a new form of polypeptide helix based on a repeating unit of five which may be an important component of alpha-keratin fibres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yong; Kovach, Amanda; Suino-Powell, Kelly
2008-07-23
The functional interaction between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and its coactivator PGC-1{alpha} is crucial for the normal physiology of PPAR{gamma} and its pharmacological response to antidiabetic treatment with rosiglitazone. Here we report the crystal structure of the PPAR{gamma} ligand-binding domain bound to rosiglitazone and to a large PGC-1{alpha} fragment that contains two LXXLL-related motifs. The structure reveals critical contacts mediated through the first LXXLL motif of PGC-1{alpha} and the PPAR{gamma} coactivator binding site. Through a combination of biochemical and structural studies, we demonstrate that the first LXXLL motif is the most potent among all nuclear receptor coactivator motifsmore » tested, and only this motif of the two LXXLL-related motifs in PGC-1{alpha} is capable of binding to PPAR{gamma}. Our studies reveal that the strong interaction of PGC-1{alpha} and PPAR{gamma} is mediated through both hydrophobic and specific polar interactions. Mutations within the context of the full-length PGC-1{alpha} indicate that the first PGC-1{alpha} motif is necessary and sufficient for PGC-1{alpha} to coactivate PPAR{gamma} in the presence or absence of rosiglitazone. These results provide a molecular basis for specific recruitment and functional interplay between PPAR{gamma} and PGC-1{alpha} in glucose homeostasis and adipocyte differentiation.« less
Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study.
Guiné, V; Spadini, L; Sarret, G; Muris, M; Delolme, C; Gaudet, J P; Martins, J M F
2006-03-15
The acid-base and Zn sorption properties of three bacteria, Cupriavidus metallidurans CH34, Pseudomonas putida ATCC12633, and Escherichia coli K12DH5alpha, were investigated through an original combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and equilibrium titration studies. Acid-base titration curves of the three strains were fitted with a model accounting for three conceptual reactive sites: an acidic (carboxyl and/or phosphodiester), a neutral (phosphomonoester), and a basic (amine and/or hydroxyl) group. Calculated proton and Zn equilibrium constants and site densities compare with literature data. The nature of Zn binding sites was studied by EXAFS spectroscopy. Phosphoester, carboxyl, and unexpectedly sulfhydryl ligands were identified. Their proportions depended on Zn loading and bacterial strain and were consistent with the titration results. These findings were compared to the structure and site density of the major cell wall components. It appeared that the cumulated theoretical site density of these structures (<2 Zn nm(-2)) was much lower than the total site density of the investigated strains (16-56 Zn nm(-2)). These results suggest a dominant role of extracellular polymeric substances in Zn retention processes, although Zn binding to inner cell components cannot be excluded.
Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.
Abbass, Jad; Nebel, Jean-Christophe
2017-01-01
Protein structure prediction is considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh experiment that free modelling target predictions are still beyond reliable accuracy, therefore, much effort should be made to improve ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments. Generally, the structure with the lowest energy score, also known as first model, is chosen to be the "predicted one". A thorough study has been conducted on the role and diversity of 3-mers involved in Rosetta's model "refinement" phase. Usage of the standard number of 3-mers - i.e. 200 - has been shown to degrade alpha and alpha-beta protein conformations initially achieved by assembling 9-mers. Therefore, a new prediction pipeline is proposed for Rosetta where the "refinement" phase is customised according to a target's structural class prediction. Over 8% improvement in terms of first model structure accuracy is reported for alpha and alpha-beta classes when decreasing the number of 3- mers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Weber, Janine; Bao, Han; Hartlmüller, Christoph; Wang, Zhiqin; Windhager, Almut; Janowski, Robert; Madl, Tobias; Jin, Peng; Niessing, Dierk
2016-01-01
The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.11297.001 PMID:26744780
MacRae, T H
2000-06-01
Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.
Formation of the lamellar structure in Group IA and IIID iron meteorites
NASA Technical Reports Server (NTRS)
Kowalik, J. A.; Williams, D. B.; Goldstein, J. I.
1988-01-01
Analytical EM, light microscopy, and electron microprobe analysis are used to study the lamellar plessite structure of Group IA and IIID iron meteorites. The alpha lamellae in IIID structures contained a compositional gradient from 6.1 + or - 0.7 wt pct Ni at the center of the alpha lamellae to 3.6 + or - 0.5 wt pct at the alpha/gamma interface. For the Group IA irons, compositions of 4 wt pct Ni in alpha and about 48 wt pct Ni in gamma are found. Convergent beam electron diffraction was used to characterize the orientation relations at the alpha/gamma interface in the lamellar regions of both Group IA and IIID. The phase transformations responsible for the observed lamellar structure in the IA and IIID chemical groups were also investigated.
Unveiling the True Metallicity and Stellar Populations of Planetary Nebula Progenitor Stars
NASA Astrophysics Data System (ADS)
Dinerstein, Harriet L.; Geballe, T. R.; Sterling, N. C.
2011-01-01
We have measured the recently identified 3.625 micron [Zn IV] fine-structure line (Dinerstein & Geballe 2001, ApJ, 562, 515) in a dozen Galactic planetary nebulae (Dinerstein et al. 2007, BAAS, 211, 100.14). Because Zn is the least refractory of the Fe peak elements, the gas phase [Zn/H] abundance can be used as a proxy for the elemental [Fe/H] in the progenitor star, in contrast to Fe itself, which is heavily depleted into dust. We find that the observed Milky Way nebulae fall into two categories: objects which have roughly solar values of [Zn/H] and [O/Zn]; and nebulae with low Zn (clustering around [Zn/H] = -0.6) and elevated [O/H]. Most of the latter group have high radial velocities, |vrad| > 60 km/s. Our interpretation is that the objects with solar abundances and low velocities originate from thin disk stars, while the nebulae with low Zn are descendants of thick disk stars. A further implication is that the common assumption that O and other alpha species are reliable indicators of metallicity in planetary nebulae is not necessarily valid, and can lead to erroneous conclusions about the parent stellar population. This effect is particularly acute for O since [O/Fe] can be large, especially in metal-poor populations. In a planetary nebula formed by a star with this abundance pattern, a high value of [(O, alpha)/Fe] can offset a low [Fe/H], producing near-solar abundances for O and other alpha species. This can make it appear that the star belongs to a more metal-rich (in [Fe/H]) population than is actually the case. Obtaining Zn abundances for larger samples of planetary nebulae will be crucial to disentangling these abundance ratios and breaking the potential degeneracy of the O and alpha abundances. (This research was supported by NSF grant 0708245.)
Janecek, S; Baláz, S
1995-08-01
Twelve different (alpha/beta)8-barrel enzymes belonging to three structurally distinct families were found to contain, near the C-terminus of their strand beta 5, a conserved invariant glutamic acid residue that plays an important functional role in each of these enzymes. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif owing to their mutual evolutionary relatedness. For this purpose, the sequence region around the well conserved fifth beta-strand of alpha-amylase containing catalytic glutamate (Glu230, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The isolated sequence stretches of the 12 (alpha/beta)8-barrels are discussed from both the sequence-structural and the evolutionary point of view, the invariant glutamate residue being proposed to be a joining feature of the studied group of enzymes remaining from their ancestral (alpha/beta)8-barrel.
1988-01-29
Electronic Origin of Pentacene in p-Terphenyl by T. P. Carter, M. Manavi, and W. E. Moerner Prepared for Publication inDTIC Journal of Chemical Physics...Classification) Statistical Fine Structure in the Inhomogeneously Broadened Electronic Origin of Pentacene in p-Terphenyl 12. PERSONAL AUTHOR(S) T. P...of pentacene in p-terphenyl using laser FM spectroscopy. Statistical fine structure is time-independent structure on the inhomogeneous line caused by
Statistical Fine Structure of Inhomogeneously Broadened Absorption Lines.
1987-07-31
inhomogeneously broadened optical absorption of pentacene n p-terphenyl at liquid helium temperatures... SFS is the actual frequency- ependent, time...statistical fine structure (SFS) in the inhomogeneously broadened optical absorption of pentacene in p-terphenyl at liquid helium temperatures. SFS is the...quite difficult . -2- We have observed for the first time statistical fine structure in the inhomogeneously broadened optical absorption of pentacene
Two-cluster structure of some alpha-scattering resonances in the sd shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Grotowski, K.; Strzalkowski, A.
1975-01-01
The excitation functions of the elastic scattering of alpha particles at backward angles on $sup 24$Mg and $sup 28$Si nuclei in the energy range from 23 to 28 MeV measured by Bobrowska et al. exhibit distinct maxima. It was shown that these maxima are not correlated with the structures seen in the excitation functions of the ($alpha$,$alpha$') and ($alpha$,p) reactions leading to low- lying excited states of the final nucleus possibly indicating the presence of Ericson fluctuations. (auth)
Li, Nicole Y. K.; Dailey, Seth; Thibeault, Susan L.
2014-01-01
Objectives/Hypothesis The use of molecular testing is becoming more significant for the diagnosis and classification of disease. The application of fine-needle aspiration (FNA) biopsy as the means of sampling lesions in union with molecular testing could be a powerful combination in laryngology. The objectives of this study were to investigate 1) if FNA was feasible to sample benign vocal fold lesions; 2) if FNA samples provided sufficient RNA quality for molecular analysis; and 3) if gene expression of FNA samples matched paired surgical excised specimens. Study Design Prospective cross-sectional. Methods Fifteen vocal fold specimens were obtained from adult patients undergoing routine surgical removal for benign vocal fold lesions using FNA and surgical excision. Comparisons were made between FNA and excision biopsies for RNA quality. Correlative analysis was completed for RNA expression of nine genes, including decorin (DCN), connective tissue growth factor (CTGF), vascular endothelial growth factor (VEGF), collagen type VI alpha 3 (COL6A3), superoxide dismutase 1 (SOD1), glutathione S-transferase (GST2), collagen type I alpha 2 (COL1A2), ATP binding cassette (ABC), and procollagen I alpha 1 (COL1A1). Results FNA and excision samples demonstrated similar RNA quality (P > 0.05). Per gene expression, four out of nine genes were moderately correlated between the paired samples (P < 0.05). Conclusions FNA of the vocal fold lamina propria is technically feasible to perform. Further improvement in the FNA technology is desirable to optimize RNA quality for reliable gene expression analysis. PMID:23404571
Modeling Forest Structure and Vascular Plant Diversity in Piedmont Forests
NASA Astrophysics Data System (ADS)
Hakkenberg, C.
2014-12-01
When the interacting stressors of climate change and land cover/land use change (LCLUC) overwhelm ecosystem resilience to environmental and climatic variability, forest ecosystems are at increased risk of regime shifts and hyperdynamism in process rates. To meet the growing range of novel biotic and environmental stressors on human-impacted ecosystems, the maintenance of taxonomic diversity and functional redundancy in metacommunities has been proposed as a risk spreading measure ensuring that species critical to landscape ecosystem functioning are available for recruitment as local systems respond to novel conditions. This research is the first in a multi-part study to establish a dynamic, predictive model of the spatio-temporal dynamics of vascular plant diversity in North Carolina Piedmont mixed forests using remotely sensed data inputs. While remote sensing technologies are optimally suited to monitor LCLUC over large areas, direct approaches to the remote measurement of plant diversity remain a challenge. This study tests the efficacy of predicting indices of vascular plant diversity using remotely derived measures of forest structural heterogeneity from aerial LiDAR and high spatial resolution broadband optical imagery in addition to derived topo-environmental variables. Diversity distribution modelling of this sort is predicated upon the idea that environmental filtering of dispersing species help define fine-scale (permeable) environmental envelopes within which biotic structural and compositional factors drive competitive interactions that, in addition to background stochasticity, determine fine-scale alpha diversity. Results reveal that over a range of Piedmont forest communities, increasing structural complexity is positively correlated with measures of plant diversity, though the nature of this relationship varies by environmental conditions and community type. The diversity distribution model is parameterized and cross-validated using three high quality vegetation survey datasets, including Duke Forest Korstian permanent plots, Forest Inventory Analysis (FIA), and the scale transgressive, nested module Carolina Vegetation Survey (CVS).
Bae, Gi-Yeul; Luck, Steven J
2018-01-10
In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.
Ejnik, John W; Muñoz, Amalia; DeRose, Eugene; Shaw, C Frank; Petering, David H
2003-07-22
The NMR determination of the structure of Cd(7)-metallothionein was done previously using a relatively large protein concentration that favors dimer formation. The reactivity of the protein is also affected under this condition. To examine the influence of protein concentration on metallothionein conformation, the isolated Cd(4)-alpha-domain was prepared from rabbit metallothionein-2 (MT 2), and its three-dimensional structure was determined by heteronuclear, (1)H-(111)Cd, and homonuclear, (1)H-(1)H NMR, correlation experiments. The three-dimensional structure was refined using distance and angle constraints derived from these two-dimensional NMR data sets and a distance geometry/simulated annealing protocol. The backbone superposition of the alpha-domain from rabbit holoprotein Cd(7)-MT 2 and the isolated rabbit Cd(4)-alpha was measured at a RMSD of 2.0 A. Nevertheless, the conformations of the two Cd-thiolate clusters were distinctly different at two of the cadmium centers. In addition, solvent access to the sulfhydryl ligands of the isolated Cd(4)-alpha cluster was 130% larger due to this small change in cluster geometry. To probe whether these differences were an artifact of the structure calculation, the Cd(4)-alpha-domain structure in rabbit Cd(7)-MT 2 was redetermined, using the previously defined set of NOEs and the present calculation protocol. All calculations employed the same ionic radius for Cd(2+) and same cadmium-thiolate bond distance. The newly calculated structure matched the original with an RMSD of 1.24 A. It is hypothesized that differences in the two alpha-domain structures result from a perturbation of the holoprotein structure because of head-to-tail dimerization under the conditions of the NMR experiments.
Resistance of alpha-crystallin quaternary structure to UV irradiation.
Krivandin, A V; Muranov, K O; Yakovlev, F Yu; Poliansky, N B; Wasserman, L A; Ostrovsky, M A
2009-06-01
The damaging effect of UV radiation (lambda > 260 nm) on bovine alpha-crystallin in solution was studied by small-angle X-ray scattering, gel permeation chromatography, electrophoresis, absorption and fluorescence spectroscopy, and differential scanning calorimetry. The results obtained show that damage to even a large number of subunits within an alpha-crystallin oligomer does not cause significant rearrangement of its quaternary structure, aggregation of oligomers, or the loss of their solubility. Due to the high resistance of its quaternary structure, alpha-crystallin is able to prevent aggregation of destabilized proteins (especially of gamma- and beta-crystallins) and so to maintain lens transparency throughout the life of an animal (the chaperone-like function of alpha-crystallin).
Kelley, Patrick B; Abraham, Edathara C
2003-10-01
alphaB-crystallin, a member of the small heat-shock protein (hsp) family of proteins, is able to function as a molecular chaperone by protecting other proteins from stress-induced aggregation by recognizing and binding to partially unfolded species of damaged proteins. The present work has investigated the role of phenylalanine-28 (F28) of the 22RLFDQFF28 region of alphaB-crystallin in maintaining chaperone function and oligomeric structure under physiological condition and under thermal stress. Bovine alphaB-crystallin was cloned for the first time and the cDNA sequence revealed greater than 90% homology to that of human, rat and mouse alphaB-crystallins. F28 was mutated to a serine followed by expression of the mutant F28S and the wild-type alphaB (alphaB-wt) in E. coli and subsequent purification of the protein by size-exclusion chromatography. Secondary and tertiary structure analyses showed some structural changes in the mutant. Chaperone activity and oligomeric size of the mutant was unchanged at 37 degrees C whereas at 58 degrees C the chaperone activity was significantly decreased and the oligomeric size ranged from low molecular weight to high molecular weight showing disintegration of the oligomeric structure. The data support the idea that the participation of large oligomeric structure rather than smaller units is required to have optimal chaperone activity and the hydrophobic F28 residue is needed for maintaining the native oligomeric structure under thermal stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Bum Soo; Allali-Hassani, Abdellah; Tempel, Wolfram
2010-07-06
Human choline kinase (ChoK) catalyzes the first reaction in phosphatidylcholine biosynthesis and exists as ChoK{alpha} ({alpha}1 and {alpha}2) and ChoK{beta} isoforms. Recent studies suggest that ChoK is implicated in tumorigenesis and emerging as an attractive target for anticancer chemotherapy. To extend our understanding of the molecular mechanism of ChoK inhibition, we have determined the high resolution x-ray structures of the ChoK{alpha}1 and ChoK{beta} isoforms in complex with hemicholinium-3 (HC-3), a known inhibitor of ChoK. In both structures, HC-3 bound at the conserved hydrophobic groove on the C-terminal lobe. One of the HC-3 oxazinium rings complexed with ChoK{alpha}1 occupied the choline-bindingmore » pocket, providing a structural explanation for its inhibitory action. Interestingly, the HC-3 molecule co-crystallized with ChoK{beta} was phosphorylated in the choline binding site. This phosphorylation, albeit occurring at a very slow rate, was confirmed experimentally by mass spectroscopy and radioactive assays. Detailed kinetic studies revealed that HC-3 is a much more potent inhibitor for ChoK{alpha} isoforms ({alpha}1 and {alpha}2) compared with ChoK{beta}. Mutational studies based on the structures of both inhibitor-bound ChoK complexes demonstrated that Leu-401 of ChoK{alpha}2 (equivalent to Leu-419 of ChoK{alpha}1), or the corresponding residue Phe-352 of ChoK{beta}, which is one of the hydrophobic residues neighboring the active site, influences the plasticity of the HC-3-binding groove, thereby playing a key role in HC-3 sensitivity and phosphorylation.« less
NASA Astrophysics Data System (ADS)
Balance, Connor
Some of the strongest emission lines observed from a variety of astronomical sources originate from transitions between fine-structure levels in the ground term of neutral atoms and lowly-charged ions. These fine-structure levels are populated due to collisions with -, H+, H, He, and/or H2 depending on the temperature and ionization fraction of e the environment. As fine-structure excitation measurements are rare, modeling applications depend on theoretically determined rate coefficients. However, for many ions electron collision studies have not been performed for a decade or more, while over that time period the theoretical/computational methodology has significantly advanced. For heavy-particle collisions, very few systems have been studied. As a result, most models rely on estimates or on low-quality collisional data for fine-structure excitation. To significantly advance the state of fine-structure data for astrophysical models, we propose a collaborative effort in electron collisions, heavy-particle collisions, and quantum chemistry. Using the R-matrix method, fine-structure excitation due to electron collisions will be investigated for C, O, Ne^+, Ne^2+, Ar^+, Ar^2+, Fe, Fe^+, and Fe^2+. Fine-structure excitation due to heavy-particle collisions will be studied with a fully quantum molecular-orbital approach using potential energy surfaces computed with a multireference configuration-interaction method. The systems to be studied include: C/H^+, C/H2, O/H^+, O/H2, Ne^+/H, Ne^+/H2, Ne^2+/H, Ne^2+/H2, Fe/H^+, Fe^+/H, and Fe^2+/H. 2D rigid-rotor surfaces will be constructed for H2 collisions, internuclear distance dependent spin-orbit coupling will be computed in some cases, and all rate coefficients will be obtained for the temperature range 10-2000 K. The availability the proposed fine-structure excitation data will lead to deeper examination and understanding of the properties of many astrophysical environments, including young stellar objects, protoplanetary disks, planetary nebulae, photodissociation regions, active galactic nuclei, and x-ray dominated regions, hence elevating the scientific return from current (SOFIA, Spitzer, Herschel, HST) and upcoming (JWST) NASA IR/Submm astrophysics missions, as well as from ground-based telescopes.
Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.
Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B
2006-07-01
alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.
The glycoinositol-phospholipids of Phytomonas.
Redman, C A; Schneider, P; Mehlert, A; Ferguson, M A
1995-10-15
The Phytomonas spp. are trypanosomatid parasites of plants. A polar glycolipid fraction of a Phytomonas sp., isolated from the plant Euphorbia characias and grown in culture, was fractionated into four major glycolipid species (Phy 1-4). The glycolipids were analysed by chemical and enzymic modifications, composition and methylation analyses, electrospray mass spectrometry and microsequencing after HNO2 deamination and NaB3H4 reduction. The water-soluble headgroup of the Phy2 glycolipid was also analysed by 1H NMR. All four glycolipids were shown to be glycoinositol-phospholipids (GIPLs) with phosphatidylinositol (PI) moieties containing the fully saturated alkylacylglycerol lipids 1-O-hexadecyl-2-O-palmitoylglycerol and 1-O-hexadecyl-2-O-stearoylglycerol. The structures of the Phy 1-4 GIPLs are: Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, Glc alpha 1-2(NH2-CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, [formula: see text] Glc alpha 1-2(NH2CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2-CH2CH2-HPO4-)GlcN alpha 1-6PI [formula: see text] and Glc alpha 1-2Glc alpha 1-2(NH2CH2-CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2CH2CH2-HPO4-)-GlcN alpha 1-6PI. [formula: see text] The Phytomonas GIPLs represent a novel series of structures. This is the first description of the chemical structure of cell-surface molecules of this plant pathogen. The Phytomonas GIPLs are compared with those of other trypanosomatid parasites and are discussed with respect to trypanosomatid phylogenetic relationships.
The glycoinositol-phospholipids of Phytomonas.
Redman, C A; Schneider, P; Mehlert, A; Ferguson, M A
1995-01-01
The Phytomonas spp. are trypanosomatid parasites of plants. A polar glycolipid fraction of a Phytomonas sp., isolated from the plant Euphorbia characias and grown in culture, was fractionated into four major glycolipid species (Phy 1-4). The glycolipids were analysed by chemical and enzymic modifications, composition and methylation analyses, electrospray mass spectrometry and microsequencing after HNO2 deamination and NaB3H4 reduction. The water-soluble headgroup of the Phy2 glycolipid was also analysed by 1H NMR. All four glycolipids were shown to be glycoinositol-phospholipids (GIPLs) with phosphatidylinositol (PI) moieties containing the fully saturated alkylacylglycerol lipids 1-O-hexadecyl-2-O-palmitoylglycerol and 1-O-hexadecyl-2-O-stearoylglycerol. The structures of the Phy 1-4 GIPLs are: Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, Glc alpha 1-2(NH2-CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, [formula: see text] Glc alpha 1-2(NH2CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2-CH2CH2-HPO4-)GlcN alpha 1-6PI [formula: see text] and Glc alpha 1-2Glc alpha 1-2(NH2CH2-CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2CH2CH2-HPO4-)-GlcN alpha 1-6PI. [formula: see text] The Phytomonas GIPLs represent a novel series of structures. This is the first description of the chemical structure of cell-surface molecules of this plant pathogen. The Phytomonas GIPLs are compared with those of other trypanosomatid parasites and are discussed with respect to trypanosomatid phylogenetic relationships. Images Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 PMID:7487886
Determination of the fine structure constant using helium fine structure.
Smiciklas, Marc; Shiner, David
2010-09-17
We measure 31,908,131.25(30) kHz for the 2(3)}P J=0 to 2 fine structure interval in helium. The difference between this and theory to order mα7 (20 Hz numerical uncertainty) implies 0.22(30) kHz for uncalculated terms. The measurement is performed by using atomic beam and electro-optic laser techniques. Various checks include a 3He 2{3}S hyperfine measurement. We can obtain an independent value for the fine structure constant α with a 5 ppb experimental uncertainty. However, dominant mα8 terms (potentially 1.2 kHz) limit the overall uncertainty to a less competitive 20 ppb in α.
g-Factor of heavy ions: a new access to the fine structure constant.
Shabaev, V M; Glazov, D A; Oreshkina, N S; Volotka, A V; Plunien, G; Kluge, H-J; Quint, W
2006-06-30
A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the fine structure constant to an accuracy which is better than that of the currently accepted value. Further improvements of the experimental and theoretical accuracy could provide a value of the fine structure constant which is several times more precise than the currently accepted one.
XAFS SPECTROSCOPY ANALYSIS OF SELECTED HAP ELEMENTS IN FINE PM DERIVED FROM COAL COMBUSTION
X-ray absorption fine structure (XAFS) spectroscopy has been used to investigate the valence states and molecular structures of sulfur (S), chromium (Cr), arsenic (As), and zinc (Zn) in fine particulate matter (PM) separated from coal flyash produced in a realistic combustion sys...
Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.
Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparablemore » to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.« less
Painter, R G; Ginsberg, M H
1984-11-01
We have examined the F-actin and myosin distribution in resting and thrombin-activated platelets by double label immunofluorescence microscopy. In resting, discoid platelets, F-actin and myosin staining was distributed in a diffuse pattern throughout the interior of the cell with slight accentuation at the cell periphery. In contrast, platelet factor 4 antigen (PF4) was more centrally localized in a fine punctate distribution which is consistent with its localization in alpha-granules. Within 5 sec after thrombin stimulation both F-actin and myosin staining were increased at the periphery of the now spherical platelets. Subsequently, a myosin-containing spherical structure decreased in diameter closely surrounding a phase-dense central zone. In contrast, F-actin staining continued to be accentuated at the cell periphery and was prominent in filopodia and blebs. As previously shown, PF4 staining was localized after 30 sec within large intracellular masses that corresponded to closed vacuolar structures at the ultrastructural level. Morphometric analysis of electron micrographs showed that formation of these vacuolar structures kinetically paralleled alpha-granule disappearance and preceded PF4 release. These PF4-containing structures translocated to the cell periphery after 1-3 min, where they appeared to fuse with the plasma membrane. Ultrastructural analysis of thin sections showed that the myosin-rich spherical structure spatially and temporally correlated with a band of microfilaments that closely surrounded the organelle-rich central zone of the cell. Morphometric analysis of these micrographs showed that the absolute volume of this central zone decreased with time after thrombin addition, showing a significant change after 15 sec and reaching a maximum value after 3-5 min. Changes in the volume of this compartment kinetically preceded PF4 release. On the basis of these data, we propose that an actomyosin contractile force is generated which centripetally redistributes the myosinrich structure and organelle zone. Conceivably this inward force may not only accelerate granule-granule fusion to form intracellular secretory vacuoles, but may also provide aid in their extrusion toward the platelet plasma membrane.
Unified studies of the structure changes and the nuclear reactions in {sup 10}Be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Makoto
2006-08-14
The {alpha}+6He low-energy reactions and the structural changes of 10Be in the microscopic {alpha}+{alpha}+N+N model are studied by the generalized two-center cluster model with the Kohn-Hulthen-Kato variation method. It is found that, in the inelastic scattering to the {alpha}+{sup 6}He(2{sub 1}{sup +}) channel, characteristic enhancements are expected as the results of the parity-dependent non-adiabatic dynamics. The reaction mechanism in breakup of 10Be into the {alpha}+6He continuum is also discussed.
Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.
Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D
2008-05-01
The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.
Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H
2016-01-01
An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suhara, Tadahiro; Kanada-En'yo, Yoshiko
We investigate the linear-chain structures in highly excited states of {sup 14}C using a generalized molecular-orbital model, by which we incorporate an asymmetric configuration of three {alpha} clusters in the linear-chain states. By applying this model to the {sup 14}C system, we study the {sup 10}Be+{alpha} correlation in the linear-chain state of {sup 14}C. To clarify the origin of the {sup 10}Be+{alpha} correlation in the {sup 14}C linear-chain state, we analyze linear 3 {alpha} and 3{alpha} + n systems in a similar way. We find that a linear 3{alpha} system prefers the asymmetric 2{alpha} + {alpha} configuration, whose origin ismore » the many-body correlation incorporated by the parity projection. This configuration causes an asymmetric mean field for two valence neutrons, which induces the concentration of valence neutron wave functions around the correlating 2{alpha}. A linear-chain structure of {sup 16}C is also discussed.« less
Alpha-glucosidase folding during urea denaturation: enzyme kinetics and computational prediction.
Wu, Xue-Qiang; Wang, Jun; Lü, Zhi-Rong; Tang, Hong-Min; Park, Daeui; Oh, Sang-Ho; Bhak, Jong; Shi, Long; Park, Yong-Doo; Zou, Fei
2010-03-01
In this study, we investigated structural changes in alpha-glucosidase during urea denaturation. Alpha-glucosidase was inactivated by urea in a dose-dependent manner. The inactivation was a first-order reaction with a monophase process. Urea inhibited alpha-glucosidase in a mixed-type reaction. We found that an increase in the hydrophobic surface of this enzyme induced by urea resulted in aggregation caused by unstable folding intermediates. We also simulated the docking between alpha-glucosidase and urea. The docking simulation suggested that several residues, namely THR9, TRP14, LYS15, THR287, ALA289, ASP338, SER339, and TRP340, interact with urea. Our study provides insights into the alpha-glucosidase unfolding pathway and 3D structure of alpha-glucosidase.
Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation
NASA Astrophysics Data System (ADS)
Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.
2018-01-01
Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.
Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ting; Guo, Xiaode, E-mail: guoxiaodenj@sina.com; Zhang, Xiang
Highlights: • The nano α-Al{sub 2}O{sub 3} with good dispersion was prepared by two-step hydrolysis. • α-Al{sub 2}O{sub 3} powders were added as seed particles in the hydrolysis. • This article indicated that the glucose could impel the γ-Al{sub 2}O{sub 3} transformed to α-Al{sub 2}O{sub 3} directly. • This article indicated that the addictive of α-Al{sub 2}O{sub 3} seed could improve the phase transformation rate of γ-Al{sub 2}O{sub 3} to α-Al{sub 2}O{sub 3}. • In this article, the pure α-Al{sub 2}O{sub 3} could be obtained by calcining at 1000 °C for 1.5 h. - Abstract: The ultral fine alpha-alumina powdermore » has been successfully synthesized via two-step hydrolysis of aluminum isopropoxide. Glucose and polyvinyl pyrrolidone were used as surfactants during the appropriate processing step. The alpha-alumina powder was used as seed particles. Several synthesis parameters, such as the amount of seeds, surfactants, and calcination temperature, were studied by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), Thermogravimetry-differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results showed that glucose greatly lower the phase transformation temperature of alpha-alumina by impelling the gamma-alumina transformed to alpha-alumina directly, and the seed could improve the phase transformation rate of alpha-alumina, the polyvinylpyrrolidone have an effect on preventing excessive grain growth and agglomeration of alpha-alumina powder. Comparatively well dispersed alpha-alumina powder with particle size less than 50 nm can be synthesized through this method after calcinations at 1000 °C for 2 h.« less
Nanoclusters of α-Fe naturally formed in twinned martensite after martensitic transformation
NASA Astrophysics Data System (ADS)
Liu, X.; Ping, D. H.; Xiang, H. P.; Lu, X.; Shen, J.
2018-05-01
Various Fe-C binary alloys with the carbon content from 0.05 to 2.0 (wt. %) have been prepared and water-quenched at austenitizing temperatures. The fine structure of the twinned martensite in the quenched samples has been investigated by means of transmission electron microscopy (TEM) in order to understand the initial products during the formation of the martensite structure. In the twinned structure (body-centered-cubic {112}⟨111⟩-type twin), TEM dark field observations have revealed that both matrix and twinned crystal regions are fully composed of ultra-fine particles (α-Fe nano-crystallites). The particles tend to have the same preferred direction (or texture) in the twinned martensite and the size is almost the same (1-2 nm). The ultra-fine particle structure has been commonly observed regardless of the carbon content; however, such a fine particle structure has been observed only in the martensite with the twinning structure. After in-situ TEM heating, recrystallization occurred and the fine particles merged into larger α-Fe grains; at the same time, the twinned relationship also disappeared.
Primary structure of the hemoglobin alpha-chain of rose-ringed parakeet (Psittacula krameri).
Islam, A; Beg, O U; Persson, B; Zaidi, Z H; Jörnvall, H
1988-10-01
The structure of the hemoglobin alpha-chain of Rose-ringed Parakeet was determined by sequence degradations of the intact subunit, the CNBr fragments, and peptides obtained by digestion with staphylococcal Glu-specific protease and trypsin. Using this analysis, the complete alpha-chain structure of 21 avian species is known, permitting comparisons of the protein structure and of avian relationships. The structure exhibits differences from previously established avian alpha-chains at a total of 61 positions, five of which have residues unique to those of the parakeet (Ser-12, Gly-65, Ser-67, Ala-121, and Leu-134). The analysis defines hemoglobin variation within an additional avian order (Psittaciformes), demonstrates distant patterns for evaluation of relationships within other avian orders, and lends support to taxonomic conclusions from molecular data.
Singh, Madan Kumar; Jayaraman, Narayanaswamy; Rao, D S Shankar; Prasad, S Krishna
2008-10-01
A homologous series of alkyl 2-deoxy-alpha-d-arabino-hexopyranosides and alkyl 2-deoxy-beta-d-arabino-hexopyranosides were synthesized, upon glycosylation of 1-alkanols (from C8 to C18 alkanols) with ethyl 2-deoxy-3,4,6-tri-O-acetyl-1-thio-d-arabino-hexopyranoside, followed by a deprotection. The thermotropic behavior of these new types of alkyl glycosides was investigated. It was observed that the beta-anomers of these alkyl glycosides, bearing nonyl to tetradecyl alkyl chain are mesomorphic, exhibiting monotropic smectic A phase. In contrast, the alpha-anomers are all non-mesomorphic. An effort to identify the liquid crystalline behavior of binary mixtures of the alpha- and beta-anomers was undertaken and it was found that mixtures containing equimolar amounts of the anomers exhibited mesomorphic behavior. A fine balance of the hydrophilic and hydrophobic components within the molecule is also found to be important for the alkyl 2-deoxy glycosides to form the mesophase.
Tenenholz, T C; Rogowski, R S; Collins, J H; Blaustein, M P; Weber, D J
1997-03-11
PiTX-K alpha, a 35-residue peptide recently isolated from the venom of Pandinus imperator, blocks the rapidly inactivating (A-type) K+ channel(s) in rat brain synaptosomes and the cloned Kv 1.2 potassium channel at very low toxin concentrations (6 nM and 32 pM, respectively) [Rogowski, R. S., Collins, J. H., O'Neil, T. J., Gustafson, T. A., Werkman, T. A., Rogawski, M. A., Tenenholz, T. C., Weber, D. J., & Blaustein, M. P. (1996) Mol. Pharmacol. 50, 1167-1177]. The three-dimensional structure of PiTX-K alpha was determined using NMR spectroscopy in order to understand its selectivity and affinity toward K+ channels. PiTX-K alpha was found to have an alpha-helix from residues 10 to 21 and two beta-strands (betaI, 26-28; betaII, 33-35) connected by a type II beta-turn to form a small antiparallel beta-sheet. Three disulfide bonds, which are conserved in all members of the charybdotoxin family (alpha-K toxins), anchor one face of the alpha-helix to the beta-sheet. The N-terminal portion of PiTX-K alpha has three fewer residues than other alpha-K toxins such as charybdotoxin. Rather than forming a third beta-strand as found for other alpha-K toxins, the N-terminal region of PiTX-K alpha adopts an extended conformation. This structural difference in PiTX-K alpha together with differences in sequence at Pro-10, Tyr-14, and Asn-25 (versus Ser-10, Trp-14, and Arg-25 in CTX) may explain why PiTX-K alpha does not block maxi-K+ channels. Differences in three-dimensional structure between PiTX-K alpha and charybdotoxin are also observed in both the tight turn and the loop that connects the first beta-strand to the alpha-helix. As a result, side chains of two residues (Tyr-23 and Arg-31) are in regions of PiTX-K alpha that probably interact with rapidly inactivating A-type K+ channels. The analogous residues in charybdotoxin are positioned differently on the toxin surface. Thus, the locations of Tyr-23 and Arg-31 side chains in PiTX-K alpha could explain why this toxin blocks A-type channels at much lower concentrations than does charybdotoxin.
Ab initio electronic structure of the progestogen norethisterone and its 5 alpha-derivatives.
Kubli-Garfias, Carlos; Vázquez, Ricardo; Cooney, Austin J; Larrea, Fernando
2002-11-01
The steroid 17 alpha-ethynyl-19-nor-4-androsten-17 beta-ol, 3-one (Norethisterone; NET) and its 5 alpha-dihydro (5 alpha-NET), 3 alpha- and 3 beta-tetrahydro derivatives (3 alpha,5 alpha- and 3 beta,5 alpha-NET), were comparatively studied by the ab initio quantum mechanics theory. Additionally, 5 alpha-androstan-3 beta,17 beta-diol (ADIOL) was also studied. The Hartree-Fock method and the 6-31G(*) basis set were used to obtain the lowest energy conformation, geometries, electronic structure and physicochemical properties of the steroids. The results showed bond distances and valence angles similar among all steroids, but some differences in dihedral angles in the A-B-ring system were observed. The electronic structure analysis showed that NET has both frontier orbitals that is, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) located at the C4-C5 pi-bond. In A-ring reduced derivatives, the HOMO was found at the 17 beta-OH and ethynyl groups. In the case of 5 alpha-NET, the LUMO was confined to the A-ring and its C3 carbonyl group while the two NET tetrahydro-reduced derivatives showed the LUMO at the 17 beta-OH and ethynyl groups. The energy changes of the rotational barrier of the 17 beta-OH group suggest that its movement is somewhat restricted by the 17 alpha-ethynyl group. Interestingly both groups at C17 form a single electrostatic potential with high electronic density. On the other side, the 19-nor condition increases the A-ring mobility. However, the 3 beta-OH group of 3 beta,5 alpha-NET may rotate without significant energy differences as compared to the same group in ADIOL. The electronic structure of NET and its A-ring reduced derivatives explains in some extent their interaction with androgen and progesterone receptors as well as their selectivity for the estrogen alpha-receptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Lihua; Lin, Shengchen; Rong, Hui
2012-03-15
Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural andmore » functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.« less
Burgess, Selena G; Messiha, Hanan Latif; Katona, Gergely; Rigby, Stephen E J; Leys, David; Scrutton, Nigel S
2008-05-06
We have used multiple solution state techniques and crystallographic analysis to investigate the importance of a putative transient interaction formed between Arg-alpha237 in electron transferring flavoprotein (ETF) and Tyr-442 in trimethylamine dehydrogenase (TMADH) in complex assembly, electron transfer, and structural imprinting of ETF by TMADH. We have isolated four mutant forms of ETF altered in the identity of the residue at position 237 (alphaR237A, alphaR237K, alphaR237C, and alphaR237E) and with each form studied electron transfer from TMADH to ETF, investigated the reduction potentials of the bound ETF cofactor, and analyzed complex formation. We show that mutation of Arg-alpha237 substantially destabilizes the semiquinone couple of the bound FAD and impedes electron transfer from TMADH to ETF. Crystallographic structures of the mutant ETF proteins indicate that mutation does not perturb the overall structure of ETF, but leads to disruption of an electrostatic network at an ETF domain boundary that likely affects the dynamic properties of ETF in the crystal and in solution. We show that Arg-alpha237 is required for TMADH to structurally imprint the as-purified semiquinone form of wild-type ETF and that the ability of TMADH to facilitate this structural reorganization is lost following (i) redox cycling of ETF, or simple conversion to the oxidized form, and (ii) mutagenesis of Arg-alpha237. We discuss this result in light of recent apparent conflict in the literature relating to the structural imprinting of wild-type ETF. Our studies support a mechanism of electron transfer by conformational sampling as advanced from our previous analysis of the crystal structure of the TMADH-2ETF complex [Leys, D. , Basran, J. , Sutcliffe, M. J., and Scrutton, N. S. (2003) Nature Struct. Biol. 10, 219-225] and point to a key role for the Tyr-442 (TMADH) and Arg-alpha237 (ETF) residue pair in transiently stabilizing productive electron transfer configurations. Our work also points to the importance of Arg-alpha237 in controlling the thermodynamics of electron transfer, the dynamics of ETF, and the protection of reducing equivalents following disassembly of the TMADH-2ETF complex.
Enwere, Emeka; Shingo, Tetsuro; Gregg, Christopher; Fujikawa, Hirokazu; Ohta, Shigeki; Weiss, Samuel
2004-09-22
Previous studies demonstrating olfactory interneuron involvement in olfactory discrimination and decreased proliferation in the forebrain subventricular zone with age led us to ask whether olfactory neurogenesis and, consequently, olfactory discrimination were impaired in aged mice. Pulse labeling showed that aged mice (24 months of age) had fewer new interneurons in the olfactory bulb than did young adult (2 months of age) mice. However, the aged mice had more olfactory interneurons in total than their younger counterparts. Aged mice exhibited no differences from young adult mice in their ability to discriminate between two discrete odors but were significantly poorer at performing discriminations between similar odors (fine olfactory discrimination). Leukemia inhibitory factor receptor heterozygote mice, which have less neurogenesis and fewer olfactory interneurons than their wild-type counterparts, performed more poorly at fine olfactory discrimination than the wild types, suggesting that olfactory neurogenesis, rather than the total number of interneurons, was responsible for fine olfactory discrimination. Immunohistochemistry and Western blot analyses revealed a selective reduction in expression levels of epidermal growth factor (EGF) receptor (EGFR) signaling elements in the aged forebrain subventricular zone. Waved-1 mutant mice, which express reduced quantities of transforming growth factor-alpha, the predominant EGFR ligand in adulthood, phenocopy aged mice in olfactory neurogenesis and performance on fine olfactory discrimination tasks. These results suggest that the impairment in fine olfactory discrimination with age may result from a reduction in EGF-dependent olfactory neurogenesis.
Structures of NodZ [alpha]1,6-fucosyltransferase in complex with GDP and GDP-fucose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brzezinski, Krzysztof; Dauter, Zbigniew; Jaskolski, Mariusz
Rhizobial NodZ {alpha}1,6-fucosyltransferase ({alpha}1,6-FucT) catalyzes the transfer of the fucose (Fuc) moiety from guanosine 5'-diphosphate-{beta}-L-fucose to the reducing end of the chitin oligosaccharide core during Nod-factor (NF) biosynthesis. NF is a key signaling molecule required for successful symbiosis with a legume host for atmospheric nitrogen fixation. To date, only two {alpha}1,6-FucT structures have been determined, both without any donor or acceptor molecule that could highlight the structural background of the catalytic mechanism. Here, the first crystal structures of {alpha}1,6-FucT in complex with its substrate GDP-Fuc and with GDP, which is a byproduct of the enzymatic reaction, are presented. The crystalmore » of the complex with GDP-Fuc was obtained through soaking of native NodZ crystals with the ligand and its structure has been determined at 2.35 {angstrom} resolution. The fucose residue is exposed to solvent and is disordered. The enzyme-product complex crystal was obtained by cocrystallization with GDP and an acceptor molecule, penta-N-acetyl-L-glucosamine (penta-NAG). The structure has been determined at 1.98 {angstrom} resolution, showing that only the GDP molecule is present in the complex. In both structures the ligands are located in a cleft formed between the two domains of NodZ and extend towards the C-terminal domain, but their conformations differ significantly. The structures revealed that residues in three regions of the C-terminal domain, which are conserved among {alpha}1,2-, {alpha}1,6- and protein O-fucosyltransferases, are involved in interactions with the sugar-donor molecule. There is also an interaction with the side chain of Tyr45 in the N-terminal domain, which is very unusual for a GT-B-type glycosyltransferase. Only minor conformational changes of the protein backbone are observed upon ligand binding. The only exception is a movement of the loop located between strand {beta}C2 and helix {alpha}C3. In addition, there is a shift of the {alpha}C3 helix itself upon GDP-Fuc binding.« less
Miura, S; Kimura, S
1985-12-05
The mesogloea collagen of a primitive animal, the jellyfish Stomolophus nomurai, belonging to the class Scyphozoa in the Coelenterata, was studied with respect to its chain structure. Most of the mesogloea collagen was solubilized by limited digestion with pepsin and isolated by selective precipitation at 0.9 m NaCl in 0.5 M acetic acid. Upon denaturation, the pepsin-solubilized collagen produced three distinct alpha chains, alpha 1, alpha 2, and alpha 3, in comparable amounts which were separable by CM-cellulose chromatography. The nonidentity of these alpha chains was confirmed by amino acid and carbohydrate analyses and peptide mapping. Furthermore, the introduction of intramolecular cross-links into native molecules by formaldehyde yielded a large proportion of gamma 123 chain with chain structure alpha 1 alpha 2 alpha 3, as judged by chromatographic behavior and peptide maps. We concluded that mesogloea collagen is comprised of alpha 1 alpha 2 alpha 3 heterotrimers and is chemically like vertebrate Type V collagen. On the other hand, sea anemone mesogloea collagen from the class Anthozoa was previously reported to comprise (alpha)3 homotrimers (Katzman, R. L., and Kang, A. H. (1972) J. Biol. Chem. 247, 5486-5489). On the basis of these findings, we assume that alpha 1 alpha 2 alpha 3 heterotrimers arose in evolution with the divergence of Scyphozoa and Anthozoa.
Structural Studies of Human Pyruvate Dehydrogenase
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.
Aoki, Kazuhiro; Uchiyama, Ryosuke; Itonori, Saki; Sugita, Mutsumi; Che, Fang-Sik; Isogai, Akira; Hada, Noriyasu; Hada, Junko; Takeda, Tadahiro; Kumagai, Hidehiko; Yamamoto, Kenji
2004-01-01
Novel ZGLs (zwitterionic glycosphingolipids) have been found in and extracted from the mycelia of filamentous fungi ( Acremonium sp.) isolated from soil. Five ZGLs (ZGL1-ZGL5) were structurally elucidated by sugar compositional analysis, methylation analysis, periodate oxidation, matrix-assisted laser-desorption ionization-time-of-flight MS, (1)H-NMR spectroscopy and fast-atom bombardment MS. Their chemical structures were as follows: GlcN(alpha1-2)Ins1-P-1Cer (ZGL1), Man(alpha1-6)GlcN(alpha1-2)Ins1-P-1Cer (ZGL2), Man(alpha1-6)Man(alpha1-6)GlcN(alpha1-2)Ins1-P-1Cer (ZGL3), PC-->6Man(alpha1-6)GlcN(alpha1-2)Ins1- P -1Cer (ZGL4), and PC-->6Man(alpha1-6)Man(alpha1-6)GlcN(alpha1-2)Ins1-P-1Cer (ZGL5) (where Cer is ceramide and PC is phosphocholine). In addition, one acidic glycosphingolipid, which was the precursor of ZGLs, was also characterized as inositol-phosphoceramide. The core structure of the ZGLs, GlcN(alpha1-2)Ins1- P, is rather different from those found in other fungi, such as Man(alpha1-2)Ins1- P and Man(alpha1-6)Ins1- P. Interestingly, the terminal mannose residue of ZGL4 and ZGL5 was modified further with a PC group. The presence of PC-containing glycosylinositol-phosphoceramides has not been reported previously in any organism. The ceramide constituents of both ZGLs and acidic glycosphingolipid were essentially the same, and consisted of a 4-hydroxyoctadecasphinganine (phytosphingosine) as the sole sphingoid base and 2-hydroxytetracosanoic acid (>90%) as the major fatty acid. ZGLs were found to cause cell death in suspensions of cultured rice cells. The cell death-inducing activity of ZGLs is probably due to the characteristic glycan moiety of Man(alpha1-6)GlcN, and PC-containing ZGLs had high activity. This study is the first to demonstrate that fungal glycosylinositol-phosphoceramides induce cell death in cultured rice cells. PMID:14583095
An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application
Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo
2014-01-01
This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651
An action-based fine-grained access control mechanism for structured documents and its application.
Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo
2014-01-01
This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.
InAs Band-Edge Exciton Fine Structure
2015-07-29
Chapter 1 InAs Band-Edge Exciton Fine Structure 1.1 Contributions This work was carried out in collaboration with Oscar Sandoval, a summer student at...diffusion,1,2 charg- ing,2,3 and excitonic fine structure.1,3–9 While spectral diffusion and charging are most likely photoinduced effects and thus can be...unavoidable. A complete understanding of the excitonic 1 Distribution A: Public Release energy landscape enables us to determine dephasing rates
NASA Technical Reports Server (NTRS)
Brown, John M.; Evenson, Kenneth M.; Zink, Lyndon R.
1994-01-01
The J = 0 left arrow 1 fine-structure transition in atomic sulfur (S I) in its ground (3)P state has been detected in the laboratory by far-infrared laser magnetic resonance. The fine-structure interval has been measured accurately as 5,322,492.9 +/- 2.8 MHz which corresponds to a wavelength of 56.325572 +/- 0.000030 micrometers.
NMR solution structure of the mitochondrial F1beta presequence from Nicotiana plumbaginifolia.
Moberg, Per; Nilsson, Stefan; Ståhl, Annelie; Eriksson, Anna-Carin; Glaser, Elzbieta; Mäler, Lena
2004-03-05
We have isolated, characterized and determined the three-dimensional NMR solution structure of the presequence of ATPsynthase F1beta subunit from Nicotiana plumbaginifolia. A general method for purification of presequences is presented. The method is based on overexpression of a mutant precursor containing a methionine residue introduced at the processing site, followed by CNBr-cleavage and purification of the presequence on a cation-exchange column. The F1beta presequence, 53 amino acid residues long, retained its native properties as evidenced by inhibition of in vitro mitochondrial import and processing at micromolar concentrations. CD spectroscopy revealed that the F1beta presequence formed an alpha-helical structure in membrane mimetic environments such as SDS and DPC micelles (approximately 50% alpha-helix), and in acidic phospholipid bicelles (approximately 60% alpha-helix). The NMR solution structure of the F1beta presequence in SDS micelles was determined on the basis of 518 distance and 21 torsion angle constraints. The structure was found to contain two helices, an N-terminal amphipathic alpha-helix (residues 4-15) and a C-terminal alpha-helix (residues 43-53), separated by a largely unstructured 27 residue long internal domain. The N-terminal amphipathic alpha-helix forms the putative Tom20 receptor binding site, whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site.
Crystal structure of IscA, an iron-sulfur cluster assembly protein from Escherichia coli.
Cupp-Vickery, Jill R; Silberg, Jonathan J; Ta, Dennis T; Vickery, Larry E
2004-04-16
IscA, an 11 kDa member of the hesB family of proteins, binds iron and [2Fe-2S] clusters, and participates in the biosynthesis of iron-sulfur proteins. We report the crystal structure of the apo-protein form of IscA from Escherichia coli to a resolution of 2.3A. The crystals belong to the space group P3(2)21 and have unit cell dimensions a=b=66.104 A, c=150.167 A (alpha=beta=90 degrees, gamma=120 degrees ). The structure was solved using single-wavelength anomalous dispersion (SAD) phasing of a selenomethionyl derivative, and the IscA model was refined to R=21.4% (Rfree=25.4%). IscA exists as an (alpha1alpha2)2 homotetramer with the (alpha1alpha2) dimer comprising the asymmetric unit. Cys35, implicated in Fe-S cluster assembly, is located in a central cavity formed at the tetramer interface with the gamma-sulfur atoms of residues from the alpha1 and alpha2' monomers (and alpha1'alpha2) positioned close to one another (approximately equal 7 A). C-terminal residues 99-107 are disordered, and the exact positions of Cys99 and Cys101 could not be determined. However, computer modeling of C-terminal residues in the tetramer suggests that Cys99 and Cys101 in the alpha1 monomer and those of the alpha1' monomer (or alpha2 and alpha2') are positioned sufficiently close to coordinate [2Fe-2S] clusters between the two dimers, whereas this is not possible within the (alpha1alpha2) or (alpha1'alpha2') dimer. This symmetrical arrangement allows for binding of two [2Fe-2S] clusters on opposite sides of the tetramer. Modeling further reveals that Cys101 is positioned sufficiently close to Cys35 to allow Cys35 to participate in cluster assembly, formation, or transfer.
Structure elucidation of two triterpenoid saponins from rhizome of Anemone raddeana Regel.
Lu, Jincai; Xu, Beibei; Gao, Song; Fan, Li; Zhang, Hongfen; Liu, Runxiang; Kodama, Hiroyuki
2009-09-01
Two new 27-hydroxy-oleanolic acid type triterpenoid saponins, raddeanoside 20 (1) and raddeanoside 21(2) were isolated from the rhizome of Anemone raddeana Regel. The structures of the two compounds were elucidated as 27-hydroxy-oleanolic acid 3-O-alpha-L-rhamnopyranosyl(1-->2) [beta-D-glucopyranosyl (1-->4)]-alpha-L-arabinopyranoside (1) and 3-O-alpha-L-rhamnopyranosyl (1-->2)-alpha-L-arabinopyranosyl-27-hydroxy-oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranoside (2) on the basis of chemical and spectral evidence.
Li, Minyong; Xia, Lin
2007-11-01
In the present report, a novel series of 1-indanone alpha(1)-adrenoceptor antagonists were designed and synthesized based on 3D-pharmacophore model. Their in vitro alpha(1)-adrenoceptor antagonistic assay showed that three compounds (2a, 2m, and 2o) had similar or improved alpha(1)-adrenoceptor antagonistic activities relative to the positive control prazosin. Based on these results, a three-dimensional quantitative structure-activity relationship study was performed using a Self-Organizing Molecular Field Analysis method to provide insight for the future development of alpha(1)-adrenoceptor antagonists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suhara, Tadahiro; Kanada-En'yo, Yoshiko
Structures of excited states in {sup 14}C are investigated with a method of {beta}-{gamma} constraint antisymmetrized molecular dynamics in combination with the generator coordinate method. Various excited states with the developed 3{alpha}-cluster core structures are suggested in positive- and negative-parity states. In the positive-parity states, triaxial deformed and linear-chain structures are found to construct excited bands. Interestingly, {sup 10}Be+{alpha} correlation is found in the cluster states above the {sup 10}Be+{alpha} threshold energy.
Zia, Mohammad Khalid; Siddiqui, Tooba; Ali, Syed Saqib; Ahsan, Haseeb; Khan, Fahim Halim
2018-05-09
Alpha-2-macroglobulin is a multifunctional, highly abundant, plasma protein which reacts with a wide variety of molecules and drugs including cisplatin. Cisplatin is commonly used anticancer drug widely used for treatment of testicular, bladder, ovarian, head and neck, lung and cervical cancers. This study is designed to examine the interaction of cisplatin with human alpha-2-macroglobulin through various biophysical techniques and drug binding through molecular modeling. Cisplatin alters the function of alpha-2-macroglobulin and the thiolesters are most likely the reactive sites for cisplatin. Our result suggests that cisplatin decreases the antiproteolytic potential and causes structural and functional change in human alpha-2-macroglobulin as evident by absorption and fluorescence spectroscopy. Change in secondary structure of alpha-2-macroglobulin was confirmed by CD and FTIR. Thermodynamics parameters such as entropy (ΔS), enthalpy (ΔH) and Gibb's free energy changes (ΔG) along with number of binding sites (N) of alpha-2-macroglobulin-cisplatin binding in solutions were determined by isothermal titration calorimetry (ITC). It was found that binding of cisplatin with alpha-2-macroglobulin was exothermic in nature. The interaction of drug with alpha-2-macroglobulin in the plasma could lead to structural alterations in the conformational status of alpha-2-macroglobulin resulting in its functional inactivation. Copyright © 2018 Elsevier B.V. All rights reserved.
The damaging effect of UV-C irradiation on lens alpha-crystallin.
Fujii, Noriko; Uchida, Hiroki; Saito, Takeshi
2004-11-02
To evaluate the effect of UV-C irradiation on the structural properties of alpha-crystallin and its chaperone activity. alpha- and betaL-crystallins were isolated from bovine lenses using gel chromatography. The purified alpha-crystallin was subjected to UV-C irradiation (254 nm; 1, 2, 5, 10, 20, 50 J/cm2). We measured the tryptophan fluorescence, circular dichroism (CD) spectroscopy in the far UV, and the chaperone activity of both irradiated and non-irradiated alpha-crystallin. The tryptophan fluorescence of alpha-crystallin decreased, whereas the N-formylkynurenine fluorescence increased markedly with increasing doses of UV-C irradiation. Both the oxidation of Met1 and the racemization of Asp151 of alphaA-crystallin increased at a dose of 1-2 J/cm2 and then gradually decreased. The CD spectrum showed that the secondary structure of alpha-crystallin altered with increasing radiation dose, and almost all of the beta-sheet structure was lost at doses above 50 J/cm2. The chaperone activity of alpha-crystallin irradiated with doses under 5 J/cm2 remained intact. However, it was reduced to only 40% after irradiation at 10 J/cm2. Our study suggests that photo-oxidation of tryptophan residues in alpha-crystallin may be one of the events that affects the three-dimensional packing array and chaperone activity of this lens protein.
NASA Astrophysics Data System (ADS)
Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu
2017-12-01
As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.
Fine-structure-resolution for Rovibrational Excitation of CN Due to H2
NASA Astrophysics Data System (ADS)
Byrd, Nat; Yang, Benhui H.; Stancil, Phillip C.
2018-06-01
Diatomic molecules can be readily excited in interstellar environments exposed to intense UV radiation, such as the inner rim of a protoplanetary disk. Non-thermal populations of excited rovibrational levels can result, for example, following decay from electronically excited states to the electronic ground state. Competition between radiative decay and collisional processes, mostly due to H2, determine the resulting rovibrational emission spectrum. For CN, and other open-shell molecules, the resulting spectrum will be complicated due to fine-structure splitting of the rotational levels. In some cases, fine-structure resolution has been previously computed for rotational transitions in atom- or diatom-diatom collisional processes. Here we present the first fine-structure resolution for vibrational deexcitation for CN colliding with H2. The collisional cross sections were computed using a 6D potential energy surface with a full close-coupling approach. Fine-structure resolution is obtained by adopting an angular momentum recoupling scheme to transform the scattering matrices to a recoupled basis. Here we present low-energy calculations for the v=1 to 0 transition.This work was supported by NASA Grant NNX16AF09G.
The impact of cochlear fine structure on hearing thresholds and DPOAE levels
NASA Astrophysics Data System (ADS)
Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.
2004-05-01
Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, N.; Lappalainen, J.; Linnoila, M.
Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP)more » analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.« less
Synthesis, characterization, and properties of low-dimensional nanostructured materials
NASA Astrophysics Data System (ADS)
Hu, Xianluo
2007-05-01
Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely microwave-assisted hydrothermal reduction/carbonization (MAHRC), is developed to prepare coaxial Ag/amorphous-carbon (a-C) nanocables. The as-grown Ag/C nanocables can self-assemble in an end-to-end fashion. (2) A novel Se/C nanocomposite with core-shell structures is prepared. The new material consists of a trigonal-Se (t-Se) core and an amorphous-C (a-C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. (3) A Fe 3O4/C nanocomposite is synthesized by a green wet-chemical approach. The product possesses porous microstructures and exhibits superparamagnetic behavior. The third major goal of this research is develop facile solution-based methods for preparing carbonaceous nano test tubes, thin films of metal iodides, and spherical selenium spheres: (1) Carbonaceous nano test tubes are fabricated by a facile "decoring" route using a core-sheath Te carbon nanocomposite as the precursor. The as-formed carbonaceous material looks like a "test tube" with an average diameter of about 120 nm and lengths up to 5 mum. (2) Tetrahedral-shaped CuI crystals were formed on a variety of copper substrates (e.g. grids, flat/porous foils, and macro-/nano- wires) via an interfacial reaction between a copper substrate and iodine in water at room temperature. This preparation approach can also be used to grow PbI2 and AgI nano- and micro-crystals with different morphologies on corresponding substrates. (3) Colloidal trigonal selenium (t-Se) microspheres are synthesized through a mild hydrothermal reduction reaction, using glucose as a reducing regent and water as an environmentally friendly solvent. Importantly, the resulting t-Se microspheres inherit functional groups from the starting materials and possess hydrophilic and biocompatible surfaces.
Johansson, Annette; Lugand, Damien; Rolet-Répécaud, Odile; Mollé, Daniel; Delage, Marie-Madeleine; Peltre, Gabriel; Marchesseau, Sylvie; Léonil, Joëlle; Dupont, Didier
2009-03-01
In milk, kappa-, beta-, alphas(1)- and alphas(2)-casein (CN) are associated into a supramolecular assembly, the micelle. In this work, CN micelles contained in fresh skim milk were used to produce over 100 monoclonal antibodies. The specificity of these probes was determined using libraries of synthetic peptides and peptides fractionated from tryptic hydrolysis of purified CNs. Although kappa-CN and alphas(2)-CN are minor proteins in the micelle (ratio 1:1:4:4 for kappa, alphas(2), alphas(1), beta) a proportionally high number of clones were produced towards these two proteins (32 for each), compared to 9 and 29 for alphas(1)-CN and beta-CN, respectively. Most of the beta-CN and kappa-CN epitopes were identified, while about 50% of alphas(1)-CN and alphas(2)-CN antibodies were suspected to react to conformational linear or discontinuous epitopes, since no peptide binding could be identified. Antibody binding to the phosphoserine rich regions of the three calcium sensitive CNs was weak or non-existing, suggesting them to be hidden in the micelle structure together with alphas(1)-CN. The C-terminal glycomacropeptide of kappa-CN and the C-terminal moiety of beta-CN were well exposed generating the majority of the antibodies specific for these two proteins. The two major antigenic sites of alphas(2) were alphas(2)-CN (f96-114) and (f16-35). Cross-reaction between alphas(2)-CN specific antibodies with alphas(1)-CN illustrated the tangled structure between the two proteins. Immuno-dominant epitopes identified in the present study totally differ from those known for the purified caseins suggesting they were specific for the micelle supramolecular structure.
CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco
2015-01-01
We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less
Spectral structure and stability studies on microstructure-fiber continuum
NASA Astrophysics Data System (ADS)
Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.
2003-07-01
Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.
Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.
Dresp, Birgitta; Langley, Keith
2006-03-01
The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.
Further studies on the quaternary structure of yeast casein kinase II.
Szyszka, R; Lopaczyński, W; Gałasiński, W; Grankowski, N; Gasior, E
1986-01-01
Casein kinase type II were isolated by the same procedure, from rat liver, human placenta, Querin carcinoma and yeast, and characterized. The mammalian enzymes were composed of three subunits alpha, alpha' and beta, whereas yeast kinase was composed of two subunits alpha and alpha'. It was shown that the catalytic activity, substrate and phosphate donor specificity, sensitivity to heparin and spermine were the same for all the kinases tested. The results give additional support to the suggestion [1] that the beta subunit is not required for optimal activity and specificity of yeast casein kinase II. The quaternary structure of the yeast enzyme of a molecular weight of approximately 150 000 is proposed as alpha2 alpha'2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slade, Daniel J.; Lovelace, Leslie L.; Chruszcz, Maksymilian
2010-03-04
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that assemble on bacterial membranes to form a porelike structure referred to as the 'membrane attack complex' (MAC). C8 contains three genetically distinct subunits (C8{alpha}, C8{beta}, C8{gamma}) arranged as a disulfide-linked C8{alpha}-{gamma} dimer that is noncovalently associated with C8{beta}. C6, C7 C8{alpha}, C8{beta}, and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8{gamma} subunit is unrelated and belongs to the lipocalin family of proteins that display a {beta}-barrel fold andmore » generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8{alpha} MACPF domain were recently reported and both display a fold similar to those of the bacterial pore-forming cholesterol-dependent cytolysins (CDCs). In the present study, we determined the crystal structure of the human C8{alpha} MACPF domain disulfide-linked to C8{gamma} ({alpha}MACPF-{gamma}) at 2.15 {angstrom} resolution. The {alpha}MACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8{gamma}. One is in a previously characterized 19-residue insertion (indel) in C8{alpha} and fills the entrance to the putative C8{gamma} ligand-binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8{gamma} {beta}-barrel. The latter interaction induces conformational changes in {alpha}MACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X{sub 6}-G-G in {alpha}MACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for refolding and pore formation by CDCs.« less
Armen, Roger S; Alonso, Darwin O V; Daggett, Valerie
2004-10-01
The homotetramer of transthyretin (TTR) dissociates into a monomeric amyloidogenic intermediate that self-assembles into amyloid fibrils at low pH. We have performed molecular dynamics simulations of monomeric TTR at neutral and low pH at physiological (310 K) and very elevated temperature (498 K). In the low-pH simulations at both temperatures, one of the two beta-sheets (strands CBEF) becomes disrupted, and alpha-sheet structure forms in the other sheet (strands DAGH). alpha-sheet is formed by alternating alphaL and alphaR residues, and it was first proposed by Pauling and Corey. Overall, the simulations are in agreement with the available experimental observations, including solid-state NMR results for a TTR-peptide amyloid. In addition, they provide a unique explanation for the results of hydrogen exchange experiments of the amyloidogenic intermediate-results that are difficult to explain with beta-structure. We propose that alpha-sheet may represent a key pathological conformation during amyloidogenesis. Copyright 2004 Elsevier Ltd.
Terpenoids from Tripterygium doianum (Celastraceae).
Tanaka, Naonobu; Duan, Hongquan; Takaishi, Yoshihisa; Kawazoe, Kazuyoshi; Goto, Satoru
2002-09-01
The extract of Tripterygium doianum (Celastraceae) afforded three triterpenoids [3beta-acetoxy-11-ursen-13alpha,30-olide, 25-chloro-24-hydroxytirucall-7-en-3-one and tirucall-7-en-3,24-dione], two sesquiterpenoids [5alpha-acetoxy-1beta,8alpha-bis-cinnamoyl-4alpha-hydroxydihydroagarofuran and 5alpha-acetoxy-1beta-benzoyl-8alpha-cinnamoyl-4alpha-hydroxydihydroagarofuran] and nine known triterpenoids. Their structures were established based on spectroscopic studies. Copyright 2002 Elsevier Science Ltd.
Alpha-synuclein: relating metals to structure, function and inhibition.
McDowall, J S; Brown, D R
2016-04-01
Alpha-synuclein has long been studied due to its involvement in the progression of Parkinson's disease (PD), a common neurodegenerative disorder, although a consensus on the exact function of this protein is elusive. This protein shows remarkable structural plasticity and this property is important for both correct cellular function and pathological progression of PD. Formation of intracellular oligomeric species within the substantia nigra correlates with disease progression and it has been proposed that formation of a partially folded intermediate is key to the initiation of the fibrillisation process. Many factors can influence changes in the structure of alpha-synuclein such as disease mutations and interaction with metals and neurotransmitters. High concentrations of both dopamine and metals are present in the substantia nigra making this an ideal location for both the structural alteration of alpha-synuclein and the production of toxic oxygen species. The recent proposal that alpha-synuclein is a ferrireductase is important as it can possibly catalyse the formation of such reactive species and as a result exacerbate neurodegeneration.
Spin fine structure of optically excited quantum dot molecules
NASA Astrophysics Data System (ADS)
Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2007-06-01
The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.
NASA Technical Reports Server (NTRS)
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-01-01
Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n= +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies 1 greater than or equal to keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L=4.6 and above 200 eV for L=6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.
Three-dimensional crystal structure of recombinant murine interferon-beta.
Senda, T; Shimazu, T; Matsuda, S; Kawano, G; Shimizu, H; Nakamura, K T; Mitsui, Y
1992-01-01
The crystal structure of recombinant murine interferon-beta (IFN-beta) has been solved by the multiple isomorphous replacement method and refined to an R-factor of 20.5% against 2.6 A X-ray diffraction data. The structure shows a variant of the alpha-helix bundle with a new chain-folding topology, which seems to represent a basic structural framework of all the IFN-alpha and IFN-beta molecules belonging to the type I family. Functionally important segments of the polypeptide chain, as implied through numerous gene manipulation studies carried out so far, are spatially clustered indicating the binding site(s) to the receptor(s). Comparison of the present structure with those of other alpha-helical cytokine proteins, including porcine growth hormone, interleukin 2 and interferon gamma, indicated either a topological similarity in chain folding or a similar spatial arrangement of the alpha-helices. Images PMID:1505514
Sun, Xianfeng; Zhou, Le; Li, Wei; Zhang, Xumu
2008-02-01
A convenient, divergent strategy for the synthesis of a series of modular and fine-tunable C3-TunePhos-type chiral diphosphine ligands and their applications in highly efficient Ru-catalyzed asymmetric hydrogenations were explored. Up to 97 and 99% ee values were achieved for the enantioselective synthesis of beta-methyl chiral amines and alpha-hydroxy acid derivatives, respectively.
Omura, Y; Losco, M; Omura, A K; Takeshige, C; Hisamitsu, T; Nakajima, H; Soejima, K; Yamamoto, S; Ishikawa, H; Kagoshima, T
1992-01-01
In 1985, Omura, Y. discovered that, when specific molecules were placed anywhere in the close vicinity of the path of a light beam (laser), their molecular information, as well as information on electrical & magnetic fields, is transmitted bi-directionally along the path of this light beam. Namely, this information is transmitted in the direction the light beam is projected and towards the direction from which the light beam is coming. This finding was applied to the following clinical and basic research: 1) In the past, using indirect Bi-Digital O-Ring Test, human or animal patients were diagnosed through an intermediate third person holding a good electrical conducting probe, the tip of which was touching the part of the patient to be examined. However, in order to diagnose the patient in isolation from a distance, or a dangerous or unmanagable unanesthesized animal, such as a lion or tiger, the author succeeded in making a diagnosis by replacing the metal conducting probe with a soft laser beam which is held by the one hand of the third person whose index finger is placed in close vicinity of the laser beam generated by a battery-powered penlight-type solid state laser generator. Thus, diagnosis within visible distance, without direct patient contact, became a reality. 2) Using a projection light microscope, by giving indirect Bi-Digital O-Ring Test while contacting with a fine electro-conductive probe on the magnified fine structure of normal and abnormal cells, various normal and abnormal intracellular substances were localized through a third person holding a pure reference control substance with the same hand that is holding the probe as an intermediary for the indirect Bi-Digital O-Ring Test. Instead of the photon beam in a light microscope, the author found that, using an electron beam passing through the close vicinity of specific molecules of specimens in an electron microscope, the molecular information is transmitted to the magnified fluorescent screen, and an indirect Bi-Digital O-Ring Test could be performed through a projected penlight-type solid state soft laser beam on the magnified intracellular structure through an observation glass window. Using the magnified fine structure of the cells, by either a light projection microscopic field or electron microscope, in various cancer cells of both humans and animals, Oncogen C-fos (AB2) and mercury were found inside of the nucleus. Integrin alpha 5 beta 1 was found on cell membranes and nuclear cell membranes of cancer cells. Acetylcholine was not found anywhere within cancer cells.(ABSTRACT TRUNCATED AT 400 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eitan, M.; Fowler, E.; Herrmann, R.
1990-06-26
A new toxin, Lqh alpha IT, which caused a unique mode of paralysis of blowfly larvae, was purified from the venom of the scorpion Leiurus quinquestriatus hebraeus, and its structural and pharmacological properties were compared to those of three other groups of neurotoxins found in Buthinae scorpion venoms. Like the excitatory and depressant insect-selective neurotoxins, Lqh alpha IT was highly toxic to insects, but it differed from these toxins in two important characteristics: (a) Lqh alpha IT lacked strict selectivity for insects; it was highly toxic to crustaceans and had a measurable but low toxicity to mice. (b) It didmore » not displace an excitatory insect toxin, 125I-AaIT, from its binding sites in the insect neuronal membrane; this indicates that the binding sites for Lqh alpha IT are different from those shared by the excitatory and depressant toxins. However, in its primary structure and its effect on excitable tissues, Lqh alpha IT strongly resembled the well-characterized alpha scorpion toxins, which affect mammals. The amino acid sequence was identical with alpha toxin sequences in 55%-75% of positions. This degree of similarity is comparable to that seen among the alpha toxins themselves. Voltage- and current-clamp studies showed that Lqh alpha IT caused an extreme prolongation of the action potential in both cockroach giant axon and rat skeletal muscle preparations as a result of the slowing and incomplete inactivation of the sodium currents. These observations indicate that Lqh alpha IT is an alpha toxin which acts on insect sodium channels.« less
Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis.
Cousineau, Marion; Oxenham, Andrew J; Peretz, Isabelle
2015-01-01
Pitch plays a fundamental role in audition, from speech and music perception to auditory scene analysis. Congenital amusia is a neurogenetic disorder that appears to affect primarily pitch and melody perception. Pitch is normally conveyed by the spectro-temporal fine structure of low harmonics, but some pitch information is available in the temporal envelope produced by the interactions of higher harmonics. Using 10 amusic subjects and 10 matched controls, we tested the hypothesis that amusics suffer exclusively from impaired processing of spectro-temporal fine structure. We also tested whether the inability of amusics to process acoustic temporal fine structure extends beyond pitch by measuring sensitivity to interaural time differences, which also rely on temporal fine structure. Further tests were carried out on basic intensity and spectral resolution. As expected, pitch perception based on spectro-temporal fine structure was impaired in amusics; however, no significant deficits were observed in amusics' ability to perceive the pitch conveyed via temporal-envelope cues. Sensitivity to interaural time differences was also not significantly different between the amusic and control groups, ruling out deficits in the peripheral coding of temporal fine structure. Finally, no significant differences in intensity or spectral resolution were found between the amusic and control groups. The results demonstrate a pitch-specific deficit in fine spectro-temporal information processing in amusia that seems unrelated to temporal or spectral coding in the auditory periphery. These results are consistent with the view that there are distinct mechanisms dedicated to processing resolved and unresolved harmonics in the general population, the former being altered in congenital amusia while the latter is spared. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y
1995-06-01
Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.
Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference
NASA Astrophysics Data System (ADS)
Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki
2016-09-01
For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach-Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800 × 800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.
3D WHOLE-PROMINENCE FINE STRUCTURE MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunár, Stanislav; Mackay, Duncan H.
2015-04-20
We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique tomore » consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.« less
[Ultraviolet spectroscopic study on the fine structures in the solar polar hole].
Zhang, Min; Wang, Dong; Liu, Guo-Hong
2014-07-01
Fine structures in the south solar polar coronal hole were observed by N IV line of SOHO/SUMER spectrograph. The scales of the fine structures range spatially range from 1 arcsec to several arcsecs, temporally from 1 min to several minutes, and parts of them are in strip shape along the slit direction. The line-of-sight velocity of them is up to tens of km x s(-1) with red and blue shift intercrossed occasionally, which appear periodically as long as 100 minutes in some regions. Part of the fine structures can be clearly observed at the Ne V III line with higher formation temperature in the same spectral window. The time and location of some fine structures with high velocity in the Ne V III spectrum are almost the same as that in N IV spectrum, but they are extended and diffused in the Ne V III spectrum. Some fine structures have non-Gaussian profiles with the line-of-sight Doppler velocities up to 150 km x s(-1) in the N IV blue/red wings, which is similar with the explosive events in the transition region. In the past, explosive events are small-scale dynamic phenomena often observed in the quiet-sun (QS) region, while their properties in coronal holes (CHs) remain unclear. Here, we find the EE-like events with strong dynamics in the south solar polar coronal hole by N IV line of SOHO/SUMER spectrograph.
NASA Astrophysics Data System (ADS)
Pan, Ling
Motivated by the great potential applications of gamma titanium aluminide based alloys and the important effect of diffusion on the properties of gamma-TiAl/alpha2-Ti3Al two-phase lamellar structure, we conduct this thesis research to explore the microstructural evolution and interdiffusion behavior, and their correlations in multi-phase solid state diffusion couples made up of pure titanium and polysynthetically-twinned (PST) Ti-49.3 at.% Al "single" crystal, in the temperature range of 973--1173 K. The diffusion couples are prepared by high vacuum hot-pressing, with the diffusion direction parallel to the lamellar planes. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) are employed to observe the microstructure at various interfaces/interphases. A reaction zone (RZ) of polycrystalline alpha 2-Ti3Al phase forms along the PST Ti-Al/Ti bonding interface having a wavy interface with the PST crystal and exhibits deeper penetration in alpha2 lamellae, consisting of many fine alpha2 and secondary gamma laths, than in primary gamma lamellae. Direct measurement of the RZ thickness on SEM back-scattered electron images reveals a parabolic growth of the RZ, indicating a macroscopically diffusion-controlled growth. Concentration profiles from Ti, through the RZ, into the alpha2 lamellae of the PST crystal are measured by quantitative energy-dispersive x-ray spectroscopy (EDS) in a scanning transmission electron microscope (STEM). A plateau of composition adjacent to the RZ/(mixed alpha2 lath in PST) interface forms in the deeply penetrated RZ grains, implying a diffusion barrier crossing the interface and some extent of interface control in the RZ grain growth. The interdiffusion coefficient is evaluated both independent of composition and as a function of composition. No significant concentration dependence of the interdiffusion coefficients is observed using Boltzmann-Matano analysis. The temperature dependence of the interdiffusion coefficients obeys the Arrhenius relationship with a pre-exponential factor of D 0 = (7.56 +/- 7.14) x 10-5 m2/s and an activation enthalpy of Q = 255.6+8.9-8.3 kJ/mol = (2.65 +/- 0.09) eV/atom. The initial nucleation stage of the RZ grains plays an important role in the later microstructural evolution as does the local mass balance. The interfacial energy and the strain energy in the deeply penetrated RZ grains are possible reasons for the plateau.
Kim, Moo Woong; Rhee, Sang Ki; Kim, Jeong-Yoon; Shimma, Yoh-ichi; Chiba, Yasunori; Jigami, Yoshifumi; Kang, Hyun Ah
2004-03-01
Presently almost no information is available on the oligosaccharide structure of the glycoproteins secreted from the methylotrophic yeast Hansenula polymorpha, a promising host for the production of recombinant proteins. In this study, we analyze the size distribution and structure of N-linked oligosaccharides attached to the recombinant glycoprotein glucose oxidase (GOD) and the cell wall mannoproteins obtained from H. polymorpha. Oligosaccharide profiling showed that the major oligosaccharide species derived from the H. polymorpha-secreted recombinant GOD (rGOD) had core-type structures (Man(8-12)GlcNAc(2)). Analyses using anti-alpha 1,3-mannose antibody and exoglycosidases specific for alpha 1,2- or alpha 1,6-mannose linkages revealed that the mannose outer chains of N-glycans on the rGOD have very short alpha 1,6 extensions and are mainly elongated in alpha 1,2-linkages without a terminal alpha 1,3-linked mannose addition. The N-glycans released from the H. polymorpha mannoproteins were shown to contain mostly mannose in their outer chains, which displayed almost identical size distribution and structure to those of H. polymorpha-derived rGOD. These results strongly indicate that the outer chain processing of N-glycans by H. polymorpha significantly differs from that by Saccharomyces cerevisiae, thus generating much shorter mannose outer chains devoid of terminal alpha 1,3-linked mannoses.
Sharma, Gangavaram V M; Nagendar, Pendem; Ramakrishna, Kallaganti V S; Chandramouli, Nagula; Choudhary, Madavi; Kunwar, Ajit C
2008-06-02
A new three-residue turn was serendipitously discovered in alpha/beta hybrid peptides derived from alternating C-linked carbo-beta-amino acids (beta-Caa) and L-Ala residues. The three-residue beta-alpha-beta turn at the C termini, nucleated by a helix at the N termini, resulted in helix-turn (HT) supersecondary structures in these peptides. The turn in the HT motif is stabilized by two H bonds-CO(i-2)-NH(i), with a seven-membered pseudoring (gamma turn) in the backward direction, and NH(i-2)-CO(i), with a 13-membered pseudoring in the forward direction (i being the last residue)--at the C termini. The study was extended to generalize the new three-residue turn (beta-alpha-beta) by using different alpha- and beta-amino acids. Furthermore, the HT motifs were efficiently converted, by an extension with helical oligomers at the C termini, into peptides with novel helix-turn-helix (HTH) tertiary structures. However, this resulted in the destabilization of the beta-alpha-beta turn with the concomitant nucleation of another three-residue turn, alpha-beta-beta, which is stabilized by 11- and 15-membered bifurcated H bonds. Extensive NMR spectroscopic studies were carried out to delineate the secondary and tertiary structures in these peptides, which are further supported by molecular dynamics (MD) investigations.
NASA Astrophysics Data System (ADS)
Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.
2016-12-01
One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.
Saito, Minoru; Okazaki, Isao
2007-04-30
Molecular dynamics (MD) simulations of human adult hemoglobin (HbA) were carried out for 45 ns in water with all degrees of freedom including bond stretching and without any artificial constraints. To perform such large-scale simulations, one of the authors (M.S.) accelerated his own software COSMOS90 on the Earth Simulator by vectorization and parallelization. The dynamical features of HbA were investigated by evaluating root-mean-square deviations from the initial X-ray structure (an oxy T-state hemoglobin with PDB code: 1GZX) and root-mean-square fluctuations around the average structure from the simulation trajectories. The four subunits (alpha(1), alpha(2), beta(1), and beta(2)) of HbA maintained structures close to their respective X-ray structures during the simulations even though no constraints were applied to HbA in the simulations. Dimers alpha(1)beta(1) and alpha(2)beta(2) also maintained structures close to their respective X-ray structures while they moved relative to each other like two stacks of dumbbells. The distance between the two dimers (alpha(1)beta(1) and alpha(2)beta(2)) increased by 2 A (7.4%) in the initial 15 ns and stably fluctuated at the distance with the standard deviation 0.2 A. The relative orientation of the two dimers fluctuated between the initial X-ray angle -100 degrees and about -105 degrees with intervals of a few tens of nanoseconds.
Independent movement, dimerization and stability of tandem repeats of chicken brain alpha-spectrin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusunoki, H.; Minasov, G.; Macdonald, R.I.
Previous X-ray crystal structures have shown that linkers of five amino acid residues connecting pairs of chicken brain {alpha}-spectrin and human erythroid {beta}-spectrin repeats can undergo bending without losing their {alpha}-helical structure. To test whether bending at one linker can influence bending at an adjacent linker, the structures of two and three repeat fragments of chicken brain {alpha}-spectrin have been determined by X-ray crystallography. The structure of the three-repeat fragment clearly shows that bending at one linker can occur independently of bending at an adjacent linker. This observation increases the possible trajectories of modeled chains of spectrin repeats. Furthermore, themore » three-repeat molecule crystallized as an antiparallel dimer with a significantly smaller buried interfacial area than that of {alpha}-actinin, a spectrin-related molecule, but large enough and of a type indicating biological specificity. Comparison of the structures of the spectrin and {alpha}-actinin dimers supports weak association of the former, which could not be detected by analytical ultracentrifugation, versus strong association of the latter, which has been observed by others. To correlate features of the structure with solution properties and to test a previous model of stable spectrin and dystrophin repeats, the number of inter-helical interactions in each repeat of several spectrin structures were counted and compared to their thermal stabilities. Inter-helical interactions, but not all interactions, increased in parallel with measured thermal stabilities of each repeat and in agreement with the thermal stabilities of two and three repeats and also partial repeats of spectrin.« less
The origin of magnemite on Mars
NASA Technical Reports Server (NTRS)
Hargraves, R. B.
1984-01-01
An explanation for the magnetic properties of Martian surface material is discussed, specifically that the surface particles were composed primarily of smectite clay (nontronite) pigmented throughout by a red magnetic phase. The thermal treatment of nontronite in air, for long periods at 700 deg C or short periods at 900 deg C, results in destruction of the nontronite structure, a distinct reddening in color, and a spectacular increase in magnetic susceptibility and saturation magnetization (up to 4.4 Am squared/kg). Magnetic property measurements suggest that the magnetism is due to the presence of ultrafine particles of alpha or gamma Fe2O3; the precise identify was not resolved. Thermally treated nontronite has chemical, color and magnetic properties akin to those found by Viking on Mars. These results favor an origin for the fine grained Martian surface material by repeated impacts into an Fe-rich smectite-charged regolith, the smectite having resulted from hydrothermal alteration of volcanic or impact generated glass, the magnetic phase having resulted from the pressure or thermal shocked nontronite.
An optical spectrum of the afterglow of a gamma-ray burst at a redshift of z = 6.295.
Kawai, N; Kosugi, G; Aoki, K; Yamada, T; Totani, T; Ohta, K; Iye, M; Hattori, T; Aoki, W; Furusawa, H; Hurley, K; Kawabata, K S; Kobayashi, N; Komiyama, Y; Mizumoto, Y; Nomoto, K; Noumaru, J; Ogasawara, R; Sato, R; Sekiguchi, K; Shirasaki, Y; Suzuki, M; Takata, T; Tamagawa, T; Terada, H; Watanabe, J; Yatsu, Y; Yoshida, A
2006-03-09
The prompt gamma-ray emission from gamma-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman alpha absorption at z approximately 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 +/- 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.
GLASS: spatially resolved spectroscopy of lensed galaxies in the Frontier Fields
NASA Astrophysics Data System (ADS)
Jones, Tucker; Treu, Tommaso; Brammer, Gabriel; Borello Schmidt, Kasper; Malkan, Matthew A.
2015-08-01
The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and H alpha at z=1-3. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z>1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching unprecedented stellar masses as low as ~10^7 Msun at z=2. I will discuss precise measurements of these physical properties and implications for galaxy evolution.
Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range
NASA Astrophysics Data System (ADS)
Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.
2017-06-01
Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.
Chimaeric sounds reveal dichotomies in auditory perception
Smith, Zachary M.; Delgutte, Bertrand; Oxenham, Andrew J.
2008-01-01
By Fourier's theorem1, signals can be decomposed into a sum of sinusoids of different frequencies. This is especially relevant for hearing, because the inner ear performs a form of mechanical Fourier transform by mapping frequencies along the length of the cochlear partition. An alternative signal decomposition, originated by Hilbert2, is to factor a signal into the product of a slowly varying envelope and a rapidly varying fine time structure. Neurons in the auditory brainstem3–6 sensitive to these features have been found in mammalian physiological studies. To investigate the relative perceptual importance of envelope and fine structure, we synthesized stimuli that we call ‘auditory chimaeras’, which have the envelope of one sound and the fine structure of another. Here we show that the envelope is most important for speech reception, and the fine structure is most important for pitch perception and sound localization. When the two features are in conflict, the sound of speech is heard at a location determined by the fine structure, but the words are identified according to the envelope. This finding reveals a possible acoustic basis for the hypothesized ‘what’ and ‘where’ pathways in the auditory cortex7–10. PMID:11882898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsman, A.; Horbatsch, M.; Hessels, E. A., E-mail: hessels@yorku.ca
2015-09-15
For many decades, improvements in both theory and experiment of the fine structure of the n = 2 triplet P levels of helium have allowed for an increasingly precise determination of the fine-structure constant. Recently, it has been observed that quantum-mechanical interference between neighboring resonances can cause significant shifts, even if such neighboring resonances are separated by thousands of natural widths. The shifts depend in detail on the experimental method used for the measurement, as well as the specific experimental parameters employed. Here, we review how these shifts apply for the most precise measurements of the helium 2{sup 3}P fine-structuremore » intervals.« less
Sample-based synthesis of two-scale structures with anisotropy
Liu, Xingchen; Shapiro, Vadim
2017-05-19
A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less
Sample-based synthesis of two-scale structures with anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xingchen; Shapiro, Vadim
A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less
Experimental and Theoretical Electron Density Distribution of Alpha,Alpha-Trehalose Dihydrate
USDA-ARS?s Scientific Manuscript database
Alpha,alpha-rehalose is of interest because of its cryoprotective and antidessicant properties, and because it possesses various technical anomalies such as 13C NMR spectra that give misleading indications of intramolecular structural symmetry. It is a non-reducing disaccharide, with the glycosidic...
Genomic structure of rat 3alpha-hydroxysteroid/dihydrodiol dehydrogenase (3alpha-HSD/DD, AKR1C9).
Lin, H K; Hung, C F; Moore, M; Penning, T M
1999-11-01
Rat liver 3alpha-hydroxysteroid/dihydrodiol dehydrogenase (3alpha-HSD/DD) is a member of the aldo-keto reductase (AKR) superfamily. It is involved in the inactivation of steroid hormones and the metabolic activation of polycyclic aromatic hydrocarbons (PAH) by converting trans-dihydrodiols into reactive and redox-active o-quinones. The structure of the 5'-flanking region of the gene and factors involved in the constitutive and regulated expression of this gene have been reported [H.-K. Lin, T.M. Penning, Cloning, sequencing, and functional analysis of the 5'-flanking region of the rat 3alpha-hydroxysteroid/dihydrodiol dehydrogenase gene, Cancer Res. 55 (1995) 4105-4113]. We now describe the complete genomic structure of the rat type 1 3alpha-HSD/DD gene. Charon 4A and P1 genomic clones contained at least three rat genes (type 1, type 2 and type 3 3alpha-HSD/DD) each of which encoded for the same open reading frame (ORF) but differed in their exon-intron organization. 5'-RACE confirmed that the type 1 3alpha-HSD/DD gene encodes for the dominant transcript in rat liver and it was the regulation of this gene that was previously studied. The rat type 1 3alpha-HSD/DD gene is 30 kb in length and consists of nine exons and eight introns. Exon 9 encodes +931 to 966 bp of the ORF and the 1292 bp 3'-UTR implicated in mRNA stability. This genomic structure is nearly identical to the homologous human genes, type 1 3alpha-HSD (chlordecone reductase/DD4, AKR1C4), type 2 3alpha-HSD (AKR1C3) and type 3 3alpha-HSD (bile-acid binding protein, AKR1C2) genes. Three different cDNA's containing identical ORFs for 3alpha-HSD have been reported suggesting that all three genes may be expressed in rat liver. Using 5' primers corresponding to the 5'-UTR's of the three different cDNA's only one PCR fragment was obtained and corresponded to the type 1 3alpha-HSD/DD gene. These data suggested that the type 2 and type 3 3alpha-HSD/DD genes are not abundantly expressed in rat liver. It is unknown whether the type 2 and type 3 3alpha-HSD/DD genes represent pseudo-genes or whether they represent genes that are differentially expressed in other rat tissues.
The 2.0-A resolution structure of soybean beta-amylase complexed with alpha-cyclodextrin.
Mikami, B; Hehre, E J; Sato, M; Katsube, Y; Hirose, M; Morita, Y; Sacchettini, J C
1993-07-13
New crystallographic findings are presented which offer a deeper understanding of the structure and functioning of beta-amylase, the first known exo-type starch-hydrolyzing enzyme. A refined three-dimensional structure of soybean beta-amylase, complexed with the inhibitor alpha-cyclodextrin, has been determined at 2.0-A resolution with a conventional R-value of 17.5%. The model contains 491 amino acid residues, 319 water molecules, 1 sulfate ion, and 1 alpha-cyclodextrin molecule. The protein consists of a core with an (alpha/beta)8 supersecondary structure, plus a smaller globular region formed by long loops (L3, L4, and L5) extending from beta-strands beta 3, beta 4, and beta 5. Between the two regions is a cleft that opens into a pocket whose floor contains the postulated catalytic center near the carboxyl group of Glu 186. The annular alpha-cyclodextrin binds in (and partly projects from) the cleft with its glucosyl O-2/O-3 face abutting the (alpha/beta)8 side and with its alpha-D(1 --> 4) glucosidic linkage progression running clockwise as viewed from that side. The ligand does not bind deeply enough to interact with the carboxyl group of Glu 186. Rather, it occupies most of the cleft entrance, strongly suggesting that alpha-cyclodextrin inhibits catalysis by blocking substrate access to the more deeply located reaction center. Of the various alpha-cyclodextrin interactions with protein residues in loops L4, L5, L6, and L7, most notable is the shallow inclusion complex formed with Leu 383 (in L7, on the core side of the cleft) through contacts of its methyl groups with the C-3 atoms of four of the ligand's D-glucopyranosyl residues. All six residues of the bound alpha-cyclodextrin are of 4C1 conformation and are joined by alpha-1,4 linkages with similar torsional angles to form a nearly symmetrical torus as reported for crystalline inclusion complexes with alpha-cyclodextrin. We envision a significant role for the methyl groups of Leu 383 at the cleft entrance with respect to the productive binding of the outer chains of starch.
The role of alpha-, 3(10)-, and pi-helix in helix-->coil transitions.
Armen, Roger; Alonso, Darwin O V; Daggett, Valerie
2003-06-01
The conformational equilibrium between 3(10)- and alpha-helical structure has been studied via high-resolution NMR spectroscopy by Millhauser and coworkers using the MW peptide Ac-AMAAKAWAAKA AAARA-NH2. Their 750-MHz nuclear Overhauser effect spectroscopy (NOESY) spectra were interpreted to reflect appreciable populations of 3(10)-helix throughout the peptide, with the greatest contribution at the N and C termini. The presence of simultaneous alphaN(i,i + 2) and alphaN(i,i + 4) NOE cross-peaks was proposed to represent conformational averaging between 3(10)- and alpha-helical structures. In this study, we describe 25-nsec molecular dynamics simulations of the MW peptide at 298 K, using both an 8 A and a 10 A force-shifted nonbonded cutoff. The ensemble averages of both simulations are in reasonable agreement with the experimental helical content from circular dichroism (CD), the (3)J(HNalpha) coupling constants, and the 57 observed NOEs. Analysis of the structures from both simulations revealed very little formation of contiguous i --> i + 3 hydrogen bonds (3(10)-helix); however, there was a large population of bifurcated i --> i + 3 and i --> i + 4 alpha-helical hydrogen bonds. In addition, both simulations contained considerable populations of pi-helix (i --> i + 5 hydrogen bonds). Individual turns formed over residues 1-9, which we predict contribute to the intensities of the experimentally observed alphaN(i,i + 2) NOEs. Here we show how sampling of both folded and unfolded structures can provide a structural framework for deconvolution of the conformational contributions to experimental ensemble averages.
Coupling fine-scale root and canopy structure using ground-based remote sensing
Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis
2017-01-01
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...
Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms
Babiloni, Claudio; Del Percio, Claudio; Iacoboni, Marco; Infarinato, Francesco; Lizio, Roberta; Marzano, Nicola; Crespi, Gianluca; Dassù, Federica; Pirritano, Mirella; Gallamini, Michele; Eusebi, Fabrizio
2008-01-01
It is not known whether frontal cerebral rhythms of the two hemispheres are implicated in fine motor control and balance. To address this issue, electroencephalographic (EEG) and stabilometric recordings were simultaneously performed in 12 right-handed expert golfers. The subjects were asked to stand upright on a stabilometric force platform placed at a golf green simulator while playing about 100 golf putts. Balance during the putts was indexed by body sway area. Cortical activity was indexed by the power reduction in spatially enhanced alpha (8–12 Hz) and beta (13–30 Hz) rhythms during movement, referred to as the pre-movement period. It was found that the body sway area displayed similar values in the successful and unsuccessful putts. In contrast, the high-frequency alpha power (about 10–12 Hz) was smaller in amplitude in the successful than in the unsuccessful putts over the frontal midline and the arm and hand region of the right primary sensorimotor area; the stronger the reduction of the alpha power, the smaller the error of the unsuccessful putts (i.e. distance from the hole). These results indicate that high-frequency alpha rhythms over associative, premotor and non-dominant primary sensorimotor areas subserve motor control and are predictive of the golfer's performance. PMID:17947315
Fine Structure of Trious and Excitons in Single GaAs Quantum Dots
2002-08-30
RAPID COMMUNICATIONS PHYSICAL REVIEW B 66, 081310~R! ~2002!Fine structure of trions and excitons in single GaAs quantum dots J. G. Tischler, A. S ...fine structure of single localized excitons and trions. DOI: 10.1103/PhysRevB.66.081310 PACS number~ s !: 78.67.Hc, 73.21.2b, 71.35.2yAlthough the...AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Research Laboratory
Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald
2016-02-01
A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.
Transient re-emergence of oil of turpentine allergy in the pottery industry.
Lear, J T; Heagerty, A H; Tan, B B; Smith, A G; English, J S
1996-09-01
Allergy to oil of turpentine has diminished largely due to the use of cheaper substitutes in many occupations. However, 2 particular areas still reliant on real oil of turpentine are those of the perfume industry and ceramic decoration. We report 24 cases of hand dermatitis in pottery workers involved in ceramic decoration, paintresses, liners, gilders, enamellers and a fine china painter, seen in a 6-month period following a change from Portuguese to Indonesian turpentine, of whom 14 were sensitive to Indonesian turpentine, 8 to alpha-pinene, 4 to delta-3-carene and 2 positive to turpentine peroxides. Previous reports suggest that delta-3-carene is the main allergen and reports of sensitivity to alpha-pinene in the absence of sensitivity to turpentine peroxide, in particular to the hydroperoxide of delta-3-carene, are few. Turpentine allergy continues to be a problem in the pottery industry and is more common than allergy to the heavy metals of the colours used in ceramic decoration. alpha-Pinene, an unusual allergen, appears to be the most common in our area. Reversion to Portuguese turpentine seems to have alleviated the problem.
Miniature Neutron-Alpha Activation Spectrometer
NASA Astrophysics Data System (ADS)
Rhodes, E.; Goldsten, J.
2001-01-01
We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.
Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies.
Villar-Piqué, Anna; Lopes da Fonseca, Tomás; Outeiro, Tiago Fleming
2016-10-01
Parkinson's disease belongs to a group of currently incurable neurodegenerative disorders characterized by the misfolding and accumulation of alpha-synuclein aggregates that are commonly known as synucleinopathies. Clinically, synucleinopathies are heterogeneous, reflecting the somewhat selective neuronal vulnerability characteristic of each disease. The precise molecular underpinnings of synucleinopathies remain unclear, but the process of aggregation of alpha-synuclein appears as a central event. However, there is still no consensus with respect to the toxic forms of alpha-synuclein, hampering our ability to use the protein as a target for therapeutic intervention. To decipher the molecular bases of synucleinopathies, it is essential to understand the complex triangle formed between the structure, function and toxicity of alpha-synuclein. Recently, important steps have been undertaken to elucidate the role of the protein in both physiological and pathological conditions. Here, we provide an overview of recent findings in the field of alpha-synuclein research, and put forward a new perspective over paradigms that persist in the field. Establishing whether alpha-synuclein has a causative role in all synucleinopathies will enable the identification of targets for the development of novel therapeutic strategies for this devastating group of disorders. Alpha-synuclein is the speculated cornerstone of several neurodegenerative disorders known as Synucleinopathies. Nevertheless, the mechanisms underlying the pathogenic effects of this protein remain unknown. Here, we review the recent findings in the three corners of alpha-synuclein biology - structure, function and toxicity - and discuss the enigmatic roads that have accompanied alpha-synuclein from the beginning. This article is part of a special issue on Parkinson disease. © 2015 International Society for Neurochemistry.
Crystal structures of human 108V and 108M catechol O-methyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, K.; Le Trong, I.; Stenkamp, R.E.
2008-08-01
Catechol O-methyltransferase (COMT) plays important roles in the metabolism of catecholamine neurotransmitters and catechol estrogens. The development of COMT inhibitors for use in the treatment of Parkinson's disease has been aided by crystallographic structures of the rat enzyme. However, the human and rat proteins have significantly different substrate specificities. Additionally, human COMT contains a common valine-methionine polymorphism at position 108. The methionine protein is less stable than the valine polymorph, resulting in decreased enzyme activity and protein levels in vivo. Here we describe the crystal structures of the 108V and 108M variants of the soluble form of human COMT boundmore » with S-adenosylmethionine (SAM) and a substrate analog, 3,5-dinitrocatechol. The polymorphic residue 108 is located in the {alpha}5-{beta}3 loop, buried in a hydrophobic pocket {approx}16 {angstrom} from the SAM-binding site. The 108V and 108M structures are very similar overall [RMSD of C{sup {alpha}} atoms between two structures (C{sup {alpha}} RMSD) = 0.2 {angstrom}], and the active-site residues are superposable, in accord with the observation that SAM stabilizes 108M COMT. However, the methionine side chain is packed more tightly within the polymorphic site and, consequently, interacts more closely with residues A22 ({alpha}2) and R78 ({alpha}4) than does valine. These interactions of the larger methionine result in a 0.7-{angstrom} displacement in the backbone structure near residue 108, which propagates along {alpha}1 and {alpha}5 toward the SAM-binding site. Although the overall secondary structures of the human and rat proteins are very similar (C{sup {alpha}} RMSD = 0.4 {angstrom}), several nonconserved residues are present in the SAM-(I89M, I91M, C95Y) and catechol- (C173V, R201M, E202K) binding sites. The human protein also contains three additional solvent-exposed cysteine residues (C95, C173, C188) that may contribute to intermolecular disulfide bond formation and protein aggregation.« less
Non-3D domain swapped crystal structure of truncated zebrafish alphaA crystallin
Laganowsky, A; Eisenberg, D
2010-01-01
In previous work on truncated alpha crystallins (Laganowsky et al., Protein Sci 2010; 19:1031–1043), we determined crystal structures of the alpha crystallin core, a seven beta-stranded immunoglobulin-like domain, with its conserved C-terminal extension. These extensions swap into neighboring cores forming oligomeric assemblies. The extension is palindromic in sequence, binding in either of two directions. Here, we report the crystal structure of a truncated alphaA crystallin (AAC) from zebrafish (Danio rerio) revealing C-terminal extensions in a non three-dimensional (3D) domain swapped, “closed” state. The extension is quasi-palindromic, bound within its own zebrafish core domain, lying in the opposite direction to that of bovine AAC, which is bound within an adjacent core domain (Laganowsky et al., Protein Sci 2010; 19:1031–1043). Our findings establish that the C-terminal extension of alpha crystallin proteins can be either 3D domain swapped or non-3D domain swapped. This duality provides another molecular mechanism for alpha crystallin proteins to maintain the polydispersity that is crucial for eye lens transparency. PMID:20669149
Saito, M; Takenouchi, Y; Kunisaki, N; Kimura, S
2001-05-01
The subunit compositions of skin and muscle type I collagens from rainbow trout were found to be alpha1(I)alpha2(I)alpha3(I) and [alpha1(I)](2)alpha2(I), respectively. The occurrence of alpha3(I) has been observed only for bonyfish. The skin collagen exhibited more susceptibility to both heat denaturation and MMP-13 digestion than the muscle counterpart; the former had a lower denaturation temperature by about 0.5 degrees C than the latter. The lower stability of skin collagen, however, is not due to the low levels of imino acids because the contents of Pro and Hyp were almost constant in both collagens. On the other hand, some cDNAs coding for the N-terminal and/or a part of triple-helical domains of proalpha(I) chains were cloned from the cDNA library of rainbow trout fibroblasts. These cDNAs together with the previously cloned collagen cDNAs gave information about the complete primary structure of type I procollagen. The main triple-helical domain of each proalpha(I) chain had 338 uninterrupted Gly-X-Y triplets consisting of 1014 amino acids and was unique in its high content of Gly-Gly doublets. In particular, the bonyfish-specific alpha(I) chain, proalpha3(I) was characterized by the small number of Gly-Pro-Pro triplets, 19, and the large number of Gly-Gly doublets, 38, in the triple-helical domain, compared to 23 and 22, respectively, for proalpha1(I). The small number of Gly-Pro-Pro and the large number of Gly-Gly in proalpha3(I) was assumed to partially loosen the triple-helical structure of skin collagen, leading to the lower stability of skin collagen mentioned above. Finally, phylogenetic analyses revealed that proalpha3(I) had diverged from proalpha1(I). This study is the first report of the complete primary structure of fish type I procollagen.
Taskinen, Jukka P; Kiema, Tiila R; Hiltunen, J Kalervo; Wierenga, Rik K
2006-01-27
The 1.9 A structure of the C-terminal dehydrogenase part of the rat peroxisomal monomeric multifunctional enzyme type 1 (MFE-1) has been determined. In this construct (residues 260-722 and referred to as MFE1-DH) the N-terminal hydratase part of MFE-1 has been deleted. The structure of MFE1-DH shows that it consists of an N-terminal helix, followed by a Rossmann-fold domain (domain C), followed by two tightly associated helical domains (domains D and E), which have similar topology. The structure of MFE1-DH is compared with the two known homologous structures: human mitochondrial 3-hydroxyacyl-CoA dehydrogenase (HAD; sequence identity is 33%) (which is dimeric and monofunctional) and with the dimeric multifunctional alpha-chain (alphaFOM; sequence identity is 28%) of the bacterial fatty acid beta-oxidation alpha2beta2-multienzyme complex. Like MFE-1, alphaFOM has an N-terminal hydratase part and a C-terminal dehydrogenase part, and the structure comparisons show that the N-terminal helix of MFE1-DH corresponds to the alphaFOM linker helix, located between its hydratase and dehydrogenase part. It is also shown that this helix corresponds to the C-terminal helix-10 of the hydratase/isomerase superfamily, suggesting that functionally it belongs to the N-terminal hydratase part of MFE-1.
A simulation for gravity fine structure recovery from high-low GRAVSAT SST data
NASA Technical Reports Server (NTRS)
Estes, R. H.; Lancaster, E. R.
1976-01-01
Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.
Revisiting place and temporal theories of pitch
2014-01-01
The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292
In situ chemical analyses of extraterrestrial bodies
NASA Technical Reports Server (NTRS)
Economou, Thanasis E.; Turkevich, Anthony L.
1988-01-01
One of the most important tasks on any sample return mission will have to be a quick sample characterization in order to guarantee a variety of collected samples. An alpha particle instrument with alpha, proton and X-ray modes can provide a quick and almost complete chemical analysis of Mars samples. This instrument is based on three interactions of the alpha particles from a radioactive source with matter: elastic scattering of the alpha particles by nuclei (alpha mode), (alpha,p) nuclear reaction with some light elements (proton mode), and excitation of the atomic structure of atoms by alpha particles, leading to emission of characteristic X-rays of the lunar surface at three sites during the Surveyor mission of 1967 to 1968. Since then the instrument has been improved and miniaturized substantially. As shown in the past, the alpha particle instrument can operate under Martian conditions without any degradation in the performance. The alpha and proton modes can provide vital information about the light elements, while the X-ray mode with its ambient temperature X-ray detector will be useful for the heavier elements. The excitation of the atomic structure is provided by the same alpha radioactive source that is used by alpha and proton modes or by an auxiliary X-ray source that is selected to enhance the sensitivity to some important geochemical elements.
Usage of Crushed Concrete Fines in Decorative Concrete
NASA Astrophysics Data System (ADS)
Pilipenko, Anton; Bazhenova, Sofia
2017-10-01
The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of the crushed concrete fines were provided. It is shown that the admixture of the crushed concrete fines has little effect on the colour characteristics of the decorative concrete products. The preferred options to improve the surfaces of decorative concrete are also proposed.
NASA Technical Reports Server (NTRS)
Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.
2012-01-01
Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.
Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina
2014-01-01
A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies. PMID:25078606
Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina
2014-01-01
A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies.
Puliti, R; Mattia, C A; Paduano, L
1998-08-01
The crystallographic study of a new hydrated form of alpha-cyclodextrin (cyclohexaamylose) is reported. C36H60O30 . 11H2O; space group P2(1)2(1)2(1) with cell constants a = 13.839(3), b = 15.398(3), c = 24.209(7) A; final discrepancy index R = 0.057 for the 5182 observed reflections and 632 refined parameters. Besides four ordered water molecules placed outside alpha-cyclodextrins, the structure shows regions of severely disordered solvent mainly confined in the oligosaccharide cavities. The contribution of the observed disorder has been computed via Fourier inversions of the residual electron density and incorporated into the structure factors in further refinements of the ordered part. The alpha-cyclodextrin molecule assumes a relaxed round shape stabilised by a ring sequence of all the six possible O2 ... O3 intramolecular hydrogen bonds. The four ordered water molecules take part in an extensive network of hydrogen bonds (infinite chains and loops) without modifying the scheme of intramolecular H-bonds or the (-)gauche conformation of O-6-H hydroxyl groups. The structure shows a new molecular arrangement, for an "empty" hydrated alpha-cyclodextrin, like that "brick-type" observed for alpha-CD in the iodoanilide trihydrate complex crystallising in an isomorphous cell.
Kanekura, Takuro; Sakuraba, Hitoshi; Matsuzawa, Fumiko; Aikawa, Seiichi; Doi, Hirofumi; Hirabayashi, Yoshio; Yoshii, Noriko; Fukushige, Tomoko; Kanzaki, Tamotsu
2005-01-01
Kanzaki disease (OMIM#104170) is attributable to a deficiency in alpha-N-acetylgalactosaminidase (alpha-NAGA; E.C.3.2.1.49), which hydrolyzes GalNAcalpha1-O-Ser/Thr. Missense mutations, R329W or R329Q were identified in two Japanese Kanzaki patients. Although they are on the same codon, the clinical manifestation was more severe in R329W because an amino acid substitution led to protein instability resulting in structural change, which is greater in R329W than in R329Q. To examine whether the different clinical phenotypes are attributable to the two mutations. Plasma alpha-NAGA activity and urinary excreted glycopeptides were measured and three-dimensional models of human alpha-NAGA and its complexes with GalNAcalpha1-O-Ser and GalNAcalpha1-O-Thr were constructed by homology modeling. Residual enzyme activity was significantly higher in the R329Q- than the R329W mutant (0.022+/-0.005 versus 0.005+/-0.001 nmol/h/ml: p<0.05); the urinary ratios of GalNAcalpha1-O-Ser:GalNAcalpha1-O-Thr were 2:10 and 8:10, respectively. GalNAcalpha1-O-Ser/Thr fit tightly in a narrow space of the active site pocket of alpha-NAGA. GalNAcalpha1-O-Thr requires a larger space to associate with alpha-NAGA because of the side chain (CH3) of the threonine residue. Our findings suggest that the association of alpha-NAGA with its substrates is strongly affected by the amino acid substitution at R329 and that the association with GalNAcalpha1-O-Thr is more highly susceptible to structural changes. The residual mutant enzyme in R329W could not associate with GalNAcalpha1-O-Thr and GalNAcalpha1-O-Ser. However, the residual mutant enzyme in R329Q catalyzed GalNAcalpha1-O-Ser to some extent. Therefore, the urinary ratio of GalNAcalpha1-O-Ser:GalNAcalpha1-O-Thr was lower and the clinical phenotype was milder in the R329Q mutation. Structural analysis revealed biochemical and phenotypic differences in these Kanzaki patients with the R329Q and R329W mutation.
Oresajo, Christian; Yatskayer, Margarita; Hansenne, Isabelle
2008-12-01
Several chemical agents are currently used to perform superficial peels of the face to reduce facial hyperpigmentation and fine lines/wrinkles. Some of the most commonly used agents are alpha hydroxyl acids, such as glycolic acid (GA), or beta hydroxy acid, such as salicylic acid. This study aims to compare the efficacy of GA to that of a novel derivative of salicylic acid, capryloyl salicylic acid (LHA). In a split-face study, 50 female volunteers between the ages of 35 and 60 years with mild to moderate facial hyperpigmentation and fine lines/wrinkles were randomized and LHA or GA peel was applied to one side of the face. Increasing peel concentrations were applied (5-10% LHA or 20-50% GA) based on the tolerance level of the subjects and clinical observations of an expert dermatologist for 12 weeks at biweekly intervals. Of the 44 volunteers who completed the study, at 12 weeks 41% of LHA-treated and 30% of GA-treated subjects demonstrated significant reduction of fine lines/wrinkles compared to baseline. Forty-six percent of LHA-treated subjects and 34% of GA-treated subjects showed significant reduction of hyperpigmentation compared to baseline. LHA treatment was better than GA peels, although there were no statistically significant differences between the two groups. Five percent to 10% of LHA peel is generally safe and as effective as 20-50% GA peel in reducing facial hyperpigmentation and fine lines/wrinkles.
NASA Technical Reports Server (NTRS)
Dietz, Nikolaus; Bachmann, Klaus J.
1995-01-01
This paper describes the results of real-time optical monitoring of epitaxial growth processes by p-polarized reflectance spectroscopy (PRS) using a single wavelength application under pulsed chemical beam epitaxy (PCBE) condition. The high surface sensitivity of PRS allows the monitoring of submonolayer precursors coverage on the surface as shown for GaP homoepitaxy and GaP on Si heteroepitaxy as examples. In the case of heteroepitaxy, the growth rate and optical properties are revealed by PRS using interference oscillations as they occur during growth. Super-imposed on these interference oscillations, the PRS signal exhibits a fine structure caused by the periodic alteration of the surface chemistry by the pulsed supply of chemical precursors. This fine structure is modeled under conditions where the surface chemistry cycles between phosphorus supersaturated and phosphorus depleted surfaces. The mathematical model describes the fine structure using a surface layer that increases during the tertiarybutyl phosphine (TBP) supply and decreases during and after the triethylgallium (TEG) pulse, which increases the growing GaP film thickness. The imaginary part of the dielectric function of the surface layer is revealed from the turning points in the fine structure, where the optical response to the first precursor pulse in the cycle sequence changes sign. The amplitude of the fine structure is determined by the surface layer thickness and the complex dielectric functions for the surface layer with the underlying bulk film. Surface kinetic data can be obtained by analyzing the rise and decay transients of the fine structure.
Arima, Hidetoshi; Danno, Gen-ichi
2002-08-01
Four antibacterial compounds were isolated from leaves of guava (Psidium guajava L.), and the structures of these compounds were established on the basis of chemical and spectroscopic evidence. Two new flavonoid glycosides, morin-3-O-alpha-L-lyxopyranoside and morin-3-O-alpha-L-arabopyranoside, and two known flavonoids, guaijavarin and quercetin, were identified. The minimum inhibition concentration of morin-3-O-alpha-L-lyxopyranoside and morin-3-O-alpha-L-arabopyranoside was 200 microg/ml for each against Salmonella enteritidis, and 250 microg/ml and 300 microg/ml against Bacillus cereus, respectively.
Characterization of heterotrimeric collagen molecules in a sea-pen (Cnidaria, Octocorallia).
Tillet-Barret, E; Franc, J M; Franc, S; Garrone, R
1992-01-15
The collagen of a primitive invertebrate, the sea-pen Veretillum Cnidaria, Octocorallia), was studied with respect to its molecular-chain composition. The soft extracellular tissues (mesoglea) were solubilized by limited pepsin proteolysis and the collagen was isolated by selective precipitation at 0.7 M NaCl under acidic conditions. The pepsinized molecules were 260 nm in length, as demonstrated by electron microscope studies of rotary-shadowed molecules and of the segment-long-spacing crystallites obtained by dialysis against ATP. SDS/PAGE of the extract produced two main bands susceptible to bacterial collagenase, designated as the alpha 1 and alpha 2 chain, which were differentiated clearly by their CNBr cleavage products and the higher glycosylation rate of the alpha 2 chain. The latter finding corresponds with the high hydroxylysine content of the alpha 2 chain. The alpha 1/alpha 2 chain ratio observed in SDS/PAGE and the fact that only one peak was obtained by concanavalin-A affinity chromatography of a non-denatured 0.7 M NaCl extract demonstrate the alpha 1 [alpha 2]2 molecular structure of this collagen. These results contrast with data on the structure of other coelenterates (i.e. [alpha]3 for sea anemone collagen molecules and alpha 1 alpha 2 alpha 3 for jellyfish collagen molecules). They are discussed in relation to the evolution of collagen.
Wang, Meng; Ford, Roseanne M
2009-08-01
The significance of chemotaxis in directing bacterial migration toward contaminants in natural porous media was investigated under groundwater flow conditions. A laboratory-scale column, with a coarse-grained sand core surrounded by a fine-grained annulus, was used to simulate natural aquifers with strata of different hydraulic conductivities. A chemoattractant source was placed along the central axis of the column to model contaminants trapped in the heterogeneous subsurface. Chemotactic bacterial strains, Escherichia coli HCB1 and Pseudomonas putida F1, introduced into the column by a pulse injection, were found to alter their transport behaviors under the influence of the attractant chemical emanating from the central source. For E. coil HCB1, approximately 18% more of the total population relative to the control without attractant exited the column from the coarse sand layer due to the chemotactic effects of alpha-methylaspartate under an average fluid velocity of 5.1 m/d. Although P. putida F1 demonstrated no observable changes in migration pathways with the model contaminant acetate under the same flow rate, when the flow rate was reduced to 1.9 m/d, approximately 6-10% of the population relative to the control migrated from the fine sand layer toward attractant into the coarse sand layer. Microbial transport properties were further quantified by a mathematical model to examine the significance of bacterial motility and chemotaxis under different hydrodynamic conditions, which suggested important considerations for strain selection and practical operation of bioremediation schemes.
Bandyopadhyay, Sanjay; Muneyuki, Eiro; Allison, William S
2005-02-22
In the MF(1) crystal structure with the MgADP-fluoroaluminate complex bound to two catalytic sites [Menz, R. I., Walker, J. E., and Leslie, A. G. W. (2001) Cell 106, 331-341], the guanidinium of betaR(337) is within 2.9 A of the alpha-oxygen of alphaS(370) and 3.7 A of a methyl group of alphaV(371) at the alpha(E)-beta(HC) interface. To examine the functional role of this contact, the (alphaV(371)C)(3)(betaR(337)C)(3)gamma subcomplex of the TF(1)-ATPase was prepared and characterized. Steady state ATPase activity of the reduced double-mutant is 30% of that of the wild type. Inactivation of the double mutant containing empty catalytic sites or MgADP bound to one catalytic site with CuCl(2) cross-linked two alpha-beta pairs, whereas a single alpha-beta pair cross-linked when at least two catalytic sites contained MgADP. The reduced double mutant hydrolyzed substoichiometric ATP 100-fold more rapidly than the enzyme containing two cross-linked alpha-beta pairs. Addition of AlCl(3) and NaF to the reduced double mutant after incubation with stoichiometric MgADP or 200 microM MgADP irreversibly inactivated the steady state ATPase activity with rate constants of 1.5 x10(-2) and 4.1 x 10(-2) min(-1), respectively. In contrast, addition of AlCl(3) and NaF to the cross-linked enzyme after incubation with stoichiometric or 200 microM MgADP irreversibly inactivated ATPase activity with a common rate constant of approximately 10(-4) min(-1). Correlation of these results with crystal structures of MF(1) suggests that the catalytic site at the alpha(TP)-beta(TP) interface is loaded first upon addition of nucleotides to nucleotide-depleted F(1)-ATPases and that the catalytic site at the alpha(TP)-beta(TP) interface with bound MgADP in crystal structures represents a catalytic site containing inhibitory MgADP.
The Oasis impact structure, Libya: geological characteristics from ALOS PALSAR-2 data interpretation
NASA Astrophysics Data System (ADS)
van Gasselt, Stephan; Kim, Jung Rack; Choi, Yun-Soo; Kim, Jaemyeong
2017-02-01
Optical and infrared remote sensing may provide first-order clues for the identification of potential impact structures on the Earth. Despite the free availability of at least optical image data at highest resolution, research has shown that remote sensing analysis always remains inconclusive and extensive groundwork is needed for the confirmation of the impact origin of such structures. Commonly, optical image data and digital terrain models have been employed mainly for such remote sensing studies of impact structures. With the advent of imaging radar data, a few excursions have been made to also employ radar datasets. Despite its long use, capabilities of imaging radar for studying surface and subsurface structures have not been exploited quantitatively when applied for the identification and description of such features due to the inherent complexity of backscatter processes. In this work, we make use of higher-level derived radar datasets in order to gain clearer qualitative insights that help to describe and identify potential impact structures. We make use of high-resolution data products from the ALOS PALSAR-1 and ALOS PALSAR-2 L-band sensors to describe the heavily eroded Oasis impact structure located in the Libyan Desert. While amplitude radar data with single polarization have usually been utilized to accompany the suite of remote sensing datasets when interpreting impact structures in the past, we conclude that the integration of amplitude data with HH/HV/HH-HV polarization modes in standard and, in particular, in Ultra-Fine mode, as well as entropy-alpha decomposition data, significantly helps to identify and discriminate surface units based on their consolidation. Based on the overarching structural pattern, we determined the diameter of the eroded Oasis structure at 15.6 ± 0.5 km.
Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates
Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz
2014-01-01
Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...
NASA Astrophysics Data System (ADS)
Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin
2015-04-01
The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.
Aghajari, N.; Feller, G.; Gerday, C.; Haser, R.
1998-01-01
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase. PMID:9541387
Abe, Fumiko; Nagafuji, Shinya; Okawa, Masafumi; Kinjo, Junei
2006-08-01
Further study of the methanol extract of the aerial parts of Physalis angulata (Solanaceae) resulted in the isolation of new withanolides, designated physagulins L, M and N, together with known withanolide, physagulin D and flavonol glycoside, quercetin 3-O-rhamnosyl-(1-->6)-galactoside. The chemical structures of these new withanolides were elucidated by detailed spectroscopic analyses to be (20R,22R)-15alpha-acetoxy-5alpha,6beta,14beta,17beta,27-pentahydroxy-1-oxo-witha-2, 24-dienolide, (20S,22S)-15alpha-acetoxy-5alpha,6beta,14alpha,23beta-tetrahydroxy-1-oxo-witha-2,16,24-trienolide and (20S,22R)-15alpha-acetoxy-5beta,6beta-epoxy-14alpha-hydoxy-3beta-methoxy-1-oxo-witha-16,24-dienolide, respectively. All these compounds showed weak trypanocidal activity against trypomastigotes, an infectious form of Trypanosoma cruzi, the etiologic agent for Chagas' disease. Withanolides obtained in the previous paper showed considerable trypanocidal activity, suggesting the structure-activity relationships.
Makeyev, A V; Chkheidze, A N; Liebhaber, S A
1999-08-27
Gene families normally expand by segmental genomic duplication and subsequent sequence divergence. Although copies of partially or fully processed mRNA transcripts are occasionally retrotransposed into the genome, they are usually nonfunctional ("processed pseudogenes"). The two major cytoplasmic poly(C)-binding proteins in mammalian cells, alphaCP-1 and alphaCP-2, are implicated in a spectrum of post-transcriptional controls. These proteins are highly similar in structure and are encoded by closely related mRNAs. Based on this close relationship, we were surprised to find that one of these proteins, alphaCP-2, was encoded by a multiexon gene, whereas the second gene, alphaCP-1, was identical to and colinear with its mRNA. The alphaCP-1 and alphaCP-2 genes were shown to be single copy and were mapped to separate chromosomes. The linkage groups encompassing each of the two loci were concordant between mice and humans. These data suggested that the alphaCP-1 gene was generated by retrotransposition of a fully processed alphaCP-2 mRNA and that this event occurred well before the mammalian radiation. The stringent structural conservation of alphaCP-1 and its ubiquitous tissue distribution suggested that the retrotransposed alphaCP-1 gene was rapidly recruited to a function critical to the cell and distinct from that of its alphaCP-2 progenitor.
Hartree-Fock and density functional theory study of alpha-cyclodextrin conformers.
Jiménez, Verónica; Alderete, Joel B
2008-01-31
Herein, we report the geometry optimization of four conformers of alpha-cyclodextrin (alpha-CD) by means of PM3, HF/STO-3G, HF/3-21G, HF/6-31G(d), B3LYP/6-31G(d), and X3LYP/6-31G(d) calculations. The analysis of several geometrical parameters indicates that all conformers possess bond lengths, angles, and dihedrals that agree fairly well with the crystalline structure of alpha-CD. However, only three of them (1-3) resemble the polar character of CDs and show intramolecular hydrogen-bonding patterns that agree with experimental NMR data. Among them, conformer 3 appears to be the most stable species both in the gas phase and in solution; therefore, it is expected to be the most suitable representative structure for alpha-CD conformation. The purpose of selecting such a species is to identify an appropriate structure to be employed as a starting point for reliable computational studies on complexation phenomena. Our results indicate that the choice of a particular alpha-CD conformer should affect the results of ab initio computational studies on the inclusion complexation with this cyclodextrin since both the direction and the magnitude of the dipole moment depend strongly on the conformation of alpha-CD.
Free Energy and Structure of Helix-forming Peptides: A Theoretical Investigation
NASA Astrophysics Data System (ADS)
Karpusenka, Vadzim
This thesis focuses on the structure and free energy of helical secondary structures of short peptides in a variety of experimental settings. Specifically, the formation of alpha-, pi- and 310-helices was investigated using large-scale classical molecular dynamics simulations with state-of-the-art force fields. In addition, the recently developed Adaptively Biased Molecular Dynamics (ABMD) and Steered Molecular Dynamics (SMD) methods were used to calculate the corresponding free energies. The most important results are as follows. For the examined peptide homopolymers, the observed minima on the free energy landscapes (based on suitable collective variables such as the radius of gyration, number of hydrogen bonds, and handedness) were associated with alpha-helices and "globular" or "knot-like" configurations only. No evidence was found to indicate that 310- or pi-helices represent equilibrium structures for these systems. In addition, the free energy landscape of short peptide chains formed by mixing two different amino acids were also examined. These results too indicate that the alpha-helix is only equilibrium helical secondary structure, and that the mixing of different amino acids does not result in the introduction of any significant new minima into the free energy landscapes. These results are in agreement with experimental observations insofar as these indicate that helical structural motifs are primary based on alpha-helices, with 310- and pi-helices being observed only rarely. Although pi- and 310-helices represent nonequilibrium structures, we were still able to estimate their free energies by means of SMD simulations. The helical secondary structure of the examined polypeptide chains is due to the formation of hydrogen bonds. However, there are other mechanisms that may allow for the additional stabilization of these structures. Specifically, in the so-called AK-(4,7) protein, the possible presence of disulfide bonds connecting cysteine residues may significantly alter the free energy landscapes and therefore the stability of different helical structures. We therefore examined this issue with ABMD simulations. However, our results show that while the free energy landscapes are indeed significantly altered only the formation of alpha-helices is favored as a secondary structural motif. Since all the results indicate that alpha-helix formation dominates, it is natural to think in terms of an alpha-helix forming propensity for different amino acids. To address this question, we carried out an extensive residue-by-residue population analysis of different amino acid guests in an alanine-based host setting. Such an analysis allows us to rank the different amino acid guests based on whether they increased or decreased the population in the alpha-helix region of the corresponding Ramachandran plots. Our ranking of the different guest amino acids is in reasonable correspondence with the experimental results, although some differences are observed. Finally, using a four-beads coarse-grained model were have investigated the stability of GA88 and GB88 proteins, which are quite similar in terms of their amino acid sequence, by means of 10mus simulations. The results indicate that while the three alpha-helix bundle of the GA88 protein remains stable, the 2beta--alpha--2beta configuration of the GB88 protein does not: the latter rapidly converts to a structure consisting mostly of helices similar to the GA88 protein design. These results indicate that this particular four-bead coarse-grained model is not able to properly grasp the dynamics of the beta-sheet secondary structure and overstabilizes the corresponding helical content.
Collisional excitation of CH2 rotational/fine-structure levels by helium
NASA Astrophysics Data System (ADS)
Dagdigian, P. J.; Lique, F.
2018-02-01
Accurate determination of the abundance of CH2 in interstellar media relies on both radiative and collisional rate coefficients. We investigate here the rotational/fine-structure excitation of CH2 induced by collisions with He. We employ a recoupling technique to generate fine-structure-resolved cross-sections and rate coefficients from close coupling spin-free scattering calculations. The calculations are based on a recent, high-accuracy CH2-He potential energy surface computed at the coupled clusters level of theory. The collisional cross-section calculations are performed for all fine-structure transitions among the first 22 and 24 energy levels of ortho- and para-CH2, respectively, and for temperatures up to 300 K. As a first application, we simulate the excitation of CH2 in typical molecular clouds. The excitation temperatures of the CH2 lines are found to be small at typical densities of molecular clouds, showing that the non-local thermodynamic equilibrium approach has to be used to analyse interstellar spectra. We also found that the fine-structure lines connected with the 404 - 313 and 505 - 414 rotational transitions show possible maser emissions so that they can be easily seen in emission. These calculations show that CH2 may have to be detected mainly through absorption spectra.
Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1994-01-01
Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are identified. Empirically, the observed fine structures appear very similar to those in split bnad and multiple-lane type II solar radio bursts; interpretation of both these type II fine structures in terms of f(sub ce)/2 splitting is suggested, thereby supporting and generalizing a suggestion by Wild (1950). A possible application to continuum radiation is mentioned. The ubiquity of these fine structures in the Earth's f(sub p) radiation and foreshock waves remains unknown. Only the ISEE 1 wideband receiver has sufficient frequency resolution (approximately less than or equal to 100 Hz) to perform a dedicated search. Further study of the ubiquity of these fine structures, of how reliably the splitting corresponds to f(sub ce)/2, and of the other interpretations above is necessary.
Chudinova, V V; Zakharova, E I; Alekseev, S M; Chupin, V V; Evstigneeva, R P
1993-02-01
Interaction of alpha-tocopherol with phospholipids, oleic, ricinoleic acids and linoleic acid hydroperoxides was investigated by means of 31P NMR spectroscopy on a model artificial membranes containing egg phosphatidylcholine and lysophosphatidylcholine. alpha-Tocopherol was shown to support the bilayer organization of lysophospholipids, whereas its introduction into the lecithin-water system stimulated the hexagonal phase formation. Free fatty acids exhibited a synergism to alpha-tocopherol, the effect of the hexagonal phase formation being at most increased by oxygenated acids--ricinoleic acid and linoleic acid hydroperoxides. In accordance with the experimental data, a conclusion about modifying and structuring action of alpha-tocopherol was made. Origin of the alpha-tocopherol's modulating effect on the membrane structure and a possible role of hexagonal phase forming upon its action in the course of peroxidation of lipids was discussed.
Structural Basis for Hormone Recognition by the Human CRFR2[alpha] G Protein-coupled Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Kuntal; Swaminathan, Kunchithapadam; Xu, H. Eric
2012-05-09
The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2{alpha} isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2{alpha} ECD bound to each of the Ucn peptides.more » The CRFR2{alpha} ECD forms the same fold observed for the CRFR1 and mouse CRFR2{beta} ECDs but contains a unique N-terminal {alpha}-helix formed by its pseudo signal peptide. The CRFR2{alpha} ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the {alpha}-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2{alpha} Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.« less
Characterization and functional analyses of a novel chicken CD8a variant X1 (CD8a1)
USDA-ARS?s Scientific Manuscript database
We provide the first description of cloning, as well as structural and functional analysis of a novel variant in the chicken CD8alpha family, termed the CD8-alpha X1 (CD8alpha1) gene. Multiple alignment of CD8alpha1 with known CD8alpha and beta sequences of other species revealed relatively low con...
Xanthanolides and xanthane epoxide derivatives from Xanthium strumarium.
Mahmoud, A A
1998-12-01
From the aerial parts of Xanthium strumarium, three new xanthanolide and xanthane-type sesquiterpenoids, 11alpha,13-dihydroxanthatin, 4beta,5beta-epoxyxanthatin-1alpha,4alpha-endoperoxide, and 1beta,4beta,4alpha,5alpha-diepoxyxanth-11(13)-en-12-oic acid have been isolated, together with seven known compounds. The structures were determined by spectroscopic methods, particularly high resolution 1D, 2D NMR spectroscopy and NOE experiments.
Molecular cloning and characterization of an alpha-amylase from Pichia burtonii 15-1.
Kato, Saemi; Shimizu-Ibuka, Akiko; Mura, Kiyoshi; Takeuchi, Akiko; Tokue, Chiyoko; Arai, Soichi
2007-12-01
An alpha-amylase secreted by Pichia burtonii 15-1 isolated from a traditional starter murcha of Nepal, named Pichia burtonii alpha-amylase (PBA), was studied. The gene was cloned and its nucleotide sequence was determined. PBA was deduced to consist of 494 amino acid residues. It shared certain degrees of amino acid sequence identity with other homologous proteins: 60% with Schwanniomyces occidentalis alpha-amylase, 58% with Saccharomycopsis sp. alpha-amylase, and 47% with Taka-amylase A from Aspergillus oryzae. A three-dimensional structural model of PBA generated using the known three-dimensional structure of Taka-amylase A as a template suggested high structural similarity between them. Kinetic analysis revealed that the K(m) values of PBA were lower than those of Taka-amylase A for the oligosaccharides. Although the k(cat) values of PBA were lower than those of Taka-amylase A for the oligosaccharide substrates, the k(cat)/K(m) values of PBA were higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Rui; McBride, Ryan; Nycholat, Corwin M.
2012-02-13
Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only formore » {alpha}2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For {alpha}2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with {alpha}2-6- and {alpha}2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for {alpha}2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.« less
Woolf, T B
1997-11-01
Understanding the role of the lipid bilayer in membrane protein structure and dynamics is needed for tertiary structure determination methods. However, the molecular details are not well understood. Molecular dynamics computer calculations can provide insight into these molecular details of protein:lipid interactions. This paper reports on 10 simulations of individual alpha-helices in explicit lipid bilayers. The 10 helices were selected from the bacteriorhodopsin structure as representative alpha-helical membrane folding components. The bilayer is constructed of dimyristoyl phosphatidylcholine molecules. The only major difference between simulations is the primary sequence of the alpha-helix. The results show dramatic differences in motional behavior between alpha-helices. For example, helix A has much smaller root-mean-squared deviations than does helix D. This can be understood in terms of the presence of aromatic residues at the interface for helix A that are not present in helix D. Additional motions are possible for the helices that contain proline side chains relative to other amino acids. The results thus provide insight into the types of motion and the average structures possible for helices within the bilayer setting and demonstrate the strength of molecular simulations in providing molecular details that are not directly visualized in experiments.
The Molecular Dynamics Study of the Structural Conversions in the Transformer Protein RfaH
NASA Astrophysics Data System (ADS)
Gc, Jeevan; Gerstman, Bernard; Chapagain, Prem
Recently, a class of multi-domain proteins such as RfaH transcription factor are labelled as the transformer proteins as they undergo major conformational transformation for performing multiple functions. In the absence of the inter-domain contacts, the C-terminal domain of RfaH transforms from its alpha-helix conformation to a beta-barrel structure. Each of these states have their own functional role: in its alpha-helx state, RfaH-CTD inhibits the transcription by masking the binding site of RNAP, but in its beta state it facilitates the translation. We used various molecular dynamics simulations to study its transformer-like behavior of full-RfaH and identified key amino acid residues that are important in modulating such behavior. Our results show that the inter domain interactions constitute the major barrier in the alpha-helix to beta-barrel conversion. Once the interfacial interactions are broken, structural conversion is easier. The structural conversion from beta-barrel to alpha-helix proceeds with the rearrangement of the hydrophobic residues followed by the inter domain contacts formation via non-native, transient salt-bridge formation, leading to the formation of the native inter domain salt-bridge and hydrophobic contacts to give the final alpha-helix structure.
Armen, Roger S; DeMarco, Mari L; Alonso, Darwin O V; Daggett, Valerie
2004-08-10
Transthyretin, beta(2)-microglobulin, lysozyme, and the prion protein are four of the best-characterized proteins implicated in amyloid disease. Upon partial acid denaturation, these proteins undergo conformational change into an amyloidogenic intermediate that can self-assemble into amyloid fibrils. Many experiments have shown that pH-mediated changes in structure are required for the formation of the amyloidogeneic intermediate, but it has proved impossible to characterize these conformational changes at high resolution using experimental means. To probe these conformational changes at atomic resolution, we have performed molecular dynamics simulations of these proteins at neutral and low pH. In low-pH simulations of all four proteins, we observe the formation of alpha-pleated sheet secondary structure, which was first proposed by L. Pauling and R. B. Corey [(1951) Proc. Natl. Acad. Sci. USA 37, 251-256]. In all beta-sheet proteins, transthyretin and beta(2)-microglobulin, alpha-pleated sheet structure formed over the strands that are highly protected in hydrogen-exchange experiments probing amyloidogenic conditions. In lysozyme and the prion protein, alpha-sheets formed in the specific regions of the protein implicated in the amyloidogenic conversion. We propose that the formation of alpha-pleated sheet structure may be a common conformational transition in amyloidosis.
Novembre, Giacomo; Sammler, Daniela; Keller, Peter E
2016-08-01
Shared knowledge and interpersonal coordination are prerequisites for most forms of social behavior. Influential approaches to joint action have conceptualized these capacities in relation to the separate constructs of co-representation (knowledge) and self-other entrainment (coordination). Here we investigated how brain mechanisms involved in co-representation and entrainment interact to support joint action. To do so, we used a musical joint action paradigm to show that the neural mechanisms underlying co-representation and self-other entrainment are linked via a process - indexed by EEG alpha oscillations - regulating the balance between self-other integration and segregation in real time. Pairs of pianists performed short musical items while action familiarity and interpersonal (behavioral) synchronization accuracy were manipulated in a factorial design. Action familiarity referred to whether or not pianists had rehearsed the musical material performed by the other beforehand. Interpersonal synchronization was manipulated via congruent or incongruent tempo change instructions that biased performance timing towards the impending, new tempo. It was observed that, when pianists were familiar with each other's parts, millisecond variations in interpersonal synchronized behavior were associated with a modulation of alpha power over right centro-parietal scalp regions. Specifically, high behavioral entrainment was associated with self-other integration, as indexed by alpha suppression. Conversely, low behavioral entrainment encouraged reliance on internal knowledge and thus led to self-other segregation, indexed by alpha enhancement. These findings suggest that alpha oscillations index the processing of information about self and other depending on the compatibility of internal knowledge and external (environmental) events at finely resolved timescales. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shuba, Roman
The aim of this thesis was to improve the mechanical properties of Y-alpha-SiAlON ceramics by controlling microstructure and tailoring grain boundary composition. Three properties of importance for engineering applications were targeted: strength retention and oxidation resistance at high temperature, fracture toughness at room temperature, and machinability. As a result of this work, several ceramics with one or more of the above properties optimized have been developed. The performance of Si3N4/SiAlON-based ceramics at high (>1000 degree C) temperature is generally limited by the softening of grain-boundary glass. Refractory alpha-SiAlONs was obtained by three methods: reducing residual liquid by minimizing nitride powder oxidation during processing, promoting liquid/SiAlON conversion by adding excess AlN, and improving refractoriness by incorporating La2O3 into glass. Ceramics thus, obtained featured excellent room-temperature strength (1050 MPa) and high-temperature strength (650 MPa at 1300 degree C), as well as good oxidation resistance. In all cases grain growth was inhibited, which resulted in a relatively low toughness (5--7 MPa x m1/2). In-situ toughened Y-alpha-SiAlON (9 MPa x m1/2) was obtained through growth of large elongated grains with low debonding strength. This was achieved by introducing seed crystals to the starting powder mixtures, in addition to using sintering aids and dopants. Additives modified the properties of grain boundary glass, while dopants lowered the strength of glass/grain interface. Through the use of nanosized turbostratic BN precursor obtained via pyrolysis of melamine borate salt, which yielded finely dispersed hexagonal BN particles in alpha-SiAlON, high-strength (800 MPa) Y-alpha-SiAlON/BN composites, machinable using WC/Co tools, were also fabricated.
Immune-endocrine interactions in the mammalian adrenal gland: facts and hypotheses.
Nussdorfer, G G; Mazzocchi, G
1998-01-01
Several cytokines, which are the major mediators of the inflammatory responses, are well-known to stimulate the hypothalamopituitary corticotropin-releasing hormone (CRH)/adrenocorticotropic hormone (ACTH) system, thereby evoking secretory responses by the adrenal cortex. Many of these cytokines, including interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (INF-gamma) are synthesized in the adrenal gland by both parenchymal cells and resident macrophages, and the release of some of them (e.g., IL-6 and TNF-alpha) is regulated by the main agonists of steroid hormone secretion (e.g., ACTH and angiotensin-II) and bacterial endotoxins. Adrenocortical and adrenomedullary cells are provided with specific receptors for IL-1, IL-2, and IL-6. IL-1 and TNF-alpha directly inhibit aldosterone secretion of zona glomerulosa cells, whereas IL-6 enhances it. IL-2, IL-3, IL-6, and INF-alpha are able to directly stimulate glucocorticoid production by zona fasciculata and zona reticularis cells, whereas IL-1 exerts an analogous effect through an indirect mechanism involving the stimulation of catecholamine release by chromaffin cells and/or the activation of the intramedullary CRH/ACTH system; again, TNF-alpha depresses glucocorticoid synthesis. IL-6 raises androgen secretion by inner adrenocortical layers. IL-1 enhances the proliferation of adrenocortical cells, and findings suggest that cytokines may control the apoptotic deletion of senescent zona reticularis cells. The relevance of the intraadrenal cytokine system in the fine-tuning of the secretion and growth of the adrenal cortex under normal conditions remains to be explored. However, indirect proof is available that local immune-endocrine interactions may play an important role in modulating adrenal responses to inflammatory and immune challenges and stresses.
Mateo, Jesús; García-Lecea, Marta; Cadenas, Susana; Hernández, Carlos; Moncada, Salvador
2003-01-01
Nitric oxide (NO) has been reported both to promote and to inhibit the activity of the transcription factor hypoxia-inducible factor-1 (HIF-1). In order to avoid the pitfalls associated with the use of NO donors, we have developed a human cell line (Tet-iNOS 293) that expresses the inducible NO synthase (iNOS) under the control of a tetracycline-inducible promoter. Using this system to generate finely controlled amounts of NO, we have demonstrated that the stability of the alpha-subunit of HIF-1 is regulated by NO through two separate mechanisms, only one of which is dependent on a functional respiratory chain. HIF-1alpha is unstable in cells maintained at 21% O(2), but is progressively stabilized as the O(2) concentration decreases, resulting in augmented HIF-1 DNA-binding activity. High concentrations of NO (>1 microM) stabilize HIF-1alpha at all O(2) concentrations tested. This effect does not involve the respiratory chain, since it is preserved in cells lacking functional mitochondria (rho(0)-cells) and is not reproduced by other inhibitors of the cytochrome c oxidase. By contrast, lower concentrations of NO (<400 nM) cause a rapid decrease in HIF-1alpha stabilized by exposure of the cells to 3% O(2). This effect of NO is dependent on the inhibition of mitochondrial respiration, since it is mimicked by other inhibitors of mitochondrial respiration, including those not acting at cytochrome c oxidase. We suggest that, although stabilization of HIF-1alpha by high concentrations of NO might have implications in pathophysiological processes, the inhibitory effect of lower NO concentrations is likely to be of physiological relevance. PMID:14531732
High Resolutions Studies of the Structure of the Solar Atmosphere
1992-06-30
Pairs in the Solar Wind", submitted to J. Geophys. Res., July 20, 1992. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of Active...Regions", manuscript in preparation. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of the Solar Limb in a Coronal Hole", manuscript in
Deborah L. Rogers; Constance I. Millar; Robert D. Westfall
1999-01-01
The fine-scale genetic structure of a subalpine conifer, whitebark pine (Pinus albicaulis Engelm.), was studied at nested geographic levels from watershed to adjacent stems in the eastern Sierra Nevada Range of California. A combination of several characteristics contributed to unpredicted genetic structure in this species. This includes being one of...
McInnes, C; Hoyt, D W; Harkins, R N; Pagila, R N; Debanne, M T; O'Connor-McCourt, M; Sykes, B D
1996-12-13
The study of human transforming growth factor-alpha (TGF-alpha) in complex with the epidermal growth factor (EGF) receptor extracellular domain has been undertaken in order to generate information on the interactions of these molecules. Analysis of 1H NMR transferred nuclear Overhauser enhancement data for titration of the ligand with the receptor has yielded specific data on the residues of the growth factor involved in contact with the larger protein. Significant increases and decreases in nuclear Overhauser enhancement cross-peak intensity occur upon complexation, and interpretation of these changes indicates that residues of the A- and C-loops of TGF-alpha form the major binding interface, while the B-loop provides a structural scaffold for this site. These results corroborate the conclusions from NMR relaxation studies (Hoyt, D. W., Harkins, R. N., Debanne, M. T., O'Connor-McCourt, M., and Sykes, B. D. (1994) Biochemistry 33, 15283-15292), which suggest that the C-terminal residues of the polypeptide are immobilized upon receptor binding, while the N terminus of the molecule retains considerable flexibility, and are consistent with structure-function studies of the TGF-alpha/EGF system indicating a multidomain binding model. These results give a visualization, for the first time, of native TGF-alpha in complex with the EGF receptor and generate a picture of the ligand-binding site based upon the intact molecule. This will undoubtedly be of utility in the structure-based design of TGF-alpha/EGF agonists and/or antagonists.
Germann, Matthias; Willitsch, Stefan
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.
Tanaka, Masafumi; Dhanasekaran, Padmaja; Nguyen, David; Ohta, Shinya; Lund-Katz, Sissel; Phillips, Michael C; Saito, Hiroyuki
2006-08-29
The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.
Ultrastructural studies of human and rabbit alpha-M-globulins.
Bloth, B; Chesebro, B; Svehag, S E
1968-04-01
Electron micrographs of isolated human alpha(2)M-molecules, obtained by the negative contrast technique, revealed morphologically homogenous structures resembling a graceful monogram of the two letters H and I. The modal values for the length and width of the alpha(2)M particles were 170 A and 100 A, respectively. Purified rabbit alphamacroglobulins contained about 80% alpha(1)M- and 20% alpha(2)M-globulins. The isolated rabbit alpha(1)M- and alpha(2)M-molecules were morphologically indistinguishable from one another and from human alpha(2)M-molecules. Preliminary immunoprecipitation studies demonstrated that the two rabbit alphaM-globulins were antigenically different. Sedimentation constant determinations gave s(20, w) values of 18.8 and 18.2 for rabbit alpha(1)M and alpha(2)M, respectively.
Ishiguro, Kazuhiro; Ando, Takafumi; Watanabe, Osamu; Goto, Hidemi
2008-10-15
6-Shogaol and 6-gingerol are ginger components with similar chemical structures. However, while 6-shogaol damages microtubules, 6-gingerol does not. We have investigated the molecular mechanism of 6-shogaol-induced microtubule damage and found that the action of 6-shogaol results from the structure of alpha,beta-unsaturated carbonyl compounds. alpha,beta-Unsaturated carbonyl compounds such as 6-shogaol react with sulfhydryl groups of cysteine residues in tubulin, and impair tubulin polymerization. The reaction with sulfhydryl groups depends on the chain length of alpha,beta-unsaturated carbonyl compounds. In addition, alpha,beta-unsaturated carbonyl compounds are more reactive with sulfhydryl groups in tubulin than in 2-mercaptoethanol, dithiothreitol, glutathione and papain, a cysteine protease.
Stacey, Paula C.; Kitterick, Pádraig T.; Morris, Saffron D.; Sumner, Christian J.
2017-01-01
Understanding what is said in demanding listening situations is assisted greatly by looking at the face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this visual information when a talker's voice is presented in background noise. These benefits have also been observed in quiet listening conditions in cochlear-implant users, whose device does not convey the informative temporal fine structure cues in speech, and when normal-hearing individuals listen to speech processed to remove these informative temporal fine structure cues. The current study (1) characterised the benefits of visual information when listening in background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when speech is presented with or without informative temporal fine structure. The accuracy with which normal-hearing individuals reported words in spoken sentences was assessed across three experiments. The availability of visual information and informative temporal fine structure cues was varied within and across the experiments. The results showed that visual benefit was observed using open- and closed-set tests of speech perception. The size of the benefit increased when informative temporal fine structure cues were removed. This finding suggests that visual information may play an important role in the ability of cochlear-implant users to understand speech in many everyday situations. Models of audio-visual integration were able to account for the additional benefit of visual information when speech was degraded and suggested that auditory and visual information was being integrated in a similar way in all conditions. The modelling results were consistent with the notion that audio-visual benefit is derived from the optimal combination of auditory and visual sensory cues. PMID:27085797
Sesquiterpenoids from roots of Taraxacum laevigatum and Taraxacum disseminatum.
Zielińiska, K; Kisiel, W
2000-08-01
Chromatographic separation of ethanolic root extracts of Taraxacum laevigatum and Taraxacum disseminatum afforded a total of eight germacrane- and eudesmane-type sesquiterpenoids. including new compounds, 1beta,3beta,6alpha-trihydroxy-4alpha( 15)-dihydrocostic acid methyl ester and its 1-O-beta-glucopyranoside. Their structures were established by spectroscopic analyses. In addition, the structure of 4alpha(15), 11beta(13)-tetrahydroridentin B-1-O-beta-glucopyranoside was elucidated by extensive NMR studies.
Phase field simulations of autocatalytic formation of alpha lamellar colonies in Ti-6Al-4V
Radhakrishnan, Bala; Gorti, Sarma; Babu, Suresh Sudharsanam
2016-09-13
Here, we present phase field simulations incorporating energy contributions due to thermodynamics, and anisotropic interfacial and strain energies, to demonstrate the nucleation and growth of multiple variants of alpha from beta in Ti-6Al-4V under isothermal conditions. The simulations focused on the effect of thermodynamic driving force and nucleation rate on the morphology of the transformed alpha assuming that the partitioning of V between beta and alpha is negligible for short isothermal holds. The results indicate that a high nucleation rate favors the formation of the basket-weave structure. However, at a lower nucleation rate the simulations show the intragranular nucleation ofmore » a colony structure by an autocatalytic nucleation mechanism adjacent to a pre-existing alpha variant. New side-plates of the same variant appear to nucleate progressively and grow to form the colony. The isothermal simulation results are used to offer a possible explanation for the transition from a largely basket weave structure to a colony structure inside narrow layer bands occurring during continuous heating and cooling conditions encountered during laser additive manufacturing of Ti-6Al-4V.« less
Cooperative alpha-helix formation of beta-lactoglobulin induced by sodium n-alkyl sulfates.
Chamani, J; Moosavi-Movahedi, A A; Rajabi, O; Gharanfoli, M; Momen-Heravi, M; Hakimelahi, G H; Neamati-Baghsiah, A; Varasteh, A R
2006-01-01
It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. beta-Lactoglobulin is a predominantly beta-sheet protein, although it has a markedly high intrinsic preference for alpha-helical structure. The formation of non-native alpha-helical intermediate of beta-lactoglobulin was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS at special condition. The effect of n-alkyl sulfates on the structure of native beta-lactoglobulin at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of non-native alpha-helical intermediate. The addition of various concentrations of n-alkyl sulfates to the native state of beta-lactoglobulin (pH 2) appears to support the stabilized form of non-native alpha-helical intermediate at pH 2. The m values of the intermediate state of beta-lactoglobulin by SOS, SDeS, SDS and STS showed substantial variation. The enhancement of m values as the stability criterion of non-native alpha-helical intermediate state corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the folding reaction of beta-lactoglobulin follows a non-hierarchical mechanism and hydrophobic interactions play important roles in stabilizing the non-native alpha-helical intermediate state.
Chaos and generalised multistability in a mesoscopic model of the electroencephalogram
NASA Astrophysics Data System (ADS)
Dafilis, Mathew P.; Frascoli, Federico; Cadusch, Peter J.; Liley, David T. J.
2009-06-01
We present evidence for chaos and generalised multistability in a mesoscopic model of the electroencephalogram (EEG). Two limit cycle attractors and one chaotic attractor were found to coexist in a two-dimensional plane of the ten-dimensional volume of initial conditions. The chaotic attractor was found to have a moderate value of the largest Lyapunov exponent (3.4 s -1 base e) with an associated Kaplan-Yorke (Lyapunov) dimension of 2.086. There are two different limit cycles appearing in conjunction with this particular chaotic attractor: one multiperiodic low amplitude limit cycle whose largest spectral peak is within the alpha band (8-13 Hz) of the EEG; and another multiperiodic large-amplitude limit cycle which may correspond to epilepsy. The cause of the coexistence of these structures is explained with a one-parameter bifurcation analysis. Each attractor has a basin of differing complexity: the large-amplitude limit cycle has a basin relatively uncomplicated in its structure while the small-amplitude limit cycle and chaotic attractor each have much more finely structured basins of attraction, but none of the basin boundaries appear to be fractal. The basins of attraction for the chaotic and small-amplitude limit cycle dynamics apparently reside within each other. We briefly discuss the implications of these findings in the context of theoretical attempts to understand the dynamics of brain function and behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Anil, E-mail: anilkantikumar@rediffmail.com; Kumar, Vipin; Gupta, Merry
2015-08-28
Efforts have been made to ease process of producing widely used multilayered ceramics of Barium Zirconium Titanium Oxides and study their dielectric behaviour and structural properties. For this purpose, adequate proportions of Barium Carbonate, Zirconium Oxide and Titanium Oxide were taken and hand milled for 2 hours. Neodymium composition of the order of 0.1% and 0.2% was used for doping to weight percentage of BaZr0.2Ti0.8O3. The samples were authenticated using raw data obtained from Bruker AXS D8 advance Copper KL alpha source XRD equipment. Further, the samples were studied for their phase transition, composition, single phase perovskite structure using XRDmore » technique. The technique has also been applied to know formation of stable homogeneous solid solution from XRD parameters. The other physical parameters like the morphology, micro structural information, crystal arrangements and topography have also been observed through SEM. The SEM has revealed information related to grain size development and composition of sample with fine agglomerates. For complete study of the compounds the atomic and weight composition has also been examined by Electron Dispersive Spectroscopy patterns. The comparison has been made with other works on ceramics at various frequencies and has yielded very interesting results.« less
Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Myers, E. G.; Thompson, J. K.; Silver, J. D.
1998-05-01
With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.
NASA Astrophysics Data System (ADS)
Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2017-04-01
Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].
Stellar helium burning in other universes: A solution to the triple alpha fine-tuning problem
NASA Astrophysics Data System (ADS)
Adams, Fred C.; Grohs, Evan
2017-01-01
Motivated by the possible existence of other universes, with different values for the fundamental constants, this paper considers stellar models in universes where 8Be is stable. Many previous authors have noted that stars in our universe would have difficulty producing carbon and other heavy elements in the absence of the well-known 12C resonance at 7.6 MeV. This resonance is necessary because 8Be is unstable in our universe, so that carbon must be produced via the triple alpha reaction to achieve the requisite abundance. Although a moderate change in the energy of the resonance (200-300 keV) will indeed affect carbon production, an even smaller change in the binding energy of beryllium (∼100 keV) would allow 8Be to be stable. A stable isotope with A = 8 would obviate the need for the triple alpha process in general, and the 12C resonance in particular, for carbon production. This paper explores the possibility that 8Be can be stable in other universes. Simple nuclear considerations indicate that bound states can be realized, with binding energy ∼ 0.1 - 1 MeV, if the fundamental constants vary by a ∼ few - 10 %. In such cases, 8Be can be synthesized through helium burning, and 12C can be produced later through nuclear burning of beryllium. This paper focuses on stellar models that burn helium into beryllium; once the universe in question has a supply of stable beryllium, carbon production can take place during subsequent evolution in the same star or in later stellar generations. Using both a semi-analytic stellar structure model as well as a state-of-the-art stellar evolution code, we find that viable stellar configurations that produce beryllium exist over a wide range of parameter space. Finally, we demonstrate that carbon can be produced during later evolutionary stages.
Grazing incidence x-ray diffraction analysis of zeolite NaA membranes on porous alumina tubes.
Kyotani, Tomohiro
2006-07-01
Zeolite NaA-type membranes hydrothermally synthesized on porous alumina tubes, for dehydration process, were characterized by grazing incidence 2 theta scan X-ray diffraction analysis (GIXRD). The fine structure of the membrane was studied fractionally for surface layer and for materials embedded in the porous alumina tube. The thickness of the surface layer on the porous alumina tube in the membranes used in this study was approximately 2-3 microm as determined from transmission electron microscopy with focused ion beam thin-layer specimen preparation technique (FIB-TEM). To discuss the effects of the membrane surface morphology on the GIXRD measurements, CaA-type membrane prepared by ion exchange from the NaA-type membrane and surface-damaged NaA-type membrane prepared by water leaching were also studied. For the original NaA-type membrane, 2 theta scan GIXRD patterns could be clearly measured at X-ray incidence angles (alpha) ranging from 0.1 to 2.0 deg in increments of 0.1 deg. The surface layers of the 2 - 3 microm on the porous alumina tube correspond to the alpha values up to ca. 0.2 deg. For the CaA-type and the surface-damaged NaA-type membranes, however, diffraction patterns from the surface layer could not be successfully detected and the others were somewhat broad. For all the three samples, diffraction intensities of both zeolite and alumina increased with depth (X-ray incidence angle, alpha) in the porous alumina tube region. The depth profile analysis of the membranes based on the GIXRD first revealed that amount of zeolite crystal embedded in the porous alumina tube is much larger than that in the surface layer. Thus, the 2 theta scan GIXRD is a useful method to study zeolite crystal growth mechanism around (both inside and outside) the porous alumina support during hydrothermal synthesis and to study water permeation behavior in the dehydration process.
The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data
NASA Technical Reports Server (NTRS)
Seivers, Jonathan L.; Hlozek, Renee A.; Nolta, Michael R.; Acquaviva, Viviana; Addison, Graeme E.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe;
2013-01-01
We present constraints on cosmological and astrophysical parameters from highresolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power l(sup 2)C(sub l)/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +/- 1.4 micro-K(sup 2) at l = 3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 micro-K(sup 2). Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be N(sub eff) = 2.79 +/- 0.56, in agreement with the canonical value of N(sub eff) = 3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be sigma(m?) is less than 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Y(sub p) = 0.225 +/- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha(sub 0) = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, derivative(n(sub s))/derivative(ln k) = -0.004 +/- 0.012.
Doan, Ninh; Gettins, Peter G W
2007-10-01
Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.
Designing, producing, and constructing fine-graded hot mix asphalt on Illinois roadways.
DOT National Transportation Integrated Search
2015-04-01
Fine-graded (F-G) asphalt concrete mixtures are composed of an aggregate structure in which the fine fraction controls the : load-carrying capacity of the mix. Other states have reported benefits in using F-G mixtures, including improved compaction, ...
Janecek, S
1994-10-17
The structures of functionally related beta/alpha-barrel starch hydrolases, alpha-amylase, beta-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, are discussed, their mutual sequence similarities being emphasized. Since these enzymes (except for beta-amylase) along with the predicted set of more than ten beta/alpha-barrels from the alpha-amylase enzyme superfamily fulfil the criteria characteristic of the products of divergent evolution, their unrooted distance tree is presented.
NASA Technical Reports Server (NTRS)
Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.
1993-01-01
Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.
Ho, C S James; Rydstrom, Anna; Manimekalai, Malathy Sony Subramanian; Svanborg, Catharina; Grüber, Gerhard
2012-01-01
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is the first member in a new family of protein-lipid complexes with broad tumoricidal activity. Elucidating the molecular structure and the domains crucial for HAMLET formation is fundamental for understanding its tumoricidal function. Here we present the low-resolution solution structure of the complex of oleic acid bound HAMLET, derived from small angle X-ray scattering data. HAMLET shows a two-domain conformation with a large globular domain and an extended part of about 2.22 nm in length and 1.29 nm width. The structure has been superimposed into the related crystallographic structure of human α-lactalbumin, revealing that the major part of α-lactalbumin accommodates well in the shape of HAMLET. However, the C-terminal residues from L105 to L123 of the crystal structure of the human α-lactalbumin do not fit well into the HAMLET structure, resulting in an extended conformation in HAMLET, proposed to be required to form the tumoricidal active HAMLET complex with oleic acid. Consistent with this low resolution structure, we identified biologically active peptide epitopes in the globular as well as the extended domains of HAMLET. Peptides covering the alpha1 and alpha2 domains of the protein triggered rapid ion fluxes in the presence of sodium oleate and were internalized by tumor cells, causing rapid and sustained changes in cell morphology. The alpha peptide-oleate bound forms also triggered tumor cell death with comparable efficiency as HAMLET. In addition, shorter peptides corresponding to those domains are biologically active. These findings provide novel insights into the structural prerequisites for the dramatic effects of HAMLET on tumor cells.
Ho CS, James; Rydstrom, Anna; Manimekalai, Malathy Sony Subramanian; Svanborg, Catharina; Grüber, Gerhard
2012-01-01
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is the first member in a new family of protein-lipid complexes with broad tumoricidal activity. Elucidating the molecular structure and the domains crucial for HAMLET formation is fundamental for understanding its tumoricidal function. Here we present the low-resolution solution structure of the complex of oleic acid bound HAMLET, derived from small angle X-ray scattering data. HAMLET shows a two-domain conformation with a large globular domain and an extended part of about 2.22 nm in length and 1.29 nm width. The structure has been superimposed into the related crystallographic structure of human α-lactalbumin, revealing that the major part of α-lactalbumin accommodates well in the shape of HAMLET. However, the C-terminal residues from L105 to L123 of the crystal structure of the human α-lactalbumin do not fit well into the HAMLET structure, resulting in an extended conformation in HAMLET, proposed to be required to form the tumoricidal active HAMLET complex with oleic acid. Consistent with this low resolution structure, we identified biologically active peptide epitopes in the globular as well as the extended domains of HAMLET. Peptides covering the alpha1 and alpha2 domains of the protein triggered rapid ion fluxes in the presence of sodium oleate and were internalized by tumor cells, causing rapid and sustained changes in cell morphology. The alpha peptide-oleate bound forms also triggered tumor cell death with comparable efficiency as HAMLET. In addition, shorter peptides corresponding to those domains are biologically active. These findings provide novel insights into the structural prerequisites for the dramatic effects of HAMLET on tumor cells. PMID:23300861
Variations in the fine-structure constant constraining gravity theories
NASA Astrophysics Data System (ADS)
Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.
2016-08-01
In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.
Kotkar, Shriram P; Chavan, Vilas B; Sudalai, Arumugam
2007-03-15
A novel and highly enantioselective method for the synthesis of gamma-amino-alpha,beta-unsaturated esters via tandem alpha-amination-Horner-Wadsworth-Emmons (HWE) olefination of aldehydes is described. The one-pot assembly has been demonstrated for the construction of functionalized chiral 2-pyrrolidones, subunits present in several alkaloids. [structure: see text
[Analysis of structural characteristics of alpha-tubulins in plants with enhanced cold tolerance].
Nyporko, A Iu; Demchuk, O N; Blium, Ia B
2003-01-01
The uniqueness of the point substitutions in the sequences of two alpha-tubulin isotypes from psychrophilic alga Chloromonas that can determine the increased cold tolerance of this alga was analyzed. The comparison of all known amino acid sequences of plant alpha-tubulins enabled to ascertain that only M268-->V replacement is unique and may have a significant influence on spatial structure of plant alpha-tubulins. Modeling of molecular surfaces of alpha-tubulins from Chloromonas, Chalmydomonas reinhardtii and goose grass Eleusine indica showed that insertion of the amino acid replacement M268-->V into the sequence of goose grace tubulin led to the likening of this protein surface to the surface of native alpha-tubulin from Chloromonas. Alteration of local hydrophobic properties of alpha-tubulin molecular surface in interdimeric contact zone as a result of the mentioned replacement was shown that may play important role in increasing the level of cold resistance of microtubules. The crucial role of amino acid residue in 268 position for forming the interdimeric contact surface of alpha-tubulin molecule was revealed. The assumption is made about the importance of replacements at this position for plant tolerance to abiotic factors of different nature (cold, herbicides).
Narberhaus, Franz
2002-03-01
Alpha-crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse alpha-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called alpha-crystallin domain; and (iv) molecular chaperone activity. Since alpha-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, alpha-Hsps. Alpha-crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, alpha-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of alpha-Hsps with an emphasis on the microbial members of this chaperone family.
Relating the Hadamard Variance to MCS Kalman Filter Clock Estimation
NASA Technical Reports Server (NTRS)
Hutsell, Steven T.
1996-01-01
The Global Positioning System (GPS) Master Control Station (MCS) currently makes significant use of the Allan Variance. This two-sample variance equation has proven excellent as a handy, understandable tool, both for time domain analysis of GPS cesium frequency standards, and for fine tuning the MCS's state estimation of these atomic clocks. The Allan Variance does not explicitly converge for the nose types of alpha less than or equal to minus 3 and can be greatly affected by frequency drift. Because GPS rubidium frequency standards exhibit non-trivial aging and aging noise characteristics, the basic Allan Variance analysis must be augmented in order to (a) compensate for a dynamic frequency drift, and (b) characterize two additional noise types, specifically alpha = minus 3, and alpha = minus 4. As the GPS program progresses, we will utilize a larger percentage of rubidium frequency standards than ever before. Hence, GPS rubidium clock characterization will require more attention than ever before. The three sample variance, commonly referred to as a renormalized Hadamard Variance, is unaffected by linear frequency drift, converges for alpha is greater than minus 5, and thus has utility for modeling noise in GPS rubidium frequency standards. This paper demonstrates the potential of Hadamard Variance analysis in GPS operations, and presents an equation that relates the Hadamard Variance to the MCS's Kalman filter process noises.
Gyu-Shik Kim; Huadong Zeng; Jeffrey T. Rhule; Ira A. Weinstock; Craig L. Hill
1999-01-01
Potently antiviral polyniobotungstates have been structurally characterized; the dimer A-[alpha]-[Si2Nb6W18O77]8â cleaves cleanly to the monomer A-[alpha]-[SiNb3W9O40]7â within 1 min in aqueous solution buffered at physiological (neutral) pH establishing that the monomer and not the dimer is pharmacologically relevant.
Structure of the gangrene alpha-toxin: the beauty in the beast.
Derewenda, Z S; Martin, T W
1998-08-01
The crystal and molecular structure of the Clostridium perfringens alpha-toxin crowns over a century-long research into the mechanisms of pathogenesis of gas gangrene. The structure reveals a two-domain enzyme, with a catalytic all-helical N-terminal domain, and a C-terminal domain similar in its jelly-roll topology to those found in pancreatic lipase and lipoxygenases.
Structural integration in hypoxia-inducible factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Dalei; Potluri, Nalini; Lu, Jingping
The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinctmore » pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.« less
NASA Astrophysics Data System (ADS)
Donnadieu, P.; Dénoyer, F.
1996-11-01
A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.
The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent
NASA Technical Reports Server (NTRS)
Horwitz, J.; Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)
1992-01-01
Alpha crystallin was prepared from newborn and aged bovine lenses. SDS-PAGE and tryptic peptide mapping demonstrated that both preparations contained only the alpha-A and alpha-B chains, with no significant contamination of other crystallins. Compared with alpha crystallin from the aged lens, alpha crystallin from the newborn lens was much more effective in the inhibition of beta L crystallin denaturation and precipitation induced in vitro by heat. Together, these results demonstrate that during the aging process, the alpha crystallins lose their ability to protect against protein denaturation, consistent with the hypothesis that the alpha crystallins play an important role in the maintenance of protein native structure in the intact lens.
Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.
Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai
2016-07-20
Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less
Structural reorganization of the interleukin-7 signaling complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, Craig A.; Holland, Paul J.; Zhao, Peng
2012-06-29
We report here an unliganded receptor structure in the common gamma-chain ({gamma}{sub c}) family of receptors and cytokines. The crystal structure of the unliganded form of the interleukin-7 alpha receptor (IL-7R{alpha}) extracellular domain (ECD) at 2.15 {angstrom} resolution reveals a homodimer forming an 'X' geometry looking down onto the cell surface with the C termini of the two chains separated by 110 {angstrom} and the dimer interface comprising residues critical for IL-7 binding. Further biophysical studies indicate a weak association of the IL-7R{alpha} ECDs but a stronger association between the {gamma}{sub c}/IL-7R{alpha} ECDs, similar to previous studies of the full-lengthmore » receptors on CD4{sup +} T cells. Based on these and previous results, we propose a molecular mechanism detailing the progression from the inactive IL-7R{alpha} homodimer and IL-7R{alpha}-{gamma}{sub c} heterodimer to the active IL-7-IL-7R{alpha}-{gamma}{sub c} ternary complex whereby the two receptors undergo at least a 90{sup o} rotation away from the cell surface, moving the C termini of IL-7R{alpha} and {gamma}{sub c} from a distance of 110 {angstrom} to less than 30 {angstrom} at the cell surface. This molecular mechanism can be used to explain recently discovered IL-7- and {gamma}{sub c}-independent gain-of-function mutations in IL-7R{alpha} from B- and T-cell acute lymphoblastic leukemia patients. The mechanism may also be applicable to other {gamma}{sub c} receptors that form inactive homodimers and heterodimers independent of their cytokines.« less
Murashita, Koji; Yoshiura, Yasutoshi; Chisada, Shin-Ichi; Furuita, Hirofumi; Sugita, Tsuyoshi; Matsunari, Hiroyuki; Iwashita, Yasuro; Yamamoto, Takeshi
2014-04-01
Bile acid transporters belonging to the SLC10A protein family, Na+ taurocholate cotransporting polypeptide (NTCP or SLC10A1), apical sodium-dependent bile salt transporter (ASBT or SLC10A2), and organic solute transporter alpha (Ost-alpha) have been known to play critical roles in the enterohepatic circulation of bile acids in mammals. In this study, ntcp, asbt, and ost-alpha-1/-2 cDNA were cloned, their tissue distributions were characterized, and the effects of fasting and bile acid administration on their expression were examined in rainbow trout Oncorhynchus mykiss. The structural characteristics of Ntcp, Asbt, and Ost-alpha were well conserved in trout, and three-dimensional structure analysis showed that Ntcp and Asbt were similar to each other. Tissue distribution analysis revealed that trout asbt was primarily expressed in the hindgut, while ntcp expression occurred in the brain, and ost-alpha-1/-2 was mainly expressed in the liver or ovary. Although asbt and ost-alpha-1 mRNA levels in the gut increased in response to fasting for 4 days, ost-alpha-1 expression in the liver decreased. Similarly, bile acid administration increased asbt and ost-alpha-1 expression levels in the gut, while those of ntcp and ost-alpha-2 in the liver decreased. These results suggested that the genes asbt, ntcp, and ost-alpha are involved in bile acid transport in rainbow trout.
Hydrophobic core malleability of a de novo designed three-helix bundle protein.
Walsh, S T; Sukharev, V I; Betz, S F; Vekshin, N L; DeGrado, W F
2001-01-12
De novo protein design provides a tool for testing the principles that stabilize the structures of proteins. Recently, we described the design and structure determination of alpha(3)D, a three-helix bundle protein with a well-packed hydrophobic core. Here, we test the malleability and adaptability of this protein's structure by mutating a small, Ala residue (A60) in its core to larger, hydrophobic side-chains, Leu and Ile. Such changes introduce strain into the structures of natural proteins, and therefore generally destabilize the native state. By contrast, these mutations were slightly stabilizing ( approximately 1.5 kcal mol(-1)) to the tertiary structure of alpha(3)D. The value of DeltaC(p) for unfolding of these mutants was not greatly affected relative to wild-type, indicating that the change in solvent accessibility for unfolding was similar. However, two-dimensional heteronuclear single quantum coherence spectra indicate that the protein adjusts to the introduction of steric bulk in different ways. A60L-alpha(3)D showed serious erosion in the dispersion of both the amide backbone as well as the side-chain methyl chemical shifts. By contrast, A60I-alpha(3)D showed excellent dispersion of the backbone resonances, and selective changes in dispersion of the aliphatic side-chains proximal to the site of mutation. Together, these data suggest that alpha(3)D, although folded into a unique three-dimensional structure, is nevertheless more malleable and flexible than most natural, native proteins. Copyright 2001 Academic Press.
The mixing length parameter alpha. [in stellar structure calculations
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1990-01-01
The standard mixing length theory, MLT, treats turbulent eddies as if they were isotropic, while the largest eddies that carry most of the flux are highly anisotropic. Recently, an anisotropic MLT was constructed, and the relevant equations derived. It is shown that these new equations can actually be cast in a form that is formally identical to that of the standard isotropic MLT, provided the mixing length parameter, derived from stellar structure calculations, is interpreted as an intermediate, auxiliary function alpha(x), where x, the degree of anisotropy is given as a function of the thermodynamic variables of the problem. The relation between alpha(x) and the physically relevant alpha(l = Hp) is also given. Once the value alpha is deduced, it is found to be a function of the local thermodynamic quantities, as expected.
Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant
Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J.
2009-01-01
Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin
2012-06-28
Sterol 14{alpha}-demethylase (CYP51) that catalyzes the removal of the 14{alpha}-methyl group from the sterol nucleus is an essential enzyme in sterol biosynthesis, a primary target for clinical and agricultural antifungal azoles and an emerging target for antitrypanosomal chemotherapy. Here, we present the crystal structure of Trypanosoma (T) brucei CYP51 in complex with the substrate analog 14{alpha}-methylenecyclopropyl-{Delta}7-24,25-dihydrolanosterol (MCP). This sterol binds tightly to all protozoan CYP51s and acts as a competitive inhibitor of F105-containing (plant-like) T. brucei and Leishmania (L) infantum orthologs, but it has a much stronger, mechanism-based inhibitory effect on I105-containing (animal/fungi-like) T. cruzi CYP51. Depicting substrate orientation inmore » the conserved CYP51 binding cavity, the complex specifies the roles of the contact amino acid residues and sheds new light on CYP51 substrate specificity. It also provides an explanation for the effect of MCP on T. cruzi CYP51. Comparison with the ligand-free and azole-bound structures supports the notion of structural rigidity as the characteristic feature of the CYP51 substrate binding cavity, confirming the enzyme as an excellent candidate for structure-directed design of new drugs, including mechanism-based substrate analog inhibitors.« less
An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins.
Yusufi, Faraaz Noor Khan; Park, Wonjun; Lee, May May; Lee, Dong-Yup
2009-01-01
Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.
PA700, the regulatory complex of the 26S proteasome, interferes with alpha-synuclein assembly.
Ghee, Medeva; Melki, Ronald; Michot, Nadine; Mallet, Jacques
2005-08-01
Parkinson's disease is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway accompanied by the presence of intracellular cytoplasmic inclusions, termed Lewy bodies. Fibrillized alpha-synuclein forms the major component of Lewy bodies. We reported a specific interaction between rat alpha-synuclein and tat binding protein 1, a subunit of PA700, the regulatory complex of the 26S proteasome. It has been demonstrated that PA700 prevents the aggregation of misfolded, nonubiquinated substrates. In this study, we examine the effect of PA700 on the aggregation of wild-type and A53T mutant alpha-synuclein. PA700 inhibits both wild-type and A53T alpha-synuclein fibril formation as measured by Thioflavin T fluorescence. Using size exclusion chromatography, we present evidence for a stable PA700-alpha-synuclein complex. Sedimentation analyses reveal that PA700 sequesters alpha-synuclein in an assembly incompetent form. Analysis of the morphology of wild-type and A53T alpha-synuclein aggregates during the course of fibrillization by electron microscopy demonstrate the formation of amyloid-like fibrils. Secondary structure analyses of wild-type and A53T alpha-synuclein assembled in the presence of PA700 revealed a decrease in the overall amount of assembled alpha-synuclein with no significant change in protein conformation. Thus, PA700 acts on alpha-synuclein assembly and not on the structure of fibrils. We hypothesize that PA700 sequesters alpha-synuclein oligomeric species that are the precursors of the fibrillar form of the protein, thus preventing its assembly into fibrils.
a Measurement of the Fine Structure Constant
NASA Astrophysics Data System (ADS)
Hensley, Joel M.; Wicht, Andreas; Sarajlic, Edina; Chu, Steven
2002-06-01
Using an atom interferometer method, we measure the recoil velocity of cesium due to the coherent scattering of a photon. This measurement is used to obtain a preliminary value of ħ/M
A comparative study of the N-linked oligosaccharide structures of human IgG subclass proteins.
Jefferis, R; Lund, J; Mizutani, H; Nakagawa, H; Kawazoe, Y; Arata, Y; Takahashi, N
1990-01-01
Quantitative oligosaccharide profiles were determined for each of 18 human IgG paraproteins representing the four subclasses. Each paraprotein exhibits a unique profile that may be substantially different from that observed for polyclonal IgG. The IgG2 and some IgG3 proteins analysed exhibit a predominance of oligosaccharide moieties having galactose on the Man(alpha 1----3) arm rather than the Man(alpha 1----6) arm; it was previously held that galactosylation of the Man(alpha 1----6) arm is preferred, as observed for IgG1, IgG4 and polyclonal IgG. An IgG4 protein is reported that has galactosylated Man(alpha 1----3) and Man(alpha 1----6) arms on both Fc-localized carbohydrate moieties; previous findings suggested that such fully glycosylated structures could not be accommodated within the internal space of the C gamma 2 domains. Unusual monoantennary oligosaccharides present in IgG2 and IgG3 proteins were isolated and their structures determined. Images Fig. 1. PMID:2363690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, J.-P.; Stehle, T.; Zhang, R.
The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less
Hantus, S; Pauly, M; Darvill, A G; Albersheim, P; York, W S
1997-10-28
Jojoba seed xyloglucan was shown to be a convenient source of biologically active xyloglucan oligosaccharides that contain both L- and D-galactosyl residues [E. Zablackis et al., Science, 272 (1996) 1808-1810]. Oligosaccharides were isolated by liquid chromatography of the mixture of oligosaccharides generated by treating jojoba seed xyloglucan with a beta-(1-->4)-endoglucanase. The purified oligosaccharides were reduced with NaBH4, converting them to oligoglycosyl alditol derivatives that were structurally characterized by a combination of mass spectrometry and 2-dimensional NMR spectroscopy. This analysis established that jojoba xyloglucan oligosaccharides contain the novel side-chain [alpha-L-Gal p-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-], which is structurally homologous to the fucose-containing side-chain [alpha-L-Fucp-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-] found in other biologically active xyloglucan oligosaccharides.
Fine tuning of the spectral properties of LH2 by single amino acid residues.
Silber, Martina V; Gabriel, Günther; Strohmann, Brigitte; Garcia-Martin, Adela; Robert, Bruno; Braun, Paula
2008-05-01
The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.
Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping
2008-09-01
Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into alpha-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca(2+), which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118-124 and residues 284-287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca(2+) in the pseudo-Michaelis complex or with NADPH, AKG, and Ca(2+) in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes.
Wade A. Neiwert; Jennifer J. Cowan; Kenneth I. Hardcastle; Craig L. Hill; Ira A. Weinstock
2002-01-01
[Beta]-[SiW12O40]4- (C3v symmetry) is sufficiently higher in energy than its [alpha]-isomer analogue that effectively complete conversion to [alpha]-[SiW12O40]4- (Td) is observed. By contrast, [beta]- and [alpha]-[AlW12O40]5- ([beta]- and [alpha]-1; C3v and Td, respectively) are sufficiently close in energy that both isomers are readily seen in 27Al NMR spectra of...
Cyclo(dehydroala-L-Leu), an alpha-glucosidase inhibitor from Penicillium sp. F70614.
Kwon, O S; Park, S H; Yun, B S; Pyun, Y R; Kim, C J
2000-09-01
A diketopiperazine (1) has been isolated from the culture broth of Penicillium sp. F70614 and its structure has been determined to be cyclo(dehydroala-L-Leu) by various spectroscopic analyses. This compound selectively inhibited yeast alpha-glucosidase and porcine intestinal alpha-glucosidase with IC50 values of 35 and 50 microg/ml, respectively. However, it did not show significant inhibitory effects against almond beta3-glucosidase, Aspergillus alpha-galactosidase, Escherichia coli beta-galactosidase and jack bean alpha-mannosidase.
Effect of initial microstructure on the compactability of rapidly solidified Ti-rich TiAl powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, M.; Chiba, A.; Morizono, Y.
1997-12-31
Initial microstructure dependence of compactability at elevated temperature in rapidly solidified Ti-rich TiAl alloy powders produced by plasma rotating electrode process (PREP) has been investigated. There were two kinds of powders with respect to the microstructure. The first one had a surface relief of a martensitic phase, which was referred as M powder. The second one had a dendritic structure, which was referred as D powder. {alpha}{sub 2}+{gamma} microduplex and {alpha}{sub 2}/{gamma} lamellar structures were formed in M and D powders of the Ti-40 at%Al alloy by heat treatment at 1,273 K, respectively. The microduplex structure consisted of {gamma} precipitatemore » in the twin related {alpha}{sub 2} matrix with the usual orientation relationship. It was difficult to compact the D powder by hot pressing at 1,273 K under 50 MPa for 14.4 ks. On the other hand, the M powder was compacted easily by hot pressing with the same condition. The twin related {alpha}{sub 2} and {alpha}{sub 2} boundary changed to random ones and the {alpha}{sub 2} and {gamma} phases lost the usual orientation relationship in the duplex structure during the hot pressing. In other words, the low energy boundaries were changed to the high energy ones suitable for grain boundary sliding. Dislocations were scarcely observed inside of both the {alpha}{sub 2} and {gamma} crystal grains. It was concluded that the grain boundary sliding was a predominant deformation mode in the M powder during the hot pressing. D and M powders in Ti-45 and 47 at%Al alloys showed the same tendency as those in Ti-40 at%Al alloy during hot pressing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishide, Hiroyuki; Suzuki, Takayuki; Kawakami, Hiroyoshi
1994-05-12
New derivatives of (meso-[alpha],[alpha],[alpha],[alpha]-tetrakis(o-pivalamidophenyl)porphinato)cobalt (CoPs) were characterized by oxygen-binding equilibrium and rate constants of the cobalt centered in the porphyrins. They depended on the structure of the porphyrin; for example, the rate constants of oxygen binding and dissociation (k[sub on] and k[sub off]) for [alpha][sup 3][beta]-CoP[sub 4]P were 3 and 20 times as large as those for [alpha][sup 4]-CoB[sub 4]P, respectively. Oxygen transport through the polymer membranes containing CoPs as the fixed oxygen carriers was facilitated and was affected by the oxygen-binding character or the structure of CoPs. The logarithmically linear correlation of the oxygen-dissociation rate constant of CoPs (k[submore » off] = (3-66) x 10[sup 3] S[sup [minus]1]) with the diffusion constant of oxygen via CoPs fixed in the membranes (D[sub cc] = (3-140) x 10[sup [minus]9] cm[sup 2] s[sup [minus]1]) was given for those six CoP derivatives. 26 refs., 5 figs., 2 tabs.« less
[Preparation and spectral analysis of a new type of blue light-emitting material delta-Alq3].
Wang, Hua; Hao, Yu-ying; Gao, Zhi-xiang; Zhou, He-feng; Xu, Bing-she
2006-10-01
In the present article, delta-Alq3, a new type of blue light-emitting material, was synthesized and investigated by IR spectra, XRD spectra, UV-Vis absorption spectra, photoluminescence (PL) spectra, and electroluminescence (EL) spectra. The relationship between molecular spatial structure and spectral characteristics was studied by the spectral analysis of delta-Alq3 and alpha-Alq3. Results show that a new phase of Alq3 (delta-Alq3) can be obtained by vacuum heating alpha-Alq3, and the molecular spatial structure of alpha-Alq3 changes during the vacuum heating. The molecular spatial structure of delta-Alq3 lacks symmetry compared to alpha-Alq3. This transformation can reduce the electron cloud density on phenoxide of Alq3 and weaken the intermolecular conjugated interaction between adjacent Alq3 molecules. Hence, the pi--pi* electron transition absorption peak of delta-Alq3 shifts toward short wavelength in UV-Vis absorption spectra, and the maximum emission peak of delta-Alq3 (lamda max = 480 nm) blue-shifts by 35 nm compared with that of alpha-Alq3 (lamda max = 515 nm) in PL spectra. The maximum emission peaks of delta-Alq3 and alpha-Alq3 are all at 520 nm in EL spectra.
Armen, Roger S; Bernard, Brady M; Day, Ryan; Alonso, Darwin O V; Daggett, Valerie
2005-09-20
Several neurodegenerative diseases are linked to expanded repeats of glutamine residues, which lead to the formation of amyloid fibrils and neuronal death. The length of the repeats correlates with the onset of Huntington's disease, such that healthy individuals have <38 residues and individuals with >38 repeats exhibit symptoms. Because it is difficult to obtain atomic-resolution structural information for poly(l-glutamine) (polyQ) in aqueous solution experimentally, we performed molecular dynamics simulations to investigate the conformational behavior of this homopolymer. In simulations of 20-, 40-, and 80-mer polyQ, we observed the formation of the "alpha-extended chain" conformation, which is characterized by alternating residues in the alpha(L) and alpha(R) conformations to yield a sheet. The structural transition from disordered random-coil conformations to the alpha-extended chain conformation exhibits modest length and temperature dependence, in agreement with the experimental observation that aggregation depends on length and temperature. We propose that fibril formation in polyQ may occur through an alpha-sheet structure, which was proposed by Pauling and Corey. Also, we propose an atomic-resolution model of how the inhibitory peptide QBP1 (polyQ-binding peptide 1) may bind to polyQ in an alpha-extended chain conformation to inhibit fibril formation.
Sakamoto, Masaki; Uchihara, Toshiki; Nakamura, Ayako; Mizutani, Toshio; Mizusawa, Hidehiro
2005-10-01
Alpha-synuclein (alphaS) and ubiquitin (Ub) are shared constituents of glial cytoplasmic inclusions (GCIs) and Lewy bodies (LBs), both composed of fibrillary structures. Staining profiles of GCIs were investigated with triple immunofluorescence involving immunostaining for alphaS and Ub, both amplified with catalyzed reporter deposition, and a fluorochrome, thiazin red (TR) that has an affinity to fibrillary structures. After observation for the triple-fluorescent images, the sections were subsequently stained with the Gallyas-Braak method. Sections of putamen, cerebellar white matter and motor cortex from patients suffering from multiple system atrophy (MSA) with varying duration of the disease (4-15 years) were quantified for these staining profiles of Gallyas-positive GCIs. Although most of GCIs were positive for Ub and variably positive for alphaS, they were consistently negative for TR. The result was opposite in LBs in Lewy body disease with variable affinity to TR, suggesting that the construction of GCIs is different from that of LBs. These four staining features (alphaS, Ub, TR and Gallyas) alone failed to exhibit apparent correlation with disease duration, lesion site or severity of degeneration as reported previously. The fraction of alphaS-negative and Ub-positive GCIs, however, linearly increased along the disease progression, while that of alphaS-positive and Ub-negative GCIs decreased in contrast. This reciprocal change suggests that alphaS immunoreactivity in GCIs is being replaced by Ub immunoreactivity during the disease progression, which resulted in the ultimate predominance of alphaS-negative and Ub-positive GCIs in the most advanced case. Interestingly, this predominance of alphaS-negative and Ub-positive GCIs was a feature of motor cortex, where degeneration usually remains mild in spite of robust appearance of Gallyas-positive GCIs. Another fraction, alphaS-positive and Ub-positive GCIs were frequent in cerebellar white matter, suggesting that GCI evolution is heterogeneous and dependent also on area examined. Progressive accumulation of Ub with concomitant disappearance of alphaS epitope and their colocalization, partly shared with LBs, may represent a process of GCI formation, possibly linked to an aspect of degeneration in MSA.
A stereochemical examination of the equine metabolism of 17alpha-methyltestosterone.
McKinney, Andrew R; Suann, Craig J; Stenhouse, Allen M
2007-01-09
An investigation was conducted into the stereochemistry of the equine urinary metabolites of 17alpha-methyltestosterone observed after oral administration. Standards of the complete range of C3/C5/C16 stereoisomeric 17alpha-methylandrostane-3,17beta-diols, 17alpha-methylandrostane-3,16,17beta-triols and 17alpha-hydroxymethylandrostane-3,17beta-diols were purchased or synthesised, and were used to unequivocally identify the absolute structures of the metabolites. Phase I metabolism was found to involve combinations of Delta(4)-3-ketone reduction with both 5alpha,3beta- and 5beta,3alpha-stereochemistry, hydroxylation at C16 with both 16alpha- and 16beta-stereochemistry and hydroxylation of the 17alpha-methyl substituent. Phase II metabolism involved mainly sulfation with a lesser degree of beta-glucuronidation.
Stoddard, B L; Koshland, D E
1993-09-14
The structure of the isocitrate dehydrogenase (IDH) complex with bound alpha-ketoglutarate, Ca2+, and NADPH was solved at 2.7-A resolution. The alpha-ketoglutarate binds in the active site at the same position and orientation as isocitrate, with a difference between the two bound molecules of about 0.8 A. The Ca2+ metal is coordinated by alpha-ketoglutarate, three conserved aspartate residues, and a pair of water molecules. The largest motion in the active site relative to the isocitrate enzyme complex is observed for tyrosine 160, which originally forms a hydrogen bond to the labile carboxyl group of isocitrate and moves to form a new hydrogen bond to Asp 307 in the complex with alpha-ketoglutarate. This triggers a number of significant movements among several short loops and adjoining secondary structural elements in the enzyme, most of which participate in dimer stabilization and formation of the active-site cleft. These rearrangements are similar to the ligand-binding-induced movements observed in globins and insulin and serve as a model for an enzymatic mechanism which involves local shifts of secondary structural elements during turnover, rather than large-scale domain closures or loop transitions induced by substrate binding such as those observed in hexokinase or triosephosphate isomerase.
Siegel, D P
1986-01-01
Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems. PMID:3719075
The vertical structure and stability of accretion disks surrounding black holes and neutron stars
NASA Technical Reports Server (NTRS)
Milsom, J. A.; Chen, Xingming; Taam, Ronald E.
1994-01-01
The structure and stability of the inner regions of accretion disks surrounding neutron stars and black holes have been investigated. Within the framework of the alpha viscosity prescription for optically thick disks, we assume the viscous stress scales with gas pressure only, and the alpha parameter, which is less than or equal to unity, is formulated as alpha(sub 0)(h/r)(exp n), where h is the local scale height and n and alpha(sub 0) are constants. We neglect advective energy transport associated with radial motions and construct the vertical structure of the disks by assuming a Keplerian rotation law and local hydrostatic and thermal equilibrium. The vertical structures have been calculated with and without convective energy transport, and it has been demonstrated that convection is important especially for mass accretion rates, M-dot, greater than about 0.1 times the Eddington value, M-dot(sub Edd). Although the efficiency of convection is not high, convection significantly modifies the vertical structure of the disk (as compared with a purely radiative model) and leads to lower temperatures at a given M-dot. The results show that the disk can be locally unstable and that for n greater than or = 0.75, an S-shaped relation can exist between M-dot and the column density, sigma, at a given radius. While the lower stable branch (derivative of M-dot/derivative of sigma greater than 0) and middle unstable branch (derivative of M-dot/derivative of sigma less than 0) represent structures for which the gas and radiation pressure dominate respectively, the stable upper branch (derivative of M-dot/derivative of sigma greater than 0) is a consequence of the saturation of alpha. This saturation of alpha can occur for large alpha(sub 0) and at M-dot less than or = M-dot(sub Edd). The instability is found to occur at higher mass accretion rates for neutron stars than for black holes. In particular, the disk is locally unstable for M-dot greater than or = 0.5 M-dot(sub Edd) for neutron stars and for M-dot greater than or = M-dot(sub Edd) for black holes for a viscosity prescription characterized by n = 1 and alpha(sub 0) = 10.
NASAL FILTERING OF FINE PARTICLES IN CHILDREN VS. ADULTS
Nasal efficiency for removing fine particles may be affected by developmental changes in nasal structure associated with age. In healthy Caucasian children (age 6-13, n=17) and adults (age 18-28, n=11) we measured the fractional deposition (DF) of fine particles (1 and 2um MMAD)...
Fine Structure of Dark Energy and New Physics
Jejjala, Vishnu; Kavic, Michael; Minic, Djordje
2007-01-01
Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less
Quantum-gravity predictions for the fine-structure constant
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Held, Aaron; Wetterich, Christof
2018-07-01
Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias
The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.
A tactual pilot aid for the approach-and-landing task: Inflight studies
NASA Technical Reports Server (NTRS)
Gilson, R. D.; Fenton, R. E.
1973-01-01
A pilot aid -- a kinesthetic-tactual compensatory display -- for assisting novice pilots in various inflight situations has undergone preliminary inflight testing. The efficacy of this display, as compared with two types of visual displays, was evaluated in both a highly structured approach-and-landing task and a less structured test involving tight turns about a point. In both situations, the displayed quantity was the deviation (alpha sub 0 - alpha) in angle at attack from a desired value alpha sub 0. In the former, the performance with the tactual display was comparable with that obtained using a visual display of (alpha sub 0 - alpha), while in the later, substantial improvements (reduced tracking error (55%), decreased maximum altitude variations (67%), and decreased speed variations (43%)), were obtained using the tactual display. It appears that such a display offers considerable potential for inflight use.
Structural Characteristics of the Alpha-Synuclein Oligomers Stabilized By the Flavonoid Baicalein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, D.-P.; Fink, A.L.; Uversky, V.N.
The flavonoid baicalein inhibits fibrillation of alpha-synuclein, which is a major component of Lewy bodies in Parkinson's disease. It has been known that baicalein induces the formation of alpha-synuclein oligomers and consequently prevents their fibrillation. In order to evaluate the structural properties of baicalein-stabilized oligomers, we purified oligomer species by HPLC and examined their stability and structure by CD, Fourier transform infrared spectroscopy, size exclusion chromatography HPLC, small-angle X-ray scattering, and atomic force microscopy. Baicalein-stabilized oligomers are beta-sheet-enriched according to CD and Fourier transform infrared spectroscopy analyses. They did not form fibrils even after very prolonged incubation. From small-angle X-raymore » scattering data and atomic force microscopy images, the oligomers were characterized as quite compact globular species. Oligomers were extremely stable, with a GdmCl C(m)=3.3 M. This high stability explains the previously observed inhibition properties of baicalein against alpha-synuclein fibrillation. These baicalein-stabilized oligomers, added to the solution of aggregating alpha-synuclein, were able to noticeably inhibit its fibrillation. After prolonged coincubation, short fibrils were formed, suggesting an effective interaction of oligomers with monomeric alpha-synuclein. Membrane permeability tests suggested that the baicalein-stabilized oligomers had a mild effect on the integrity of the membrane surface. This effect was rather similar to that of the monomeric protein, suggesting that targeted stabilization of certain alpha-synuclein oligomers might offer a potential strategy for the development of novel Parkinson's disease therapies.« less
NASA Astrophysics Data System (ADS)
Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie
2012-06-01
The hydrogen bonded complex of ammonia with methyl lactate, a chiral alpha-hydroxyester, has been studied using rotational spectroscopy and high level ab initio calculations. Previous studies showed that methyl lactate can exist in a number of conformers. However, only the most stable one which has an intramolecular hydrogen bonded ring formed with its alcoholic hydroxyl and its carbonyl oxygen atom was detected experimentally An extensive ab initio search has been performed to locate all possible low energy conformers of the methyl lactate-ammonia contact pair. Five lowest energy conformers have been identified at the MP2/6-311++G(d,p) level. The lowest energy conformer favors an insertion arrangement, where ammonia is inserted into the existing intramolecular hydrogen bonded ring in the most stable methyl lactate conformer. Broadband scans for the rotational spectra of possible binary conformers have been carried out using a chirped-pulse Fourier transform microwave (FTMW) instrument. The most stable binary adduct was identified and assigned. The final frequency measurements have been done with a cavity based FTMW instrument. The spectrum observed shows complicated fine and hyperfine splitting patterns, likely due to the internal rotations of the methyl groups of methyl lactate and that of ammonia, as well as the 14N quadrupolar nucleus. The binary adduct with 15NH3 has also been studied to simplify the splitting pattern and to aid the assignments of the extensive splittings. The isotopic data and the fine and hyperfine structures will be discussed in terms of internal rotation dynamics and geometry of the hydrogen bonded adduct.
Fat phobia of university students: attitudes toward obesity.
Hayran, Osman; Akan, Hülya; Özkan, Azru D; Kocaoglu, Bike
2013-01-01
This study examined attitudes about obesity among a sample of university students from the departments of Health Sciences and Fine Arts. This cross-sectional study was carried out among first- and second-year students of Health Sciences and Fine Arts Yeditepe between April and May 2011. The questionnaire surveyed sociodemographic characteristics, height, weight, and a short form of the "Fat Phobia" scale. A pilot study revealed that the test-retest reliability was r=0.71 and internal consistency (Cronbach alpha) was 0.8783. The mean and SD were computed for descriptive purposes, and a t-test was used for hypothesis testing; significance was considered for p<0.05. A total of 305 students (86 men, 219 women) were included in the study. The mean score on the fat phobia scale was 3.57±0.69 among the whole group. Fat phobia of women was higher than of men (p<0.001). Although the mean score of fat phobia was higher in underweight students than in obese students, there was no statistically significant differences according to body structure (p>0.05). The adjectives about which the whole group was phobic were "likes food" (4.50), "overeats" (4.20), "slow" (3.90), "inactive" (3.82), "no will power" (3.71), and "shapeless" (3.66). Female students were more phobic than men in adjectives (overeats,) (no will power,) (shapeless.) Fat phobia is common among university students, and women are more fat phobic than men. Fat phobia and attitudes toward obesity should be examined and followed, and methods and messages directed to change negative attitudes should be included during training.
Sequence similarities and evolutionary relationships of microbial, plant and animal alpha-amylases.
Janecek, S
1994-09-01
Amino acid sequence comparison of 37 alpha-amylases from microbial, plant and animal sources was performed to identify their mutual sequence similarities in addition to the five already described conserved regions. These sequence regions were examined from structure/function and evolutionary perspectives. An unrooted evolutionary tree of alpha-amylases was constructed on a subset of 55 residues from the alignment of sequence similarities along with conserved regions. The most important new information extracted from the tree was as follows: (a) the close evolutionary relationship of Alteromonas haloplanctis alpha-amylase (thermolabile enzyme from an antarctic psychrotroph) with the already known group of homologous alpha-amylases from streptomycetes, Thermomonospora curvata, insects and mammals, and (b) the remarkable 40.1% identity between starch-saccharifying Bacillus subtilis alpha-amylase and the enzyme from the ruminal bacterium Butyrivibrio fibrisolvens, an alpha-amylase with an unusually large polypeptide chain (943 residues in the mature enzyme). Due to a very high degree of similarity, the whole amino acid sequences of three groups of alpha-amylases, namely (a) fungi and yeasts, (b) plants, and (c) A. haloplanctis, streptomycetes, T. curvata, insects and mammals, were aligned independently and their unrooted distance trees were calculated using these alignments. Possible rooting of the trees was also discussed. Based on the knowledge of the location of the five disulfide bonds in the structure of pig pancreatic alpha-amylase, the possible disulfide bridges were established for each of these groups of homologous alpha-amylases.
Zurawski, S M; Zurawski, G
1989-01-01
The function of two alpha-helical regions of mouse interleukin-2 were analyzed by saturation substitution analysis. The functional parts of the first alpha-helix (A) was defined as residues 31-39 by the observation that proline substitutions within this region inactivate the protein. Four residues within alpha-helix A, Leu31, Asp34, Leu35 and Leu38, were found to be crucial for biological activity. Structural modeling suggested that these four residues are clustered on one face of alpha-helix A. Residues 31 and 35 had to remain hydrophobic for the molecule to be functional. At residue 38 there was a preference for hydrophobic side chain residues, while at residue 34 some small side chain residues as well as acidic or amide side chain residues were functionally acceptable. Inactivating changes at residue 34 had no effect upon the ability of the protein to interact with the p55 receptor. Disruption of the fifth alpha-helix (E), which had little effect upon biological activity, resulted in an inability of the protein to interact with the p55 receptor. Mutagenesis of the alpha-helix E region demonstrated that alpha-helicity and the nature of the side chain residues in this region were unimportant for biological activity. The region immediately proximal to alpha-helix E was important only for the single intramolecular disulfide linkage. PMID:2583124
NASA Astrophysics Data System (ADS)
Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay
2014-05-01
A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical deformation, warm-deformation followed by annealing is a simpler process to control in the rolling mill; however, the need for high-power rolling mill and controlled annealing facility imposes industrial challenges.
Dong, Lanjun; Huang, Rudan; Wei, Yongge; Chu, Wei
2009-08-17
The eight-nickel-capped polyoxoazonickelate, [Ni(20)(OH)(24)(MMT)(12)(SO(4))](NO(3))(2).6H(2)O (1; MMT = 2-mercapto-5-methyl-1,3,4-thiadiazole), has been synthesized, which has an alpha-Keggin structure with eight nickel caps. In this structure, the polyatom is the late transition metal Ni(II); the central heteroatom is S, and the organic terminal ligand becomes the primary part of the Keggin structure. This is a Keplerate-type cluster, which shows a central Ni(II)(12) cuboctahedron formed by the 12 Ni(II) centers of the classical alpha-Keggin core and a Ni(II)(8) hexahedron formed by the eight nickel caps.
Coefficient Alpha: A Reliability Coefficient for the 21st Century?
ERIC Educational Resources Information Center
Yang, Yanyun; Green, Samuel B.
2011-01-01
Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…
Commentary on Coefficient Alpha: A Cautionary Tale
ERIC Educational Resources Information Center
Green, Samuel B.; Yang, Yanyun
2009-01-01
The general use of coefficient alpha to assess reliability should be discouraged on a number of grounds. The assumptions underlying coefficient alpha are unlikely to hold in practice, and violation of these assumptions can result in nontrivial negative or positive bias. Structural equation modeling was discussed as an informative process both to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieberman, Raquel L.; Daquino, J. Alejandro; Ringe, Dagmar
2009-06-05
Human lysosomal enzymes acid-{beta}-glucosidase (GCase) and acid-{alpha}-galactosidase ({alpha}-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and {alpha}-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking.more » We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using {alpha}-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of {alpha}-Gal A with DGJ. Both GCase and {alpha}-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in {alpha}-Gal A are not seen. Thermodynamic parameters obtained from {alpha}-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and {alpha}-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological chaperones for lysosomal storage disorders.« less
The predicted secondary structures of class I fructose-bisphosphate aldolases.
Sawyer, L; Fothergill-Gilmore, L A; Freemont, P S
1988-01-01
The results of several secondary-structure prediction programs were combined to produce an estimate of the regions of alpha-helix, beta-sheet and reverse turns for fructose-bisphosphate aldolases from human and rat muscle and liver, from Trypanosoma brucei and from Drosophila melanogaster. All the aldolase sequences gave essentially the same pattern of secondary-structure predictions despite having sequences up to 50% different. One exception to this pattern was an additional strongly predicted helix in the rat liver and Drosophila enzymes. Regions of relatively high sequence variation generally were predicted as reverse turns, and probably occur as surface loops. Most of the positions corresponding to exon boundaries are located between regions predicted to have secondary-structural elements consistent with a compact structure. The predominantly alternating alpha/beta structure predicted is consistent with the alpha/beta-barrel structure indicated by preliminary high-resolution X-ray diffraction studies on rabbit muscle aldolase [Sygusch, Beaudry & Allaire (1986) Biophys. J. 49, 287a]. Images Fig. 1. (cont.) Fig. 1. PMID:3128269
Chemical properties and biological activity of a polysaccharide from Melocactus depressus.
da Silva, Bernadete P; Parente, José P
2002-01-01
An arabinogalactan with mean Mr of 6.85 x 10(4), was isolated from the pulps of Melocactus depressus Hook by fractionation on Sephacryl S-300 HR. Chemical and spectroscopic studies indicated that it has a branched arabinogalactan type structure composed of beta-(1-->4) linked D-galactopyranose residues with beta-(1-->3) and beta-(1-->6) branching points. Its structural features include also alpha-(1-->2), alpha-(1-->3) and alpha-(1-->5) linked L-arabinofuranose residues. The polysaccharide demonstrated a phagocytosis stimulating property.
USDA-ARS?s Scientific Manuscript database
The effects of a processive pectin-methylesterase treatment on two different pectins, both possessing a high degree of methylesterification, were investigated. While the starting samples were purportedly very similar in fine structure, and even though the sample-averaged degree of methylesterificati...
Temporal Fine Structure and Applications to Cochlear Implants
ERIC Educational Resources Information Center
Li, Xing
2013-01-01
Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…
Laser Spectroscopy of the Fine-Structure Splitting in the 2^{3}P_{J} Levels of ^{4}He.
Zheng, X; Sun, Y R; Chen, J-J; Jiang, W; Pachucki, K; Hu, S-M
2017-02-10
The fine-structure splitting in the 2^{3}P_{J} (J=0, 1, 2) levels of ^{4}He is of great interest for tests of quantum electrodynamics and for the determination of the fine-structure constant α. The 2^{3}P_{0}-2^{3}P_{2} and 2^{3}P_{1}-2^{3}P_{2} intervals are measured by laser spectroscopy of the ^{3}P_{J}-2^{3}S_{1} transitions at 1083 nm in an atomic beam, and are determined to be 31 908 130.98±0.13 kHz and 2 291 177.56±0.19 kHz, respectively. Compared with calculations, which include terms up to α^{5}Ry, the deviation for the α-sensitive interval 2^{3}P_{0}-2^{3}P_{2} is only 0.22 kHz. It opens the window for further improvement of theoretical predictions and an independent determination of the fine-structure constant α with a precision of 2×10^{-9}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.
2016-12-20
We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible inmore » the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence–corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.« less
Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poudel, Bhawana; Bilbao, Daniel; Sarathchandra, Padmini
2011-12-16
Highlights: Black-Right-Pointing-Pointer In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. Black-Right-Pointing-Pointer IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. Black-Right-Pointing-Pointer Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. Black-Right-Pointing-Pointer Furthermore, it promoted formation of finely organized sarcomeric structure. Black-Right-Pointing-Pointer IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. Wemore » have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac mesodermal induction in undifferentiated cells independently of cell proliferation. This analysis suggests that IGF-1Ea may be a good candidate to improve both in vitro production of cardiomyocytes from pluripotent stem cells and in vivo activation of the differentiation program of cardiac progenitor cells.« less
The factor structure of the illness attitude scales in a German population.
Weck, Florian; Bleichhardt, Gaby; Hiller, Wolfgang
2009-01-01
The illness attitudes scales (IAS) were developed to identify different dimensions of hypochondrical attitudes, fears, beliefs, and abnormal illness behavior (Kellner 1986). Although there are several studies which focus on the scale structure of the IAS, the factor structure has not yet been made quite clear. Therefore, the aim of this study was to investigate the factor structure of the IAS on a large representative sample. Participants (N = 1,575) comparable with the general German population regarding sex, age, and education level completed the IAS. For the data analyses, a principal components analyses with subsequent oblique rotations was used. The minimum average partial method suggested a three-factor solution. The three factors were named (1) health anxiety, (2) health behavior, and (3) health habits. Internal consistency (Cronbach's alpha) for the three scales were (1) alpha = 0.88, (2) alpha = 0.75, and (3) alpha = 0.56. The results support previous findings, namely that the IAS factor structure appears to be less complex than originally suggested by the author. For a sample of the general German population, a three-factor solution fit best. Further items should be added to improve the internal consistency, especially for the third scale (health habits).
Stacking and T-shape competition in aromatic-aromatic amino acid interactions.
Chelli, Riccardo; Gervasio, Francesco Luigi; Procacci, Piero; Schettino, Vincenzo
2002-05-29
The potential of mean force of interacting aromatic amino acids is calculated using molecular dynamics simulations. The free energy surface is determined in order to study stacking and T-shape competition for phenylalanine-phenylalanine (Phe-Phe), phenylalanine-tyrosine (Phe-Tyr), and tyrosine-tyrosine (Tyr-Tyr) complexes in vacuo, water, carbon tetrachloride, and methanol. Stacked structures are favored in all solvents with the exception of the Tyr-Tyr complex in carbon tetrachloride, where T-shaped structures are also important. The effect of anchoring the two alpha-carbons (C(alpha)) at selected distances is investigated. We find that short and large C(alpha)-C(alpha) distances favor stacked and T-shaped structures, respectively. We analyze a set of 2396 protein structures resolved experimentally. Comparison of theoretical free energies for the complexes to the experimental analogue shows that Tyr-Tyr interaction occurs mainly at the protein surface, while Phe-Tyr and Phe-Phe interactions are more frequent in the hydrophobic protein core. This is confirmed by the Voronoi polyhedron analysis on the database protein structures. As found from the free energy calculation, analysis of the protein database has shown that proximal and distal interacting aromatic residues are predominantly stacked and T-shaped, respectively.
Polyhydroxylated spirostanol saponins from the tubers of Dioscorea polygonoides.
Osorio, Jaime Niño; Mosquera Martinez, Oscar M; Correa Navarro, Yaned M; Watanabe, Kazuki; Sakagami, Hiroshi; Mimaki, Yoshihiro
2005-07-01
Three new polyhydroxylated spirostanol saponins (1-3) were isolated from the tubers of Dioscorea polygonoides. The structures of these new compounds were determined on the basis of extensive spectroscopic analysis and the results of acid or enzymatic hydrolysis as (23S,24R,25S)-23,24-dihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (1), (23S,25R)-12alpha,17alpha,23-trihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (2), and (23S,25R)-14alpha,17alpha,23-trihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (3), respectively.
NASA Astrophysics Data System (ADS)
Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.
2016-12-01
Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.
Atomic and Molecular Spectroscopic Studies of the DIII-D Neutral Beam Ion Source and Neutralizer
NASA Astrophysics Data System (ADS)
Crowley, B.; Rauch, J.; Scoville, J. T.; Sharma, S. K.; Choksi, B.
2015-11-01
The neutral beam system is interesting in that it comprises two distinct low temperature plasmas. Firstly, the ion source is typically a filament or RF driven plasma from which ions are extracted by a high voltage accelerator grid system. Secondly the neutralizer is essentially a low temperature plasma system with the beam serving as the primary ionization source and the neutralizer walls serving as conducting boundaries. Atomic spectroscopy of Doppler shifted D-alpha light emanating from the fast atoms is studied to determine the composition of the source and the divergence of the beam. Molecular spectroscopy involves measuring fine structure in electron-vibrational rotational bands. The technique has applications in low temperature plasmas and here it is used to determine gas temperature in the neutralizer. We describe the experimental set-up and the physics model used to relate the spectroscopic data to the plasma parameters and we present results of recent experiments exploring how to increase neutralization efficiency. Supported by the US DOE under DE-FC02-04ER54698.
Characterization of Synthetic and Natural Manganese Oxides as Martian Analogues
NASA Technical Reports Server (NTRS)
Fox, V. K.; Arvidson, R. E.; Jolliff, B. L.; Carpenter, P. K.; Catalano, J. G.; Hinkle, M. A. G.; Morris, R. V.
2015-01-01
Recent discoveries of highly concentrated manganese oxides in Gale Crater and on the rim of Endeavour Crater by the Mars Science Laboratory Curiosity and Mars Exploration Rover Opportunity, respectively, imply more highly oxidizing aqueous conditions than previously recognized. Manganese oxides are a significant environmental indicator about ancient aqueous conditions, provided the phases can be characterized reliably. Manganese oxides are typically fine-grained and poorly crystalline, making the mineral structures difficult to determine, and they generally have very low visible reflectance with few distinctive spectral features in the visible to near infrared, making them a challenge for interpretation from remote sensing data. Therefore, these recent discoveries motivate better characterization using methods available on Mars, particularly visible to near infrared (VNIR) spectroscopy, X-ray diffractometry (XRD), and compositional measurements. Both rovers have complementary instruments in this regard. Opportunity is equipped with its multispectral visible imager, Pancam, and an Alpha Particle X-ray Spectrometer (APXS), and Curiosity has the multispectral Mastcam, ChemCam (laser-induced breakdown spectroscopy and passive spectroscopy), and APXS for in situ characterization, and ChemMin (XRD) for collected samples.
Understanding the masses of elementary particles: a step towards understanding the massless photon?
NASA Astrophysics Data System (ADS)
Greulich, K. O.
2011-09-01
A so far unnoticed simple explanation of elementary particle masses is given by m = N * melectron/α, where alpha (=1/137) is the fine structure constant. On the other hand photons can be described by two oppositely oscillating clouds of e / √α elementary charges. Such a model describes a number of features of the photon in a quantitatively correct manner. For example, the energy of the oscillating clouds is E = h ν, the spin is 1 and the spatial dimension is λ / 2 π. When the charge e / √α is assigned to the Planck mass mPl, the resulting charge density is e / (mPl√α) = 8,62 * 10-11 Cb / kg. This is identical to √ (G / ko) where G is the gravitational constant and ko the Coulomb constant. When one assigns this very small charge density to any matter, gravitation can be completely described as Coulomb interaction between such charges of the corresponding masses. Thus, there is a tight quantitative connection between the photon, nonzero rest masses and gravitation / Coulomb interaction.
Measurements of resonant scattering in the Perseus cluster core with Hitomi SXS
NASA Astrophysics Data System (ADS)
Sato, K.; Zhuravleva, I.
2017-10-01
Hitomi (ASTRO-H) SXS allows us to investigate fine structures of emission lines in extended X-ray sources for the first time. Thanks to its high energy resolution of 5 eV at 6 keV in orbit, Hitomi SXS finds a quiescent atmosphere in the Intra cluster medium of the Perseus cluster core where the gas has a line-of-sight velocity dispersion below 200 km/sec from the line width in the spectral analysis (Hitomi collaboration, Nature, 2016). The resonant scattering is also important to measure the gas velocity as a complementary probe of the direct measurement from the line width. Particularly in the cluster core, resonant scattering should be taken into account when inferring physical properties from line intensities because the optical depth of the He-alpha resonant line is expected to be larger than 1. The observed line flux ratio of Fe XXV He-α resonant to forbidden lines is found to be lower in the cluster core when compared to the outer region, consistent with resonant scattering of the resonant line and also in support of the low turbulent velocity.
NASA Astrophysics Data System (ADS)
Brandenburg, John
2012-10-01
The GEM theory (1) links the EM stress tensor directly to the metric tensor by the principle of ``self censorship'' of the ZPF (2) where the definition of guv = FuwF^wv/ 4 for Planck scale fields makes the stress tensor vanish even when fields are present. The first order form of the metric is recovered as Lorentzian due to alternating regions of strong electric and magnetic fields similar to that seen in models of spacetime in ``Loop Gravity,'' where the model admits perturbations. The GEM ExB drift models of gravity is used The first order perturbations on the fields are considered to be of the order of the fine structure constant alpha. Radiation fields due to a single charged particle of mass M fall off as 1/r and give the values (G=c=1) gtt = 1-2M/r and grr = (1-2M/r). (1) Brandenburg, J.E. (2012)., (2) STAIF II Conference Albuquerque NM 2.Brandenburg, J.E. (2007). IEEE Transactions On Plasma Science, Vol. 35, No. 4., p845.
Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase.
Suits, Michael D L; Zhu, Yanping; Taylor, Edward J; Walton, Julia; Zechel, David L; Gilbert, Harry J; Davies, Gideon J
2010-02-03
The enzymatic hydrolysis of alpha-mannosides is catalyzed by glycoside hydrolases (GH), termed alpha-mannosidases. These enzymes are found in different GH sequence-based families. Considerable research has probed the role of higher eukaryotic "GH38" alpha-mannosides that play a key role in the modification and diversification of hybrid N-glycans; processes with strong cellular links to cancer and autoimmune disease. The most extensively studied of these enzymes is the Drosophila GH38 alpha-mannosidase II, which has been shown to be a retaining alpha-mannosidase that targets both alpha-1,3 and alpha-1,6 mannosyl linkages, an activity that enables the enzyme to process GlcNAc(Man)(5)(GlcNAc)(2) hybrid N-glycans to GlcNAc(Man)(3)(GlcNAc)(2). Far less well understood is the observation that many bacterial species, predominantly but not exclusively pathogens and symbionts, also possess putative GH38 alpha-mannosidases whose activity and specificity is unknown. Here we show that the Streptococcus pyogenes (M1 GAS SF370) GH38 enzyme (Spy1604; hereafter SpGH38) is an alpha-mannosidase with specificity for alpha-1,3 mannosidic linkages. The 3D X-ray structure of SpGH38, obtained in native form at 1.9 A resolution and in complex with the inhibitor swainsonine (K(i) 18 microM) at 2.6 A, reveals a canonical GH38 five-domain structure in which the catalytic "-1" subsite shows high similarity with the Drosophila enzyme, including the catalytic Zn(2+) ion. In contrast, the "leaving group" subsites of SpGH38 display considerable differences to the higher eukaryotic GH38s; features that contribute to their apparent specificity. Although the in vivo function of this streptococcal GH38 alpha-mannosidase remains unknown, it is shown to be an alpha-mannosidase active on N-glycans. SpGH38 lies on an operon that also contains the GH84 hexosaminidase (Spy1600) and an additional putative glycosidase. The activity of SpGH38, together with its genomic context, strongly hints at a function in the degradation of host N- or possibly O-glycans. The absence of any classical signal peptide further suggests that SpGH38 may be intracellular, perhaps functioning in the subsequent degradation of extracellular host glycans following their initial digestion by secreted glycosidases.
Westaway, Kenneth C; Fang, Yao-ren; MacMillar, Susanna; Matsson, Olle; Poirier, Raymond A; Islam, Shahidul M
2008-10-16
Nucleophile (11)C/ (14)C [ k (11)/ k (14)] and secondary alpha-deuterium [( k H/ k D) alpha] kinetic isotope effects (KIEs) were measured for the S N2 reactions between tetrabutylammonium cyanide and ethyl iodide, bromide, chloride, and tosylate in anhydrous DMSO at 20 degrees C to determine whether these isotope effects can be used to determine the structure of S N2 transition states. Interpreting the experimental KIEs in the usual fashion (i.e., that a smaller nucleophile KIE indicates the Nu-C alpha transition state bond is shorter and a smaller ( k H/ k D) alpha is found when the Nu-LG distance in the transition state is shorter) suggests that the transition state is tighter with a slightly shorter NC-C alpha bond and a much shorter C alpha-LG bond when the substrate has a poorer halogen leaving group. Theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion. The results show that the experimental nucleophile (11)C/ (14)C KIEs can be used to determine transition-state structure in different reactions and that the usual method of interpreting these KIEs is correct. The magnitude of the experimental secondary alpha-deuterium KIE is related to the nucleophile-leaving group distance in the S N2 transition state ( R TS) for reactions with a halogen leaving group. Unfortunately, the calculated and experimental ( k H/ k D) alpha's change oppositely with leaving group ability. However, the calculated ( k H/ k D) alpha's duplicate both the trend in the KIE with leaving group ability and the magnitude of the ( k H/ k D) alpha's for the ethyl halide reactions when different scale factors are used for the high and the low energy vibrations. This suggests it is critical that different scaling factors for the low and high energy vibrations be used if one wishes to duplicate experimental ( k H/ k D) alpha's. Finally, neither the experimental nor the theoretical secondary alpha-deuterium KIEs for the ethyl tosylate reaction fit the trend found for the reactions with a halogen leaving group. This presumably is found because of the bulky (sterically hindered) leaving group in the tosylate reaction. From every prospective, the tosylate reaction is too different from the halogen reactions to be compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.
2010-04-15
Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4{alpha} interacts, peroxisome proliferation-activated receptor {gamma} (PPAR{gamma}) coactivator 1{alpha} (PGC-1{alpha}) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1{alpha} recruitment, we have determined the crystal structure of HNF4{alpha} in complex with amore » fragment of PGC-1{alpha} containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4{alpha} toward the LXXLL motifs of PGC-1{alpha} could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators.« less
Incorporation of alpha-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies.
Nacka, F; Cansell, M; Méléard, P; Combe, N
2001-12-01
Liposomes made from a natural marine lipid extract and containing a high polyunsaturated n-3 fatty lipid ratio were envisaged as oral route vectors and a potential alpha-tocopherol supplement. The behavior of vesicles obtained by simple filtration and of giant vesicles prepared by electroformation was investigated in gastrointestinal-like conditions. The influence of alpha-tocopherol incorporation into liposomes was studied on both physical and chemical membrane stability. Propanal, as an oxidation product of n-3 polyunsaturated fatty acids, was quantified by static headspace gas chromatography when alpha-tocopherol incorporation into liposome ratios ranged from 0.01 to 12 mol%. Best oxidative stability was obtained for liposomes that contained 5 mol% alpha-tocopherol. Compared to the other formulas, propanal formation was reduced, and time of the oxidation induction phase was longer. Moreover, alpha-tocopherol induced both liposome structural modifications, evidenced by turbidity, and phospholipid chemical hydrolysis, quantified as the amount of lysophospholipids. This physicochemical liposome instability was even more pronounced in acid storage conditions, i.e., alpha-tocopherol incorporation into liposome membranes accelerated the structural rearrangements and increased the rate of phospholipid hydrolysis. In particular, giant vesicles incubated at pH 1.5 underwent complex irreversible shape transformations including invaginations. In parallel, the absorption rate of alpha-tocopherol was measured in lymph-cannulated rats when alpha-tocopherol was administrated, as liposome suspension or added to sardine oil, through a gastrostomy tube. Alpha-tocopherol recovery in lymph was increased by almost threefold, following liposome administration. This may be related to phospholipids that should favor alpha-tocopherol solubilization and to liposome instability in the case of a high amount of alpha-tocopherol in the membranes. A need to correlate results obtained from in vitro liposome behavior with in vivo lipid absorption was demonstrated by this study.
Synthesis of methyl 2-O- and 3-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside.
Rana, S S; Matta, K L
1986-09-01
Methyl 3,4,6-tri-O-benzyl-2-O-[6-O-(tert-butyldiphenylsilyl)-alpha-D- mannopyranosyl]-alpha-D-mannopyranoside (2) was synthesized by treatment of methyl 3,4,6-tri-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside with tert-butylchlorodiphenylsilane in the presence of imidazole. Isopropylidenation, followed by oxidation with pyridinium chlorochromate, and stereoselective reduction with sodium borohydride, converted 2 into methyl 3,4,6-tri-O-benzyl-2-O-[6-O-(tert-butyldiphenylsilyl)-2,3-O-isopro pylidene- alpha-D-talopyranosyl]-alpha-D-mannopyranoside (5). Treatment of 5 with a molar solution of tetrabutylammonium fluoride in dry oxolane produced a diol which, on O-de-isopropylidenation followed by catalytic hydrogenolysis, afforded the disaccharide glycoside methyl 2-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside. Synthesis of methyl 3-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside was accomplished by a similar reaction-sequence. The structures of the final disaccharides, and of various other intermediates, were established by 1H- and 13C-n.m.r. spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng,L.; Gell, D.; Zhou, S.
Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two alpha and two beta subunits. Free alpha-hemoglobin (alphaHb) is unstable, and its precipitation contributes to the pathophysiology of beta thalassemia. In erythrocytes, the alpha-hemoglobin stabilizing protein (AHSP) binds alphaHb and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-alphaHb reveals that AHSP specifically recognizes the G and H helices of alphaHb through a hydrophobic interface that largely recapitulates the alpha1-beta1 interface of hemoglobin. The AHSP-alphaHb interactions are extensive but suboptimal, explaining why beta-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP boundmore » alphaHb is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-alphaHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free alphaHb.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasic, Ivan B.; Metcalf, Matthew C.; Guce, Abigail I.
2010-09-03
The human lysosomal enzymes {alpha}-galactosidase ({alpha}-GAL, EC 3.2.1.22) and {alpha}-N-acetylgalactosaminidase ({alpha}-NAGAL, EC 3.2.1.49) share 46% amino acid sequence identity and have similar folds. The active sites of the two enzymes share 11 of 13 amino acids, differing only where they interact with the 2-position of the substrates. Using a rational protein engineering approach, we interconverted the enzymatic specificity of {alpha}-GAL and {alpha}-NAGAL. The engineered {alpha}-GAL (which we call {alpha}-GALSA) retains the antigenicity of {alpha}-GAL but has acquired the enzymatic specificity of {alpha}-NAGAL. Conversely, the engineered {alpha}-NAGAL (which we call {alpha}-NAGAL{sup EL}) retains the antigenicity of {alpha}-NAGAL but has acquired themore » enzymatic specificity of the {alpha}-GAL enzyme. Comparison of the crystal structures of the designed enzyme {alpha}-GAL{sup SA} to the wild-type enzymes shows that active sites of {alpha}-GAL{sup SA} and {alpha}-NAGAL superimpose well, indicating success of the rational design. The designed enzymes might be useful as non-immunogenic alternatives in enzyme replacement therapy for treatment of lysosomal storage disorders such as Fabry disease.« less
Topological distribution of four-alpha-helix bundles.
Presnell, S R; Cohen, F E
1989-01-01
The four-alpha-helix bundle, a common structural motif in globular proteins, provides an excellent forum for the examination of predictive constraints for protein backbone topology. An exhaustive examination of the Brookhaven Crystallographic Protein Data Bank and other literature sources has lead to the discovery of 20 putative four-alpha-helix bundles. Application of an analytical method that examines the difference between solvent-accessible surface areas in packed and partially unpacked bundles reduced the number of structures to 16. Angular requirements further reduced the list of bundles to 13. In 12 of these bundles, all pairs of neighboring helices were oriented in an anti-parallel fashion. This distribution is in accordance with structure types expected if the helix macro dipole effect makes a substantial contribution to the stability of the native structure. The characterizations and classifications made in this study prompt a reevaluation of constraints used in structure prediction efforts. Images PMID:2771946
Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2003-01-01
Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Bala; Gorti, Sarma; Babu, Suresh Sudharsanam
Here, we present phase field simulations incorporating energy contributions due to thermodynamics, and anisotropic interfacial and strain energies, to demonstrate the nucleation and growth of multiple variants of alpha from beta in Ti-6Al-4V under isothermal conditions. The simulations focused on the effect of thermodynamic driving force and nucleation rate on the morphology of the transformed alpha assuming that the partitioning of V between beta and alpha is negligible for short isothermal holds. The results indicate that a high nucleation rate favors the formation of the basket-weave structure. However, at a lower nucleation rate the simulations show the intragranular nucleation ofmore » a colony structure by an autocatalytic nucleation mechanism adjacent to a pre-existing alpha variant. New side-plates of the same variant appear to nucleate progressively and grow to form the colony. The isothermal simulation results are used to offer a possible explanation for the transition from a largely basket weave structure to a colony structure inside narrow layer bands occurring during continuous heating and cooling conditions encountered during laser additive manufacturing of Ti-6Al-4V.« less
Predicting the transmembrane secondary structure of ligand-gated ion channels.
Bertaccini, E; Trudell, J R
2002-06-01
Recent mutational analyses of ligand-gated ion channels (LGICs) have demonstrated a plausible site of anesthetic action within their transmembrane domains. Although there is a consensus that the transmembrane domain is formed from four membrane-spanning segments, the secondary structure of these segments is not known. We utilized 10 state-of-the-art bioinformatics techniques to predict the transmembrane topology of the tetrameric regions within six members of the LGIC family that are relevant to anesthetic action. They are the human forms of the GABA alpha 1 receptor, the glycine alpha 1 receptor, the 5HT3 serotonin receptor, the nicotinic AChR alpha 4 and alpha 7 receptors and the Torpedo nAChR alpha 1 receptor. The algorithms utilized were HMMTOP, TMHMM, TMPred, PHDhtm, DAS, TMFinder, SOSUI, TMAP, MEMSAT and TOPPred2. The resulting predictions were superimposed on to a multiple sequence alignment of the six amino acid sequences created using the CLUSTAL W algorithm. There was a clear statistical consensus for the presence of four alpha helices in those regions experimentally thought to span the membrane. The consensus of 10 topology prediction techniques supports the hypothesis that the transmembrane subunits of the LGICs are tetrameric bundles of alpha helices.
Some properties of the filamentary nebula at 1723 - 46
NASA Technical Reports Server (NTRS)
Bedford, D. K.; Elliott, K. H.; Ramsey, B.; Meaburn, J.
1984-01-01
High resolution spectra of the interstellar NaI D2 absorption line have been obtained for seven B-type stars aligned with an extensive filamentary nebula. Very fine filaments have now been found on a high contrast print of a deep H-alpha and forbidden N II plate, making identification as a fossilized remnant probable but uncertain. The inferred age is about 20,000 yr, the distance less than 200 pc, the diameter less than 17.5 pec, but the initial energy is only about 2 x 10 to the 47th erg.
Automation of TL brick dating by ADAM-1
NASA Astrophysics Data System (ADS)
Čechák, T.; Gerndt, J.; Hiršl, P.; Jiroušek, P.; Kanaval, J.; Kubelík, M.; Musílek, L.
2001-06-01
A specially adapted machine ADAM-1 for the thermoluminescence fine grain dating of bricks was constructed in an interdisciplinary research project, undertaken by a team recruited from three faculties of the Czech Technical University in Prague. This TL-reader is able to measure and evaluate automatically numerous samples. The sample holder has 60 sample positions, which allow the irradiation and evaluation of samples taken from two locations. All procedures of alpha and beta irradiation by varying doses and the TL-signal measurement as also the age evaluation and error assessment are programmable and fully automated.
Dasgupta, Bhaskar; Pal, Lipika; Basu, Gautam; Chakrabarti, Pinak
2004-05-01
Like the beta-turns, which are characterized by a limiting distance between residues two positions apart (i, i+3), a distance criterion (involving residues at positions i and i+4) is used here to identify alpha-turns from a database of known protein structures. At least 15 classes of alpha-turns have been enumerated based on the location in the phi,psi space of the three central residues (i+1 to i+3)-one of the major being the class AAA, where the residues occupy the conventional helical backbone torsion angles. However, moving towards the C-terminal end of the turn, there is a shift in the phi,psi angles towards more negative phi, such that the electrostatic repulsion between two consecutive carbonyl oxygen atoms is reduced. Except for the last position (i+4), there is not much similarity in residue composition at different positions of hydrogen and non-hydrogen bonded AAA turns. The presence or absence of Pro at i+1 position of alpha- and beta-turns has a bearing on whether the turn is hydrogen-bonded or without a hydrogen bond. In the tertiary structure, alpha-turns are more likely to be found in beta-hairpin loops. The residue composition at the beginning of the hydrogen bonded AAA alpha-turn has similarity with type I beta-turn and N-terminal positions of helices, but the last position matches with the C-terminal capping position of helices, suggesting that the existence of a "helix cap signal" at i+4 position prevents alpha-turns from growing into helices. Our results also provide new insights into alpha-helix nucleation and folding. Copyright 2004 Wiley-Liss, Inc.
Flavonoids from the flowers of Aesculus hippocastanum.
Dudek-Makuch, Marlena; Matławska, Irena
2011-01-01
The flavonoids, kaempferol derivatives: 3-O-alpha-arabinofuranoside, 3-O-beta-glucopyranoside, 3-O-alpha-rhamnopyranoside, 3-O-alpha-rhamnopyranosyl (1 --> 6)-O-beta-glucopyranoside and quercetin derivatives: 3-O-alpha-arabinofuranoside, 3-O-beta-glucopyranoside, 3-O-alpha-rhamnopyranosyl (1 --> 6)-O-beta-glucopyranoside, were isolated from the flowers of Aesculus hippocastanum and identified. The structures of these compounds were confirmed by a chemical analysis and spectrophotometric methods (UV, 1H-, 13C-NMR, ESI-MS). The presence of free aglycones: kaempferol and quercetin was confirmed chromatographically by comparison with standards.
Permyakov, Serge E; Pershikova, Irina V; Khokhlova, Tatyana I; Uversky, Vladimir N; Permyakov, Eugene A
2004-05-18
The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.
Structure and Properties of Titanium Tantalum Alloys for Biocompatibility
NASA Astrophysics Data System (ADS)
Huber, Daniel E.
In this thesis, the phase stability and elastic modulus of Ti-Ta simple binary alloys as well as alloys with small additions of ternary elements have been studied. The binary alloy from a nominal 8 to 28 wt.% Ta was first explored using a combinatorial approach. This approach included Laser Engineered Net Shape (LENSTM) processing of materials and subsequent characterization by instrumented indentation and site specific Transmission Electron Microscopy (TEM). The composition range of 15 to 75 wt.% Ta was further explored by more traditional methods that included vacuum arc melting high purity elements, X-Ray Diffraction (XRD) and modulus measurements made by ultrasonic methods. Beyond the simple binary, alloys with low levels of ternary elements, oxygen, aluminum, zirconium and small additions of rare earth oxides were investigated. The crystal structure with space group Cmcm was chosen for it applicability with P63/mmc and Im-3¯m sub group / super group symmetry. This provides a consistent crystal structure framework for the purpose of studying the alpha to beta transformation pathway and associated alpha' and alpha'' martensitic phases. In this case, the pathway is defined by both the lattice parameters and the value of the parameter "y", where the parameter "y" describes the atomic positions of the [002]alpha plane. It was found that the lattice parameter changes in the Ti-Ta binary alloys are similar to structures reported for compositions in the Ti-Nb system of similar atomic percentages. Although samples produced by the LENSTM; process and characterized by instrumented indentation demonstrated the correct trends in modulus behavior, absolute agreement was not seen with modulus values published in literature. Alloys of the binary Ti-Ta system produced from high purity materials do indeed show close agreement with literature where there exist two minima of modulus near the compositions of Ti-28Ta wt.% and Ti-68Ta wt.%. These two minima occur at the discreet boundary between alpha' / alpha'' and alpha'' / beta respectively. The role of oxygen as an alloying addition was studied as it relates to the stability of alpha' and alpha'' martensite, here it was found that oxygen will stabilize alpha' yet cause an increase in the Young's modulus. Rare earth additions to getter interstitial oxygen in the high purity materials show no further reduction in modulus. Conversely, additions of another alpha stabilizer, Al, proved to lower the alpha' stability, with one composition exhibiting a modulus as low as 53 GPa. Zirconium being a neutral element regarding alpha and beta stability slightly changed the structure and lattice parameter, while making a little or no difference in the observed modulus. Observations by TEM of quenched specimens indicate the rise in modulus observed between the two minima is not caused the appearance of o. Rather weak o reflections were observed in Ti-65Ta wt.% in the as arc-melted condition and on annealing for 450°C for 24 hours. Precipitates of o were not clearly identified by dark-field TEM imaging. High Resolution Scanning Transmission Electron Microscopy (HRSTEM) of the aged specimen indicated that o might exist as 3-5nm particles.
Simple preparation of magnetic field-responsive structural colored Janus particles.
Teshima, Midori; Seki, Takahiro; Takeoka, Yukikazu
2018-03-08
We established a simple method for preparing Janus particles displaying different structural colors using submicron-sized fine silica particles and magnetic nanoparticles composed of Fe 3 O 4 . A w/o emulsion is prepared by vortex-stirring a mixed aqueous solution of suspended fine silica particles and magnetic nanoparticles and of hexadecane containing an emulsifier. Subsequent drying of the emulsion on a hot plate using a magnetic stirrer provides a polydisperse particle aggregate displaying two different structural colors according to the ratio of the amount of fine silica particles to the amount of magnetic nanoparticles. This polydisperse particle aggregate can be converted into monodisperse particles simply by using a sieve made of stainless steel. In the presence of a magnet, the monodisperse Janus particles can change their orientation and can switch between two different structural colors.
The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance
NASA Technical Reports Server (NTRS)
Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.
1994-01-01
The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi
2007-10-19
We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less
Lorieau, Justin L; Louis, John M; Bax, Ad
2010-06-22
All but five of the N-terminal 23 residues of the HA2 domain of the influenza virus glycoprotein hemagglutinin (HA) are strictly conserved across all 16 serotypes of HA genes. The structure and function of this HA2 fusion peptide (HAfp) continues to be the focus of extensive biophysical, computational, and functional analysis, but most of these analyses are of peptides that do not include the strictly conserved residues Trp(21)-Tyr(22)-Gly(23). The heteronuclear triple resonance NMR study reported here of full length HAfp of sero subtype H1, solubilized in dodecylphosphatidyl choline, reveals a remarkably tight helical hairpin structure, with its N-terminal alpha-helix (Gly(1)-Gly(12)) packed tightly against its second alpha-helix (Trp(14)-Gly(23)), with six of the seven conserved Gly residues at the interhelical interface. The seventh conserved Gly residue in position 13 adopts a positive angle, enabling the hairpin turn that links the two helices. The structure is stabilized by multiple interhelical C(alpha)H to C=O hydrogen bonds, characterized by strong interhelical H(N)-H(alpha) and H(alpha)-H(alpha) NOE contacts. Many of the previously identified mutations that make HA2 nonfusogenic are also incompatible with the tight antiparallel hairpin arrangement of the HAfp helices.(15)N relaxation analysis indicates the structure to be highly ordered on the nanosecond time scale, and NOE analysis indicates HAfp is located at the water-lipid interface, with its hydrophobic surface facing the lipid environment, and the Gly-rich side of the helix-helix interface exposed to solvent.
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag
2002-01-01
The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.
[Study on the chemical constituents in Pouzolzia zeylanica].
Fu, Ming; Niu, You-Ya; Yu, Juan; Kong, Qing-Tong
2012-11-01
To study the chemical constituents of Pouzolzia zeylanica. Many chromatography means were used in separation and purification, and the structures of all compounds were identified by the means of spectroscopic analysis and physicochemical properties. 14 compounds were elucidated as: beta-sitosterol (1), daucosterol (2), oleanolic acid (3), epicatechin (4), alpha-amyrin (5), eugenyl-beta-rutinoside (6), 2alpha, 3alpha, 19alpha-trihydroxyurs-12-en-28-oic (7), scopolin (8), scutellarein-7-O-alpha-L-rhamnoside (9), scopoletin (10), quercetin (11), quercetin-3-O-beta-D-glucoside (12), apigenin (13), 2alpha-hydroxyursolic acid (14). All compounds are obtained from this plant for the first time.
Molecular And Structural Basis of Cytokine Receptor Pleiotropy in the Interleukin-4/13 System
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPorte, S.L.; Juo, Z.S.; Vaclavikova, J.
2009-05-20
Interleukin-4 and Interleukin-13 are cytokines critical to the development of T cell-mediated humoral immune responses, which are associated with allergy and asthma, and exert their actions through three different combinations of shared receptors. Here we present the crystal structures of the complete set of type I (IL-4R{alpha}/{gamma}{sub c}/IL-4) and type II (IL-4R/IL-13R{alpha}1/IL-4, IL-4R{alpha}/IL-13R{alpha}1/IL-13) ternary signaling complexes. The type I complex reveals a structural basis for {gamma}{sub c}'s ability to recognize six different {gamma}{sub c}-cytokines. The two type II complexes utilize an unusual top-mounted Ig-like domain on IL-13R{alpha}1 for a novel mode of cytokine engagement that contributes to a reversal inmore » the IL-4 versus IL-13 ternary complex assembly sequences, which are mediated through substantially different recognition chemistries. We also show that the type II receptor heterodimer signals with different potencies in response to IL-4 versus IL-13 and suggest that the extracellular cytokine-receptor interactions are modulating intracellular membrane-proximal signaling events.« less
Cell wall teichoic acids of actinomycetes of three genera of the order actinomycetales.
Streshinskaya, G M; Shashkov, A S; Usov, A I; Evtushenko, L I; Naumova, I B
2002-07-01
The structures of cell wall teichoic acids of the members of newly recognized genera of the order Actinomycetales were studied. Planotetraspora mira VKM Ac-2000T contains two types of teichoic acids: 2,3-poly(glycerol phosphate) substituted with alpha-D-Galp at C-1 of glycerol and 1,3-poly(glycerol phosphate) substituted with alpha-L-Rhap at OH-2 of glycerol (60%). Herbidospora cretacea VKM Ac-1997T contains the chains of 1,3-poly(glycerol phosphate) partially substituted with alpha-D-Galp and alpha-D-GalpNAc at C-2 of glycerol. The majority of alpha-D-galactopyranosyl residues are substituted at OH-3 with a sulfate. The aforementioned teichoic acids have not been found in bacteria thus far. Actinocorallia herbida VKM Ac-1994T contains poly(galactosylglycerol phosphate), with the beta-Galp-(1-->2)-Gro-P repeating units being linked via the phosphodiester bonds between the OH-3 of glycerol and OH-6 of galactose. Earlier, this structure was found in the cell wall of Actinomadura madura. The polymer structures were determined by chemical analysis and using 13C-NMR spectroscopy. The results show that teichoic acids are widespread in the order Actinomycetales.
USDA-ARS?s Scientific Manuscript database
To produce sufficient amounts of glucose from food starch, both alpha-amylase and mucosal alpha-glucosidases are required. We found previously that the digestion rate of starch is influenced by its susceptibility to mucosal alpha-glucosidases. In the present study, six starches and one glycogen were...
Adaptive root foraging strategies along a boreal-temperate forest gradient.
Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak
2017-08-01
The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Kreplak, L; Doucet, J; Briki, F
2001-04-15
Transformations of proteins secondary and tertiary structures are generally studied in globular proteins in solution. In fibrous proteins, such as hard alpha-keratin, that contain long and well-defined double stranded alpha-helical coiled coil domains, such study can be directly done on the native fibrous tissue. In order to assess the structural behavior of the coiled coil domains under an axial mechanical stress, wide angle x-ray scattering and small angle x-ray scattering experiments have been carried out on stretched horse hair fibers at relative humidity around 30%. Our observations of the three major axial spacings as a function of the applied macroscopic strain have shown two rates. Up to 4% macroscopic strain the coiled coils were slightly distorted but retained their overall conformation. Above 4% the proportion of coiled coil domains progressively decreased. The main and new result of our study is the observation of the transition from alpha-helical coiled coils to disordered chains instead of the alpha-helical coiled coil to beta-sheet transition that occurs in wet fibers.
A rational approach to predict and modulate stereolability of chiral alpha substituted ketones.
Cirilli, Roberto; Costi, Roberta; Di Santo, Roberto; Gasparrini, Francesco; La Torre, Francesco; Pierini, Marco; Siani, Gabriella
2009-01-01
An effective strategy to assess and modulate the stereolability of chiral alpha substituted ketones (C alpha SKs) is presented. The tendency of C alpha SKs to retain or change their configuration in water is analyzed as a function of thermodynamic proton-release attitude of alpha asymmetric atoms inside the structures by linear Brønsted correlations. A molecular modeling procedure was developed to analyze and suggest chemical modifications of C alpha SKs in view to obtain the desired grade of stereochemical stability. The approach was employed to predict the tendency to enantiomerize in water of two ketones (1 and 2) endowed with inhibitory activity against monoamine oxidases (MAOs) and the results were confirmed by experimental kinetics measurements performed in organic medium. As a demonstration of practical potentialities of the approach, four new structures, conceived as simple chemical modifications of 1 and 2, were designed to improve/reduce the stereostability grade of the starting anti-MAO ketones. The possibility to extend easily the procedure to other classes of C-H acids appears of interest.
NASA Technical Reports Server (NTRS)
Morrison, R. H.
1972-01-01
Impact tests of a sphere and several cylinders of various masses and fineness ratios, all of aluminum, fired into an aluminum double-sheet structure at velocities near 7 km/sec, show that a cylinder, impacting in the direction of its axis, is considerably more effective as a penetrator than a sphere. Impacts of three cylinders of equal mass, but different fineness ratios, produced holes through the structures' rear sheet, whereas impact of a sphere of the same mass did not. Moreover, it was found that to prevent rear-sheet penetration, the mass of the 1/2-fineness-ratio cylinder had to be reduced by a factor greater than three. Further tests wherein the cylinder diameter was held constant while the cylinder length was systematically reduced showed that a cylinder with a fineness ratio of 0.07 and a mass of only 1/7 that of the sphere was still capable of producing a hole in the rear sheet.
Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)
Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara Afzal-Rafii
2013-01-01
The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for speciesâ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...
Cation distribution in NiZn-ferrite films via extended x-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.; Kirkland, J. P.
1996-04-01
We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films. A least-squares fitting of experimental EXAFS data with theoretical, multiple-scattering, EXAFS data allowed the quantitative determination of site distributions for all transition metal cations.
George, M C; Lombardi, L D; Hessels, E A
2001-10-22
The 2(3)P(1)-to- 2(3)P(0) interval in atomic helium is measured using a thermal beam of metastable helium atoms excited to the 2(3)P state using a 1.08-microm diode laser. The 2(3)P(1)-to- 2(3)P(0) transition is driven by 29.6-GHz microwaves in a rectangular waveguide cavity. Our result of 29,616,950.9+/-0.9 kHz is the most precise measurement of helium 2(3)P fine structure. When compared to precise theory for this interval, this measurement leads to a determination of the fine-structure constant of 1/137.0359864(31).
Fine Structure of Reovirus Type 2
Loh, Philip C.; Hohl, H. R.; Soergel, M.
1965-01-01
Loh, Philip C. (University of Hawaii, Honolulu), H. R. Hohl, and M. Soergel. Fine structure of reovirus type 2. J. Bacteriol. 89:1140–1144. 1965.—The fine structure reovirus type 2 was studied by electron microscopy with the negative-staining method. The virus has a mean diameter of 772 A and shows evidence of icosahedral shape and 5:3:2 symmetry. The particle is composed of a core, an inner layer, and a capsid composed of 92 elongated hollow capsomeres. These capsomeres have mean dimensions of 116 A × 110 A and a central hole 48 A in diameter. In size and architecture, reovirus type 2 is very similar to the other members (reoviruses types 1 and 3) of this group of animal viruses. Images PMID:14276109
Nine Years of Irrigation Cause Vegetation and Fine Root Shifts in a Water-Limited Pine Forest
Herzog, Claude; Steffen, Jan; Graf Pannatier, Elisabeth; Hajdas, Irka; Brunner, Ivano
2014-01-01
Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling. PMID:24802642
Structure of a Trypanosoma Brucei Alpha/Beta--Hydrolase Fold Protein With Unknown Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, E.A.; Holmes, M.; Buckner, F.S.
2009-05-26
The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 {angstrom} using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the {alpha}/{beta}-hydrolase fold family. Structural superposition onto representative {alpha}/{beta}-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similaritymore » at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands {beta}6 and {beta}7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family.« less
Nascimento, Diana S; Pereira, Pedro J B; Reis, Marta I R; do Vale, Ana; Zou, Jun; Silva, Manuel T; Secombes, Christopher J; dos Santos, Nuno M S
2007-09-01
In the search for pro-inflammatory genes in sea bass a TNF-alpha gene was cloned and sequenced. The sea bass TNF-alpha (sbTNF-alpha) putative protein conserves the TNF-alpha family signature, as well as the two cysteines usually involved in the formation of a disulfide bond. The mouse TNF-alpha Thr-Leu cleavage sequence and a potential transmembrane domain were also found, suggesting that sbTNF-alpha exists as two forms: a approximately 28 kDa membrane-bound form and a approximately 18.4 kDa soluble protein. The single copy sbTNF-alpha gene contains a four exon-three intron structure similar to other known TNF-alpha genes. Homology modeling of sbTNF-alpha is compatible with the trimeric quaternary architecture of its mammalian counterparts. SbTNF-alpha is constitutively expressed in several unstimulated tissues, and was not up-regulated in the spleen and head-kidney, in response to UV-killed Photobacterium damselae subsp. piscicida. However, an increase of sbTNF-alpha expression was detected in the head-kidney during an experimental infection using the same pathogen.
Phase and microstructural development in alumina sol-gel coatings on CoCr alloy.
Bae, I J; Standard, O C; Roger, G J; Brazil, D
2004-09-01
Phase transformation of gamma-Al(2)O(3) to alpha-Al(2)O(3) in alumina sol gel coatings on biomedical CoCr alloy was studied as function of heat treatment temperature and time. Transformation in unseeded coatings was significant only above approximately 1200 degrees C. Addition of alpha-Al(2)O(3) seed particles having an average size of approximately 40 nm lowered the phase transformation temperature to around 800 degrees C. These particles were considered to act as heterogeneous nucleation sites for epitaxial growth of the alpha-Al(2)O(3) phase. The kinetics and activation energy (420 kJ/mol) for the phase transformation in the seeded coatings were similar to those reported for seeded monolithic alumina gels indicating that the transformation mechanism is the same in the two material configurations. Avrami growth parameters indicated that the mechanism was diffusion controlled and invariant over the temperature range studied but that growth was possibly constrained by the finite size of the seed particles and/or coating thickness. The phase transformation occurred by the growth of alpha-Al(2)O(3) grains at the expense of the precursor fine-grained gamma-Al(2)O(3) matrix and near-complete transformation coincided with physical impingement of the growing grains. The grain size at impingement was approximately 100 nm which agreed well with that predicted from the theoretical linear spacing of seed particles in the initial sol.
Ghosh, D; Weeks, C M; Grochulski, P; Duax, W L; Erman, M; Rimsay, R L; Orr, J C
1991-01-01
The x-ray structure of a short-chain dehydrogenase, the bacterial holo 3 alpha,20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53), is described at 2.6 A resolution. This enzyme is active as a tetramer and crystallizes with four identical subunits in the asymmetric unit. It has the alpha/beta fold characteristic of the dinucleotide binding region. The fold of the rest of the subunit, the quaternary structure, and the nature of the cofactor-enzyme interactions are, however, significantly different from those observed in the long-chain dehydrogenases. The architecture of the postulated active site is consistent with the observed stereospecificity of the enzyme and the fact that the tetramer is the active form. There is only one cofactor and one substrate-binding site per subunit; the specificity for both 3 alpha- and 20 beta-ends of the steroid results from the binding of the steroid in two orientations near the same cofactor at the same catalytic site. Images PMID:1946424
Five-Body Cluster Structure of the Double-{Lambda} Hypernucleus {sub {Lambda}{Lambda}}{sup 11}Be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiyama, E.; Kamimura, M.; Yamamoto, Y.
2010-05-28
Energy levels of the double {Lambda} hypernucleus, {sub {Lambda}{Lambda}}{sup 11}Be are calculated within the framework of a {alpha}{alpha}n{Lambda}{Lambda} five-body model. Interactions between constituent particles are determined so as to reproduce reasonably the observed low-energy properties of the {alpha}{alpha}, {alpha}{alpha}n nuclei and the existing data for {Lambda}-binding energies of the {alpha}{Lambda}, {alpha}{alpha}{Lambda}, {alpha}n{Lambda}, and {alpha}{alpha}n{Lambda} systems. An effective {Lambda}{Lambda} interaction is constructed so as to reproduce, within the {alpha}{Lambda}{Lambda} three-body model, the B{sub {Lambda}{Lambda}}of {sub {Lambda}{Lambda}}{sup 6}He, which was extracted from the emulsion experiment, the NAGARA event. With no adjustable parameters for the {alpha}{alpha}n{Lambda}{Lambda} system, B{sub {Lambda}{Lambda}}of the ground and boundmore » excited states of {sub {Lambda}{Lambda}}{sup 11}Be are calculated with the Gaussian expansion method. The Hida event, recently observed at KEK-E373 experiment, is interpreted as an observation of the ground state of the {sub {Lambda}{Lambda}}{sup 11}Be.« less
Yano, J; Sato, K; Kaneko, F; Small, D M; Kodali, D R
1999-01-01
Polymorphic transformations in two saturated-unsaturated mixed acid triacylglycerols, SOS (sn -1,3-distearoyl-2-oleoylglycerol) and OSO (sn -1,3-dioleoyl-2-stearoylglycerol), have been studied by FT-IR spectroscopy using deuterated specimens in which stearoyl chains are fully deuterated. A reversible phase transition between sub alpha and alpha and a series of irreversible transitions (alpha-->gamma-->beta'-->beta (beta2, beta1) for SOS and alpha-->beta'-->beta for OSO) were studied with an emphasis on the conformational ordering process of stearoyl and oleoyl chains. The alpha-->sub alpha reversible transition was due to the orientational change of stearoyl chains in the lateral directions from the hexagonal subcell to a perpendicularly packed one. As the first stage of the series of irreversible transitions from alpha to beta, the conformational ordering of saturated chains took place in the alpha-->gamma transition of SOS and in the alpha-->beta' transition of OSO; one stearoyl chain in SOS and OSO takes the all-trans conformation and the second stearoyl chain in SOS takes the bent conformation like those observed in the most stable beta-type. As the final stage, the ordering of unsaturated chains occurred in the beta'-->beta transition both for SOS and OSO. A conversion in the layered structure from bilayer to trilayer was also accompanied by the conformational ordering in the alpha-->gamma transition of SOS and in the beta'-->beta transition of OSO.
Mazur, G; Braunitzer, G
1984-09-01
The hemoglobins from a lowland tapir (Tapirus terrestris) were analysed and the complete primary structure is described. The globin chains were separated on CM cellulose column in 8M urea and the amino-acid sequences were determined in the liquid phase sequenator. The results show that globin consists of two alpha chains (alpha I and alpha II) and beta major and beta minor components. The alpha chains differ only at one position: alpha I contains aspartic acid and alpha II glycine. The beta chains are heterogeneous: aspartic and glutamic acid were found at position beta 21 and beta 73 of the beta major components and asparagine and serine at position beta 139. In the beta minor components four positions were found with more than one amino acid, namely beta 2, beta 4, beta 6 and beta 56. The sequences are compared with those of man, horse and rhinoceros. Four residues of horse methemoglobin, which are involved in the alpha 1 beta 1 contacts are substituted in tapir hemoglobins. In the alpha chains: alpha 107(G14)Ser----Val, alpha 111-(G18) Val----Leu, alpha 115(GH3) Asn----Asp or Gly; in the beta chains: beta 116(G18) Arg----Gln. The amino acid at beta 2 of the major components is glutamic acid while glutamine and histidine are found in the minor components. Although glutamic acid, a binding site for ATP, does not interact with 2,3-bisphosphoglycerate, glutamine and histidine in the minor components are responsible for the slight effect of 2,3-bisphosphoglycerate on tapir hemoglobin.
Fine structure transitions in Fe XIV
NASA Astrophysics Data System (ADS)
Nahar, Sultana N.
2013-07-01
Results are reported for Fe XIV energy levels and transitions obtained from the ab initio relativistic Breit-Pauli R-matrix (BPRM) method. BPRM method developed under the Iron Project is capable of calculating very large number of fine structure energy levels and corresponding transitions. However, unlike in the atomic structure calculations, where levels are identified spectroscopically based on the leading percentage contributions of configurations, BPRM is incapable of such identification of the levels and hence the transitions. The main reason for it is that the percentage contributions can not be determined exactly from the large number of channels in the R-matrix space. The present report describes an identification method that uses considerations of quantum defects of channels, contributions of channel from outer regions, Hund's rule, and angular momenta algebra for addition and completeness of fine structure components. The present calculations are carried out using a close coupling wave function expansion that included 26 core excitations from configurations 2s22p63s2, 2s22p63s3p,2s22p63p2,2s22p63s3d, and 2s22p63p3d. A total of 1002 fine structure levels with n ⩽ 10, l⩽9, and 0.5 ⩽J⩽ 9.5 with even and odd parities and the corresponding 130,520 electric dipole allowed (E1) fine structure transitions, a most complete set for astrophysical modelings of spectral analysis and opacities, is presented. Large number of new energy levels are found and identified. The energies agree very well, mostly in less than 1% with the highest being 1.9%, with the 68 observed fine structure levels. While the high lying levels may have some uncertainty, an overall accuracy of energy levels should be within 10%. BPRM transitions have been benchmarked with the existing most accurate calculated transition probabilities with very good agreement for most cases. Based on the accuracy of the method and comparisons, most of the transitions can be rated with A (⩽10%) to C (⩽30%).
Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids.
Annavarapu, Srinivas; Nanda, Vikas
2009-09-22
Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Propensities for amino acids to occur in contiguous alpha(L) helices correlate with published thermodynamic scales for incorporation of D-amino acids into alpha(R) helices. Two backbone rules for terminating a left-handed helix are found: an alpha(R) conformation is disfavored at the amino terminus, and a beta(R) conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to alpha(L) helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. By examining left-handed alpha-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed alpha-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.
Dynamic evolution of recurrent mass ejections observed in H-alpha and C IV lines
NASA Technical Reports Server (NTRS)
Schmieder, B.; Mein, P.; Martres, M. J.; Tandberg-Hanssen, E.
1984-01-01
The mass ejections of 1 September, 1980 are studied from observations obtained with the MSDP spectrograph and with the Ultraviolet Spectrometer and Polarimeter aboard the Solar Maximum Mission satellite. The analysis is focused on observations in the chromospheric H-alpha line and the transition region C IV 1548 A line. It is noted that cold and hot material had the same projection, although the upward C IV velocity structure was more extended than the H-alpha one. It is shown that the observed contrast of the H-alpha absorbing structure can be interpreted in terms of a dynamic cloud model overlying the chromosphere. Radial velocities of 25-30 km/s and -40 km/s are estimated for the first and second phases of ejection, respectively.
The fractography-modeling link in cleavage fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, A.W.
1997-12-31
Cleavage fracture has historically been modelled, out of necessity, in rather idealized terms. In real materials, however, there are a number of difficulties in linking such models with metallographic and fractographic observations. Some of the most vivid examples occur for {alpha}{sub 2} titanium aluminide alloys, in which, when the microstructure contains primary {alpha}{sub 2} particles, the primary particles crack first. When basketweave or Widmanstaetten structures of {alpha}{sub 2} laths comprise the microstructure, it appears that individual laths crack first. And in colony structures, cracking occurs first across the {alpha}{sub 2} lath colonies. Both detailed fractographic observations, and also a statisticalmore » model for brittle fracture by failure of weakest links, have been developed. The extent to which this can be interpreted in classical cleavage terms will be discussed.« less
Uemura, Yusuke; Asakuma, Sadaki; Nakamura, Tadashi; Arai, Ikichi; Taki, Michihiro; Urashima, Tadasu
2005-10-10
Crude oligosaccharides were recovered from bottlenose dolphin (Tursiops truncatus) colostrum after chloroform/methanol extraction of lipids and protein precipitation, and purified using gel filtration, anion exchange chromatography and high performance liquid chromatography (HPLC). Their chemical structures characterized by NMR spectroscopy were as follows: GalNAc(beta1-4)[Neu5Ac(alpha2-3)]Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc and Gal(alpha1-4)Gal(beta1-4)Glc. The monosialyltetrasaccharide and neutral trisaccharide have not previously been found as free forms in any natural sources including milk or colostrum, although these structures have been found in the carbohydrate units of glycosphingolipids GM2 and Gb3.
NASA Technical Reports Server (NTRS)
Bagenal, Fran
2001-01-01
The work completed under this project, 'Evolution and Activity in the Solar Corona: A Comparison of Coronal and Chromospheric Structures Seen in Soft X-Rays, White Light and H-Alpha Emission', includes the following presentations: (1) Analysis of H-alpha Observations of High-altitude Coronal Condensations; (2) Multi-spectral Imaging of Coronal Activity; (3) Measurement and Modeling of Soft X-ray Loop Arcades; (4) A Study of the Origin and Dynamics of CMEs; and various poster presentations and thesis dissertations.
Macdonald, Tara A; Burd, Brenda J; van Roodselaar, Albert
2012-01-01
Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2(-6)J to 2(16)J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m(2)/yr/δ(15)N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m(2)/yr/δ(15)N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m(2)/yr/δ(15)N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed.
Macdonald, Tara A.; Burd, Brenda J.; van Roodselaar, Albert
2012-01-01
Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2−6J to 216J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m2/yr/δ15N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m2/yr/δ15N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m2/yr/δ15N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed. PMID:22911694
Structural Basis for Inhibition of Mammalian Adenylyl Cyclase by Calcium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Tung-Chung; Masada, Nanako; Cooper, Dermot M.F.
2009-09-11
Type V and VI mammalian adenylyl cyclases (AC5, AC6) are inhibited by Ca{sup 2+} at both sub- and supramicromolar concentration. This inhibition may provide feedback in situations where cAMP promotes opening of Ca{sup 2+} channels, allowing fine control of cardiac contraction and rhythmicity in cardiac tissue where AC5 and AC6 predominate. Ca{sup 2+} inhibits the soluble AC core composed of the C1 domain of AC5 (VC1) and the C2 domain of AC2 (IIC2). As observed for holo-AC5, inhibition is biphasic, showing 'high-affinity' (K{sub i} = {approx}0.4 {mu}M) and 'low-affinity' (K{sub i} = {approx}100 {mu}M) modes of inhibition. At micromolar concentration,more » Ca{sup 2+} inhibition is nonexclusive with respect to pyrophosphate (PP{sub i}), a noncompetitive inhibitor with respect to ATP, but at >100 {mu}M Ca{sup 2+}, inhibition appears to be exclusive with respect to PP{sub i}. The 3.0 {angstrom} resolution structure of G{alpha}s{center_dot}GTP{gamma}S/forskolin-activated VC1:IIC2 crystals soaked in the presence of ATP{alpha}S and 8 {mu}M free Ca{sup 2+} contains a single, loosely coordinated metal ion. ATP soaked into VC1:IIC2 crystals in the presence of 1.5 mM Ca{sup 2+} is not cyclized, and two calcium ions are observed in the 2.9 {angstrom} resolution structure of the complex. In both of the latter complexes VC1:IIC2 adopts the 'open', catalytically inactive conformation characteristic of the apoenzyme, in contrast to the 'closed', active conformation seen in the presence of ATP analogues and Mg{sup 2+} or Mn{sup 2+}. Structures of the pyrophosphate (PP{sub i}) complex with 10 mM Mg{sup 2+} (2.8 {angstrom}) or 2 mM Ca{sup 2+} (2.7 {angstrom}) also adopt the open conformation, indicating that the closed to open transition occurs after cAMP release. In the latter complexes, Ca{sup 2+} and Mg{sup 2+} bind only to the high-affinity 'B' metal site associated with substrate/product stabilization. Ca{sup 2+} thus stabilizes the inactive conformation in both ATP- and PP{sub i}-bound states.« less
NRMRL-RTP-P-646 Shoji, T., Huggins, F.E., Huffman, G.P., Linak*, W.P., and Miller*, C.A. XFAS Spectroscopy Analysis of Selected HAP Elements in Fine PM Derived from Coal Combustion. Energy and Fuels 16 (2): (2002). 11/30/2001 X-ray absorption fine structure (XAFS) spectroscop...
Two new triterpenoid saponins from rhizome of Anemone raddeana Regel.
Fan, Li; Lu, Jincai; Wang, Jing; Cheng, Weiming; Yao, Yan; Liu, Runxiang; Zhang, Hongfen
2010-01-01
Two new 27-hydroxyoleanolic acid-type triterpenoid saponins, raddeanoside Ra (1) and raddeanoside Rb (2), were isolated from the rhizome of Anemone raddeana Regel. The structures of the two compounds were elucidated to be 27-hydroxyoleanolic acid 3-O-beta-D: -glucopyranosyl-(1 --> 4)-alpha-L: -arabinopyranoside (1) and 27-hydroxyoleanolic acid 3-O-alpha-L: -arabinopyranosyl-(1 --> 3)-alpha-L: -rhamnopyranosyl-(1 --> 2)-alpha- L: -arabinopyranoside (2) on the basis of chemical and spectral evidence.
NASA Astrophysics Data System (ADS)
Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.
2004-05-01
Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.
Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Franco, Octávio L; Falcão, Rosana; Fragoso, Rodrigo R; Mello, Luciane V; dos Santos, Roseane C; Grossi-de-Sá, Maria F
2003-01-01
Anthonomus grandis, the cotton boll weevil, causes severe cotton crop losses in North and South America. Here we demonstrate the presence of starch in the cotton pollen grains and young ovules that are the main A. grandis food source. We further demonstrate the presence of alpha-amylase activity, an essential enzyme of carbohydrate metabolism for many crop pests, in A. grandis midgut. Two alpha-amylase cDNAs from A. grandis larvae were isolated using RT-PCR followed by 5' and 3' RACE techniques. These encode proteins with predicted molecular masses of 50.8 and 52.7kDa, respectively, which share 58% amino acid identity. Expression of both genes is induced upon feeding and concentrated in the midgut of adult insects. Several alpha-amylase inhibitors from plants were assayed against A. grandis alpha-amylases but, unexpectedly, only the BIII inhibitor from rye kernels proved highly effective, with inhibitors generally active against other insect amylases lacking effect. Structural modeling of Amylag1 and Amylag2 showed that different factors seem to be responsible for the lack of effect of 0.19 and alpha-AI1 inhibitors on A. grandis alpha-amylase activity. This work suggests that genetic engineering of cotton to express alpha-amylase inhibitors may offer a novel route to A. grandis resistance.
Siddiqui, Tooba; Zia, Mohammad Khalid; Ali, Syed Saqib; Ahsan, Haseeb; Khan, Fahim Halim
2018-05-17
Hypochlorous acid, an active bleaching agent is one of the major oxidants produced by neutrophils under physiological conditions. It is a potent reactive oxygen species (ROS) which causes oxidation of biomolecules. Treatment of proteins with hypochlorite results in direct oxidative damage to proteins. Alpha-2-macroglobulin is a major proteinase inhibitor and it can inhibit proteinase of any kind regardless of specificity and catalytic mechanism. The proteinase-antiproteinase balance plays an important role in mediating inflammation associated tissue destruction. In this paper, we have studied hypochlorite induced modifications in proteinase inhibitor-alpha-2-macroglobulin via biophysical techniques such as absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD), fourier transform infrared spectrometery (FTIR) and isothermal titration calorimetry (ITC). It was found that hypochlorite decreases the anti-proteolytic potential and causes inactivation of sheep alpha-2-macroglobulin. It also causes structural and functional change in alpha-2-macroglobulin as evident by absorption spectroscopy and fluorescence spectroscopy. Change in secondary structure of alpha-2-macroglobulin was confirmed by CD and FTIR. Thermodynamics parameters such as entropy (ΔS), enthalpy (ΔH) and Gibb's free energy changes (ΔG). The number of binding sites (N) of alpha-2-macroglobulin-HOCl binding in solution was determined by isothermal titration calorimetry and it was found that binding of hypochlorite with alpha-2-macroglobulin was exothermic in nature. Copyright © 2017. Published by Elsevier B.V.
Speech and motor disturbances in Rett syndrome.
Bashina, V M; Simashkova, N V; Grachev, V V; Gorbachevskaya, N L
2002-01-01
Rett syndrome is a severe, genetically determined disease of early childhood which produces a defined clinical phenotype in girls. The main clinical manifestations include lesions affecting speech functions, involving both expressive and receptive speech, as well as motor functions, producing apraxia of the arms and profound abnormalities of gait in the form of ataxia-apraxia. Most investigators note that patients have variability in the severity of derangement to large motor acts and in the damage to fine hand movements and speech functions. The aims of the present work were to study disturbances of speech and motor functions over 2-5 years in 50 girls aged 12 months to 14 years with Rett syndrome and to analyze the correlations between these disturbances. The results of comparing clinical data and EEG traces supported the stepwise involvement of frontal and parietal-temporal cortical structures in the pathological process. The ability to organize speech and motor activity is affected first, with subsequent development of lesions to gnostic functions, which are in turn followed by derangement of subcortical structures and the cerebellum and later by damage to structures in the spinal cord. A clear correlation was found between the severity of lesions to motor and speech functions and neurophysiological data: the higher the level of preservation of elements of speech and motor functions, the smaller were the contributions of theta activity and the greater the contributions of alpha and beta activities to the EEG. The possible pathogenetic mechanisms underlying the motor and speech disturbances in Rett syndrome are discussed.
High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin
1996-12-01
X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less
pi-Turns: types, systematics and the context of their occurrence in protein structures.
Dasgupta, Bhaskar; Chakrabarti, Pinak
2008-09-22
For a proper understanding of protein structure and folding it is important to know if a polypeptide segment adopts a conformation inherent in the sequence or it depends on the context of its flanking secondary structures. Turns of various lengths have been studied and characterized starting from three-residue gamma-turn to six-residue pi-turn. The Schellman motif occurring at the C-terminal end of alpha-helices is a classical example of hydrogen bonded pi-turn involving residues at (i) and (i+5) positions. Hydrogen bonded and non-hydrogen bonded beta- and alpha-turns have been identified previously; likewise, a systematic characterization of pi-turns would provide valuable insight into turn structures. An analysis of protein structures indicates that at least 20% of pi-turns occur independent of the Schellman motif. The two categories of pi-turns, designated as pi-HB and SCH, have been further classified on the basis of backbone conformation and both have AAAa as the major class. They differ in the residue usage at position (i+1), the former having a large preference for Pro that is absent in the latter. As in the case of shorter length beta- and alpha-turns, pi-turns have also been identified not only on the basis of the existence of hydrogen bond, but also using the distance between terminal C alpha-atoms, and this resulted in a comparable number of non-hydrogen-bonded pi-turns (pi-NHB). The presence of shorter beta- and alpha-turns within all categories of pi-turns, the subtle variations in backbone torsion angles along the turn residues, the location of the turns in the context of tertiary structures have been studied. pi-turns have been characterized, first using hydrogen bond and the distance between C alpha atoms of the terminal residues, and then using backbone torsion angles. While the Schellman motif has a structural role in helix termination, many of the pi-HB turns, being located on surface cavities, have functional role and there is also sequence conservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T Colussi; D Parsonage; W Boles
The FAD-dependent {alpha}-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the {alpha}-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpO{Delta}, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 {angstrom} resolution. Using the GlpO{Delta} structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 {angstrom} resolution. The first two domains ofmore » the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a {beta}{beta}{alpha} element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2{alpha} in GlpO{Delta}, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpO{Delta} is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.« less
Goldstein, Avi; Annor, George; Blennow, Andreas; Bertoft, Eric
2017-09-01
The impact of diurnal photosynthetic activity on the fine structure of the amylopectin fraction of starch synthesized by normal barley (NBS) and waxy barley (WBS), the latter completely devoid of amylose biosynthesis, was determined following the cultivation under normal diurnal or constant light growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens, respectively. Regardless of lighting conditions, no structural effects were found when comparing both the amylopectin side-chain distribution and the internal chain fragments of these amylopectins. However, the diurnally grown NBS and WBS both showed larger amylopectin clusters and these had lower branching density and longer average chain lengths than clusters derived from plants grown under constant light conditions. Amylopectin clusters from diurnally grown plants also consisted of a greater number of building blocks, and shorter inter-block chain lengths compared to clusters derived from plants grown under constant light. Our data demonstrate that the diurnal light regime influences the fine structure of the amylopectin component both in amylose and non-amylose starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.
Lemieux, M Joanne; Mark, Brian L; Cherney, Maia M; Withers, Stephen G; Mahuran, Don J; James, Michael N G
2006-06-16
Lysosomal beta-hexosaminidase A (Hex A) is essential for the degradation of GM2 gangliosides in the central and peripheral nervous system. Accumulation of GM2 leads to severely debilitating neurodegeneration associated with Tay-Sachs disease (TSD), Sandoff disease (SD) and AB variant. Here, we present the X-ray crystallographic structure of Hex A to 2.8 A resolution and the structure of Hex A in complex with NAG-thiazoline, (NGT) to 3.25 A resolution. NGT, a mechanism-based inhibitor, has been shown to act as a chemical chaperone that, to some extent, prevents misfolding of a Hex A mutant associated with adult onset Tay Sachs disease and, as a result, increases the residual activity of Hex A to a level above the critical threshold for disease. The crystal structure of Hex A reveals an alphabeta heterodimer, with each subunit having a functional active site. Only the alpha-subunit active site can hydrolyze GM2 gangliosides due to a flexible loop structure that is removed post-translationally from beta, and to the presence of alphaAsn423 and alphaArg424. The loop structure is involved in binding the GM2 activator protein, while alphaArg424 is critical for binding the carboxylate group of the N-acetyl-neuraminic acid residue of GM2. The beta-subunit lacks these key residues and has betaAsp452 and betaLeu453 in their place; the beta-subunit therefore cleaves only neutral substrates efficiently. Mutations in the alpha-subunit, associated with TSD, and those in the beta-subunit, associated with SD are discussed. The effect of NGT binding in the active site of a mutant Hex A and its effect on protein function is discussed.
Studies on the wintertime current structure and T-S fine-structure in the Taiwan Strait
NASA Astrophysics Data System (ADS)
Hu, Jianyu; Fu, Zilang; Wu, Lianxing
1990-12-01
A cruise through the western sea area of the Taiwan Strait was carried out by the R/V Dong Fang Hong in December, 1987. Eight anchored and 10 not anchored stations were set up. Over 25 time-series current observations were made at each station and CTD (Conductivity-temperature-depth) measurements were made at 5 anchored and 10 not anchored stations. Based on the measured data. fine-structures and step-like vertical structures of temperature and salinity were analysed and a tentative wintertime current structure in the Taiwan Strait was described.
Dhar, Sumitrajit; Shaffer, Lauren A
2004-12-01
The use of a suppressor tone has been proposed as the method of choice in obtaining single-generator distortion product (DP) grams, the speculation being that such DP grams will be more predictive of hearing thresholds. Current distortion product otoacoustic emissions (DPOAE) theory points to the ear canal DPOAE signal being a complex interaction between multiple components. The effectiveness of a suppressor tone is predicted to be dependent entirely on the relative levels of these components. We examine the validity of using a suppressor tone through a detailed examination of the effects of a suppressor on DPOAE fine structure in individual ears. DPOAE fine structure, recorded in 10 normal-hearing individuals with a suppressor tone at 45, 55, and 65 dB SPL, was compared with recordings without a suppressor. Behavioral hearing thresholds were also measured in the same subjects, using 2-dB steps. The effect of the suppressor tone on DPOAE fine structure varied between ears and was dependent on frequency within ears. Correlation between hearing thresholds and DPOAE level measured without a suppressor was similar to previous reports. The effects of the suppressor are explained in the theoretical framework of a model involving multiple DPOAE components. Our results suggest that a suppressor tone can have highly variable effects on fine structure across individuals or even across frequency within one ear, thereby making the use of a suppressor less viable as a clinical tool for obtaining single-generator DP grams.
Jardón-Delgado, Angel; Magos-Guerrero, Gil Alfonso; Martínez-Vázquez, Mariano
2014-01-01
A new cucurbitane-type triterpene, 20, 21, 22, 23, 24, 25, 26, 27-octanorcucurbita-5-ene-3, 11, 16-trione (1), named kinoin D, was isolated from the roots of the medicinal plant Ibervillea sonorae, (wereque). The structure of 1 was established on the basis of extensive NMR and MS studies. In addition, the known kinoins B (3) and C (5) were isolated, as were 16alpha-20,25-trihydroxy-3alpha-(2-O-alpha-L-rhamnopyranosiyl-D-glucopyranosyloxy)-(10alpha)-cucurbit-5-en-11,22-dione (6), (22S)-16alpha,22-diacetoxy-20,25-dihydroxy-3alpha-[3,4,6-tri-O-acetyl-2-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl)-beta-glucopyranosyl]-(10alpha)-cucurbita-5,23t-dien-11-one (7) and 16alpha-acetoxy-20,25-dihydroxy-3alpha-[3,4,6-tri-O-acetyl-2-O-(2,3,4,-tri-O-acetyl-alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl]-(10alpha)-cucurbita-5-ene-11,22-dione (8). Compound 1 exhibited anti-inflammatory activity in TPA-induced edema in mice.
Microwave spectroscopy of the 1 s n p P3J fine structure of high Rydberg states in 4He
NASA Astrophysics Data System (ADS)
Deller, A.; Hogan, S. D.
2018-01-01
The 1 s n p P3J fine structure of high Rydberg states in helium has been measured by microwave spectroscopy of single-photon transitions from 1 s n s S31 levels in pulsed supersonic beams. For states with principal quantum numbers in the range from n =34 to 36, the J =0 →2 and J =1 →2 fine structure intervals were both observed. For values of n between 45 and 51 only the larger J =0 →2 interval was resolved. The experimental results are in good agreement with theoretical predictions. Detailed characterization of residual uncanceled electric and magnetic fields in the experimental apparatus and calculations of the Stark and Zeeman structures of the Rydberg states in weak fields were used to quantify systematic contributions to the uncertainties in the measurements.
Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere
NASA Astrophysics Data System (ADS)
Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi
2017-04-01
An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.
NASA Astrophysics Data System (ADS)
Shankar, Chandrashekar
The goal of this research was to gain a fundamental understanding of the properties of networks created by the ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) used in self-healing materials. To this end we used molecular simulation methods to generate realistic structures of DCPD networks, characterize their structures, and determine their mechanical properties. Density functional theory (DFT) calculations, complemented by structural information derived from molecular dynamics simulations were used to reconstruct experimental Raman spectra and differential scanning calorimetry (DSC) data. We performed coarse-grained simulations comparing networks generated via the ROMP reaction process and compared them to those generated via a RANDOM process, which led to the fundamental realization that the polymer topology has a unique influence on the network properties. We carried out fully atomistic simulations of DCPD using a novel algorithm for recreating ROMP reactions of DCPD molecules. Mechanical properties derived from these atomistic networks are in excellent agreement with those obtained from coarse-grained simulations in which interactions between nodes are subject to angular constraints. This comparison provides self-consistent validation of our simulation results and helps to identify the level of detail necessary for the coarse-grained interaction model. Simulations suggest networks can classified into three stages: fluid-like, rubber-like or glass-like delineated by two thresholds in degree of reaction alpha: The onset of finite magnitudes for the Young's modulus, alphaY, and the departure of the Poisson ration from 0.5, alphaP. In each stage the polymer exhibits a different predominant mechanical response to deformation. At low alpha < alphaY it flows. At alpha Y < alpha < alphaP the response is entropic with no change in internal energy. At alpha > alphaP the response is enthalpic change in internal energy. We developed graph theory-based network characterizations to correlate between network topology and the simulated mechanical properties. (1) Eigenvector centrality (2) Graph fractal dimension, (3) Fiedler partitioning, and (4) Cross-link fraction (Q3+Q4). Of these quantities, the Fiedler partition is the best characteristic for the prediction of Young's Modulus. The new computational tools developed in this research are of great fundamental and practical interest.
Strained spiral vortex model for turbulent fine structure
NASA Technical Reports Server (NTRS)
Lundgren, T. S.
1982-01-01
A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.
Photoionization modeling of the LWS fine-structure lines in IR bright galaxies
NASA Technical Reports Server (NTRS)
Satyapal, S.; Luhman, M. L.; Fischer, J.; Greenhouse, M. A.; Wolfire, M. G.
1997-01-01
The long wavelength spectrometer (LWS) fine structure line spectra from infrared luminous galaxies were modeled using stellar evolutionary synthesis models combined with photoionization and photodissociation region models. The calculations were carried out by using the computational code CLOUDY. Starburst and active galactic nuclei models are presented. The effects of dust in the ionized region are examined.
This paper shows that an understanding of the nature of the x-ray and neutron producing processes in the plasma focus requires a study of the ’fine...structure’ of the plasma focus and that this fine structure study requires diagnostic techniques with spacial resolution down to 50 micrometers and
NASA Astrophysics Data System (ADS)
Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko
2013-09-01
Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.
Effective Collision Strengths for Fine-structure Transitions in Si VII
NASA Astrophysics Data System (ADS)
Sossah, A. M.; Tayal, S. S.
2014-05-01
The effective collision strengths for electron-impact excitation of fine-structure transitions in Si VII are calculated as a function of electron temperature in the range 5000-2,000,000 K. The B-spline Breit-Pauli R-matrix method has been used to calculate collision strengths by electron impact. The target wave functions have been obtained using the multi-configuration Hartree-Fock method with term-dependent non-orthogonal orbitals. The 92 fine-structure levels belonging to the 46 LS states of 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, 2s 22p 33d, and 2s2p 43s configurations are included in our calculations of oscillator strengths and collision strengths. There are 4186 possible fine-structure allowed and forbidden transitions among the 92 levels. The present excitation energies, oscillator strengths, and collision strengths have been compared with previous theoretical results and available experimental data. Generally, a good agreement is found with the 6 LS-state close-coupling approximation results of Butler & Zeippen and the 44 LS-state distorted wave calculation of Bhatia & Landi.
Rotational and fine structure of open-shell molecules in nearly degenerate electronic states
NASA Astrophysics Data System (ADS)
Liu, Jinjun
2018-03-01
An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.
Das, Jagabandhu; Kimball, S David; Hall, Steven E; Han, Wen Ching; Iwanowicz, Edwin; Lin, James; Moquin, Robert V; Reid, Joyce A; Sack, John S; Malley, Mary F; Chang, Chiehying Y; Chong, Saeho; Wang-Iverson, David B; Roberts, Daniel G M; Seiler, Steven M; Schumacher, William A; Ogletree, Martin L
2002-01-07
A series of structurally novel small molecule inhibitors of human alpha-thrombin was prepared to elucidate their structure-activity relationships (SARs), selectivity and activity in vivo. BMS-189664 (3) is identified as a potent, selective, and orally active reversible inhibitor of human alpha-thrombin which is efficacious in vivo in a mouse lethality model, and at inhibiting both arterial and venous thrombosis in cynomolgus monkey models.
Pekhymenko, G V; Kuchmerovskaia, T M
2011-01-01
Methods of infrared (IR) spectroscopy and circular dichroism (CD) are suitable techniques for detection of proteins structural changes. These methods were used for determinating peculiarities of the secondary structure of serum albumins in some representatives of two classes of reptiles: Horsfield's tortoise (Testudo horsfieldi), water snake (Natrix tessellata) and grass snake (Natrix natrix) and birds: domestic goose (Anser anser), domestic chicken (Gallus domesticus), domestic duck (Anas platyrhyncha) and dove colored (Columba livia). An analysis of IR spectra and spectra obtained by the method of CD of serum albumins of both classes representatives revealed that beta-folding structure and alpha-helical sections that form the alpha-conformation play an important role in conformational structure formation of polypeptide chain and also disordered sites of molecules of these proteins. It was observed that certain redistribution depending on animals species exists, in the formation of secondary structure of serum albumins of the investigated representatives of reptiles and birds classes between the content of beta-folding structure, alpha-helical sections and disordered sites in molecules of these proteins.
NASA Astrophysics Data System (ADS)
Ashman, William P.; Mickiewicz, A. P.; Nelson, Todd M.
1992-09-01
Molecular modeling and computational chemistry techniques are used to analyze compounds in developing pharmacophores of biological receptors to use as templates in structure activity relationship studies and to design new chemicals having physiological activity of interest. In this study, the results of x-ray crystal analyses and PM3 semi-empirical molecular orbital conformational analyses are used to determine the three-dimensional representations of selected adrenergic compounds known to be agonists with the alpha2-adrenoceptor in achieving optimized geometries and electrostatic parameters. The alpha2-adrenergic agonists interact with the adrenergic system receptors to produce various increases or decreases in hemodynamic responses (i.e., hypertension, hypotension, and bradycardia) and sedation. A pharmacophore model of the active region of the alpha2-adrenoceptor is described based on the superimposition of common structural, electrostatic, and physicochemical features of the compounds. Using the model to predict compound adrenergic activity and to design alpha2-adrenergic compounds is discussed.
Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor Alpha Selective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Kennedy, L; Shi, Y
2010-01-01
An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and {approx}410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less
Changes in proteasome structure and function caused by HAMLET in tumor cells.
Gustafsson, Lotta; Aits, Sonja; Onnerfjord, Patrik; Trulsson, Maria; Storm, Petter; Svanborg, Catharina
2009-01-01
Proteasomes control the level of endogenous unfolded proteins by degrading them in the proteolytic core. Insufficient degradation due to altered protein structure or proteasome inhibition may trigger cell death. This study examined the proteasome response to HAMLET, a partially unfolded protein-lipid complex, which is internalized by tumor cells and triggers cell death. HAMLET bound directly to isolated 20S proteasomes in vitro and in tumor cells significant co-localization of HAMLET and 20S proteasomes was detected by confocal microscopy. This interaction was confirmed by co-immunoprecipitation from extracts of HAMLET-treated tumor cells. HAMLET resisted in vitro degradation by proteasomal enzymes and degradation by intact 20S proteasomes was slow compared to fatty acid-free, partially unfolded alpha-lactalbumin. After a brief activation, HAMLET inhibited proteasome activity in vitro and in parallel a change in proteasome structure occurred, with modifications of catalytic (beta1 and beta5) and structural subunits (alpha2, alpha3, alpha6 and beta3). Proteasome inhibition was confirmed in extracts from HAMLET-treated cells and there were indications of proteasome fragmentation in HAMLET-treated cells. The results suggest that internalized HAMLET is targeted to 20S proteasomes, that the complex resists degradation, inhibits proteasome activity and perturbs proteasome structure. We speculate that perturbations of proteasome structure might contribute to the cytotoxic effects of unfolded protein complexes that invade host cells.
Jain, R K; Dubey, R; Abbas, S A; Matta, K L
1987-03-15
Treatment of methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (1) with tert-butyldiphenylsilyl chloride in N,N-dimethylformamide afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (2). Oxidation of 2 with pyridinium chlorochromate, followed by reduction of the carbonyl group, and subsequent O-deacetylation afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-alpha-D-mannopyranosyl- alpha-D- talopyranoside (5). Cleavage of the tert-butyldiphenylsilyl group of 5 with tetrabutylammonium fluoride in oxolane, followed by hydrogenolysis, gave methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside (7). O-Deacetylation of 1 gave methyl 3-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (8). Treatment of 8 with tert-butyldiphenylsilyl chloride afforded a 6,6'-disilyl derivative, which was converted into a 2',3'-O-isopropylidene derivative, and then further oxidized with pyridinium chlorochromate. The resulting diketone was reduced and removal of the protecting groups gave methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside (15). The structures of both 7 and 15 were established by 13C-n.m.r. spectroscopy.
Kida, Hiroshi; Sugano, Yuri; Iizuka, Ryo; Fujihashi, Masahiro; Yohda, Masafumi; Miki, Kunio
2008-11-14
Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of alpha and beta subunits and forms a "jellyfish-like" structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two alpha and two beta subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of alpha (alpha1 and alpha2) and beta subunits (beta1 and beta2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD beta1 subunit at 1.9 A resolution and its functional analysis. TsPFD beta1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The beta hairpin linkers of beta1 subunits assemble to form a beta barrel "body" around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the beta1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric beta1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD beta1 subunits act as molecular chaperones in living cells of some archaea.
Parry, David A D; Fraser, R D Bruce; Squire, John M
2008-09-01
alpha-Helical coiled coils are remarkable for the diversity of related conformations that they adopt in both fibrous and globular proteins, and for the range of functions that they exhibit. The coiled coils are based on a heptad (7-residue), hendecad (11-residue) or a related quasi-repeat of apolar residues in the sequences of the alpha-helical regions involved. Most of these, however, display one or more sequence discontinuities known as stutters or stammers. The resulting coiled coils vary in length, in the number of chains participating, in the relative polarity of the contributing alpha-helical regions (parallel or antiparallel), and in the pitch length and handedness of the supercoil (left- or right-handed). Functionally, the concept that a coiled coil can act only as a static rod is no longer valid, and the range of roles that these structures have now been shown to exhibit has expanded rapidly in recent years. An important development has been the recognition that the delightful simplicity that exists between sequence and structure, and between structure and function, allows coiled coils with specialized features to be designed de novo.
Housset, D; Mazza, G; Grégoire, C; Piras, C; Malissen, B; Fontecilla-Camps, J C
1997-01-01
The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand. PMID:9250664
Ohta, M; Hamako, J; Yamamoto, S; Hatta, H; Kim, M; Yamamoto, T; Oka, S; Mizuochi, T; Matsuura, F
1991-10-01
Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. After N-acetylation, the oligosaccharides were labelled with a UV-absorbing compound, p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz 1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glc alpha 1-3Man7-9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5-9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Man alpha 1-6(+/- GlcNAc beta 1-4)(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(+/- Fuc alpha 1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.
NASA Astrophysics Data System (ADS)
Sofyan, Hizir; Maulia, Eva; Miftahuddin
2017-11-01
A country has several important parameters to achieve economic prosperity, such as tax revenue and inflation rate. One of the largest revenues of the State Budget in Indonesia comes from the tax sector. Meanwhile, the rate of inflation occurring in a country can be used as an indicator, to measure the good and bad economic problems faced by the country. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the structure of tax revenue relations and inflation rate. This study aims to produce the best VECM (Vector Error Correction Model) with optimal lag using various alpha and perform structural analysis using the Impulse Response Function (IRF) of the VECM models to examine the relationship of tax revenue, and inflation in Banda Aceh. The results showed that the best model for the data of tax revenue and inflation rate in Banda Aceh City using alpha 0.01 is VECM with optimal lag 2, while the best model for data of tax revenue and inflation rate in Banda Aceh City using alpha 0.05 and 0,1 VECM with optimal lag 3. However, the VECM model with alpha 0.01 yielded four significant models of income tax model, inflation rate of Banda Aceh, inflation rate of health and inflation rate of education in Banda Aceh. While the VECM model with alpha 0.05 and 0.1 yielded one significant model that is income tax model. Based on the VECM models, then there are two structural analysis IRF which is formed to look at the relationship of tax revenue, and inflation in Banda Aceh, the IRF with VECM (2) and IRF with VECM (3).
Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.
Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya
2018-04-10
In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.
Xu, Xianzhong; Xu, Wei; Rayo, Josep; Ishida, Yuko; Leal, Walter S; Ames, James B
2010-02-23
The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through the aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from A. transitella (AtraPBP1) in solution at pH 4.5 determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments, multiangle light scattering, and (15)N NMR relaxation analysis indicate that AtraPBP1 forms a stable monomer in solution at pH 4.5 in contrast to forming mostly dimers at pH 7. The NMR structure of AtraPBP1 at pH 4.5 contains seven alpha-helices (alpha1, L8-L23; alpha2, D27-F36; alpha3, R46-V62; alpha4, A73-M78; alpha5, D84-S100; alpha6, R107-L125; alpha7, M131-E141) that adopt an overall main-chain fold similar to that of PBPs found in Antheraea polyphemus and Bombyx mori. The AtraPBP1 structure is stabilized by three disulfide bonds formed by C19/C54, C50/C108, and C97/C117 and salt bridges formed by H69/E60, H70/E57, H80/E132, H95/E141, and H123/D40. All five His residues are cationic at pH 4.5, whereas H80 and H95 become neutral at pH 7.0. The C-terminal helix (alpha7) contains hydrophobic residues (M131, V133, V134, V135, V138, L139, and A140) that contact conserved residues (W37, L59, A73, F76, A77, I94, V111, and V115) suggested to interact with bound pheromone. Our NMR studies reveal that acid-induced formation of the C-terminal helix at pH 4.5 is triggered by a histidine protonation switch that promotes rapid release of bound pheromone under acidic conditions.
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakada, Tsutomu
2013-04-01
Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.
Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan
2011-08-01
The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.
Measuring the fine structure constant with Bragg diffraction and Bloch oscillations
NASA Astrophysics Data System (ADS)
Parker, Richard; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger
2017-04-01
We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δÎ+/-/Î+/-=0.25ppb in the fine structure constant measurement, which gives over 10 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.
Liu, Quan-Yu; Chen, Yong-Sheng; Wang, Fei; Chen, Shi-Wu; Zhang, Yong-Hong
2014-06-01
A new steroidal ester, beta-rosaterol palmitate (1) along with ten known compounds, uvaol(2), 3-epi-ursolic acid (3), 2alpha, 3beta, 24-trihydroxyolean-12-en-28-oic acid (4), 2alpha, 3alpha, 24-trihydroxyurs-12-en-28-oic acid (5), 2alpha, 3alpha, 24-trihydroxyolean-12-en-28-oic acid (6), 2alpha, 3alpha, 24-trihydroxyolean-12-en-28-oic acid-28-O-beta-D-glucopyranosyl ester (7), (Z)-9-hexadecenoic acid (8), octacosyl alcohol (9), beta-sitosterol (10) and beta-daucosterol (11), has been isolated from the stems and leaves of Vitex trifolia. Their structures were elucidated using a combination of 1D and 2D NMR techniques (COSY, HMQC, and HMBC)and HR-ESI-MS analyses. Compounds 2-7 were isolated from this plant for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, J; Palmer, T
2005-09-13
In-situ Spatially Resolved X-Ray Diffraction (SRXRD) experiments were performed during gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. Ferrite ({alpha}) and austenite ({gamma}) phases were identified and quantified in the weld heat-affected zone (HAZ) from the real time x-ray diffraction data. The results were compiled along with weld temperatures calculated using a coupled thermal fluids weld model to create a phase map of the HAZ. This map shows the {alpha} {yields} {gamma} transformation taking place during weld heating and the reverse {gamma} {yields} {alpha} transformation taking place during weld cooling. Superheating is required to complete the {alpha} {yields}more » {gamma} phase transformation, and the amount of superheat above the A3 temperature was shown to vary with distance from the centerline of the weld. Superheat values as high as 250 C above the A3 temperature were observed at heating rates of 80 C/s. The SRXRD experiments also revealed details about the {gamma} phase not observable by conventional techniques, showing that {gamma} is present with two distinct lattice parameters as a result of inhomogeneous distribution of carbon and manganese in the starting pearlitic/ferritic microstructure. During cooling, the reverse {gamma} {yields} {alpha} phase transformation was shown to depend on the HAZ location. In the fine grained region of the HAZ, at distances greater than 2 mm from the fusion line, the {gamma} {yields} {alpha} transformation begins near the A3 temperature and ends near the A1 temperature. In this region of the HAZ where the cooling rates are below 40 C/s, the transformation occurs by nucleation and growth of pearlite. For HAZ locations closer to the fusion line, undercoolings of 200 C or more below the A1 temperature are required to complete the {gamma} {yields} {alpha} transformation. In this region of the HAZ, grain growth coupled with cooling rates in excess of 50 C/s causes the transformation to occur by a bainitic mechanism.« less
Two new steroidal saponins from Tribulus terrestris L.
Liu, Tao; Lu, Xuan; Wu, Biao; Chen, Gang; Hua, Hui-Ming; Pei, Yue-Hu
2010-01-01
Two new steroidal saponins were isolated from the fruits of Tribulus terrestris L. Their structures were elucidated by spectroscopic and chemical analysis as (23S,24R,25R)-5alpha-spirostane-3beta,23,24-triol-3-O-{alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-glucopyranosyl-(1 --> 4)]-beta-D-galactopyranoside} (1) and (23S,24R,25S)-5alpha-spirostane-3beta,23,24-triol-3-O-{alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-glucopyranosyl-(1 --> 4)]-beta-D-galactopyranoside} (2).
27-Hydroxyoleanolic acid type triterpenoid saponins from Anemone raddeana rhizome.
Fan, Li; Lu, Jin-Cai; Xue, Jiao; Gao, Song; Xu, Bei-Bei; Cao, Bai-Yi; Zhang, Jing-Jing
2010-02-01
Two new 27-hydroxyoleanolic acid type triterpenoid saponins were isolated from the rhizomes of Anemone raddeana Regel. The structures of the two compounds were elucidated as 27-hydroxyoleanolic acid 3-O-beta-D-glucopyranosyl (1 --> 2)-alpha-L-arabinopyranoside (1) and 3-O-alpha-L-rhamnopyranosyl (1 --> 2)[beta-D-glucopyranosyl (1 --> 4)]-alpha-L-arabinopyranosyl-27-hydroxyoleanolic acid 28-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (2) on the basis of chemical and spectral evidence.
NASA Technical Reports Server (NTRS)
Dominiak, P.; Ciszak, Ewa
2004-01-01
Thiamin pyrophosphate (TPP)-dependent enzymes are a divergent family of TPP and metal ion binding proteins that perform a wide range of functions with the common decarboxylation steps of a -(O=)C-C(OH)- fragment of alpha-ketoacids and alpha- hydroxyaldehydes. To determine how structure and catalytic action are conserved in the context of large sequence differences existing within this family of enzymes, we have carried out an analysis of TPP-dependent enzymes of known structures. The common structure of TPP-dependent enzymes is formed at the interface of four alpha/beta domains from at least two subunits, which provide for two metal and TPP-binding sites. Residues around these catalytic sites are conserved for functional purpose, while those further away from TPP are conserved for structural reasons. Together they provide a network of contacts required for flip-flop catalytic action within TPP-dependent enzymes. Thus our analysis defines a TPP-action motif that is proposed for annotating TPP-dependent enzymes for advancing functional proteomics.
Barreto, Carlos M; Ochoa, Ivania M; Garcia, Hector A; Hooijmans, Christine M; Livingston, Dennis; Herrera, Aridai; Brdjanovic, Damir
2018-08-01
The performance of a pilot-scale superoxygenation system was evaluated in clean water and mixed liquor. A mass balance was applied over the pilot-scale system to determine the overall oxygen mass transfer rate coefficient (K L a, h -1 ), the standard oxygen transfer rate (SOTR, kg O 2 d -1 ), and the standard oxygen transfer efficiency (SOTE, %). Additionally, the alpha factor (α) was determined at a mixed liquor suspend solids (MLSS) concentration of approximately 5 g L -1 . SOTEs of nearly 100% were obtained in clean water and mixed liquor. The results showed that at higher oxygen flowrates, higher transfer rates could be achieved; this however, at expenses of the transfer efficiency. As expected, lower transfer efficiencies were observed in mixed liquor compared to clean water. Alpha factors varied between 0.6 and 1.0. However, values of approximately 1.0 can be obtained in all cases by fine tuning the oxygen flowrate delivered to the system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chaperones of F[subscript 1]-ATPase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludlam, Anthony; Brunzelle, Joseph; Pribyl, Thomas
2009-09-25
Mitochondrial F{sub 1}-ATPase contains a hexamer of alternating {alpha} and {beta} subunits. The assembly of this structure requires two specialized chaperones, Atp11p and Atp12p, that bind transiently to {beta} and {alpha}. In the absence of Atp11p and Atp12p, the hexamer is not formed, and {alpha} and {beta} precipitate as large insoluble aggregates. An early model for the mechanism of chaperone-mediated F{sub 1} assembly (Wang, Z. G., Sheluho, D., Gatti, D. L., and Ackerman, S. H. (2000) EMBO J. 19, 1486--1493) hypothesized that the chaperones themselves look very much like the {alpha} and {beta} subunits, and proposed an exchange of Atp11pmore » for {alpha} and of Atp12p for {beta}; the driving force for the exchange was expected to be a higher affinity of {alpha} and {beta} for each other than for the respective chaperone partners. One important feature of this model was the prediction that as long as Atp11p is bound to {beta} and Atp12p is bound to {alpha}, the two F{sub 1} subunits cannot interact at either the catalytic site or the noncatalytic site interface. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to {alpha} and {beta} prevents further interactions between these F1 subunits. However, Atp11p and Atp12p do not resemble {alpha} or {beta}, and it is instead the F{sub 1} {gamma} subunit that initiates the release of the chaperones from {alpha} and {beta} and their further assembly into the mature complex.« less
Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.
1987-01-01
The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.
Space Station alpha joint bearing
NASA Technical Reports Server (NTRS)
Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.
1987-01-01
Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.
Inagaki, M; Shibai, M; Isobe, R; Higuchi, R
2001-12-01
Three ganglioside molecular species, OSG-0 (1), OSG-1 (2), and OSG-2 (3) have been obtained from the polar lipid fraction of the chloroform/methanol extract of the brittle star Ophiocoma scolopendrina. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[8-O-sulfo-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyll-ceramide (2) and 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl- and N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid and phytosphingosine units. Compounds 2 and 3 represent new ganglioside molecular species.
NASA Technical Reports Server (NTRS)
Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter
2003-01-01
The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.
Bolduc, Gilles R; Madoff, Lawrence C
2007-12-01
Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.
Alpha particle spectroscopy using FNTD and SIM super-resolution microscopy.
Kouwenberg, J J M; Kremers, G J; Slotman, J A; Wolterbeek, H T; Houtsmuller, A B; Denkova, A G; Bos, A J J
2018-06-01
Structured illumination microscopy (SIM) for the imaging of alpha particle tracks in fluorescent nuclear track detectors (FNTD) was evaluated and compared to confocal laser scanning microscopy (CLSM). FNTDs were irradiated with an external alpha source and imaged using both methodologies. SIM imaging resulted in improved resolution, without increase in scan time. Alpha particle energy estimation based on the track length, direction and intensity produced results in good agreement with the expected alpha particle energy distribution. A pronounced difference was seen in the spatial scattering of alpha particles in the detectors, where SIM showed an almost 50% reduction compared to CLSM. The improved resolution of SIM allows for more detailed studies of the tracks induced by ionising particles. The combination of SIM and FNTDs for alpha radiation paves the way for affordable and fast alpha spectroscopy and dosimetry. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Anastasia, Mario; Allevi, Pietro; Colombo, Raffaele; Giannini, Elios
2007-10-01
This paper demonstrates that the crystallization of 3beta-acetoxy-14alpha,15alpha-epoxy-5alpha-cholest-8-en-7-one from methanol affords the 3beta-acetoxy-9alpha-methoxy-15alpha-hydroxycholest-8(14)-en-7-one. The structure of this steroid, which shows an apparently anomalous UV absorption maximum, is determined by high field NMR experiments, supporting the coupling constant values assignments and the NOE contacts by a conformational study through theoretical calculations at the B3LYP/6-31G* level. The computational study also justifies the observed UV absorption of the steroid, thus demonstrating the usefulness of computer chemistry in providing support for the identification of unknown compounds.
A long-term study of H(alpha) line variations in FK Comae Berenices
NASA Technical Reports Server (NTRS)
Welty, Alan D.; Ramsey, Lawrence W.; Iyengar, Mrinal; Nations, Harold L.; Buzasi, Derek L.
1993-01-01
We present observations of H(alpha) V/R ratio variations in FK Comae Berencies obtained during several observing seasons from 1981 to 1992. The raw H(alpha) emission profile is always observed to be double peaked due to the stellar-absorption component. During the most years the V/R ratio varies regularly with the period of the photometric light curve. The V/R periodicity is most obvious when time spans no longer than several stellar rotations are considered. We propose that the bulk of the emission component of the H(alpha) line arises in corotating circumstellar material that may be similar to that of a quiescent solar prominence. The lifetime of these structures appears to be on the order of weeks. A weak contribution from a circumstellar disk is evident and chromospheric emission may also be present. The appearance or disappearance of circumstellar structures over periods longer than a few weeks, or the total absence of such structures, blurs the more regular variations in H(alpha) seen over short time scales. Other more stochastic activity, such as flares, also clearly occurs. Phase shifts of the V/R ratio from year to year rule out the hypothesis that mass tranfer in a close binary system is responsible for the V/R variations.
Dhagat, Urmi; Endo, Satoshi; Mamiya, Hiroaki; Hara, Akira; El-Kabbani, Ossama
2009-03-01
3(17)alpha-Hydroxysteroid dehydrogenase (AKR1C21) is a unique member of the aldo-keto reductase (AKR) superfamily owing to its ability to reduce 17-ketosteroids to 17alpha-hydroxysteroids, as opposed to other members of the AKR family, which can only produce 17beta-hydroxysteroids. In this paper, the crystal structure of a double mutant (G225P/G226P) of AKR1C21 in complex with the coenzyme NADP(+) and the inhibitor hexoestrol refined at 2.1 A resolution is presented. Kinetic analysis and molecular-modelling studies of 17alpha- and 17beta-hydroxysteroid substrates in the active site of AKR1C21 suggested that Gly225 and Gly226 play an important role in determining the substrate stereospecificity of the enzyme. Additionally, the G225P/G226P mutation of the enzyme reduced the affinity (K(m)) for both 3alpha- and 17alpha-hydroxysteroid substrates by up to 160-fold, indicating that these residues are critical for the binding of substrates.
[Studies on chemical constituents from rhizome of Anemone flaccida].
Zhang, Lan-tian; Takaishi, Yoshihisa; Zhang, Yan-wen; Duan, Hong-quan
2008-07-01
To study the chemical constituents from Anemone flaccida. Chemical constituents were isolated by repeated column chromatography (silica gel, Toyopearl HW-40C and preparative HPLC). The structures were elucidated on the basis of spectral data analysis. Twelve triterpenes were isolated and their structures were identified as follow: oleanolic acid (1), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-beta-D-xylopyranoside (2), eleutheroside K (3), oleanolic acid 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranoside (4), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-alpha-L-arabinofurnoside (5), oleanolic acid 3-O-beta-D-glccuronopyranose (6), oleanolic acid 3-O-beta-D-glccuronopyranose methyl ester (7), oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranosyl (8), oleanolic acid 3-O-beta-D-glccuronopyranose 28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (9), oleanolic acid 3-O-beta-D-glccopyranosyl methyl ester 28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (10), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-beta-D-xylopyranosyl-28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (11), oleanolic acid 3-O-alpha-L-rh-amnopyranosyl-(1-->2)-alpha-L-arabinopyrnosyl-28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (12). compounds 5-8, 10, 12 were isolated from this plant for the first time. Compounds 2, 5 and 11 showed positive anti-tumor activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Hidemi; Matsuura, Yoshiyuki, E-mail: matsuura.yoshiyuki@d.mbox.nagoya-u.ac.jp
Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus inmore » unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.« less
Lucian A. Lucia; Hiroki Nanko; Alan W. Rudie; Doug G. Mancosky; Sue Wirick
2006-01-01
The research presented elucidates the oxidation chemistry occurring in hydrogen peroxide bleached kraft pulp fibers by employing carbon near edge x-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft x-ray technique that selectively interrogates atomic moieties using photoelectrons (Xrays) of variable energies. The X1A beam line at the National...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.
2002-03-07
This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (
Simple Model with Time-Varying Fine-Structure ``Constant''
NASA Astrophysics Data System (ADS)
Berman, M. S.
2009-10-01
Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.
NASA Technical Reports Server (NTRS)
Kahn, W. D.
1984-01-01
The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.
Optical conductivity of alpha-Mn
NASA Technical Reports Server (NTRS)
Scoles, K. J.; Christy, R. W.
1982-01-01
The optical constants were measured at room temperature in the photon-energy range 0.6 to 6.5 eV on evaporated thin films. Evaporation conditions were chosen that gave the alpha-Mn crystal structure with reasonably large grains. The optical conductivity was separated into intraband and interband contributions by fitting to the Drude formula at low energies. The results are anomalous in comparison to other 3d transition metals. The free-electron lifetime is exceptionally sort (in agreement with the large dc resistivity of Mn), and the interband transitions seem unusually weak at the lower energies. Possible explanations related to the complicated crystal structure of alpha-Mn are discussed.
[Studies on chemical constituents of leaves of Psidium guajava].
Fu, Huizheng; Luo, Yongming; Zhang, Dongming
2009-03-01
To study the chemical constituents of the leaves of Psidium guajava. The chemical constituents were isolated by column chromatography on silica gel, Sephadex LH-20 and MPLC. Their structures were elucidated on the basis of spectral analysis. Nine compounds were isolated from this plant, and the structure of them were identified as ursolic acid (1), 2alpha-hydroxyursolic acid (2), 2alpha-hydroxyoleanolic acid (3), morin-3-O-alpha-L-arabopyranoside (4), quercetin (5), hyperin (6), myricetin-3-O-beta-D-glucoside (7), quercetin-3-O-beta-D-glucuronopyranoside (8), 1-O-galloyl-beta-D-glucose (9). Compounds 3, 7-9 were isolated from this plant for the first time.
Primary structure of the hemoglobin beta-chain of rose-ringed parakeet (Psittacula krameri).
Islam, A; Persson, B; Zaidi, Z H; Jörnvall, H
1989-08-01
The primary structure of Rose-ringed Parakeet hemoglobin beta-chain was established, completing the analysis of this hemoglobin. Comparison with other avian beta-chains show variations smaller than those for the corresponding alpha-chains. There are 11 amino acid exchanges in relationship to the only other characterized psittaciform beta-chain, and a total of 35 positions are affected by differences among all avian beta-chains analyzed (versus 61 for the alpha-chains). At three positions, the Psittacula beta-chain has residues unique to this species. Three alpha 1 beta 1 contacts are modified, by substitutions at positions beta 51, beta 116, and beta 125.
Dynamic properties of biologically active synthetic heparin-like hexasaccharides.
Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M
2005-10-01
A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R., Angulo, J., Nieto, P.M., and Martin-Lomas. M. (2002) The activation of fibroblast growth factors by heparin: synthesis and structural study of rationally modified heparin-like oligosaccharides. Can. J. Chem,. 80, 917-936; Lucas, R., Angulo, J., Nieto, P.M., and Martin-Lomas, M. (2003) Synthesis and structural studies of two new heparin-like hexasaccharides. Org. Biomol. Chem., 1, 2253-2266) and biological data (Angulo, J., Ojeda, R., de Paz, J.L., Lucas, R., Nieto, P.M., Lozano, R.M., Redondo-Horcajo, M., Giménez-Gallego, G., and Martín-Lomas, M. (2004) The activation of fibroblast growth factors (FGFs) by glycosaminoglycans: influence of the sulphation pattern on the biological activity of FGF-1. Chembiochem, 5, 55-61). Fast internal motions observed for the less sulphated compound 2, as compared with 1, may be related to their different behavior in stimulating FGF1-induced mitogenic activity.
Moritake, Y.; Kanamori, Y.; Hane, K.
2016-01-01
We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers. PMID:27622503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Qing; Manolopoulou, Marika; Bian, Yao
2010-02-11
Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-{beta}, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-{alpha} (TGF-{alpha}) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-{alpha}, amylin, reduced amylin, and amyloid-{beta} bymore » human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-{alpha} at 2.3 {angstrom} and IDE-amylin at 2.9 {angstrom}. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.« less
Colussi, Timothy; Parsonage, Derek; Boles, William; Matsuoka, Takeshi; Mallett, T Conn; Karplus, P Andrew; Claiborne, Al
2008-01-22
The FAD-dependent alpha-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the alpha-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpODelta, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 A resolution. Using the GlpODelta structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 A resolution. The first two domains of the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a betabetaalpha element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2alpha in GlpODelta, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpODelta is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.