Science.gov

Sample records for alpha inverse agonist

  1. Alpha2-adrenergic receptor agonists as analgesics.

    PubMed

    Boyd, R E

    2001-08-01

    Alpha2-adrenergic receptor agonists are analgesic agents, and the alpha2-adrenergic agonist clonidine has been used in clinical studies for regional analgesia after intrathecal administration. We review here recent developments concerning the structure activity relationships of a new class of potent alpha2-adrenergic agonists and their use as analgesic agents. The effect of structure upon cardiovascular side-effects is also monitored, such as the prolongation of the QT portion of the cardiac action potential.

  2. Inverse agonist properties of atypical antipsychotic drugs.

    PubMed

    Akam, Elizabeth; Strange, Philip G

    2004-06-01

    Mechanisms of action of several atypical antipsychotic drugs have been examined at the D(2) dopamine receptor expressed in CHO cells. The drugs tested were found to exhibit inverse agonist activity at the D(2) dopamine receptor based on their effects to potentiate forskolin-stimulated cyclic AMP (cAMP) accumulation. Each of the antipsychotic drugs tested (clozapine, olanzapine, quetiapine and risperidone) increased cAMP accumulation to the same extent. The increase in cAMP was also similar to that seen with typical antipsychotic drugs. Inverse agonism at the D(2) dopamine receptor seems, therefore, to be a property common to all classes of antipsychotic drugs. The effect of sodium ions on the binding of the drugs to the receptor was also assessed. Each of the atypical antipsychotic drugs tested here bound with higher affinity in the absence of sodium ions. Previous studies have shown that some antipsychotic drugs are insensitive to sodium ions and some bind with higher affinity in the presence of sodium ions. Given that all of these antipsychotic drugs are inverse agonists, it may be concluded that this sodium ion sensitivity is unrelated to mechanisms of inverse agonism.

  3. Neuroprotection by Alpha 2-Adrenergic Agonists in Cerebral Ischemia

    PubMed Central

    Zhang, Yonghua; Kimelberg, Harold K.

    2005-01-01

    Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury. PMID:18369397

  4. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-05-01

    This study investigated, for the D2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. Ki values for agonists were determined in competition versus the binding of the antagonist [3H]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (Kh) (G protein-coupled) and lower affinity (Kl) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [3H]N-propylnorapomorphine (NPA) to provide a second estimate of Kh. Maximal agonist effects (Emax) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[32S]thiotriphosphate) ([35S]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (Kl/Kh determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative Emax, Kl/EC50) of agonists determined in [35S]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed. For a subset of compounds, however, there was a relation between Kl/Kh and Emax. Competition-binding data versus [3H]spiperone and [3H]NPA for a range of inverse agonists were fitted best by a one-binding site model. Ki values for the inverse agonists tested were slightly lower in competition versus [3H]NPA compared to [3H]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor.

  5. Histamine H3-receptor inverse agonists as novel antipsychotics.

    PubMed

    Ito, Chihiro

    2009-06-01

    Schizophrenia (SZ) that is resistant to treatment with dopamine (DA) D2 antagonists may involve changes other than those in the dopaminergic system. Recently, histamine (HA), which regulates arousal and cognitive functions, has been suggested to act as a neurotransmitter in the central nervous system. Four HA receptors-H1, H2, H3, and H4-have been identified. Our recent basic and clinical studies revealed that brain HA improved the symptoms of SZ. The H3 receptor is primarily localized in the central nervous system, and it acts not only as a presynaptic autoreceptor that modulates the HA release but also as a presynaptic heteroreceptor that regulates the release of other neurotransmitters such as monoamines and amino acids. H3-receptor inverse agonists have been considered to improve cognitive functions. Many atypical antipsychotics are H3-receptor antagonists. Imidazole-containing H3-receptor inverse agonists inhibit not only cytochrome P450 but also hERG potassium channels (encoded by the human ether-a-go-go-related gene). Several imidazole H3-receptor inverse agonists also have high affinity for H4 receptors, which are expressed at high levels in mast cells and leukocytes. Clozapine is an H4-receptor agonist; this agonist activity may be related to the serious side effect of agranulocytosis caused by clozapine. Therefore, selective non-imidazole H3-receptor inverse agonists can be considered as novel antipsychotics that may improve refractory SZ.

  6. Alpha 2-adrenoceptor agonists potentiate responses mediated by alpha 1-adrenoceptors in the cat nictitating membrane.

    PubMed Central

    Shepperson, N. B.

    1984-01-01

    Alpha 1 but not alpha 2-adrenoceptors mediate contractions of the cat nictitating membrane. The contractions of this tissue evoked by alpha 1-adrenoceptor agonists, but not those evoked by angiotensin II, are potentiated by pre-dosing with alpha 2-adrenoceptor agonists. This potentiation is reversed by the alpha 2-adrenoceptor antagonist, WY 26392. Pressor responses evoked by alpha 1-adrenoceptor agonists or angiotensin II were not affected by alpha 2-adrenoceptor agonists. Contractions of the nictitating membrane evoked by noradrenaline were reduced by pretreatment with WY 26392. These results suggest that in some tissues the role of alpha 2-adrenoceptors may be to modulate responses to alpha 1-adrenoceptors, rather than to evoke a discrete response themselves. PMID:6148985

  7. Lorazepam discontinuation promotes 'inverse agonist' effects of benzodiazepines.

    PubMed Central

    Schatzki, A.; Lopez, F.; Greenblatt, D. J.; Shader, R. I.; Miller, L. G.

    1989-01-01

    1. The effects of lorazepam discontinuation on responses to benzodiazepine agonists and antagonists were studied in mice. 2. The convulsant dose of pentylenetetrazol was decreased after an acute dose of lorazepam (0.5 mg kg-1) at 4 days after drug discontinuation, compared to 1 or 7 days after discontinuation or to vehicle treatment. 3. The percentage of mice undergoing convulsions after an acute dose of FG 7142 (40 mg kg-1) was increased at 4 days after lorazepam discontinuation, compared to 1 or 7 days after discontinuation or to vehicle treatment. 4. After an acute dose (0.5 mg kg-1), lorazepam concentrations in cortex tended to be greater in lorazepam-treated compared to vehicle-treated mice at 4 days after discontinuation compared to 1 and 7 days. 5. These data indicate a shift toward reduced agonist sensitivity and increased inverse agonist sensitivity in mice 4 days after lorazepam discontinuation. PMID:2573401

  8. Identification of raloxifene as a novel CB2 inverse agonist.

    PubMed

    Kumar, Pritesh; Song, Zhao-Hui

    2013-05-24

    The purpose of the current study was to apply a high throughput assay to systematically screen a library of food and drug administration (FDA)-approved drugs as potential ligands for the cannabinoid receptor 2 (CB2). A cell-based, homogenous time resolved fluorescence (HTRF) method for measuring changes in intracellular cAMP levels was validated and found to be suitable for testing ligands that may act on CB2. Among the 640 FDA-approved drugs screened, raloxifene, a drug used to treat/prevent post-menopausal osteoporosis, was identified for the first time to be a novel CB2 inverse agonist. Our results demonstrated that by acting on CB2, raloxifene enhances forskolin-stimulated cAMP accumulation in a concentration-dependant manner. Furthermore, our data showed that raloxifene competes concentration-dependently for specific [(3)H]CP-55,940 binding to CB2. In addition, raloxifene pretreatment caused a rightward shift of the concentration-response curves of the cannabinoid agonists CP-55,940, HU-210, and WIN55,212-2. Raloxifene antagonism is most likely competitive in nature, as these rightward shifts were parallel and were not associated with any changes in the efficacy of cannabinoid agonists on CB2. Our discovery that raloxfiene is an inverse agonist for CB2 suggests that it might be possible to repurpose this FDA-approved drug for novel therapeutic indications for which CB2 is a target. Furthermore, identifying raloxifene as a CB2 inverse agonist also provides important novel mechanisms of actions to explain the known therapeutic effects of raloxifene.

  9. Assays for Inverse Agonists in the Visual System

    PubMed Central

    Kono, Masahiro

    2013-01-01

    Visual pigment proteins belong to the superfamily of G protein-coupled receptors and are the light-sensitive molecules in rod and cone photoreceptor cells. The protein moiety is known as opsin and the ligand in the dark is 11-cis retinal, which serves as both the photon detector and an inverse agonist. While much is known about properties of the rod pigment rhodopsin, much less is understood about cone visual pigments. Being able to identify ligands that effect opsins give an insight into structure–activity relationships. The action of some ligands indicates that there are differences between not only rod and cone opsins but also among the different classes of cone opsins. Furthermore, inverse agonists of cone opsins may have potential therapeutic uses under conditions when the native 11-cis retinal ligand is absent. A method for determining the effects of ligands on rod and cone opsin activity is described. PMID:21050919

  10. In vitro assays of rod and cone opsin activity: retinoid analogs as agonists and inverse agonists.

    PubMed

    Kono, Masahiro; Crouch, Rosalie K

    2010-01-01

    Upon absorption of a photon, the bound 11-cis-retinoid isomerizes to the all-trans form resulting in a protein conformational change that enables it to activate its G protein, transducin, to begin the visual signal transduction cascade. The native ligand, 11-cis-retinal, acts as an inverse agonist to both the apoproteins of rod and cone visual pigments (opsins); all-trans-retinal is an agonist. Truncated analogs of retinal have been used to characterize structure-function relationships with rod opsins, but little has been done with cone opsins. Activation of transducin by an opsin is one method to characterize the conformational state of the opsin. This chapter describes an in vitro transducin activation assay that can be used with cone opsins to determine the degree to which different ligands can act as an agonist or an inverse agonist to gain insight into the ligand-binding pocket of cone opsins and differences between the different classes of opsins. The understanding of the effects of ligands on cone opsin activity can potentially be applied to future therapeutic agents targeting opsins.

  11. [Alpha 2-adrenoceptor agonists for the treatment of chronic pain].

    PubMed

    Kulka, P J

    1996-04-25

    The antinociceptive effect of alpha(2)-adrenoceptor agonists is mediated by activation of descending inhibiting noradrenergic systems, which modulates 'wide-dynamic-range' neurones. Furthermore, they inhibit the liberation of substance P and endorphines and activate serotoninergic neurones. Despite this variety of antinociceptive actions, there is still little experience with alpha(2)-adrenoceptor agonists as therapeutic agents for use in chronic pain syndromes. Studies in animals and patients have shown that the transdermal, epidural and intravenous administration of the alpha(2)-adrenoceptor agonist clonidine reduces pain intensity in neuropathic pain syndromes for periods varying from some hours up to 1 month. Patients suffering from lancinating or sharp pain respond best to this therapy. Topically applied clonidine (200-300 microg) relieves hyperalgesia in sympathetically maintained pain. Epidural administration of 300 microg clonidine dissolved in 5 ml NaCl 0.9 % has also been shown to be effective. In patients suffering from cancer pain tolerant to opioids, pain control has proved possible again with combinations of opioids and clonidine. In isolated cases clonidine has been administered epidurally at a dose of 1500 microg/day for almost 5 months without evidence for any histotoxic property of clonidine. Side effects often observed during administration of alpha(2)-adrenoceptor agonists are dry mouth, sedation, hypotension and bradycardia. Therapeutic interventions are usually not required.

  12. Cannabidiol, a novel inverse agonist for GPR12.

    PubMed

    Brown, Kevin J; Laun, Alyssa S; Song, Zhao-Hui

    2017-09-06

    GPR12 is a constitutively active, Gs protein-coupled receptor that currently has no confirmed endogenous ligands. GPR12 may be involved in physiological processes such as maintenance of oocyte meiotic arrest and brain development, as well as pathological conditions such as metastatic cancer. In this study, the potential effects of various classes of cannabinoids on GPR12 were tested using a cAMP accumulation assay. Our data demonstrate that cannabidiol (CBD), a major non-psychoactive phytocannabinoid, acted as an inverse agonist to inhibit cAMP accumulation stimulated by the constitutively active GPR12. Thus, GPR12 is a novel molecular target for CBD. The structure-activity relationship studies of CBD indicate that both the free hydroxyl and the pentyl side chain are crucial for the effects of CBD on GPR12. Furthermore, studies using cholera toxin, which blocks Gs protein and pertussis toxin, which blocks Gi protein, revealed that Gs, but not Gi is involved in the inverse agonism of CBD on GPR12. CBD is a promising novel therapeutic agent for cancer, and GPR12 has been shown to alter viscoelasticity of metastatic cancer cells. Since we have demonstrated that CBD is an inverse agonist for GPR12, this provides novel mechanism of action for CBD, and an initial chemical scaffold upon which highly potent and efficacious agents acting on GPR12 may be developed with the ultimate goal of blocking cancer metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The evolution of histamine H₃ antagonists/inverse agonists.

    PubMed

    Lebois, Evan P; Jones, Carrie K; Lindsley, Craig W

    2011-01-01

    This article describes our efforts along with recent advances in the development, biological evaluation and clinical proof of concept of small molecule histamine H₃ antagonists/inverse agonists. The H3 receptor is a presynaptic autoreceptor within the Class A GPCR family, but also functions as a heteroreceptor modulating levels of neurotransmitters such as dopamine, acetylcholine, norepinephrine, serotonin, GABA and glutamate. Thus, H₃R has garnered a great deal of interest from the pharmaceutical industry for the possible treatment of obesity, epilepsy, sleep/wake, schizophrenia, Alzheimer's disease, neuropathic pain and ADHD. Within the two main classes of H₃ ligands, both imidazole and non-imidazole derived, have shown sufficient potency and specificity which culminated with efficacy in preclinical models for various CNS disorders. Importantly, conserved elements have been identified within the small molecule H₃ ligand scaffolds that resulted in a highly predictive pharmacophore model. Understanding of the pharmacophore model has allowed several groups to dial H₃R activity into scaffolds designed for other CNS targets, and engender directed polypharmacology. Moreover, Abbott, GSK, Pfizer and several others have reported positive Phase I and/or Phase II data with structurally diverse H₃R antagonists/inverse agonists.

  14. [Alpha-2 adrenergic agonists in the treatment of glaucoma].

    PubMed

    Apătăchioae, I; Chiseliţă, D

    1999-01-01

    The study represent an up-to-date of the role and place of alpha 2-adrenergic agonists in glaucoma treatment. The first available alpha 2-agonist, clonidine is of historical importance today. Apraclonidine decrease the aqueous humor secretion and episcleral venous pressure. It is employed to prevent or blunt the acute intraocular pressure rise after ocular laser therapy. It is not recommended as long term therapy due to its high incidence of local adverse reactions and tachyphylaxis. Brimonidine became the alpha 2-agonist of choice in glaucoma chronic treatment, acting by decreasing aqueous humor secretion and increasing uveoscleral outflow. It has a lower incidence of the ocular adverse effects because of greater alpha 2 selectivity. Brimonidine has neuroprotective effect, which is an important feature in the new contexts of glaucoma pathogenesis. Brimonidine has hypotensor effect similar with timolol but with a greater incidence of adverse local reactions. It has been no effects on cardiopulmonary function. Brimonidine would be of value as first-line therapy in patients who have contraindications to beta-blockers.

  15. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  16. Advantages and guidelines for using alpha-2 agonists as anesthetic adjuvants.

    PubMed

    Tranquilli, W J; Benson, G J

    1992-03-01

    Xylazine and medetomidine produce reliable sedation, muscle relaxation, and analgesia in dogs and cats. In addition, alpha-2 agonists have proved very effective as sedative-analgesic adjuncts when coadministered with benzodiazepine or opioid agonists. Alpha-2 agonists should not be classified as monoanesthetics. They are excellent anesthetic adjuncts when combined with dissociatives and opioids. Because of the acute alterations in cardiopulmonary function commonly induced by alpha-2 agonists, it is suggested that their use be restricted to the young healthy patient undergoing routine surgical or diagnostic procedure. The development of more specific and selective alpha-2 agonists will continue to enhance the safety and reliability of this novel class of compounds. The unique spectrum of anesthetic properties induced by alpha-2 agonists has assured them of an increasingly prominent role in the development of new and sophisticated ways of achieving anesthesia.

  17. Differential agonist sensitivity of glycine receptor alpha2 subunit splice variants.

    PubMed

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-09-01

    1. The glycine receptor (GlyR) alpha2A and alpha2B splice variants differ by a dual, adjacent amino acid substitution from alpha2A(V58,T59) to alpha2B(I58,A59) in the N-terminal extracellular domain. 2. Comparing the effects of the GlyR agonists, glycine, beta-alanine and taurine, on the GlyR alpha2 isoforms, revealed a significant increase in potency for all three agonists at the alpha2B variant. 3. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn(2+), were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR alpha2A compared to GlyR alpha2B receptors. 4. Coexpression of alpha2A or alpha2B subunits with the GlyR beta subunit revealed that the higher agonist potencies observed with the alpha2B homomer were retained for the alpha2Bbeta heteromer. 5. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR alpha2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. 6. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. 7. The existence of a spasmodic mouse phenotype linked to a GlyR alpha1(A52S) mutation, the equivalent position to the source of the alpha2 splice variation, raises the possibility that the GlyR alpha2 splice variants may be responsible for distinct roles in neuronal function.

  18. Cannabinoid Discrimination and Antagonism by CB1 Neutral and Inverse Agonist Antagonists

    PubMed Central

    Delatte, Marcus S.; Vemuri, V. Kiran; Thakur, Ganesh A.; Nikas, Spyridon P.; Subramanian, Kumara V.; Shukla, Vidyanand G.; Makriyannis, Alexandros; Bergman, Jack

    2013-01-01

    Cannabinoid receptor 1 (CB1) inverse agonists (e.g., rimonabant) have been reported to produce adverse effects including nausea, emesis, and anhedonia that limit their clinical applications. Recent laboratory studies suggest that the effects of CB1 neutral antagonists differ from those of such inverse agonists, raising the possibility of improved clinical utility. However, little is known regarding the antagonist properties of neutral antagonists. In the present studies, the CB1 inverse agonist SR141716A (rimonabant) and the CB1 neutral antagonist AM4113 were compared for their ability to modify CB1 receptor–mediated discriminative stimulus effects in nonhuman primates trained to discriminate the novel CB1 full agonist AM4054. Results indicate that AM4054 serves as an effective CB1 discriminative stimulus, with an onset and time course of action comparable with that of the CB1 agonist Δ9-tetrahydrocannabinol, and that the inverse agonist rimonabant and the neutral antagonist AM4113 produce dose-related rightward shifts in the AM4054 dose-effect curve, indicating that both drugs surmountably antagonize the discriminative stimulus effects of AM4054. Schild analyses further show that rimonabant and AM4113 produce highly similar antagonist effects, as evident in comparable pA2 values (6.9). Taken together with previous studies, the present data suggest that the improved safety profile suggested for CB1 neutral antagonists over inverse agonists is not accompanied by a loss of antagonist action at CB1 receptors. PMID:23287700

  19. Cannabinoid discrimination and antagonism by CB(1) neutral and inverse agonist antagonists.

    PubMed

    Kangas, Brian D; Delatte, Marcus S; Vemuri, V Kiran; Thakur, Ganesh A; Nikas, Spyridon P; Subramanian, Kumara V; Shukla, Vidyanand G; Makriyannis, Alexandros; Bergman, Jack

    2013-03-01

    Cannabinoid receptor 1 (CB(1)) inverse agonists (e.g., rimonabant) have been reported to produce adverse effects including nausea, emesis, and anhedonia that limit their clinical applications. Recent laboratory studies suggest that the effects of CB(1) neutral antagonists differ from those of such inverse agonists, raising the possibility of improved clinical utility. However, little is known regarding the antagonist properties of neutral antagonists. In the present studies, the CB(1) inverse agonist SR141716A (rimonabant) and the CB(1) neutral antagonist AM4113 were compared for their ability to modify CB(1) receptor-mediated discriminative stimulus effects in nonhuman primates trained to discriminate the novel CB(1) full agonist AM4054. Results indicate that AM4054 serves as an effective CB(1) discriminative stimulus, with an onset and time course of action comparable with that of the CB(1) agonist Δ(9)-tetrahydrocannabinol, and that the inverse agonist rimonabant and the neutral antagonist AM4113 produce dose-related rightward shifts in the AM4054 dose-effect curve, indicating that both drugs surmountably antagonize the discriminative stimulus effects of AM4054. Schild analyses further show that rimonabant and AM4113 produce highly similar antagonist effects, as evident in comparable pA(2) values (6.9). Taken together with previous studies, the present data suggest that the improved safety profile suggested for CB(1) neutral antagonists over inverse agonists is not accompanied by a loss of antagonist action at CB(1) receptors.

  20. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Mice were made tolerant to and dependent on ethanol by administration of a liquid diet. Gamma-aminobutyric acid (GABA) receptor-dependent uptake of 36Cl- by mouse cortical microsacs was used to study the actions of benzodiazepine (BZ) agonists and inverse agonists. Chronic exposure to ethanol attenuated the ability of a BZ agonist, flunitrazepam, to augment muscimol-stimulated uptake of 36Cl- and enhanced the actions of BZ inverse agonists, Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,4)-benzodiazepine - 3-carboxylate) and DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate), to inhibit GABAA receptor-operated chloride channels. Augmentation of chloride flux by pentobarbital was not reduced by chronic ethanol exposure. Attenuation of flunitrazepam efficacy was transient and returned to control levels within 6 to 24 hr after withdrawal from ethanol, but increased sensitivity to Ro15-4513 was observed as long as 8 days after withdrawal. Chronic exposure to ethanol did not alter (3H)SR 95531 (2-(3'-carbethoxy-2'propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide) binding to low-affinity GABAA receptors or muscimol stimulation of chloride flux; and did not alter (3H)Ro15-4513 or (3H)flunitrazepam binding to central BZ receptors or allosteric modulation of this binding by muscimol (i.e., muscimol-shift). These results suggest that chronic exposure to ethanol reduces coupling between BZ agonist sites and the chloride channel, and may be responsible for the development of cross-tolerance between ethanol and BZ agonists. In contrast, coupling between BZ inverse agonist sites and the chloride channel is increased.

  1. Novel actions of inverse agonists on 5-HT2C receptor systems.

    PubMed

    Berg, K A; Stout, B D; Cropper, J D; Maayani, S; Clarke, W P

    1999-05-01

    In cell systems where ligand-independent receptor activity is optimized (such as when receptors are overexpressed or mutated), acute treatment with inverse agonists reduces basal effector activity whereas prolonged exposure leads to sensitization of receptor systems and receptor up-regulation. Few studies, however, have reported effects of inverse agonists in systems where nonmutated receptors are expressed at relatively low density. Here, we investigated the effects of inverse agonists at human serotonin (5-HT)2C receptors expressed stably in Chinese hamster ovary cells ( approximately 250 fmol/mg protein). In these cells, there is no receptor reserve for 5-HT and 5-HT2C inverse agonists did not reduce basal inositol phosphate (IP) accumulation nor arachidonic acid (AA) release but behaved as simple competitive antagonists, suggesting that these receptors are not overexpressed. Prolonged treatment (24 h) with inverse agonists enhanced selectively 5-HT2C-mediated IP accumulation but not AA release. The enhancing effect occurred within 4 h of treatment, reversed within 3 to 4 h (after 24-h treatment), and could be blocked with neutral antagonists or weak positive agonists. The enhanced responsiveness was not due to receptor up-regulation but may involve changes in the expression of the G protein, Galphaq/11 and possibly Galpha12 and Galpha13. Interestingly, 24-h exposure to inverse agonists acting at 5-HT2C receptors also selectively enhanced IP accumulation, but not AA release, elicited by activation of endogenous purinergic receptors. These data suggest that actions of inverse agonists may be mediated through effects on receptor systems that are not direct targets for these drugs.

  2. Effects of an intrathecally administered benzodiazepine receptor agonist, antagonist and inverse agonist on morphine-induced inhibition of a spinal nociceptive reflex.

    PubMed Central

    Moreau, J. L.; Pieri, L.

    1988-01-01

    1. The effects of an intrathecally administered benzodiazepine receptor (BZR) agonist (midazolam, up to 50 micrograms), antagonist (flumazenil, Ro 15-1788, 5 micrograms) and inverse agonist (Ro 19-4603, 15 micrograms) on nociception and on morphine-induced antinociception were studied in rats. 2. By themselves, none of these compounds significantly altered pain threshold. 3. The BZR agonist midazolam enhanced the morphine-induced antinociceptive effect whereas the antagonist flumazenil did not alter it. In contrast, the BZR inverse agonist Ro 19-4603 decreased the morphine-induced antinociceptive effect. 4. Naloxone (1 mg kg-1 i.p.) completely reversed all these effects. 5. These results demonstrate that BZR agonists and inverse agonists are able to affect, by allosteric up- or down-modulation of gamma-aminobutyric acidA (GABAA)-receptors, the transmission of nociceptive information at the spinal cord level, when this transmission is depressed by mu-opioid receptor activation. PMID:2898960

  3. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor.

    PubMed

    Lin, Wenwei; Yang, Lei; Chai, Sergio C; Lu, Yan; Chen, Taosheng

    2016-01-27

    Constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) are master regulators of endobiotic and xenobiotic metabolism and disposition. Because CAR is constitutively active in certain cellular contexts, inhibiting CAR might reduce drug-induced hepatotoxicity and resensitize drug-resistant cancer cells to chemotherapeutic drugs. We recently reported a novel CAR inhibitor/inverse agonist CINPA1 (11). Here, we have obtained or designed 54 analogs of CINPA1 and used a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate their CAR inhibition potency. Many of the 54 analogs showed CAR inverse agonistic activities higher than those of CINPA1, which has an IC50 value of 687 nM. Among them, 72 has an IC50 value of 11.7 nM, which is about 59-fold more potent than CINPA1 and over 10-fold more potent than clotrimazole (an IC50 value of 126.9 nM), the most potent CAR inverse agonist in a biochemical assay previously reported by others. Docking studies provide a molecular explanation of the structure-activity relationship (SAR) observed experimentally. To our knowledge, this effort is the first chemistry endeavor in designing and identifying potent CAR inverse agonists based on a novel chemical scaffold, leading to 72 as the most potent CAR inverse agonist so far. The 54 chemicals presented are novel and unique tools for characterizing CAR's function, and the SAR information gained from these 54 analogs could guide future efforts to develop improved CAR inverse agonists.

  4. POTENTIAL ANXIOGENIC EFFECTS OF CANNABINOID CB1 RECEPTOR ANTAGONISTS/INVERSE AGONISTS IN RATS: COMPARISONS BETWEEN AM4113, AM251, AND THE BENZODIAZEPINE INVERSE AGONIST FG-7142

    PubMed Central

    Sink, KS; Segovia, KN; Sink, J; Randall, PA; Collins, LE; Correa, M; Markus, EJ; Vemuri, VK; Makriyannis, A; Salamone, JD

    2010-01-01

    Cannabinoid CB1 inverse agonists suppress food-motivated behaviors, but may also induce psychiatric effects such as depression and anxiety. To evaluate behaviors potentially related to anxiety, the present experiments assessed the CB1 inverse agonist AM251 (2.0 – 8.0 mg/kg), the CB1 antagonist AM4113 (3.0 – 12.0 mg/kg), and the benzodiazepine inverse agonist FG-7142 (10.0 – 20.0 mg/kg), using the open field test and the elevated plus maze. Although all three drugs affected open field behavior, these effects were largely due to actions on locomotion. In the elevated plus maze, FG-7142 and AM251 both produced anxiogenic effects. FG-7142 and AM251 also significantly increased c-Fos activity in the amygdala and nucleus accumbens shell. In contrast, AM4113 failed to affect performance in the plus maze, and did not induce c-Fos immunoreactivity. The weak effects of AM4113 are consistent with biochemical data showing that AM4113 induces little or no intrinsic cellular activity. This research may lead to the development of novel appetite suppressants with reduced anxiogenic effects. PMID:20015619

  5. Potential anxiogenic effects of cannabinoid CB1 receptor antagonists/inverse agonists in rats: comparisons between AM4113, AM251, and the benzodiazepine inverse agonist FG-7142.

    PubMed

    Sink, K S; Segovia, K N; Sink, J; Randall, P A; Collins, L E; Correa, M; Markus, E J; Vemuri, V K; Makriyannis, A; Salamone, J D

    2010-02-01

    Cannabinoid CB1 inverse agonists suppress food-motivated behaviors, but may also induce psychiatric effects such as depression and anxiety. To evaluate behaviors potentially related to anxiety, the present experiments assessed the CB1 inverse agonist AM251 (2.0-8.0mg/kg), the CB1 antagonist AM4113 (3.0-12.0mg/kg), and the benzodiazepine inverse agonist FG-7142 (10.0-20.0mg/kg), using the open field test and the elevated plus maze. Although all three drugs affected open field behavior, these effects were largely due to actions on locomotion. In the elevated plus maze, FG-7142 and AM251 both produced anxiogenic effects. FG-7142 and AM251 also significantly increased c-Fos activity in the amygdala and nucleus accumbens shell. In contrast, AM4113 failed to affect performance in the plus maze, and did not induce c-Fos immunoreactivity. The weak effects of AM4113 are consistent with biochemical data showing that AM4113 induces little or no intrinsic cellular activity. This research may lead to the development of novel appetite suppressants with reduced anxiogenic effects.

  6. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor

    PubMed Central

    2015-01-01

    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci.2013, 22, 101−11323184890; Ahn, K. H. et al. Proteins2013, 81, 1304–131723408552] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists. PMID:26633590

  7. Changing Patterns of Alpha Agonist Medication Use in Children and Adolescents 2009–2011

    PubMed Central

    Mayne, Stephanie L.; Song, Lihai; Steffes, Jennifer; Liu, Weiwei; McCarn, Banita; Margolis, Benyamin; Grimes, Alan; Gotlieb, Edward; Localio, Russell; Ross, Michelle E.; Grundmeier, Robert W.; Wasserman, Richard; Leslie, Laurel K.

    2015-01-01

    Abstract Objectives: The purpose of this study was to describe rates and patterns of long- and short-acting alpha agonist use for behavioral problems in a primary care population following Food and Drug Administration (FDA) approval of the long-acting alpha agonists guanfacine and clonidine. Methods: Children and adolescents 4–18 years of age, who received an alpha agonist prescription between 2009 and 2011, were identified from a sample of 45 United States primary care practices in two electronic health record-based research networks. Alpha agonist receipt was identified using National Drug Codes and medication names. The proportion of subjects receiving long- and short-acting prescriptions in each year was calculated and examined with respect to reported mental health diagnoses, and whether indications for use were on-label, had evidence from clinical trials, or had no trial evidence. Results: In a cohort of 282,875 subjects, 27,671 (10%) received any psychotropic medication and only 4,227 subjects (1.5%) received at least one prescription for an alpha agonist, most commonly a short-acting formulation (83%). Only 20% of alpha agonist use was on-label (use of long-acting formulations for attention-deficit/hyperactivity disorder [ADHD]). Most subjects (68%) received alpha agonists for indications with evidence of efficacy from clinical trials but no FDA approval, primarily short-acting formulations for ADHD and autism; 12% received alpha agonists for diagnoses lacking randomized clinical trial evidence in children, including sleep disorders and anxiety, or for which there was no documented mental health diagnosis. Rates of long-acting alpha agonist use increased more than 20-fold from 0.2% to 4%, whereas rates of short-acting alpha agonist use grew only slightly between 2009 and 2011 from 10.6% to 11.3%. Conclusions: Alpha agonist use was uncommon in this population, and most subjects received short-acting forms for conditions that were off-label, but with

  8. Small Molecules with Similar Structures Exhibit Agonist, Neutral Antagonist or Inverse Agonist Activity toward Angiotensin II Type 1 Receptor

    PubMed Central

    Hanzawa, Hiroyuki; Nakao, Naoki; Fujino, Masahiro; Imaizumi, Satoshi; Matsuo, Yoshino; Yanagisawa, Hiroaki; Koike, Hiroyuki; Komuro, Issei; Karnik, Sadashiva S.; Saku, Keijiro

    2012-01-01

    Small differences in the chemical structures of ligands can be responsible for agonism, neutral antagonism or inverse agonism toward a G-protein-coupled receptor (GPCR). Although each ligand may stabilize the receptor conformation in a different way, little is known about the precise conformational differences. We synthesized the angiotensin II type 1 receptor blocker (ARB) olmesartan, R239470 and R794847, which induced inverse agonism, antagonism and agonism, respectively, and then investigated the ligand-specific changes in the receptor conformation with respect to stabilization around transmembrane (TM)3. The results of substituted cysteine accessibility mapping studies support the novel concept that ligand-induced changes in the conformation of TM3 play a role in stabilizing GPCR. Although the agonist-, neutral antagonist and inverse agonist-binding sites in the AT1 receptor are similar, each ligand induced specific conformational changes in TM3. In addition, all of the experimental data were obtained with functional receptors in a native membrane environment (in situ). PMID:22719858

  9. Alpha/sub 1/ receptor coupling events initiated by methoxy-substituted tolazoline partial agonists

    SciTech Connect

    Wick, P.; Keung, A.; Deth, R.

    1986-03-01

    A series of mono- and dimethyoxy substituted tolazoline derivatives, known to be partial agonists at the alpha/sub 1/ receptor, were compared with the ..cap alpha../sub 1/ selective full agonist phenylephrine (PE) on isolated strips of rabbit aorta Agonist activity was evaluated in contraction, /sup 45/Ca influx, /sup 45/Ca efflux, and /sup 32/P-Phospholipid labelling studies. Maximum contractile responses for the 2-, 3-, and 3, 5- methoxy substituted tolazoline derivatives (10/sup -5/M) were 53.8, 67.6 and 99.7% of the PE (10/sup -5/M) response respectively. These same partial agonists caused a stimulation of /sup 45/Ca influx to the extent of 64, 86, and 95% of the PE response respectively. In /sup 45/Ca efflux studies, (a measure of the intracellular Ca/sup +2/ release) the tolazolines caused: 30%, 63%, and 78% of the PE stimulated level. /sup 32/P-Phosphatidic acid (PA) labelling was measured as an index of PI turnover after ..cap alpha../sub 1/ receptor stimulation. Compared to PE, the 2-, 3-, and 3,5- methoxy substituted tolazoline derivatives caused 22, 46, and 72% PA labelling. The above values are all in reasonable accord with the rank order or agonist activity shown in maximum contractile responses. The results of this investigation suggest that partial agonists stimulate ..cap alpha.. receptor coupling events at a level which is quantitatively comparable to their potencies in causing contraction of arterial smooth muscle.

  10. 5-hydroxyindole-2-carboxylic acid amides: novel histamine-3 receptor inverse agonists for the treatment of obesity.

    PubMed

    Pierson, Pascale David; Fettes, Alec; Freichel, Christian; Gatti-McArthur, Silvia; Hertel, Cornelia; Huwyler, Jörg; Mohr, Peter; Nakagawa, Toshito; Nettekoven, Matthias; Plancher, Jean-Marc; Raab, Susanne; Richter, Hans; Roche, Olivier; Rodríguez Sarmiento, Rosa María; Schmitt, Monique; Schuler, Franz; Takahashi, Tadakatsu; Taylor, Sven; Ullmer, Christoph; Wiegand, Ruby

    2009-07-09

    Obesity is a major risk factor in the development of conditions such as hypertension, hyperglycemia, dyslipidemia, coronary artery disease, and cancer. Several pieces of evidence across different species, including primates, underscore the implication of the histamine 3 receptor (H(3)R) in the regulation of food intake and body weight and the potential therapeutic effect of H(3)R inverse agonists. A pharmacophore model, based on public information and validated by previous investigations, was used to design several potential scaffolds. Out of these scaffolds, the 5-hydroxyindole-2-carboxylic acid amide appeared to be of great potential as a novel series of H(3)R inverse agonist. Extensive structure-activity relationships revealed the interconnectivity of microsomal clearance and hERG (human ether-a-go-go-related gene) affinity with lipophilicity, artificial membrane permeation, and basicity. This effort led to the identification of compounds reversing the (R)-alpha-methylhistamine-induced water intake increase in Wistar rats and, further, reducing food intake in diet-induced obese Sprague-Dawley rats. Of these, the biochemical, pharmacokinetic, and pharmacodynamic characteristics of (4,4-difluoropiperidin-1-yl)[1-isopropyl-5-(1-isopropylpiperidin-4-yloxy)-1H-indol-2-yl]methanone 36 are detailed.

  11. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. I. Acute effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Acute exposure to ethanol was found to enhance the ability of a benzodiazepine (BZ) inverse agonist, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), to reduce muscimol-activated 36Cl- uptake by membranes isolated from mouse cerebral cortex. Pretreatment in vivo with a hypnotic dose of ethanol (but not a subhypnotic dose), or exposure to a corresponding concentration in vitro, was effective. This increase in sensitivity of gamma-aminobutyric acid receptor-operated chloride channels to the actions of DMCM was due to an increase in both the potency and efficacy of DMCM. Sensitization to DMCM was reversible and was not observed 24 hr after a single injection of ethanol. Pretreatment with ethanol (10, 50 and 100 mM) in vitro produced sensitization to DMCM in a concentration-dependent manner, similar to that produced by in vivo exposure; this increase in sensitivity did not develop if the membranes were pretreated with ethanol at 0 degrees C. Similarly, in vitro exposure to pentobarbital (200 microM) or flunitrazepam (1 microM) enhanced the actions of the inverse agonist Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,5a)(1,4)BZ-3- carboxylate). Acute ethanol exposure did not alter low-affinity gamma-aminobutyric acidA receptor binding or muscimol action, or the ability of a BZ agonist, flunitrazepam, to augment muscimol-activated chloride flux. Ethanol exposure did not alter (3H)flumazenil (Ro15-1788) binding to central BZ receptors, its displacement by DMCM or allosteric modulation of DMCM binding by muscimol (muscimol-shift).

  12. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

    PubMed

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-08-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.

  13. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist

    PubMed Central

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-01-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury. PMID:26196013

  14. Ghrelin receptor inverse agonists as a novel therapeutic approach against obesity-related metabolic disease.

    PubMed

    Abegg, Kathrin; Bernasconi, Lara; Hutter, Melanie; Whiting, Lynda; Pietra, Claudio; Giuliano, Claudio; Lutz, Thomas A; Riediger, Thomas

    2017-05-24

    Ghrelin is implicated in the control of energy balance and glucose homeostasis. The ghrelin receptor exhibits ligand-independent constitutive activity, which can be pharmacologically exploited to induce inverse ghrelin actions. Because ghrelin receptor inverse agonists (GHSR-IA) might be effective for the treatment of obesity-related metabolic disease, we tested 2 novel synthetic compounds GHSR-IA1 and GHSR-IA2. In functional cell assays, electrophysiogical and immunohistochemical experiments, we demonstrated inverse agonist activity for GHSR-IA1 and GHSR-IA2. We used healthy mice, Zucker diabetic fatty (ZDF) rats and diet-induced obese (DIO) mice to explore effects on food intake (FI), body weight (BW), conditioned taste aversion (CTA), oral glucose tolerance (OGT), pancreatic islet morphology, hepatic steatosis (HS), and blood lipids. Both compounds acutely reduced FI in mice without inducing CTA. Chronic GHSR-IA1 increased metabolic rate in chow-fed mice, suppressed FI, and improved OGT in ZDF rats. Moreover, the progression of islet hyperplasia to fibrosis in ZDF rats slowed down. GHSR-IA2 reduced FI and BW in DIO mice, and reduced fasting and stimulated glucose levels compared with pair-fed and vehicle-treated mice. GHSR-IA2-treated DIO mice showed decreased blood lipids. GHSR-IA1 treatment markedly decreased HS in DIO mice. Our study demonstrates therapeutic actions of novel ghrelin receptor inverse agonists, suggesting a potential to treat obesity-related metabolic disorders including diabetes mellitus. © 2017 John Wiley & Sons Ltd.

  15. Alpha2-adrenoreceptors profile modulation. 4. From antagonist to agonist behavior.

    PubMed

    Gentili, Francesco; Cardinaletti, Claudia; Vesprini, Cristian; Carrieri, Antonio; Ghelfi, Francesca; Farande, Aniket; Giannella, Mario; Piergentili, Alessandro; Quaglia, Wilma; Laurila, Jonne M; Huhtinen, Anna; Scheinin, Mika; Pigini, Maria

    2008-07-24

    The goal of the present study was to modulate the receptor interaction properties of known alpha 2-adrenoreceptor (AR) antagonists to obtain novel alpha 2-AR agonists with desirable subtype selectivity. Therefore, a phenyl group or one of its bioisosteres or aliphatic moieties with similar steric hindrance were introduced into the aromatic ring of the antagonist lead basic structure. The functional properties of the novel compounds allowed our previous observations to be confirmed. The high efficacy of 7, 12, and 13 as alpha 2-AR agonists and the significant alpha 2C-AR subtype selective activation displayed by 11 and 15 demonstrated that favorable interactions to induce alpha 2-AR activation were formed between the pendant groups of the ligands and the aromatic cluster present in transmembrane domain 6 of the binding site cavity of the receptors.

  16. The anticonvulsant and proconvulsant effects of alpha2-adrenoreceptor agonists are mediated by distinct populations of alpha2A-adrenoreceptors.

    PubMed

    Szot, P; Lester, M; Laughlin, M L; Palmiter, R D; Liles, L C; Weinshenker, D

    2004-01-01

    The alpha2-adrenoreceptor (AR) is the most investigated noradrenergic receptor with regard to modulation of seizure activity. However, because of the complexity of multiple alpha2-AR subtypes and their distribution, the exact role of this receptor in modulating seizure activity is not clear. alpha2A- and alpha2C-ARs function as both autoreceptors (presynaptic) on noradrenergic neurons, where they regulate norepinephrine (NE) release, and as postsynaptic receptors on neurons that receive noradrenergic innervation, where they regulate the release of other neurotransmitters (heteroreceptor). The nonselective alpha2-AR agonist clonidine produced a proconvulsant effect on seizure susceptibility, while the selective alpha2A-AR agonist guanfacine was anticonvulsant. The effects of both alpha2-AR agonists were absent in alpha2a knockout mice, suggesting that the alpha2A-AR mediates the proconvulsant and anticonvulsant effect of alpha2-AR agonists on seizure susceptibility. To determine whether the alpha2-AR agonists were acting on inhibitory presynaptic autoreceptors to decrease NE release or on postsynaptic receptors on NE target neurons, the effects of clonidine and guanfacine were determined in dopamine beta-hydroxylase knockout (Dbh -/-) mice that lack NE. The anticonvulsant effect of guanfacine persisted in Dbh -/- mice, suggesting that guanfacine may act preferentially on alpha2A-postsynaptic receptors that regulate the action of NE on target neurons. In contrast, the proconvulsant effect of clonidine was lost in Dbh -/- mice, suggesting that clonidine may act on presynaptic autoreceptors to decrease NE release. We hypothesize that the alpha2A-presynaptic autoreceptor is responsible for the proconvulsant effect of alpha2-AR agonists, while the alpha2A-postsynaptic receptor is responsible for the anticonvulsant effect of alpha2-AR agonists. These data help to clarify the inconsistent effects of alpha2-AR agonists on seizure activity.

  17. PPAR{alpha} agonists up-regulate organic cation transporters in rat liver cells

    SciTech Connect

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus . E-mail: klaus.eder@landw.uni-halle.de

    2006-11-24

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-{alpha} agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPAR{alpha} agonists in livers of rats and in Fao cells. We conclude that PPAR{alpha} agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis.

  18. A combined ligand and structure based approach to design potent PPAR-alpha agonists

    NASA Astrophysics Data System (ADS)

    Dhoke, Gaurao V.; Gangwal, Rahul P.; Sangamwar, Abhay T.

    2012-11-01

    A combined ligand and structure based pharmacophore modeling approach was employed to reveal structural and chemical features necessary for PPAR-alpha agonistic activity. The best HypoGen pharmacophore model Hypo1 for PPAR-alpha agonists contains two hydrogen-bond acceptor (HBA), two general hydrophobic (H), and one negative ionizable (NI) feature. In addition, one structure based pharmacophore model was developed using LigandScout3.0, which has identified additional three hydrophobic features. Further, molecular docking studies of all agonists showed hydrogen bond interactions with important amino acids (Ser280, Tyr314 and Tyr464) and these interactions were compared with Hypo1, which shows that the Hypo1 has a good predictive ability. The screened virtual hits from Hypo1 were subjected to the Lipinski's rule of five, structure based pharmacophore screening and molecular docking analysis. Finally, three novel compounds with diverse scaffolds were selected as possible candidates for the designing of potent PPAR-alpha agonists. Combination of these two approaches results in designing an ideal pharmacophore model, which provides a powerful tool for the discovery of novel PPAR-alpha agonists.

  19. Treating enhanced GABAergic inhibition in Down syndrome: use of GABA α5-selective inverse agonists.

    PubMed

    Martínez-Cué, Carmen; Delatour, Benoît; Potier, Marie-Claude

    2014-10-01

    Excess inhibition in the brain of individuals carrying an extra copy of chromosome 21 could be responsible for cognitive deficits observed throughout their lives. A change in the excitatory/inhibitory balance in adulthood would alter synaptic plasticity, potentially triggering learning and memory deficits. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mature central nervous system and binds to GABAA receptors, opens a chloride channel, and reduces neuronal excitability. In this review we discuss methods to alleviate neuronal inhibition in a mouse model of Down syndrome, the Ts65Dn mouse, using either an antagonist (pentylenetetrazol) or two different inverse agonists selective for the α5-subunit containing receptor. Both inverse agonists, which reduce inhibitory GABAergic transmission, could rescue learning and memory deficits in Ts65Dn mice. We also discuss safety issues since modulation of the excitatory-inhibitory balance to improve cognition without inducing seizures remains particularly difficult when using GABA antagonists.

  20. Optimization of alpha-acylaminoketone ecdysone agonists for control of gene expression.

    PubMed

    Tice, Colin M; Hormann, Robert E; Thompson, Christine S; Friz, Jennifer L; Cavanaugh, Caitlin K; Saggers, Jessica A

    2003-06-02

    Fifteen new alpha-acylaminoketones were prepared by four different routes in an initial effort to optimize the potency of these compounds as ecdysone agonists. The compounds were assayed in mammalian cells expressing the ecdysone receptors from Bombyx mori (BmEcR) and Choristoneura fumiferana (CfEcR) for their ability to cause expression of a reporter gene downstream of an ecdysone response element. A new alpha-acylaminoketone was identified which had activity equal to that of the standard dibenzoylhydrazine ecdysone agonist GS()-E in the assay based on CfEcR.

  1. Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonists

    SciTech Connect

    Galitzky, J.; Mauriege, P.; Berlan, M.; Lafontan, M.

    1989-05-01

    This study was undertaken to investigate more fully the pharmacological characteristics of the human fat cell alpha-2 adrenoceptor. Biological assays were performed on intact isolated fat cells while radioligand binding studies were carried out with (/sup 3/H)yohimbine in membranes. These pharmacological studies brought: (1) a critical definition of the limits of the experimental conditions required for the exploration of alpha-2 adrenergic responsiveness on human fat cells and membranes; (2) an improvement in the pharmacological definition of the human fat cell postsynaptic alpha-2 adrenoceptor. Among alpha-2 agonists, UK-14,304 was the most potent and the relative order of potency was: UK-14,304 greater than p-aminoclonidine greater than clonidine = B-HT 920 greater than rilmenidine. For alpha-2 antagonists, the potency order was: yohimbine greater than idazoxan greater than SK F-86,466 much greater than benextramine; (3) a description of the impact of benextramine (irreversible alpha-1/alpha-2 antagonist) on human fat cell alpha-2 adrenergic receptors and on human fat cell function; the drug inactivates the alpha-2 adrenergic receptors with a minor impact on beta adrenergic receptors and without noticeable alterations of fat cell function as assessed by preservation of beta adrenergic and Al-adenosine receptor-mediated lipolytic responses; and (4) a definition of the relationship existing between alpha-2 adrenergic receptor occupancy, inhibition of adenylate cyclase activity and antilipolysis with full and partial agonists. The existence of a receptor reserve must be taken into account when evaluating alpha-2 adrenergic receptor distribution and regulation of human fat cells.

  2. A Pilot Study into the Effects of the CB1 Cannabinoid Receptor Agonist WIN55,212-2 or the Antagonist/Inverse Agonist AM251 on Sleep in Rats

    PubMed Central

    Goonawardena, Anushka V.; Plano, Andrea; Robinson, Lianne; Platt, Bettina; Hampson, Robert E.; Riedel, Gernot

    2011-01-01

    The plant cannabinoid Δ9-tetrahydrocannabinol and the endocannabinoid anandamide increase the amount of sleep via a CB1 receptor mediated mechanism. Here, we explored the use of a novel electroencephalogram (EEG) recording device based on wireless EEG microchip technology (Neurologger) in freely-moving rats, and its utility in experiments of cannabinoids-induced alterations of EEG/vigilance stages. EEG was recorded through epidural electrodes placed above pre-frontal and parietal cortex (overlaying the dorsal hippocampus). As cannabinoids, we acutely administered the full synthetic CB1 receptor agonist, WIN55,212-2 (1 mg/kg), and the antagonist/inverse agonist, AM251 (2 mg/kg), either alone or together through the intraperitoneal route. WIN55,212-2 increased the total amount of NREM sleep and the length of each NREM bout, but this was unlikely due to CB1 receptor activation since it was not prevented by AM251. However, WIN55,212-2 also lowered overall EEG spectral power especially in theta and alpha frequency bands during wakefulness and NREM sleep, and this effect was reversed by AM251. The antagonist/inverse agonist caused no sleep alterations by itself and moderately increased spectral power in Theta, alpha and beta frequency bands during NREM sleep when administered on its own. Implications of endocannabinoid modulation of the sleep-wake cycle and its possible interactions with other transmitter systems are considered. PMID:23471192

  3. An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice

    PubMed Central

    Montgomery, Megan D.; Chan, Trevor; Swigart, Philip M.; Myagmar, Bat-erdene; Dash, Rajesh; Simpson, Paul C.

    2017-01-01

    Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35–40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies. PMID:28081170

  4. Regulation of TNF-alpha secretion by a specific melanocortin-1 receptor peptide agonist.

    PubMed

    Ignar, Diane M; Andrews, John L; Jansen, Marilyn; Eilert, Michelle M; Pink, Heather M; Lin, Peiyuan; Sherrill, Ronald G; Szewczyk, Jerzy R; Conway, James G

    2003-05-01

    The lack of specific pharmacological tools has impeded the evaluation of the role of each melanocortin receptor (MCR) subtype in the myriad physiological effects of melanocortins. 154N-5 is an octapeptide (MFRdWFKPV-NH(2)) that was first identified as an MC1R antagonist in Xenopus melanophores [J. Biol. Chem. 269 (1994) 29846]. In this manuscript, we show that 154N-5 is a specific agonist for human and murine MC1R. The peptide has negligible activity at MC3R and MC4R and is 25-fold less potent and a weak agonist at MC5R. 154N-5 was tested in both a cellular and an animal model of tumor necrosis factor-alpha (TNF-alpha) secretion. The inhibitory efficacy of 154N-5 on TNF-alpha secretion in both models was similar to the nonselective agonist NDP-alpha-melanocyte stimulating hormone (NDP-alphaMSH), thus, we conclude that inhibition of TNF-alpha secretion by melanocortin peptides is mediated by MC1R. 154N-5 is a valuable new tool for the evaluation of specific contribution of MC1R agonism to physiological and pathological processes.

  5. The identification of GPR3 inverse agonist AF64394; the first small molecule inhibitor of GPR3 receptor function.

    PubMed

    Jensen, Thomas; Elster, Lisbeth; Nielsen, Søren Møller; Poda, Suresh Babu; Loechel, Frosty; Volbracht, Christiane; Klewe, Ib Vestergaard; David, Laurent; Watson, Stephen P

    2014-11-15

    The identification of the novel and selective GPR3 inverse agonist AF64394, the first small molecule inhibitor of GPR3 receptor function, is described. Structure activity relationships and syntheses based around AF64394 are reported.

  6. Alpha(2) adrenoceptor agonists as potential analgesic agents. 3. Imidazolylmethylthiophenes.

    PubMed

    Boyd, R E; Press, J B; Rasmussen, C R; Raffa, R B; Codd, E E; Connelly, C D; Li, Q S; Martinez, R P; Lewis, M A; Almond, H R; Reitz, A B

    2001-03-15

    A series of imidazolylmethylthiophenes has been prepared and evaluated as ligands for the alpha(2) adrenoceptor. These compounds were tested in two animal models that are predictive of analgesic activity in humans. The 3-thienyl compounds were generally the most potent, particularly those with substitution in the 4-position. A subset of the most active compounds was further evaluated for adverse cardiovascular effects in the anesthetized rat model. In addition to excellent binding at the alpha(2D) adrenoceptor, the 4-bromo analogues 20e and 21e were very active in the rat abdominal irritant test (RAIT) with ED(50) doses of 0.38 and 0.31 mg/kg, respectively. We constructed a pharmacophore model based on the biological activity of the present series, dexmedetomidine (1), and conformationally restrained analogues 3 and 4.

  7. Characterization of a new synthetic isoflavonoid with inverse agonist activity at the central benzodiazepine receptor.

    PubMed

    Lopes, Daniele V S; Caruso, Rodrigo R B; Castro, Newton G; Costa, Paulo R R; da Silva, Alcides J M; Noël, François

    2004-07-14

    Research aimed at developing selective drugs acting on gamma-aminobutyric acid (GABA)A receptors introduced compounds from diverse chemical classes unrelated to the 1,4-benzodiazepines, including flavonoids. These studies also revealed the potential use of inverse agonists as cognition-enhancing agents. Here we report pharmacological properties of the novel synthetic isoflavonoid 2-methoxy-3,8,9-trihydroxy coumestan (PCALC36). PCALC36 displaced [3H]flunitrazepam binding to rat brain synaptosomes with an IC50 of 13.8 microM. Scatchard analysis of the effect of PCALC36 showed a concentration-dependent reduction of the Bmax of [3H]flunitrazepam, without a marked change in Kd. This effect could be reversed by diluting and washing the preparation. Addition of 20-microM GABA shifted to the right the inhibition curve of PCALC36 on [3H]flunitrazepam binding (IC50 ratio of 0.68), which is characteristic for inverse agonists. PCALC36 produced little change in the GABAergic tonic currents recorded by whole-cell patch clamp in cultured rat hippocampal neurones, but it caused a 20% reduction in miniature inhibitory postsynaptic current amplitude and completely antagonised the full (direct) agonist midazolam in a quickly reversible manner. The data suggest that the coumestan backbone can be useful for developing novel ligands at the GABAA receptor.

  8. Rat alpha6beta2delta GABAA receptors exhibit two distinct and separable agonist affinities.

    PubMed

    Hadley, Stephen H; Amin, Jahanshah

    2007-06-15

    The onset of motor learning in rats coincides with exclusive expression of GABAA receptors containing alpha6 and delta subunits in the granule neurons of the cerebellum. This development temporally correlates with the presence of a spontaneously active chloride current through alpha6-containing GABAA receptors, known as tonic inhibition. Here we report that the coexpression of alpha6, beta2, and delta subunits produced receptor-channels which possessed two distinct and separable states of agonist affinity, one exhibiting micromolar and the other nanomolar affinities for GABA. The high-affinity state was associated with a significant level of spontaneous channel activity. Increasing the level of expression or the ratio of beta2 to alpha6 and delta subunits increased the prevalence of the high-affinity state. Comparative studies of alpha6beta2delta, alpha1beta2delta, alpha6beta2gamma2, alpha1beta2gamma2 and alpha4beta2delta receptors under equivalent levels of expression demonstrated that the significant level of spontaneous channel activity is uniquely attributable to alpha6beta2delta receptors. The pharmacology of spontaneous channel activity arising from alpha6beta2delta receptor expression corresponded to that of tonic inhibition. For example, GABAA receptor antagonists, including furosemide, blocked the spontaneous current. Further, the neuroactive steroid 5alpha-THDOC and classical glycine receptor agonists beta-alanine and taurine directly activated alpha6beta2delta receptors with high potency. Specific mutation within the GABA-dependent activation domain (betaY157F) impaired both low- and high-affinity components of GABA agonist activity in alpha6betaY157Fdelta receptors, but did not attenuate the spontaneous current. In comparison, a mutation located between the second and third transmembrane segments of the delta subunit (deltaR287M) significantly diminished the nanomolar component and the spontaneous activity. The possibility that the high affinity state

  9. Binding of agonists, antagonists and inverse agonists to the human delta-opioid receptor produces distinctly different conformational states distinguishable by plasmon-waveguide resonance spectroscopy.

    PubMed

    Salamon, Z; Hruby, V J; Tollin, G; Cowell, S

    2002-12-01

    Structural changes induced by the binding of agonists, antagonists and inverse agonists to the cloned delta-opioid receptor from human brain immobilized in a solid-supported lipid bilayer were monitored using plasmon-waveguide resonance (PWR) spectroscopy. Agonist (e.g. deltorphin II) binding causes an increase in membrane thickness because of receptor elongation, a mass density increase due to an influx of lipid molecules into the bilayer, and an increase in refractive index anisotropy due to transmembrane helix and fatty acyl chain ordering. In contrast, antagonist (e.g. TIPPpsi) binding produces no measurable change in either membrane thickness or mass density, and a significantly larger increase in refractive index anisotropy, the latter thought to be due to a greater extent of helix and acyl chain ordering within the membrane interior. These results are closely similar to those reported earlier for another agonist (DPDPE) and antagonist (naltrindol) [Salamon et al. (2000) Biophys. J.79, 2463-2474]. In addition, we now find that an inverse agonist (TMT-Tic) produces membrane thickness, mass density and refractive index anisotropy increases which are similar to, but considerably smaller than, those generated by agonists. Thus, a third conformational state is produced by this ligand, different from those formed by agonists and antagonists. These results shed new light on the mechanisms of ligand-induced G-protein-coupled receptor functioning. The potential utilization of this new biophysical method to examine structural changes both parallel and perpendicular to the membrane normal for GPCRs is emphasized.

  10. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    SciTech Connect

    Rogue, Alexandra; Renaud, Marie Pierre; Claude, Nancy; Guillouzo, Andre; Spire, Catherine

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes induced by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.

  11. Nigramide J is a novel potent inverse agonist of the human constitutive androstane receptor

    PubMed Central

    Kanno, Yuichiro; Tanuma, Nobuaki; Yatsu, Tomofumi; Li, Wei; Koike, Kazuo; Inouye, Yoshio

    2014-01-01

    The constitutive androstane receptor (CAR, NR1I3) is very important for drug development and for understanding pharmacokinetic drug–drug interactions. We screened by mammalian one hybrid assay among natural compounds to discover novel ligands of human constitutive androstane receptor (hCAR). hCAR transcriptional activity was measured by luciferase assay and mRNA levels of CYP2B6 and CYP3A4 in HepTR-hCAR cells and human primary hepatocytes were measured by real-time RT-PCR. Nigramide J (NJ) whose efficacy is comparable to those of hitherto known inverse agonists such as clotrimazole, PK11195, and ethinylestradiol. NJ is a naturally occurring cyclohexane-type amide alkaloid that was isolated from the roots of Piper nigrum. The suppressive effect of NJ on the CAR-dependent transcriptional activity was found to be species specific, in the descending order of hCAR, rat CAR, and mouse CAR. The unliganded hCAR-dependent transactivation of reporter and endogenous genes was suppressed by NJ at concentrations higher than 5 μmol/L. The ligand-binding cavity of hCAR was shared by NJ and CITCO, because they were competitive in the binding to hCAR. NJ interfered with the interaction of hCAR with coactivator SRC-1, but not with its interaction with the corepressor NCoR1. Furthermore, NJ is agonist of human pregnane X receptor (hPXR). NJ is a dual ligand of hCAR and hPXR, being an agonist of hPXR and an inverse agonist of hCAR. PMID:25505573

  12. 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha.

    PubMed

    Abdelrahim, Maen; Ariazi, Eric; Kim, Kyounghyun; Khan, Shaheen; Barhoumi, Rola; Burghardt, Robert; Liu, Shengxi; Hill, Denise; Finnell, Richard; Wlodarczyk, Bogdan; Jordan, V Craig; Safe, Stephen

    2006-02-15

    3-Methylcholanthrene (3MC) is an aryl hydrocarbon receptor (AhR) agonist, and it has been reported that 3MC induces estrogenic activity through AhR-estrogen receptor alpha (ER alpha) interactions. In this study, we used 3MC and 3,3',4,4',5-pentachlorobiphenyl (PCB) as prototypical AhR ligands, and both compounds activated estrogen-responsive reporter genes/gene products (cathepsin D) in MCF-7 breast cancer cells. The estrogenic responses induced by these AhR ligands were inhibited by the antiestrogen ICI 182780 and by the transfection of a small inhibitory RNA for ER alpha but were not affected by the small inhibitory RNA for AhR. These results suggest that 3MC and PCB directly activate ER alpha, and this was confirmed in a competitive ER alpha binding assay and in a fluorescence resonance energy transfer experiment in which PCB and 3MC induced CFP-ER alpha/YFP-ER alpha interactions. In a chromatin immunoprecipitation assay, PCB and 3MC enhanced ER alpha (but not AhR) association with the estrogen-responsive region of the pS2 gene promoter. Moreover, in AhR knockout mice, 3MC increased uterine weights and induced expression of cyclin D1 mRNA levels. These results show that PCB and 3MC directly activate ER alpha-dependent transactivation and extend the number of ligands that activate both AhR and ER alpha.

  13. Positron Emission Tomography Imaging Using an Inverse Agonist Radioligand to Assess Cannabinoid CB1 Receptors in Rodents

    PubMed Central

    Terry, Garth; Liow, Jeih-San; Chernet, Eyassu; Zoghbi, Sami S.; Phebus, Lee; Felder, Christian C.; Tauscher, Johannes; Schaus, John M.; Pike, Victor W.; Halldin, Christer; Innis, Robert B.

    2008-01-01

    [11C]MePPEP is an inverse agonist and a radioligand developed to image cannabinoid CB1 receptors with positron emission tomography (PET). It provides reversible, high specific signal in monkey brain. We assessed [11C]MePPEP in rodent brain with regard to receptor selectivity, susceptibility to transport by P-glycoprotein (P-gp), sensitivity to displacement by agonists, and accumulation of radiometabolites. We used CB1 receptor knockout mice and P-gp knockout mice to assess receptor selectivity and sensitivity to efflux transport, respectively. Using serial measurements of PET brain activity and plasma concentrations of [11C]MePPEP, we estimated CB1 receptor density in rat brain as distribution volume. CB1 knockout mice showed only nonspecific brain uptake, and [11C]MePPEP was not a substrate for P-gp. Direct acting agonists anandamide (10 mg/kg), methanandamide (10 mg/kg), CP 55,940 (1 mg/kg), and indirect agonist URB597 (0.3 and 0.6 mg/kg) failed to displace [11C]MePPEP, while the inverse agonist rimonabant (3 and 10 mg/kg) displaced >65% of [11C]MePPEP. Radiometabolites represented ∼13% of total radioactivity in brain between 30 and 120 min. [11C]MePPEP was selective for the CB1 receptor, was not a substrate for P-gp, and was more potently displaced by inverse agonists than agonists. The low potency of agonists suggests either a large receptor reserve or non-overlapping binding sites for agonists and inverse agonists. Radiometabolites of [11C]MePPEP in brain caused distribution volume to be overestimated by ∼13%. PMID:18456516

  14. Genetic selection of mouse lines differing in sensitivity to a benzodiazepine receptor inverse agonist.

    PubMed

    Chapouthier, G; Launay, J M; Venault, P; Breton, C; Roubertoux, P L; Crusio, W E

    1998-03-16

    Mice were selectively bred according to their sensitivity or their resistance to the convulsive effects of a 4-mg/kg dose of methyl beta-carboline-3-carboxylate (beta-CCM), a benzodiazepine (BZ) receptor inverse agonist. The selection proved to be easy, with a clear separation of the two lines, convulsing with short latencies or resistant, already at the first generation of selection. Selection of a third line of animals convulsing with long latencies did not succeed. 3H-Ro 15-1788 binding analysis provided evidence for a strong decrease in Bmax in the resistant line. Copyright 1998 Elsevier Science B.V.

  15. Identification of potent, selective, CNS-targeted inverse agonists of the ghrelin receptor.

    PubMed

    McClure, Kim F; Jackson, Margaret; Cameron, Kimberly O; Kung, Daniel W; Perry, David A; Orr, Suvi T M; Zhang, Yingxin; Kohrt, Jeffrey; Tu, Meihua; Gao, Hua; Fernando, Dilinie; Jones, Ryan; Erasga, Noe; Wang, Guoqiang; Polivkova, Jana; Jiao, Wenhua; Swartz, Roger; Ueno, Hirokazu; Bhattacharya, Samit K; Stock, Ingrid A; Varma, Sam; Bagdasarian, Victoria; Perez, Sylvie; Kelly-Sullivan, Dawn; Wang, Ruduan; Kong, Jimmy; Cornelius, Peter; Michael, Laura; Lee, Eunsun; Janssen, Ann; Steyn, Stefanus J; Lapham, Kimberly; Goosen, Theunis

    2013-10-01

    The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Intranasal application of the alpha2-adrenoceptor agonist BHT-920 produces decongestion in the cat.

    PubMed

    Mcleod, R L; Erickson, C H; Mingo, G G; Hey, J A

    2001-01-01

    The effect of alpha2-selective adrenoreceptor activation on nasal cavity dimension in an experimental model of congestion has not been defined. Presently, we used acoustic rhinometry to evaluate the decongestant activity of BHT-920, a selective alpha2-adrenergic agonist against nasal congestion produced by intranasal compound 48/80. Administration of the mast cell liberator compound 48/80 (1%) into a nasal passageway decreased ipsilateral volume and minimum cross-sectional area by 73 +/- 4% and 42 +/- 6%, respectively. The congestant effect of compound 48/80 was blocked by topical BHT-920 (0.3 and 1%) in a dose related manner. In addition, the decrease in minimum cross-sectional area produced by compound 48/80 was attenuated after topical BHT-920 treatment. As a comparison we also evaluated the topical decongestant activity effects of the alpha1-adrenergic agonist phenylephrine, and the nonselective alpha-agonist oxymetazoline. Both phenylephrine (0.1-1.0%) and oxymetazoline (0.01-0.3%) produced decongestion. The blood pressure effects of these three drugs also were evaluated. At doses of 0.3 and 1.0%, BHT-920 did not produce hypertension. In contrast, oxymetaZoline (0.01-0.1%) produced a transient hypertension that peaked at 15 minutes and fully recovered 45 minutes after administration. The hypertensive effect of phenylephrine at 0.3 and 1.0% lasted over 60 minutes. The present findings indicate that selective alpha2-agonists may produce decongestant activity with an improved cardiovascular profile compared with current sympathomimetic drugs such as phenylephrine.

  17. The characterization of a novel rigid nicotine analog with alpha7-selective nAChR agonist activity and modulation of agonist properties by boron inclusion.

    PubMed

    Papke, Roger L; Zheng, Guangrong; Horenstein, Nicole A; Dwoskin, Linda P; Crooks, Peter A

    2005-09-01

    The alpha7 nAChR subtype is of particular interest as a potential therapeutic target since it has been implicated as a mediator of both cognitive and neuroprotective activity. The rigid nicotine analog ACME and the N-cyanoborane conjugate ACME-B are selective partial agonists of rat alpha7 receptors expressed in Xenopus oocytes, with no significant activation of either alpha3beta4 or alpha4beta2 receptors. ACME-B is both more potent and efficacious than ACME. The efficacies of ACME-B and ACME are approximately 26% and 10% of the efficacy of ACh, respectively. Similar N-conjugation of S(-)nicotine with cyanoborane decreased efficacy for alpha3beta4 and alpha4beta2 receptors, as well as for alpha7 nAChR. Structural comparison of ACME with the benzylidene anabaseines, another class of previously identified alpha7-selective agonists, suggests that they share a similar structural motif that may be applicable to other alpha7-selective agonists.

  18. Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Prather, Paul L.

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting

  19. Identification of the antiarrhythmic drugs amiodarone and lorcainide as potent H3 histamine receptor inverse agonists.

    PubMed

    Del Tredici, Andria L; Ma, Jian-Nong; Piu, Fabrice; Burstein, Ethan S

    2014-01-01

    Use of molecular pharmacology to reprofile older drugs discovered before the advent of recombinant technologies is a fruitful method to elucidate mechanisms of drug action, expand understanding of structure-activity relationships between drugs and receptors, and in some cases, repurpose approved drugs. The H3 histamine receptor is a G-protein-coupled receptor (GPCR) primarily expressed in the central nervous system where among many things it modulates cognitive processes, nociception, feeding and drinking behavior, and sleep/wakefulness. In binding assays and functional screens of the H3 histamine receptor, the antiarrhythmic drugs lorcainide and amiodarone were identified as potent, selective antagonists/inverse agonists of human and rat H3 histamine receptors, with relatively little or no activity at over 20 other monoamine GPCRs, including H1, H2, and H4 receptors. Potent antagonism of H3 receptors was unique to amiodarone and lorcainide of 20 antiarrhythmic drugs tested, representing six pharmacological classes. These results expand the pharmacophore of H3 histamine receptor antagonist/inverse agonists and may explain, in part, the effects of lorcainide on sleep in humans.

  20. The LXR inverse agonist SR9238 suppresses fibrosis in a model of non-alcoholic steatohepatitis.

    PubMed

    Griffett, Kristine; Welch, Ryan D; Flaveny, Colin A; Kolar, Grant R; Neuschwander-Tetri, Brent A; Burris, Thomas P

    2015-04-01

    Non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, inflammation and fibrosis. There are currently no targeted therapies for NASH. We developed a liver-specific LXR inverse agonist, SR9238, which effectively reduces hepatic lipogenesis in models of obesity and hepatic steatosis. We hypothesized that suppression of lipogenesis, which is pathologically elevated in NASH may suppress progression of hepatic steatosis to NASH. NASH was induced in B6 V-lep (ob)/J (ob/ob) mice using a custom complete rodent diet (HTF) containing high amounts of trans-fat, fructose, and cholesterol. Once NASH was induced, mice were treated with SR9238 for one month by i.p. injection. Plasma lipid levels and liver health were analyzed by clinical chemistry. QPCR, western blot, and immunohistochemistry were used to assess disease severity. Ob/ob mice are obese and diabetic thus they are commonly used as models for the study of metabolic diseases. These mice quickly developed the NASH phenotype when provided the HTF diet. The mice develop hepatic steatosis, severe hepatic inflammation and fibrosis on the HTF diet. Treatment with SR9238 significantly reduced the severity of hepatic steatosis and most importantly reduced hepatic inflammation and ameliorated hepatic fibrosis. Here, we demonstrate that an LXR inverse agonist, SR9238, is effective in reduction of hepatic steatosis, inflammation and fibrosis in an animal model of NASH. These results have important implications for the development of therapeutics for treatment NASH in humans.

  1. [N-allyl-Dmt1]-endomorphins are micro-opioid receptor antagonists lacking inverse agonist properties.

    PubMed

    Marczak, Ewa D; Jinsmaa, Yunden; Li, Tingyou; Bryant, Sharon D; Tsuda, Yuko; Okada, Yoshio; Lazarus, Lawrence H

    2007-10-01

    [N-allyl-Dmt1]-endomorphin-1 and -2 ([N-allyl-Dmt1]-EM-1 and -2) are new selective micro-opioid receptor antagonists obtained by N-alkylation with an allyl group on the amino terminus of 2',6'-dimethyl-L-tyrosine (Dmt) derivatives. To further characterize properties of these compounds, their intrinsic activities were assessed by functional guanosine 5'-O-(3-[35S]thiotriphosphate) binding assays and forskolin-stimulated cyclic AMP accumulation in cell membranes obtained from vehicle, morphine, and ethanol-treated SK-N-SH cells and brain membranes isolated from naive and morphine-dependent mice; their mode of action was compared with naloxone or naltrexone, which both are standard nonspecific opioid-receptor antagonists. [N-allyl-Dmt1]-EM-1 and -2 were neutral antagonists under all of the experimental conditions examined, in contrast to naloxone and naltrexone, which behave as neutral antagonists only in membranes from vehicle-treated cells and mice but act as inverse agonists in membranes from morphine- and ethanol-treated cells as well as morphine-treated mice. Both endomorphin analogs inhibited the naloxone- and naltrexone-elicited withdrawal syndromes from acute morphine dependence in mice. This suggests their potential therapeutic application in the treatment of drug addiction and alcohol abuse without the adverse effects observed with inverse agonist alkaloid-derived compounds that produce severe withdrawal symptoms.

  2. Regulation of noradrenaline release from rat occipital cortex tissue chops by alpha 2-adrenergic agonists.

    PubMed

    Ong, M L; Ball, S G; Vaughan, P F

    1991-04-01

    Noradrenaline (NA) and the alpha 2-adrenergic agonists clonidine, BHT-920, and UK 14304-18 inhibit potassium-evoked release of [3H]NA from rat occipital cortex tissue chops with similar potencies. NA (10(-5) M) was most effective as up to 85% inhibition could be observed compared with 75%, 55%, and 35% for UK 14304-18, clonidine, and BHT-920, respectively, all at 10(-5) M. Potassium-evoked release was enhanced by both forskolin (10(-5) M) and 1 mM dibutyryl cyclic AMP. Pretreatment of tissue chops with 1 mM dibutyryl cyclic AMP in the presence of 3-isobutyl-1-methylxanthine partially reversed the alpha 2-adrenergic agonist inhibition of NA release. No reversal of inhibition was observed following pretreatment with 10(-5) M forskolin. The effects of clonidine, BHT-920, UK-14308-18, and NA on cyclic AMP formation stimulated by (a) forskolin, (b) isoprenaline, (c) adenosine, (d) potassium, and (e) NA were examined. Only cAMP formation stimulated by NA was inhibited by these alpha 2-adrenergic agonists. These results suggest that only a small fraction of adenylate cyclase in rat occipital cortex is coupled to alpha 2-adrenergic receptors. These results are discussed in relation to recent findings that several alpha 2-adrenergic receptor subtypes occur, not all of which are coupled to the inhibition of adenylate cyclase, and that alpha 2-adrenergic receptors inhibit NA release in rat occipital cortex by a mechanism that does not involve decreasing cyclic AMP levels.

  3. Alpha 1-adrenergic agonists selectively suppress voltage-dependent K+ current in rat ventricular myocytes.

    PubMed Central

    Apkon, M; Nerbonne, J M

    1988-01-01

    The effects of alpha 1-adrenergic agonists on the waveforms of action potentials and voltage-gated ionic currents were examined in isolated adult rat ventricular myocytes by the whole-cell patch-clamp recording technique. After "puffer" applications of either of two alpha 1 agonists, phenylephrine and methoxamine, action-potential durations were increased. In voltage-clamped cells, phenylephrine (5-20 microM) or methoxamine (5-10 microM) reduced the amplitudes of Ca2+-independent voltage-activated outward K+ currents (Iout); neither the kinetics nor the voltage-dependent properties of Iout were significantly affected. The effects of phenylephrine or methoxamine on Iout were larger and longer-lasting at higher concentrations and after prolonged or repeated exposures; in all experiments, however, Iout recovered completely when puffer applications were discontinued. The suppression of Iout is attributed to the activation of alpha 1-adrenergic receptors, as neither beta- nor alpha 2-adrenergic agonists had measurable effects on Iout; in addition, the effect of phenylephrine was attenuated in the presence of the alpha antagonist phentolamine (10 microM), but not in the presence of the beta antagonist propranolol (10 microM). Voltage-gated Ca2+ currents, in contrast, were not altered measurably by phenylephrine or methoxamine and no currents were activated directly by these agents. Suppression of Iout was also observed during puffer applications of either of two protein kinase C activators, phorbol 12-myristate 13-acetate (10 nM-1 microM) and 1-oleoyl-2-acetylglycerol (60 microM). We conclude that the activation of alpha 1-adrenergic receptors in adult rat ventricular myocytes leads to action-potential prolongation as a result of the specific suppression of Iout and that this effect may be mediated by activation of protein kinase C. PMID:2903506

  4. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder

    PubMed Central

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD. PMID:26322115

  5. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder.

    PubMed

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD.

  6. Identification of a Novel Non-retinoid Pan Inverse Agonist of the Retinoic Acid Receptors

    PubMed Central

    Busby, Scott A.; Kumar, Naresh; Kuruvilla, Dana S.; Istrate, Monica A.; Conkright, Juliana J.; Wang, Yongjun; Kamenecka, Theodore M.; Cameron, Michael D.; Roush, William R.; Burris, Thomas P.; Griffin, Patrick R.

    2011-01-01

    Retinoids are potent forms of vitamin A and are involved in a broad range of physiological processes and the pharmacological effects of retinoids are primarily mediated by the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Several natural and synthetic RAR modulators have proven to be clinically useful for a number of therapeutic indications including cancer, psoriasis, and diabetes. Unfortunately, these agents lead to a number of significant side effects. Most synthetic retinoid ligands are based on the retinoid scaffold and thus have similarities to the natural ligand with all previously disclosed RAR ligands having a carboxylic acid that makes a critical ionic bridge within the ligand binding domain of the receptors. The potential therapeutic value offered from RAR modulation provides the impetus to identify novel ligands based on unique scaffolds that may offer improved toxicity and pharmacokinetic profiles. Here we describe the identification of an atypical RAR inverse agonist that represents the first non-acid, non-retinoid direct modulator of RAR receptor subfamily. SR-0065 functions as a pan-RAR inverse agonist suppressing the basal activity of RARα, RARβ, and RARγ as well as inhibiting agonist induced RAR activity. SR-0065 treatment enhanced receptor interaction with a peptide representative of the corepressor SMRT and in cells SR-0065 enhances recruitment of SMRT to RARγ. The acid form of SR-0065, SR-1758, was inactive in all assays. Thus, SR-0065 represents a new class of non-acid, non-retinoid RAR modulator that may be used as a point to initiate development of improved RAR-targeted drugs. PMID:21381756

  7. Nelotanserin, a novel selective human 5-hydroxytryptamine2A inverse agonist for the treatment of insomnia.

    PubMed

    Al-Shamma, Hussien A; Anderson, Christen; Chuang, Emil; Luthringer, Remy; Grottick, Andrew J; Hauser, Erin; Morgan, Michael; Shanahan, William; Teegarden, Bradley R; Thomsen, William J; Behan, Dominic

    2010-01-01

    5-Hydroxytryptamine (5-HT)(2A) receptor inverse agonists are promising therapeutic agents for the treatment of sleep maintenance insomnias. Among these agents is nelotanserin, a potent, selective 5-HT(2A) inverse agonist. Both radioligand binding and functional inositol phosphate accumulation assays suggest that nelotanserin has low nanomolar potency on the 5-HT(2A) receptor with at least 30- and 5000-fold selectivity compared with 5-HT(2C) and 5-HT(2B) receptors, respectively. Nelotanserin dosed orally prevented (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 5-HT(2A) agonist)-induced hypolocomotion, increased sleep consolidation, and increased total nonrapid eye movement sleep time and deep sleep, the latter marked by increases in electroencephalogram (EEG) delta power. These effects on rat sleep were maintained after repeated subchronic dosing. In healthy human volunteers, nelotanserin was rapidly absorbed after oral administration and achieved maximum concentrations 1 h later. EEG effects occurred within 2 to 4 h after dosing, and were consistent with vigilance-lowering. A dose response of nelotanserin was assessed in a postnap insomnia model in healthy subjects. All doses (up to 40 mg) of nelotanserin significantly improved measures of sleep consolidation, including decreases in the number of stage shifts, number of awakenings after sleep onset, microarousal index, and number of sleep bouts, concomitant with increases in sleep bout duration. Nelotanserin did not affect total sleep time, or sleep onset latency. Furthermore, subjective pharmacodynamic effects observed the morning after dosing were minimal and had no functional consequences on psychomotor skills or memory. These studies point to an efficacy and safety profile for nelotanserin that might be ideally suited for the treatment of sleep maintenance insomnias.

  8. Pharmacological Profiles of Alpha 2 Adrenergic Receptor Agonists Identified Using Genetically Altered Mice and Isobolographic Analysis

    PubMed Central

    Fairbanks, Carolyn A.; Stone, Laura S.; Wilcox, George L.

    2009-01-01

    Endogenous, descending noradrenergic fibers convey powerful analgesic control over spinal afferent circuitry mediating the rostrad transmission of pain signals. These fibers target alpha 2 adrenergic receptors (α2ARs) on both primary afferent terminals and secondary neurons, and their activation mediates substantial inhibitory control over this transmission, rivaling that of opioid receptors which share similar a similar pattern of distribution. The terminals of primary afferent nociceptive neurons and secondary spinal dorsal horn neurons express α2AAR and α2CAR subtypes, respectively. Spinal delivery of these agents serves to reduce their side effects, which are mediated largely at supraspinal sites, by concentrating the drugs at the spinal level. Targeting these spinal α2ARs with one of five selective therapeutic agonists, clonidine, dexmedetomidine, brimonidine, ST91 and moxonidine, produces significant antinociception that can work in concert with opioid agonists to yield synergistic antinociception. Application of several genetically altered mouse lines had facilitated identification of the primary receptor subtypes that likely mediate the antinociceptive effects of these agents. This review provides first an anatomical description of the localization of the three subtypes in the central nervous system, second a detailed account of the pharmacological history of each of these six primary agonists, and finally a comprehensive report of the specific interactions of other GPCR agonists with each of the six principal α2AR agonists featured. PMID:19393691

  9. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    SciTech Connect

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao; Han, Xiang Hua; Lee, Dong-Ho; Lee, Hak-Ju; Hwang, Bang Yeon; Lee, Sung-Joon

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  10. 1-Benzhydryl-3-phenylurea and 1-benzhydryl-3-phenylthiourea derivatives: new templates among the CB1 cannabinoid receptor inverse agonists.

    PubMed

    Muccioli, Giulio G; Wouters, Johan; Scriba, Gerhard K E; Poppitz, Wolfgang; Poupaert, Jacques H; Lambert, Didier M

    2005-11-17

    New 1-benzhydryl-3-phenylurea derivatives and their 1-benzhydryl-3-phenylthiourea isosteres were synthesized and evaluated for their human CB1 and CB2 cannabinoid receptor affinity. These compounds proved to be selective CB1 cannabinoid receptor ligands, acting as inverse agonists in a [35S]-GTPgammaS assay. The affinity of 3,5,5'-triphenylimidazolidine-2,4-dione and 3,5,5'-triphenyl-2-thioxoimidazolidin-4-one derivatives, possessing the 1-benzhydryl-3-phenylurea and 1-benzhydryl-3-phenylthiourea moiety, respectively, was also evaluated. In conclusion, the 1-benzhydryl-3-phenylurea scaffold seems to be a new interesting template of CB1 cannabinoid receptor inverse agonists.

  11. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  12. Agouti signalling protein is an inverse agonist to the wildtype and agonist to the melanic variant of the melanocortin-1 receptor in the grey squirrel (Sciurus carolinensis).

    PubMed

    McRobie, Helen R; King, Linda M; Fanutti, Cristina; Symmons, Martyn F; Coussons, Peter J

    2014-06-27

    The melanocortin-1 receptor (MC1R) is a key regulator of mammalian pigmentation. Melanism in the grey squirrel is associated with an eight amino acid deletion in the mutant melanocortin-1 receptor with 24 base pair deletion (MC1RΔ24) variant. We demonstrate that the MC1RΔ24 exhibits a higher basal activity than the wildtype MC1R (MC1R-wt). We demonstrate that agouti signalling protein (ASIP) is an inverse agonist to the MC1R-wt but is an agonist to the MC1RΔ24. We conclude that the deletion in the MC1RΔ24 leads to a receptor with a high basal activity which is further activated by ASIP. This is the first report of ASIP acting as an agonist to MC1R. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. In vivo pharmacological profile of S 38093, a novel histamine H3 receptor inverse agonist.

    PubMed

    Panayi, Fany; Sors, Aurore; Bert, Lionel; Martin, Brigitte; Rollin-Jego, Gaelle; Billiras, Rodolphe; Carrié, Isabelle; Albinet, Karine; Danober, Laurence; Rogez, Nathalie; Thomas, Jean-Yves; Pira, Luigi; Bertaina-Anglade, Valérie; Lestage, Pierre

    2017-03-14

    S 38093, a novel histamine H3 receptor inverse agonist, was tested in a series of neurochemical and behavioral paradigms designed to evaluate its procognitive and arousal properties. In intracerebral microdialysis studies performed in rats, S 38093 dose-dependently increased histamine extracellular levels in the prefrontal cortex and facilitated cholinergic transmission in the prefrontal cortex and hippocampus of rats after acute and chronic administration (10mg/kg i.p.). Acute oral administration of S 38093 at 0.1mg/kg significantly improved spatial working memory in rats in the Morris water maze test. The compound also displayed cognition enhancing properties in the two-trial object recognition task in rats, in a natural forgetting paradigm at 0.3 and 1mg/kg p.o. and in a scopolamine-induced memory deficit situation at 3mg/kg p.o. The property of S 38093 to promote episodic memory was confirmed in a social recognition test in rats at 0.3 and 1mg/kg i.p. Arousal properties of S 38093 were assessed in freely moving rats by using electroencephalographic recordings: at 3 and 10mg/kg i.p., S 38093 significantly reduced slow wave sleep delta power and induced at the highest dose a delay in sleep latency. S 38093 at 10mg/kg p.o. also decreased the barbital-induced sleeping time in rats. Taken together these data indicate that S 38093, a novel H3 inverse agonist, displays cognition enhancing at low doses and arousal properties at higher doses in rodents.

  14. Potent and selective agonists of alpha-melanotropin (alphaMSH) action at human melanocortin receptor 5; linear analogs of alpha-melanotropin.

    PubMed

    Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana

    2007-05-01

    Alpha-melanotropin, Ac-Ser(1)-Tyr-Ser-Met-Glu-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2)(1), is a non-selective endogenous agonist for the melanocortin receptor 5; the receptor present in various peripheral tissues and in the brain, cortex and cerebellum. Most of the synthetic analogs of alphaMSH, including a broadly used and more potent the NDP-alphaMSH peptide, Ac-Ser(1)-Tyr-Ser-Nle(4)-Glu-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2), are also not particularly selective for MC5R. To elucidate physiological functions of the melanocortin receptor 5 in rodents and humans, the receptor subtype selective research tools are needed. We report herein syntheses and pharmacological evaluation in vitro of several analogs of NDP-alphaMSH which are highly potent and specific agonists for the human MC5R. The new linear peptides, of structures and solubility properties similar to those of the endogenous ligand alphaMSH, are exemplified by compound 7, Ac-Ser(1)-Tyr-Ser-Met-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2) (Oic: octahydroindole-2-COOH, 4,4'-Bip: 4,4'-biphenylalanine, Pip: pipecolic acid), shortly NODBP-alphaMSH, which has an IC(50)=0.74 nM (binding assay) and EC(50)=0.41 (cAMP production assay) at hMC5R nM and greater than 3500-fold selectivity with respect to the melanocortin receptors 1b, 3 and 4. A shorter peptide derived from NODBP-alphaMSH: Ac-Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9) -NH(2) (17) was measured to be an agonist only 10-fold less potent at hMC5R than the full length parent peptide. In the structure of this smaller analog, the Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8) segment was found to be critical for high agonist potency, while the C-terminal Trp(9) residue was shown to be required for high hMC5R selectivity versus hMC1b,3,4R.

  15. Selective alpha7 nicotinic acetylcholine receptor agonists worsen disease in experimental colitis.

    PubMed

    Snoek, Susanne A; Verstege, Marleen I; van der Zanden, Esmerij P; Deeks, Nigel; Bulmer, David C; Skynner, Michael; Lee, Kevin; Te Velde, Anje A; Boeckxstaens, Guy E; de Jonge, Wouter J

    2010-05-01

    In various models vagus nerve activation has been shown to ameliorate intestinal inflammation, via nicotinic acetylcholine receptors (nAChRs) expressed on immune cells. As the alpha7 nAChR has been put forward to mediate this effect, we studied the effect of nicotine and two selective alpha7 nAChR agonists (AR-R17779, (-)-spiro[1-azabicyclo[2.2.2] octane-3,5'-oxazolidin-2'-one and GSK1345038A) on disease severity in two mouse models of experimental colitis. Colitis was induced by administration of 1.5% dextran sodium sulphate (DSS) in drinking water or 2 mg 2,4,6-trinitrobenzene sulphonic acid (TNBS) intrarectally. Nicotine (0.25 and 2.50 micromol.kg(-1)), AR-R17779 (0.6-30 micromol.kg(-1)) or GSK1345038A (6-120 micromol.kg(-1)) was administered daily by i.p. injection. After 7 (DSS) or 5 (TNBS) days clinical parameters and colonic inflammation were scored. Nicotine and both alpha7 nAChR agonists reduced the activation of NF-kappaB and pro-inflammatory cytokines in whole blood and macrophage cultures. In DSS colitis, nicotine treatment reduced colonic cytokine production, but failed to reduce disease parameters. Reciprocally, treatment with AR-R17779 or GSK1345038A worsened disease and led to increased colonic pro-inflammatory cytokine levels in DSS colitis. The highest doses of GSK1345038A (120 micromol.kg(-1)) and AR-R17779 (30 micromol.kg(-1)) ameliorated clinical parameters, without affecting colonic inflammation. Neither agonist ameliorated TNBS-induced colitis. Although nicotine reduced cytokine responses in vitro, both selective alpha7 nAChR agonists worsened the effects of DSS-induced colitis or were ineffective in those of TNBS-induced colitis. Our data indicate the need for caution in evaluating alpha7 nAChR as a drug target in colitis.

  16. Pharmacology of the beta-carboline FG-7,142, a partial inverse agonist at the benzodiazepine allosteric site of the GABA A receptor: neurochemical, neurophysiological, and behavioral effects.

    PubMed

    Evans, Andrew K; Lowry, Christopher A

    2007-01-01

    Given the well-established role of benzodiazepines in treating anxiety disorders, beta-carbolines, spanning a spectrum from full agonists to full inverse agonists at the benzodiazepine allosteric site for the GABA(A) receptor, can provide valuable insight into the neural mechanisms underlying anxiety-related physiology and behavior. FG-7,142 is a partial inverse agonist at the benzodiazepine allosteric site with its highest affinity for the alpha1 subunit-containing GABA(A) receptor, although it is not selective. FG-7,142 also has its highest efficacy for modulation of GABA-induced chloride flux mediated at the alpha1 subunit-containing GABA(A) receptor. FG-7,142 activates a recognized anxiety-related neural network and interacts with serotonergic, dopaminergic, cholinergic, and noradrenergic modulatory systems within that network. FG-7,142 has been shown to induce anxiety-related behavioral and physiological responses in a variety of experimental paradigms across numerous mammalian and non-mammalian species, including humans. FG-7,142 has proconflict actions across anxiety-related behavioral paradigms, modulates attentional processes, and increases cardioacceleratory sympathetic reactivity and neuroendocrine reactivity. Both acute and chronic FG-7,142 treatment are proconvulsive, upregulate cortical adrenoreceptors, decrease subsequent actions of GABA and beta-carboline agonists, and increase the effectiveness of subsequent GABA(A) receptor antagonists and beta-carboline inverse agonists. FG-7,142, as a partial inverse agonist, can help to elucidate individual components of full agonism of benzodiazepine binding sites and may serve to identify the specific GABA(A) receptor subtypes involved in specific behavioral and physiological responses.

  17. Discovery and structural optimization of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-ones as RORc inverse agonists

    PubMed Central

    Wu, Xi-shan; Wang, Rui; Xing, Yan-li; Xue, Xiao-qian; Zhang, Yan; Lu, Yong-zhi; Song, Yu; Luo, Xiao-yu; Wu, Chun; Zhou, Yu-lai; Jiang, Jian-qin; Xu, Yong

    2016-01-01

    Aim: Retinoic acid receptor-related orphan nuclear receptors (RORs) are orphan nuclear receptors that show constitutive activity in the absence of ligands. Among 3 subtypes of RORs, RORc is a promising therapeutic target for the treatment of Th17-mediated autoimmune diseases. Here, we report novel RORc inverse agonists discovered through structure-based drug design. Methods: Based on the structure of compound 8, a previously described agonist of RORa, a series of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives were designed and synthesized. The interaction between the compounds and RORc was detected at molecular level using AlphaScreen assay. The compounds were further examined in 293T cells transfected with RORc and luciferase reporter gene. Thermal stability shift assay was used to evaluate the effects of the compounds on protein stability. Results: A total of 27 derivatives were designed and synthesized. Among them, the compound 22b was identified as the most potent RORc inverse agonist. Its IC50 values were 2.39 μmol/L in AlphaScreen assay, and 0.82 μmol/L in inhibition of the cell-based luciferase reporter activity. Furthermore, the compound 22b displayed a 120-fold selectivity for RORc over other nuclear receptors. Moreover, a molecular docking study showed that the structure-activity relationship was consistent with the binding mode of compound 22b in RORc. Conclusion: 4-(4-(Benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives are promising candidates for the treatment of Th17-mediated autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis. PMID:27374490

  18. Agonist pharmacology of neonatal and adult glycine receptor alpha subunits: identification of amino acid residues involved in taurine activation.

    PubMed Central

    Schmieden, V; Kuhse, J; Betz, H

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a pentameric chloride channel protein which mediates postsynaptic inhibition in the mammalian central nervous system. In spinal cord, different GlyR isoforms originate from the sequential expression of developmentally regulated variants of the ligand binding alpha subunit. Here, neonatal alpha 2 and adult alpha 1 subunits are shown to generate GlyRs with distinct agonist activation profiles upon heterologous expression in Xenopus oocytes. Whereas alpha 1 receptors are efficiently gated by beta-alanine and taurine, alpha 2 GlyRs show only a low relative response to these agonists, which also display a reduced sensitivity to inhibition by the glycinergic antagonist strychnine. Construction of an alpha 2/alpha 1 subunit chimera and site-directed mutagenesis of the extracellular region of the alpha 1 sequence identified amino acid positions 111 and 212 as important determinants of taurine activation. Our results indicate the existence of distinct subsites for agonists on alpha 1 and alpha 2 GlyRs and suggest that the ligand binding pocket of these receptor proteins is formed from discontinuous domains of their extracellular region. Images PMID:1376243

  19. Unintentional pediatric exposures to central alpha-2 agonists reported to the National Poison Data System.

    PubMed

    Wang, George Sam; Le Lait, Marie-Claire; Heard, Kennon

    2014-01-01

    To investigate national trends in unintentional pediatric exposures to 3 common alpha-2 agonists: clonidine, guanfacine, and tizanidine. Secondary objectives were to describe outcomes, symptoms, treatments, and death. Retrospective chart review from the American Association of Poison Control Centers National Poison Data System from January 2000 to December 2011 for unintentional exposure to clonidine, guanfacine, and tizanidine in children ≤ 12 years of age. From 2000-2011, there was a significant increase (5.9% per year, CI 3.6, 8.2) in unintentional pediatric exposures to National Poison Data System for central alpha-2 agonists. There were 27,825 clonidine exposures (67.3% male, median age: 4 years), 6143 guanfacine exposures (69.8% male, median age: 6 years), and 856 tizanidine exposures (51.9% male, median age: 2 years). Guanfacine had the greatest proportional increase among the medications. Clonidine was associated with the most respiratory (799, 2.9%) and central nervous system symptoms (12,612, 45.3%), as well as the most episodes of bradycardia (2847, 10.2%) and hypotension (2365, 8.5%). Seven-hundred twenty-eight (2.0%) patients were intubated, and 141 patients (0.5%) were administered vasopressors. There were 7 cardiac arrests and 3 deaths from clonidine. The number of unintentional pediatric exposures to alpha-2 agonists increased from 2000-2011. Clonidine exposures were the most commonly reported, more symptomatic, and associated with 3 deaths. Despite central nervous system depression, bradycardia, and hypotension being common, the need for intubation and vasopressors was rare. Copyright © 2014 Mosby, Inc. All rights reserved.

  20. Synthesis and evaluation of novel [alpha]-heteroaryl-phenylpropanoic acid derivatives as PPAR[alpha/gamma] dual agonists

    SciTech Connect

    Casimiro-Garcia, Agustin; Bigge, Christopher F.; Davis, Jo Ann; Padalino, Teresa; Pulaski, James; Ohren, Jeffrey F.; McConnell, Patrick; Kane, Christopher D.; Royer, Lori J.; Stevens, Kimberly A.; Auerbach, Bruce; Collard, Wendy; McGregor, Christine; Song, Kun; Pfizer

    2010-09-27

    The synthesis of a new series of phenylpropanoic acid derivatives incorporating an heteroaryl group at the {alpha}-position and their evaluation for binding and activation of PPAR{alpha} and PPAR{gamma} are presented in this report. Among the new compounds, (S)-3-{l_brace}4-[3-(5-methyl-2-phenyl-oxazol-4-yl)-propyl]-phenyl{r_brace}-2-1,2,3-triazol-2-yl-propionic acid (17j), was identified as a potent human PPAR{alpha}/{gamma} dual agonist (EC{sub 50} = 0.013 and 0.061 {micro}M, respectively) with demonstrated oral bioavailability in rat and dog. 17j was shown to decrease insulin levels, plasma glucose, and triglycerides in the ZDF female rat model. In the human apolipoprotein A-1/CETP transgenic mouse model 17j produced increases in hApoA1 and HDL-C and decreases in plasma triglycerides. The increased potency for binding and activation of both PPAR subtypes observed with 17j when compared to previous analogs in this series was explained based on results derived from crystallographic and modeling studies.

  1. Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors.

    PubMed

    Hall, D A; Strange, P G

    1997-06-01

    1. The effects of a number of D2-like dopamine receptor antagonists have been determined on forskolin-stimulated cyclic AMP accumulation in Chinese hamster ovary (CHO) cells expressing the human D2short dopamine receptor (CHO-D2S cells). 2. Dopamine inhibited the effect of forskolin (as expected for a D2 receptor). However, all of the antagonists tested, apart from UH232 and (-)-butaclamol, were able to increase cyclic AMP accumulation above the forskolin control level. (+)-Butaclamol elicited a similar stimulation of forskolin-stimulated cyclic AMP accumulation in a CHO cell line expressing human D2long dopamine receptors whereas it exhibited no stimulating effect on forskolin-stimulated cyclic AMP accumulation in untransfected CHO-K1 cells. 3. There was a strong correlation between the EC50 values of these compounds for potentiation of cyclic AMP accumulation and their Ki values from radioligand binding experiments in CHO-D2S cells. 4. The effects of both (+)-butaclamol and dopamine in CHO-D2S cells were inhibited by pre-treatment with pertussis toxin indicating a role for Gi/Go proteins. 5. UH232 did not significantly affect forskolin-stimulated cyclic AMP accumulation but this substance was able to inhibit the effects of both dopamine and (+)-butaclamol in a concentration-dependent manner. Thus the effects of (+)-butaclamol on forskolin-stimulated cyclic AMP accumulation are mediated directly via the D2 receptor rather than by reversal of the effects of an endogenous agonist. 6. These data suggest that the D2 dopamine receptor antagonists tested here, many of which are used clinically as antipsychotic drugs, are in fact inverse agonists at human D2 dopamine receptors.

  2. Inverse agonist activity of pirenzepine at M2 muscarinic acetylcholine receptors.

    PubMed

    Daeffler, L; Schmidlin, F; Gies, J P; Landry, Y

    1999-03-01

    1. The intrinsic properties of muscarinic ligands were studied through their binding properties and their abilities to modulate the GTPase activity of G proteins coupled to muscarinic M2 receptors in pig atrial sarcolemma. 2. Competition binding experiments were performed with [3H]-oxotremorine-M to assess the affinity of receptors coupled to G proteins (R*), with [3H]-N-methylscopolamine ([3H]-NMS) to estimate the affinities of coupled and uncoupled receptors (R*+R) and with [3H]-NMS in the presence of GppNHp to assess the affinity of uncoupled receptors (R). 3. The ranking of Ki values for the agonist carbachol was R*R*+R>R (174, 155, 115 nM), suggesting inverse agonism. 4. The Vmax of the basal high affinity GTPase activity of pig atrial sarcolemma was increased by mastoparan and decreased by GPAnt-2 indicating the relevance of this activity to G proteins coupled to receptors (R*). The K(M) value (0.26-0.33 microM) was not modified by mastoparan or GPAnt-2. 5. Carbachol increased the Vmax of GTP hydrolysis (EC50 8.1+/-0.3 microM), whereas atropine and AF-DX 116, up to 1 mM, did not modify it. Pirenzepine decreased the Vmax of GTP hydrolysis (EC50 77.5+/-10.3 microM). This effect was enhanced when KCI was substituted for NaCl (EC50 11.0+/-0.8 microM) and was antagonized by atropine and AF-DX 116 (IC50 0.91+/-0.71 and 197+/-85 nM). 6. Pirenzepine is proposed as an inverse agonist and atropine and AF-DX 116 as neutral antagonists at the muscarinic M2 receptor.

  3. Inverse agonist activity of pirenzepine at M2 muscarinic acetylcholine receptors

    PubMed Central

    Daeffler, Laurent; Schmidlin, Fabien; Gies, Jean-Pierre; Landry, Yves

    1999-01-01

    The intrinsic properties of muscarinic ligands were studied through their binding properties and their abilities to modulate the GTPase activity of G proteins coupled to muscarinic M2 receptors in pig atrial sarcolemma. Competition binding experiments were performed with [3H]-oxotremorine-M to assess the affinity of receptors coupled to G proteins (R*), with [3H]-N-methylscopolamine ([3H]-NMS) to estimate the affinities of coupled and uncoupled receptors (R*+R) and with [3H]-NMS in the presence of GppNHp to assess the affinity of uncoupled receptors (R). The ranking of Ki values for the agonist carbachol was R*<R*+R>R (174, 155, 115 nM), suggesting inverse agonism. The Vmax of the basal high affinity GTPase activity of pig atrial sarcolemma was increased by mastoparan and decreased by GPAnt-2 indicating the relevance of this activity to G proteins coupled to receptors (R*). The KM value (0.26–0.33 μM) was not modified by mastoparan or GPAnt-2. Carbachol increased the Vmax of GTP hydrolysis (EC50 8.1±0.3 μM), whereas atropine and AF-DX 116, up to 1 mM, did not modify it. Pirenzepine decreased the Vmax of GTP hydrolysis (EC50 77.5±10.3 μM). This effect was enhanced when KCl was substituted for NaCl (EC50 11.0±0.8 μM) and was antagonized by atropine and AF-DX 116 (IC50 0.91±0.71 and 197±85 nM). Pirenzepine is proposed as an inverse agonist and atropine and AF-DX 116 as neutral antagonists at the muscarinic M2 receptor. PMID:10205015

  4. Targeting alpha-7 nicotinic neurotransmission in schizophrenia: A novel agonist strategy

    PubMed Central

    Deutsch, Stephen I.; Schwartz, Barbara L.; Schooler, Nina R.; Brown, Clayton H.; Rosse, Richard B.; Rosse, Stephanie M.

    2013-01-01

    Alpha7 nicotinic acetylcholine receptor (α7 nAChR) agonists may be valuable treatments for negative symptoms and cognitive impairment in schizophrenia. Unfortunately, chronic exposure to an agonist may reduce the receptor’s sensitivity. Therefore, we combined CDP-choline, a dietary source of the direct agonist choline, with galantamine, a positive allosteric modulator (PAM) of nicotinic acetylcholine receptors, to improve the efficiency of transducing the choline signal and, possibly, preserve the receptor in a sensitive state. We conducted a single-site, double-blind randomized clinical trial comparing galantamine/CDP-choline to placebos in schizophrenia patients with negative symptoms who were receiving second generation antipsychotics. Forty-three subjects received galantamine and CDP-choline or matching placebos for 16 weeks. The primary outcome measure was the 5-item Marder negative-symptoms factor of the Positive and Negative Syndrome Scale (PANSS). Cognition and functioning were also assessed. Trial completion was high; 79%. There was no significant treatment effect on negative symptoms, other PANSS symptom factors, or the MATRICS Cognitive Consensus Battery. There were significant treatment effects in overall functioning and a test of free verbal recall. Three subjects discontinued treatment in the active treatment group for gastro-intestinal adverse events (AE). The most common AE for galantamine/CDP-choline was abdominal pain; for placebo it was headache and sweating. Although there was no significant treatment effect on negative symptoms, the direction of effect mirrored the effects on a cognitive measure and overall functioning. Further study of α7 nAChR agonist/PAMs are warranted in larger studies that will have greater power. PMID:23768813

  5. Systemic administration of the benzodiazepine receptor partial inverse agonist FG-7142 disrupts corticolimbic network interactions.

    PubMed

    Stevenson, Carl W; Halliday, David M; Marsden, Charles A; Mason, Rob

    2007-08-01

    The medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) coordinate various stress responses. Although the effects of stressors on mPFC and BLA activity have been previously examined, it remains unclear to what extent stressors affect functional interactions between these regions. In vivo electrophysiology in the anesthetized rat was used to examine mPFC and BLA activity simultaneously in response to FG-7142, a benzodiazepine receptor partial inverse agonist that mimics various stress responses, in an attempt to model the effects of stressors on corticolimbic functional connectivity. Extracellular unit and local field potential (LFP) recordings, using multielectrode arrays positioned in mPFC and BLA, were conducted under basal conditions and in response to systemic FG-7142 administration. This drug increased mPFC and BLA unit firing at the lowest dose tested, whereas higher doses of FG-7142 decreased various burst firing parameters in both regions. Moreover, LFP power was attenuated at lower (<1 Hz) and potentiated at higher frequencies in mPFC (1-12 Hz) and BLA (4-8 Hz). Interestingly, FG-7142 diminished synchronized unit firing, both within and between mPFC and BLA. Finally, FG-7142 decreased LFP synchronization between these regions. In a separate group of animals, pretreatment with the selective benzodiazepine receptor antagonist flumazenil blocked the changes in burst firing, LFP power and synchronized activity induced by FG-7142, confirming direct benzodiazepine receptor-mediated effects. These results indicate that FG-7142 disrupts corticolimbic network interactions via benzodiazepine receptor partial inverse agonism. Perturbation of mPFC-BLA functional connectivity induced by FG-7142 may provide a useful model of corticolimbic dysfunction induced by stressors.

  6. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    SciTech Connect

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R. )

    1990-08-01

    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which represented approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.

  7. Cognitive impairments induced by triazolam in healthy volunteers: antagonism by a partial inverse agonist of benzodiazepine receptor.

    PubMed

    Warot, D; Danjou, P; Douillet, P; Keane, P; Puech, A J

    1994-01-01

    Pharmacological studies revealed that SR 25776 possesses marked stimulant activity characteristic of a partial inverse agonist of benzodiazepine receptor. The effects of SR 25776 500 mg alone and in combination with triazolam 0.25 mg on psychomotor performance and memory were assessed in 8 healthy consenting male volunteers in a double-blind placebo controlled trial. Treatment effects were monitored before and two and half hours following oral medication. The present study suggest that at the studied dose SR 25776 may incompletely antagonize the sedative and amnesic effects of a benzodiazepine agonist without producing marked effects of its own.

  8. A novel benzodiazepine inverse agonist, S-8510, as a cognitive enhancer.

    PubMed

    Kawasaki, K; Eigyo, M; Ikeda, M; Kihara, T; Koike, K; Matsushita, A; Murata, S; Shiomi, T; Takada, S; Yasui, M

    1996-11-01

    1. Pharmacological actions of a novel benzodiazepine receptor ligand, S-8510 (2-(3-isoxazolyl)-3,6,7,9-tetrahydroimidazo[4,5-d]pyrano+ ++[4,3-b] pyridine monophosphate monohydrate), were examined in in vitro and in vivo studies. 2. S-8510 was characterized as a partial inverse agonist with a modest GABA ratio and low efficacy. 3. S-8510 ameliorated memory impairment induced by cholinergic deficit in the water maze paradigm of Wistar rats. 4. S-8510 augmented LTP of the Schaffer collateral/commissural fiber-CA1 synapses in the hippocampal slice preparations of SD rat. 5. S-8510 increased the extracellular levels of acetylcholine and noradrenaline in the hippocampus of Wistar rat. 6. S-8510 selectively potentiated pentylenetetrazol-induced convulsion without affecting minimal electroconvulsive shock- or strychnine-induced convulsion in ddY mice. 7. S-8510 failed to induce any sign of anxiety in the Wistar rat pro-conflict test. 8. S-8510 showed antidepressant-like pharmacological actions in ddY mice. 9. These results suggest that S-8510 can be used as a therapeutic drug for senile dementia, including Alzheimer's disease with little risk for inducing anxiety or convulsion.

  9. Selective novel inverse agonists for human GPR43 augment GLP-1 secretion.

    PubMed

    Park, Bi-Oh; Kim, Seong Heon; Kong, Gye Yeong; Kim, Da Hui; Kwon, Mi So; Lee, Su Ui; Kim, Mun-Ock; Cho, Sungchan; Lee, Sangku; Lee, Hyun-Jun; Han, Sang-Bae; Kwak, Young Shin; Lee, Sung Bae; Kim, Sunhong

    2016-01-15

    GPR43/Free Fatty Acid Receptor 2 (FFAR2) is known to be activated by short-chain fatty acids and be coupled to Gi and Gq family of heterotrimeric G proteins. GPR43 is mainly expressed in neutrophils, adipocytes and enteroendocrine cells, implicated to be involved in inflammation, obesity and type 2 diabetes. However, several groups have reported the contradictory data about the physiological functions of GPR43, so that its roles in vivo remain unclear. Here, we demonstrate that a novel compound of pyrimidinecarboxamide class named as BTI-A-404 is a selective and potent competitive inverse agonist of human GPR43, but not the murine ortholog. Through structure-activity relationship (SAR), we also found active compound named as BTI-A-292. These regulators increased the cyclic AMP level and reduced acetate-induced cytoplasmic Ca(2+) level. Furthermore, we show that they modulated the downstream signaling pathways of GPR43, such as ERK, p38 MAPK, and NF-κB. It was surprising that two compounds augmented the secretion of glucagon-like peptide 1 (GLP-1) in NCI-H716 cell line. Collectively, these novel and specific competitive inhibitors regulate all aspects of GPR43 signaling and the results underscore the therapeutic potential of them.

  10. Benzodioxoles: novel cannabinoid-1 receptor inverse agonists for the treatment of obesity.

    PubMed

    Alig, Leo; Alsenz, Jochem; Andjelkovic, Mirjana; Bendels, Stefanie; Bénardeau, Agnès; Bleicher, Konrad; Bourson, Anne; David-Pierson, Pascale; Guba, Wolfgang; Hildbrand, Stefan; Kube, Dagmar; Lübbers, Thomas; Mayweg, Alexander V; Narquizian, Robert; Neidhart, Werner; Nettekoven, Matthias; Plancher, Jean-Marc; Rocha, Cynthia; Rogers-Evans, Mark; Röver, Stephan; Schneider, Gisbert; Taylor, Sven; Waldmeier, Pius

    2008-04-10

    The application of the evolutionary fragment-based de novo design tool TOPology Assigning System (TOPAS), starting from a known CB1R (CB-1 receptor) ligand, followed by further refinement principles, including pharmacophore compliance, chemical tractability, and drug likeness, allowed the identification of benzodioxoles as a novel CB1R inverse agonist series. Extensive multidimensional optimization was rewarded by the identification of promising lead compounds, showing in vivo activity. These compounds reversed the CP-55940-induced hypothermia in Naval Medical Research Institute (NMRI) mice and reduced body-weight gain, as well as fat mass, in diet-induced obese Sprague-Dawley rats. Herein, we disclose the tools and strategies that were employed for rapid hit identification, synthesis and generation of structure-activity relationships, ultimately leading to the identification of (+)-[( R)-2-(2,4-dichloride-phenyl)-6-fluoro-2-(4-fluoro-phenyl)-benzo[1,3]dioxol-5-yl]-morpholin-4-yl-methanone ( R)-14g . Biochemical, pharmacokinetic, and pharmacodynamic characteristics of ( R)-14g are discussed.

  11. Benzodiazepine receptor inverse agonist-induced kindling of rats alters learning and glutamate binding.

    PubMed

    Rössler, A S; Schröder, H; Dodd, R H; Chapouthier, G; Grecksch, G

    2000-09-01

    Kindling, recognized as a model of epilepsy, can be obtained by applications of repeated nonconvulsive stimulations that finally lead to generalized seizures. Epileptics often show cognitive impairments. The present work analyzed the learning performance of male Wistar rats kindled with a convulsant inverse agonist of the GABA(A)-benzodiazepine receptor complex, methyl beta-carboline-3-carboxylate (beta-CCM). This compound is also known to have an action on learning processes. It was thus interesting to verify if beta-CCM kindling had the same impairing action on learning as other kindling agents, such as pentylenetetrazol (PTZ). A two-way active-avoidance shuttle-box learning task was chosen, because a deficit was found after PTZ kindling in this learning model. On the other hand, hippocampal glutamate binding, has previously been shown to be modified by both seizures and learning. Thus, the level of glutamate binding was also measured in the present study. Results showed that fully kindled rats had poorer learning performance after the third day of test than controls or not fully kindled animals. L-[3H] glutamate binding to hippocampal membrane fractions of the fully kindled animals was significantly higher when compared with controls, whereas L-[3H] glutamate binding of not fully kindled subjects did not differ from that of controls. Neuronal plasticity changes are a possible explanation for the correlation between kindling, learning deficits, and increased glutamate binding.

  12. Inverse Agonist of Nuclear Receptor ERRγ Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Kim, Don-Kyu; Gang, Gil-Tae; Ryu, Dongryeol; Koh, Minseob; Kim, Yo-Na; Kim, Su Sung; Park, Jinyoung; Kim, Yong-Hoon; Sim, Taebo; Lee, In-Kyu; Choi, Cheol Soo; Park, Seung Bum; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM. PMID:23775767

  13. SB 206553, a putative 5-HT2C inverse agonist, attenuates methamphetamine-seeking in rats

    PubMed Central

    2012-01-01

    Background Methamphetamine (meth) dependence presents a substantial socioeconomic burden. Despite the need, there is no FDA-approved pharmacotherapy for psychostimulant dependence. We consider 5-HT2C receptors as viable therapeutic targets. We recently revealed that the atypical antidepressant, mirtazapine, attenuates meth-seeking in a rodent model of human substance abuse. Mirtazapine historically has been considered to be an antagonist at 5-HT2C receptors, but more recently shown to exhibit inverse agonism at constitutively active 5-HT2C receptors. To help distinguish the roles for antagonism vs. inverse agonism, here we explored the ability of a more selective 5-HT2C inverse agonist, SB 206553 to attenuate meth-seeking behavior, and compared its effects to those obtained with 5-HT2C antagonists, SDZ Ser 082 and SB 242084. To do so, rats were trained to self-administer meth and tested for seeking-like behavior in cue reactivity sessions consisting of contingently presenting meth-associated cues without meth reinforcement. We also explored motor function to determine the influence of SB 206553 and SDZ Ser 082 on motor activity in the presence and absence of meth. Results Like mirtazapine, pretreatment with SB 206553 (1.0, 5.0, and 10.0 mg/kg), attenuated meth-seeking. In contrast, the antagonists, SDZ Ser 082 (0.1, 0.3, and 1.0 mg/kg) and SB 242084 (3.0 mg/kg) had no effect on cue reactivity (CR). SB 242084 (3.0 mg/kg) failed to attenuate the effects of 5.0 and 10 mg/kg SB 206553 on CR. Motor function was largely unaltered by the 5-HT2C ligands; however, SB 206553, at the highest dose tested (10.0 mg/kg), attenuated meth-induced rearing behavior. Conclusions The lack of effect by 5-HT2C antagonists suggests that meth-seeking and meth-evoked motor activity are independent of endogenous 5-HT acting at 5-HT2C receptors. While SB 206553 dramatically impacted meth-evoked behaviors it is unclear whether the observed effects were 5-HT2C receptor mediated

  14. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    SciTech Connect

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonist (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.

  15. Modification of certain pharmacological effects of ethanol by lipophilic alpha-1 adrenergic agonists

    SciTech Connect

    Menon, M.K.; Dinovo, E.C.; Haddox, V.G.

    1987-09-28

    The influence of four centrally-acting alpha-1 adrenoceptor agonists, namely, 2(2-chloro-5-trifluoromethylphenylimino) imidazolidine (St 587), cirazoline, (-) 1,2,3,4-tetrahydro-8-methoxy-5-methylthio-2-naphthalenamine ((-)SKF 89748A) and 2-(2-methylindazol-4-imino)imidazolidine (Sgd 101/75) on the pharmacological effects of ethanol was investigated. All four drugs reduced the duration of ethanol-induced hypnosis in C57B1/6 mice, this effect being proportional to their relative potencies to exert central alpha-1 agonism. In prazosin-pretreated mice, St 587 failed to reduce the hypnotic effect of ethanol, which provided strong evidence for the role of alpha-1 agonism for the hypnosis reducing effect of St 587. Hyperactivity induced in C57B1/6 mice by a subhypnotic dose of ethanol and St 587 was reported earlier. In the present study, St 587, cirazoline and (-)SKF 89748A produced similar response, but no correlation between this effect and ethanol hypnosis blockade could be established. 19 references, 8 figures, 2 tables.

  16. Benzodiazepine receptor inverse agonists. beta. -CCM and RO 15-3505 both reverse the anxiolytic effects of ethanol in mice

    SciTech Connect

    Belzung, C.; Misslin, R.; Vogel, E.

    1988-01-01

    The antagonistic effects of the benzodiazepine receptor inverse agonist ..beta..-CCM and of the partial inverse agonist RO 15-3505 on the anxiolytic properties of ethanol in mice confronted with a light/dark choice procedure and with the staircase test were investigated. Both drugs reversed the effects of ethanol on some of the behavioral parameters, but ..beta..-CCM alone elicited anxiogenic intrinsic effects. RO-3505 induced seizures in mice treated with a subconvulsant dose of pentylenetetrazole, the most efficient doses being 3 and 6 mg/kg. These data indicate that ..beta..-CCM and RO 15-3505 can reverse some of the anxiolytic effects of ethanol, acting probably to oppose GABA function via the benzodiazepine receptor.

  17. Reduction in lipophilicity improved the solubility, plasma–protein binding, and permeability of tertiary sulfonamide RORc inverse agonists

    SciTech Connect

    Fauber, Benjamin P.; René, Olivier; de Leon Boenig, Gladys; Burton, Brenda; Deng, Yuzhong; Eidenschenk, Céline; Everett, Christine; Gobbi, Alberto; Hymowitz, Sarah G.; Johnson, Adam R.; La, Hank; Liimatta, Marya; Lockey, Peter; Norman, Maxine; Ouyang, Wenjun; Wang, Weiru; Wong, Harvey

    2014-08-01

    Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma–protein unbound fraction and improvements in cellular permeability and aqueous solubility.

  18. Nicotinic alpha5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers.

    PubMed

    Brown, Robert W B; Collins, Allan C; Lindstrom, Jon M; Whiteaker, Paul

    2007-10-01

    Neuronal nicotinic acetylcholine receptor subunit alpha5 mRNA is widely expressed in the CNS. An alpha5 gene polymorphism has been implicated in behavioral differences between mouse strains, and alpha5-null mutation induces profound changes in mouse acute responses to nicotine. In this study, we have examined the distribution and prevalence of alpha5* nicotinic acetylcholine receptor in mouse brain, and quantified the effects of alpha5-null mutation on pre-synaptic nicotinic acetylcholine receptor function (measured using synaptosomal (86)Rb(+) efflux) and overall [(125)I]epibatidine binding site expression. alpha5* nicotinic acetylcholine receptor expression was found in nine of fifteen regions examined, although < 20% of the total nicotinic acetylcholine receptor population in any region contained alpha5. Deletion of the alpha5 subunit gene resulted in localized loss of function (thalamus, striatum), which was itself confined to the DHbetaE-sensitive receptor population. No changes in receptor expression were seen. Consequently, functional changes must occur as a result of altered function per unit of receptor. The selective depletion of high agonist activation affinity sites results in overall nicotinic function being reduced, and increases the overall agonist activation affinity. Together, these results describe the receptor-level changes underlying altered behavioral responses to nicotine in nicotinic acetylcholine receptor alpha5 subunit-null mutants.

  19. Successful treatment of retrograde ejaculation with the alpha1-adrenergic agonist methoxamine: case study.

    PubMed

    Tomasi, P A; Fanciulli, G; Delitala, G

    2005-01-01

    We treated two patients affected by retrograde ejaculation (RE) with the pure alpha1-adrenergic agonist methoxamine; the drug was self-administered intramuscularly by the patients 30 min prior to intercourse or masturbation. A previous trial with oral imipramine had been ineffective in both patients. Sperm count increased substantially, particularly in the first patient who had insulin-dependent diabetes and was seeking fertility. In this patient, total ejaculated sperm increased from 22 millions to 488 and 419.5 millions on two different occasions, with good motility; two clinical pregnancies were obtained in the partner of this patient after 3 and 4 months of treatment, respectively. The second patient did not desire fertility. In both patients, no side effects were seen except for slight piloerection; blood pressure values increased slightly, and heart rate was unchanged. We conclude that self-administered methoxamine can be a useful, noninvasive and inexpensive treatment of RE, when oral agents are ineffective.

  20. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties.

    PubMed

    Meyer, E M; Tay, E T; Zoltewicz, J A; Meyers, C; King, M A; Papke, R L; De Fiebre, C M

    1998-03-01

    The goals of this study were to develop compounds that were selective and highly efficacious agonists at alpha-7 receptors, while varying in antagonist activity; and to test the hypothesis that these compounds had memory-related and neuroprotective actions associated with both agonist and antagonist alpha-7 receptor activities. Three compounds were identified; E,E-3-(cinnamylidene)anabaseine (3-CA), E,E-3-(2-methoxycinnamylidene) anabaseine (2-MeOCA) and E,E-3-(4-methoxycinnamylidene) anabaseine (4-MeOCA) each displaced [125I]alpha-bungarotoxin binding from rat brain membranes and activated rat alpha-7 receptors in a Xenopus oocyte expression system fully efficaciously. The potency series for binding and receptor activation was 2-MeOCA > 4-MeOCA = 3-CA and 2-MeOCA = 3-CA > 4-MeOCA, respectively. No compound significantly activated oocyte-expressed alpha-4beta-2 receptors. Although each cinnamylidene-anabaseine caused a long-term inhibition of alpha-7 receptors, as measured by ACh-application 5 min later, this inhibition ranged considerably, from less than 20% (3-CA) to 90% (2-MeOCA) at an identical concentration (10 microM). These compounds improved passive avoidance behavior in nucleus basalis lesioned rats, with 2-MeOCA most potent in this respect. In contrast, only 3-CA was neuroprotective against neurite loss during nerve growth factor deprivation in differentiated rat pheochromocytoma (PC12) cells. Choline, an efficacious alpha-7 agonist without antagonist activity, was also protective in this model. These results suggest that the neurite-protective action of alpha-7 receptor agonists may be more sensitive to potential long-term antagonist properties than acute behavioral actions are.

  1. DMXB, an alpha7 nicotinic agonist, normalizes auditory gating in isolation-reared rats.

    PubMed

    O'Neill, Heidi C; Rieger, Kate; Kem, William R; Stevens, Karen E

    2003-09-01

    Impaired auditory gating is common in schizophrenic patients. Evidence suggests that this deficit is related to a reduced number of alpha(7) nicotinic receptors and therefore treatment with alpha(7) nicotinic agonists may improve this condition. 3-(2,4)-Dimethoxybenzylidine anabaseine (DMXB; also known as GTS-21) is such an agonist and has shown efficacy in mice both orally and intraperitoneally. Rats reared in social isolation post weaning have demonstrated a deficit in auditory gating similar to that seen in schizophrenia patients. The current study determined the effects of DMXB on auditory gating in awake, freely moving rats, comparing a group born and raised in-house and reared in isolation post-weaning (isolation reared) with a group shipped from the supplier as adults and housed in groups prior to surgery (controls). Ten unmedicated, baseline recordings were obtained following surgical implantation of a recording electrode. All control group rats and the isolation-reared rats that showed deficient gating at baseline were treated with 1.0, 3.33, 10 or 33 mg/kg DMXB, IP, to determine the drug's impact on auditory gating. Isolation-reared rats had significantly improved auditory gating at the 3.33, 10 and 33 mg/kg doses, while control rats had a significant impairment in their auditory gating at the 33 mg/kg dose. DMXB improved the auditory gating deficit seen in isolation-reared rats. As previously observed in another model, the change was produced through a decrease in the test amplitude in isolation-reared animals. Control animals had a significant reduction in conditioning amplitude at the high dose, which produced the loss of auditory gating. The results in the isolation-reared rats are in concert with previous studies which found similar improvement in auditory gating following administration of DMXB to DBA mice, the only differences being in the duration of the effect.

  2. MDL 26,479: a potential cognition enhancer with benzodiazepine inverse agonist-like properties.

    PubMed Central

    Miller, J. A.; Dudley, M. W.; Kehne, J. H.; Sorensen, S. M.; Kane, J. M.

    1992-01-01

    1. The present study investigated biochemical, electrophysiological and behavioural properties of the novel cognition enhancer, MDL 26,479 (5-(3-fluorophenyl)-2,4-dimethyl-3H-1,2,4-triazole-3-thione). 2. The 5-aryl-1,2,4-triazole, MDL 26,479, potently (0.22 +/- 0.05 mg kg-1) inhibited [3H]-flumazenil (Ro15-1788) binding in mouse cortex but was ineffective in vitro at displacing radioligand binding to the GABAA receptor complex. 3. Parenteral administration of MDL 26,479 (1 mg kg-1) or the benzodiazepine (BZD) inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) (0.3 mg kg-1) increased cortical ex vivo binding of [3H]-hemicholinium-3 ([3H]-HC-3), a marker for cholinergic activation. This effect of MDL 26,479 was blocked by pretreatment with the antagonist flumazenil (1 mg kg-1). 4. MDL 26,479 (20 microM) and DMCM (1 microM) increased excitation in the hippocampal long-term potentiation (LTP) slice preparation; however, unlike DMCM, the effect of MDL 26,479 was not blocked by flumazenil. 5. In behavioural studies, MDL 26,479 did not exhibit adverse properties characteristic of drugs associated with the GABAA receptor complex. It lacked convulsant, anxiogenic, anxiolytic, or depressant effects. Since MDL 26,479 lacks activity with the BZD receptor in vitro we suggest that it acts via the GABAA receptor complex at another site on this receptor or in an as yet undefined manner or an active metabolite is formed in vivo. 6. Previous work showed that MDL 26,479 enhances learning acquisition in animal models.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:1330168

  3. Evaluation of alpha7 nicotinic acetylcholine receptor agonists and positive allosteric modulators using the parallel oocyte electrophysiology test station.

    PubMed

    Malysz, John; Grønlien, Jens H; Timmermann, Daniel B; Håkerud, Monika; Thorin-Hagene, Kirsten; Ween, Hilde; Trumbull, Jonathan D; Xiong, Yongli; Briggs, Clark A; Ahring, Philip K; Dyhring, Tino; Gopalakrishnan, Murali

    2009-08-01

    Neuronal acetylcholine receptors (nAChRs) of the alpha7 subtype are ligand-gated ion channels that are widely distributed throughout the central nervous system and considered as attractive targets for the treatment of various neuropsychiatric and neurodegenerative diseases. Both agonists and positive allosteric modulators (PAMs) are being developed as means to enhance the function of alpha7 nAChRs. The in vitro characterization of alpha7 ligands, including agonists and PAMs, relies on multiple technologies, but only electrophysiological measurements assess the channel activity directly. Traditional electrophysiological approaches utilizing two-electrode voltage clamp or patch clamp in isolated cells have very low throughput to significantly impact drug discovery. Abbott (Abbott Park, IL) has developed a two-electrode voltage clamp-based system, the Parallel Oocyte Electrophysiology Test Station (POETs()), that allows for the investigation of ligand-gated ion channels such as alpha7 nAChRs in a higher-throughput manner. We describe the utility of this technology in the discovery of selective alpha7 agonists and PAMs. With alpha7 agonists, POETs experiments involved both single- and multiple-point concentration-response testing revealing diverse activation profiles (zero efficacy desensitizing, partial, and full agonists). In the characterization of alpha7 PAMs, POETs testing has served as a reliable primary or secondary screen identifying compounds that fall into distinct functional types depending on the manner in which current potentiation occurred. Type I PAMs (eg, genistein, NS1738, and 5-hydroxyindole) increase predominantly the peak amplitude response, type II PAMs affect the peak current and current decay (eg, PNU-120,596 and 4-(naphthalen-1-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide), and anothertype slowing the current decay kinetics in the absence of increases in the peak current. In summary, POETs technology allows for significant

  4. Inversion of the alpha-2 and alpha-1 noradrenergic control of the cortical release of acetylcholine and gamma-aminobutyric acid in morphine-tolerant guinea pigs.

    PubMed

    Beani, L; Bianchi, C; Tanganelli, S; Antonelli, T; Simonato, M; Rando, S

    1988-10-01

    In normal guinea pigs the adrenergic agonists clonidine and norepinephrine are known to inhibit directly the cortical outflow of acetylcholine (ACh) through alpha-2 receptors and to increase the cortical outflow of gamma-aminobutyric acid (GABA) through alpha-1 receptors. GABA, in turn, contributes to inhibit ACh through GABAA receptors. This scheme is changed drastically by morphine tolerance. In morphine-tolerant guinea pigs, clonidine at 7.5, 18.7 and 112 nmol/kg i.p. stimulates the cortical release of ACh through alpha-1 receptors. This effect is prevented by prazosin, 35.8 nmol/kg i.p. Clonidine reduces ACh release at high doses only (374 and 1122 nmol/kg i.p.). Furthermore, electrical stimulation of locus ceruleus also gives rise to a prazosin-sensitive increase in ACh release. In addition, locus ceruleus stimulation often causes behavioral activation rather than sedation. In morphine-tolerant guinea pigs, clonidine at 7.5 and 18.7 nmol/kg i.p. reduces GABA efflux through alpha-2 receptors, as the drug effect is prevented by idazoxan, 84 nmol/kg i.p. Clonidine increases GABA efflux at high doses only (112 and 374 nmol/kg i.p.). Locus ceruleus stimulation also gives rise to an idazoxan-sensitive reduction in GABA outflow. This new condition, evident after 7 days of morphine treatment, can be defined as inversion of the physiological norepinephrine control over ACh and GABA outflow and can represent a major part of the neurochemical derangement associated with opioid tolerance.

  5. Synthesis and biological evaluation of (3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-aryl/alkyl-methanone selective CB2 inverse agonist.

    PubMed

    Presley, Chaela S; Mustafa, Suni M; Abidi, Ammaar H; Moore, Bob M

    2015-09-01

    Cannabinoid receptor 2 (CB2) selective agonists and inverse agonists possess significant potential as therapeutic agents for regulating inflammation and immune function. Although CB2 agonists have received the greatest attention, it is emerging that inverse agonists also manifest anti-inflammatory activity. In process of designing new cannabinoid ligands we discovered that the 2,6-dihydroxy-biphenyl-aryl methanone scaffold imparts inverse agonist activity at CB2 receptor without functional activity at CB1. To further explore the scaffold we synthesized a series of (3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-aryl/alkyl-methanone analogs and evaluated the CB1 and CB2 affinity, potency, and efficacy. The studies reveal that an aromatic C ring is required for inverse agonist activity and that substitution at the 4 position is optimum. The resorcinol moiety is required for optimum CB2 inverse agonist activity and selectivity. Antagonist studies against CP 55,940 demonstrate that the compounds 41 and 45 are noncompetitive antagonists at CB2.

  6. Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPAR{alpha} agonist WY14643 in rat hepatocytes

    SciTech Connect

    Wieneke, N.; Neuschaefer-Rube, F.; Bode, L.M.; Kuna, M.; Andres, J.; Carnevali, L.C.; Hirsch-Ernst, K.I.; Pueschel, G.P.

    2009-10-01

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR{alpha} agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR{alpha} agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR{alpha} agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR{alpha}-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR{alpha} ligands. The synergism of the PPAR{alpha} agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

  7. Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPAR alpha agonist WY14643 in rat hepatocytes.

    PubMed

    Wieneke, N; Neuschäfer-Rube, F; Bode, L M; Kuna, M; Andres, J; Carnevali, L C; Hirsch-Ernst, K I; Püschel, G P

    2009-10-01

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR alpha agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR alpha agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR alpha agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR alpha-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR alpha ligands. The synergism of the PPAR alpha agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

  8. Exploring clustering in alpha-conjugate nuclei using the thick target inverse kinematic technique for multiple alpha emission

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.; Desouza, R. T.; Hudan, S.; Fang, D.

    2015-10-01

    Searching for alpha cluster states analogous to the 12C Hoyle state in heavier alpha-conjugate nuclei can provide tests of the existence of alpha condensates in nuclear matter. Such states are predicted for 16O, 20Ne, 24Mg, etc. at excitation energies slightly above the decay threshold. The Thick Target Inverse Kinematics (TTIK) technique can be successfully used to study the breakup of excited self-conjugate nuclei into many alpha particles. The reaction 20Ne + α at 11 and 13 AMeV was studied at Cyclotron Institute at Texas A&M University. Here the TTIK method was used to study both single α-particle emission and multiple α-particle decays. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature. Another experiment is planned in August 2015 to study the system 28Si + α at 15 AMeV. Preliminary results will be shown. Supported by the U.S. DOE and the Robert A. Welch Foundation, Grant No. A0330.

  9. Insights into differential modulation of receptor function by hinge region using novel agonistic lutropin receptor and inverse agonistic thyrotropin receptor antibodies.

    PubMed

    Majumdar, Ritankar; Railkar, Reema; Dighe, Rajan R

    2012-03-23

    We report two antibodies, scFv 13B1 and MAb PD1.37, against the hinge regions of LHR and TSHR, respectively, which have similar epitopes but different effects on receptor function. While neither of them affected hormone binding, with marginal effects on hormone response, scFv 13B1 stimulated LHR in a dose-dependent manner, whereas MAb PD1.37 acted as an inverse agonist of TSHR. Moreover, PD1.37 could decrease the basal activity of hinge region CAMs, but had varied effects on those present in ECLs, whereas 13B1 was refractory to any CAMs in LHR. Using truncation mutants and peptide phage display, we compared the differential roles of the hinge region cysteine box-2/3 as well as the exoloops in the activation of these two homologus receptors.

  10. AC-3933, a benzodiazepine partial inverse agonist, improves memory performance in MK-801-induced amnesia mouse model.

    PubMed

    Hashimoto, Takashi; Iwamura, Yoshihiro

    2016-05-01

    AC-3933, a novel benzodiazepine receptor partial inverse agonist, is a drug candidate for cognitive disorders including Alzheimer's disease. We have previously reported that AC-3933 enhances acetylcholine release in the rat hippocampus and ameliorates scopolamine-induced memory impairment and age-related cognitive decline in both rats and mice. In this study, we further evaluated the procognitive effect of AC-3933 on memory impairment induced by MK-801, an N-methyl-d-aspartate receptor antagonist, in mice. Unlike the acetylcholinesterase inhibitor donepezil and the benzodiazepine receptor inverse agonist FG-7142, oral administration of AC-3933 significantly ameliorated MK-801-induced memory impairment in the Y-maze test and in the object location test. Interestingly, the procognitive effects of AC-3933 on MK-801-induced memory impairment were not affected by the benzodiazepine receptor antagonist flumazenil, although this was not the case for the beneficial effects of AC-3933 on scopolamine-induced memory deficit. Moreover, the onset of AC-3933 ameliorating effect on scopolamine- or MK-801-induced memory impairment was different in the Y-maze test. Taken together, these results indicate that AC-3933 improves memory deficits caused by both cholinergic and glutamatergic hypofunction and suggest that the ameliorating effect of AC-3933 on MK-801-induced memory impairment is mediated by a mechanism other than inverse activation of the benzodiazepine receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. An efficient synthesis of 3-OBn-6β,14-epoxy-bridged opiates from naltrexone and identification of a related dual MOR inverse agonist/KOR agonist.

    PubMed

    Martin, David J; FitzMorris, Paul E; Li, Bo; Ayestas, Mario; Sally, Ellicott J; Dersch, Christina M; Rothman, Richard B; Deveau, Amy M

    2012-11-15

    In an effort to better understand the conformational preferences that inform the biological activity of naltrexone and related naltrexol derivatives, a new synthesis of the restricted analog 3-OBn-6β,14-epoxymorphinan 4 is described. 4 was synthesized starting from naltrexone in 50% overall yield, proceeding through the OBn-6α-triflate intermediate 8. Key steps to the synthesis include benzylation (96% yield), reduction (90% yield, α:β:3:2), followed by a one-pot triflation/displacement sequence (96% yield) to yield the desired bridged epoxy derivative 4. X-ray crystallographic analysis of intermediate 3-OBn-6α-naltrexol 7a supports population of the key boat conformation required for the epoxy ring closure. We also report that the 6β-mesylate 10-a high affinity opioid receptor ligand, the epimeric derivative of 11, and an analog of 12-functions as an inverse agonist at the mu opioid receptor using herkinorin pre-conditioned cells and an agonist at the kappa opioid receptor when evaluated in independent in vitro [(35)S]-GTP-γ-S assays.

  12. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)alpha agonist fenofibrate and the PPARgamma agonist pioglitazone.

    PubMed

    Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

    2009-03-30

    All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARgamma agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARalpha agonist fenofibrate (FENO) and the PPARgamma agonist pioglitazone (PIO) on bone in intact female rats. Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. We show opposite skeletal effects of PPARalpha and gamma agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARalpha activation.

  13. Voluntary exercise augments acute effects of CB1-receptor inverse agonist on body weight loss in obese and lean mice.

    PubMed

    Zhou, Dan; Shearman, Lauren P

    2004-01-01

    Cannabinoid CB1 receptor (CB1R) inverse agonists reduce appetite and body weight (BW) gain in various species. Exercise is thought to be a natural reward process and the cannabinoid system is also believed to influence reward. We tested the hypothesis that voluntary exercise would augment the effects of AM251, a CB1R inverse agonist, on food intake (FI) and BW loss in murine genetic models of obesity. ob/ob, agouti yellow (A(y)), and lean C57BL/6J mice were treated via oral gavage with vehicle or AM251 (1, 3, or 10 mg/kg) 1 h before the dark cycle. The suppressive effects of 3 and 10 mg/kg AM251 on overnight FI, BW gain, and water intake (WI) were significant in ob/ob mice. In contrast, in A(y) mice, 10 mg/kg AM251 decreased FI and BW gain while it did not influence WI. Food consumption of ob/ob and A(y) mice, as evidenced by feeding frequency (FF) and feeding duration (FD), was reduced by AM251 for 4-6 h. AM251 at these doses had no impact on the appetitive behavior or BW gain of lean mice. After a 1-week wash-out period, mice were given running wheels in their home cages. With running wheel exercise, lean and obese mice exhibited increased sensitivity to AM251. Low voluntary wheel running activity of ob/ob mice precluded detection of combined effects of AM251 and exercise in this genetic model of obesity. Lean and agouti mice given AM251 combined with exercise lost a greater amount of BW than with AM251 alone. Our data suggest that voluntary exercise can enhance CB1R inverse agonist effects on appetite and BW loss in both lean and agouti obese mice.

  14. Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion

    PubMed Central

    Adhikary, T; Brandt, D T; Kaddatz, K; Stockert, J; Naruhn, S; Meissner, W; Finkernagel, F; Obert, J; Lieber, S; Scharfe, M; Jarek, M; Toth, P M; Scheer, F; Diederich, W E; Reinartz, S; Grosse, R; Müller-Brüsselbach, S; Müller, R

    2013-01-01

    Besides its established functions in intermediary metabolism and developmental processes, the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has a less defined role in tumorigenesis. In the present study, we have identified a function for PPARβ/δ in cancer cell invasion. We show that two structurally divergent inhibitory ligands for PPARβ/δ, the inverse agonists ST247 and DG172, strongly inhibit the serum- and transforming growth factor β (TGFβ)-induced invasion of MDA-MB-231 human breast cancer cells into a three-dimensional matrigel matrix. To elucidate the molecular basis of this finding, we performed chromatin immunoprecipitation sequencing (ChIP-Seq) and microarray analyses, which identified the gene encoding angiopoietin-like 4 (ANGPTL4) as the major transcriptional PPARβ/δ target in MDA-MB-231 cells, previously implicated in TGFβ-mediated tumor progression and metastatic dissemination. We show that the induction of ANGPTL4 by TGFβ and other oncogenic signals is strongly repressed by ST247 and DG172 in a PPARβ/δ-dependent fashion, resulting in the inhibition of ANGPTL4 secretion. This effect is attributable to these ligands' ability to induce a dominant transcriptional repressor complex at the site of transcription initiation that blocks preinitiation complex formation through an histone deacetylase-independent, non-canonical mechanism. Repression of ANGPTL4 transcription by inverse PPARβ/δ agonists is functionally linked to the inhibition of cancer cell invasion into a three-dimensional matrix, as (i) invasion of MDA-MB-231 cells is critically dependent on ANGPTL4 expression, (ii) recombinant ANGPTL4 stimulates invasion, and (iii) reverses the inhibitory effect of ST247 and DG172. These findings indicate that a PPARβ/δ–ANGPTL4 pathway is involved in the regulation of tumor cell invasion and that its pharmacological manipulation by inverse PPARβ/δ agonists is feasible. PMID:23208498

  15. Agonist-promoted desensitization and phosphorylation of. cap alpha. /sub 1/-adrenergic receptors coupled to stimulation of phosphatidylinositol metabolism

    SciTech Connect

    Leeb-Lundberg, L.M.F.; Cotecchia, S.; Caron, M.G.; Lefkowitz, R.J.

    1986-03-05

    In the DDT/sub 1/ MF-2 hamster vas deferens smooth muscle cell line the ..cap alpha../sub 1/-adrenergic receptor (..cap alpha../sub 1/-AR) agonist norepinephrine (NE) promotes rapid attenuation of ..cap alpha../sub 1/-AR-mediated phosphatidylinositol (PI) metabolism which is paralleled by rapid phosphorylation of the ..cap alpha../sub 1/-AR. Cells were labeled by incubation with /sup 32/P/sub i/. Coincubation with NE (100 ..mu..M) significantly increases the rate of /sup 32/P-labeling of both PI and phosphatidic acid. Pretreatment of cells with 100 ..mu..M NE (in the presence of 1 ..mu..M propranolol to prevent ..beta..-AR interactions) results in a drastic attenuation of the NE response on PI metabolism. ..cap alpha../sub 1/-AR from labeled cells can be solubilized and purified by affinity chromatography on Affigel-A55414 and wheat germ agglutinin agarose chromatography. SDS-PAGE of purified ..cap alpha../sub 1/-AR shows a NE-promoted increase in phosphorylation of the M/sub r/ 80K ligand binding peptide. Stoichiometry of phosphorylation increases from approx. 1 mol phosphate/mol ..cap alpha../sub 1/-AR in the basal condition to approx. 2.5 after NE treatment. Both desensitization and phosphorylation are rapid being maximal within 10-20 min of agonist exposure. These results together with previous findings that phorbol esters promote rapid ..cap alpha../sub 1/-AR uncoupling and phosphorylation suggest that receptor phosphorylation is an important mechanism of regulation of ..cap alpha../sub 1/-AR receptor responsiveness.

  16. Alpha-thujone reduces 5-HT3 receptor activity by an effect on the agonist-reduced desensitization.

    PubMed

    Deiml, T; Haseneder, R; Zieglgänsberger, W; Rammes, G; Eisensamer, B; Rupprecht, R; Hapfelmeier, G

    2004-02-01

    The convulsant effects of alpha-thujone, the psychotropic component of absinthe, were attributed to inhibitory actions at the GABAA receptor. Here, we investigated for the first time the 5-HT3 receptor as a potential site of the psychotropic actions of alpha-thujone. This cation permeable ligand-gated ion channel shows considerable homology to the GABAA receptor. We previously demonstrated that in homomeric assemblies of cloned human 5-HT,A receptor subunits. the endogenous agonist 5-HT induced desensitization via channel blockade. When the 5-HT3 B receptor subunit was co-expressed, the resulting heteromeric assemblies desensitized independent from channel blockade. In the present study, patch-clamp experiments revealed an inhibitory action of alpha-thujone on both homomeric and heteromeric 5-HT3 receptors. This inhibitory action was mediated via channel blockade. However, it was not alpha-thujone itself which blocked the channel. The present experiments suggested that, in homomeric receptors, alpha-thujone enhanced the inherent channel-blocking potency of the natural ligand. 5-HT. In heteromeric receptors, alpha-thujonerecruited an additional channel-blocking component of the agonist. By means of kinetic modeling, we simulated possible mechanisms by which alpha-thuljone decreased the 5-HT-induced responses. It is suggested that alpha-thujone reduced 5-HT3 receptor activity by an effect on mechanisms involved in receptor desensitization, which depend on receptor subunit composition. It remains to be shown if this inhibitory action on serotonergic responses contributes to behavioral effects of alpha-thujone.

  17. Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, exerts anticonvulsive properties.

    PubMed

    Porta, Natacha; Vallée, Louis; Lecointe, Cécile; Bouchaert, Emmanuel; Staels, Bart; Bordet, Régis; Auvin, Stéphane

    2009-04-01

    The underlying mechanisms of the ketogenic diet (KD) remain unknown. Involvement of peroxisome proliferator-activated receptor-alpha (PPARalpha) has been suggested. The aim of this study was to assess the anticonvulsant properties of fenofibrate, a PPARalpha agonist. Wistar rats were fed at libitum during 14 days by regular diet, KD, regular diet containing 0.2% fenofibrate (F), or KD containing 0.2% fenofibrate (KD + F). Pentylenetetrazol (PTZ) threshold and latencies to the onset of status epilepticus induced by lithium-pilocarpine were used to assess diet treatments with anticonvulsive effects. Myoclonic and generalized seizure PTZ thresholds were increased in F- and KD-treated animals in comparison to control. No difference was observed between KD + F group and the others groups (control, F, KD). Latencies to the onset of status epilepticus were increased in F and KD groups compared to control. Fenofibrate exerts anticonvulsive properties comparable to KD in adult rats using PTZ and lithium-pilocarpine models. The underlying mechanisms such as PPARalpha activation and others should be investigated. These findings may provide insights into future directions to simplify KD protocols.

  18. Repression of gamma-aminobutyric acid type A receptor alpha1 polypeptide biosynthesis requires chronic agonist exposure.

    PubMed

    Miranda, J D; Barnes, E M

    1997-06-27

    Although it is well established that the number of gamma-aminobutyric acid type A (GABAA) receptors declines in cortical neurons exposed to GABAA receptor agonists, the mechanisms responsible for this use-dependent down-regulation remain unclear. Two hypotheses have been proposed: (i) agonist-evoked sequestration and degradation of surface GABAA receptors and (ii) repression of receptor subunit biosynthesis. We have addressed this problem using [35S]Met/Cys pulse-chase labeling of chick cortical neurons in culture and immunoprecipitation and immunoblotting with an antibody (RP4) directed against a GABAA receptor alpha1-(331-381) fusion protein. Exposure of the cells to GABA or isoguvacine for 2 h to 4 days had no effect on the initial rate of 35S incorporation into the GABAA receptor 51-kDa alpha1 polypeptide, but this rate declined by 33% after a 7-day treatment. This is consistent with a previous report (Baumgartner, B. J., Harvey, R. J., Darlison, M. G., and Barnes, E. M. (1994) Mol. Brain Res. 26, 9-17) that a 7-day GABA treatment of this preparation produced a 45% reduction in the alpha1 subunit mRNA level, while a 4-day exposure had no detectable effect. On the other hand, after a 4-day exposure to these agonists, a 30% reduction in the level of the alpha1 polypeptide was observed on immunoblots, similar to that found previously for down-regulation of GABAA receptor ligand-binding sites. Thus, the de novo synthesis of GABAA receptor alpha1 subunits is subject to a delayed use-dependent repression that was observed after, rather than before, the decline in neuronal levels of the polypeptide. Pulse-chase experiments showed a monophasic degradation of the GABAA receptor 35S-alpha1 subunit with a t1/2 = 7.7 h, a process that was unaffected by the addition of GABA to neurons during the chase period. These nascent 35S-labeled polypeptides are presumably diluted into the neuronal pool of unlabeled unassembled alpha1 subunits, which was found to exceed by a 4:1 molar

  19. p-( sup 125 I)iodoclonidine, a novel radiolabeled agonist for studying central alpha 2-adrenergic receptors

    SciTech Connect

    Baron, B.M.; Siegel, B.W. )

    1990-09-01

    Unlabeled p-iodoclonidine was efficacious in attenuating forskolin-stimulated cAMP accumulation in SK-N-SH neuroblastoma cells. Maximal attenuation was 76 +/- 3%, with an EC50 of 347 +/- 60 nM. Comparable values of epinephrine were 72 +/- 3% and 122 +/- 22 nM. Responses to both agonists were abolished by 10 microM phentolamine. Therefore, p-iodoclonidine is an agonist in a cell culture model system of the neuronal alpha 2-adrenergic receptor. p-(125I)Iodoclonidine binding to membranes were measured using various regions of the rat brain. The agonist labeled a single population of sites present on cerebral cortical membranes, which was saturable (Bmax = 230 fmol/mg of protein) and possessed high affinity for the ligand (Kd = 0.6 nM). Binding was largely specific (93% at 0.6 nM). A variety of alpha 2-adrenergic agonists and antagonists were shown to compete for the binding of the radioligand. The binding of p-(125I)iodoclonidine was much less sensitive to agents that interact with alpha 1-adrenergic, serotonergic, and dopaminergic receptors. Approximately 65% of the binding was sensitive to guanine nucleotides. Association kinetics using 0.4 nM radioligand were biphasic (37% associate rapidly, with kobs = 0.96 min-1, with the remainder binding more slowly, with kobs = 0.031 min-1) and reached a plateau by 90 min at 25 degrees. Dissociation kinetics were also biphasic, with 30% of the binding dissociating rapidly (k1 = 0.32 min-1) and the remainder dissociating 50-fold more slowly (k2 = 0.006 min-1). Agonist binding is, therefore, uniquely complex and probably reflects the conformational changes that accompany receptor activation.

  20. Structure-activity relationships and sub-type selectivity in an oxabicyclic estrogen receptor alpha/beta agonist scaffold.

    PubMed

    Hamann, Lawrence G; Meyer, J Hoyt; Ruppar, Daniel A; Marschke, Keith B; Lopez, Francisco J; Allegretto, Elizabeth A; Karanewsky, Donald S

    2005-03-01

    An oxabicyclic template for estrogen receptor alpha and beta agonists has been identified which can be tuned to provide moderate levels of selectivity for either receptor sub-type. Structure-activity relationships within this phenol-substituted oxabicyclo[3.3.1]nonene series are described. Select compounds from the present series showed activity in vivo after oral dosing in rodent models of uterine proliferation.

  1. Effect of fluoxetine and adenosine receptor NECA agonist on G alpha q/11 protein of C6 glioma cells.

    PubMed

    Kovárů, Hana; Kováru, Frantisek; Lisá, Vĕra

    2012-01-01

    Trimeric G-proteins play a crucial role in the transmembrane signalling to intracellular pathways via effector phospholipase C (1,4,5 IP3) or adenylylcyclase (cAMP). G-protein modulation is considered to participate in the antidepressant mode of action by neurotransmitter G-protein coupled receptors (GPCR). Adenosine is naturally occured nucleoside and adenosine receptor belongs to GPCR family. Properties and functions of ubiquitous adenosine receptor were described with number of agonists and antagonists. In C6 glioma cells, we studied acute administration of SSRI antidepressants - fluoxetine, sertraline and citalopram. We used immunochemical estimation (ELISA) of the main types of G-protein alpha subunits from isolated membranes of C6 glioma cells. We also estimated effect of NECA agonist on fluoxetine induced signalling via 1,4,5 IP3 and its levels. Results show involvement of the antidepressant drugs in the C6 glioma signal transduction cascades and their modulation in dependence on the antidepressant of SSRI type. We measured main G alpha protein profiles after fluoxetine, sertraline and citalopram administration. We found significant changes as following: decreased G alpha Gq/11 for fluoxetine, low G alpha s for sertraline and both high G alpha q/11 and high G alpha s for citalopram. Furthermore the NECA (5´-N-ethylcarboxamido- adenosine) agonist of adenosine receptor alone evoked high decrease of G alpha q/11 levels. Whereas fluoxetine influenced G alpha q/11 decline was abolished by NECA in concentration manner, especially at 10-8 and 10-9 M concentrations. These results support abolishion NECA effect on fluoxetin influenced 1,4,5 IP3 signalling via PLC. Main G alpha profiles are dependent on SSRI type antidepressant. Abolishing both fluoxetine evoked G alpha q/11 and and 1,4,5 IP3 signalling can indicate parallel interference between G-protein coupled receptors (GPCR) and the cell response. Presented data are first findings about adenosine receptor

  2. An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin-/- mice and patients.

    PubMed

    Lin, Jian-Sheng; Dauvilliers, Yves; Arnulf, Isabelle; Bastuji, Hélène; Anaclet, Christelle; Parmentier, Régis; Kocher, Laurence; Yanagisawa, Masashi; Lehert, Philippe; Ligneau, Xavier; Perrin, David; Robert, Philippe; Roux, Michel; Lecomte, Jeanne-Marie; Schwartz, Jean-Charles

    2008-04-01

    Narcolepsy is characterized by excessive daytime sleepiness (EDS), cataplexy, direct onsets of rapid eye movement (REM) sleep from wakefulness (DREMs) and deficiency of orexins, neuropeptides that promote wakefulness largely via activation of histamine (HA) pathways. The hypothesis that the orexin defect can be circumvented by enhancing HA release was explored in narcoleptic mice and patients using tiprolisant, an inverse H(3)-receptor agonist. In narcoleptic orexin(-/-) mice, tiprolisant enhanced HA and noradrenaline neuronal activity, promoted wakefulness and decreased abnormal DREMs, all effects being amplified by co-administration of modafinil, a currently-prescribed wake-promoting drug. In a pilot single-blind trial on 22 patients receiving a placebo followed by tiprolisant, both for 1 week, the Epworth Sleepiness Scale (ESS) score was reduced from a baseline value of 17.6 by 1.0 with the placebo (p>0.05) and 5.9 with tiprolisant (p<0.001). Excessive daytime sleep, unaffected under placebo, was nearly suppressed on the last days of tiprolisant dosing. H(3)-receptor inverse agonists could constitute a novel effective treatment of EDS, particularly when associated with modafinil.

  3. In vivo pharmacological characterization of AC-3933, a benzodiazepine receptor partial inverse agonist for the treatment of Alzheimer's disease.

    PubMed

    Hatayama, Y; Hashimoto, T; Kohayakawa, H; Kiyoshi, T; Nakamichi, K; Kinoshita, T; Yoshida, N

    2014-04-18

    GABAergic neurons are known to inhibit neural transduction and therefore negatively affect excitatory neural circuits in the brain. We have previously reported that 5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-1,6-naphthyridin-2(1H)-one (AC-3933), a partial inverse agonist for the benzodiazepine receptor (BzR), reverses GABAergic inhibitory effect on cholinergic neurons, and thus enhances acetylcholine release from these neurons in rat hippocampal slices. In this study, we evaluated AC-3933 potential for the treatment of Alzheimer's disease, a disorder characterized by progressive decline mainly in cholinergic function. Oral administration of AC-3933 (0.01-0.03mg/kg) resulted in the amelioration of scopolamine-induced amnesia, as well as a shift in electroencephalogram (EEG) relative power characteristic of pro-cognitive cholinergic activators, such as donepezil. In addition, treatment with AC-3933 even at the high dose of 100mg/kg p.o. produced no seizure or anxiety, two major adverse effects of BzR inverse agonists developed in the past. These findings indicate that AC-3933 with its low risk for side effects may be useful in the treatment of Alzheimer's disease.

  4. Ciproxifan, a histamine H₃-receptor antagonist / inverse agonist, modulates methamphetamine-induced sensitization in mice.

    PubMed

    Motawaj, Mouhammad; Arrang, Jean-Michel

    2011-04-01

    The role of histamine neurons in schizophrenia and psychostimulant abuse remains unclear. Behavioural sensitization to psychostimulants is a cardinal feature of these disorders. Here, we have explored the ability of imetit and ciproxifan (CPX), a reference H₃-receptor agonist and inverse agonist, respectively, to modulate locomotor sensitization induced in mice by methamphetamine (MET). Mice received saline, CPX (3 mg/kg) or imetit (3 mg/kg) 2 h before MET (2 mg/kg), once daily for 12 days, and were killed after a 2-day wash out. Imetit had no effect, but CPX induced a decrease of MET-induced locomotor activity, which became significant at Day 5, and even more at Day 10. Quantitative polymerase chain reaction was used in the sensitized mice to quantify brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartate (NMDA)-receptor subunit 1 (NR1) mRNAs, two factors that are altered in both schizophrenia and drug abuse. Imetit and CPX used alone had no effect on any marker. Sensitization by MET decreased BDNF mRNAs by 40% in the hippocampus. This decrease was reversed by CPX. Sensitization by MET also induced strong decreases of NR1 mRNAs in the cerebral cortex, hippocampus and striatum, but not hypothalamus. These decreases were also reversed by CPX. The strong modulator effect of CPX in mice sensitized to MET may result from its modulator effect on NR1 mRNAs in the cerebral cortex and striatum. The reversal by CPX of BDNF and NR1 mRNAs in the hippocampus of sensitized animals further strengthens the interest of H₃-receptor inverse agonists for the long-term treatment of cognitive deficits of patients with schizophrenia. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Histamine H3 Inverse Agonist BF 2649 or Antagonist with Partial H4 Agonist Activity Clobenpropit Reduces Amyloid Beta Peptide-Induced Brain Pathology in Alzheimer's Disease.

    PubMed

    Patnaik, Ranjana; Sharma, Aruna; Skaper, Stephen D; Muresanu, Dafin F; Lafuente, José Vicente; Castellani, Rudy J; Nozari, Ala; Sharma, Hari S

    2017-08-31

    Alzheimer's disease (AD) is one of the leading causes for disability and death affecting millions of people worldwide. Thus, novel therapeutic strategies are needed to reduce brain pathology associated with AD. In view of increasing awareness regarding involvement of histaminergic pathways in AD, we explored the role of one H3 receptor inverse agonist BF 2649 and one selective H3 receptor antagonist with partial H4 agonist activity in amyloid beta peptide (AβP) infusion-induced brain pathology in a rat model. AD-like pathology was produced by administering AβP (1-40) intracerebroventricular (i.c.v.) in the left lateral ventricle (250 ng/10 μl, once daily) for 4 weeks. Control rats received saline. In separate group of rats, either BF 2649 (1 mg/kg, i.p.) or clobenpropit (1 mg/kg, i.p.) was administered once daily for 1 week after 3 weeks of AβP administration. After 30 days, blood-brain barrier (BBB) breakdown, edema formation, neuronal, glial injuries, and AβP deposits were examined in the brain. A significant reduction in AβP deposits along with marked reduction in neuronal or glial reactions was seen in the drug-treated group. The BBB breakdown to Evans blue albumin and radioiodine in the cortex, hippocampus, hypothalamus, and cerebellum was also significantly reduced in these drug-treated groups. Clobenpropit showed superior effects than the BF2649 in reducing brain pathology in AD. Taken together, our observations are the first to show that blockade of H3 and stimulation of H4 receptors are beneficial for the treatment of AD pathology, not reported earlier.

  6. Long-term modulation by postnatal oxytocin of the alpha 2-adrenoceptor agonist binding sites in central autonomic regions and the role of prenatal stress.

    PubMed

    Díaz-Cabiale, Z; Olausson, H; Sohlström, A; Agnati, L F; Narváez, J A; Uvnäs-Moberg, K; Fuxe, K

    2004-03-01

    The aim of this work was to evaluate whether oxytocin administered in male rats subcutaneously early in life in the absence or presence of food restriction during pregnancy has life-long effects on the alpha(2)-agonist binding sites in the nucleus of the solitarii tract (NTS), in the hypothalamus and the amygdala, as evaluated by quantitative receptor autoradiography. Maternal food restriction alone increased the affinity of the alpha(2)-agonist [(3)H]UK14.304 binding sites exclusively in the NTS. In offspring from ad libitum fed dams, oxytocin treatment significantly increased the density of alpha(2)-agonist binding sites in the NTS and in the hypothalamus. The K(d) value of the alpha(2)-agonist binding sites in the hypothalamus of these rats, but not in the other regions studied, was also significantly increased. In offspring from food-restricted dams, oxytocin treatment produced a significant increase of the B(max) values in the hypothalamus and the amygdala and the K(d) value of the alpha(2)-agonist binding sites in the NTS of these rats also was selectively and significantly increased. These results suggest that a postnatal, oxytocin-induced increase of regional alpha(2)-adrenoceptor function can be seen in adulthood by a persistent, regionally selective increase in the density of central alpha(2)-adrenoceptor agonist binding sites, in the absence of an affinity change in the NTS. Such a regional increase of alpha(2)-adrenoceptor signalling in adulthood may contribute to the anti-stress action of postnatal oxytocin. By contrast, after prenatal stress, the potential increase in alpha(2)-adrenoceptor signalling takes place via selective increases of density with no changes of affinity of the alpha(2)-agonist binding sites in the hypothalamus and the amygdala.

  7. Rodent carcinogenicity profile of the antidiabetic dual PPAR alpha and gamma agonist muraglitazar.

    PubMed

    Tannehill-Gregg, Sarah H; Sanderson, Thomas P; Minnema, Daniel; Voelker, Richard; Ulland, Borge; Cohen, Samuel M; Arnold, Lora L; Schilling, Beth E; Waites, C Robbie; Dominick, Mark A

    2007-07-01

    The carcinogenic potential of muraglitazar, a dual human peroxisome proliferator-activated receptor alpha/gamma agonist, was evaluated in 2-year studies in mice (1, 5, 20, and 40 mg/kg) and rats (1, 5, 30, and 50 mg/kg). Benign gallbladder adenomas occurred at low incidences in male mice at 20 and 40 mg/kg (area under the curve [AUC] exposures > or = 62 times human exposure at 5 mg/day) and were considered drug related due to an increased incidence of gallbladder mucosal hyperplasia at these doses. There was a dose-related increased incidence of transitional cell papilloma and carcinoma of the urinary bladder in male rats at 5, 30, and 50 mg/kg (AUC exposures > or = 8 times human exposure at 5 mg/day). At 30 and 50 mg/kg, the urinary bladder tumors were accompanied by evidence of increased urine solids. Subsequent investigative studies established that the urinary bladder carcinogenic effect was mediated by urolithiasis rather than a direct pharmacologic effect on urothelium. Incidences of subcutaneous liposarcoma in male rats and subcutaneous lipoma in female rats were increased at 50 mg/kg (AUC exposures > or = 48 times human exposure at 5 mg/day) and attributed, in part, to persistent pharmacologic stimulation of preadipocytes. Toxicologically relevant nonneoplastic changes in target tissues included thinning of cortical bone in mice and hyperplastic and metaplastic adipocyte changes in mice and rats. Considering that muraglitazar is nongenotoxic, the observed tumorigenic effects in mice and rats have no established clinical relevance since they occurred at either clinically nonrelevant exposures (gallbladder and adipose tumors) or by a species-specific mechanism (urinary bladder tumors).

  8. Cardiorespiratory effects of four alpha2-adrenoceptor agonist-ketamine combinations in captive red wolves.

    PubMed

    Sladky, K K; Kelly, B T; Loomis, M R; Stoskopf, M K; Horne, W A

    2000-11-01

    To evaluate the cardiopulmonary effects of immobilizing doses of xylazine-ketamine (XK), medetomidine-ketamine (MK), medetomidine-ketamine-acepromazine (MKA), and medetomidine-butorphanol-ketamine (MBK) in captive red wolves. Prospective study. 32 adult captive red wolves. Wolves were randomly assigned to 1 of 4 treatment groups: XK, MK, MKA, or MBK. Physiologic variables measured included heart rate, blood pressure, respiratory rate, tidal volume, oxygen-hemoglobin saturation (Spo2), end-tidal CO2, arterial blood gases, and rectal temperature. Induction time, muscle relaxation, and quality of recovery were assessed. Heart rates were lower in wolves in the MBK group than for the other groups. All 4 drug combinations induced considerable hypertension, with diastolic pressures exceeding 116 mm Hg. Blood pressure was lowest in wolves receiving the MBK combination. Respiratory rate was significantly higher in wolves receiving XK, MK, and MKA. Tidal volumes were similar for all groups. Wolves receiving XK, MK, and MKA were well-oxygenated throughout the procedure (SPo2 > 93%), whereas those receiving MBK were moderately hypoxemic (87% < Spo2 < 93%) during the first 20 minutes of the procedure. Hyperthermia was detected initially following induction in all groups. The alpha2-adrenoceptor agonist-ketamine combinations provide rapid reversible anesthesia for red wolves but cause severe sustained hypertension. Such an adverse effect puts animals at risk for development of cerebral encephalopathy, retinal hemorrhage, pulmonary edema, and myocardial failure. Although the MBK combination offers some advantages over the others, it is advised that further protocol refinements be made to minimize risks associated with acute hypertension.

  9. Varenicline: a selective alpha4beta2 nicotinic acetylcholine receptor partial agonist approved for smoking cessation.

    PubMed

    Lam, Sum; Patel, Priti N

    2007-01-01

    Tobacco smoking remains a significant health problem in the United States. It has been associated with staggering morbidity and mortality, specifically due to malignancies and cardiovascular disease. Smoking cessation can be difficult and frequently requires pharmacologic interventions in addition to nonpharmacologic measures. Previously available agents are nicotine replacement products and bupropion, which increased quit rates by about 2-fold compared with placebo. Varenicline is the first drug in a new class known as the selective alpha4beta2 nicotinic receptor partial agonists. In several randomized, double-blind, 52-week clinical trials involving healthy chronic smokers, varenicline demonstrated superiority to placebo and bupropion in terms of efficacy measures. Additionally, it improved tobacco withdrawal symptoms and reinforcing effects of smoking in relapsed patients. Patients should start therapy in combination with tobacco cessation counseling 1 week before quit date and continue the regimen for 12 weeks. The dose of varenicline should be titrated to minimize nausea. The recommended dosage is 0.5 mg once daily (QD) on days 1-3; titrate to 0.5 mg twice daily (BID) on days 4-7; and 1 mg BID starting on day 8. An additional 12-week maintenance therapy may be considered for those who achieve abstinence. The most common side effects are nausea (30%), insomnia (18%), headache (15%), abnormal dreams (13%), constipation (8%), and abdominal pain (7%). Overall, varenicline is a breakthrough in the management of tobacco addiction and has demonstrated good efficacy in motivated quitters. It also provides an option for smokers who cannot tolerate other pharmacologic interventions.

  10. 4-Oxo-1,4-dihydropyridines as selective CB2 cannabinoid receptor ligands: structural insights into the design of a novel inverse agonist series.

    PubMed

    El Bakali, Jamal; Muccioli, Giulio G; Renault, Nicolas; Pradal, Delphine; Body-Malapel, Mathilde; Djouina, Madjid; Hamtiaux, Laurie; Andrzejak, Virginie; Desreumaux, Pierre; Chavatte, Philippe; Lambert, Didier M; Millet, Régis

    2010-11-25

    Growing evidence shows that CB(2) receptor is an attractive therapeutic target. Starting from a series of 4-oxo-1,4-dihydroquinoline-3-carboxamide as selective CB(2) agonists, we describe here the medicinal chemistry approach leading to the development of CB(2) receptor inverse agonists with a 4-oxo-1,4-dihydropyridine scaffold. The compounds reported here show high affinity and potency at the CB(2) receptor while showing only modest affinity for the centrally expressed CB(1) cannabinoid receptor. Further, we found that the functionality of this series is controlled by its C-6 substituent because agonists bear a methyl or a tert-butyl group and inverse agonists, a phenyl or 4-chlorophenyl group, respectively. Finally, in silico studies suggest that the C-6 substituent could modulate the conformation of W6.48 known to be critical in GPCR activation.

  11. Pharmacological profiles of a novel alpha 1-adrenoceptor agonist, PNO-49B, at alpha 1-adrenoceptor subtypes.

    PubMed

    Muramatsu, I; Ohmura, T; Kigoshi, S

    1995-01-01

    The effects of a newly synthesized compound, PNO-49B, (R)-(-)-3'-(2-amino-1-hydroxyethyl)-4'-fluoromethanesulfonanilide hydrochloride, on alpha 1-adrenoceptor subtypes were examined in various tissues in which the following distribution of alpha 1-adrenoceptor subtypes has been suggested: dog carotid artery (alpha 1B), dog mesenteric artery (alpha 1N), rabbit thoracic aorta (alpha 1B + alpha 1L), rat liver (alpha 1B), rat vas deferens (alpha 1A + alpha 1L), rat cerebral cortex (alpha 1A + alpha 1B) and rat thoracic aorta (controversial subtype). PNO-49B (0.1-100 microM) produced concentration-dependent contractions in dog mesenteric artery, rabbit thoracic aorta, rat thoracic aorta and rat vas deferens; and the maximal amplitudes of contraction were almost the same as or slightly less than those of noradrenaline. By contrast, the maximal response to PNO-49B in dog carotid artery was markedly smaller than the response to noradrenaline. In rabbit thoracic aorta, the contractile response to PNO-49B was not affected by inactivation of the alpha 1B subtype with chloroethylclonidine (CEC), although the response to noradrenaline was attenuated by that treatment. The dissociation constants (KA) of PNO-49B were not different among the rat thoracic aorta, dog carotid and mesenteric arteries and rabbit thoracic aorta (CEC-pretreated). The contractile responses to PNO-49B were inhibited competitively by prazosin, HV723 (alpha-ethyl-3,4,5-trimethoxy-alpha-(3-((2-(2-methoxyphenoxy)-ethyl)- amino(propyl)benzeneacetonitrile fumarate) and by WB4101 (2-(2,6-dimethoxyphenoxyethyl)-aminomethyl-1,4- benzodioxane).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Regulation of cannabinoid CB2 receptor constitutive activity in vivo: repeated treatments with inverse agonists reverse the acute activation of JNK and associated apoptotic signaling in mouse brain.

    PubMed

    Salort, Glòria; Álvaro-Bartolomé, María; García-Sevilla, Jesús A

    2017-03-01

    CB2 receptors express constitutive activity and inverse agonists regulate receptor basal activity, which might be involved in death mechanisms. This study assessed the effects of a selective CB2 agonist (JWH133) and different CB2 inverse agonists (AM630, JTE907, raloxifene) on death pathways in brain. The acute (JWH13) and the acute/chronic effects (AM630, JTE907, raloxifene) of CB2 ligands regulating pro-apoptotic c-Jun NH2-terminal kinase (p-JNK/JNK ratio) and associated signaling of extrinsic (Fas receptor, Fas-Associated death domain protein, FADD) and intrinsic (Bax, cytochrome c) death pathways (nuclear poly (ADP-ribose) polymerase PARP) were investigated in mouse brain. Mice were treated with CB2 drugs and target protein contents were assessed by western blot analysis. JWH133 reduced cortical JNK (-27-45%) whereas AM630 acutely increased JNK in cortex (+61-148%), cerebellum (+34-40%), and striatum (+33-42%). JTE907 and raloxifene also increased cortical JNK (+31%-57%). Acute AM630, but not JWH133, increased cortical FADD, Bax, cytochrome c, and PARP cleavage. Repeated treatments with the three CB2 inverse agonists were associated with a reversal of the acute effects resulting in decreases in cortical JNK (AM630: -36%; JTE907: -25%; raloxifene: -11%). Chronic treatments also induced a reversal with down-regulation (AM630) or only tolerance (JTE907 and raloxifene) on other apoptotic markers (FADD, Bax, cytochrome c, PARP). AM630 and JTE907 are CB2 protean ligands. Thus, chronic inverse agonists abolished CB2 constitutive activity and then the ligands behaved as agonists reducing (like JWH133) JNK activity. Acute and chronic treatments with CB2 inverse agonists regulate in opposite directions brain death markers.

  13. Benzodiazepine recognition site inverse agonists Ro-15-4513 and FG 7142 both antagonize the EEG effects of ethanol in the rat

    SciTech Connect

    Marrosu, F.; Mereu, G.; Giorgi, O.; Corda, M.G.

    1988-01-01

    The aim of the present study was to compare the ability of Ro 15-4513 and FG 7142, two inverse agonists for benzodiazepine recognition sites, to antagonize the EEG effects of ethanol in freely moving rats. Ethanol induced sedation and ataxia associated with a progressive suppression of the fast cortical activities and an enhancement of low frequencies in both cortical and hippocampal tracings. In contrast, Ro 15-4513 and FG 7142 both caused a state of alertness associated with desynchronized cortical activity and theta hippocampal rhythm as well as spiking activity which was predominantly observed in the cortical tracings. When rats were treated with FG 7142 or Ro 15-4513 either before or after ethanol, a reciprocal antagonism of the behavioral and EEG effects of ethanol and of the partial inverse agonists was observed. These data support the view that the anti-ethanol effects of Ro 15-4513 may be related to its partial inverse agonist properties.

  14. Kaposi's sarcoma-associated herpesvirus-G protein-coupled receptor-expressing endothelial cells exhibit reduced migration and stimulated chemotaxis by chemokine inverse agonists.

    PubMed

    Couty, Jean-Pierre; Lupu-Meiri, Monica; Oron, Yoram; Gershengorn, Marvin C

    2009-06-01

    A constitutively active G protein-coupled receptor (GPCR) encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) (KSHV) is expressed in endothelial (spindle) cells of Kaposi's sarcoma lesions. In this study, we report novel effects of basal signaling by this receptor and of inverse agonist chemokines on migration of KSHV-GPCR-expressing mouse lung endothelial cells. We show that basal signaling by KSHV-GPCR inhibits migration of endothelial cells in two systems, movement through porous filters and in vitro wound closure. Naturally occurring chemokines, interferon gamma-inducible protein-10 and stromal-derived factor-1, which act as inverse agonists at KSHV-GPCR, abrogate the inhibition of migration and stimulate directed migration (or chemotaxis) of these cells. Thus, the expression of KSHV-GPCR may allow infected endothelial cells in situ to remain in a localized environment or to directionally migrate along a gradient of specific chemokines that are inverse agonists at KSHV-GPCR.

  15. Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Gill, Jaskiran K; Savolainen, Mari; Young, Gareth T; Zwart, Ruud; Sher, Emanuele; Millar, Neil S

    2011-04-05

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular "orthosteric" binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site.

  16. The conjugated linoleic acid isomer trans-9,trans-11 is a dietary occurring agonist of liver X receptor {alpha}

    SciTech Connect

    Ecker, Josef; Liebisch, Gerhard; Patsch, Wolfgang; Schmitz, Gerd

    2009-10-30

    Conjugated linoleic acid (CLA) isomers are dietary fatty acids that modulate gene expression in many cell types. We have previously reported that specifically trans-9,trans-11 (t9,t11)-CLA induces expression of genes involved in lipid metabolism of human macrophages. To elucidate the molecular mechanism underlying this transcriptional activation, we asked whether t9,t11-CLA affects activity of liver X receptor (LXR) {alpha}, a major regulator of macrophage lipid metabolism. Here we show that t9,t11-CLA is a regulator of LXR{alpha}. We further demonstrate that the CLA isomer induces expression of direct LXR{alpha} target genes in human primary macrophages. Knockdown of LXR{alpha} with RNA interference in THP-1 cells inhibited t9,t11-CLA mediated activation of LXR{alpha} including its target genes. To evaluate the effective concentration range of t9,t11-CLA, human primary macrophages were treated with various doses of CLA and well known natural and synthetic LXR agonists and mRNA expression of ABCA1 and ABCG1 was analyzed. Incubation of human macrophages with 10 {mu}M t9,t11-CLA led to a significant modulation of ABCA1 and ABCG1 transcription and caused enhanced cholesterol efflux to high density lipoproteins and apolipoprotein AI. In summary, these data show that t9,t11-CLA is an agonist of LXR{alpha} in human macrophages and that its effects on macrophage lipid metabolism can be attributed to transcriptional regulations associated with this nuclear receptor.

  17. Scientific Rationale for the Use of Alpha-Adrenergic Agonists and Glucocorticoids in the Therapy of Pediatric Stridor

    PubMed Central

    Nino, Gustavo; Baloglu, Orkun; Gutierrez, Maria J.; Schwartz, Michael

    2011-01-01

    Purpose. The most common pharmacological therapies used in the treatment of stridor in children are glucocorticosteroids (GC) and alpha-adrenergic (αAR) agonists. Despite the long-standing reported efficacy of these medications, there is a paucity of data relating to their actual mechanisms of action in the upper airway. Summary. There is compelling scientific evidence supporting the use of αAR-agonists and GCs in pediatric stridor. αAR signaling and GCs regulate the vasomotor tone in the upper airway mucosa. The latter translates into better airflow dynamics, as delineated by human and nonhuman upper airway physiological models. In turn, clinical trials have demonstrated that GCs and the nonselective αAR agonist, epinephrine, improve respiratory distress scores and reduce the need for further medical care in children with stridor. Future research is needed to investigate the role of selective αAR agonists and the potential synergism of GCs and αAR-signaling in the treatment of upper airway obstruction and stridor. PMID:22220172

  18. Selective naphthalene H(3) receptor inverse agonists with reduced potential to induce phospholipidosis and their quinoline analogs.

    PubMed

    Rodríguez Sarmiento, Rosa María; Nettekoven, Matthias H; Taylor, Sven; Plancher, Jean-Marc; Richter, Hans; Roche, Olivier

    2009-08-01

    We reported earlier the refinement of our initial five-point pharmacophore model for the Histamine 3 receptor (H(3)R), with a new acceptor feature important for binding and selectivity against the other histamine receptor subtypes 1, 2 and 4. This approach was validated with a new series of H(3)R inverse agonists: the naphthalene series. In this Letter, we describe our efforts to overcome the phospholipidosis flag identified with our initial lead compound (1a). During the optimization process, we monitored the potency of our molecules toward the H(3) receptor, their selectivity against H(1)R, H(2)R and H(4)R, as well as some key molecular properties that may influence phospholipidosis. Encouraged by the promising profile of the naphthalene series, we used our deeper understanding of the H(3)R pharmacophore model to lead us towards the quinoline series. This series is perceived to have intrinsic advantages with respect to its amphiphilic vector.

  19. Regulation of ingestive behaviors in the rat by GSK1521498, a novel micro-opioid receptor-selective inverse agonist.

    PubMed

    Ignar, Diane M; Goetz, Aaron S; Noble, Kimberly Nichols; Carballo, Luz Helena; Stroup, Andrea E; Fisher, Julie C; Boucheron, Joyce A; Brainard, Tracy A; Larkin, Andrew L; Epperly, Andrea H; Shearer, Todd W; Sorensen, Scott D; Speake, Jason D; Hommel, Jonathan D

    2011-10-01

    μ-Opioid receptor (MOR) agonism induces palatable food consumption principally through modulation of the rewarding properties of food. N-{[3,5-difluoro-3'-(1H-1,2,4-triazol-3-yl)-4-biphenylyl]methyl}-2,3-dihydro-1H-inden-2-amine (GSK1521498) is a novel opioid receptor inverse agonist that, on the basis of in vitro affinity assays, is greater than 10- or 50-fold selective for human or rat MOR, respectively, compared with κ-opioid receptors (KOR) and δ-opioid receptors (DOR). Likewise, preferential MOR occupancy versus KOR and DOR was observed by autoradiography in brain slices from Long Evans rats dosed orally with the drug. GSK1521498 suppressed nocturnal food consumption of standard or palatable chow in lean and diet-induced obese (DIO) Long Evans rats. Both the dose-response relationship and time course of efficacy in lean rats fed palatable chow correlated with μ receptor occupancy and the plasma concentration profile of the drug. Chronic oral administration of GSK1521498 induced body weight loss in DIO rats, which comprised fat mass reduction. The reduction in body weight was equivalent to the cumulative reduction in food consumption; thus, the effect of GSK1521498 on body weight is related to inhibition of food consumption. GSK1521498 suppressed the preference for sucrose-containing solutions in lean rats. In operant response models also using lean rats, GSK1521498 reduced the reinforcement efficacy of palatable food reward and enhanced satiety. In conclusion, GSK1521498 is a potent, MOR-selective inverse agonist that modulates the hedonic aspects of ingestion and, therefore, could represent a pharmacological treatment for obesity and binge-eating disorders.

  20. A Novel Selective Inverse Agonist of the CB2 Receptor as a Radiolabeled Tool Compound for Kinetic Binding Studies.

    PubMed

    Martella, Andrea; Sijben, Huub; Rufer, Arne C; Grether, Uwe; Fingerle, Juergen; Ullmer, Christoph; Hartung, Thomas; IJzerman, Adriaan P; van der Stelt, Mario; Heitman, Laura H

    2017-10-01

    The endocannabinoid system, and in particular the cannabinoid type 2 receptor (CB2R), raised the interest of many medicinal chemistry programs for its therapeutic relevance in several (patho)physiologic processes. However, the physico-chemical properties of tool compounds for CB2R (e.g., the radioligand [(3)H]CP55,940) are not optimal, despite the research efforts in developing effective drugs to target this system. At the same time, the importance of drug-target binding kinetics is growing since the kinetic binding profile of a ligand may provide important insights for the resulting in vivo efficacy. In this context we synthesized and characterized [(3)H]RO6957022, a highly selective CB2R inverse agonist, as a radiolabeled tool compound. In equilibrium and kinetic binding experiments [(3)H]RO6957022 showed high affinity for human CB2R with fast association (kon) and moderate dissociation (koff) kinetics. To demonstrate the robustness of [(3)H]RO6957022 binding, affinity studies were carried out for a wide range of CB2R reference ligands, spanning the range of full, partial, and inverse agonists. Finally, we used [(3)H]RO6957022 to study the kinetic binding profiles (i.e., kon and koff values) of selected synthetic and endogenous (i.e., 2-arachidonoylglycerol, anandamide, and noladin ether) CB2R ligands by competition association experiments. All tested ligands, and in particular the endocannabinoids, displayed distinct kinetic profiles, shedding more light on their mechanism of action and the importance of association rates in the determination of CB2R affinity. Altogether, this study shows that the use of a novel tool compound, i.e., [(3)H]RO6957022, can support the development of novel ligands with a repertoire of kinetic binding profiles for CB2R. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Plans for Studies of (alpha,n) Reactions Relevant to Astrophysics via Inverse Reactions

    NASA Astrophysics Data System (ADS)

    Shima, T.; Nagai, Y.; Kii, T.; Kikuchi, T.; Baba, T.; Kobayashi, T.; Okazaki, F.

    1996-08-01

    (alpha,n) reactions in the keV energy region play important roles in astrophysical nucleosynthesis. In the primordial nucleosynthesis, it has been pointed out that a fluctuation of the baryon density distribution could be formed if the QCD phase transition from quark-gluon plasma to hadron gas occurred by first order. In that case the space was separated into the high density proton-rich zones and the low density neutron-rich ones, and in the neutron-rich zones nucleosynthesis could proceed beyond the mass gap at A = 8 via the reaction chains such as H-1(n,gamma)H-2(n,gamma)H-3(d,n)He-4(t,gamma)Li-7(n,gamma)Li-8(alpha,n)B- 11(n,ga mma)B-12(e(sup-)nu)C-12(n,gamma)C-13(n,gamma)C-14(n,gamma)C-15 ......, and so on. In the above nuclear reactions, the Li-8(alpha,n)B reaction plays quite a crucial role, because it can break through the mass gap at A = 8. (alpha,n) reactions of some light nuclei are also important as neutron sources for slow neutron capture process (s-process) of nucleosynthesis in stars. In low-mass and intermediate-mass (M < 10 Solar Mass) stars, neutrons are supposed to be supplied mainly by the C-13(alpha,n)O-16 reaction. On the other hand, the Ne-22(alpha,n)Mg-25 reaction is a candidate of the neutron source in massive stars with M > or = 10 Solar Mass. The contribution of the O-18(alpha,n)Ne-21 reaction to s-process in massive stars is still unknown. Since the temperatures of the above astrophysical sites correspond to the energy range of between a few ten and a few hundred keV, accurate data of the (alpha,n) reaction cross sections in the energy range are required for investigating nucleosynthesis. In order to measure these cross sections, not only direct (alpha,n) reactions but also inverse (n,alpha) reactions can be studied. In the following we would like to show experimental designs for studying several (alpha,n) reactions of astrophysical importance.

  2. Co-crystal structure guided array synthesis of PPAR[gamma] inverse agonists

    SciTech Connect

    Trump, Ryan P.; Cobb, Jeffrey E.; Shearer, Barry G.; Lambert, Millard H.; Nolte, Robert T.; Willson, Timothy M.; Buckholz, Richard G.; Zhao, Sumin M.; Leesnitzer, Lisa M.; Iannone, Marie A.; Pearce, Kenneth H.; Billin, Andrew N.; Hoekstra, William J.

    2008-10-02

    PPAR{gamma}-activating thiazolidinediones and carboxylic acids such as farglitazar exert their anti-diabetic effects in part in PPAR{gamma} rich adipose. Both pro- and anti-adipogenic PPAR{gamma} ligands promote glucose and lipid lowering in animal models of diabetes. Herein, we disclose representatives of an array of 160 farglitazar analogues with atypical inverse agonism of PPAR{gamma} in mature adipocytes.

  3. The Use of the LanthaScreen TR-FRET CAR Coactivator Assay in the Characterization of Constitutive Androstane Receptor (CAR) Inverse Agonists

    PubMed Central

    Carazo, Alejandro; Pávek, Petr

    2015-01-01

    The constitutive androstane receptor (CAR) is a critical nuclear receptor in the gene regulation of xenobiotic and endobiotic metabolism. The LanthaScreenTM TR-FRET CAR coactivator assay provides a simple and reliable method to analyze the affinity of a ligand to the human CAR ligand-binding domain (LBD) with no need to use cellular models. This in silico assay thus enables the study of direct CAR ligands and the ability to distinguish them from the indirect CAR activators that affect the receptor via the cell signaling-dependent phosphorylation of CAR in cells. For the current paper we characterized the pharmacodynamic interactions of three known CAR inverse agonists/antagonists—PK11195, clotrimazole and androstenol—with the prototype agonist CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) using the TR-FRET LanthaScreenTM assay. We have confirmed that all three compounds are inverse agonists of human CAR, with IC50 0.51, 0.005, and 0.35 μM, respectively. All the compounds also antagonize the CITCO-mediated activation of CAR, but only clotrimazole was capable to completely reverse the effect of CITCO in the tested concentrations. Thus this method allows identifying not only agonists, but also antagonists and inverse agonists for human CAR as well as to investigate the nature of the pharmacodynamic interactions of CAR ligands. PMID:25905697

  4. Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Goldberg, V. Z.; Natowitz, J. B.; Zheng, H.; Giuliani, G.; Rapisarda, G. G.; Wuenschel, S.; Liu, X.

    2014-03-01

    We explored alpha clustering in 24Mg using the reaction 20Ne+α and the Thick Target Inverse Kinematics (TTIK) technique. 20Ne beams of energy 3.7 AMeV and 11 AMeV were delivered by the K150 cyclotron at Texas A&M University. The reaction chamber was filled with 4He gas at a pressure sufficient to stop the beam before the detectors. The energy of the light reaction products was measured by three silicon detector telescopes. The time relative to the cyclotron radiofrequency was also measured. For the first time the TTIK method was used to study both single and multiple α-particle decays. New results were obtained on elastic resonant α scattering, as well as on inelastic processes leading to high excitation energy systems decaying by multiple α-particle emission. Preliminary results will be shown on events with α-multiplicity one and two.

  5. Decavanadate possesses alpha-adrenergic agonist activity and a structural motif common with trans-beta form of noradrenaline.

    PubMed

    Venkataraman, B V; Ravishankar, H N; Rao, A V; Kalyani, P; Sharada, G; Namboodiri, K; Gabor, B; Ramasarma, T

    1997-04-01

    Decavanadate, an inorganic polymer of vanadate, produced contraction of rat aortic rings at a relatively high concentration compared to phenylephrine, an agonist of alpha-adrenergic receptor. This effect was blocked by two known alpha-adrenergic receptor antagonists, prazosin and phenoxybenzamine. Decavanadate, formed by possible dimerization of V5 under acid conditions, possessed a structural feature of two pairs of unshared oxygen atoms at a distance of 3.12 A, not found in its constituents of V4 or V5. A structural motif of O..O..O using such oxygen atoms is recognized in decavanadate. This matches with a similar motif of N..O..O that uses the essential amino and hydroxyl groups of the side-chain and the m-hydroxyl group in trans-beta form of noradrenaline. The interaction of such a structural motif with the membrane receptor is likely to be the basis of the unusual noradrenaline-mimic action of decavanadate.

  6. Potent and selective peptide agonists of alpha-melanocyte stimulating hormone (alphaMSH) action at human melanocortin receptor 5; their synthesis and biological evaluation in vitro.

    PubMed

    Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Angeles Cabello, M; Maroto, Marta; Teran, Ana

    2007-05-01

    Melanocortin receptors (MC1-5R) and their endogenous ligands (melanocyte-stimulating hormones and adrenocorticotropic hormone) are involved in many physiological processes in humans. Of those receptors, the actions of MC5R are the least understood despite its broad presence in the numerous peripheral tissues and brain. In this study, we describe synthesis and pharmacological properties in vitro (receptor-binding affinity and agonist activity) of several cyclic analogs of alphaMSH which are potent agonists at hMC5R (EC(50) below 1 nM) and of enhanced receptor subtype selectivity (more than 2000-fold versus hMC1b,3R and about 70- to 200-fold versus hMC4R). These compounds are analogs of Ac-Nle(4)-cyclo[Asp(5)-His(6)-D-Nal(2')(7)-Pip(8)-Trp(9)-Lys(10)]-NH(2) (Pip: pipecolic acid) in which His(6) has been replaced with sterically hindered amino acids. They may be useful tools in the elucidation of the MC5R role in skin disorders and in immunomodulatory and in anti-inflammatory actions of alphaMSH.

  7. Neuroendocrine effects of dexmedetomidine: evidence of cross-tolerance between a mu-opioid agonist and an alpha 2-adrenoceptor agonist in growth hormone secretion of the male rat.

    PubMed

    Idänpään-Heikkilä, J J; Rauhala, P; Männistö, P T

    1996-03-01

    The role of alpha 2-adrenergic receptors (adrenoceptors) in the secretion of growth hormone, prolactin and thyrotropin was studied using highly selective agonists and antagonists of the alpha 2-adrenoceptor. The interplay between opiates and alpha 2-adrenergic drugs in the acute secretion of growth hormone and prolactin, as well as the possible cross-tolerance between morphine (mu-opioid receptor agonist) and dexmedetomidine (alpha 2-adrenoceptor agonist) in growth hormone secretion were also evaluated. Dexmedetomidine dose-dependently increased plasma growth hormone and prolactin levels and decreased thyrotropin levels. The enhanced secretion of both growth hormone and prolactin was antagonized by atipamezole (an alpha 2-adrenoceptor antagonist) but not by prazosin (an alpha 1-adrenoceptor antagonist). Morphine (5 mg/kg)-induced stimulation of growth hormone secretion was antagonized by both naloxone (mu-opioid antagonist) and atipamezole. Naloxone, but not atipamezole, antagonized the morphine-induced increase in prolactin secretion. Dexmedetomidine increased growth hormone secretion in the saline pretreated rats, but did not do so in the morphine-tolerant rats. The stimulation of alpha 2-adrenoceptor enhances secretion of both growth hormone and prolactin. The adrenergic regulation of thyrotropin secretion still remains unclear. Evidently, adrenergic mechanisms are involved in the morphine-induced stimulation of growth hormone secretion, but not in the morphine-induced stimulation of prolactin secretion. In addition, there is a clear cross-tolerance between dexmedetomidine and morphine in growth hormone secretion of the rat.

  8. Both estrogen receptor alpha and estrogen receptor beta agonists enhance cell proliferation in the dentate gyrus of adult female rats.

    PubMed

    Mazzucco, C A; Lieblich, S E; Bingham, B I; Williamson, M A; Viau, V; Galea, L A M

    2006-09-15

    This study investigated the involvement of estrogen receptors alpha and beta in estradiol-induced enhancement of hippocampal neurogenesis in the adult female rat. Subtype selective estrogen receptor agonists, propyl-pyrazole triol (estrogen receptor alpha agonist) and diarylpropionitrile (estrogen receptor beta agonist) were examined for each receptor's contribution, individual and cooperative, for estradiol-enhanced hippocampal cell proliferation. Estradiol increases hippocampal cell proliferation within 4 h [Ormerod BK, Lee TT, Galea LA (2003) Estradiol initially enhances but subsequently suppresses (via adrenal steroids) granule cell proliferation in the dentate gyrus of adult female rats. J Neurobiol 55:247-260]. Therefore, animals received s.c. injections of estradiol (10 microg), propyl-pyrazole triol and diarylpropionitrile alone (1.25, 2.5, 5.0 mg/0.1 ml dimethylsulfoxide) or in combination (2.5 mg propyl-pyrazole triol+2.5 mg diarylpropionitrile/0.1 ml dimethylsulfoxide) and 4 h later received an i.p. injection of the cell synthesis marker, bromodeoxyuridine (200 mg/kg). Diarylpropionitrile enhanced cell proliferation at all three administered doses (1.25 mg, P<0.008; 2.5 mg, P<0.003; 5 mg, P<0.005), whereas propyl-pyrazole triol significantly increased cell proliferation (P<0.0002) only at the dose of 2.5 mg. Our results demonstrate both estrogen receptor alpha and estrogen receptor beta are individually involved in estradiol-enhanced cell proliferation. Furthermore both estrogen receptor alpha and estrogen receptor beta mRNA was found co-localized with Ki-67 expression in the hippocampus albeit at low levels, indicating a potential direct influence of each receptor subtype on progenitor cells and their progeny. Dual receptor activation resulted in reduced levels of cell proliferation, supporting previous studies suggesting that estrogen receptor alpha and estrogen receptor beta may modulate each other's activity. Our results also suggest that a component

  9. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody.

    PubMed

    Hino, Tomoya; Arakawa, Takatoshi; Iwanari, Hiroko; Yurugi-Kobayashi, Takami; Ikeda-Suno, Chiyo; Nakada-Nakura, Yoshiko; Kusano-Arai, Osamu; Weyand, Simone; Shimamura, Tatsuro; Nomura, Norimichi; Cameron, Alexander D; Kobayashi, Takuya; Hamakubo, Takao; Iwata, So; Murata, Takeshi

    2012-01-29

    G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A(2A) adenosine receptor (A(2A)AR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain. Here we report the raising of a mouse monoclonal antibody against human A(2A)AR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A(2A)AR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A(2A)AR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure and to CDR-3 of the nanobody in the active β(2)-adrenergic receptor structure, but locks A(2A)AR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.

  10. Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic alpha 7/125I-alpha-bungarotoxin receptor subtypes.

    PubMed

    de Fiebre, C M; Meyer, E M; Henry, J C; Muraskin, S I; Kem, W R; Papke, R L

    1995-01-01

    Investigation of the naturally occurring, nicotinic agonist anabaseine and novel derivatives has shown that these compounds have cytoprotective and memory-enhancing effects. The hypothesis that these arise at least in part through actions on brain nicotinic receptors was evaluated by examining the ability of these compounds to displace the binding of nicotinic ligands and to affect the function of the alpha 4 beta 2 and alpha 7 receptor subtypes expressed in Xenopus oocytes. The derivative 3-(4)-dimethylaminocinnamylidine anabaseine (DMAC) was found to be a selective alpha 7 receptor agonist; it was more potent than nicotine, acetylcholine, anabaseine, and other derivatives at activating the alpha 7 receptor subtype, while displaying little agonist activity at alpha 4 beta 2 and other receptor subtypes. Compared with anabaseine and the other derivatives, DMAC was the most potent at displacing 125I-alpha-bungarotoxin binding (putative alpha 7) and the least potent at displacing [3H]cytisine binding (putative alpha 4 beta 2) to brain membranes. Independently of agonist activities, all of the novel compounds displayed secondary inhibitory activity at both receptor subtypes. At the alpha 4 beta 2 receptor subtype, inhibition by the 3-(2,4)-dimethoxybenzylidene derivative was enhanced by coapplication of acetylcholine, suggesting a noncompetitive form of inhibition. Anabaseine and nicotine prolonged the time course of activation of alpha 4 beta 2 receptors, compared with acetylcholine, suggesting sequential channel-blocking activity. As selective agonists, anabaseine derivatives such as DMAC may be useful for elucidating the function of alpha 7 nicotinic receptors, including their potential role(s) in the cytoprotective and memory-enhancing effects of nicotinic agents.

  11. A novel peroxisome proliferator-activated receptor alpha/gamma dual agonist demonstrates favorable effects on lipid homeostasis.

    PubMed

    Guo, Qiu; Sahoo, Soumya P; Wang, Pei-Ran; Milot, Denise P; Ippolito, Marc C; Wu, Margaret S; Baffic, Joanne; Biswas, Chhabi; Hernandez, Melba; Lam, My-Hanh; Sharma, Neelam; Han, Wei; Kelly, Linda J; MacNaul, Karen L; Zhou, Gaochao; Desai, Ranjit; Heck, James V; Doebber, Thomas W; Berger, Joel P; Moller, David E; Sparrow, Carl P; Chao, Yu-Sheng; Wright, Samuel D

    2004-04-01

    Patients with type 2 diabetes mellitus exhibit hyperglycemia and dyslipidemia as well as a markedly increased incidence of atherosclerotic cardiovascular disease. Here we report the characterization of a novel arylthiazolidinedione capable of lowering both glucose and lipid levels in animal models. This compound, designated TZD18, is a potent agonist with dual human peroxisome proliferator-activated receptor (PPAR)-alpha/gamma activities. In keeping with its PPARgamma activity, TZD18 caused complete normalization of the elevated glucose in db/db mice and Zucker diabetic fatty rats. TZD18 lowered both cholesterol and triglycerides in hamsters and dogs. TZD18 inhibited cholesterol biosynthesis at steps before mevalonate and reduced hepatic levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Moreover, TZD18 significantly suppressed gene expression of fatty acid synthesis and induced expression of genes for fatty acid degradation and triglyceride clearance. Studies on 17 additional PPARalpha or PPARalpha/gamma agonists showed that lipid lowering in hamsters correlated with the magnitude of hepatic gene expression changes. Importantly, the presence of PPARgamma agonism did not affect the relationship between hepatic gene expression and lipid lowering. Taken together, these data suggest that PPARalpha/gamma agonists, such as TZD18, affect lipid homeostasis, leading to an antiatherogenic plasma lipid profile. Agents with these properties may provide favorable means for treatment of type 2 diabetes and dyslipidemia and the prevention of atherosclerotic cardiovascular disease.

  12. Virtual screening studies of Chinese medicine Coptidis Rhizoma as alpha7 nicotinic acetylcholine receptor agonists for treatment of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Xiang, Li; Xu, Youdong; Zhang, Yan; Meng, Xianli; Wang, Ping

    2015-04-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Extensive in vitro and in vivo experiments have proved that the decreased activity of the cholinergic neuron is responsible for the memory and cognition deterioration. The alpha7 nicotinic acetylcholine receptor (α7-nAChR) is proposed to a drug target of AD, and compounds which acting as α7-nAChR agonists are considered as candidates in AD treatment. Chinese medicine CoptidisRhizoma and its compounds are reported in various anti-AD effects. In this study, virtual screening, docking approaches and hydrogen bond analyses were applied to screen potential α7-nAChR agonists from CoptidisRhizome. The 3D structure of the protein was obtained from PDB database. 87 reported compounds were included in this research and their structures were accessed by NCBI Pubchem. Docking analysis of the compounds was performed using AutoDock 4.2 and AutoDock Vina. The images of the binding modes hydrogen bonds and the hydrophobic interaction were rendered with PyMOL1.5.0.4. and LigPlot+ respectively. Finally, N-tran-feruloyltyramine, isolariciresinol, flavanone, secoisolariciresinol, (+)-lariciresinol and dihydrochalcone, exhibited the lowest docking energy of protein-ligand complex. The results indicate these 6 compounds are potential α7 nAChR agonists, and expected to be effective in AD treatment.

  13. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia.

    PubMed

    Bristow, Linda J; Easton, Amy E; Li, Yu-Wen; Sivarao, Digavalli V; Lidge, Regina; Jones, Kelli M; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc) and set shift performance in rats (1-10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po). BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc) and mismatch negativity (0.03-3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans.

  14. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia

    PubMed Central

    Bristow, Linda J.; Easton, Amy E.; Li, Yu-Wen; Sivarao, Digavalli V.; Lidge, Regina; Jones, Kelli M.; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J.; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1–10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1–10 mg/kg, sc) and set shift performance in rats (1–10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1–3 mg/kg, po). BMS-933043 also improved auditory gating (0.56–3 mg/kg, sc) and mismatch negativity (0.03–3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans. PMID

  15. Statins and PPAR{alpha} agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment

    SciTech Connect

    Johnson, Timothy E. . E-mail: Timothy_Johnson@merck.com; Zhang, Xiaohua; Shi, Shu; Umbenhauer, Diane R.

    2005-11-01

    Statins and fibrates (weak PPAR{alpha} agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPAR{alpha} agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPAR{alpha} compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPAR{gamma} agonist Rosiglitazone caused little or no cell death at up to 10 {mu}M and the PPAR{delta} ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPAR{alpha} agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPAR{alpha} agonism mediates in part the toxicity response to PPAR{alpha} compounds. Furthermore, PPAR{alpha} agonists and statins cause myotoxicity through distinct and independent pathways.

  16. The alpha2 adrenoreceptor agonist clonidine suppresses evoked and spontaneous seizures, whereas the alpha2 adrenoreceptor antagonist idazoxan promotes seizures in amygdala-kindled kittens.

    PubMed

    Shouse, Margaret N; Scordato, John C; Farber, Paul R; de Lanerolle, Nihal

    2007-03-16

    Microinfusion of alpha2 adrenoreceptor agonists and antagonists into amygdala has contrasting effects on evoked and spontaneous seizure susceptibility in amygdala-kindled kittens. Subjects were 14 preadolescent kittens between 3 and 4 months old at the beginning of kindling. The same protocol was followed except that half the kittens received microinfusions (1 mul) of the alpha2 agonist clonidine (CLON; 1.32 nmol), and half received the alpha2 antagonist idazoxan (IDA; 0.33 nmol). Infusions were made over 1 min through needles inserted into cannulae adjacent to stimulating electrodes in the kindled amygdala, and evoked seizures were tested 10-12 min later. The results were: (1) CLON elevated seizure thresholds obtained once at the beginning and end of kindling, but only when compared to sham control values (needle insertion only) in the same animals; IDA significantly reduced thresholds. (2) CLON retarded and IDA accelerated kindling rate, defined as the number of afterdischarges (ADs) required to achieve the first stage 6 seizure or generalized tonic-clonic convulsion (GTC). These effects were most pronounced on the emergence of seizure "generalization" stages (3-6) from "focal" seizure stages (1-2). (3) CLON prevented onset of spontaneous seizures, whereas IDA precipitated onset of spontaneous seizures in 100% of the animals before or during the 5-week post-kindling follow-up during which seizures were evoked once each work day. The study confirms previous findings in kindled rodents to show that CLON and IDA can have opposing effects on kindling development in kittens and is the first report to show contrasting effects on spontaneous epileptogenesis in kindled animals as well.

  17. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart

    USDA-ARS?s Scientific Manuscript database

    Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of pr...

  18. Stimulation by alpha-adrenergic agonists of Ca2+ fluxes, mitochondrial oxidation and gluconeogenesis in perfused rat liver.

    PubMed Central

    Taylor, W M; Reinhart, P H; Bygrave, F L

    1983-01-01

    Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle. PMID:6882384

  19. Inverse agonist of estrogen-related receptor α suppresses the growth of triple negative breast cancer cells through ROS generation and interaction with multiple cell signaling pathways.

    PubMed

    Wu, Ying-Min; Chen, Zhuo-Jia; Jiang, Guan-Min; Zhang, Kun-Shui; Liu, Qiao; Liang, Shu-Wei; Zhou, Yan; Huang, Hong-Bin; Du, Jun; Wang, Hong-Sheng

    2016-03-15

    There is an urgent clinical need for targeted therapy approaches for triple-negative breast cancer (TNBC) patients. Increasing evidences suggested that the expression of estrogen-related receptor alpha (ERRα) was correlate with unfavorable clinical outcomes of breast cancer patients. We here show that inhibition of ERRα by its inverse agonist XCT-790 can suppress the proliferation, decrease G2/M phases, and induce mitochondrial-related apoptosis of TNBC cells. XCT-790 elevates the proteins related to endoplasmic reticulum (ER) stress such as ATF4/6, XBT-1 and CHOP. It also increases the expression of growth inhibition related proteins such as p53 and p21. Further, XCT-790 can increase the generation of reactive oxygen species (ROS) in TNBC cells mainly through inhibition of SOD1/2. While ROS scavenger NAC abolishes XCT-790 induced ER-stress and growth arrest. XCT-790 treatment can rapidly activate the signal molecules including ERK1/2, p38-MAPK, JNK, Akt, p65, and IκBα, while NAC attenuates effects of XCT-790 induced phosphorylation of ERK1/2, p38-MAPK and Akt. Further, the inhibitors of ERK1/2, JNK, Akt, and NF-κB attenuate XCT-790 induced ROS generation. These data suggest that AKT/ROS and ERK/ROS positive feedback loops, NF-κB/ROS, and ROS/p38-MAPK, are activated in XCT-790 treated TNBC cells. In vivo experiments show that XCT-790 significantly suppresses the growth of MDA-MB-231 xenograft tumors, which is associated with up regulation of p53, p21, ER-stress related proteins while down regulation of bcl-2. The present discovery makes XCT-790 a promising candidate drug and lays the foundation for future development of ERRα-based therapies for TNBC patients.

  20. Preclinical evaluation of the abuse potential of Pitolisant, a histamine H3 receptor inverse agonist/antagonist compared with Modafinil

    PubMed Central

    Uguen, M; Perrin, D; Belliard, S; Ligneau, X; Beardsley, PM; Lecomte, JM; Schwartz, JC

    2013-01-01

    Background and Purpose Pitolisant, a histamine H3 receptor inverse agonist/antagonist is currently under Phase III clinical trials for treatment of excessive daytime sleepiness namely in narcoleptic patients. Its drug abuse potential was investigated using in vivo models in rodents and monkeys and compared with those of Modafinil, a psychostimulant currently used in the same indications. Experimental Approach Effects of Pitolisant on dopamine release in the nucleus accumbens, on spontaneous and cocaine-induced locomotion, locomotor sensitization were monitored. It was also tested in three standard drug abuse tests i.e. conditioned place preference in rats, self-administration in monkeys and cocaine discrimination in mice as well as in a physical dependence model. Key Results Pitolisant did not elicit any significant changes in dopaminergic indices in rat nucleus accumbens whereas Modafinil increased dopamine release. In rodents, Pitolisant was without any effect on locomotion and reduced the cocaine-induced hyperlocomotion. In addition, no locomotor sensitization and no conditioned hyperlocomotion were evidenced with this compound in rats whereas significant effects were elicited by Modafinil. Finally, Pitolisant was devoid of any significant effects in the three standard drug abuse tests (including self-administration in monkeys) and in the physical dependence model. Conclusions and Implications No potential drug abuse liability for Pitolisant was evidenced in various in vivo rodent and primate models, whereas the same does not seem so clear in the case of Modafinil. PMID:23472741

  1. New pyridazinone-4-carboxamides as new cannabinoid receptor type-2 inverse agonists: Synthesis, pharmacological data and molecular docking.

    PubMed

    Ragusa, Giulio; Gómez-Cañas, María; Morales, Paula; Rodríguez-Cueto, Carmen; Pazos, María R; Asproni, Battistina; Cichero, Elena; Fossa, Paola; Pinna, Gerard A; Jagerovic, Nadine; Fernández-Ruiz, Javier; Murineddu, Gabriele

    2017-02-15

    In the last few years, cannabinoid type-2 receptor (CB2R) selective ligands have shown a great potential as novel therapeutic drugs in several diseases. With the aim of discovering new selective cannabinoid ligands, a series of pyridazinone-4-carboxamides was designed and synthesized, and the new derivatives tested for their affinity toward the hCB1R and hCB2R. The 6-(4-chloro-3-methylphenyl)-2-(4-fluorobenzyl)-N-(cis-4-methylcyclohexyl)-3-oxo-2,3-dihydropyridazine-4-carboxamide (9) displayed high CB2-affinity (KiCB2 = 2.0 ± 0.81 nM) and a notable selectivity (KiCB1/KiCB2 > 2000). In addition, 9 and other active new synthesized entities have demonstrated to behave as CB2R inverse agonists in [(35)S]-GTPγS binding assay. ADME predictions of the newly synthesized CB2R ligands suggest a favourable pharmacokinetic profile. Docking studies disclosed the specific pattern of interactions of these derivatives. Our results support that pyridazinone-4-carboxamides represent a new promising scaffold for the development of potent and selective CB2R ligands.

  2. High dose 17 beta-estradiol and the alpha-estrogen agonist PPT trigger apoptosis in human adrenal carcinoma cells but the beta-estrogen agonist DPN does not.

    PubMed

    Prieto, L M; Brown, J W; Perez-Stable, C; Fishman, L M

    2008-05-01

    Previous studies have shown that high dose 17beta-estradiol (10 (-5) M) has a G2/M blocking effect in SW-13 human adrenal carcinoma cultures and strongly enhances apoptosis. To examine the differential effects of estrogen alpha and beta-receptors in this system, we incubated SW-13 cells with specific alpha- and beta-estrogen receptor agonists, PPT [4,4',4''-(propyl-[ (1)H]-pyrazole-1,3,5-triyl) trisphenol] and DPN [2,3-bis (4-hydroxyphenyl) propionitrile], respectively (each at 10 (-5) M). Flow cytometry was used to analyze the percentages of cells in various phases of the cell cycle [sub-G1 (apoptosis), G1, S, and G2/M] in each experimental condition. Exposure to 17 beta-estradiol for 48 hours increased apoptosis more than 5-fold (from 3.6+/-0.5 to 20+/-2.2% of cells; p<0.01). The alpha-estrogen agonist PPT had a similar effect, increasing apoptosis to 22+/-1.7% (p<0.01), but the beta-agonist DPN caused no change (3.6+/-0.5 vs. 3.9+/-0.8%). While estrogen and the alpha-estrogen agonist decrease apoptosis in this system, both of these compounds decreased the percentage of cells in G1 (from 59+/-1.4% for control to 34+/-2.3% for estrogen and 40+/-2.0% for PPT; p<0.01 for both agents relative to control); the beta-agonist again had no effect. Estrogen was also found to block the cell cycle in G2/M, increasing it from 15+/-0.4 to 21+/-1.0% of cells (p<0.01), but neither the alpha- nor beta-estrogen agonists had any effect at this point in the cell cycle, indicating that the influence of estrogen was not likely to be either alpha- or beta-receptor mediated. There was no apparent effect of any of these agents on DNA synthesis, as indicated by unchanged percentages of cells in S phase. These studies suggest that induction of apoptosis by estrogen in SW-13 human adrenal cortical carcinoma cultures is mediated by the alpha-receptor, but the G2/M blocking effect of estrogen is not likely to be related to either alpha or beta mechanisms.

  3. 86Rb+ efflux mediated by alpha4beta2*-nicotinic acetylcholine receptors with high and low-sensitivity to stimulation by acetylcholine display similar agonist-induced desensitization.

    PubMed

    Marks, Michael J; Meinerz, Natalie M; Brown, Robert W B; Collins, Allan C

    2010-10-15

    The nicotinic acetylcholine receptors (nAChR) assembled from alpha4 and beta2 subunits are the most densely expressed subtype in the brain. Concentration-effect curves for agonist activation of alpha4beta2*-nAChR are biphasic. This biphasic agonist sensitivity is ascribed to differences in subunit stoichiometry. The studies described here evaluated desensitization elicited by low concentrations of epibatidine, nicotine, cytisine or methylcarbachol of brain alpha4beta2-nAChR function measured with acetylcholine-stimulated (86)Rb(+) efflux from mouse thalamic synaptosomes. Each agonist elicited concentration-dependent desensitization. The agonists differed in potency. However, IC(50) values for each agonist for desensitization of (86)Rb(+) efflux both with high (EC(50) approximately 3 microM) and low (EC(50) approximately 150 microM) acetylcholine sensitivity were not significantly different. Concentrations required to elicit desensitization were higher that their respective K(D) values for receptor binding. Even though the two components of alpha4beta2*-nAChR-mediated (86)Rb(+) efflux from mouse brain differ markedly in EC(50) values for agonist activation, they are equally sensitive to desensitization by exposure to low agonist concentrations. Mice were also chronically treated with nicotine by continuous infusion of 0, 0.5 or 4.0mg/kg/h and desensitization induced by nicotine was evaluated. Consistent with previous results, chronic nicotine treatment increased the density of epibatidine binding sites. Acute exposure to nicotine also elicited concentration-dependent desensitization of both high-sensitivity and low-sensitivity acetylcholine-stimulated (86)Rb(+) efflux from cortical and thalamic synaptosomes. Although chronic nicotine treatment reduced maximal (86)Rb(+) efflux from thalamus, IC(50) values in both brain regions were unaffected by chronic nicotine treatment. Copyright 2010 Elsevier Inc. All rights reserved.

  4. The dietary polyphenols trans-resveratrol and curcumin selectively bind human CB1 cannabinoid receptors with nanomolar affinities and function as antagonists/inverse agonists.

    PubMed

    Seely, Kathryn A; Levi, Mark S; Prather, Paul L

    2009-07-01

    The dietary polyphenols trans-resveratrol [5-[(1E)-2-(4-hydroxyphenyl)ethenyl]-1,3-benzenediol; found in red wine] and curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione] (found in curry powders) exert anti-inflammatory and antioxidant effects via poorly defined mechanisms. It is interesting that cannabinoids, derived from the marijuana plant (Cannabis sativa), produce similar protective effects via CB1 and CB2 receptors. We examined whether trans-resveratrol, curcumin, and ASC-J9 [1,7-bis(3,4-dimethoxyphenyl)-5-hydroxy-1E,4E,6E-heptatriene-3-one] (a curcumin analog) act as ligands at cannabinoid receptors. All three bind to human (h) CB1 and mouse CB1 receptors with nanomolar affinities, displaying only micromolar affinities for hCB2 receptors. Characteristic of inverse agonists, the polyphenols inhibit basal G-protein activity in membranes prepared from Chinese hamster ovary (CHO)-hCB1 cells or mouse brain that is reversed by a neutral CB1 antagonist. Furthermore, they competitively antagonize G-protein activation produced by a CB1 agonist. In intact CHO-hCB1 cells, the polyphenols act as neutral antagonists, producing no effect when tested alone, whereas competitively antagonizing CB1 agonist mediated inhibition of adenylyl cyclase activity. Confirming their neutral antagonist profile in cells, the polyphenols similarly attenuate stimulation of adenylyl cyclase activity produced by a CB1 inverse agonist. In mice, the polyphenols dose-dependently reverse acute hypothermia produced by a CB1 agonist. Upon repeated administration, the polyphenols also reduce body weight in mice similar to that produced by a CB1 antagonist/inverse agonist. Finally, trans-resveratrol and curcumin share common structural motifs with other known cannabinoid receptor ligands. Collectively, we suggest that trans-resveratrol and curcumin act as antagonists/inverse agonists at CB1 receptors at dietary relevant concentrations. Therefore, these polyphenols and their

  5. Alpha-2A Adrenoceptor Agonist Guanfacine Restores Diuretic Efficiency in Experimental Cirrhotic Ascites: Comparison with Clonidine

    PubMed Central

    Sansoè, Giovanni; Aragno, Manuela; Mastrocola, Raffaella; Mengozzi, Giulio; Parola, Maurizio

    2016-01-01

    Background In human cirrhosis, adrenergic hyperfunction causes proximal tubular fluid retention and contributes to diuretic-resistant ascites, and clonidine, a sympatholytic drug, improves natriuresis in difficult-to-treat ascites. Aim To compare clonidine (aspecific α2-adrenoceptor agonist) to SSP-002021R (prodrug of guanfacine, specific α2A-receptor agonist), both associated with diuretics, in experimental cirrhotic ascites. Methods and Results Six groups of 12 rats were studied: controls (G1); controls receiving furosemide and potassium canrenoate (G2); rats with ascitic cirrhosis due to 14-week CCl4 treatment (G3); cirrhotic rats treated (over the 11th-14th CCl4 weeks) with furosemide and canrenoate (G4), furosemide, canrenoate and clonidine (G5), or diuretics and SSP002021R (G6). Three rats of each group had their hormonal status and renal function assessed at the end of 11th, 12th, 13th, and 14th weeks of respective treatments.Cirrhotic rats in G3 and G4 gained weight over the 12th-14th CCl4 weeks. In G4, brief increase in sodium excretion over the 11th-12th weeks preceded worsening of inulin clearance and natriuresis (diuretic resistance). In comparison with G4, the addition of clonidine (G5) or guanfacine (G6) to diuretics improved, respectively, sodium excretion over the 11th-12th CCl4 weeks, or GFR and electrolytes excretion over the 13th-14th CCl4 weeks. Natriuretic responses in G5 and G6 were accompanied by reduced catecholamine serum levels. Conclusions α2A-receptor agonists restore glomerular filtration rate and natriuresis, and delay diuretic-resistant ascites in experimental advanced cirrhosis. Clonidine ameliorates diuretic-dependent natriuresis just for a short time. PMID:27384184

  6. Alpha-2 Adrenergic Receptor Agonists: A Review of Current Clinical Applications

    PubMed Central

    Giovannitti, Joseph A.; Thoms, Sean M.; Crawford, James J.

    2015-01-01

    The α-2 adrenergic receptor agonists have been used for decades to treat common medical conditions such as hypertension; attention-deficit/hyperactivity disorder; various pain and panic disorders; symptoms of opioid, benzodiazepine, and alcohol withdrawal; and cigarette craving.1 However, in more recent years, these drugs have been used as adjuncts for sedation and to reduce anesthetic requirements. This review will provide an historical perspective of this drug class, an understanding of pharmacological mechanisms, and an insight into current applications in clinical anesthesiology. PMID:25849473

  7. Evidence of BrdU-positive retinal neurons after application of an Alpha7 nicotinic acetylcholine receptor agonist.

    PubMed

    Webster, Mark K; Cooley-Themm, Cynthia A; Barnett, Joseph D; Bach, Harrison B; Vainner, Jessica M; Webster, Sarah E; Linn, Cindy L

    2017-03-27

    Irreversible vision loss due to disease or age is responsible for a reduced quality of life. The experiments in this study test the hypothesis that the α7 nicotinic acetylcholine receptor agonist, PNU-282987, leads to the generation of retinal neurons in an adult mammalian retina in the absence of retinal injury or exogenous growth factors. Using antibodies against BrdU, retinal ganglion cells, progenitor cells and Müller glia, the results of this study demonstrate that multiple types of retinal cells and neurons are generated after eye drop application of PNU-282987 in adult Long Evans rats in a dose-dependent manner. The results of this study provide evidence that progenitor cells, derived from Müller glia after treatment with PNU-282987, differentiate and migrate to the photoreceptor and retinal ganglion cell layers. If retinas were treated with the alpha7 nAChR antagonist, methyllycaconitine, before agonist treatment, BrdU-positive cells were significantly reduced. As adult mammalian neurons do not typically regenerate or proliferate, these results have implications for reversing vision loss due to neurodegenerative disease or the aging process to improve the quality of life for millions of patients. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway

    PubMed Central

    Huang, Ruili; Sakamuru, Srilatha; Martin, Matt T.; Reif, David M.; Judson, Richard S.; Houck, Keith A.; Casey, Warren; Hsieh, Jui-Hua; Shockley, Keith R.; Ceger, Patricia; Fostel, Jennifer; Witt, Kristine L.; Tong, Weida; Rotroff, Daniel M.; Zhao, Tongan; Shinn, Paul; Simeonov, Anton; Dix, David J.; Austin, Christopher P.; Kavlock, Robert J.; Tice, Raymond R.; Xia, Menghang

    2014-01-01

    The U.S. Tox21 program has screened a library of approximately 10,000 (10K) environmental chemicals and drugs in three independent runs for estrogen receptor alpha (ERα) agonist and antagonist activity using two types of ER reporter gene cell lines, one with an endogenous full length ERα (ER-luc; BG1 cell line) and the other with a transfected partial receptor consisting of the ligand binding domain (ER-bla; ERα β-lactamase cell line), in a quantitative high-throughput screening (qHTS) format. The ability of the two assays to correctly identify ERα agonists and antagonists was evaluated using a set of 39 reference compounds with known ERα activity. Although both assays demonstrated adequate (i.e. >80%) predictivity, the ER-luc assay was more sensitive and the ER-bla assay more specific. The qHTS assay results were compared with results from previously published ERα binding assay data and showed >80% consistency. Actives identified from both the ER-bla and ER-luc assays were analyzed for structure-activity relationships (SARs) revealing known and potentially novel ERα active structure classes. The results demonstrate the feasibility of qHTS to identify environmental chemicals with the potential to interact with the ERα signaling pathway and the two different assay formats improve the confidence in correctly identifying these chemicals. PMID:25012808

  9. A Randomized Exploratory Trial of an Alpha-7 Nicotinic Receptor Agonist (TC-5619) for Cognitive Enhancement in Schizophrenia

    PubMed Central

    Lieberman, Jeffrey A; Dunbar, Geoffrey; Segreti, Anthony C; Girgis, Ragy R; Seoane, Frances; Beaver, Jessica S; Duan, Naihua; Hosford, David A

    2013-01-01

    This exploratory trial was conducted to test the effects of an alpha7 nicotinic receptor partial agonist, TC-5619, on cognitive dysfunction and negative symptoms in subjects with schizophrenia. In the United States and India, 185 outpatients (18–60 years; male 69% 46% tobacco users) with schizophrenia treated with quetiapine or risperidone monotherapy were randomized to 12 weeks of placebo (n=91) or TC-5619 (n=94; orally once daily 1 mg day 1 to week 4, 5 mg week 4 to 8, and 25 mg week 8 to 12). The primary efficacy outcome measure was the Groton Maze Learning Task (GMLT; executive function) of the CogState Schizophrenia Battery (CSB). Secondary outcome measures included: CSB composite score; Scale for Assessment of Negative Symptoms (SANS); Clinical Global Impression-Global Improvement (CGI-I); CGI-severity (CGI-S); and Subject Global Impression-Cognition. GMLT statistically favored TC-5619 (P=0.036) in this exploratory trial. SANS also statistically favored TC-5619 (P=0.030). No other secondary outcome measure demonstrated a drug effect in the total population; there was a statistically significant drug effect on working memory in tobacco users. The results were typically stronger in favor of TC-5619 in tobacco users and occasionally better in the United States than in India. TC-5619 was generally well tolerated with no clinically noteworthy safety findings. These results support the potential benefits of TC-5619 and alpha7 nicotinic receptor partial agonists for cognitive dysfunction and negative symptoms in schizophrenia. PMID:23303043

  10. The inverse agonist effect of rimonabant on G protein activation is not mediated by the cannabinoid CB1 receptor: evidence from postmortem human brain.

    PubMed

    Erdozain, A M; Diez-Alarcia, R; Meana, J J; Callado, L F

    2012-01-15

    Rimonabant (SR141716) was the first potent and selective cannabinoid CB1 receptor antagonist synthesized. Several data support that rimonabant behaves as an inverse agonist. Moreover, there is evidence suggesting that this inverse agonism may be CB1 receptor-independent. The aim of the present study was to elucidate whether the effect of rimonabant over G protein activation in postmortem human brain is CB1 dependent or independent. [(35)S]GTPγS binding assays and antibody-capture [(35)S]GTPγS scintillation proximity assays (SPA) were performed in human and mice brain. [(3)H]SR141716 binding characteristics were also studied. Rimonabant concentration-dependently decreased basal [(35)S]GTPγS binding to human cortical membranes. This effect did not change in the presence of either the CB1 receptor agonist WIN 55,212-2, the CB1 receptor neutral antagonist O-2050, or the CB1 allosteric modulator Org 27569. [(35)S]GTPγS binding assays performed in CB1 knockout mice brains revealed that rimonabant inhibited the [(35)S]GTPγS binding in the same manner as it did in wild-type mice. The SPA combined with the use of specific antibody-capture of G(α) specific subunits showed that rimonabant produces its inverse agonist effect through G(i3), G(o) and G(z) subtypes. This effect was not inhibited by the CB1 receptor antagonist O-2050. Finally, [(3)H]SR141716 binding assays in human cortical membranes demonstrated that rimonabant recognizes an additional binding site other than the CB1 receptor orthosteric binding site recognized by O-2050. This study provides new data demonstrating that at least the inverse agonist effect observed with >1μM concentrations of rimonabant in [(35)S]GTPγS binding assays is not mediated by the CB1 receptor in human brain.

  11. Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease

    PubMed Central

    Liu, Ruijie; Li, Zhengzhe; Chen, Yibang; Evans, Todd; Chuang, Peter; Das, Bhaskar; He, John Cijiang

    2011-01-01

    Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN. PMID:22125642

  12. Structural Basis for Iloprost as a Dual Peroxisome Proliferator-activated Receptor [alpha/delta] Agonist

    SciTech Connect

    Jin, Lihua; Lin, Shengchen; Rong, Hui; Zheng, Songyang; Jin, Shikan; Wang, Rui; Li, Yong

    2012-03-15

    Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural and functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.

  13. Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189.

    PubMed

    Reiner, Anton; Heldt, Scott A; Presley, Chaela S; Guley, Natalie H; Elberger, Andrea J; Deng, Yunping; D'Surney, Lauren; Rogers, Joshua T; Ferrell, Jessica; Bu, Wei; Del Mar, Nobel; Honig, Marcia G; Gurley, Steven N; Moore, Bob M

    2014-12-31

    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50-60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50-60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI.

  14. Motor, Visual and Emotional Deficits in Mice after Closed-Head Mild Traumatic Brain Injury Are Alleviated by the Novel CB2 Inverse Agonist SMM-189

    PubMed Central

    Reiner, Anton; Heldt, Scott A.; Presley, Chaela S.; Guley, Natalie H.; Elberger, Andrea J.; Deng, Yunping; D’Surney, Lauren; Rogers, Joshua T.; Ferrell, Jessica; Bu, Wei; Del Mar, Nobel; Honig, Marcia G.; Gurley, Steven N.; Moore, Bob M.

    2014-01-01

    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50–60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50–60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI. PMID:25561230

  15. Specific targeting of the GABA-A receptor α5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice

    PubMed Central

    Braudeau, J; Delatour, B; Duchon, A; Pereira, P Lopes; Dauphinot, L; de Chaumont, F; Olivo-Marin, J-C; Dodd, RH; Hérault, Y; Potier, M-C

    2011-01-01

    An imbalance between inhibitory and excitatory neurotransmission has been proposed to contribute to altered brain function in individuals with Down syndrome (DS). Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system and accordingly treatment with GABA-A antagonists can efficiently restore cognitive functions of Ts65Dn mice, a genetic model for DS. However, GABA-A antagonists are also convulsant which preclude their use for therapeutic intervention in DS individuals. Here, we have evaluated safer strategies to release GABAergic inhibition using a GABA-A-benzodiazepine receptor inverse agonist selective for the α5-subtype (α5IA). We demonstrate that α5IA restores learning and memory functions of Ts65Dn mice in the novel-object recognition and in the Morris water maze tasks. Furthermore, we show that following behavioural stimulation, α5IA enhances learning-evoked immediate early gene products in specific brain regions involved in cognition. Importantly, acute and chronic treatments with α5IA do not induce any convulsant or anxiogenic effects that are associated with GABA-A antagonists or non-selective inverse agonists of the GABA-A-benzodiazepine receptors. Finally, chronic treatment with α5IA did not induce histological alterations in the brain, liver and kidney of mice. Our results suggest that non-convulsant α5-selective GABA-A inverse agonists could improve learning and memory deficits in DS individuals. PMID:21693554

  16. Cyclic analogs of alpha-melanocyte-stimulating hormone (alphaMSH) with high agonist potency and selectivity at human melanocortin receptor 1b.

    PubMed

    Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana

    2008-06-01

    Alpha-melanotropin (alphaMSH), Ac-Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2,(1) has been long recognized as an important physiological regulator of skin and hair pigmentation in mammals. Binding of this peptide to the melanocortin receptor 1 (MC1R) leads to activation of tyrosinase, the key enzyme of the melanin biosynthesis pathway. In this study, interactions of the human MC1bR (an isoform of the receptor 1a) with the synthetic cyclic analogs of alphaMSH were studied. These ligands were analogs of MTII, Ac-Nle4-cyclo-(Asp5-His6-D-Phe7-Arg8-Trp9-Lys10)-NH2, a potent pan-agonist at the human melanocortin receptors (hMC1,3-5R). In the structure of MTII, the His6-D-Phe7-Arg8-Trp9 segment has been recognized as "essential" for molecular recognition at the human melanocortin receptors (hMC1,3-5R). Herein, the role of the Trp9 in the ligand interactions with the hMC1b,3-5R has been reevaluated. Analogs with various amino acids in place of Trp9 were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4 and 5 (hMC1b,3-5R). Several of the new peptides were high potency agonists (partial) at hMC1bR (EC50 from 0.5 to 20 nM) and largely inactive at hMC3-5R. The bulky aromatic side chain in position 9, such as that in Trp, was found not to be essential to agonism (partial) of the studied peptides at hMC1bR.

  17. APD125, a Selective Serotonin 5-HT2A Receptor Inverse Agonist, Significantly Improves Sleep Maintenance in Primary Insomnia

    PubMed Central

    Rosenberg, Russell; Seiden, David J.; Hull, Steven G.; Erman, Milton; Schwartz, Howard; Anderson, Christen; Prosser, Warren; Shanahan, William; Sanchez, Matilde; Chuang, Emil; Roth, Thomas

    2008-01-01

    Introduction: Insomnia is a condition affecting 10% to 15% of the adult population and is characterized by difficulty falling asleep, difficulty staying asleep, or nonrestorative sleep, accompanied by daytime impairment or distress. This study evaluates APD125, a selective inverse agonist of the 5-HT2A receptor, for treatment of chronic insomnia, with particular emphasis on sleep maintenance. In phase 1 studies, APD125 improved sleep maintenance and was well tolerated. Methodology: Adult subjects (n = 173) with DSM-IV defined primary insomnia were randomized into a multicenter, double-blind, placebo-controlled, 3-way crossover study to compare 2 doses of APD125 (10 mg and 40 mg) with placebo. Each treatment period was 7 days with a 7- to 9-day washout period between treatments. Polysomnographic recordings were performed at the initial 2 screening nights and at nights (N) 1/2 and N 6/7 of each treatment period. Results: APD125 was associated with significant improvements in key sleep maintenance parameters measured by PSG. Wake time after sleep onset decreased (SEM) by 52.5 (3.2) min (10 mg) and 53.5 (3.5) min (40 mg) from baseline to N 1/2 vs. 37.8 (3.4) min for placebo, (P < 0.0001 for both doses vs placebo), and by 51.7 (3.4) min (P = 0.01) and 48.0 (3.6) min (P = 0.2) at N 6/7 vs. 44.0 (3.8) min for placebo. Significant APD125 effects on wake time during sleep were also seen (P < 0.0001 N 1/2, P < 0.001 N 6/7). The number of arousals and number of awakenings decreased significantly with APD125 treatment compared to placebo. Slow wave sleep showed a statistically significant dose-dependent increase. There was no significant decrease in latency to persistent sleep. No serious adverse events were reported, and no meaningful differences in adverse event profiles were observed between either dose of APD125 and placebo. APD125 was not associated with next-day psychomotor impairment as measured by Digit Span, Digit Symbol Copy, and Digit Symbol Coding Tests

  18. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.

    2015-02-01

    To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.

  19. Quantitation of cannabinoid CB1 receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand

    PubMed Central

    Terry, Garth E.; Liow, Jeih-San; Zoghbi, Sami S.; Hirvonen, Jussi; Farris, Amanda G.; Lerner, Alicja; Tauscher, Johannes T.; Schaus, John M.; Phebus, Lee; Felder, Christian C.; Morse, Cheryl L.; Hong, Jinsoo S.; Pike, Victor W.; Halldin, Christer; Innis, Robert B.

    2009-01-01

    [11C]MePPEP is a high affinity, CB1 receptor-selective, inverse agonist that has been studied in rodents and monkeys. We examined the ability of [11C]MePPEP to quantify CB1 receptors in human brain as distribution volume calculated with the “gold standard” method of compartmental modeling and compared results with the simple measure of brain uptake. A total of 17 healthy subjects participated in 26 positron emission tomography (PET) scans, with 8 having two PET scans to assess retest variability. After injection of [11C]MePPEP, brain uptake of radioactivity was high (e.g., 3.6 SUV in putamen region at ~60 minutes) and washed out very slowly. A two-tissue compartment model yielded values of distribution volume (which is proportional to receptor density) that were both well identified (SE 5%) and stable between 60 and 210 minutes. The simple measure of brain uptake (average concentration of radioactivity between 40 and 80 minutes) had good retest variability (~8%) and moderate intersubject variability (16%, coefficient of variation). In contrast, distribution volume had two-fold greater retest variability (~15%) and, thus, less precision. In addition, distribution volume had three-fold greater intersubject variability (~52%). The decreased precision of distribution volume compared to brain uptake was likely due to the slow washout of radioactivity from brain and to noise in measurements of the low concentrations of [11C]MePPEP in plasma. These results suggest that brain uptake can be used for within subject studies (e.g., to measure receptor occupancy by medications) but that distribution volume remains the gold standard for accurate measurements between groups. PMID:19573609

  20. Ciproxifan, a histamine H3 receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus.

    PubMed

    Lu, Cheng-Wei; Lin, Tzu-Yu; Chang, Chia-Ying; Huang, Shu-Kuei; Wang, Su-Jane

    2017-03-15

    Ciproxifan is an H3 receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca(2+)-dependent glutamate release and cytosolic Ca(2+) concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca(2+)-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A2 (PLA2) inhibitor OBAA, prostaglandin E2 (PGE2), PGE2 subtype 2 (EP2) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H3 receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca(2+) entry by diminishing PLA2/PGE2/EP2 receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release.

  1. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    PubMed

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.

  2. TLR agonists downregulate H2-O in CD8alpha- dendritic cells.

    PubMed

    Porter, Gavin W; Yi, Woelsung; Denzin, Lisa K

    2011-10-15

    Peptide loading of MHC class II (MHCII) molecules is catalyzed by the nonclassical MHCII-related molecule H2-M. H2-O, another MHCII-like molecule, associates with H2-M and modulates H2-M function. The MHCII presentation pathway is tightly regulated in dendritic cells (DCs), yet how the key modulators of MHCII presentation, H2-M and H2-O, are affected in different DC subsets in response to maturation is unknown. In this study, we show that H2-O is markedly downregulated in vivo in mouse CD8α(-) DCs in response to a broad array of TLR agonists. In contrast, CD8α(+) DCs only modestly downregulated H2-O in response to TLR agonists. H2-M levels were slightly downmodulated in both CD8α(-) and CD8α(+) DCs. As a consequence, H2-M/H2-O ratios significantly increased for CD8α(-) but not for CD8α(+) DCs. The TLR-mediated downregulation was DC specific, as B cells did not show significant H2-O and H2-M downregulation. TLR4 signaling was required to mediate DC H2-O downregulation in response to LPS. Finally, our studies showed that the mechanism of H2-O downregulation was likely due to direct protein degradation of H2-O as well as downregulation of H2-O mRNA levels. The differential H2-O and H2-M modulation after DC maturation supports the proposed roles of CD8α(-) DCs in initiating CD4-restricted immune responses by optimal MHCII presentation and of CD8α(+) DCs in promoting immune tolerance via presentation of low levels of MHCII-peptide.

  3. Protein kinase C mediates the synergistic interaction between agonists acting at alpha2-adrenergic and delta-opioid receptors in spinal cord.

    PubMed

    Overland, Aaron C; Kitto, Kelley F; Chabot-Doré, Anne-Julie; Rothwell, Patrick E; Fairbanks, Carolyn A; Stone, Laura S; Wilcox, George L

    2009-10-21

    Coactivation of spinal alpha(2)-adrenergic receptors (ARs) and opioid receptors produces antinociceptive synergy. Antinociceptive synergy between intrathecally administered alpha(2)AR and opioid agonists is well documented, but the mechanism underlying this synergy remains unclear. The delta-opioid receptor (DOP) and the alpha(2A)ARs are coexpressed on the terminals of primary afferent fibers in the spinal cord where they may mediate this phenomenon. We evaluated the ability of the DOP-selective agonist deltorphin II (DELT), the alpha(2)AR agonist clonidine (CLON) or their combination to inhibit calcitonin gene-related peptide (CGRP) release from spinal cord slices. We then examined the possible underlying signaling mechanisms involved through coadministration of inhibitors of phospholipase C (PLC), protein kinase C (PKC) or protein kinase A (PKA). Potassium-evoked depolarization of spinal cord slices caused concentration-dependent release of CGRP. Coadministration of DELT and CLON inhibited the release of CGRP in a synergistic manner as confirmed statistically by isobolograpic analysis. Synergy was dependent on the activation of PLC and PKC, but not PKA, whereas the effect of agonist administration alone was only dependent on PLC. The importance of these findings was confirmed in vivo, using a thermal nociceptive test, demonstrating the PKC dependence of CLON-DELT antinociceptive synergy in mice. That inhibition of CGRP release by the combination was maintained in the presence of tetrodotoxin in spinal cord slices suggests that synergy does not rely on interneuronal signaling and may occur within single subcellular compartments. The present study reveals a novel signaling pathway underlying the synergistic analgesic interaction between DOP and alpha(2)AR agonists in the spinal cord.

  4. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  5. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  6. Detection of multiple H3 receptor affinity states utilizing [3H]A-349821, a novel, selective, non-imidazole histamine H3 receptor inverse agonist radioligand.

    PubMed

    Witte, David G; Yao, Betty Bei; Miller, Thomas R; Carr, Tracy L; Cassar, Steven; Sharma, Rahul; Faghih, Ramin; Surber, Bruce W; Esbenshade, Timothy A; Hancock, Arthur A; Krueger, Kathleen M

    2006-07-01

    1. A-349821 is a selective histamine H3 receptor antagonist/inverse agonist. Herein, binding of the novel non-imidazole H3 receptor radioligand [3H]A-349821 to membranes expressing native or recombinant H3 receptors from rat or human sources was characterized and compared with the binding of the agonist [3H]N--methylhistamine ([3H]NMH). 2. [3H]A-349821 bound with high affinity and specificity to an apparent single class of saturable sites and recognized human H3 receptors with 10-fold higher affinity compared to rat H3 receptors. [3H]A-349821 detected larger populations of receptors compared to [3H]NMH. 3. Displacement of [3H]A-349821 binding by H3 receptor antagonists/inverse agonists was monophasic, suggesting recognition of a single binding site, while that of H3 receptor agonists was biphasic, suggesting recognition of both high- and low-affinity H3 receptor sites. 4. pKi values of high-affinity binding sites for H3 receptor competitors utilizing [3H]A-349821 were highly correlated with pKi values obtained with [3H]NalphaMH, consistent with labelling of H3 receptors by [3H]A-349821. 5. Unlike assays utilizing [3H]NMH, addition of GDP had no effect on saturation parameters measured with [3H]A-349821, while displacement of [3H]A-349821 binding by the H3 receptor agonist histamine was sensitive to GDP. 6. In conclusion, [3H]A-349821 labels interconvertible high- and low-affinity states of the H3 receptor, and displays improved selectivity over imidazole-containing H3 receptor antagonist radioligands. [3H]A-349821 competition studies showed significant differences in the proportions and potencies of high- and low-affinity sites across species, providing new information about the fundamental pharmacological nature of H3 receptors.

  7. The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist, AVE8134, attenuates the progression of heart failure and increases survival in rats.

    PubMed

    Linz, Wolfgang; Wohlfart, Paulus; Baader, Manuel; Breitschopf, Kristin; Falk, Eugen; Schäfer, Hans-Ludwig; Gerl, Martin; Kramer, Werner; Rütten, Hartmut

    2009-07-01

    To investigate the efficacy of the peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, AVE8134, in cellular and experimental models of cardiac dysfunction and heart failure. In Sprague Dawley rats with permanent ligation of the left coronary artery (post-MI), AVE8134 was compared to the PPARgamma agonist rosiglitazone and in a second study to the ACE inhibitor ramipril. In DOCA-salt sensitive rats, efficacy of AVE8134 on cardiac hypertrophy and fibrosis was investigated. Finally, AVE8134 was administered to old spontaneously hypertensive rats (SHR) at a non-blood pressure lowering dose with survival as endpoint. In cellular models, we studied AVE8134 on hypertrophy in rat cardiomyocytes, nitric oxide signaling in human endothelial cells (HUVEC) and LDL-uptake in human MonoMac-6 cells. In post-MI rats, AVE8134 dose-dependently improved cardiac output, myocardial contractility and relaxation and reduced lung and left ventricular weight and fibrosis. In contrast, rosiglitazone exacerbated cardiac dysfunction. Treatment at AVE8134 decreased plasma proBNP and arginine and increased plasma citrulline and urinary NOx/creatinine ratio. In DOCA rats, AVE8134 prevented development of high blood pressure, myocardial hypertrophy and cardiac fibrosis, and ameliorated endothelial dysfunction. Compound treatment increased cardiac protein expression and phosphorylation of eNOS. In old SHR, treatment with a low dose of AVE8134 improved cardiac and vascular function and increased life expectancy without lowering blood pressure. AVE8134 reduced phenylephrine-induced hypertrophy in adult rat cardiomyocytes. In HUVEC, Ser-1177-eNOS phosphorylation but not eNOS expression was increased. In monocytes, AVE8134 increased the expression of CD36 and the macrophage scavenger receptor 1, resulting in enhanced uptake of oxidized LDL. The PPARalpha agonist AVE8134 prevents post-MI myocardial hypertrophy, fibrosis and cardiac dysfunction. AVE8134 has beneficial effects against

  8. The peroxisome proliferator-activated receptor alpha agonist fenofibrate attenuates alcohol self-administration in rats.

    PubMed

    Haile, Colin N; Kosten, Therese A

    2017-04-01

    Fibrates are a class of medications used to treat hypercholesterolemia and dyslipidemia that target nuclear peroxisome proliferator-activated receptors (PPARs). Studies have shown the PPARα agonist fenofibrate decreases voluntary EtOH consumption however its impact on the reinforcing and motivational effects of EtOH is unknown. We evaluated the ability of fenofibrate (25, 50 and 100 mg/kg), to alter EtOH (10%, w/v) and sucrose (2%, w/v) operant self-administration in rats under a FR2 schedule of reinforcement over four days and under a progressive ratio (PR) schedule on day five of treatment. Results showed fenofibrate dose-dependently decreased EtOH self-administration under both schedules of reinforcement with the greatest effects seen after four to five days of treatment. Fenofibrate decreased responding for sucrose only under the PR schedule of reinforcement and this effect was not dose-dependent. These findings provide further evidence for fenofibrate as a potential treatment for alcohol use disorder in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists.

    PubMed

    Swedberg, Joakim E; Schroeder, Christina I; Mitchell, Justin M; Durek, Thomas; Fairlie, David P; Edmonds, David J; Griffith, David A; Ruggeri, Roger B; Derksen, David R; Loria, Paula M; Liras, Spiros; Price, David A; Craik, David J

    2015-10-20

    Type 2 diabetes mellitus (T2DM) results from compromised pancreatic β-cell function, reduced insulin production, and lowered insulin sensitivity in target organs resulting in hyperglycemia. The GLP-1 hormone has two biologically active forms, GLP-1-(7-37) and GLP-1-(7-36)amide, which are equipotent at the glucagon-like peptide-1 receptor (GLP-1R). These peptides are central both to normal glucose metabolism and dysregulation in T2DM. Several structurally modified GLP-1 analogues are now approved drugs, and a number of other analogues are in clinical trials. None of these compounds is orally bioavailable and all require parenteral delivery. Recently, a number of smaller peptidomimetics containing 11-12 natural and unnatural amino acids have been identified that have similar insulin regulating profiles as GLP-1. The α-conotoxins are a class of disulfide rich peptide venoms isolated from cone snails, and are known for their highly constrained structures and resistance to enzymatic degradation. In this study, we examined whether 11-residue peptidomimetics incorporated into α-conotoxin scaffolds, forming monocyclic or bicyclic compounds constrained by disulfide bonds and/or backbone cyclization, could activate the GLP-1 receptor (GLP-1R). Several compounds showed potent (nanomolar) agonist activity at GLP-1R, as evaluated via cAMP signaling. In addition, HPLC retention times and in silico calculations suggested that mono- and bicyclic compounds had more favorable n-octanol/water partition coefficients according to the virtual partition coefficient model (vLogP), while maintaining a smaller radius of gyration compared to corresponding uncyclized peptidomimetics. Our findings suggest that cyclic peptidomimetics provide a potential avenue for future design of potent, compact ligands targeting GLP-1R and possessing improved physicochemical properties. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. 1-[(Imidazolidin-2-yl)imino]indazole. Highly alpha 2/I1 selective agonist: synthesis, X-ray structure, and biological activity.

    PubMed

    Saczewski, Franciszek; Kornicka, Anita; Rybczyńska, Apolonia; Hudson, Alan L; Miao, Shu Sean; Gdaniec, Maria; Boblewski, Konrad; Lehmann, Artur

    2008-06-26

    Novel benzazole derivatives bearing a (imidazolidin-2-yl)imino moiety at position 1 or 2 were synthesized by reacting 1-amino- or 2-aminobenzazoles with N, N'-bis( tert-butoxycarbonyl)imidazolidine-2-thione in the presence of HgCl 2. Structures of 1-[(imidazolidin-2-yl)imino]indazole (marsanidine, 13a) and free base of the 4-Cl derivative 12e were confirmed by X-ray single crystal structure analysis. Compound 13a was found to be the selective alpha 2-adrenoceptor ligand with alpha 2-adrenoceptor/imidazoline I 1 receptor selectivity ratio of 3879, while 1-[(imidazolidin-2-yl)imino]-7-methylindazole ( 13k) proved to be a mixed alpha 2-adrenoceptor/imidazoline I 1 receptor agonist with alpha 2/I 1 selectivity ratio of 7.2. Compound 13k when administered intravenously to male Wistar rats induced a dose-dependent decrease in mean arterial blood pressure (ED50 = 0.6 microg/kg) and heart rate, which was attenuated following pretreatment with alpha 2A-adrenoceptor antagonist RX821002. Compound 13a may find a variety of medical uses ascribed to alpha 2-adrenoceptor agonists, and its 7-methyl derivative 13k is a good candidate for development as a centrally acting antihypertensive drug.

  11. Alpha-1 adrenergic receptor agonists modulate ductal secretion of BDL rats via Ca(2+)- and PKC-dependent stimulation of cAMP.

    PubMed

    LeSage, Gene D; Alvaro, Domenico; Glaser, Shannon; Francis, Heather; Marucci, Luca; Roskams, Tania; Phinizy, Jo Lynne; Marzioni, Marco; Benedetti, Antonio; Taffetani, Silvia; Barbaro, Barbara; Fava, Giammarco; Ueno, Yoshiyuki; Alpini, Gianfranco

    2004-11-01

    Acetylcholine potentiates secretin-stimulated ductal secretion by Ca(2+)-calcineurin-mediated modulation of adenylyl cyclase. D2 dopaminergic receptor agonists inhibit secretin-stimulated ductal secretion via activation of protein kinase C (PKC)-gamma. No information exists regarding the effect of adrenergic receptor agonists on ductal secretion in a model of cholestasis induced by bile duct ligation (BDL). We evaluated the expression of alpha-1A/1C, -1beta and beta-1 adrenergic receptors in liver sections and cholangiocytes from normal and BDL rats. We evaluated the effects of the alpha-1 and beta-1 adrenergic receptor agonists (phenylephrine and dobutamine, respectively) on bile and bicarbonate secretion and cholangiocyte IP(3) and Ca(2+) levels in normal and BDL rats. We measured the effect of phenylephrine on lumen expansion in intrahepatic bile duct units (IBDUs) and cyclic adenosine monophosphate (cAMP) levels in cholangiocytes from BDL rats in the absence or presence of BAPTA/AM and Gö6976 (a PKC-alpha inhibitor). We evaluated if the effects of phenylephrine on ductal secretion were associated with translocation of PKC isoforms leading to increased protein kinase A activity. Alpha-1 and beta-1 adrenergic receptors were present mostly in the basolateral domain of cholangiocytes and, following BDL, their expression increased. Phenylephrine, but not dobutamine, increased secretin-stimulated choleresis in BDL rats. Phenylephrine did not alter basal but increased secretin-stimulated IBDU lumen expansion and cAMP levels, which were blocked by BAPTA/AM and Go6976. Phenylephrine increased IP(3) and Ca(2+) levels and activated PKC-alpha and PKC-beta-II. In conclusion, coordinated regulation of ductal secretion by secretin (through cAMP) and adrenergic receptor agonist activation (through Ca(2+)/PKC) induces maximal ductal bicarbonate secretion in liver diseases. (Supplementary material for this article can be found on the HEPATOLOGY website (http

  12. Kinetic characterization of the rabbit aorta contractile response to an alpha adrenergic agonist.

    PubMed

    Cory, R N; Osman, R; Maayani, S

    1984-07-01

    The alpha-1 adrenergic response of the rabbit aorta to phenylephrine (PE) was separated into a phasic and a tonic response by virtue of their different dependence on extracellular [Ca++]. The kinetics of each response was characterized with respect to its dependence on [PE] and [Ca++]. The phasic response is independent of extracellular calcium and has a rapid onset followed by a first order decay. Although its maximal attainable response is saturable with respect to [PE] and [Ca++], its rate constant for onset does not depend on the concentration of calcium in the preincubation buffer. We were unable to show that this rate constant for onset is saturable with respect to [PE]. This suggests that the rate-determining step of the phasic response is the diffusion-controlled formation of the drug-receptor complex. The tonic response depends on extracellular calcium, shows first order kinetics of onset and reaches a steady-state level of contraction that is saturable with respect to [PE] and extracellular [Ca++]. The rate constant for the generation of the tonic response depends on [PE] in a saturable manner and linearly on extracellular [Ca++]. This suggests that the rate-determining step could be the activation of a hypothetical effector by the drug-receptor complex. The activated effector would enable the transport of calcium ions into the cell. The kinetic studies predict that the efficacy of a drug in this system is the maximal rate of activation of the effector by the drug-receptor complex.

  13. Aerosolized 5 alpha-androst-16-en-3-one reduced agonistic behavior and temporarily improved performance of growing pigs.

    PubMed

    McGlone, J J; Stansbury, W F; Tribble, L F

    1986-09-01

    Two experiments were conducted to determine the effect of aerosolized 5 alpha-androst-16-en-3-one (androstenone) on pig aggressive and submissive behaviors and on pig performance. In Exp. 1, twenty-four 5-wk-old pigs were randomly regrouped in a two-pig bioassay. A solution of either isopropyl alcohol or .5 mg androstenone in isopropyl alcohol per pig was aerosolized on both pigs in the observation pens. Summarization of video records from the 90-min bioassay showed that pens of pigs aerosolized with androstenone spent 58% less time engaged in aggressive behavior (P less than .05) and 96% less time engaged in submissive behavior (P less than .01). In Exp. 2, a performance trial was conducted with finishing pigs from 57 to 91 kg body weight. Factorially arranged treatments included aerosolized androstenone (.5 mg/pig) or the vehicle isopropyl alcohol and regrouping into uniform body weight blocks or no regrouping. Regrouping depressed average daily feed consumption (P less than .05) and average daily gain (P less than .05) for the first 7 d of the trial. Pigs reveiving the androstenone aerosol had improved average daily gain (P = .01) and gain:feed ratio (P less than .01) for the first 28 d of the trial. Performance of all treated pigs was similar for the entire finishing period. This olfactory stimulant reduced pig agonistic behavior and transiently improved performance of regrouped and non-regrouped finishing pigs.

  14. Synthesis, molecular modeling and SAR study of novel pyrazolo[5,1-f][1,6]naphthyridines as CB2 receptor antagonists/inverse agonists.

    PubMed

    Dore, Antonio; Asproni, Battistina; Scampuddu, Alessia; Gessi, Stefania; Murineddu, Gabriele; Cichero, Elena; Fossa, Paola; Merighi, Stefania; Bencivenni, Serena; Pinna, Gérard A

    2016-11-01

    Pyrazolo[5,1-f][1,6]naphthyridine-carboxamide derivatives were synthesized and evaluated for the affinity at CB1 and CB2 receptors. Based on the AgOTf and proline-cocatalyzed multicomponent methodology, the ethyl 5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (12) and ethyl 5-(2,4-dichlorophenyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (13) intermediates were synthesized from the appropriate o-alkynylaldehydes, p-toluenesulfonyl hydrazide and ethyl pyruvate. Most of the novel compounds feature a p-tolyl (8a-i) or a 2,4-dichlorophenyl (8j) motif at the C5-position of the tricyclic pyrazolo[5,1-f][1,6]naphthyridine scaffold. Structural variation on the carboxamide moiety at the C2-position includes basic monocyclic, terpenoid and adamantine-based amines. Among these derivatives, compound 8h (N-adamant-1-yl-5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxamide) exhibited the highest CB2 receptor affinity (Ki=33nM) and a high degree of selectivity (KiCB1/KiCB2=173:1), whereas a similar trend in the near nM range was seen for the bornyl analogue (compound 8f, Ki=53nM) and the myrtanyl derivative 8j (Ki=67nM). Effects of 8h, 8f and 8j on forskolin-stimulated cAMP levels were determined, showing antagonist/inverse agonist properties for such compounds. Docking studies conducted for these derivatives and the reference antagonist/inverse agonist compound 4 (SR144528) disclosed the specific pattern of interactions probably related to the pyrazolo[5,1-f][1,6]naphthyridine scaffold as CB2 inverse agonists.

  15. Effects of S 38093, an antagonist/inverse agonist of histamine H3 receptors, in models of neuropathic pain in rats.

    PubMed

    Chaumette, T; Chapuy, E; Berrocoso, E; Llorca-Torralba, M; Bravo, L; Mico, J A; Chalus, M; Eschalier, A; Ardid, D; Marchand, F; Sors, A

    2017-09-06

    Histamine H3 receptors are mainly expressed on CNS neurons, particularly along the nociceptive pathways. The potential involvement of these receptors in pain processing has been suggested using H3 receptor inverse agonists. The antinociceptive effect of S 38093, a novel inverse agonist of H3 receptors, has been evaluated in several neuropathic pain models in rat and compared with those of gabapentin and pregabalin. While S 38093 did not change vocalization thresholds to paw pressure in healthy rats, it exhibited a significant antihyperalgesic effect in the Streptozocin-induced diabetic (STZ) neuropathy model after acute and chronic administration and, in the chronic constriction injury (CCI) model only after chronic administration, submitted to the paw-pressure test. Acute S 38093 administration at all doses tested displayed a significant cold antiallodynic effect in a model of acute or repeated administration of oxaliplatin-induced neuropathy submitted to cold tail immersion, cold allodynia being the main side effect of oxaliplatin in patients. The effect of S 38093 increased following chronic administration (i.e. twice a day during 5 days) in the CCI and STZ models except in the oxaliplatin models where its effect was already maximal from the first administration The kinetics and size of effect of S 38093 were similar to gabapentin and/or pregabalin. Finally, the antinociceptive effect of S 38093 could be partially mediated by α2 adrenoreceptors desensitization in the locus coeruleus. These results highlight the interest of S 38093 to relieve neuropathic pain and warrant clinical trials especially in chemotherapeutic agent-induced neuropathic pain. S 38093, a new H3 antagonist/inverse agonist, displays antiallodynic and antihyperalgesic effect in neuropathic pain, especially in oxaliplatin-induced neuropathy after chronic administration. This effect of S 38093 in neuropathic pain could be partly mediated by α2 receptors desensitization in the locus coeruleus

  16. Effects of 7-day repeated treatment with the 5-HT2A inverse agonist/antagonist pimavanserin on methamphetamine vs. food choice in male rhesus monkeys.

    PubMed

    Banks, Matthew L

    2016-08-01

    Preclinical drug vs. food choice is an emerging group of drug self-administration procedures that have shown predictive validity to clinical drug addiction. Emerging data suggest that serotonin (5-HT)2A receptors modulate mesolimbic dopamine function, such that 5-HT2A antagonists blunt the abuse-related neurochemical effects of monoamine transporter substrates, such as amphetamine or methamphetamine. Whether subchronic 5-HT2A antagonist treatment attenuates methamphetamine reinforcement in any preclinical drug self-administration procedure is unknown. The study aim was therefore to determine 7-day treatment effects with the 5-HT2A inverse agonist/antagonist pimavanserin on methamphetamine vs. food choice in monkeys. Behavior was maintained under a concurrent schedule of food delivery (1g pellets, fixed-ratio 100 schedule) and intravenous methamphetamine injections (0-0.32 mg/kg/injection, fixed-ratio 10 schedule) in male rhesus monkeys (n=3). Methamphetamine choice dose-effect functions were determined daily before and during 7-day repeated pimavanserin (1.0-10mg/kg/day, intramuscular) treatment periods. Under control conditions, increasing methamphetamine doses resulted in a corresponding increase in methamphetamine vs. food choice. Repeated pimavanserin administration failed to attenuate methamphetamine choice and produce a reciprocal increase in food choice in any monkey up to doses (3.2-10mg/kg) that suppressed rates of operant responding primarily during components where behavior was maintained by food pellets. Repeated 5-HT2A receptor inverse agonist/antagonist treatment did not attenuate methamphetamine reinforcement under a concurrent schedule of intravenous methamphetamine and food presentation in nonhuman primates. Overall, these results do not support the therapeutic potential of 5-HT2A inverse agonists/antagonists as candidate medications for methamphetamine addiction. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights

  17. FG 7142 specifically reduces meal size and the rate and regularity of sustained feeding in female rats: evidence that benzodiazepine inverse agonists reduce food palatability.

    PubMed

    Cottone, Pietro; Sabino, Valentina; Steardo, Luca; Zorrilla, Eric P

    2007-05-01

    Benzodiazepine receptor inverse agonists reduce food intake in males, but their actions in females, in whom stress-related eating disorders are more common, as well as their behavioral mode of action remain unclear. The consummatory effects of benzodiazepine receptor ligands have alternately been hypothesized to reflect changes in the hedonic evaluation of food or secondary effects of anxiety-related or cognitive properties. To test the anorectic mode of action of benzodiazepine inverse agonists, the effects of FG 7142 on feeding microstructure were studied in nondeprived female Wistar rats (n=32). Microstructure analysis used a novel meal definition that recognizes prandial drinking. On pharmacologically synchronized diestrus I, rats were pretreated (-30 min dark onset) with the benzodiazepine partial inverse agonist FG 7142 (i.p. 0, 3.75, 7.5, 15 mg/kg) in a between-subjects design. FG 7142 delayed the onset of (16-541%), decreased the amount eaten (36-52%) and drunk (63-87%), and reduced the time spent drinking (59-87%) within the first nocturnal meal. Dose-dependent incremental anorexia continued 6 h into the dark cycle, whereas FG 7142 did not suppress the quantity, duration or rate of drinking past the first meal. Treated rats ate smaller meals (17-42%) of normal duration. This reflected that FG 7142 slowed feeding within meals (9-38%) by decreasing the regularity and maintenance of feeding from pellet-to-pellet. FG 7142 did not influence postprandial satiety; meal frequency and inter-meal intervals were unaffected. FG 7142 anorexia was blocked by the benzodiazepine receptor antagonist flumazenil in a 2:1 molar ratio (n=17 rats). The very early, nonspecific (+10 min), but not subsequent (2.5, 4.5 h) feeding-specific phase, of FG 7142 anorexia was mirrored by anxiogenic-like behavior in FG 7142-treated (7.5 mg/kg) female rats (n=48) in the elevated plus-maze. Thus, benzodiazepine receptor inverse agonists preferentially lessen the maintenance of feeding in

  18. Peroxisome proliferator-activated receptor gamma agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor alpha in MCF-7 breast cancer cells.

    PubMed

    Qin, Chunhua; Burghardt, Robert; Smith, Roger; Wormke, Mark; Stewart, Jessica; Safe, Stephen

    2003-03-01

    Treatment of MCF-7 cells with the peroxisome proliferator-activated receptor (PPAR) gamma agonists ciglitazone or 15-deoxy-Delta 12,14-prostaglandin J2 resulted in a concentration- and time-dependent decrease of cyclin D1 and estrogen receptor (ER) alpha proteins, and this was accompanied by decreased cell proliferation and G(1)-G(0)-->S-phase progression. Down-regulation of cyclin D1 and ER alpha by PPARgamma agonists was inhibited in cells cotreated with the proteasome inhibitors MG132 and PSII, but not in cells cotreated with the protease inhibitors calpain II and calpeptin. Moreover, after treatment of MCF-7 cells with 15-deoxy-Delta 12,14-prostaglandin J2 and immunoprecipitation with cyclin D1 or ER alpha antibodies, there was enhanced formation of ubiquitinated cyclin D1 and ER alpha bands. Thus, PPARgamma-induced inhibition of breast cancer cell growth is due, in part, to proteasome-dependent degradation of cyclin D1 (and ER alpha), and this pathway may be important for other cancer cell lines.

  19. Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: relevance to Alzheimer's disease, ADHD, schizophrenia, and drug abuse

    PubMed Central

    Vohora, Divya; Bhowmik, Malay

    2012-01-01

    Histamine H3 receptor (H3R) antagonists/inverse agonists possess potential to treat diverse disease states of the central nervous system (CNS). Cognitive dysfunction and motor impairments are the hallmark of multifarious neurodegenerative and/or psychiatric disorders. This review presents the various neurobiological/neurochemical evidences available so far following H3R antagonists in the pathophysiology of Alzheimer's disease (AD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, and drug abuse each of which is accompanied by deficits of some aspects of cognitive and/or motor functions. Whether the H3R inverse agonism modulates the neurochemical basis underlying the disease condition or affects only the cognitive/motor component of the disease process is discussed with the aim to provide a rationale for their use in diverse disease states that are interlinked and are accompanied by some common motor, cognitive and attentional deficits. PMID:23109919

  20. Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: relevance to Alzheimer's disease, ADHD, schizophrenia, and drug abuse.

    PubMed

    Vohora, Divya; Bhowmik, Malay

    2012-01-01

    Histamine H3 receptor (H3R) antagonists/inverse agonists possess potential to treat diverse disease states of the central nervous system (CNS). Cognitive dysfunction and motor impairments are the hallmark of multifarious neurodegenerative and/or psychiatric disorders. This review presents the various neurobiological/neurochemical evidences available so far following H3R antagonists in the pathophysiology of Alzheimer's disease (AD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, and drug abuse each of which is accompanied by deficits of some aspects of cognitive and/or motor functions. Whether the H3R inverse agonism modulates the neurochemical basis underlying the disease condition or affects only the cognitive/motor component of the disease process is discussed with the aim to provide a rationale for their use in diverse disease states that are interlinked and are accompanied by some common motor, cognitive and attentional deficits.

  1. A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro.

    PubMed

    Burgermeister, Elke; Schnoebelen, Astride; Flament, Angele; Benz, Jörg; Stihle, Martine; Gsell, Bernard; Rufer, Arne; Ruf, Armin; Kuhn, Bernd; Märki, Hans Peter; Mizrahi, Jacques; Sebokova, Elena; Niesor, Eric; Meyer, Markus

    2006-04-01

    Partial agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma), also termed selective PPARgamma modulators, are expected to uncouple insulin sensitization from triglyceride (TG) storage in patients with type 2 diabetes mellitus. These agents shall thus avoid adverse effects, such as body weight gain, exerted by full agonists such as thiazolidinediones. In this context, we describe the identification and characterization of the isoquinoline derivative PA-082, a prototype of a novel class of non-thiazolidinedione partial PPARgamma ligands. In a cocrystal with PPARgamma it was bound within the ligand-binding pocket without direct contact to helix 12. The compound displayed partial agonism in biochemical and cell-based transactivation assays and caused preferential recruitment of PPARgamma-coactivator-1alpha (PGC1alpha) to the receptor, a feature shared with other selective PPARgamma modulators. It antagonized rosiglitazone-driven transactivation and TG accumulation during de novo adipogenic differentiation of murine C3H10T1/2 mesenchymal stem cells. The latter effect was mimicked by overexpression of wild-type PGC1alpha but not its LXXLL-deficient mutant. Despite failing to promote TG loading, PA-082 induced mRNAs of genes encoding components of insulin signaling and adipogenic differentiation pathways. It potentiated glucose uptake and inhibited the negative cross-talk of TNFalpha on protein kinase B (AKT) phosphorylation in mature adipocytes and HepG2 human hepatoma cells. PGC1alpha is a key regulator of energy expenditure and down-regulated in diabetics. We thus propose that selective recruitment of PGC1alpha to favorable PPARgamma-target genes provides a possible molecular mechanism whereby partial PPARgamma agonists dissociate TG accumulation from insulin signaling.

  2. Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): Hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice.

    PubMed

    Veiga, Flavia Maria Silva; Graus-Nunes, Francielle; Rachid, Tamiris Lima; Barreto, Aline Barcellos; Mandarim-de-Lacerda, Carlos Alberto; Souza-Mello, Vanessa

    2017-09-01

    Non-alcoholic fatty liver disease (NAFLD) presents with growing prevalence worldwide, though its pharmacological treatment remains to be established. This study aimed to evaluate the effects of a PPAR-alpha agonist on liver tissue structure, ultrastructure, and metabolism, focusing on gene and protein expression of de novo lipogenesis and gluconeogenesis pathways, in diet-induced obese mice. Male C57BL/6 mice (three months old) received a control diet (C, 10% of lipids, n = 10) or a high-fat diet (HFD, 50% of lipids, n = 10) for ten weeks. These groups were subdivided to receive the treatment (n = 5 per group): C, C-alpha (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the control diet), HFD and HFD-alpha group (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the HFD). The effects were compared with biometrical, biochemical, molecular biology and transmission electron microscopy (TEM) analyses. HFD showed greater body mass (BM) and insulinemia than C, both of which were tackled by the treatment in the HFD-alpha group. Increased hepatic protein expression of glucose-6-phosphatase, CHREBP and gene expression of PEPCK in HFD points to increased gluconeogenesis. Treatment rescued these parameters in the HFD-alpha group, eliciting a reduced hepatic glucose output, confirmed by the smaller GLUT2 expression in HFD-alpha than in HFD. Conversely, favored de novo lipogenesis was found in the HFD group by the increased expression of PPAR-gamma, and its target gene SREBP-1, FAS and GK when compared to C. The treatment yielded a marked reduction in the expression of all lipogenic factors. TEM analyses showed a greater numerical density of mitochondria per area of tissue in treated than in untreated groups, suggesting an increase in beta-oxidation and the consequent NAFLD control. PPAR-alpha activation reduced BM and treated insulin resistance (IR) and NAFLD by increasing the number of mitochondria and reducing hepatic gluconeogenesis and de novo lipogenesis protein and gene

  3. The cannabinoid CB1 receptor inverse agonist AM 251 and antagonist AM 4113 produce similar effects on the behavioral satiety sequence in rats.

    PubMed

    Hodge, Janel; Bow, Joshua P; Plyler, Kimberly S; Vemuri, V Kiran; Wisniecki, Ania; Salamone, John D; Makriyannis, Alexandros; McLaughlin, Peter J

    2008-11-21

    Cannabinoid CB1 inverse agonists such as rimonabant and AM 251 hold therapeutic promise as appetite suppressants, but the extent to which non-motivational factors contribute to their anorectic effects is not fully known. Examination of the behavioral satiety sequence (BSS) in rats, the orderly progression from eating to post-prandial grooming and then resting, has revealed that these compounds preserve the order of events but differ markedly from natural satiation. The most notable difference is that grooming (particularly scratching) is profoundly enhanced at anorectic doses, while eating and resting are diminished, raising the possibility that the anorectic effect is simply secondary to the grooming effect. In the current design, the neutral CB1 antagonist AM 4113, which has been found to lack some of the undesirable effects of AM 251, produced nearly identical effects on the BSS as AM 251. The possibility that competition from enhanced grooming could account for the anorectic effect of AM 4113 was examined by yoking the pattern of disruptions caused by grooming in the AM 4113-treated group to forced locomotion in a different group fed in a modified running wheel. This response competition did not significantly reduce food intake. It was concluded that AM 4113, a CB1 neutral antagonist, produces the same effects on the BSS as AM 251, but that response competition from enhanced grooming may not be a sufficient explanation for the anorectic effects of CB1 antagonists/inverse agonists.

  4. Benzodiazepine receptor inverse agonists FG 7142 and RO 15-4513 both reverse some of the behavioral effects of ethanol in a holeboard test

    SciTech Connect

    Lister, R.G.

    1987-09-21

    The intrinsic effects of the benzodiazepine receptor inverse agonists RO 15-4513 and FG 7142 on the behavior of mice in a holeboard were investigated. Both drugs caused dose-related decreases in exploratory head-dipping. The highest dose of FG 7142 (40 mg/kg) also reduced locomotor activity. RO 15-4513 (1.5 and 3.0 mg/kg) and FG 7142 (10 and 20 mg/kg) reversed the reductions in the number of head-dips caused by ethanol (2 g/kg). The higher doses of these two drugs also partially reversed the locomotor stimulant action of ethanol. Animals that received ethanol in combination with either inverse agonist spent less time head-dipping than vehicle-treated controls. These data indicate that FG 7142 and RO 15-4513 can reverse, at least in part, some of the behavioral effects of ethanol. Neither drug significantly altered blood alcohol concentrations suggesting that the antagonism does not result from pharmacokinetic changes. 26 references, 5 figures, 2 tables.

  5. Lead Discovery, Chemistry Optimization, and Biological Evaluation Studies of Novel Biamide Derivatives as CB2 Receptor Inverse Agonists and Osteoclast Inhibitors

    PubMed Central

    Yang, Peng; Myint, Kyaw-Zeyar; Tong, Qin; Feng, Rentian; Cao, Haiping; Almehizia, Abdulrahman A.; Alqarni, Mohammed Hamed; Wang, Lirong; Bartlow, Patrick; Gao, Yingdai; Gertsch, Jürg; Teramachi, Jumpei; Kurihara, Noriyoshi; Roodman, Garson David; Cheng, Tao; Xie, Xiang-Qun

    2014-01-01

    N,N′-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB2 inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A–C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB2 inverse agonists with the highest CB2 binding affinity (CB2 Ki of 22–85 nM, EC50 of 4–28 nM) and best selectivity (CB1/CB2 of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 µM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent. PMID:23072339

  6. S 38093, a histamine H3 antagonist/inverse agonist, promotes hippocampal neurogenesis and improves context discrimination task in aged mice

    PubMed Central

    Guilloux, Jean-Philippe; Samuels, Benjamin A.; Mendez-David, Indira; Hu, Alice; Levinstein, Marjorie; Faye, Charlène; Mekiri, Maryam; Mocaer, Elisabeth; Gardier, Alain M.; Hen, René; Sors, Aurore; David, Denis J.

    2017-01-01

    Strategies designed to increase adult hippocampal neurogenesis (AHN) may have therapeutic potential for reversing memory impairments. H3 receptor antagonists/inverse agonists also may be useful for treating cognitive deficits. However, it remains unclear whether these ligands have effects on AHN. The present study aimed to investigate the effects of a 28-day treatment with S 38093, a novel brain-penetrant antagonist/inverse agonist of H3 receptors, on AHN (proliferation, maturation and survival) in 3-month-old and in aged 16-month-old mice. In addition, the effects of S 38093 treatment on 7-month-old APPSWE Tg2576 transgenic mice, a model of Alzheimer’s disease, were also assessed. In all tested models, chronic treatment with S 38093 stimulated all steps of AHN. In aged animals, S 38093 induced a reversal of age-dependent effects on hippocampal brain-derived neurotrophic factor (BDNF) BDNF-IX, BDNF-IV and BDNF-I transcripts and increased vascular endothelial growth factor (VEGF) expression. Finally, the effects of chronic administration of S 38093 were assessed on a neurogenesis-dependent “context discrimination (CS) test” in aged mice. While ageing altered mouse CS, chronic S 38093 treatment significantly improved CS. Taken together, these results provide evidence that chronic S 38093 treatment increases adult hippocampal neurogenesis and may provide an innovative strategy to improve age-associated cognitive deficits. PMID:28218311

  7. Analogs of alpha-melanocyte stimulating hormone with high agonist potency and selectivity at human melanocortin receptor 1b: the role of Trp(9) in molecular recognition.

    PubMed

    Bednarek, Maria A; Macneil, Tanya; Tang, Rui; Fong, Tung M; Angeles Cabello, M; Maroto, Marta; Teran, Ana

    2008-05-01

    alpha-Melanocyte stimulating hormone (alphaMSH), Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2), is an endogenous agonist for the melanocortin receptor 1 (MC1R), the receptor found in the skin, several types of immune cells, and other peripheral sites. Three-dimensional models of complexes of this receptor with alphaMSH and its synthetic analog NDP-alphaMSH, Ac-Ser(1)-Tyr(2)-Ser(3)-Nle(4)-Glu(5)-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2), have been previously proposed. In those models, the 6-9 segment of the ligand was considered essential for the ligand-receptor interactions. In this study, we probed the role of Trp(9) of NDP-alphaMSH in interactions with hMC1bR. Analogs of NDP-alphaMSH with various amino acids in place of Trp(9) were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4, and 5 (hMC1b,3-5R). Several new compounds displayed high agonist potency at hMC1bR (EC(50) = 0.5-5 nM) and receptor subtype selectivity greater than 2000-fold versus hMC3-5R. The Trp(9) residue of NDP-alphaMSH was determined to be not essential for molecular recognition at hMC1bR.

  8. Skeletal muscle glycogen synthase subcellular localization: effects of insulin and PPAR-alpha agonist (K-111) administration in rhesus monkeys.

    PubMed

    Ortmeyer, Heidi K; Adall, Yohannes; Marciani, Karina R; Katsiaras, Andreas; Ryan, Alice S; Bodkin, Noni L; Hansen, Barbara C

    2005-06-01

    Insulin covalently and allosterically regulates glycogen synthase (GS) and may also cause the translocation of GS from glycogen-poor to glycogen-rich locations. We examined the possible role of subcellular localization of GS and glycogen in insulin activation of GS in skeletal muscle of six obese monkeys and determined whether 1) insulin stimulation during a hyperinsulinemic euglycemic clamp and/or peroxisome proliferator-activated receptor (PPAR)-alpha agonist treatment (K-111, 3 mg.kg(-1).day(-1); Kowa) induced translocation of GS and 2) translocation of GS was associated with insulin activation of GS. GS and glycogen were present in all fractions obtained by differential centrifugation, except for the cytosolic fraction, under both basal and insulin-stimulated conditions. We found no evidence for translocation of GS by insulin. GS total (GST) activity was strongly associated with glycogen content (r = 0.70, P < 0.001). Six weeks of treatment with K-111 increased GST activity in all fractions, except the cytosolic fraction, and mean GST activity, GS independent activity, and glycogen content were significantly higher in the insulin-stimulated samples compared with basal samples, effects not seen with vehicle. The increase in GST activity was strongly related to the increase in glycogen content during the hyperinsulinemic euglycemic clamp after K-111 administration (r = 0.74, P < 0.001). Neither GS protein expression nor GS gene expression was affected by insulin or by K-111 treatment. We conclude that 1) in vivo insulin does not cause translocation of GS from a glycogen-poor to a glycogen-rich location in primate skeletal muscle and 2) the mechanism of action of K-111 to improve insulin sensitivity includes an increase in GST activity without an increase in GS gene or protein expression.

  9. Phase 2 Trial of an Alpha-7 Nicotinic Receptor Agonist (TC-5619) in Negative and Cognitive Symptoms of Schizophrenia

    PubMed Central

    Walling, David; Marder, Stephen R.; Kane, John; Fleischhacker, W. Wolfgang; Keefe, Richard S. E.; Hosford, David A.; Dvergsten, Chris; Segreti, Anthony C.; Beaver, Jessica S.; Toler, Steven M.; Jett, John E.; Dunbar, Geoffrey C.

    2016-01-01

    Objectives: This trial was conducted to test the effects of an alpha7 nicotinic receptor full agonist, TC-5619, on negative and cognitive symptoms in subjects with schizophrenia. Methods: In 64 sites in the United States, Russia, Ukraine, Hungary, Romania, and Serbia, 477 outpatients (18–65 years; male 62%; 55% tobacco users) with schizophrenia, treated with a new-generation antipsychotic, were randomized to 24 weeks of placebo (n = 235), TC-5619, 5mg (n = 121), or TC-5619, 50mg (n = 121), administered orally once daily. The primary efficacy measure was the Scale for the Assessment of Negative Symptoms (SANS) composite score. Key secondary measures were the Cogstate Schizophrenia Battery (CSB) composite score and the University of California San Diego Performance-Based Skills Assessment-Brief Version (UPSA-B) total score. Secondary measures included: Positive and Negative Syndrome Scale in Schizophrenia (PANSS) total and subscale scores, SANS domain scores, CSB item scores, Clinical Global Impression-Global Improvement (CGI-I) score, CGI-Severity (CGI-S) score, and Subject Global Impression-Cognition (SGI-Cog) total score. Results: SANS score showed no statistical benefit for TC-5619 vs placebo at week 24 (5mg, 2-tailed P = .159; 50mg, P = .689). Likewise, no scores of CSB, UPSA-B, PANSS, CGI-I, CGI-S, or SGI-Cog favored TC-5619 (P > .05). Sporadic statistical benefit favoring TC-5619 in some of these outcome measures were observed in tobacco users, but these benefits did not show concordance by dose, country, gender, or other relevant measures. TC-5619 was generally well tolerated. Conclusion: These results do not support a benefit of TC-5619 for negative or cognitive symptoms in schizophrenia. PMID:26071208

  10. Phase 2 Trial of an Alpha-7 Nicotinic Receptor Agonist (TC-5619) in Negative and Cognitive Symptoms of Schizophrenia.

    PubMed

    Walling, David; Marder, Stephen R; Kane, John; Fleischhacker, W Wolfgang; Keefe, Richard S E; Hosford, David A; Dvergsten, Chris; Segreti, Anthony C; Beaver, Jessica S; Toler, Steven M; Jett, John E; Dunbar, Geoffrey C

    2016-03-01

    This trial was conducted to test the effects of an alpha7 nicotinic receptor full agonist, TC-5619, on negative and cognitive symptoms in subjects with schizophrenia. In 64 sites in the United States, Russia, Ukraine, Hungary, Romania, and Serbia, 477 outpatients (18-65 years; male 62%; 55% tobacco users) with schizophrenia, treated with a new-generation antipsychotic, were randomized to 24 weeks of placebo (n = 235), TC-5619, 5mg (n = 121), or TC-5619, 50 mg (n = 121), administered orally once daily. The primary efficacy measure was the Scale for the Assessment of Negative Symptoms (SANS) composite score. Key secondary measures were the Cogstate Schizophrenia Battery (CSB) composite score and the University of California San Diego Performance-Based Skills Assessment-Brief Version (UPSA-B) total score. Secondary measures included: Positive and Negative Syndrome Scale in Schizophrenia (PANSS) total and subscale scores, SANS domain scores, CSB item scores, Clinical Global Impression-Global Improvement (CGI-I) score, CGI-Severity (CGI-S) score, and Subject Global Impression-Cognition (SGI-Cog) total score. SANS score showed no statistical benefit for TC-5619 vs placebo at week 24 (5 mg, 2-tailed P = .159; 50 mg, P = .689). Likewise, no scores of CSB, UPSA-B, PANSS, CGI-I, CGI-S, or SGI-Cog favored TC-5619 (P > .05). Sporadic statistical benefit favoring TC-5619 in some of these outcome measures were observed in tobacco users, but these benefits did not show concordance by dose, country, gender, or other relevant measures. TC-5619 was generally well tolerated. These results do not support a benefit of TC-5619 for negative or cognitive symptoms in schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Actions of novel agonists, antagonists and antipsychotic agents at recombinant rat 5-HT6 receptors: a comparative study of coupling to G alpha s.

    PubMed

    Dupuis, Delphine S; Mannoury la Cour, Clotilde; Chaput, Christine; Verrièle, Laurence; Lavielle, Gilbert; Millan, Mark J

    2008-07-07

    Though 5-HT6 receptors are targets for the treatment of schizophrenia and other psychiatric disorders, the influence of drugs upon signal transduction has not been extensively characterized. Herein, we employed a Scintillation Proximity Assay (SPA)/antibody-immunocapture procedure of coupling to G alpha s to evaluate the interaction of a broad range of novel agonists, antagonists and antipsychotics at rat 5-HT(6) receptors stably expressed in HEK293 cells. Serotonin (pEC(50), 7.7) increased [35S]GTP gamma S binding to G alpha s by ca 2-fold without affecting binding to Gi/o or Gq. LSD (9.2), 5-MeODMT (7.9), 5-CT (7.0) and tryptamine (6.1) were likewise full agonists. In contrast, the novel sulfonyl derivatives, WAY181,187 (9.1) and WAY208,466 (7.8), behaved as partial agonists and attenuated the actions of 5-HT. SB271,046 and SB258,585 abolished activation of G alpha s by 5-HT with pKb values of 10.2 and 9.9, respectively, actions mimicked by the novel antagonist, SB399,885 (10.9). SB271,046 likewise blocked partial agonist properties of WAY181,187 and WAY208,466 with pKb values of 9.8 and 9.0, respectively. 5-HT-stimulated [35S]GTP gamma S binding to G alpha s was antagonised by various antipsychotics including olanzapine (7.8), asenapine (9.1) and SB737,050 (7.8), whereas aripiprazole and bifeprunox were inactive. Further, antagonist properties of clozapine (8.0) were mimicked by its major metabolite, N-desmethylclozapine (7.9). In conclusion, the novel ligands, WAY208,466 and WAY181,187, behaved as partial agonists at 5-HT6 receptors coupled to G alpha s, while SB399,885 was a potent antagonist. Though 5-HT6 receptor blockade is not indispensable for therapeutic efficacy, it may well play a role in the functional actions of certain antipsychotic agents.

  12. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    SciTech Connect

    Antonelli, Alessandro; Ferrari, Silvia Martina; Frascerra, Silvia; Corrado, Alda; Pupilli, Cinzia; Bernini, Giampaolo; Benvenga, Salvatore; Ferrannini, Ele; Fallahi, Poupak

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.

  13. Peroxisome proliferator-activated receptors gamma and alpha agonists stimulate cardiac glucose uptake via activation of AMP-activated protein kinase.

    PubMed

    Xiao, Xiaoyan; Su, Guohai; Brown, Stacey N; Chen, Li; Ren, Jianmin; Zhao, Peng

    2010-07-01

    Myocardial energy and glucose homeostasis are crucial for normal cardiac structure and function. Peroxisome proliferator-activated receptors (PPARs) play an important role in controlling transcriptional expression of key enzymes that are involved in glucose metabolism, and they have been demonstrated to significantly reduce tissue injury in cardiovascular diseases. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a sensor that maintains intracellular energy homeostasis and mediates a number of physiological signals. It has been reported that AMPK promotes glucose uptake. We hypothesize that PPAR gamma and alpha agonists may play a role in the regulation of glucose metabolism through AMPK. We tested this hypothesis by using isolated papillary muscles of rat hearts treated with PPAR gamma and alpha agonists, troglitazone and GW7647, respectively. Our results demonstrated that both troglitazone and GW7647 significantly stimulated 2-deoxyglucose uptake of cardiac muscles. Interestingly, both agonists stimulated phosphorylation of AMPK and its downstream protein target acetyl-CoA carboxylase. Endothelial nitric oxide synthase (eNOS) was also activated by both agonists. In addition, AMPK activator 5-amino-4-imidazole-1-beta-D-carboxamide ribofuranoside increased glucose uptake, while AMPK inhibitor compound C and NOS inhibitor, N(omega)-nitro-L-arginine, significantly blocked troglitazone- and GW7647-stimulated glucose uptake in cardiac muscles. There was also a reduction of glucose uptake with a marked decrease in AMPK and eNOS phosphorylation. In conclusion, both PPAR gamma and alpha activation play a role in the regulation of glucose uptake in cardiac muscles and this regulation is mediated by the AMPK and eNOS signaling pathways. (c) 2010 Elsevier Inc. All rights reserved.

  14. SSR591813, a novel selective and partial alpha4beta2 nicotinic receptor agonist with potential as an aid to smoking cessation.

    PubMed

    Cohen, C; Bergis, O E; Galli, F; Lochead, A W; Jegham, S; Biton, B; Leonardon, J; Avenet, P; Sgard, F; Besnard, F; Graham, D; Coste, A; Oblin, A; Curet, O; Voltz, C; Gardes, A; Caille, D; Perrault, G; George, P; Soubrie, P; Scatton, B

    2003-07-01

    (5aS,8S,10aR)-5a,6,9,10-Tetrahydro,7H,11H-8,10a-methanopyrido[2',3':5,6]pyrano[2,3-d]azepine (SSR591813) is a novel compound that binds with high affinity to the rat and human alpha4beta2 nicotinic acetylcholine receptor (nAChR) subtypes (Ki = 107 and 36 nM, respectively) and displays selectivity for the alpha4beta2 nAChR (Ki, human alpha3beta4 > 1000, alpha3beta2 = 116; alpha1beta1deltagamma > 6000 nM and rat alpha7 > 6000 nM). Electrophysiological experiments indicate that SSR591813 is a partial agonist at the human alpha4beta2 nAChR subtype (EC50 = 1.3 micro M, IA =19% compared with the full agonist 1,1-dimethyl-4-phenyl-piperazinium). In vivo findings from microdialysis and drug discrimination studies confirm the partial intrinsic activity of SSR591813. The drug increases dopamine release in the nucleus accumbens shell (30 mg/kg i.p.) and generalizes to nicotine or amphetamine (10-20 mg/kg i.p.) in rats, with an efficacy approximately 2-fold lower than that of nicotine. Pretreatment with SSR591813 (10 mg/kg i.p.) reduces the dopamine-releasing and discriminative effects of nicotine. SSR591813 shows activity in animal models of nicotine dependence at doses devoid of unwanted side effects typically observed with nicotine (hypothermia and cardiovascular effects). The compound (10 mg/kg i.p.) also prevents withdrawal signs precipitated by mecamylamine in nicotine-dependent rats and partially blocks the discriminative cue of an acute precipitated withdrawal. SSR591813 (20 mg/kg i.p.) reduces i.v. nicotine self-administration and antagonizes nicotine-induced behavioral sensitization in rats. The present results confirm important role for alpha4beta2 nAChRs in mediating nicotine dependence and suggest that SSR591813, a partial agonist at this particular nAChR subtype, may have therapeutic potential in the clinical management of smoking cessation.

  15. Novel multifunctional dopamine D2/D3 receptors agonists with potential neuroprotection and anti-alpha synuclein protein aggregation properties.

    PubMed

    Luo, Dan; Sharma, Horrick; Yedlapudi, Deepthi; Antonio, Tamara; Reith, Maarten E A; Dutta, Aloke K

    2016-11-01

    Our ongoing drug development endeavor to design compounds for symptomatic and neuroprotective treatment of Parkinson's disease (PD) led us to carry out a structure activity relationship study based on dopamine agonists pramipexole and 5-OHDPAT. Our goal was to incorporate structural elements in these agonists in a way to preserve their agonist activity while producing inhibitory activity against aggregation of α-synuclein protein. In our design we appended various catechol and related phenol derivatives to the parent agonists via different linker lengths. Structural optimization led to development of several potent agonists among which (-)-8a, (-)-14 and (-)-20 exhibited potent neuroprotective properties in a cellular PD model involving neurotoxin 6-OHDA. The lead compounds (-)-8a and (-)-14 were able to modulate aggregation of α-synuclein protein efficiently. Finally, in an in vivo PD animal model, compound (-)-8a exhibited efficacious anti-parkinsonian effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Influence of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist (WIN 55,212-2) and inverse agonist (AM 251) on the regulation of food intake and hypothalamic serotonin levels.

    PubMed

    Merroun, Ikram; Errami, Mohammed; Hoddah, Hanaa; Urbano, Gloria; Porres, Jesús M; Aranda, Pilar; Llopis, Juan; López-Jurado, María

    2009-05-01

    The effect of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist WIN 55,212-2 or inverse agonist AM 251 on food intake and extracellular levels of serotonin and acetic acid 5-hydroxy-indol from presatiated rats was studied. Compared to the vehicle-injected control, the intracerebroventricular administration of WIN 55,212-2 was associated with a significant increase in food intake, whereas the administration of AM 251 caused a significant reduction in this respect. These results were accompanied by considerable reductions or increases in serotonin and acetic acid 5-hydroxy-indol levels compared to the vehicle-injected control and the baseline values for the different experimental groups studied. Intraperitoneal administration of WIN 55,212-2 at doses of 1 and 2 mg/kg promoted hyperphagia up to 6 h after injection, whereas administration of a higher dose (5 mg/kg) significantly inhibited food intake and motor behaviour in partially satiated rats. Administration of any of the AM 251 doses studied (0.5, 1, 2, 5 mg/kg) led to a significant decrease in the amount of food ingested from 2 h after the injection, compared to the vehicle-injected control group, with the most striking effect being observed when the 5 mg/kg dose was injected.

  17. Divergent effects of estradiol and the estrogen receptor-alpha agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice.

    PubMed

    Thammacharoen, Sumpun; Geary, Nori; Lutz, Thomas A; Ogawa, Sonoko; Asarian, Lori

    2009-05-01

    Eating is modulated by estradiol in females of many species and in women. To further investigate the estrogen receptor mechanism mediating this effect, ovariectomized rats and mice were treated with estradiol benzoate or the estrogen receptor-alpha (ER-alpha)-selective agonist PPT. PPT inhibited eating in rats much more rapidly than estradiol (approximately 2-6 h versus >24 h). In contrast, the latencies to vaginal estrus after PPT and estradiol were similar (>24 h). PPT also inhibited eating within a few hours in wild-type mice, but failed to inhibit eating in transgenic mice deficient in ER-alpha (ERalphaKO mice). PPT, but not estradiol, induced the expression of c-Fos in corticotrophin-releasing hormone (CRH)-expressing cells of the paraventricular nucleus (PVN) of the hypothalamus within 90-180 min in rats. Both PPT and estradiol reduced c-Fos expression in an ER-alpha-containing area of the nucleus of the solitary tract. The anomalously rapid eating-inhibitory effect of PPT suggests that PPT's neuropharmacological effect differs from estradiol's, perhaps because PPT differentially activates membrane versus nuclear ER-alpha or because PPT activates non-ER-alpha membrane estrogen receptors in addition to ER-alpha. The failure of PPT to inhibit eating in ERalphaKO mice, however, indicates that ER-alpha is necessary for PPT's eating-inhibitory action and that any PPT-induced activation of non-ER-alpha estrogen receptors is not sufficient to inhibit eating. Finally, the rapid induction of c-Fos in CRH-expressing cells in the PVN by PPT suggests that PPT elicits a neural response that is similar to that elicited by stress or aversive emotional stimuli.

  18. Pharmacological characterization of [3H]VUF11211, a novel radiolabeled small-molecule inverse agonist for the chemokine receptor CXCR3.

    PubMed

    Scholten, Danny J; Wijtmans, Maikel; van Senten, Jeffrey R; Custers, Hans; Stunnenberg, Ailas; de Esch, Iwan J P; Smit, Martine J; Leurs, Rob

    2015-04-01

    Chemokine receptor CXCR3 has attracted much attention, as it is thought to be associated with a wide range of immune-related diseases. As such, several small molecules with different chemical structures targeting CXCR3 have been discovered. Despite limited clinical success so far, these compounds serve as interesting tools for investigating receptor activation and antagonism. Accumulating evidence suggests that many of these compounds are allosteric modulators for CXCR3. One feature of allosteric ligands is that the magnitude of the mediated allosteric effect is dependent on the orthosteric probe that is used. Consequently, there is a risk for incorrect assessment of affinity for allosteric modulators with orthosteric radioligands, which has so far been the most applied approach for chemokine receptors. Therefore, we aimed to use a small-molecule allosteric ligand from the piperazinyl-piperidine class, also known as VUF11211 [(S)-5-chloro-6-(4-(1-(4-chlorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)-N-ethylnicotinamide]. VUF11211 acts as an inverse agonist at a constitutively active mutant of CXCR3. Radiolabeling of VUF11211 gave [(3)H]VUF11211, which in radioligand binding studies shows high affinity for CXCR3 (Kd = 0.65 nM) and reasonably fast association (kon= 0.03 minute(-1)nM(-1)) and dissociation kinetics (koff = 0.02 minute(-1)). The application of the [(3)H]VUF11211 to assess CXCR3 pharmacology was validated with diverse classes of CXCR3 compounds, including both antagonists and agonists, as well as VUF11211 analogs. Interestingly, VUF11211 seems to bind to a different population of CXCR3 conformations compared with the CXCR3 agonists CXC chemokine ligand 11 (CXCL11), VUF11418 [1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-((2'-iodobiphenyl-4-yl)methyl)-N,N-dimethylmethanaminium Iodide], and VUF10661 [N-(6-amino-1-(2,2-diphenylethylamino)-1-oxohexan-2-yl)-2-(4-oxo-4-phenylbutanoyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide]. These findings

  19. Protein kinase Cε is required for spinal analgesic synergy between delta opioid and alpha-2A adrenergic receptor agonist pairs.

    PubMed

    Schuster, Daniel J; Kitto, Kelley F; Overland, Aaron C; Messing, Robert O; Stone, Laura S; Fairbanks, Carolyn A; Wilcox, George L

    2013-08-14

    We recently showed that spinal synergistic interactions between δ opioid receptors (δORs) and α2A adrenergic receptors (α2AARs) require protein kinase C (PKC). To identify which PKC isoforms contribute to analgesic synergy, we evaluated the effects of various PKC-isoform-specific peptide inhibitors on synergy between δORs and α2AARs using the tail flick assay of thermal nociception in mice. Only a PKCε inhibitor abolished synergy between a δOR agonist and an α2AAR agonist. We tested a panel of combinations of opioid and adrenergic agonists in PKCε knock-out mice and found that all four combinations of a δOR agonist and an α2AAR agonist required PKCε for antinociceptive synergy. None of the combinations of a μOR agonist with an α2AR agonist required PKCε. Immunohistochemistry confirmed that PKCε could be found in the population of peptidergic primary afferent nociceptors where δORs and α2AARs have been found to extensively colocalize. Immunoreactivity for PKCε was found in the majority of dorsal root ganglion neurons and intensely labeled laminae I and II of the spinal cord dorsal horn. PKCε is widespread in the spinal nociceptive system and in peptidergic primary afferents it appears to be specifically involved in mediating the synergistic interaction between δORs and α2AARs.

  20. Protein Kinase Cϵ Is Required for Spinal Analgesic Synergy between Delta Opioid and Alpha-2A Adrenergic Receptor Agonist Pairs

    PubMed Central

    Schuster, Daniel J.; Kitto, Kelley F.; Overland, Aaron C.; Messing, Robert O.; Stone, Laura S.; Fairbanks, Carolyn A.

    2013-01-01

    We recently showed that spinal synergistic interactions between δ opioid receptors (δORs) and α2A adrenergic receptors (α2AARs) require protein kinase C (PKC). To identify which PKC isoforms contribute to analgesic synergy, we evaluated the effects of various PKC-isoform-specific peptide inhibitors on synergy between δORs and α2AARs using the tail flick assay of thermal nociception in mice. Only a PKCϵ inhibitor abolished synergy between a δOR agonist and an α2AAR agonist. We tested a panel of combinations of opioid and adrenergic agonists in PKCϵ knock-out mice and found that all four combinations of a δOR agonist and an α2AAR agonist required PKCϵ for antinociceptive synergy. None of the combinations of a μOR agonist with an α2AR agonist required PKCϵ. Immunohistochemistry confirmed that PKCϵ could be found in the population of peptidergic primary afferent nociceptors where δORs and α2AARs have been found to extensively colocalize. Immunoreactivity for PKCϵ was found in the majority of dorsal root ganglion neurons and intensely labeled laminae I and II of the spinal cord dorsal horn. PKCϵ is widespread in the spinal nociceptive system and in peptidergic primary afferents it appears to be specifically involved in mediating the synergistic interaction between δORs and α2AARs. PMID:23946412

  1. Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist

    PubMed Central

    Bu, Wei; Ren, Huiling; Deng, Yunping; Del Mar, Nobel; Guley, Natalie M.; Moore, Bob M.; Honig, Marcia G.; Reiner, Anton

    2016-01-01

    We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state. In the present study, we showed that SMM-189 boosts nuclear pCREB levels in microglia in several brain regions by 3 days after TBI, by using pCREB/CD68 double immunofluorescent labeling. Next, to better understand the basis of motor deficits and increased fearfulness after TBI, we used unbiased stereological methods to characterize neuronal loss in cortex, striatum, and basolateral amygdala (BLA) and assessed how neuronal loss was affected by SMM-189 treatment. Our stereological neuron counts revealed a 20% reduction in cortical and 30% reduction in striatal neurons bilaterally at 2–3 months post blast, with SMM-189 yielding about 50% rescue. Loss of BLA neurons was restricted to the blast side, with 33% of Thy1+ fear-suppressing pyramidal neurons and 47% of fear-suppressing parvalbuminergic (PARV) interneurons lost, and Thy1-negative fear-promoting pyramidal neurons not significantly affected. SMM-189 yielded 50–60% rescue of Thy1+ and PARV neuron loss in BLA. Thus, fearfulness after mild TBI may result from the loss of fear-suppressing neuron types in BLA, and SMM-189 may reduce fearfulness by their rescue. Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia

  2. Biarylpyrazole inverse agonists at the cannabinoid CB1 receptor: importance of the C-3 carboxamide oxygen/lysine3.28(192) interaction.

    PubMed

    Hurst, Dow; Umejiego, Uju; Lynch, Diane; Seltzman, Herbert; Hyatt, Steven; Roche, Michael; McAllister, Sean; Fleischer, Daniel; Kapur, Ankur; Abood, Mary; Shi, Shanping; Jones, Jannie; Lewis, Deborah; Reggio, Patricia

    2006-10-05

    The biarylpyrazole, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716; 1) has been shown to act as an inverse agonist/antagonist at the cannabinoid CB1 receptor. Our previous mutant cycle study suggested that K3.28(192) is involved in a direct interaction with the C-3 substituent of 1 in wild-type (WT) CB1.(1) However, these results did not establish what part of the C-3 substituent of 1 is involved in the K3.28(192) hydrogen bond, the carboxamide oxygen or the piperidine nitrogen. Furthermore, our previous calcium channel assay results for 5-(4- chlorophenyl)-3-[(E)-2-cyclohexylethenyl]-1-(2,4-dichlorophenyl)-4- methyl-1H-pyrazole (VCHSR; 2) (an analogue of 1 that lacks hydrogen-bonding capability in its C-3 substituent) showed that this compound acts as a neutral antagonist, a result that is in contrast to 1, which acts as an inverse agonist in this same assay.(1) These results suggested a relationship between biarylpyrazole interaction with K3.28(192) at CB1 and inverse agonism, but these results were for a single pair of compounds (1 and 2). The work presented here was designed to test two hypotheses derived from our modeling and mutant cycle results. The hypotheses are as follows: (1) it is the carboxamide oxygen of the C-3 substituent of 1 that interacts directly with K3.28(192) and (2) the interaction with K3.28(192) is crucial for the production of inverse agonism for biarylpyrazoles such as 1. To determine whether the carboxamide oxygen or the piperidine nitrogen of the C-3 substituent may be the interaction site for K3.28(192), we designed, synthesized, and evaluated a new set of analogues of 1 (3-6, Chart 1) in which modifications only to the C-3 substituent of 1 have been made. In each case, the modifications that were made preserved the geometry of this substituent in 1. The absence of the piperidine nitrogen was not found to affect affinity, whereas the absence of the carboxamide oxygen resulted

  3. In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer's disease.

    PubMed

    Bitner, R Scott; Bunnelle, William H; Decker, Michael W; Drescher, Karla U; Kohlhaas, Kathy L; Markosyan, Stella; Marsh, Kennan C; Nikkel, Arthur L; Browman, Kaitlin; Radek, Rich; Anderson, David J; Buccafusco, Jerry; Gopalakrishnan, Murali

    2010-09-01

    We previously reported that alpha7 nicotinic acetylcholine receptor (nAChR) agonism produces efficacy in preclinical cognition models correlating with activation of cognitive and neuroprotective signaling pathways associated with Alzheimer's disease (AD) pathology. In the present studies, the selective and potent alpha7 nAChR agonist 5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole (ABT-107) was evaluated in behavioral assays representing distinct cognitive domains. Studies were also conducted to address potential issues that may be associated with the clinical development of an alpha7 nAChR agonist. Specifically, ABT-107 improved cognition in monkey delayed matching to sample, rat social recognition, and mouse two-trial inhibitory avoidance, and continued to improve cognitive performance at injection times when exposure levels continued to decline. Rats concurrently infused with ABT-107 and donepezil at steady-state levels consistent with clinical exposure showed improved short-term recognition memory. Compared with nicotine, ABT-107 did not produce behavioral sensitization in rats or exhibit psychomotor stimulant activity in mice. Repeated (3 days) daily dosing of ABT-107 increased extracellular cortical acetylcholine in rats, whereas acute administration increased cortical extracellular signal-regulated kinase and cAMP response element-binding protein phosphorylation in mice, neurochemical and biochemical events germane to cognitive function. ABT-107 increased cortical phosphorylation of the inhibitory residue (Ser9) of glycogen synthase kinase-3, a primary tau kinase associated with AD pathology. In addition, continuous infusion of ABT-107 in tau/amyloid precursor protein transgenic AD mice reduced spinal tau hyperphosphorylation. These findings show that targeting alpha7 nAChRs may have potential utility for symptomatic alleviation and slowing of disease progression in the treatment AD, and expand the understanding of the potential

  4. Protein kinase C activation increases noradrenaline release from the rat hippocampus and modifies the inhibitory effect of alpha 2-adrenoceptor and adenosine A1-receptor agonists.

    PubMed

    Fredholm, B B; Lindgren, E

    1988-05-01

    We have studied the effect of stimulating protein kinase C with phorbol esters on the release of [3H]-noradrenaline (NA) in the absence or presence of presynaptic alpha 2-adrenoceptor blocking agents and compared that to the elevation of cyclic AMP levels more than 10-fold by a combination of rolipram and forskolin. 4-beta-Phorbol 12,13-dibutyrate (PDiBu) increased stimulated (3 Hz) [3H]-NA release markedly and in a concentration dependent manner. 4-alpha-Phorbol-12,13-didecanoate was ineffective. The effect of PDiBu was not significantly reduced by nifedipine (1 microM), but was proportionally less in the presence of an alpha 2-adrenoceptor antagonist, yohimbine. PDiBu inhibited the presynaptic effect of alpha 2-adrenoceptor agonists clonidine and UK 14304. By contrast, the presynaptic effect of the adenosine analogue R-PIA was not reduced by PDiBu. PDiBu caused an increase in cyclic AMP that depended on adenosine receptor stimulation. Elevation of cyclic AMP had a limited effect on NA release from rat hippocampus, and did not significantly decrease the presynaptic inhibitory effect of UK 14304 (0.1 microM), of morphine (1 microM) or of the adenosine A1-receptor agonist CHA (1 microM). The effect of phorbol esters and several presynaptic inhibitors of NA-release in the rat hippocampus cannot be explained by changes in cyclic AMP levels in the tissue. Phorbol esters that stimulate protein kinase C appear to interact with a target that is the site of action alpha 2-adrenoceptors in this tissue. This site is not a dihydropyridine sensitive Ca-channel and is also different from the target of presynaptic adenosine receptors. Thus, activation of protein kinase C discriminates between apparently similar presynaptic mechanisms.

  5. Pro-cognitive and antipsychotic efficacy of the alpha7 nicotinic partial agonist SSR180711 in pharmacological and neurodevelopmental latent inhibition models of schizophrenia.

    PubMed

    Barak, Segev; Arad, Michal; De Levie, Amaya; Black, Mark D; Griebel, Guy; Weiner, Ina

    2009-06-01

    Schizophrenia symptoms can be segregated into positive, negative and cognitive, which exhibit differential sensitivity to drug treatments. Accumulating evidence points to efficacy of alpha7 nicotinic receptor (nAChR) agonists for cognitive deficits in schizophrenia but their activity against positive symptoms is thought to be minimal. The present study examined potential pro-cognitive and antipsychotic activity of the novel selective alpha7 nAChR partial agonist SSR180711 using the latent inhibition (LI) model. LI is the reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, compared with a novel stimulus. Here, no-drug controls displayed LI if non-reinforced pre-exposure to a tone was followed by weak but not strong conditioning (2 vs 5 tone-shock pairings). MK801 (0.05 mg/kg, i.p.) -treated rats as well as rats neonatally treated with nitric oxide synthase inhibitor L-NoArg (10 mg/kg, s.c.) on postnatal days 4-5, persisted in displaying LI with strong conditioning, whereas amphetamine (1 mg/kg) -treated rats failed to show LI with weak conditioning. SSR180711 (0.3, 1, 3 mg/kg, i.p.) was able to alleviate abnormally persistent LI produced by acute MK801 and neonatal L-NoArg; these models are believed to model cognitive aspects of schizophrenia and activity here was consistent with previous findings with alpha7-nAChR agonists. In addition, unexpectedly, SSR180711 (1, 3 mg/kg, i.p.) potentiated LI with strong conditioning in no-drug controls and reversed amphetamine-induced LI disruption, two effects considered predictive of activity against positive symptoms of schizophrenia. These findings suggest that SSR180711 may be beneficial not only for the treatment of cognitive symptoms in schizophrenia, as reported multiple times previously, but also positive symptoms.

  6. Insights into the influence of 5-HT2c aminoacidic variants with the inhibitory action of serotonin inverse agonists and antagonists.

    PubMed

    Galeazzi, Roberta; Massaccesi, Luca; Piva, Francesco; Principato, Giovanni; Laudadio, Emilioano

    2014-03-01

    Specific modulation of serotonin 5-HT(2C) G protein-coupled receptors may be therapeutic for obesity and neuropsychiatric disorders. The different efficacy of drugs targeting these receptors are due to the presence of genetic variants in population and this variability is still hard to predict. Therefore, in order to administer the more suitable drug, taking into account patient genotype, it is necessary to know the molecular effects of its gene nucleotide variations. In this work, starting from an accurate 3D model of 5-HT(2C), we focus on the prediction of the possible effect of some single nucleotide polymorphisms (SNPs) producing amino acidic changes in proximity of the 5-HT(2C) ligand binding site. Particularly we chose a set of 5-HT(2C) inverse agonists and antagonists which have high inhibitory activity. After prediction of the structures of the receptor-ligand complexes using molecular docking tools, we performed full atom molecular dynamics simulations in explicit lipid bilayer monitoring the interactions between ligands and trans-membrane helices of the receptor, trying to infer relations with their biological activity. Serotonin, as the natural ligand was chosen as reference compound to advance a hypothesis able to explain the receptor inhibition mechanism. Indeed we observed a different behavior between the antagonists and inverse agonist with respect to serotonin or unbounded receptor, which could be responsible, even if not directly, of receptor's inactivation. Furthermore, we analyzed five aminoacidic variants of 5HT(2C) receptor observing alterations in the interactions between ligands and receptor which give rise to changes of free energy values for every complex considered.

  7. Anti-inflammatory properties of a dual PPARgamma/alpha agonist muraglitazar in in vitro and in vivo models

    PubMed Central

    2013-01-01

    Introduction Peroxisome proliferator-activated receptor (PPAR) agonists are widely used drugs in the treatment of diabetes and dyslipidemia. In addition to their metabolic effects, PPAR isoforms PPARα and PPARγ are also involved in the regulation of immune responses and inflammation. In the present study, we investigated the effects of a dual PPARγ/α agonist muraglitazar on inflammatory gene expression in activated macrophages and on carrageenan-induced inflammation in the mouse. Methods J774 murine macrophages were activated by lipopolysaccharide (LPS) and treated with dual PPARγ/α agonist muraglitazar, PPARγ agonist GW1929 or PPARα agonist fenofibrate. The effects of PPAR agonists on cytokine production and the activation of inducible nitric oxide synthase (iNOS) pathway were investigated by ELISA, Griess method, Western blotting and quantitative RT-PCR. Nuclear translocation, DNA-binding activity and reporter gene assays were used to assess the activity of nuclear factor kappa B (NF-kB) transcription factor. Carrageenan-induced paw oedema was used as an in vivo model of acute inflammation. Results Muraglitazar as well as PPARγ agonist GW1929 and PPARα agonist fenofibrate inhibited LPS-induced iNOS expression and NO production in activated macrophages in a dose-dependent manner. Inhibition of iNOS expression by muraglitazar included both transcriptional and post-transcriptional components; the former being shared by GW1929 and the latter by fenofibrate. All tested PPAR agonists also inhibited IL-6 production, while TNFα production was reduced by muraglitazar and GW1929, but not by fenofibrate. Interestingly, the anti-inflammatory properties of muraglitazar were also translated in vivo. This was evidenced by the finding that muraglitazar inhibited carrageenan-induced paw inflammation in a dose-dependent manner in mice as did iNOS inhibitor L-NIL and anti-inflammatory steroid dexamethasone. Conclusions These results show that muraglitazar has anti

  8. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors.

    PubMed

    Posokhova, E N; Khoshchenko, O M; Chasovskikh, M I; Pivovarova, E N; Dushkin, M I

    2008-03-01

    The effects of peroxisome proliferator activated receptors alpha and gamma (PPAR-alpha and PPAR-gamma) and retinoid X receptor (RXR) agonists upon synthesis and accumulation of lipids in murine C57Bl macrophages during inflammation induced by injection of zymosan and Escherichia coli lipopolysaccharide (LPS) have been studied. It is significant that intraperitoneal injection of zymosan (50 mg/kg) or LPS (0.1 mg/kg) in mice led to a dramatic increase of [14C]oleate incorporation into cholesteryl esters and triglycerides and [14C]acetate incorporation into cholesterol and fatty acids in peritoneal macrophages. Lipid synthesis reached its maximum rate 18-24 h after injection and was decreased 5-7 days later to control level after LPS injection or was still heightened after zymosan injection. In macrophages obtained in acute phase of inflammation (24 h), degradation of 125I-labeled native low density lipoprotein (NLDL) was 4-fold increased and degradation of 125I-labeled acetylated LDL (AcLDL) was 2-3-fold decreased. Addition of NLDL (50 microg/ml) or AcLDL (25 microg/ml) into the incubation medium of activated macrophages induced 9-14- and 1.25-fold increase of cholesteryl ester synthesis, respectively, compared with control. Addition of NLDL and AcLDL into the incubation medium completely inhibited cholesterol synthesis in control macrophages but had only slightly effect on cholesterol synthesis in activated macrophages. Injection of RXR, PPAR-alpha, or PPAR-gamma agonists--9-cis-retinoic acid (5 mg/kg), bezafibrate (10 mg/kg), or rosiglitazone (10 mg/kg), respectively--30 min before zymosan or LPS injection led to significant decrease of lipid synthesis. Ten hour preincubation of activated in vivo macrophages with the abovementioned agonists (5 microM) decreased cholesteryl ester synthesis induced by NLDL and AcLDL addition into the cell cultivation medium. The data suggest that RXR, PPAR-alpha, or PPAR-gamma agonists inhibited lipid synthesis and induction of

  9. Alpha2-adrenoreceptors profile modulation. 3.1 (R)-(+)-m-nitrobiphenyline, a new efficient and alpha2C-subtype selective agonist.

    PubMed

    Crassous, Pierre-Antoine; Cardinaletti, Claudia; Carrieri, Antonio; Bruni, Bruno; Di Vaira, Massimo; Gentili, Francesco; Ghelfi, Francesca; Giannella, Mario; Paris, Hervé; Piergentili, Alessandro; Quaglia, Wilma; Schaak, Stéphane; Vesprini, Cristian; Pigini, Maria

    2007-08-09

    To assess the stereochemical requirements for efficient alpha2C-adrenoreceptor activation, the enantiomeric forms of m-nitrobiphenyline [(+/-)-5] were prepared and tested on cells expressing the human alpha2-adrenoreceptor subtypes. The importance of chirality was confirmed, since the enantiomer (R)-(+)-5 was much more efficient than (S)-(-)-5 in producing alpha2C-activation. Surprising reversal of enantioselectivity was observed with respect to structurally similar biphenyline [(+/-)-1] whose (S)-(-)-form proved the preferred alpha2C-configuration.

  10. Chronic cocaine self-administration attenuates the anxiogenic-like and stress potentiating effects of the benzodiazepine inverse agonist, FG 7142.

    PubMed

    Waters, R Parrish; See, Ronald E

    2011-09-01

    Stress is a well-known risk factor in relapse to drug abuse. Several forms of stress in animals have been used with varied degrees of success to elicit reinstatement of drug-seeking after chronic drug self-administration. Here, we tested the ability of the benzodiazepine (BZ) inverse agonist, FG 7142, to elicit anxiety-like behavior and potentiate stress responses in rats as measured by standard behavioral and hormonal indices and for its ability to affect reinstatement of cocaine-seeking in rats with a prior history of cocaine self-administration. FG 7142 elicited anxiety-like behavior on the elevated plus maze (EPM) in cocaine-naïve rats, and cocaine-naïve rats injected with FG 7142 exhibited increased plasma corticosterone levels following EPM exposure. However, in animals with a history of cocaine self-administration, FG 7142 failed to affect elevated plus maze performance and did not affect plasma corticosterone response to the EPM. Furthermore, FG 7142 failed to reinstate cocaine-seeking, nor did it alter conditioned cue-induced reinstatement. These data indicate that the anxiety-related and stress potentiating qualities of BZ inverse agonism are attenuated in cocaine-experienced animals and do not lead to reinstatement of cocaine-seeking. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Non-charged amino acids from three different domains contribute to link agonist binding to channel gating in alpha7 nicotinic acetylcholine receptors.

    PubMed

    Aldea, Marcos; Mulet, José; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2007-10-01

    Binding of agonists to nicotinic acetylcholine receptors results in channel opening. Previously, we have shown that several charged residues at three different domains of the alpha7 nicotinic receptor are involved in coupling binding and gating, probably through a network of electrostatic interactions. This network, however, could also be integrated by other residues. To test this hypothesis, non-charged amino acids were mutated and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Asn47 and Gln48 (loop 2), Ile130, Trp134, and Gln140 (loop 7), and Thr264 (M2-M3 linker) showed poor or null functional responses, despite significant membrane expression. By contrast, mutants F137A and S265A exhibited a gain of function effect. In all cases, changes in dose-response relationships were small, EC(50) values being between threefold smaller and fivefold larger, arguing against large modifications of agonist binding. Peak currents decayed at the same rate in all receptors except two, excluding large effects on desensitization. Thus, the observed changes could be mostly caused by alterations of the gating characteristics. Moreover, analysis of double mutants showed an interconnection between some residues in these domains, especially Gln48 with Ile130, suggesting a potential coupling between agonist binding and channel gating through these amino acids.

  12. Evaluation of an alpha agonist alone and in combination with a nonsteroidal antiinflammatory agent in the treatment of experimental rhinovirus colds.

    PubMed Central

    Sperber, S. J.; Sorrentino, J. V.; Riker, D. K.; Hayden, F. G.

    1989-01-01

    The pathogenesis of symptoms of the common cold and their optimal treatment are incompletely understood. To evaluate the role of an oral alpha agonist alone and in combination with a nonsteroidal anti-inflammatory drug in the treatment of experimental rhinovirus colds, 58 subjects were randomized to receive pseudoephedrine 60 mg alone, pseudoephedrine 60 mg plus ibuprofen 200 mg, or placebo, four times daily for 4 1/2 days beginning 30 hours after intranasal rhinovirus inoculation under double-blind conditions. The frequencies of infection, colds occurrence, and viral shedding did not differ significantly between the groups. Total symptom scores were reduced by 59% by pseudoephedrine plus ibuprofen (p less than 0.05) and 48% by pseudoephedrine alone compared with placebo. Nasal symptom scores tended to be lower in recipients of pseudoephedrine plus ibuprofen compared with pseudoephedrine alone (p = 0.09), but other parameters showed no significant treatment differences between the groups. Rhinorrhea, as determined by nasal secretion weights, was significantly reduced in both treatment groups compared to placebo. Nasal patency measurements tended to show the greatest improvement in recipients of pseudoephedrine plus ibuprofen. Therapy was clinically well tolerated. The results suggest that an oral alpha agonist is effective in modifying certain manifestations of experimental rhinovirus infection and that the addition of a nonsteroidal anti-inflammatory drug may provide additional benefit in nasal symptoms and patency. Studies involving large numbers of patients with natural colds are needed to determine the clinical significance of these findings. PMID:2557947

  13. Inverse immunostaining pattern for synthesized versus endocytosed alpha-granule proteins in human bone marrow megakaryocytes.

    PubMed

    de Larouzière, V; Brouland, J P; Souni, F; Drouet, L; Cramer, E

    1998-06-01

    The time of appearance and pattern of expression of several alpha-granule proteins, von Willebrand factor (VWF), fibrinogen and immunoglobulins (Ig) were examined and compared in human bone marrow megakaryocytes (MK) using an immunocytochemical approach. VWF is synthesized by immature MK, whereas it has been shown that fibrinogen is incorporated from the plasma into alpha-granules. The present study was undertaken in order to determine whether there are chronological and morphological differences in the expression of VWF and fibrinogen in vivo in human MK. Seven paraffin-embedded biopsies of normal human bone marrow were labelled with specific antibodies for VWF and for fibrinogen, detected by the alkaline phosphatase anti-alkaline phosphatase (APAAP) method. and analysed by immunomorphometry. We found a clear, statistically significant. difference in the labelling pattern of VWF and fibrinogen. The expression of other endocytosed alpha-granule proteins, immunoglobulins G and A, was therefore studied in bone marrow MK from two patients with multiple myeloma, one with monoclonal IgG and one with monoclonal IgA. The immunostaining pattern was similar to that of fibrinogen and different from VWF, and characteristic of endocytosed alpha-granule proteins. This study demonstrates that: (i) immunohistochemical staining of MK alpha-granules proteins distinguishes the peripheral cockade distribution pattern of endocytosed protein from the perinuclear pattern of endogenously synthesized proteins; (ii) VWF is present in human bone marrow MK when fibrinogen is not yet detectable: (iii) VWF synthesis ceases while fibrinogen is still being incorporated: (iv) immunoglobulins can be detected in MK cytoplasm, with a staining pattern resembling that of fibrinogen.

  14. Facilitation of spatial working memory performance following intra-prefrontal cortical administration of the adrenergic alpha1 agonist phenylephrine.

    PubMed

    Hvoslef-Eide, Martha; Oomen, C A; Fisher, B M; Heath, C J; Robbins, T W; Saksida, L M; Bussey, T J

    2015-11-01

    Spatial working memory is dependent on the appropriate functioning of the prefrontal cortex (PFC). PFC activity can be modulated by noradrenaline (NA) released by afferent projections from the locus coeruleus. The coreuleo-cortical NA system could therefore be a target for cognitive enhancers of spatial working memory. Of the three classes of NA receptor potentially involved, the α2 and α1 classes seem most significant, though agents targeting these receptors have yielded mixed results. This may be partially due to the use of behavioural assays that do not translate effectively from the laboratory to the clinical setting. Use of a paradigm with improved translational potential may be essential to resolve these discrepancies. The objective of this study was to assess the effects of PFC-infused α2 and α1 adrenergic receptor agonists on spatial working memory performance in the touchscreen continuous trial-unique non-matching to location (cTUNL) task in rats. Young male rats were trained in the cTUNL paradigm. Cannulation of the mPFC allowed direct administration of GABA agonists for task validation, and phenylephrine and guanfacine to determine the effects of adrenergic agonists on task performance. Infusion of muscimol and baclofen resulted in a delay-dependent impairment. Administration of the α2 agonist guanfacine had no effect, whilst infusion of the α1 agonist phenylephrine significantly improved working memory performance. Spatial working memory as measured in the rat cTUNL task is dependent on the mPFC. Enhancement of noradrenergic signalling enhanced performance in this paradigm, suggesting a significant role for the α1 receptor in this facilitation.

  15. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency

    PubMed Central

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M.; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G.; Marini, Pietro; Pertwee, Roger G.; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-01-01

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ9-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3–4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [3H]CP55,940 displacement and its effect on [35S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [35S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  16. Differential Adjuvant Activities of TLR7 and TLR9 Agonists Inversely Correlate with Nitric Oxide and PGE2 Production

    PubMed Central

    Lee, Jinhee; Martinez, Nuria; West, Kim; Kornfeld, Hardy

    2015-01-01

    Activation of different pattern recognition receptors causes distinct profiles of innate immune responses, which in turn dictate the adaptive immune response. We found that mice had higher CD4+ T cell expansion to an immunogen, ovalbumin, when coadministered with CpG than with CL097 in vivo. To account for this differential adjuvanticity, we assessed the activities of CpG and CL097 on antigen-specific CD4+ T cell expansion in vitro using an OT-II CD4+ T cell/bone marrow-derived dendritic cell (DC) co-culture system. Unexpectedly, ovalbumin-stimulated expansion of OT-II CD4+ T cells in vitro was potently suppressed by both TLR agonists, with CL097 being stronger than CpG. The suppression was synergistically reversed by co-inhibition of cyclooxygenases 1 and 2, and inducible nitric oxide (NO) synthase. In addition, stimulation of OT-II CD4+ T cell/DC cultures with CL097 induced higher levels of CD4+ T cell death than stimulation with CpG, and this CD4+ T cell turnover was reversed by NO and PGE2 inhibition. Consistently, the co-cultures stimulated with CL097 produced higher levels of prostaglandin E2 (PGE2) and NO than stimulation with CpG. CL097 induced higher PGE2 production in DC cultures and higher IFN-γ in the OT-II CD4+ T cell/DC cultures, accounting for the high levels of PGE2 and NO. This study demonstrates that the adjuvant activities of immunostimulatory molecules may be determined by differential induction of negative regulators, including NO and PGE2 suppressing clonal expansion and promoting cell death of CD4+ T cells. PMID:25875128

  17. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    PubMed

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.

  18. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  19. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  20. Spectroscopy of {sup 16}O Using {alpha}+{sup 12}C Resonant Scattering in Inverse Kinematics

    SciTech Connect

    Ashwood, N. I.; Freer, M.; Bloxham, T. R.; Curtis, N.; Haigh, P. J.; Price, D. L.; Achouri, N. L.; Catford, W. N.; Harlin, C. W.; Patterson, N. P.; Thomas, J. S.; Soic, N.

    2009-08-26

    A measurement of the {alpha}({sup 12}C,{alpha}){sup 12}C reaction has been performed using resonant scattering with a gas target. Beam energies of 46, 51, 56 and 63 MeV were used to populate resonances in the excitation energy range of 11.6 to 22.9 MeV in {sup 16}O. The angular distributions of the elastic scattering were measured at zero degrees using an array of segmented silicon strip detectors with a minimum range of 0 deg. to 30 deg. in the centre of mass. The spins of 8 resonances between 14.1 and 18.5 MeV were obtained, confirming spin assignments made using elastic scattering in normal kinematics. An R-matrix analysis of the data was performed which indicates that the present understanding of {sup 16}O in this region is good, but not complete.

  1. Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist.

    PubMed

    Cascio, M G; Gauson, L A; Stevenson, L A; Ross, R A; Pertwee, R G

    2010-01-01

    Cannabis is the source of at least seventy phytocannabinoids. The pharmacology of most of these has been little investigated, three notable exceptions being Delta(9)-tetrahydrocannabinol, cannabidiol and Delta(9)-tetrahydrocannabivarin. This investigation addressed the question of whether the little-studied phytocannabinoid, cannabigerol, can activate or block any G protein-coupled receptor. The [(35)S]GTPgammaS binding assay, performed with mouse brain membranes, was used to test the ability of cannabigerol to produce G protein-coupled receptor activation or blockade. Its ability to displace [(3)H]CP55940 from mouse CB(1) and human CB(2) cannabinoid receptors and to inhibit electrically evoked contractions of the mouse isolated vas deferens was also investigated. In the brain membrane experiments, cannabigerol behaved as a potent alpha(2)-adrenoceptor agonist (EC(50)= 0.2 nM) and antagonized the 5-HT(1A) receptor agonist, R-(+)-8-hydroxy-2-(di-n-propylamino)tetralin (apparent K(B)= 51.9 nM). At 10 microM, it also behaved as a CB(1) receptor competitive antagonist. Additionally, cannabigerol inhibited evoked contractions of the vas deferens in a manner that appeared to be alpha(2)-adrenoceptor-mediated (EC(50)= 72.8 nM) and displayed significant affinity for mouse CB(1) and human CB(2) receptors. This investigation has provided the first evidence that cannabigerol can activate alpha(2)-adrenoceptors, bind to cannabinoid CB(1) and CB(2) receptors and block CB(1) and 5-HT(1A) receptors. It will now be important to investigate why cannabigerol produced signs of agonism more potently in the [(35)S]GTPgammaS binding assay than in the vas deferens and also whether it can inhibit noradrenaline uptake in this isolated tissue and in the brain.

  2. Differential Immediate and Sustained Memory Enhancing Effects of Alpha7 Nicotinic Receptor Agonists and Allosteric Modulators in Rats

    PubMed Central

    Thomsen, Morten S.; El-Sayed, Mona; Mikkelsen, Jens D.

    2011-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a potential target for the treatment of cognitive deficits in patients with schizophrenia, ADHD and Alzheimer's disease. Here we test the hypothesis that upregulation of α7 nAChR levels underlies the enhanced and sustained procognitive effect of repeated administration of α7 nAChR agonists. We further compare the effect of agonists to that of α7 nAChR positive allosteric modulators (PAMs), which do not induce upregulation of the α7 nAChR. Using the social discrimination test as a measure of short-term memory, we show that the α7 nAChR agonist A-582941 improves short-term memory immediately after repeated (7× daily), but not a single administration. The α7 nAChR PAMs PNU-120596 and AVL-3288 do not affect short-term memory immediately after a single or repeated administration. This demonstrates a fundamental difference in the behavioral effects of agonists and PAMs that may be relevant for clinical development. Importantly, A-582941 and AVL-3288 increase short-term memory 24 hrs after repeated, but not a single, administration, suggesting that repeated administration of both agonists and PAMs may produce sustained effects on cognitive performance. Subsequent [125I]-bungarotoxin autoradiography revealed no direct correlation between α7 nAChR levels in frontal cortical or hippocampal brain regions and short-term memory with either compound. Additionally, repeated treatment with A-582941 did not affect mRNA expression of RIC-3 or the lynx-like gene products lynx1, lynx2, PSCA, or Ly6H, which are known to affect nAChR function. In conclusion, both α7 nAChR agonists and PAMs exhibit sustained pro-cognitive effects after repeated administration, and altered levels of the α7 nAChR per se, or that of endogenous regulators of nAChR function, are likely not the major cause of this effect. PMID:22096516

  3. Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats.

    PubMed

    Thomsen, Morten S; El-Sayed, Mona; Mikkelsen, Jens D

    2011-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a potential target for the treatment of cognitive deficits in patients with schizophrenia, ADHD and Alzheimer's disease. Here we test the hypothesis that upregulation of α7 nAChR levels underlies the enhanced and sustained procognitive effect of repeated administration of α7 nAChR agonists. We further compare the effect of agonists to that of α7 nAChR positive allosteric modulators (PAMs), which do not induce upregulation of the α7 nAChR. Using the social discrimination test as a measure of short-term memory, we show that the α7 nAChR agonist A-582941 improves short-term memory immediately after repeated (7× daily), but not a single administration. The α7 nAChR PAMs PNU-120596 and AVL-3288 do not affect short-term memory immediately after a single or repeated administration. This demonstrates a fundamental difference in the behavioral effects of agonists and PAMs that may be relevant for clinical development. Importantly, A-582941 and AVL-3288 increase short-term memory 24 hrs after repeated, but not a single, administration, suggesting that repeated administration of both agonists and PAMs may produce sustained effects on cognitive performance. Subsequent [(125)I]-bungarotoxin autoradiography revealed no direct correlation between α7 nAChR levels in frontal cortical or hippocampal brain regions and short-term memory with either compound. Additionally, repeated treatment with A-582941 did not affect mRNA expression of RIC-3 or the lynx-like gene products lynx1, lynx2, PSCA, or Ly6H, which are known to affect nAChR function. In conclusion, both α7 nAChR agonists and PAMs exhibit sustained pro-cognitive effects after repeated administration, and altered levels of the α7 nAChR per se, or that of endogenous regulators of nAChR function, are likely not the major cause of this effect.

  4. β2-adrenoreceptor Inverse Agonist Down-regulates Muscarine Cholinergic Subtype-3 Receptor and Its Downstream Signal Pathways in Airway Smooth Muscle Cells in vitro.

    PubMed

    Luo, Jian; Liu, Yuan-Hua; Luo, Wei; Luo, Zhu; Liu, Chun-Tao

    2017-01-04

    Mechanisms underlying β2-adrenoreceptor (β2AR) inverse agonist mediated bronchoprotectiveness remain unknown. We incubated ICI118,551, formoterol, budesonide, and formoterol plus budesonide, as well as ICI118,551 or pindolol plus formoterol, ICI118,551 plus forskolin, SQ22,536 or H89 plus formoterol in ASMCs to detect expressions of M3R, PLCβ1 and IP3. The level of M3R in the presence of 10(-5) mmol/L ICI118,551 were significantly decreased at 12 h, 24 h and 48 h (P < 0.05), and at 24 h were significantly reduced in ICI118,551 with concentration of 10(-5 )mmol/L, 10(-6 )mmol/L, 10(-7 )mmol/L, and 10(-8 )mmol/L (P < 0.05). The level of IP3 in 10(-5 )mmol/L ICI118,551 was significantly diminished at 24 h (P < 0.01), except for that at 1 h, neither was in the level of PLCβ1. A concentration of 10(-5 )mmol/L ICI118,551 at 24 h showed a significant reduction of M3R level compared to formoterol (P < 0.01), budesonide (P < 0.01), and formoterol + budesonide (P < 0.05), but significant reduction of PLCβ1 and IP3 was only found between 10(-5 )mmol/L ICI118,551 and formoterol at 24 h, but not in the comparison of budesonide or formoterol + budesonide. Pindolol and H89 could not inhibit the formoterol-induced expression of M3R (P > 0.05), but SQ22,536 significantly antagonized the formoterol-induced M3R expression (P < 0.05). In conclusions, β2AR inverse agonist, ICI118,551, exerts similar bronchoprotective effects to corticosteroids via decreasing the expression of M3R and inhibiting the production of IP3.

  5. β2-adrenoreceptor Inverse Agonist Down-regulates Muscarine Cholinergic Subtype-3 Receptor and Its Downstream Signal Pathways in Airway Smooth Muscle Cells in vitro

    PubMed Central

    Luo, Jian; Liu, Yuan-hua; Luo, Wei; Luo, Zhu; Liu, Chun-tao

    2017-01-01

    Mechanisms underlying β2-adrenoreceptor (β2AR) inverse agonist mediated bronchoprotectiveness remain unknown. We incubated ICI118,551, formoterol, budesonide, and formoterol plus budesonide, as well as ICI118,551 or pindolol plus formoterol, ICI118,551 plus forskolin, SQ22,536 or H89 plus formoterol in ASMCs to detect expressions of M3R, PLCβ1 and IP3. The level of M3R in the presence of 10−5 mmol/L ICI118,551 were significantly decreased at 12 h, 24 h and 48 h (P < 0.05), and at 24 h were significantly reduced in ICI118,551 with concentration of 10−5 mmol/L, 10−6 mmol/L, 10−7 mmol/L, and 10−8 mmol/L (P < 0.05). The level of IP3 in 10−5 mmol/L ICI118,551 was significantly diminished at 24 h (P < 0.01), except for that at 1 h, neither was in the level of PLCβ1. A concentration of 10−5 mmol/L ICI118,551 at 24 h showed a significant reduction of M3R level compared to formoterol (P < 0.01), budesonide (P < 0.01), and formoterol + budesonide (P < 0.05), but significant reduction of PLCβ1 and IP3 was only found between 10−5 mmol/L ICI118,551 and formoterol at 24 h, but not in the comparison of budesonide or formoterol + budesonide. Pindolol and H89 could not inhibit the formoterol-induced expression of M3R (P > 0.05), but SQ22,536 significantly antagonized the formoterol-induced M3R expression (P < 0.05). In conclusions, β2AR inverse agonist, ICI118,551, exerts similar bronchoprotective effects to corticosteroids via decreasing the expression of M3R and inhibiting the production of IP3. PMID:28051147

  6. Peroxisome proliferator activated receptor alpha/gamma dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice.

    PubMed

    Cha, Dae Ryong; Zhang, Xiaoyan; Zhang, Yahua; Wu, Jing; Su, Dongming; Han, Jee Young; Fang, Xuefen; Yu, Bo; Breyer, Matthew D; Guan, Youfei

    2007-08-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors and play a central role in insulin sensitivity, lipid metabolism, and inflammation. Both PPARalpha and -gamma are expressed in the kidney, and their agonists exhibit renoprotective effects in type 2 diabetes. In the present studies, we investigated the effect of the PPARalpha/gamma dual agonist tesaglitazar on diabetic nephropathy in type 2 diabetic db/db mice. Treatment of db/db mice with tesaglitazar for 3 months significantly lowered fasting plasma glucose and homeostasis model assessment of insulin resistance levels but had little effect on body weight, adiposity, or cardiac function. Treatment with tesaglitazar was associated with reduced plasma insulin and total triglyceride levels and increased plasma adiponectin levels. Notably, tesaglitazar markedly attenuated albuminuria and significantly lowered glomerulofibrosis, collagen deposition, and transforming growth factor-beta1 expression in renal tissues of db/db mice. In cultured mesangial cells and proximal tubule cells, where both PPARalpha and -gamma were expressed, tesaglitazar treatment abolished high glucose-induced total collagen protein production and type I and IV collagen gene expression. Collectively, tesaglitazar treatment not only improved insulin resistance, glycemic control, and lipid profile but also markedly attenuated albuminuria and renal glomerular fibrosis in db/db mice. These findings support the utility of dual PPARalpha/gamma agonists in treating type 2 diabetes and diabetic nephropathy.

  7. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  8. Platelet and brain alpha 2-adrenoceptors and cardiovascular sensitivity to agonists in dogs suffering from endotoxic shock.

    PubMed

    Hikasa, Y; Fukui, H; Sato, Y; Ogasawara, S; Matsuda, H

    1998-01-01

    We examined the changes in alpha 2-adrenoceptor binding on platelet and brain membranes of dogs treated with a non-lethal dose of endotoxin (0.1 mg/kg intravenously), and the alpha 2-adrenoceptor mediated cardiovascular effects during endotoxin shock. At 2 h, 24 h, and 7 days after endotoxin administration, the number of binding sites (Bmax) of [3H]yohimbine binding decreased and equilibrium dissociation constants (Kd) increased in platelets, whereas both Bmax and Kd decreased in either cerebral cortex or medulla oblongata. After 30 days of endotoxin administration, there were no significant differences in Bmax or Kd between the treated and untreated animals in both platelets and brain tissues. Significant positive correlations were observed for Bmax values between platelets and brain tissues, although negative correlations for Kd values between platelets and brain were not significant. Significant negative correlations were also observed between plasma catecholamine concentrations and platelet alpha 2-adrenoceptor number, and between plasma noradrenaline and medulla alpha 2-adrenoceptor number. Pretreatment with E coli endotoxin diminished cardiovascular effects such as bradycardia, hypotension, and increase in systemic vascular resistance induced by either i.v. clonidine or xylazine. This suggests that alpha 2-adrenoceptor activity is impaired in the central nervous system as well as in the peripheral vascular system during endotoxin shock. Therefore, platelets may in part represent a good model which reflects the alpha 2-adrenoceptor changes in the central nervous system and peripheral vascular system during and after endotoxin shock.

  9. Fenofibrate vs pioglitazone: Comparative study of the anti-arthritic potencies of PPAR-alpha and PPAR-gamma agonists in rat adjuvant-induced arthritis.

    PubMed

    Koufany, Meriem; Jouzeau, Jean-Yves; Moulin, David

    2014-01-01

    Rheumatoid arthritis is characterized by synovial hyperplasia, inflammatory infiltration, cartilage destruction and juxta-articular as well as generalized bone demineralization. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily which behave as ligand-activated transcription factors in response to endogenous fatty acids and eicosanoids or isotype selective synthetic compounds as fibrates and thiazolidinediones. Beyond their key role in lipid metabolism, increased evidence has shown a role of the three isotypes in inflammatory modulation. We and others demonstrated previously that PPAR-gamma agonists reduced the severity of experimental polyarthritis and the overall inflammatory-induced bone loss. To compare the anti-arthritic potencies of a PPAR-alpha agonist (fenofibrate, a lipid lowering drug) and a PPAR-gamma agonist (pioglitazone, formerly used as an antidiabetic drug) in rat adjuvant-induced arthritis. Male Lewis rats were sensitized by an intra-dermal injection of 1 mg complete Freund's adjuvant at the basis of the tail and were treated orally for 21 days with fenofibrate 100 mg/kg/day (FENO) or pioglitazone 30 mg/kg/day (PIO), or with vehicle only. Arthritis severity was evaluated by clinical observations (oedema, clinical score, body weight). Global and femoral bone mineral density (BMD), femoral bone mineral content (BMC) were measured by dual-energy X-ray absorptiometry (DEXA) before sensitization and at day 20. Synovial mRNA levels of IL-1beta and IL-6 were determined by real-time RT-PCR. Administration of fenofibrate (100mg/kg/d) and pioglitazone (30 mg/kg/d) significantly reduced hindpaw oedema and arthritis score. Treatment with fenofibrate exerted a better effect on clinical scoring. DEXA analysis revealed that pioglitazone and fenofibrate treatment to a greater extent, reduced inflammatory-bone loss and increased BMD versus vehicle-treated rats. Finally, we demonstrated that both agonists

  10. (R)-3'-(3-methylbenzo[b]thiophen-5-yl)spiro[1-azabicyclo[2,2,2]octane-3,5'-oxazolidin]-2'-one, a novel and potent alpha7 nicotinic acetylcholine receptor partial agonist displays cognitive enhancing properties.

    PubMed

    Tatsumi, Ryo; Fujio, Masakazu; Takanashi, Shin-ichi; Numata, Atsushi; Katayama, Jiro; Satoh, Hiroyuki; Shiigi, Yasuyuki; Maeda, Jun-ichi; Kuriyama, Makoto; Horikawa, Takashi; Murozono, Takahiro; Hashimoto, Kenji; Tanaka, Hiroshi

    2006-07-13

    Recent studies have suggested that the alpha7 nicotinic acetylcholine receptors play important roles in learning and memory. Herein, we describe our research of the structure-activity relationships (SAR) in a series of (S)-spiro[1-azabicyclo[2.2.2]octane-3,5'-oxazolidin]-2'-ones bearing various bicyclic moieties to discover novel alpha7 receptor agonists. Through a number of SAR studies on the series, we have found out that inhibition of CYP 2D6 isozyme, which was a primary obstacle for the previously identified compound, was avoidable by the introduction of bicyclic moieties. Chemical optimization of the series led to the identification of a novel and potent alpha7 nicotinic acetylcholine receptor partial agonist 23. This compound not only possessed high binding affinity (K(i) = 3 nmol/L) toward the alpha7 receptor but also showed agonistic activity even at a concentration of 0.1 micromol/L. In addition, compound 23 improved cognition in several rat models, which might suggest the potential of the alpha7 receptor partial agonist for the treatment of neurological disorders including cognitive dysfunction.

  11. Description of the constitutive activity of cloned human melatonin receptors hMT(1) and hMT(2) and discovery of inverse agonists.

    PubMed

    Devavry, Séverine; Legros, Céline; Brasseur, Chantal; Delagrange, Philippe; Spadoni, Gilberto; Cohen, William; Malpaux, Benoît; Boutin, Jean A; Nosjean, Olivier

    2012-08-01

    Melatonin receptors have been described to activate different G protein-dependent signaling pathways, both in laboratory, heterologous, cellular models and in physiological conditions. Furthermore, the constitutive activity of G protein-coupled receptors has been shown to be key in physiological and pathological conditions. In the case of melatonin receptors, information is rather scare and concerns only MT1 receptors. In the present report, we show that the G protein-coupled melatonin receptors do have a constitutive, nonmelatonin-induced signaling activity using two cellular models of different origins, the Chinese hamster ovary cell line and Neuro2A, a neuroblastoma cell line. Furthermore, we show that this constitutive activity involves mainly Gi proteins, which is consistent with the common knowledge on the melatonin receptors. Importantly, we also describe, for the first time, inverse agonist properties for melatonin ligands. Although it is clear than more in-depth, biochemistry-based studies will be required to better understand by which pathway(s) the constitutively active melatonin receptors transfer melatonin information into intracellular biochemical events; our data open interesting perspectives for understanding the importance of the constitutive activity of melatonin receptors in physiological conditions.

  12. Increased 21-hydroxylase and shutdown of C(17,20) lyase activities in testicular tissues of the grouper (Epinephelus coioides) during 17alpha-methyltestosterone-induced sex inversion.

    PubMed

    Lee, S T; Lam, T J; Tan, C H

    2002-05-01

    The metabolism in vitro of [(3)H]17-hydroxyprogesterone by gonadal tissues of the grouper (Epinephelus coioides) during 17alpha-methyltestosterone (MT)-induced female-to-male sex inversion was examined. In the female phase, C(17,20) lyase, 5beta-reductase, 3alpha/beta-HSD, 20beta-HSD, and 17beta-HSD activities resulted in the biosynthesis of 5beta-pregnans and 5beta-androstanes (including 5beta-androstane-3alpha/beta, 17beta-diol, 3alpha/beta, 17alpha-dihydroxy-5beta-pregnen-20-one, and 5beta-androstane-3,17-dione). In the MT-induced male phase, however, the abrogation of C(17,20) lyase activity and the concomitant activation of 21alpha-hydroxylase/11beta-hydroxylase resulted in the preferential synthesis of polar 21alpha-hydroxlyated 5beta-pregnans (5beta-pregnan-3beta,17alpha,20beta,21alpha-tetrol and 3beta,20beta,21alpha-trihydroxy-5beta-pregnan-3-one) and corticosteroids (11-deoxycortisol and cortisol). Interestingly, synthesis of these 21alpha-hydroxylated 5beta-pregnans and corticosteroids was uniquely compartmentalized in only testicular tissues of the MT-induced males. This study shows that there is selective activation of specific steroidogenic enzymes in the different sexual phases leading to the synthesis of metabolites that may be involved in regulating sex inversion of the grouper. (c) 2002 Elsevier Science (USA).

  13. A novel dual peroxisome proliferator-activated receptors alpha and gamma agonist with beneficial effects on insulin resistance and lipid metabolism.

    PubMed

    Xu, Cheng; Wang, Li-Li; Liu, Hong-Ying; Ruan, Cheng-Mai; Zhou, Xing-Bo; Cao, Ying-Lin; Li, Song

    2006-06-01

    Peroxisome proliferator-activated receptors (PPARs) alpha and gamma are key regulators of lipid homeostasis and insulin resistance. In this study we show that a novel compound, 3-{4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl}- 2-[2-(2-nitro-phenoxy)-acetyl amino]-propionic acid (O325H), is an agonist with dual effect on PPARalpha/gamma by using dual-luciferase reporter gene assay. By activating PPARalpha and PPARgamma simultaneously, O325H promotes pre-adipocyte differentiation and up-regulates the expression of glucose and lipid metabolic target genes. In diabetic mice, administration of O325H at 10 mg/kg decreases the blood lipid and glucose levels. Therefore, O325H has dual action on PPARalpha and PPARgamma and is a promising agent for the amelioration of lipid metabolic disorders and diabetes associated with insulin resistance.

  14. The influence of the time course of inflammation and spinalization on the antinociceptive activity of the alpha2-adrenoceptor agonist medetomidine.

    PubMed

    Molina, Carlos; Herrero, Juan F

    2006-02-17

    The purpose of the present study was to investigate the influence of the time course of inflammation and the implication of spinal and supraspinal sites on the antihyperalgesic effects of the alpha(2)-adrenoceptor agonist medetomidine. Behavioral experiments showed a more intense antihyperalgesia in the phase of maintenance of inflammation than in the early or resolution stages. Maximum effect, without sedation, was observed with a dose of 40 microg/kg (66+/-12% and 76+/-15% reduction of mechanical and thermal hyperalgesia). No change was observed in the paw swelling, indicating that its effects were not secondary to a reduction of inflammation. In electrophysiological experiments, the effect was more pronounced in animals with an intact spinal cord than in spinalized animals (max. effects of 2+/-0.7% vs. 48+/-11% of control, noxious mechanical stimulation). We conclude that the antihyperalgesic effect of medetomidine depends on the time course of inflammation and that it is mainly located supraspinally.

  15. Effect of Alpha-1-Adrenergic Agonist, Midodrine for the Management of Long-Standing Neurogenic Shock in Patient with Cervical Spinal Cord Injury: A Case Report

    PubMed Central

    Kim, Taikwan

    2015-01-01

    We report a rare case of a 71-year-old male patient who had suffered from long-lasting neurogenic shock for 13 weeks after cervical spinal cord injury (SCI) caused by a bicycle accident. The neurogenic shock was resolved dramatically 2 weeks after the administration of alpha-1-adrenergic agonist, midodrine hydrochloride. In usual cases, neurogenic shock tends to improve between 2 and 6 weeks after SCI; however, in a few cases, the shock lasts for several months. In our case, spinal shock lasted for 13 weeks and exhibited very sensitive decline of blood pressure for even a slight decrease of dopamine despite recovered bulbospongiosus reflex. Three days after midodrine hydrochloride was added, hypotension improved dramatically. We discuss our rare case with pertinent literatures. PMID:27169082

  16. Alternative Agents in Type 1 Diabetes in Addition to Insulin Therapy: Metformin, Alpha-Glucosidase Inhibitors, Pioglitazone, GLP-1 Agonists, DPP-IV Inhibitors, and SGLT-2 Inhibitors.

    PubMed

    DeGeeter, Michelle; Williamson, Bobbie

    2016-04-01

    Insulin is the mainstay of current treatment for patients with type 1 diabetes mellitus (T1DM). Due to increasing insulin resistance, insulin doses are often continually increased, which may result in weight gain for patients. Medications currently approved for the treatment of type 2 diabetes offer varying mechanisms of action that can help to reduce insulin resistance and prevent or deter weight gain. A MEDLINE search was conducted to review literature evaluating the use of metformin, alpha-glucosidase inhibitors, pioglitazone, glucagon-like peptide 1 agonists, dipeptidyl peptidase, and sodium-dependent glucose transporter 2 inhibitors, in patients with T1DM. Varying results were found with some benefits including reductions in hemoglobin A1c, decreased insulin doses, and favorable effects on weight. Of significance, a common fear of utilizing multiple therapies for diabetes treatment is the risk of hypoglycemia, and this review displayed limited evidence of hypoglycemia with multiple agents.

  17. Multifunctional D2/D3 Agonist D-520 with High in Vivo Efficacy: Modulator of Toxicity of Alpha-Synuclein Aggregates

    PubMed Central

    2014-01-01

    We have developed a series of dihydroxy compounds and related analogues based on our hybrid D2/D3 agonist molecular template to develop multifunctional drugs for symptomatic and neuroprotective treatment for Parkinson’s disease (PD). The lead compound (−)-24b (D-520) exhibited high agonist potency at D2/D3 receptors and produced efficacious activity in the animal models for PD. The data from thioflavin T (ThT) assay and from transmission electron microscopy (TEM) analysis demonstrate that D-520 is able to modulate aggregation of alpha-synuclein (αSN). Additionally, coincubation of D-520 with αSN is able to reduce toxicity of preformed aggregates of αSN compared to control αSN alone. Finally, in a neuroprotection study with dopaminergic MN9D cells, D-520 clearly demonstrated the effect of neuroprotection from toxicity of 6-hydroxydopamine. Thus, compound D-520 possesses properties characteristic of multifunctionality conducive to symptomatic and neuroprotective treatment of PD. PMID:24960209

  18. Effect of sleep deprivation on the growth hormone response to the alpha-3 adrenergic receptor agonist, clonidine, in normal subjects.

    PubMed

    Lal, S; Thavundayil, J X; Krishnan, B; Nair, N P; Schwartz, G; Kiely, M E; Guyda, H

    1997-01-01

    One night's sleep deprivation (SD) increased the growth hormone (GH) response to clonidine (20 ug/kg i.v.) in 11 normal men ( p < 0.005). This finding may indicate that SD enhances alpha-2 adrenergic receptor function or that the GH response to GH releasing factor in increased by SD.

  19. The novel alpha 2-adrenoceptor agonist [3H]mivazerol binds to non-adrenergic binding sites in human striatum membranes that are distinct from imidazoline receptors.

    PubMed

    Flamez, A; Gillard, M; De Backer, J P; Vauquelin, G; Noyer, M

    1997-07-01

    The alpha 2 adrenergic agonist [3H]mivazerol labelled two populations of binding sites in membranes from the human striatum. Forty per cent of the sites labelled by 3 nM [3H]mivazerol corresponded to alpha 2 adrenergic receptors as they displayed a high affinity for (-)-adrenaline and for rauwolscine. The remaining binding was displaced by mivazerol with a pIC50 of 6.5 +/- 0.1. These sites displayed higher affinity for dexmedetomidine (pIC50 = 7.1 +/- 0.1), but much lower affinity for clonidine (pIC50 < 5.0) and for idazoxan (pIC50 = 5.1 +/- 0.1). Mivazerol also showed low affinity for the [3H]clonidine-labelled I1 imidazoline receptors and for the [3H]idazoxan-labelled I2 receptors (pIC50 = 5.1 and 3.9, respectively). These results suggest that the non-adrenergic [3H]mivazerol binding sites are distinct from the imidazoline receptors in the human striatum.

  20. Anti-kindling Effect of Bezafibrate, a Peroxisome Proliferator-activated Receptors Alpha Agonist, in Pentylenetetrazole Induced Kindling Seizure Model

    PubMed Central

    Saha, Lekha; Bhandari, Swati; Bhatia, Alka; Banerjee, Dibyajyoti; Chakrabarti, Amitava

    2014-01-01

    Background and Purpose: Studies in the animals suggested that Peroxisome proliferators activated receptors (PPARs) may be involved in seizure control and selective agonists of PPAR α or PPAR γ raise seizure thresholds. The present study was contemplated with the aim of evaluating the anti kindling effects and the mechanism of bezafibrate, a Peroxisome proliferator-activated receptors α (PPAR-α) agonist in pentylenetetrazole (PTZ) induced kindling model of seizures in rats. Methods: In a PTZ kindled Wistar rat model, different doses of bezafibrate (100 mg/kg, 200 mg/kg and 300 mg/kg) were administered intraperitoneally 30 minutes before the PTZ injection. The PTZ injection was given on alternate day till the animal became fully kindled or till 10 weeks. The parameters measured were the latency to develop kindling and incidence of kindling, histopathological study of hippocampus, hippocampal lipid peroxidation studies, serum neuron specific enolase, and hippocampal DNA fragmentation study. Results: In this study, bezafibrate significantly reduced the incidence of kindling in PTZ treated rats and exhibited a marked prolongation in the latencies to seizures. In the present study bezafibrate decreased the thiobarbituric acid-reactive substance i.e. Malondialdehyde levels, increased the reduced glutathione levels, catalase and superoxide dismutase activity in the brain. This added to its additional neuroprotective effects. Bezafibrate also reduced the neuronal damage and apoptosis in hippocampal area of the brain. Therefore bezafibrate exerted anticonvulsant properties in PTZ induced kindling model in rats. Conclusions: These findings may provide insights into the understanding of the mechanism of bezafibrate as an anti kindling agent and could offer a useful support to the basic antiepileptic therapy in preventing the development of PTZ induced seizures, suggesting its potential for therapeutic applications in temporal lobe epilepsy. PMID:25625088

  1. Neuroprotective effect of the alpha 7 nicotinic receptor agonist PHA 543613 in an in vivo excitotoxic adult rat model.

    PubMed

    Foucault-Fruchard, Laura; Doméné, Aurélie; Page, Guylène; Windsor, Marguerite; Emond, Patrick; Rodrigues, Nuno; Dollé, Frédéric; Damont, Annelaure; Buron, Frédéric; Routier, Sylvain; Chalon, Sylvie; Antier, Daniel

    2017-07-25

    Neuroinflammation is a key component of the pathophysiology of neurodegenerative diseases. The link between nicotine intake and positive outcome has been established, suggesting a role played by nicotinic receptors (nAChRs), especially α7nAChRs. The objective of this study was to evaluate the potential dose effects of PHA 543613 on neuron survival and striatal microglial activation in a rat model of brain excitotoxicity. A preliminary study was performed in vitro to confirm PHA 543613 agonist properties on α7nAChRs. Rats were lesioned in the right striatum with quinolinic acid (QA) and received either vehicle or PHA 543613 at 6 or 12mg/kg twice a day until sacrifice at Day 4 post-lesion. We first compared the translocator protein quantitative autoradiography in QA-lesioned brains with [(3)H]DPA-714 and [(3)H]PK-11195. The effects of PHA 543613 on microglial activation and neuronal survival were then evaluated through [(3)H]DPA-714 binding and immunofluorescence staining (Ox-42, NeuN) on adjacent brain sections. We demonstrated that [(3)H]DPA-714 provides a better signal-to-noise ratio than [(3)H]PK-11195. Furthermore, we showed that repeated PHA 543613 administration at a dose of 12mg/kg to QA-lesioned rats significantly protected neurons and reduced the intensity of microglial activation. This study reinforces the hypothesis that α7nAChR agonists can provide beneficial effects in the treatment of neurodegenerative diseases through potential modulation of microglial activation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Potent and selective agonists of human melanocortin receptor 5: cyclic analogues of alpha-melanocyte-stimulating hormone.

    PubMed

    Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana

    2007-05-17

    The physiological role of melanocortin receptor 5 (MC5R) in humans is not clear despite its broad presence in various peripheral sites and in the brain, cortex, and cerebellum. To differentiate between functions of this receptor and those of the other melanocortin receptors (hMC1,3,4R), peptides with improved receptor subtype selectivity are needed. The endogenous ligands, melanocortins, and their various synthetic analogues are not particularly selective for hMC5R. In this study, cyclic peptides derived from MTII, Ac-Nle-cyclo(Asp-His6-D-Phe7-Arg8-Trp-Lys)-NH2 (a pan-agonist at the melanocortin receptors) were prepared and tested in binding and functional assays on CHO cells expressing hMC1b,3-5R. The analogues included in their structures sterically constrained hydrophobic amino acids in positions 6 (His) and 8 (Arg), and the D-4,4'-biphenyl residue in position 7 (D-Phe). Several of the new compounds were selective potent agonists at hMC5R. They are exemplified by peptide 29, Ac-Nle-cyclo(Asp-Oic6-D-4,4'-Bip7-Pip8-Trp-Lys)-NH2 (Oic=octahydroindole-2-COOH; 4,4'-Bip=4,4'-biphenylalanine; Pip=pipecolic acid) of IC50=0.95 nM and EC50=0.99 nM at hMC5R and selectivity for this receptor with respect to the other melanocortin receptors greater than 5000-fold.

  3. Agonists of peroxisome proliferators-activated receptors (PPAR) alpha, beta/delta or gamma reduce transforming growth factor (TGF)-beta-induced proteoglycans' production in chondrocytes.

    PubMed

    Poleni, P E; Bianchi, A; Etienne, S; Koufany, M; Sebillaud, S; Netter, P; Terlain, B; Jouzeau, J Y

    2007-05-01

    To investigate the potency of selective agonists of peroxisome proliferators-activated receptors' (PPAR) isotypes (alpha, beta/delta or gamma) to modulate the stimulating effect of transforming growth factor-beta1 (TGF-beta1) on proteoglycans' (PGs) synthesis in chondrocytes. Rat chondrocytes embedded in alginate beads and cultured under low serum conditions were exposed to TGF-beta1 (10 ng/ml), alone or in combination with the following agonists: Wy14643 for PPARalpha, GW501516 for PPARbeta/delta, rosiglitazone (ROSI) for PPARgamma, in the presence or absence of PPAR antagonists (GW6471 for PPARalpha, GW9662 for PPARgamma). PGs' synthesis was evaluated by radiolabelled sulphate incorporation and glycosaminoglycans' (GAGs) content by Alcian blue staining of beads and colorimetric 1.9 dimethyl-methylene blue assay after beads' solubilization. Phosphorylation of Extracellular Signal-related Kinase1/2 (ERK1/2), Smad2/3 and p38-MAPK was assessed by Western Blot and production of prostaglandin E2 (PGE2) by Enzyme immuno-assay (EIA). Levels of mRNA for PPAR target genes [acyl-CoA oxidase (ACO) for PPARalpha; mitochondrial carnitin palmitoyl transferase-1 (CPT-1) for PPARbeta/delta and adiponectin for PPARgamma], aggrecan, TGF-beta1 and genes controlling GAGs' side chains' synthesis were quantified by real time polymerase chain reaction and normalized over RP29 housekeeping gene. ACO was selectively up-regulated by 100 microM of Wy14643, CPT-1 by 100 nM of GW501516 and adiponectin by 10 microM of ROSI without cell toxicity. TGF-beta1 increased PGs' synthesis by four-fold, GAGs' content and deposition by 3.5-fold and six-fold, respectively, while inducing aggrecan expression around 10-fold without modifying mRNA levels of GAGs' controlling enzymes. PPAR agonists inhibited the stimulating effect of TGF-beta1 by 24-44% on PGs' synthesis and over 75% on aggrecan, GAGs' content and deposition with the following rank order of potency: ROSI>GW501516> or =Wy14643. TGF-beta1

  4. An examination of deoxyadenosine 5'(alpha-thio)triphosphate as a ligand to define P2Y receptors and its selectivity as a low potency partial agonist of the P2Y1 receptor.

    PubMed

    Schachter, J B; Harden, T K

    1997-05-01

    1. The functional activity of deoxyadenosine 5'(alpha-thio)triphosphate (dATP alpha S) was assessed at the cloned human P2Y1 receptor stably expressed in 1321N1 human astrocytoma cells and transiently expressed in Cos-7 cells. 2. Cells expressing the receptor responded to adenine nucleotides with an increase in [3H]-inositol phosphate accumulation. Half-maximal responses were obtained at approximately 30 nM for 2-methylthioadenosine-5'-triphosphate (2MeSATP), 300 nM for dATP alpha S, and 1000 nM for adenosine 5'-triphosphate (ATP). dATP alpha S produced a maximal response that was only 37 +/- 4% of that produced by ATP or 2MeSATP. dATP alpha S also competitively antagonized the phospholipase C response to 2MeSATP with a KB of 644 +/- 14 nM. Thus dATP alpha S acts as a low potency partial agonist at P2Y1 receptors. 3. The selectivity of dATP alpha S for P2Y1 receptors was determined by examining its capacity to activate P2Y2, P2Y4 and P2Y6 receptors also stably expressed in 1321N1 cells. Although dATP alpha S was a partial agonist at P2Y1 receptors it was a full agonist at P2Y2 receptors, albeit with a potency that was two orders of magnitude lower than at P2Y1 receptors. No agonist or antagonist activity was observed at P2Y4 and P2Y6 receptors. 4. Although [35S]-dATP alpha S bound to a relatively high density (ca 10 pmol mg-1 protein) of binding sites in membranes from 1321N1 or Cos-7 cells expressing the P2Y1 receptor, no difference in the total density of sites was observed between membranes from wild-type, empty vector-transfected, or P2Y1 receptor-expressing cells. Moreover, adenine nucleotide analogues inhibited [35S]-dATP alpha S binding with an order of potency that differed markedly from that for the accumulation of inositol phosphates in intact transfected P2Y1 receptor-expressing cells. Saturation binding experiments demonstrated multiple affinity states for [35S]-dATP alpha S binding in wild-type Cos-7 cell membranes. These data from 1321N1 and Cos-7

  5. Identification of key amino acid residues in a thyrotropin receptor monoclonal antibody epitope provides insight into its inverse agonist and antagonist properties.

    PubMed

    Chen, Chun-Rong; McLachlan, Sandra M; Rapoport, Basil

    2008-07-01

    CS-17 is a murine monoclonal antibody to the human TSH receptor (TSHR) with both inverse agonist and antagonist properties. Thus, in the absence of ligand, CS-17 reduces constitutive TSHR cAMP generation and also competes for TSH binding to the receptor. The present data indicate that for both of these functions, the monovalent CS-17 Fab (50 kDa) behaves identically to the intact, divalent IgG molecule (150 kDa). The surprising observation that CS-17 competes for TSH binding to the human but not porcine TSHR enabled identification of a number of amino acids in its epitope. Replacement of only three human TSHR residues (Y195, Q235, and S243) with the homologous porcine TSHR residues totally abolishes CS-17 binding as detected by flow cytometry. TSH binding is unaffected. Of these residues, Y195 is most important, with Q235 and S243 contributing to CS-17 binding to a much lesser degree. The functional effects of CS-17 IgG and Fab on constitutive cAMP generation by porcinized human TSHR confirm the CS-17 binding data. The location of TSHR amino acid residues Y195, Q235, and S243 deduced from the crystal structure of the FSH receptor leucine-rich domain provides valuable insight into the CS-17 and TSH binding sites. Whereas hormone ligands bind primarily to the concave surface of the leucine-rich domains, a major portion of the CS-17 epitope lies on the opposite convex surface with a minor component in close proximity to known TSH binding residues.

  6. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189

    PubMed Central

    McAfee, Samuel S.; Guley, Natalie M.; Del Mar, Nobel; Bu, Wei; Heldt, Scott A.; Honig, Marcia G.; Moore, Bob M.

    2017-01-01

    Abstract Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189. PMID:28828401

  7. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity.

    PubMed

    Porter, Richard H P; Jaeschke, Georg; Spooren, Will; Ballard, Theresa M; Büttelmann, Bernd; Kolczewski, Sabine; Peters, Jens-Uwe; Prinssen, Eric; Wichmann, Jürgen; Vieira, Eric; Mühlemann, Andreas; Gatti, Silvia; Mutel, Vincent; Malherbe, Pari

    2005-11-01

    Fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] is an atypical anxiolytic agent with unknown molecular target that has previously been demonstrated both in rodents and human to exert anxiolytic activity. Here, we report that fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist acting at an allosteric modulatory site shared with 2-methyl-6-phenylethynyl-pyridine (MPEP), the protypical selective mGlu5 receptor antagonist. Fenobam inhibited quisqualate-evoked intracellular calcium response mediated by human mGlu5 receptor with IC(50) = 58 +/- 2 nM. It acted in a noncompetitive manner, similar to MPEP and demonstrated inverse agonist properties, blocking 66% of the mGlu5 receptor basal activity (in an over expressed cell line) with an IC(50) = 84 +/- 13 nM. [(3)H]Fenobam bound to rat and human recombinant receptors with K(d) values of 54 +/- 6 and 31 +/- 4 nM, respectively. MPEP inhibited [(3)H]fenobam binding to human mGlu5 receptors with a K(i) value of 6.7 +/- 0.7 nM, indicating a common binding site shared by both allosteric antagonists. Fenobam exhibits anxiolytic activity in the stress-induced hyperthermia model, Vogel conflict test, Geller-Seifter conflict test, and conditioned emotional response with a minimum effective dose of 10 to 30 mg/kg p.o. Furthermore, fenobam is devoid of GABAergic activity, confirming previous reports that fenobam acts by a mechanism distinct from benzodiazepines. The non-GABAergic activity of fenobam, coupled with its robust anxiolytic activity and reported efficacy in human in a double blind placebo-controlled trial, supports the potential of developing mGlu5 receptor antagonists with an improved therapeutic window over benzodiazepines as novel anxiolytic agents.

  8. New insights in endogenous modulation of ligand-gated ion channels: histamine is an inverse agonist at strychnine sensitive glycine receptors.

    PubMed

    Kletke, Olaf; Sergeeva, Olga A; Lorenz, Philipp; Oberland, Sonja; Meier, Jochen C; Hatt, Hanns; Gisselmann, Günter

    2013-06-15

    Histamine is involved in many physiological functions in the periphery and is an important neurotransmitter in the brain. It acts on metabotropic H1-H4 receptors mediating vasodilatation, bronchoconstriction and stimulation of gastric acid secretion. In the brain histamine is produced by neurons in the tuberomamillary nucleus (TMN), which controls arousal. Histamine is also a positive modulator of the inhibitory Cys-loop ligand-gated ion channel GABAA. We investigated now its effect on the second member of inhibitory Cys-loop ligand-gated ion channels, the strychnine sensitive glycine receptor. We expressed different human and rat glycine receptor subunits in Xenopus laevis oocytes and characterized the effect of histamine using the two electrode voltage clamp technique. Furthermore we investigated native glycine receptors in hypothalamic neurons using the patch-clamp technique. Histamine inhibited α1β glycine receptors with an IC50 of 5.2±0.3 mM. In presence of 10 mM histamine the glycine dose-response curve was shifted, increasing the EC50 for glycine from 25.5±1.4 μM to 42.4±2.3 μM. In addition, histamine blocked the spontaneous activity of RNA-edited α3β glycine receptors. Histamine inhibited glycine receptors expressed in hypothalamic TMN neurons with an IC50 of 4.6±0.3 mM. Our results give strong evidence that histamine is acting on the same binding site as glycine, being an inverse agonist that competitively antagonizes glycine receptors. Thus, we revealed histamine as an endogenous modulator of glycine receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189.

    PubMed

    Liu, Yu; McAfee, Samuel S; Guley, Natalie M; Del Mar, Nobel; Bu, Wei; Heldt, Scott A; Honig, Marcia G; Moore, Bob M; Reiner, Anton; Heck, Detlef H

    2017-01-01

    Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189.

  10. The CB1 Neutral Antagonist AM4113 Retains the Therapeutic Efficacy of the Inverse Agonist Rimonabant for Nicotine Dependence and Weight Loss with Better Psychiatric Tolerability.

    PubMed

    Gueye, Aliou B; Pryslawsky, Yaroslaw; Trigo, Jose M; Poulia, Nafsika; Delis, Foteini; Antoniou, Katerina; Loureiro, Michael; Laviolette, Steve R; Vemuri, Kiran; Makriyannis, Alexandros; Le Foll, Bernard

    2016-12-01

    Multiple studies suggest a pivotal role of the endocannabinoid system in regulating the reinforcing effects of various substances of abuse. Rimonabant, a CB1 inverse agonist found to be effective for smoking cessation, was associated with an increased risk of anxiety and depression. Here we evaluated the effects of the CB1 neutral antagonist AM4113 on the abuse-related effects of nicotine and its effects on anxiety and depressive-like behavior in rats. Rats were trained to self-administer nicotine under a fixed-ratio 5 or progressive-ratio schedules of reinforcement. A control group was trained to self-administer food. The acute/chronic effects of AM4113 pretreatment were evaluated on nicotine taking, motivation for nicotine, and cue-, nicotine priming- and yohimbine-induced reinstatement of nicotine-seeking. The effects of AM4113 in the basal firing and bursting activity of midbrain dopamine neurons were evaluated in a separate group of animals treated with nicotine. Anxiety/depression-like effects of AM4113 and rimonabant were evaluated 24h after chronic (21 days) pretreatment (0, 1, 3, and 10mg/kg, 1/d). AM4113 significantly attenuated nicotine taking, motivation for nicotine, as well as cue-, priming- and stress-induced reinstatement of nicotine-seeking behavior. These effects were accompanied by a decrease of the firing and burst rates in the ventral tegmental area dopamine neurons in response to nicotine. On the other hand, AM4113 pretreatment did not have effects on operant responding for food. Importantly, AM4113 did not have effects on anxiety and showed antidepressant-like effects. Our results indicate that AM4113 could be a promising therapeutic option for the prevention of relapse to nicotine-seeking while lacking anxiety/depression-like side effects. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  11. The CB1 Neutral Antagonist AM4113 Retains the Therapeutic Efficacy of the Inverse Agonist Rimonabant for Nicotine Dependence and Weight Loss with Better Psychiatric Tolerability

    PubMed Central

    Gueye, Aliou B.; Pryslawsky, Yaroslaw; Trigo, Jose M.; Poulia, Nafsika; Delis, Foteini; Antoniou, Katerina; Loureiro, Michael; Laviolette, Steve R.; Vemuri, Kiran; Makriyannis, Alexandros

    2016-01-01

    Background: Multiple studies suggest a pivotal role of the endocannabinoid system in regulating the reinforcing effects of various substances of abuse. Rimonabant, a CB1 inverse agonist found to be effective for smoking cessation, was associated with an increased risk of anxiety and depression. Here we evaluated the effects of the CB1 neutral antagonist AM4113 on the abuse-related effects of nicotine and its effects on anxiety and depressive-like behavior in rats. Methods: Rats were trained to self-administer nicotine under a fixed-ratio 5 or progressive-ratio schedules of reinforcement. A control group was trained to self-administer food. The acute/chronic effects of AM4113 pretreatment were evaluated on nicotine taking, motivation for nicotine, and cue-, nicotine priming- and yohimbine-induced reinstatement of nicotine-seeking. The effects of AM4113 in the basal firing and bursting activity of midbrain dopamine neurons were evaluated in a separate group of animals treated with nicotine. Anxiety/depression-like effects of AM4113 and rimonabant were evaluated 24h after chronic (21 days) pretreatment (0, 1, 3, and 10mg/kg, 1/d). Results: AM4113 significantly attenuated nicotine taking, motivation for nicotine, as well as cue-, priming- and stress-induced reinstatement of nicotine-seeking behavior. These effects were accompanied by a decrease of the firing and burst rates in the ventral tegmental area dopamine neurons in response to nicotine. On the other hand, AM4113 pretreatment did not have effects on operant responding for food. Importantly, AM4113 did not have effects on anxiety and showed antidepressant-like effects. Conclusion: Our results indicate that AM4113 could be a promising therapeutic option for the prevention of relapse to nicotine-seeking while lacking anxiety/depression-like side effects. PMID:27493155

  12. DPI-221 [4-((alpha-s)-alpha-((2s,5r)-2,5-dimethyl-4-(3-fluorobenzyl)-1-piperazinyl)benzyl)-N,N-diethylbenzamide]: a novel nonpeptide delta receptor agonist producing increased micturition interval in normal rats.

    PubMed

    Holt, Jonathon D S; Watson, Michael J; Chang, Jane P; O'Neill, Scott J; Wei, Ke; Pendergast, William; Gengo, Peter J; Chang, Kwen-Jen

    2005-11-01

    There is a wealth of information from animal models and clinical opioid-analgesic use that indicates a significant role for opioid receptors in the modulation of bladder activity. The novel benzhydrylpiperazine compound DPI-221 [4-((alpha-S)-alpha-((2S,5R)-2,5-dimethyl-4-(3-fluorobenzyl)-1-piperazinyl)benzyl)-N,N-diethylbenzamide] was characterized as having delta receptor selectivity using radioligand binding (K(i) = 2.0 +/- 0.7 nM, delta receptor; 1800 +/- 360 nM, mu receptor; and 2300 +/- 680 nM, kappa receptor), and agonist activity was demonstrated in the mouse isolated vas deferens where DPI-221 inhibited electrically induced contractions with an IC(50) value of 88 +/- 7.5 nM. In the guinea pig isolated ileum, DPI-221 had no effect on electrically induced contractions at concentrations as high as 1 microM. Sterile saline was infused (7 ml/h) into the bladder of Sprague-Dawley rats, via a transmural catheter; DPI-221 (1.0 to 20 mg/kg p.o.) significantly increased the interval between micturition events, whereas peak void pressure was not significantly decreased by any dose of DPI-221. The micturition effects of 10 mg/kg p.o. DPI-221 were blocked by naltrindole, indicating a delta receptor mechanism of action. In isolated rat bladder strips, DPI-221 was ineffective at relaxing detrusor muscle precontracted with carbachol. The most crucial safety aspect of delta agonist administration is the incidence of seizure-like convulsions in rodents. DPI-221 produced no convulsions at doses up to 100 mg/kg p.o. in mice, although rapid bolus i.v. injection of 5 mg/kg produced convulsions in 3% of mice tested. These findings indicate a good safety profile for DPI-221 administered orally, with potent efficacy in modifying bladder activity.

  13. Double di oxygenation by mouse 8S-lipoxygenase: Specific formation of a potent peroxisome proliferator-activated receptor {alpha} agonist

    SciTech Connect

    Jisaka, Mitsuo . E-mail: jisaka@life.shimane-u.ac.jp; Iwanaga, Chitose; Takahashi, Nobuyuki; Goto, Tsuyoshi; Kawada, Teruo; Yamamoto, Tatsuyuki; Ikeda, Izumi; Nishimura, Kohji; Nagaya, Tsutomu; Fushiki, Tohru; Yokota, Kazushige

    2005-12-09

    Mouse 8S-lipoxygenase (8-LOX) metabolizes arachidonic acid (AA) specifically to 8S-hydroperoxyeicosatetraenoic acid (8S-HPETE), which will be readily reduced under physiological circumstances to 8S-hydroxyeicosatetraenoic acid (8S-HETE), a natural agonist of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}). Here, we investigated whether 8-LOX could further oxygenate AA and whether the products could activate PPARs. The purified recombinant 8-LOX converted AA exclusively to 8S-HPETE and then to (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicosatetraenoic acid (8S,15S-diHPETE). The k {sub cat}/K {sub m} values for 8S-HPETE and AA were 3.3 x 10{sup 3} and 2.7 x 10{sup 4} M{sup -1} s{sup -1}, respectively. 8-LOX also dioxygenated 8S-HETE and 15S-H(P)ETE specifically to the corresponding 8S,15S-disubstituted derivatives. By contrast, 15-LOX-2, a human homologue of 8-LOX, produced 8S,15S-diH(P)ETE from 8S-H(P)ETE but not from AA nor 15S-H(P)ETE. 8S,15S-diHETE activated PPAR{alpha} more strongly than 8S-HETE did. The present results suggest that 8S,15S-diH(P)ETE as well as 8S-H(P)ETE would contribute to the physiological function of 8-LOX and also that 8-LOX can function as a potential 15-LOX.

  14. Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats.

    PubMed

    Rezvani, Amir H; Kholdebarin, Ehsan; Brucato, Frederic H; Callahan, Patrick M; Lowe, David A; Levin, Edward D

    2009-03-17

    It is well established that nicotinic systems in the brain are critically involved in attentional processes in both animals and humans. The current study assessed the effects of a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist, R3487/MEM3454 (also referred to as R3487 or MEM 3454) on sustained attention in rats performing an operant visual signal detection task. The effects of R3487/MEM3454 were compared to those of the acetylcholinesterase inhibitor/nicotinic alpha7 allosteric positive modulator galanthamine. Adult female Sprague-Dawley rats were injected subcutaneously with R3487/MEM3454 (0.03, 0.1, 0.15, 0.3 and 0.6 mg/kg), galanthamine (0.25, 0.5, 1, 2 mg/kg) or vehicle 30 min before the attentional test. In the second study, the time-dependent effects of R3487/MEM3454 were assessed by injecting the compound (0.6 mg/kg, s.c.) at different pretreatment intervals (30, 60 or 90 min) before the start of the attentional task. Our results show a significant dose-effect for R3487/MEM3454 on percent hit accuracy performance without any significant alteration on percent correct rejection performance. In the time-dependent test, R3487/MEM3454 significantly increased the percent hit accuracy performance when animals were injected 60 min before the start of the attentional task. Administration of galanthamine failed to significantly increase percent hit accuracy performance and increasing the dose of galanthamine produced a decrease in percent correct rejection performance. The present findings with R3487/MEM3454 suggest that nicotinic alpha7 receptors and/or 5-HT3 receptors may play an important role in modulating sustained attention and that R3487/MEM3454 may have therapeutic potential in improving sustained attention in humans.

  15. In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR){alpha} and PPAR{gamma} and quantitative analysis of in vivo induction pathway

    SciTech Connect

    Takeuchi, Shinji; Matsuda, Tadashi; Kobayashi, Satoshi; Takahashi, Tetsuo; Kojima, Hiroyuki . E-mail: kojima@iph.pref.hokkaido.jp

    2006-12-15

    Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors and key regulators of lipid metabolism and cell differentiation. However, there have been few studies reporting on a variety of environmental chemicals, which may interact with these receptors. In the present study, we characterized mouse PPAR{alpha} and PPAR{gamma} agonistic activities of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 11 acid amides, 7 triazines, 8 ureas and 44 others) by in vitro reporter gene assays using CV-1 monkey kidney cells. Three of the 200 pesticides, diclofop-methyl, pyrethrins and imazalil, which have different chemical structures, showed PPAR{alpha}-mediated transcriptional activities in a dose-dependent manner. On the other hand, none of the 200 pesticides showed PPAR{gamma} agonistic activity at concentrations {<=} 10{sup -5} M. To investigate the in vivo effects of diclofop-methyl, pyrethrins and imazalil, we examined the gene expression of PPAR{alpha}-inducible cytochrome P450 4As (CYP4As) in the liver of female mice intraperitoneally injected with these compounds ({<=} 300 mg/kg). RT-PCR revealed significantly high induction levels of CYP4A10 and CYP4A14 mRNAs in diclofop-methyl- and pyrethrins-treated mice, whereas imazalil induced almost no gene expressions of CYP4As. In particular, diclofop-methyl induced as high levels of CYP4A mRNAs as WY-14643, a potent PPAR{alpha} agonist. Thus, most of the 200 pesticides tested do not activate PPAR{alpha} or PPAR{gamma} in in vitro assays, but only diclofop-methyl and pyrethrins induce PPAR{alpha} agonistic activity in vivo as well as in vitro.

  16. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ER{alpha}) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    SciTech Connect

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-12-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [{sup 14}C]CD or [{sup 14}C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor {alpha} (ER{alpha}) in a concentration-dependent manner (0-50 {mu}M). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice.

  17. (-)-Spiro[1-azabicyclo[2.2.2]octane-3,5'-oxazolidin-2'-one], a conformationally restricted analogue of acetylcholine, is a highly selective full agonist at the alpha 7 nicotinic acetylcholine receptor.

    PubMed

    Mullen, G; Napier, J; Balestra, M; DeCory, T; Hale, G; Macor, J; Mack, R; Loch, J; Wu, E; Kover, A; Verhoest, P; Sampognaro, A; Phillips, E; Zhu, Y; Murray, R; Griffith, R; Blosser, J; Gurley, D; Machulskis, A; Zongrone, J; Rosen, A; Gordon, J

    2000-11-02

    Neuronal nicotinic acetylcholine receptors are members of the ligand-gated ion channel receptor superfamily and may play important roles in modulating neurotransmission, cognition, sensory gating, and anxiety. Because of its distribution and abundance in the CNS, the alpha 7 nicotinic receptor is a strong candidate to be involved in some of these functions. In this paper we describe the synthesis and in vitro profile of AR-R17779, (-)-spiro[1-azabicyclo[2.2. 2]octane-3,5'-oxazolidin-2'-one] (4a), a potent full agonist at the rat alpha 7 nicotinic receptor, which is highly selective for the rat alpha 7 nicotinic receptor over the alpha 4 beta 2 subtype. Preliminary SAR of AR-R17779 presented here indicate that there is little scope for modification of this rigid molecule as even minor changes result in significant loss of the alpha 7 nicotinic receptor affinity.

  18. Interactions of full and partial agonists with HT29 cell alpha 2-adrenoceptor: comparative study of (/sup 3/H)UK-14,304 and (/sup 3/H)clonidine binding

    SciTech Connect

    Paris, H.; Galitzky, J.; Senard, J.M.

    1989-03-01

    The HT29 cell line expresses alpha 2-adrenoceptors that are negatively coupled to the adenylate cyclase system and is, in this respect, a valuable model for in vitro study of alpha 2-adrenergic receptivity in a tissue from human origin. In these cancerous cells, UK-14,304 is a full agonist of the alpha 2-adrenergic-mediated inhibition of the vasoactive intestinal peptide-induced cyclic AMP accumulation, whereas clonidine acts only as a partial agonist. In the present report, we used (3H)UK-14,304 as radioligand and compared its binding characteristics with those of (3H)clonidine in order to better understand the difference between full and partial agonism on the basis of agonist/receptor interactions. (3H)UK-14,304 labeled with high affinity (KD = 0.39 +/- 0.05 nM) a single class of sites having the pharmacological specificity of an alpha 2-adrenoceptor. Comparison of (3H)UK-14,304, (3H)clonidine, and (3H)yohimbine Bmax proved that both 3H-agonists labeled the same number of sites (172 +/- 14 versus 179 +/- 21 fmol/mg of protein), whereas the 3H-antagonist recognized more sites (246 +/- 22 fmol/mg of protein). Inhibition of (3H)yohimbine by the two agonists was consistent with the existence of an heterogeneous population of receptors and analysis of the data according a two-site inhibition model showed (1) that the KiL/KiH ratio was higher for UK-14,304 than for clonidine and (2) that the percentages of high affinity state receptor recognized by both agonists were identical (56 +/- 4% with UK-14,304 and 59 +/- 5% with clonidine). Kinetics of (3H)UK-14,304 and (3H)clonidine binding indicated more complex agonist-receptor interactions than equilibrium data did. Association as well as dissociation of both radioligands appeared to be biphasic, suggesting a relative heterogeneity of 3H-agonist binding sites.

  19. The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD)

    PubMed Central

    Sagvolden, Terje

    2006-01-01

    Background ADHD is currently defined as a cognitive/behavioral developmental disorder where all clinical criteria are behavioral. Overactivity, impulsiveness, and inattentiveness are presently regarded as the main clinical symptoms. There is no biological marker, but there is considerable evidence to suggest that ADHD behavior is associated with poor dopaminergic and noradrenergic modulation of neuronal circuits that involve the frontal lobes. The best validated animal model of ADHD, the Spontaneously Hypertensive Rat (SHR), shows pronounced overactivity, impulsiveness, and deficient sustained attention. While dopamine release is decreased in SHR prefrontal cortex, norepinephrine concentrations are elevated. The noradrenergic system appears to be hyperactive as a result of impaired alpha-2A adrenoceptor regulation. Thus, the present study tested behavioral effects of the centrally acting alpha-2A adrenoceptor agonist guanfacine on SHR behavior. Methods The present study tested behavioral effects of guanfacine at doses of 0.075, 0.15, 0.30 and 0.60 mg base/kg i.p. in both male SHRs and their controls, the Wistar Kyoto rat (WKY). ADHD-like behavior was tested with a visual discrimination task measuring overactivity, impulsiveness and inattentiveness. Results The striking impulsiveness, overactivity, and reduced sustained attention during baseline conditions in the SHR improved by treatment with guanfacine. The most pronounced improvement in SHR behavior was seen following the two highest doses (0.3 and 0.6 mg/kg) of guanfacine when SHR behaviors virtually normalized. The positive effects of the drug were most marked towards the end of the session. Conclusion The results indicate that guanfacine improved poor noradrenergic modulation of neuronal circuits that involve the frontal lobes in an animal model of ADHD. The present results support the beneficial effects of guanfacine on ADHD behavior reported clinically and experimentally in primate models of frontal function

  20. Protein alterations induced by long-term agonist treatment of HEK293 cells expressing thyrotropin-releasing hormone receptor and G11alpha protein.

    PubMed

    Drastichova, Zdenka; Bourova, Lenka; Hejnova, Lucie; Jedelsky, Petr; Svoboda, Petr; Novotny, Jiri

    2010-01-01

    This study aimed to determine whether sustained stimulation with thyrotropin-releasing hormone (TRH), a peptide with important physiological functions, can possibly affect expression of plasma membrane proteins in HEK293 cells expressing high levels of TRH receptor and G(11)alpha protein. Our previous experiments using silver-stained two-dimensional polyacrylamide gel electrophoretograms did not reveal any significant changes in an overall composition of membrane microdomain proteins after long-term treatment with TRH of these cells (Matousek et al. 2005 Cell Biochem Biophys 42: 21-40). Here we used a purified plasma membrane fraction prepared by Percoll gradient centrifugation and proteins resolved by 2D electrophoresis were stained with SYPRO Ruby gel stain. The high enrichment in plasma membrane proteins of this preparation was confirmed by a multifold increase in the number of TRH receptors and agonist stimulated G-protein activity, compared to postnuclear supernatant. By a combination of these approaches we were able to determine a number of clearly discernible protein changes in the plasma membrane-enriched fraction isolated from cells treated with TRH (1 x 10(-5) M, 16 h): 4 proteins disappeared, the level of 18 proteins decreased and the level of 39 proteins increased. Our concomitant immunochemical determinations also indicated a clear down-regulation of G(q/11)alpha proteins in preparations from hormone-treated cells. In parallel, we observed decrease in caspase 3 and alterations in some other apoptotic marker proteins, which were in line with the presumed antiapoptotic effect of TRH.

  1. Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride.

    PubMed

    Phillips, Aaron A; Warburton, Darren E R; Ainslie, Philip N; Krassioukov, Andrei V

    2014-05-01

    Individuals with high-level spinal cord injury (SCI) experience low blood pressure (BP) and cognitive impairments. Such dysfunction may be mediated in part by impaired neurovascular coupling (NVC) (i.e., cerebral blood flow responses to neurologic demand). Ten individuals with SCI >T6 spinal segment, and 10 age- and sex-matched controls were assessed for beat-by-beat BP, as well as middle and posterior cerebral artery blood flow velocity (MCAv, PCAv) in response to a NVC test. Tests were repeated in SCI after 10 mg midodrine (alpha1-agonist). Verbal fluency was measured before and after midodrine in SCI, and in the control group as an index of cognitive function. At rest, mean BP was lower in SCI (70 ± 10 versus 92 ± 14 mm Hg; P<0.05); however, PCAv conductance was higher (0.56 ± 0.13 versus 0.39 ± 0.15 cm/second/mm Hg; P<0.05). Controls exhibited a 20% increase in PCAv during cognition; however, the response in SCI was completely absent (P<0.01). When BP was increased with midodrine, NVC was improved 70% in SCI, which was reflected by a 13% improved cognitive function (P<0.05). Improvements in BP were related to improved cognitive function in those with SCI (r(2)=0.52; P<0.05). Impaired NVC, secondary to low BP, may partially mediate reduced cognitive function in individuals with high-level SCI.

  2. A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque

    PubMed Central

    Hassani, S. A.; Oemisch, M.; Balcarras, M.; Westendorff, S.; Ardid, S.; van der Meer, M. A.; Tiesinga, P.; Womelsdorf, T.

    2017-01-01

    Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework. PMID:28091572

  3. Inhibition of alpha-synuclein aggregation by multifunctional dopamine agonists assessed by a novel in vitro assay and an in vivo Drosophila synucleinopathy model

    PubMed Central

    Yedlapudi, Deepthi; Joshi, Gnanada S.; Luo, Dan; Todi, Sokol V.; Dutta, Aloke K.

    2016-01-01

    Aggregation of alpha synuclein (α-syn) leading to dopaminergic neuronal death has been recognized as one of the main pathogenic factors in the initiation and progression of Parkinson’s disease (PD). Consequently, α-syn has been targeted for the development of therapeutics for PD. We have developed a novel assay to screen compounds with α-syn modulating properties by mimicking recent findings from in vivo animal studies involving intrastriatal administration of pre-formed fibrils in mice, resulting in increased α-syn pathology accompanying the formation of Lewy-body (LB) type inclusions. We found that in vitro generated α-syn pre-formed fibrils induce seeding of α-syn monomers to produce aggregates in a dose-and time-dependent manner under static conditions in vitro. These aggregates were toxic towards rat pheochromocytoma cells (PC12). Our novel multifunctional dopamine agonists D-519 and D-520 exhibited significant neuroprotection in this assay, while their parent molecules did not. The neuroprotective properties of our compounds were further evaluated in a Drosophila model of synucleinopathy. Both of our compounds showed protective properties in fly eyes against the toxicity caused by α-syn. Thus, our in vitro results on modulation of aggregation and toxicity of α-syn by our novel assay were further validated with the in vivo experiments. PMID:27917933

  4. The alpha-1A adrenergic receptor agonist A61603 reduces cardiac polyunsaturated fatty acid and endocannabinoid metabolites associated with inflammation in vivo

    PubMed Central

    Willis, Monte S.; Ilaiwy, Amro; Montgomery, Megan D.; Simpson, Paul C.; Jensen, Brian C.

    2017-01-01

    Introduction Alpha-1-adrenergic receptors (α1-ARs) are G-protein coupled receptors (GPCRs) with three highly homologous subtypes (α1A, α1B, and α1D). Of these three subtypes, only the α1A and α1B are expressed in the heart. Multiple pre-clinical models of heart injury demonstrate cardioprotective roles for the α1A. Non-selective α1-AR activation promotes glycolysis in the heart, but the functional α1-AR subtype and broader metabolic effects have not been studied. Objectives Given the high metabolic demands of the heart and previous evidence indicating benefit from α1A activation, we chose to investigate the effects of α1A activation on the cardiac metabolome in vivo. Methods Mice were treated for one week with a low, subpressor dose of A61603, a highly selective and potent α1A agonist. Cardiac tissue and serum were analyzed using a non-targeted metabolomics approach. Results We identified previously unrecognized metabolic responses to α1A activation, most notably broad reduction in the abundance of polyunsaturated fatty acids (PUFAs) and endocannabinoids (ECs). Conclusion Given the well characterized roles of PUFAs and ECs in inflammatory pathways, these findings suggest a possible role for cardiac α1A-ARs in the regulation of inflammation and may offer novel insight into the mechanisms underlying the cardioprotective benefit of selective pharmacologic α1A activation. PMID:28533737

  5. A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque.

    PubMed

    Hassani, S A; Oemisch, M; Balcarras, M; Westendorff, S; Ardid, S; van der Meer, M A; Tiesinga, P; Womelsdorf, T

    2017-01-16

    Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework.

  6. Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride

    PubMed Central

    Phillips, Aaron A; Warburton, Darren ER; Ainslie, Philip N; Krassioukov, Andrei V

    2014-01-01

    Individuals with high-level spinal cord injury (SCI) experience low blood pressure (BP) and cognitive impairments. Such dysfunction may be mediated in part by impaired neurovascular coupling (NVC) (i.e., cerebral blood flow responses to neurologic demand). Ten individuals with SCI >T6 spinal segment, and 10 age- and sex-matched controls were assessed for beat-by-beat BP, as well as middle and posterior cerebral artery blood flow velocity (MCAv, PCAv) in response to a NVC test. Tests were repeated in SCI after 10 mg midodrine (alpha1-agonist). Verbal fluency was measured before and after midodrine in SCI, and in the control group as an index of cognitive function. At rest, mean BP was lower in SCI (70±10 versus 92±14 mm Hg; P<0.05); however, PCAv conductance was higher (0.56±0.13 versus 0.39±0.15 cm/second/mm Hg; P<0.05). Controls exhibited a 20% increase in PCAv during cognition; however, the response in SCI was completely absent (P<0.01). When BP was increased with midodrine, NVC was improved 70% in SCI, which was reflected by a 13% improved cognitive function (P<0.05). Improvements in BP were related to improved cognitive function in those with SCI (r2=0.52; P<0.05). Impaired NVC, secondary to low BP, may partially mediate reduced cognitive function in individuals with high-level SCI. PMID:24473484

  7. Clonidine, an alpha-2 adrenoceptor agonist relieves mechanical allodynia in oxaliplatin-induced neuropathic mice; potentiation by spinal p38 MAPK inhibition without motor dysfunction and hypotension.

    PubMed

    Yeo, Ji-Hee; Yoon, Seo-Yeon; Kim, Sol-Ji; Oh, Seog-Bae; Lee, Jang-Hern; Beitz, Alvin J; Roh, Dae-Hyun

    2016-05-15

    Cancer chemotherapy with platinum-based antineoplastic agents including oxaliplatin frequently results in a debilitating and painful peripheral neuropathy. We evaluated the antinociceptive effects of the alpha-2 adrenoceptor agonist, clonidine on oxaliplatin-induced neuropathic pain. Specifically, we determined if (i) the intraperitoneal (i.p.) injection of clonidine reduces mechanical allodynia in mice with an oxaliplatin-induced neuropathy and (ii) concurrent inhibition of p38 mitogen-activated protein kinase (MAPK) activity by the p38 MAPK inhibitor SB203580 enhances clonidine's antiallodynic effect. Clonidine (0.01-0.1 mg kg(-1), i.p.), with or without SB203580(1-10 nmol, intrathecal) was administered two weeks after oxaliplatin injection(10 mg kg(-1), i.p.) to mice. Mechanical withdrawal threshold, motor coordination and blood pressure were measured. Postmortem expression of p38 MAPK and ERK as well as their phosphorylated forms(p-p38 and p-ERK) were quantified 30 min or 4 hr after drug injection in the spinal cord dorsal horn of treated and control mice. Clonidine dose-dependently reduced oxaliplatin-induced mechanical allodynia and spinal p-p38 MAPK expression, but not p-ERK. At 0.1 mg kg(-1), clonidine also impaired motor coordination and decreased blood pressure. A 10 nmol dose of SB203580 alone significantly reduced mechanical allodynia and p-p38 MAPK expression, while a subeffective dose(3 nmol) potentiated the antiallodynic effect of 0.03 mg kg(-1) clonidine and reduced the increased p-p38 MAPK. Coadministration of SB203580 and 0.03 mg kg(-1) clonidine decreased allodynia similar to that of 0.10 mg kg(-1) clonidine, but without significant motor or vascular effects. These findings demonstrate that clonidine treatment reduces oxaliplatin-induced mechanical allodynia. The concurrent administration of SB203580 reduces the dosage requirements for clonidine, thereby alleviating allodynia without producing undesirable motor or cardiovascular effects.

  8. alpha(1A)- and alpha(1B)-adrenergic receptors differentially modulate antidepressant-like behavior in the mouse.

    PubMed

    Doze, Van A; Handel, Evelyn M; Jensen, Kelly A; Darsie, Belle; Luger, Elizabeth J; Haselton, James R; Talbot, Jeffery N; Rorabaugh, Boyd R

    2009-08-18

    Tricyclic antidepressant (TCA) drugs are used for the treatment of chronic depression, obsessive-compulsive disorder (OCD), and anxiety-related disorders. Chronic use of TCA drugs increases the expression of alpha(1)-adrenergic receptors (alpha(1)-ARs). Yet, it is unclear whether increased alpha(1)-AR expression contributes to the antidepressant effects of these drugs or if this effect is unrelated to their therapeutic benefit. In this study, mice expressing constitutively active mutant alpha(1A)-ARs (CAM alpha(1A)-AR) or CAM alpha(1B)-ARs were used to examine the effects of alpha(1A)- and alpha(1B)-AR signaling on rodent behavioral models of depression, OCD, and anxiety. CAM alpha(1A)-AR mice, but not CAM alpha(1B)-AR mice, exhibited antidepressant-like behavior in the tail suspension test and forced swim test. This behavior was reversed by prazosin, a selective alpha(1)-AR inverse agonist, and mimicked by chronically treating wild type mice with cirazoline, an alpha(1A)-AR agonist. Marble burying behavior, commonly used to model OCD in rodents, was significantly decreased in CAM alpha(1A)-AR mice but not in CAM alpha(1B)-AR mice. In contrast, no significant differences in anxiety-related behavior were observed between wild type, CAM alpha(1A)-AR, and CAM alpha(1B)-AR animals in the elevated plus maze and light/dark box. This is the first study to demonstrate that alpha(1A)- and alpha(1B)-ARs differentially modulate antidepressant-like behavior in the mouse. These data suggest that alpha(1A)-ARs may be a useful therapeutic target for the treatment of depression.

  9. Comparison of the effect of an H(3)-inverse agonist on energy intake and hypothalamic histamine release in normal mice and leptin resistant mice with high fat diet-induced obesity.

    PubMed

    Ishizuka, Tomoko; Hatano, Kouta; Murotani, Tomotaka; Yamatodani, Atsushi

    2008-04-09

    Leptin is a key signal linking peripheral adiposity levels to the regulation of energy homeostasis in the brain. The injection of leptin decreases body weight and food intake in lean rodents; however, in a rodent model of high fat diet-induced obesity (DIO), the exogenous leptin cannot improve adiposity. This ineffectiveness is known as leptin resistance, and the factors downstream of leptin signaling have received attention as viable targets in the treatment of obesity. We previously reported that the histaminergic system is one of the targets of leptin. In the present study, the effect of an H(3)-receptor inverse agonist on hypothalamic histamine release and energy intake was investigated in normal and DIO mice. Leptin (1.3 mg/kg, i.p.) significantly increased hypothalamic histamine release and reduced 12 h-energy intake in normal mice, but had no such effects in DIO mice. In contrast, clobenpropit (5 mg/kg, i.p.), an H(3)-inverse agonist, elicited a significant increase in histamine release in both types of mice. Clobenpropit did not reduce 12 h-energy intake; however, it decreased 3 h-energy intake in both types of mice. These results suggest that lack of the activation of the histaminergic system partly contributes to obesity in DIO mice and direct activation of the histaminergic system circumvents leptin resistance.

  10. Comparison of pancreatic beta cells and alpha cells under hyperglycemia: Inverse coupling in pAkt-FoxO1.

    PubMed

    Kim, Mi-Kyung; Shin, Hyun Mi; Jung, HyeSook; Lee, EunJu; Kim, Tae Kyoon; Kim, Tae Nyun; Kwon, Min Jeong; Lee, Soon Hee; Rhee, Byoung Doo; Park, Jeong Hyun

    2017-09-01

    Type 2 diabetes manifests beta cell deficiencies and alpha cell expansion which is consistent with relative insulin deficiency and glucagon oversecretion. The effects of hyperglycemia on alpha cells are not as understood in comparison to beta cells. Hyperglycemia increases oxidative stress, which induces Akt activation or FoxO activation, depending on cell type. Several studies independently reported that FoxO1 translocations in alpha cells and beta cells were opposite. We compared the responses of pancreatic alpha cells and beta cells against hyperglycemia. Alpha TC-1 cells and Beta TC-6 cells were incubated with control (5mM Glucose) or high glucose (33mM Glucose) with or without PI3K inhibitor or FoxO1 inhibitor. We assessed PI3K, pAkt and phosphorylated FoxO1 (pFoxO1) in both cell lines. Immunostaining of BrdU and FoxO1 was detected by green fluorescence microscopy and confocal microscopy. Hyperglycemia and H2O2 decreased PI3K and pAKT in beta cells, but increased them in alpha cells. FoxO1 localizations and pFoxO1 expressions between alpha cells and beta cells were opposite. Proliferation of beta cells was decreased, but alpha cell proliferation was increased under hyperglycemia. Antioxidant enzymes including superoxide dismutase (SOD) and catalase were increased in beta cells and they were reversed with FoxO1 inhibitor treatment. Increased proliferation in alpha cells under hyperglycemia was attenuated with PI3K inhibitor. In conclusion, hyperglycemia increased alpha cell proliferation and glucagon contents which are opposite to beta cells. These differences may be related to contrasting PI3K/pAkt changes in both cells and subsequent FoxO1 modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evolution, organization, and expression of alpha-tubulin genes in the antarctic fish Notothenia coriiceps. Adaptive expansion of a gene family by recent gene duplication, inversion, and divergence.

    PubMed

    Parker, S K; Detrich, H W

    1998-12-18

    To assess the organization and expression of tubulin genes in ectothermic vertebrates, we have chosen the Antarctic yellowbelly rockcod, Notothenia coriiceps, as a model system. The genome of N. coriiceps contains approximately 15 distinct DNA fragments complementary to alpha-tubulin cDNA probes, which suggests that the alpha-tubulins of this cold-adapted fish are encoded by a substantial multigene family. From an N. coriiceps testicular DNA library, we isolated a 13.8-kilobase pair genomic clone that contains a tightly linked cluster of three alpha-tubulin genes, designated NcGTbalphaa, NcGTbalphab, and NcGTbalphac. Two of these genes, NcGTbalphaa and NcGTbalphab, are linked in head-to-head (5' to 5') orientation with approximately 500 bp separating their start codons, whereas NcGTbalphaa and NcGTbalphac are linked tail-to-tail (3' to 3') with approximately 2.5 kilobase pairs between their stop codons. The exons, introns, and untranslated regions of the three alpha-tubulin genes are strikingly similar in sequence, and the intergenic region between the alphaa and alphab genes is significantly palindromic. Thus, this cluster probably evolved by duplication, inversion, and divergence of a common ancestral alpha-tubulin gene. Expression of the NcGTbalphac gene is cosmopolitan, with its mRNA most abundant in hematopoietic, neural, and testicular tissues, whereas NcGTbalphaa and NcGTbalphab transcripts accumulate primarily in brain. The differential expression of the three genes is consistent with distinct suites of putative promoter and enhancer elements. We propose that cold adaptation of the microtubule system of Antarctic fishes is based in part on expansion of the alpha- and beta-tubulin gene families to ensure efficient synthesis of tubulin polypeptides.

  12. DPI-3290 [(+)-3-((alpha-R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. I. A mixed opioid agonist with potent antinociceptive activity.

    PubMed

    Gengo, Peter J; Pettit, Hugh O; O'Neill, Scott J; Wei, Ke; McNutt, Robert; Bishop, Michael J; Chang, Kwen-Jen

    2003-12-01

    Compound (+)-3-((alpha-R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide (DPI-3290), is one of a series of novel centrally acting agents with potent antinociceptive activity that binds specifically and with high affinity to opioid receptors. In saturation equilibrium binding studies performed at 25 degrees C using membranes from rat brain or guinea pig cerebellum, the Ki values measured for DPI-3290 at delta-, mu-, and kappa-opioid receptors were 0.18 +/- 0.02, 0.46 +/- 0.05, and 0.62 +/- 0.09 nM, respectively. In vas deferens isolated from laboratory mice, DPI-3290 decreased electrically induced tension development in a concentration-dependent manner with corresponding IC50 values of 1.0 +/- 0.3, 6.2 +/- 2.0, and 25.0 +/- 3.3 nM at delta-, mu-, and kappa-receptors, respectively. The activity of DPI-3290 in isolated vas deferens tissue was approximately 20,000, 175.8, and 1500 times more efficacious than morphine, and 492, 2.5, and 35 times more efficacious than fentanyl at delta-, mu-, and kappa-receptors, respectively. In ileal strips isolated from guinea pigs, DPI-3290 inhibited tension development with a corresponding IC50 value of 3.4 +/- 1.6 nM at mu-opioid receptors and 6.7 +/- 1.6 nM at kappa-opioid receptors. Intravenous administration of 0.05 +/- 0.007 mg/kg DPI-3290 produced a 50% antinociceptive response in rats. The antinociceptive properties of DPI-3290 were blocked by naloxone (0.5 mg/kg s.c.). Compared with morphine, this study demonstrated that DPI-3290 is more potent and elicited a similar magnitude of antinociceptive activity in the rat, actions mediated by its mixed opioid receptor agonist activity. The marked antinociceptive activity of DPI-3290 will likely provide a means for relieving severe pain in patients that require analgesic treatment.

  13. Synthesis and positron emission tomography studies of C-11-labeled isotopomers and metabolites of GTS-21, a partial alpha7 nicotinic cholinergic agonist drug.

    PubMed

    Kim, Sung Won; Ding, Yu-Shin; Alexoff, David; Patel, Vinal; Logan, Jean; Lin, Kuo-Shyan; Shea, Colleen; Muench, Lisa; Xu, Youwen; Carter, Pauline; King, Payton; Constanzo, Jasmine R; Ciaccio, James A; Fowler, Joanna S

    2007-07-01

    (3E)-3-[(2,4-dimethoxyphenyl)methylene]-3,4,5,6-tetrahydro-2,3'-bipyridine (GTS-21), a partial alpha7 nicotinic acetylcholine receptor agonist drug, has recently been shown to improve cognition in schizophrenia and Alzheimer's disease. One of its two major demethylated metabolites, 4-OH-GTS-21, has been suggested to contribute to its therapeutic effects. We labeled GTS-21 in two different positions with carbon-11 ([2-methoxy-(11)C]GTS-21 and [4-(11)C]GTS-21) along with two corresponding demethylated metabolites ([2-methoxy-(11)C]4-OH-GTS-21 and [4-methoxy-(11)C]2-OH-GTS-21) for pharmacokinetic studies in baboons and mice with positron emission tomography (PET). Both [2-(11)C]GTS-21 and [4-methoxy-(11)C]GTS-21 showed similar initial high rapid uptake in baboon brain, peaking from 1 to 3.5 min (0.027-0.038%ID/cc) followed by rapid clearance (t(1/2)<15 min), resulting in low brain retention by 30 min. However, after 30 min, [2-methoxy-(11)C]GTS-21 continued to clear while [4-methoxy-(11)C]GTS-21 plateaued, suggesting the entry of a labeled metabolite into the brain. Comparison of the pharmacokinetics of the two labeled metabolites confirmed expected higher brain uptake and retention of [4-methoxy-(11)C]2-OH-GTS-21 (the labeled metabolite of [4-methoxy-(11)C]GTS-21) relative to [2-methoxy-(11)C]4-OH-GTS-21 (the labeled metabolite of [2-methoxy-(11)C]GTS-21), which had negligible brain uptake. Ex vivo studies in mice showed that GTS-21 is the major chemical form in the mouse brain. Whole-body dynamic PET imaging in baboon and mouse showed that the major route of excretion of C-11 is through the gallbladder. The major findings are as follows: (a) extremely rapid uptake and clearance of [2-methoxy-(11)C]GTS-21 from the brain, which may need to be considered in developing optimal dosing of GTS-21 for patients, and (b) significant brain uptake of 2-OH-GTS-21, suggesting that it might contribute to the therapeutic effects of GTS-21. This study illustrates the value of

  14. Interactions between delta and mu opioid agonists in assays of schedule-controlled responding, thermal nociception, drug self-administration, and drug versus food choice in rhesus monkeys: studies with SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and heroin.

    PubMed

    Stevenson, Glenn W; Folk, John E; Rice, Kenner C; Negus, S Stevens

    2005-07-01

    Interactions between delta and mu opioid agonists in rhesus monkeys vary as a function of the behavioral endpoint. The present study compared interactions between the delta agonist SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and the mu agonist heroin in assays of schedule-controlled responding, thermal nociception, and drug self-administration. Both SNC80 (ED50 = 0.43 mg/kg) and heroin (ED50 = 0.088 mg/kg) produced a dose-dependent and complete suppression of response rates in the assay of schedule-controlled responding. Heroin also produced thermal antinociception (ED(5 degrees C) = 0.18 mg/kg) and maintained drug self-administration under both a fixed ratio schedule [dose-effect curve peak at 0.0032 mg/kg/injection (inj)] and under a food versus heroin concurrent-choice schedule (ED50 = 0.013 mg/kg/inj), whereas SNC80 did not produce thermal antinociception or maintain self-administration. Fixed ratio mixtures of SNC80 and heroin (1.6:1, 4.7:1, and 14:1 SNC80/heroin) produced additive effects in the assay of schedule-controlled responding and superadditive effects in the assay of thermal nociception. Also, SNC80 did not enhance the reinforcing effects of heroin, indicating that mixtures of SNC80 and heroin produced additive or infra-additive reinforcing effects. These results provide additional evidence to suggest that delta/mu interactions depend on the experimental endpoint and further suggest that delta agonists may selectively enhance the antinociceptive effects of mu agonists while either not affecting or decreasing the sedative and reinforcing effects of mu agonists.

  15. Synthesis of a peroxime proliferator activated receptor (PPAR) alpha/gamma agonist via stereocontrolled Williamson ether synthesis and stereospecific SN2 reaction of S-2-chloro propionic acid with phenoxides.

    PubMed

    Aikins, James A; Haurez, Michael; Rizzo, John R; Van Hoeck, Jean-Pierre; Brione, Willy; Kestemont, Jean-Paul; Stevens, Christophe; Lemair, Xavier; Stephenson, Gregory A; Marlot, Eric; Forst, Mindy; Houpis, Ioannis N

    2005-06-10

    The stereospecific synthesis of the PPAR alpha/gamma agonist 1 was accomplished via ethylation of the optically pure trihydroxy derivative 6, itself derived via an enzymatic resolution. The ethylation can be accomplished without epimerization only under strict control of the reaction conditions and the choice of base (sodium tert-amylate), temperature (-30 degrees C), order of addition, and solvent (DMF). The key diastereospecific SN2 reaction of the phenol 4 with S-2-chloropropionic acid is best achieved via the sodium phenoxide of 4 derived from Na0 as the reagent of choice. The structure elucidation and key purification protocols to achieve pharmaceutical purity will also be described.

  16. Inhibition of adult liver progenitor (oval) cell growth and viability by an agonist of the peroxisome proliferator activated receptor (PPAR) family member gamma, but not alpha or delta.

    PubMed

    Knight, Belinda; Yeap, Bu B; Yeoh, George C; Olynyk, John K

    2005-10-01

    Multifaceted evidence links the development of liver tumours to the activation and proliferation of adult liver progenitor (oval) cells during the early stages of chronic liver injury. The aim of this study was to examine the role of the peroxisome proliferator activated receptors (PPARs): PPARalpha, delta and gamma, in mediating the behaviour of liver progenitor cells during pre-neoplastic disease and to investigate their potential as therapeutic targets for the treatment of chronic liver injury. We observed increased liver expression of PPARalpha and gamma in concert with expanding oval cell numbers during the first 21 days following commencement of the choline deficient, ethionine supplemented (CDE) dietary model of carcinogenic liver injury in mice. Both primary and immortalized liver progenitor cells were found to express PPARalpha, delta and gamma, but not gamma2, the alternate splice form of PPARgamma. WY14643 (PPARalpha agonist), GW501516 (PPARdelta agonist) and ciglitazone (PPARgamma agonist) were tested for their ability to modulate the behaviour of p53-immortalized liver (PIL) progenitor cell lines in vitro. Both PPARdelta and gamma agonists induced dose-dependent growth inhibition and apoptosis of PIL cells. In contrast, the PPARalpha agonist had no effect on PIL cell growth. None of the drugs affected the maturation of PIL cells along either the hepatocytic or biliary lineages, as judged by their patterns of hepatic gene expression prior to and following treatment. Administration of the PPARgamma agonist ciglitazone to mice fed with the CDE diet for 14 days resulted in a significantly diminished oval cell response and decreased fibrosis compared with those receiving placebo. In contrast, GW501516 did not affect oval cell numbers or liver fibrosis, but inhibited CDE-induced hepatic steatosis. In summary, PPARgamma agonists reduce oval cell proliferation and fibrosis during chronic liver injury and may be useful in the prevention of hepatocellular

  17. Opioid receptor modulation of hedonic taste preference and food intake: a single-dose safety, pharmacokinetic, and pharmacodynamic investigation with GSK1521498, a novel μ-opioid receptor inverse agonist.

    PubMed

    Nathan, Pradeep J; O'Neill, Barry V; Bush, Mark A; Koch, Annelize; Tao, Wenli X; Maltby, Kay; Napolitano, Antonella; Brooke, Allison C; Skeggs, Andrew L; Herman, Craig S; Larkin, Andrew L; Ignar, Diane M; Richards, Duncan B; Williams, Pauline M; Bullmore, Edward T

    2012-04-01

    Endogenous opioids and µ-opioid receptors have been linked to hedonic and rewarding aspects of palatable food intake. The authors examined the safety, pharmacokinetic, and pharmacodynamic profile of GSK1521498, a µ-opioid receptor inverse agonist that is being investigated primarily for the treatment of overeating behavior in obesity. In healthy participants, GSK1521498 oral solution and capsule formulations were well tolerated up to a dose of 100 mg. After single doses (10-150 mg), the maximum concentration (C(max)) and area under the curve (AUC) in plasma increased in a dose-proportional manner. GSK1521498 selectively reduced sensory hedonic ratings of high-sugar and high-fat dairy products and caloric intake of high-fat/high-sucrose snack foods. These findings provide encouraging data in support of the development of GSK1521498 for the treatment of disorders of maladaptive ingestive behavior or compulsive consumption.

  18. Structure-Activity Relationship Studies on a Macrocyclic Agouti-Related Protein (AGRP) Scaffold Reveal Agouti Signaling Protein (ASP) Residue Substitutions Maintain Melanocortin-4 Receptor Antagonist Potency and Result in Inverse Agonist Pharmacology at the Melanocortin-5 Receptor.

    PubMed

    Ericson, Mark D; Freeman, Katie T; Schnell, Sathya M; Fleming, Katlyn A; Haskell-Luevano, Carrie

    2017-10-04

    The melanocortin system consists of five reported receptors, agonists from the proopiomelanocortin gene transcript, and two antagonists, agouti-signaling protein (ASP) and agouti-related protein (AGRP). For both ASP and AGRP, the hypothesized Arg-Phe-Phe pharmacophores are on exposed β-hairpin loops. In this study, the Asn and Ala positions of a reported AGRP macrocyclic scaffold (c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-DPro]) were explored with 14-compound and 8-compound libraries, respectively, to generate more potent, selective melanocortin receptor antagonists. Substituting diaminopropionic acid (Dap), DDap, and His at the Asn position yielded potent MC4R ligands, while replacing Ala with Ser maintained MC4R potency. Since these substitutions correlate to ASP loop residues, an additional Phe to Ala substitution was synthesized and observed to maintain MC4R potency. Seventeen compounds also possessed inverse agonist activity at the MC5R, the first report of this pharmacology. These findings are useful in developing molecular probes to study negative energy balance conditions and unidentified functions of the MC5R.

  19. Interaction between orexin A and cannabinoid system in the lateral hypothalamus of rats and effects of subchronic intraperitoneal administration of cannabinoid receptor inverse agonist on food intake and the nutritive utilization of protein.

    PubMed

    Merroun, I; El Mlili, N; Martinez, R; Porres, J M; Llopis, J; Ahabrach, H; Aranda, P; Sanchez Gonzalez, C; Errami, M; Lopez-Jurado, M

    2015-04-01

    Crosstalk may occur between cannabinoids and other systems controlling appetite, since cannabinoid receptors are present in hypothalamic circuits involved in feeding regulation, and likely to interact with orexin. In this study, an immunohistochemical approach was used to examine the effect of the intracerebroventricular administration of cannabinoid receptor inverse agonist AM 251 on orexin neuropeptide in the hypothalamic system. AM-activated neurons were identified using c-Fos as a marker of neuronal activity. The results obtained show that AM 251 decreases orexin A immunoreactivity, and that it increases c-Fos-immunoreactive neurons within the hypothalamus when compared with the vehicle-injected control group. We also studied the effects of subchronic intraperitoneal administration of AM 251 on food intake, body weight, and protein utilization. The administration of AM 251 at 1, 2, or 5 mg/kg led to a significant reduction in food intake, along with a significant decrease in the digestive utilization of protein in the groups injected with 1 and 2 mg/kg. There was a dose-related slowdown in weight gain, especially at the doses of 2 and 5 mg/kg, during the initial days of the trial. The absence of this effect in the pair-fed group reveals that any impairment to digestibility was the result of administering AM 251. These data support our conclusion that hypothalamic orexigenic neuropeptides are involved in the reduction of appetite and mediated by the cannabinoid receptor inverse agonist. Furthermore, the subchronic administration of AM 251, in addition to its effect on food intake, has significant effects on the digestive utilization of protein.

  20. Alpha7 nAChR Agonists for Cognitive Deficit and Negative Symptoms in Schizophrenia: A Meta-analysis of Randomized Double-blind Controlled Trials.

    PubMed

    Jin, Ye; Wang, Qi; Wang, Yan; Liu, Mengxi; Sun, Anji; Geng, Zhongli; Lin, Yiwei; Li, Xiaobai

    2017-08-25

    Previous clinical trials of α7-nicotinic acetylcholine receptor agonists (α7-nAChR agonists) showed mixed results in treating the cognitive and negative symptoms of schizophrenia. To assess the efficacy and safety of α7-nAChR agonists in treating the cognitive and negative symptoms in schizophrenia. A literature search was conducted to identify randomized double-blind placebo-controlled trials for schizophrenia published before May 26, 2017, by searching PubMed, Embase, ClinicalTrials.gov, the Cochrane Library and the Chinese language databases CNKI, Wanfang, and VIP Data. The effects of α7-nAChR agonists were evaluated for overall cognitive function and negative symptoms by calculating standard mean difference (SMDs) between active drugs and placebo added to antipsychotics. 8 studies with low bias were included. We found no statistically significant effects of α7 nAChR agonists on the overall cognitive function (SMD=-0.10[-0.46, 0.25], I(2) =88%) and negative symptoms (SMD=0.13 [-0.04, 0.30], I(2) =64%) in patients with schizophrenia. Sensitivity analysis showed these results to be firm. And this drug is generally safe and well tolerated with no significant difference from placebo based on adverse events (RR=1.02, [0.85, 1.23]) and dropouts (RR=1.04, [0.61, 1.78]) data. Evidence based on outcomes from the meta-analysis was rated as 'moderate' as per the GRADE guidelines. α7-nAChR agonists may not be effective in reversing overall cognitive impairments and negative symptoms in patients with schizophrenia as adjunctive therapies.

  1. The Neutrophil Response Induced by an Agonist for Free Fatty Acid Receptor 2 (GPR43) Is Primed by Tumor Necrosis Factor Alpha and by Receptor Uncoupling from the Cytoskeleton but Attenuated by Tissue Recruitment

    PubMed Central

    Björkman, Lena; Mårtensson, Jonas; Winther, Malene; Gabl, Michael; Holdfeldt, André; Uhrbom, Martin; Bylund, Johan; Højgaard Hansen, Anders; Pandey, Sunil K.; Ulven, Trond; Forsman, Huamei

    2016-01-01

    Ligands with improved potency and selectivity for free fatty acid receptor 2 (FFA2R) have become available, and we here characterize the neutrophil responses induced by one such agonist (Cmp1) and one antagonist (CATPB). Cmp1 triggered an increase in the cytosolic concentration of Ca2+, and the neutrophils were then desensitized to Cmp1 and to acetate, a naturally occurring FFA2R agonist. The antagonist CATPB selectively inhibited responses induced by Cmp1 or acetate. The activated FFA2R induced superoxide anion secretion at a low level in naive blood neutrophils. This response was largely increased by tumor necrosis factor alpha (TNF-α) in a process associated with a recruitment of easily mobilizable granules, but neutrophils recruited to an aseptic inflammation in vivo were nonresponding. Superoxide production induced by Cmp1 was increased in latrunculin A-treated neutrophils, but no reactivation of desensitized FFA2R was induced by this drug, suggesting that the cytoskeleton is not directly involved in terminating the response. The functional and regulatory differences between the receptors that recognize short-chain fatty acids and formylated peptides, respectively, imply different roles of these receptors in the orchestration of inflammation and confirm the usefulness of a selective FFA2R agonist and antagonist as tools for the exploration of the precise role of the FFA2R. PMID:27503855

  2. Perioperative sympatholysis. Beneficial effects of the alpha 2-adrenoceptor agonist mivazerol on hemodynamic stability and myocardial ischemia. McSPI--Europe Research Group.

    PubMed

    1997-02-01

    Mivazerol hydrochloride is a new alpha 2-adrenoceptor agonist. In vitro and animal studies have demonstrated both sympatholytic and antiischemic properties. To evaluate the safety and efficacy of mivazerol in patients during perioperative stress, this multicenter phase II clinical trial studied hemodynamic stability and myocardial ischemia in patients with coronary artery disease undergoing noncardiac surgery. Three hundred patients, from twenty-three European medical institutions, participated in this placebo-controlled, double-blind, randomized, parallel-group trial. Ninety-eight were given high-dose mivazerol (1.5 micrograms.kg-1.h-1); 99, low-dose mivazerol (0.75 microgram.kg-1.h-1); and 103, placebo, continuously intraoperatively and for 72 h postoperatively. Blood pressure and heart rate were monitored for 96 h. Myocardial ischemia was assessed by Holter electrocardiography for at least 8 h before induction of anesthesia until 96 h after surgery. Twelve-lead electrocardiograms and creatine kinase myocardial band isoenzyme levels were obtained before and serially after surgery. Adverse cardiac events were assessed for the intraoperative, early postoperative (0-24 h), and late postoperative (24-72 h) periods. The incidence of tachycardia was significantly lower with high-dose mivazerol (vs. placebo) during the intraoperative (30% vs. 51%; P = 0.002), early postoperative (29% vs. 50%; P = 0.002), and late postoperative periods (46% vs. 70%; P = 0.001). Also, the percentage of patients treated for tachycardia was significantly lower with the high dose (vs. placebo) during the early (10% vs. 20%; P = 0.043) and late (6% vs. 15%; P = 0.024) postoperative periods. The incidence of hypertension was significantly lower with both high and low doses (vs. placebo) during the intraoperative period (46% and 43%, respectively, vs. 63%; P = 0.010); treatment was similar at both high and low doses (33% and 34%, respectively, vs. 46%; P = 0.066). The incidence of bradycardia

  3. Synthesis and structure-activity relationships of a new model of arylpiperazines. 8. Computational simulation of ligand-receptor interaction of 5-HT(1A)R agonists with selectivity over alpha1-adrenoceptors.

    PubMed

    López-Rodríguez, María L; Morcillo, Maria José; Fernández, Esther; Benhamú, Bellinda; Tejada, Ignacio; Ayala, David; Viso, Alma; Campillo, Mercedes; Pardo, Leonardo; Delgado, Mercedes; Manzanares, Jorge; Fuentes, José A

    2005-04-07

    We have designed and synthesized a new series of arylpiperazines V exhibiting high 5-HT(1A)R affinity and selectivity over alpha(1)-adrenoceptors. The new selective 5-HT(1A)R ligands contain a hydantoin (m = 0) or diketopiperazine (m = 1) moiety and an arylpiperazine moiety separated by one methylene unit (n = 1). The aryl substituent of the piperazine moiety (Ar) consists of different benzofused rings mimicking the favorable voluminous substituents at ortho and meta positions predicted by 3D-QSAR analysis in the previously reported series I. In particular, (S)-2-[[4-(naphth-1-yl)piperazin-1-yl]methyl]-1,4-dioxoperhydropyrrolo[1,2-a]pyrazine [(S)-9, CSP-2503] (5-HT(1A), K(i) = 4.1 nM; alpha(1), K(i) > 1000 nM) has been pharmacologically characterized as a 5-HT(1A)R agonist at somatodendritic and postsynaptic sites, endowed with anxiolytic properties. Ligand (S)-9 is predicted, in computer simulations, to bind Asp(3.32) in TMH 3, Thr(5.39) and Ser(5.42) in TMH 5, and Trp(6.48) in TMH 6. We propose that agonists modify, by means of an explicit hydrogen bond, the conformation of Trp(6.48) from pointing toward TMH 7, in the inactive gauche+ conformation, to pointing toward the ligand binding site, in the active trans conformation.

  4. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor [alpha] Selective Agonist 2-((3-((2-(4-Chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic Acid (BMS-687453)

    SciTech Connect

    Li, Jun; Kennedy, Lawrence J.; Shi, Yan; Tao, Shiwei; Ye, Xiang-Yang; Chen, Stephanie Y.; Wang, Ying; Hernndez, Andrs S.; Wang, Wei; Devasthale, Pratik V.; Chen, Sean; Lai, Zhi; Zhang, Hao; Wu, Shung; Smirk, Rebecca A.; Bolton, Scott A.; Ryono, Denis E.; Zhang, Huiping; Lim, Ngiap-Kie; Chen, Bang-Chi; Locke, Kenneth T.; O’Malley, Kevin M.; Zhang, Litao; Srivastava, Rai Ajit; Miao, Bowman; Meyers, Daniel S.; Monshizadegan, Hossain; Search, Debra; Grimm, Denise; Zhang, Rongan; Harrity, Thomas; Kunselman, Lori K.; Cap, Michael; Kadiyala, Pathanjali; Hosagrahara, Vinayak; Zhang, Lisa; Xu, Carrie; Li, Yi-Xin; Muckelbauer, Jodi K.; Chang, Chiehying; An, Yongmi; Krystek, Stanley R.; Blanar, Michael A.; Zahler, Robert; Mukherjee, Ranjan; Cheng, Peter T.W.; Tino, Joseph A.

    2010-04-12

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

  5. Nortestosterone-derived synthetic progestogens do not activate the progestogen receptor of Murray-Darling rainbowfish (Melanotaenia fluviatilis) but are potent agonists of androgen receptors alpha and beta.

    PubMed

    Bain, Peter A; Kumar, Anu; Ogino, Yukiko; Iguchi, Taisen

    2015-06-01

    Synthetic progestogens derived from 19-nortestosterone can elicit a number of adverse effects in fish including decreased fecundity, altered hormone levels, disruption of normal breeding cycles, expression in females of male-specific biomarkers, development of male secondary sexual characteristics in females, and changes in the expression of steroidogenic genes. A recent in vitro study showed that a number of representatives from this class of progestins were potent agonists of fathead minnow androgen receptor (AR) and only weak agonists of progesterone receptor (PR) from the same species. This confirms that synthetic progestogens derived from 19-nortestosterone function as AR agonists in otomorphs, which express a single AR subtype. However, numerous perciformes are known to express two AR subtypes. We have recently shown that ARα and ARβ from Murray-Darling rainbowfish (Melanotaenia fluviatilis) respond differently to certain androgens and anti-androgens. The goal of the present study was to determine concentration-response profiles for selected progestins in transactivation assays driven by rainbowfish ARα, ARβ and PR in order to ascertain the relative potency of progestins against these receptors. As a means of confirming the expected activity of the progestins and reference compounds used in the study against human-derived receptors, we also established concentration-response relationships using transactivation assays driven by human PR and AR. We found that all five 19-nortestosterone-derived progestins tested were highly potent agonists of rainbowfish ARα, but that only four of the five progestins were potent agonists of rainbowfish ARβ, with norgestimate exhibiting only weak activity against rainbowfish ARβ. The spironolactone-derived progestin, drospirenone, was not an agonist of rainbowfish ARα or ARβ but was a weak agonist of rainbowfish PR. None of the 19-nortestosterone-progestins activated rainbowfish PR. These findings confirm that the

  6. Protein Kinase C Mediates the Synergistic Interaction Between Agonists Acting at Alpha-2-Adrenergic and Delta-Opioid Receptors in Spinal Cord

    PubMed Central

    Overland, Aaron C.; Kitto, Kelley F.; Chabot-Doré, Anne-Julie; Rothwell, Patrick E.; Fairbanks, Carolyn A.; Stone, Laura S.; Wilcox, George L.

    2009-01-01

    Co-activation of spinal α2-adrenergic receptors (AR) and opioid receptors (OR) produces antinociceptive synergy. Antinociceptive synergy between intrathecally (i.t.) administered α2AR and OR agonists is well documented, but the mechanism underlying this synergy remains unclear. The delta-opioid receptor (DOP) and the α2AAR are co-expressed on the terminals of primary afferent fibers in the spinal cord where they may mediate this phenomenon. We evaluated the ability of the DOP-selective agonist deltorphin II (DELT), the α2AR agonist clonidine (CLON) or their combination to inhibit calcitonin gene-related peptide (CGRP) release from spinal cord slices. We then examined the possible underlying signaling mechanisms involved through co-administration of inhibitors of phospholipase C (PLC), protein kinase C (PKC) or protein kinase A (PKA). Potassium-evoked depolarization of spinal cord slices caused concentration-dependent release of CGRP. Co-administration of DELT and CLON inhibited the release of CGRP in a synergistic manner as confirmed statistically by isobolograpic analysis. Synergy was dependent on the activation of PLC and PKC, but not PKA, while the effect of agonist administration alone was only dependent on PLC. The importance of these findings was confirmed in vivo, demonstrating the PKC-dependence on CLON-DELT antinociceptive synergy in mice. That inhibition of CGRP release by the combination was maintained in the presence of tetrodotoxin in spinal cord slices suggests that synergy does not rely on interneuronal signaling and may occur within single subcellular compartments. The present study reveals a novel signaling pathway underlying the synergistic analgesic interaction between DOP and α2AR agonists in the spinal cord. PMID:19846714

  7. Peroxisome proliferator activated receptor-γ agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: Effects on mitochondrial functions and differentiation.

    PubMed

    De Nuccio, C; Bernardo, A; Cruciani, C; De Simone, R; Visentin, S; Minghetti, L

    2015-09-01

    The activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ) is known to exert anti-inflammatory and neuroprotective effects and PPAR-γ agonists are considered potential therapeutic agents in brain diseases including those affecting myelin. In demyelinating diseases such as multiple sclerosis (MS), inflammation is one of the causes of myelin and axonal damage. Oligodendrocyte (OL) differentiation is highly dependent on mitochondria, which are major targets of inflammatory insult. Here we show that PPAR-γ agonists protect OL progenitors against the maturational arrest induced by the inflammatory cytokine TNF-α by affecting mitochondrial functions. We demonstrate that the inhibition of OL differentiation by TNF-α is associated with i) increased mitochondrial superoxide production; ii) decreased mitochondrial membrane potential (mMP); and iii) decreased ADP-induced Ca(2+) oscillations, which we previously showed to be dependent on efficient mitochondria. The TNF-α effects were comparable to those of the mitochondrial toxin rotenone, further suggesting that TNF-α damage is mediated by mitochondrial function impairment. PPAR-γ agonists protected OL progenitors against the inhibitory activities of both TNF-α and rotenone on mMP, mitochondrial ROS production, Ca(2+) oscillations and OL differentiation. Finally, the PPAR-γ agonist pioglitazone increased the expression of PGC-1α (a mitochondrial biogenesis master regulator), UCP2 (a mitochondrial protein known to reduce ROS production), and cytochrome oxidase subunit COX1. These findings confirm the central role of mitochondria in OL differentiation and point to mitochondria as major targets of PPAR-γ agonist protection against TNF-α damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Isoproterenol Acts as a Biased Agonist of the Alpha-1A-Adrenoceptor that Selectively Activates the MAPK/ERK Pathway

    PubMed Central

    Copik, Alicja. J.; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J.; Fitch, Bill; Raymond, John R.; Ford, Anthony P. D. W.; Button, Donald; Milla, Marcos E.

    2015-01-01

    The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK

  9. Studies on estrogen receptor (ER) alpha and beta responses on gene regulation in peripheral blood leukocytes in vivo using selective ER agonists.

    PubMed

    Stygar, Denis; Masironi, Britt; Eriksson, Håkan; Sahlin, Lena

    2007-07-01

    Major reproductive events such as menstruation, ovulation, implantation, and cervical ripening are characterized by an increased number of invading leukocytes in the tissues. Sex steroid hormones, particularly estrogens, play an important role in these dynamic changes in the female reproductive tract. Estrogens have also been implicated in the pathogenesis of many common pathological conditions associated with leukocyte infiltration and immunological dysfunction, such as auto-immune diseases and atherosclerosis. Although the two estrogen receptor (ER) subtypes, ERalpha and ERbeta, have been found in different leukocyte populations in tissues and in peripheral blood, there is still very little known about functional activity and importance of ERs in blood cells. To elucidate the different roles for ERalpha and ERbeta in peripheral blood leukocytes, we used microarray gene expression profiling of rat peripheral blood leukocytes subjected to in vivo treatment with estradiol (E2), the selective ERalpha agonist 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), and the selective ERbeta agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). We report the identification of genes that were commonly regulated by E2, PPT, and DPN, and genes that were regulated either by the ERalpha or ERbeta agonist. Further confirmatory analyses of the selected regulated genes 12-lipoxygenase, fibulin-1, furin, and calgranulin B are also presented. These results were then compared with those from the uterine tissue of the same animals. Our study demonstrates that peripheral blood leukocytes are responsive to estrogens. E2 and selective ERalpha and ERbeta agonists regulate a number of genes that may contribute to inflammation and remodeling of the extracellular matrix.

  10. Gonadotrophin-releasing hormone agonist stimulates milt fluidity and plasma concentrations of 17,20beta-dihydroxylated and 5beta-reduced, 3alpha-hydroxylated C21 steroids in male plaice (Pleuronectes platessa).

    PubMed

    Vermeirssen, E L; Scott, A P; Mylonas, C C; Zohar, Y

    1998-11-01

    Spermiating male plaice were caught in the North Sea and acclimatised to laboratory conditions. In two experiments, males were injected intramuscularly with either microspheres or pellets containing gonadotrophin-releasing hormone agonist (GnRHa). Blood was sampled at 2- to 5-day intervals. Individual blood plasma specimens were assayed for testosterone, 5beta-reduced, 3alpha-hydroxy ("5beta,3alpha") steroids and sulphated 17, 20beta-dihydroxy ("17,20beta") steroids. Pooled plasma samples were also assayed for free and sulphated 17, 20beta-dihydroxy-4-pregnen-3-one, free 11-ketotestosterone, and glucuronidated testosterone and 11-ketotestosterone. Plasma concentrations of all steroids were significantly elevated by GnRHa from 2 to 5 days onwards following treatment. The most marked changes occurred in the concentrations of the sulphated 17,20beta steroids, which comprised approximately equal amounts of 5beta-pregnane-3alpha,17,20beta-triol 20-sulphate (3alpha,17, 20beta-P-5beta-S) and 5beta-pregnane-3beta,17,20beta-triol 20-sulphate, rising from ca. 1 to 30-80 ng/ml in the first and from ca. 8 to 80 ng/ml in the second experiment. Concentrations of 5beta, 3alpha steroids matched those of 17,20beta steroids in one experiment. However, in the other experiment, the two RIAs yielded highly disparate results in about 50% of the fish (including males in the control group). The plasma of these fish contained excessive amounts of 5beta,3alpha-immunoreactive material between 10 and 25 days. This material was identified as 3alpha,17, 21-trihydroxy-5beta-pregnan-20-one 21-sulphate (a metabolite of 11-deoxycortisol). All previous studies have indicated that when plasma concentrations of this steroid are high, so are those of 3alpha,17,20beta-P-5beta-S. This is the first indication that these steroids are regulated independently. In a third experiment, milt fluidity and production were assessed at 10, 15, and 25 days following GnRHa implantation. Milt volume and fluidity were

  11. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children

    PubMed Central

    Perng, Wei; Villamor, Eduardo; Mora-Plazas, Mercedes; Marin, Constanza; Baylin, Ana

    2015-01-01

    Background/Objectives Studies in adults indicate that dietary polyunsaturated fatty acid (PUFA) composition may play a role in development of adiposity. Because adipocyte quantity is established between late childhood and early adolescence, understanding the impact of PUFAs on weight gain during the school-age years is crucial to developing effective interventions. Subjects/Methods We quantified N-3 and N-6 PUFAs in serum samples of 668 Colombian schoolchildren aged 5–12 years at the time of recruitment into a cohort study, using gas-liquid chromatography. Serum concentrations of N-3 (ALA, EPA, DHA) and N-6 PUFAs (LA, GLA, DGLA, AA) were determined as % total fatty acids. Children’s anthropometry was measured annually for a median of 30 months. We used mixed-effects models with restricted cubic splines to construct population body mass index-for-age z-score (BAZ) growth curves for age-and sex-specific quartiles of each PUFA. Results N-3 ALA was inversely related to BAZ gain after adjustment for sex, baseline age and weight status, and household socioeconomic level. Estimated BAZ change between 6 and 14 years among children in the highest quartile of ALA compared to those in the lowest quartile was 0.45 (95% CI: 0.07, 0.83) lower (P-trend=0.006). Conclusions N-3 ALA may be protective against weight gain in school-age children. Whether improvement in PUFA status reduces adiposity in pediatric populations deserves evaluation in randomized trials. PMID:25271016

  12. In ovo treatment with an estrogen receptor alpha selective agonist causes precocious development of the female reproductive tract of the American alligator (Alligator mississippiensis).

    PubMed

    Doheny, Brenna M; Kohno, Satomi; Parrott, Benjamin B; Guillette, Louis J

    2016-11-01

    The molecular signaling processes involved the differentiation of the Müllerian duct (MD) into the female reproductive tract, or oviduct, in non-mammalian vertebrates are not well understood. Studies in mammals and birds indicate that steroid hormones play a role in this process, as the embryonic MD has been shown to be vulnerable to exogenous estrogens and progestins and environmental endocrine disrupting contaminants. In a previous study, developmental treatment with an estrogen receptor α (ERα) agonist, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), induced significant enlargement of the MD in alligator embryos incubated at a male-producing temperature, which was not observed in embryos treated with an estrogen receptor β (ERβ) agonist, 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY 200070), or with 17β-estradiol (E2). In order to understand the role of estrogen signaling in female alligator oviduct development, we incubated eggs at a female-producing temperature and treated them with E2 and these ER selective agonists, PPT and WAY 200070, just prior to the thermosensitive window of sex determination. At stage 27, one stage prior to hatching, PPT induced significant enlargement of the MD with precocious development of secretory glands and connective tissue differentiation similar to characteristics of mature adult oviduct. PPT treatment in ovo increased mRNA expression of ERβ, progesterone receptor, androgen receptor and insulin-like growth factor 1 in MD at stage 27, while expression of ERα was decreased. Neither WAY 200070 nor E2 treatment induced these effects seen in PPT-treated MD. The results of this study provide insight into the critical factors for healthy reproductive system formation in this sentinel species, although further investigation is needed to determine whether the observed phenomena are directly due to selective stimulation of ERα or related to some other aspect of PPT treatment. Copyright © 2016 Elsevier Inc

  13. Hemodynamic and cardiac neurotransmitter-releasing effects in conscious dogs of attention- and wake-promoting agents: a comparison of d-amphetamine, atomoxetine, modafinil, and a novel quinazolinone H3 inverse agonist.

    PubMed

    Lynch, Joseph; Regan, Christopher; Stump, Gary; Tannenbaum, Pamela; Stevens, Joanne; Bone, Ashleigh; Gilberto, David; Johnson, Colena; Fujino, Naoko; Takenaga, Norihiro; Tokita, Shigeru; Nagase, Tsuyoshi; Sato, Nagaaki; Renger, John

    2009-01-01

    Conscious coronary sinus-cannulated dogs were used to assess the hemodynamic effects and local cardiac norepinephrine (NE) and histamine (HA) release of 4 mechanistically diverse agents either clinically approved or representing a potential novel mechanism for the promotion of wakefulness or attention. Dosing regimens were based on reported or concurrently determined wake-promoting activities in canine models. The central nervous system stimulant, d-amphetamine [0.1 mg x kg(-1) x 10 min intravenous (IV)], significantly elevated mean arterial pressure (+30%) and increased coronary sinus and peripheral venous NE concentrations, indicative of cardiac neurotransmitter release. The selective NE reuptake inhibitor atomoxetine (2.0 mg x kg(-1) x 10 min(-1) IV) and modafinil (30.0 mg x kg(-1) x 10 min(-1) IV) also significantly elevated mean arterial pressure (+15% and +30%, respectively), but with no effect on coronary sinus or peripheral NE concentration, suggesting central mechanisms underlying the hemodynamic effects. The preclinical demonstrations of pressor effects with d-amphetamine, atomoxetine, and modafinil are consistent with clinically reported hemodynamic effects with these agents. The quinazolinone HA receptor subtype H3 inverse agonist 5r (0.3 mg x kg(-1) x 10 min(-1) IV) displayed no effect on hemodynamics or on coronary sinus or peripheral NE and HA concentrations. These data suggest the potential for therapeutic effect with the latter mechanism in the absence of peripheral cardiac neurotransmitter release or obvious changes in cardiovascular function.

  14. New diphenylmethane derivatives as peroxisome proliferator-activated receptor alpha/gamma dual agonists endowed with anti-proliferative effects and mitochondrial activity.

    PubMed

    Piemontese, Luca; Cerchia, Carmen; Laghezza, Antonio; Ziccardi, Pamela; Sblano, Sabina; Tortorella, Paolo; Iacobazzi, Vito; Infantino, Vittoria; Convertini, Paolo; Dal Piaz, Fabrizio; Lupo, Angelo; Colantuoni, Vittorio; Lavecchia, Antonio; Loiodice, Fulvio

    2017-02-15

    We screened a short series of new chiral diphenylmethane derivatives and identified potent dual PPARα/γ partial agonists. As both enantiomers of the most active compound 1 displayed an unexpected similar transactivation activity, we performed docking experiments to provide a molecular understanding of their similar partial agonism. We also evaluated the ability of both enantiomers of 1 and racemic 2 to inhibit colorectal cancer cells proliferation: (S)-1 displayed a more robust activity due, at least in part, to a partial inhibition of the Wnt/β-catenin signalling pathway that is upregulated in the majority of colorectal cancers. Finally, we investigated the effects of (R)-1, (S)-1 and (R,S)-2 on mitochondrial function and demonstrated that they activate the carnitine shuttle system through upregulation of carnitine/acylcarnitine carrier (CAC) and carnitine-palmitoyl-transferase 1 (CPT1) genes. Consistent with the notion that these are PPARα target genes, we tested and found that PPARα itself is regulated by a positive loop. Moreover, these compounds induced a significant mitochondrial biogenesis. In conclusion, we identified a new series of dual PPARα/γ agonists endowed with novel anti-proliferative properties associated with a strong activation of mitochondrial functions and biogenesis, a potential therapeutic target of the treatment of insulin resistance.

  15. Evidence that different regional sympathetic outflows vary in their sensitivity to the sympathoinhibitory actions of putative 5-HT1A and alpha 2-adrenoceptor agonists in anaesthetized cats.

    PubMed Central

    Ramage, A. G.; Wilkinson, S. J.

    1989-01-01

    1. An investigation was carried out to determine whether the centrally acting hypotensive drugs whose mechanisms of action are due either to activation of 5-HT1A receptors (flesinoxan, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and urapidil--also an alpha 1-adrenoceptor antagonist) or to activation of alpha 2-adrenoceptors (clonidine and moxonidine) cause differential sympathoinhibition. 2. Cats were anaesthetized with alpha-chloralose and simultaneous recordings were made of whole cardiac, splanchnic and renal nerve activity, blood pressure and heart rate. Cumulative dose-response (i.v.) curves were constructed in separate experiments for the above hypotensive agents on these parameters. 3. Renal nerve activity was found to be more sensitive to the sympathoinhibitory action of flesinoxan and 8-OH-DPAT when compared with cardiac nerve activity, whereas the reverse was observed for clonidine and moxonidine, cardiac being more sensitive than renal nerve activity. Splanchnic nerve activity was similarly affected by all drugs. Furthermore at the highest dose, all drugs tended to cause complete inhibition in all regional sympathetic nerve outflows. 4. Urapidil differed from all the above hypotensive drugs in that it caused a similar degree of sympathoinhibition in all sympathetic outflows at all doses. It is suggested that this may be due to the ability of urapidil to block central alpha 1-adrenoceptors in addition to stimulation of 5-HT1A receptors. PMID:2575414

  16. Effects of prostaglandin F2 alpha and a gonadotropin-releasing hormone agonist on inositol phospholipid metabolism in isolated rat corpora lutea of various ages

    SciTech Connect

    Lahav, M.; West, L.A.; Davis, J.S.

    1988-08-01

    The sensitivity of rat corpora lutea to luteolytic agents increases with luteal age. We examined the effect of prostaglandin F2 alpha (PGF2 alpha) and (D-Ala6,Des-Gly10)GnRH ethylamide (GnRHa) on inositol phospholipid metabolism in day 2 and day 7 corpora lutea from PMSG-treated rats. Isolated corpora lutea were incubated with 32PO4 or (3H)inositol and were treated with LH, PGF2 alpha, or GnRHa. Phospholipids were purified by TLC, and the water-soluble products of phospholipase-C activity (inositol phosphates) were isolated by ion exchange chromatography. In day 2 corpora lutea, PGF2 alpha, (10 microM) and GnRHa (100 ng/ml) significantly increased 32PO4 incorporation into phosphatidic acid (PA) and phosphatidylinositol (PI), but not into other fractions. LH provoked slight increases in PA. Results were similar with 30 min of prelabeling or simultaneous addition of 32PO4 and stimulants. In other experiments, PGF2 alpha and GnRHa provoked rapid increases (1-5 min) in the accumulation of inositol mono-, bis-, and trisphosphates. LH did not significantly increase inositol phosphate accumulation, but stimulated cAMP accumulation in 2-day-old corpora lutea. Inositol phospholipid metabolism was increased in day 7 corpora lutea compared to that in day 2 corpora lutea. This increase was associated with increased incorporation of 32PO4 into PA and PI and increased accumulation of (3H)inositol phosphates. In day 7 corpora lutea, which are very sensitive to the luteolytic effect of PGF2 alpha, the PG-induced increase in PA labeling was small and inconsistent, whereas PI labeling was unaffected in 30-min incubations. GnRHa was without effect in such corpora lutea. LH, PGF2 alpha, or GnRHa did not increase inositol phosphate accumulation in 7-day-old corpora lutea. These studies demonstrate that the transformation of young (day 2) to mature (day 7) corpora lutea is associated with an increase in luteal inositol phospholipid metabolism.

  17. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture.

    PubMed

    Han, Zhenying; Li, Li; Wang, Liang; Degos, Vincent; Maze, Mervyn; Su, Hua

    2014-11-01

    Bone fracture at the acute stage of stroke exacerbates stroke injury by increasing neuroinflammation. We hypothesize that activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) attenuates neuroinflammation and oxidative stress, and reduces brain injury in mice with bone fracture and stroke. Permanent middle cerebral artery occlusion (pMCAO) was performed in C57BL/6J mice followed by tibia fracture 1 day later. Mice were treated with 0.8 mg/kg PHA 568487 (PHA, α-7 nAchR-specific agonist), 6 mg/kg methyllycaconitine (α-7 nAchR antagonist), or saline 1 and 2 days after pMCAO. Behavior was tested 3 days after pMCAO. Neuronal injury, CD68(+) , M1 (pro-inflammatory) and M2 (anti-inflammatory) microglia/macrophages, phosphorylated p65 component of nuclear factor kappa b in microglia/macrophages, oxidative and anti-oxidant gene expression were quantified. Compared to saline-treated mice, PHA-treated mice performed better in behavioral tests, had fewer apoptotic neurons (NeuN(+) TUNEL(+) ), fewer CD68(+) and M1 macrophages, and more M2 macrophages. PHA increased anti-oxidant gene expression and decreased oxidative stress and phosphorylation of nuclear factor kappa b p65. Methyllycaconitine had the opposite effects. Our data indicate that α-7 nAchR agonist treatment reduces neuroinflammation and oxidative stress, which are associated with reduced brain injury in mice with ischemic stroke plus tibia fracture. Bone fracture at the acute stage of stroke exacerbates neuroinflammation, oxidative stress, and brain injury, and our study has shown that the α-7 nAchR agonist, PHA (PHA 568487), attenuates neuroinflammation, oxidative stress, and brain injury in mice with stroke and bone fracture. Hence, PHA could provide an opportunity to develop a new strategy to reduce brain injury in patients suffering from stroke and bone fracture. © 2014 International Society for Neurochemistry.

  18. Screw-sense inversion characteristic of alpha-helical poly(beta-p-chlorobenzyl L-aspartate) and comparison with other related polyaspartates.

    PubMed

    Abe, Akihiro; Hiraga, Kentaro; Imada, Yousuke; Hiejima, Toshihiro; Furuya, Hidemine

    2005-01-01

    This is one of a series of studies on the reversal of the helix sense of polyaspartates originated from the pioneering work of Goodman and his associates in 1960s. Poly(beta-p-chlorobenzyl L-aspartate) (PClBLA) is one of the well-studied polyaspartate derivatives in both solution and the solid state. The chemical structure of PClBLA differs from those of poly(beta-benzyl L-aspartate) (PBLA) and poly(beta-phenethyl L-aspartate) (PPLA) only at the terminal of the relatively long side chain. PBLA takes a left-handed form (L) in conventional helicoidal solvents and does not exhibit any screw-sense inversion. In contrast to PBLA, both PClBLA and PPLA form a right-handed helix (R) in chlorinated alkane solvents and exhibits a reversal of alpha-helix sense at higher temperatures. Yet the transition behaviors in the presence of denaturant acid are quite different between these two polymers. While PPLA exhibits transitions such as R --> L --> coil by lowering temperature, PClBLA directly goes into the coil state without showing the reentrant L form. The cause of these phenomenological differences among these polymers has been investigated by constructing the phase diagram. Copyright 2005 Wiley Periodicals, Inc

  19. Photoelectrochemical detection of alpha-fetoprotein based on ZnO inverse opals structure electrodes modified by Ag2S nanoparticles

    PubMed Central

    Jiang, Yandong; Liu, Dali; Yang, Yudan; Xu, Ru; Zhang, Tianxiang; Sheng, Kuang; Song, Hongwei

    2016-01-01

    In this work, a new photoelectrochemical biosensor based on Ag2S nanoparticles (NPs) modified macroporous ZnO inverse opals structure (IOs) was developed for sensitive and rapid detection of alpha fetal protein (AFP). Small size and uniformly dispersed Ag2S NPs were prepared using the Successive Ionic Layer Adsorption And Reaction (SILAR) method, which were adsorbed on ZnO IOs surface and frame work as matrix for immobilization of AFP. The composite structure of ZnO/Ag2S expanded the scope of light absorption to long wavelength, which can make full use of the light energy. Meanwhile, an effective matching of energy levels between the conduction bands of Ag2S and ZnO are beneficial to the photo-generated electrons transfer. The biosensors based on FTO (fluorine-doped tinoxide) ZnO/Ag2S electrode showed enough sensitivity and a wide linear range from 0.05 ng/mL to 200 ng/mL with a low detection limit of 8 pg/mL for the detection of AFP. It also exhibited high reproducibility, specificity and stability. The proposed method was potentially attractive for achieving excellent photoelectrochemical biosensor for detection of other proteins. PMID:27922086

  20. Photoelectrochemical detection of alpha-fetoprotein based on ZnO inverse opals structure electrodes modified by Ag2S nanoparticles.

    PubMed

    Jiang, Yandong; Liu, Dali; Yang, Yudan; Xu, Ru; Zhang, Tianxiang; Sheng, Kuang; Song, Hongwei

    2016-12-06

    In this work, a new photoelectrochemical biosensor based on Ag2S nanoparticles (NPs) modified macroporous ZnO inverse opals structure (IOs) was developed for sensitive and rapid detection of alpha fetal protein (AFP). Small size and uniformly dispersed Ag2S NPs were prepared using the Successive Ionic Layer Adsorption And Reaction (SILAR) method, which were adsorbed on ZnO IOs surface and frame work as matrix for immobilization of AFP. The composite structure of ZnO/Ag2S expanded the scope of light absorption to long wavelength, which can make full use of the light energy. Meanwhile, an effective matching of energy levels between the conduction bands of Ag2S and ZnO are beneficial to the photo-generated electrons transfer. The biosensors based on FTO (fluorine-doped tinoxide) ZnO/Ag2S electrode showed enough sensitivity and a wide linear range from 0.05 ng/mL to 200 ng/mL with a low detection limit of 8 pg/mL for the detection of AFP. It also exhibited high reproducibility, specificity and stability. The proposed method was potentially attractive for achieving excellent photoelectrochemical biosensor for detection of other proteins.

  1. The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE.

    PubMed

    Rosas-Ballina, Mauricio; Goldstein, Richard S; Gallowitsch-Puerta, Margot; Yang, Lihong; Valdés-Ferrer, Sergio Iván; Patel, Nirav B; Chavan, Sangeeta; Al-Abed, Yousef; Yang, Huan; Tracey, Kevin J

    2009-01-01

    The cholinergic antiinflammatory pathway modulates inflammatory cytokine production through a mechanism dependent on the vagus nerve and the alpha7 subunit of the nicotinic acetylcholine receptor. GTS-21 [3-(2,4-dimethoxybenzylidene) anabaseine], a selective alpha7 agonist, inhibits inflammatory cytokine production in murine and human macrophages and in several models of inflammatory disease in vivo, but to date its antiinflammatory efficacy in human monocytes has not been characterized. We report here our findings that GTS-21 attenuates tumor necrosis factor (TNF) and interleukin 1beta levels in human whole blood activated by exposure to endotoxin. GTS-21 inhibited TNF production in endotoxin-stimulated primary human monocytes in vitro at the transcriptional level. The suppressive effect of GTS-21 was more potent than nicotine in whole blood and monocytes. Furthermore, GTS-21 attenuated TNF production in monocytes stimulated with peptidoglycan, polyinosinic-polycytidylic acid, CpG, HMGB1 (high-mobility group box 1 protein), and advanced glycation end product-modified albumin. GTS-21 decreased TNF levels in endotoxin-stimulated whole blood obtained from patients with severe sepsis. These findings establish the immunoregulatory effect of GTS-21 on human monocytes, and indicate the potential benefits of further exploration of GTS-21's therapeutic uses in human inflammatory disease.

  2. PPAR{alpha} agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity

    SciTech Connect

    Hou, Xiaoyang; Shen, Ying H.; Li, Chuanbao; Wang, Fei; Zhang, Cheng; Bu, Peili; Zhang, Yun

    2010-04-09

    Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors {alpha} (PPAR{alpha}) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs. Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.

  3. Alpha 2A adrenergic receptor agonist, guanfacine, attenuates cocaine-related impairments of inhibitory response control and working memory in animal models.

    PubMed

    Terry, Alvin V; Callahan, Patrick M; Schade, Rosann; Kille, Nancy J; Plagenhoef, Marc

    2014-11-01

    There is considerable evidence that centrally acting α2A adrenergic receptor agonists can attenuate impairments in executive function that result from dysfunction of the prefrontal cortex. Such positive effects resulted in the recent approval by the United States Food and Drug Administration (FDA) of the α2A agonists clonidine and guanfacine for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD), but also suggest that they could have beneficial effects in substance abuse disorders and other neuropsychiatric conditions. The purpose of this study was to evaluate guanfacine for its ability to attenuate behavioral alterations associated with acute cocaine exposure in rats trained to perform a task of sustained attention, the five choice serial reaction time task (5C-SRTT) and monkeys trained to perform a task of working/short term memory, the delayed match to sample (DMTS) task. In the rodent 5C-SRTT acute intraperitoneal (i.p.) administration of cocaine (3.5-15.0mg/kg) did not affect accuracy, but was associated with dose-dependent increases in premature responses and timeout responses. Guanfacine (0.1-1.0mg/kgi.p.) dose-dependently decreased premature responses and timeout responses associated with cocaine and it attenuated similar deficits in inhibitory response control observed in a variable ITI version of the 5C-SRTT. In the DMTS task in monkeys, acute intramuscular (i.m.) administration of cocaine (4.0mg/kg) was associated with impairments in accuracy at long delay intervals, an effect that was attenuated by guanfacine (0.4mg/kg). These animal studies suggest that guanfacine may have therapeutic potential for treating impairments of executive function that are associated with the abuse of cocaine. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Alpha 2A adrenergic receptor agonist, guanfacine, attenuates cocaine-related impairments of inhibitory response control and working memory in animal models

    PubMed Central

    Terry, Alvin V.; Callahan, Patrick M.; Schade, Rosann; Kille, Nancy J.; Plagenhoef, Marc

    2014-01-01

    There is considerable evidence that centrally acting α2A adrenergic receptor agonists can attenuate impairments in executive function that result from dysfunction of the prefrontal cortex. Such positive effects resulted in the recent approval by the United States Food and Drug Administration (FDA) of the α2A agonists clonidine and guanfacine for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD), but also suggest that they could have beneficial effects in substance abuse disorders and other neuropsychiatric conditions. The purpose of this study was to evaluate guanfacine for its ability to attenuate behavioral alterations associated with acute cocaine exposure in rats trained to perform a task of sustained attention, the five choice serial reaction time task (5C-SRTT) and monkeys trained to perform a task of working/short term memory, the delayed match to sample task (DMTS). In the rodent 5C-SRTT acute intraperitoneal (i.p.) administration of cocaine (3.5–15.0 mg/kg) did not affect accuracy, but was associated with dose-dependent increases in premature responses and timeout responses. Guanfacine (0.1–1.0 mg/kg i.p.) dose-dependently decreased premature responses and timeout responses associated with cocaine and it attenuated similar deficits in inhibitory response control observed in a variable ITI version of the 5C-SRTT. In the DMTS task in monkeys, acute intramuscular (i.m.) administration of cocaine (4.0 mg/kg) was associated with impairments in accuracy at long delay intervals, an effect that was attenuated by guanfacine (0.4 mg/kg). These animal studies suggest that guanfacine may have therapeutic potential for treating impairments of executive function that are associated with the abuse of cocaine. PMID:25242808

  5. SKF-82958 is a subtype-selective estrogen receptor-alpha (ERalpha ) agonist that induces functional interactions between ERalpha and AP-1.

    PubMed

    Walters, Marian R; Dutertre, Martin; Smith, Carolyn L

    2002-01-18

    The transcriptional activity of estrogen receptors (ERs) can be regulated by ligands as well as agents such as dopamine, which stimulate intracellular signaling pathways able to communicate with these receptors. We examined the ability of SKF-82958 (SKF), a previously characterized full dopamine D1 receptor agonist, to stimulate the transcriptional activity of ERalpha and ERbeta. Treatment of HeLa cells with SKF-82958 stimulated robust ERalpha-dependent transcription from an estrogen-response element-E1b-CAT reporter in the absence of estrogen, and this was accompanied by increased receptor phosphorylation. However, induction of ERbeta-directed gene expression under the same conditions was negligible. In our cell model, SKF treatment did not elevate cAMP levels nor enhance transcription from a cAMP-response element-linked reporter. Control studies revealed that SKF-82958, but not dopamine, competes with 17beta-estradiol for binding to ERalpha or ERbeta with comparable relative binding affinities. Therefore, SKF-82958 is an ERalpha-selective agonist. Transcriptional activation of ERalpha by SKF was more potent than expected from its relative binding activity, and further examination revealed that this synthetic compound induced expression of an AP-1 target gene in a tetradecanoylphorbol-13-acetate-response element (TRE)-dependent manner. A putative TRE site upstream of the estrogen-response element and the amino-terminal domain of the receptor contributed to, but were not required for, SKF-induced expression of an ERalpha-dependent reporter gene. Overexpression of the AP-1 protein c-Jun, but not c-Fos, strongly enhanced SKF-induced ERalpha target gene expression but only when the TRE was present. These studies provide information on the ability of a ligand that weakly stimulates ERalpha to yield strong stimulation of ERalpha-dependent gene expression through cross-talk with other intracellular signaling pathways producing a robust combinatorial response within the

  6. Regulation of GnRH I receptor gene expression by the GnRH agonist triptorelin, estradiol, and progesterone in the gonadotroph-derived cell line alphaT3-1.

    PubMed

    Weiss, J M; Polack, S; Treeck, O; Diedrich, K; Ortmann, O

    2006-08-01

    The secretion of luteinizing hormone (LH) and the GnRH receptor (GnRH-R) concentration are modulated by ovarian steroids and GnRH. To elucidate whether this regulation is due to alterations at the transcriptional level, we examined the GnRH I-R mRNA expression in the gonadotroph-derived cell line alphaT3-1 treated with different estradiol and progesterone paradigms and the GnRH I agonist triptorelin. alphaT3-1 cells were treated with different steroid paradigms: 1 nM estradiol or 100 nM progesterone for 48 h alone or in combination. Cells were exposed to 10 nM or 100 pM triptorelin for 30 min, 3 h, 9 h, or, in pulsatile way, with a 5-min pulse per hour. The GnRH I-R mRNA was determined by Northern blot analysis. GnRH I-R mRNA from cells treated with continuous triptorelin decreased in a time- and concentration-dependent manner. Pulsatile triptorelin increased GnRH I-R gene expression. Progesterone alone further enhanced this effect, whereas estradiol and its combination with progesterone diminished it. Continuous combined treatment with estradiol and progesterone lead to a significant decrease of GnRH I-R mRNA by 30% and by 35% for estradiol alone. The addition of 10 nM triptorelin for 30 min or 3 h could not influence that steroid effect. In conclusion, estradiol and progesterone exclusively decreased GnRH I-R mRNA in alphaT3-1 cells no matter whether they are treated additionally with the GnRH I agonist triptorelin. The enhanced sensitivity of gonadotrophs and GnRH I-R upregulation by estradiol is not due to increased GnRH I gene expression because GnRH I-R mRNA is downregulated by estradiol and progesterone. Other pathways of the GnRH I-R signal transduction might be involved.

  7. Alpha 2-adrenoceptor agonist-mediated inhibition of [3H]noradrenaline release from rat hippocampus is reduced by 4-aminopyridine, but that caused by an adenosine analogue or omega-conotoxin is not.

    PubMed

    Hu, P S; Fredholm, B B

    1989-07-01

    The inhibitory effect of an adenosine analogue, R-PIA, and an alpha 2-adrenoceptor agonist, UK 14,304, on [3H]NA efflux from field-stimulated rat hippocampal slices was examined. The effect of 0.1 microM UK 14,304 was mimicked by 30 nM omega-conotoxin and by 10 microM cadmium chloride, inhibitors of N- and L-type Ca2+ channels. R-PIA (1 microM) had no effect per se, but caused a clear-cut inhibition after blockade of the pre-synaptic alpha 2-receptor by yohimbine. 4-Aminopyridine (4-AP) caused a dose-dependent increase in evoked transmitter release. At 30 microM 4-AP did not affect the actions of omega-conotoxin or cadmium chloride. The pre-synaptic effect of R-PIA was similarly unaffected by 30 microM 4-AP. The pre-synaptic effect of UK 14,304 was virtually abolished by 4-AP (30 microM). The effect of UK 14,304 (0.1 microM) could be partly restored by reducing the Ca2+ concentration during treatment with 4-AP (22% inhibition compared to 42% with normal Ca2+). The magnitude of increase in evoked [3H]NA efflux by yohimbine (1 microM) was decreased by 4-AP in a concentration-dependent manner from 142% increase in controls to 21% at 100 microM 4-AP. The present results indicate that NA release is reduced by somewhat different mechanisms by pre-synaptic alpha 2- and adenosine A1-receptors. Furthermore, the results indicate that pre-synaptic A1-receptors on hippocampal NA neurons do not primarily regulate 4-AP-dependent potassium channels, but they might act directly on a Ca2+ conductance.

  8. Development and validation of an UPLC-MS/MS assay for quantitative analysis of the ghrelin receptor inverse agonist PF-5190457 in human or rat plasma and rat brain.

    PubMed

    Ghareeb, Mwlod; Leggio, Lorenzo; El-Kattan, Ayman; Akhlaghi, Fatemeh

    2015-07-01

    PF-5190457 is a ghrelin receptor inverse agonist that is currently undergoing clinical development for the treatment of alcoholism. Our aim was to develop and validate a simple and sensitive assay for quantitative analysis of PF-5190457 in human or rat plasma and rat brain using liquid chromatography-tandem mass spectrometry. The analyte and stable isotope internal standard were extracted from 50 μL plasma or rat brain homogenate by protein precipitation using 0.1% formic acid in acetonitrile. Chromatography was carried out on an Acquity UPLC BEH C18 (2.1 mm × 50 mm) column with 1.7 μm particle size and 130 Å pore size. The flow rate was 0.5 mL/min and total chromatographic run time was 2.2 min. The mobile phase consisted of a gradient mixture of water: acetonitrile 95:5% (v/v) containing 0.1% formic acid (solvent A) and 100% acetonitrile containing 0.1% formic acid (solvent B). Multiple reaction monitoring was carried out in positive electro-spray ionization mode using m/z 513.35 → 209.30 for PF-5190457 and m/z 518.47 → 214.43 for the internal standard. The recovery ranged from 102 to 118% with coefficient of variation (CV) less than 6% for all matrices. The calibration curves for all matrices were linear over the studied concentration range (R(2) ≥ 0.998, n = 3). The lower limit of quantification was 1 ng/mL in rat or human plasma and 0.75 ng/g in rat brain. Intra- and inter-run mean percent accuracies were between 85 and 115% and percent imprecision was ≤15%. The assays were successfully utilized to measure the concentration of PF-5190457 in pre-clinical and clinical pharmacology studies of the compound.

  9. Identification and characterization of NDT 9513727 [N,N-bis(1,3-benzodioxol-5-ylmethyl)-1-butyl-2,4-diphenyl-1H-imidazole-5-methanamine], a novel, orally bioavailable C5a receptor inverse agonist.

    PubMed

    Brodbeck, Robbin M; Cortright, Daniel N; Kieltyka, Andrzej P; Yu, Jianying; Baltazar, Carolyn O; Buck, Marianne E; Meade, Robin; Maynard, George D; Thurkauf, Andrew; Chien, Du-Shieng; Hutchison, Alan J; Krause, James E

    2008-12-01

    The complement system represents an innate immune mechanism of host defense that has three effector arms, the C3a receptor, the C5a receptor (C5aR), and the membrane attack complex. Because of its inflammatory and immune-enhancing properties, the biological activity of C5a and its classical receptor have been widely studied. Because specific antagonism of the C5aR could have therapeutic benefit without affecting the protective immune response, the C5aR continues to be a promising target for pharmaceutical research. The lack of specific, potent and orally bioavailable small-molecule antagonists has limited the clinical investigation of the C5aR. We report the discovery of NDT 9513727 [N,N-bis(1,3-benzodioxol-5-ylmethyl)-1-butyl-2,4-diphenyl-1H-imidazole-5-methanamine], a small-molecule, orally bioavailable, selective, and potent inverse agonist of the human C5aR. NDT 9513727 was discovered based on the integrated use of in vitro affinity and functional assays in conjunction with medicinal chemistry. NDT 9513727 inhibited C5a-stimulated responses, including guanosine 5'-3-O-(thio)triphosphate binding, Ca(2+) mobilization, oxidative burst, degranulation, cell surface CD11b expression and chemotaxis in various cell types with IC(50)s from 1.1 to 9.2 nM, respectively. In C5a competition radioligand binding experiments, NDT 9513727 exhibited an IC(50) of 11.6 nM. NDT 9513727 effectively inhibited C5a-induced neutropenia in gerbil and cynomolgus macaque in vivo. The findings suggest that NDT 9513727 may be a promising new entity for the treatment of human inflammatory diseases.

  10. Effects of alpha-adrenoceptor agonists and antagonists on histamine-induced impairment of memory retention of passive avoidance learning in rats.

    PubMed

    Zarrindast, Mohammad-Reza; Ahmadi, Ramesh; Oryan, Shahrbanoo; Parivar, Kazem; Haeri-Rohani, Ali

    2002-11-15

    The effect of alpha-adrenoceptor agents on the impairment induced by histamine was measured for memory retention of passive avoidance learning in rats. Post-training intracerebroventricular (i.c.v.) injection was carried out in all the experiments. Histamine (5, 10 and 20 microg/rat) reduced, while a histamine H(1) receptor antagonist, chlorpheniramine (0.1, 1 and 10 microg/rat), increased memory retention. The histamine H(2) receptor antagonist, ranitidine (0.1, 1, 10 and 20 microg/rat), did not elicit any response in this respect. Different doses of chlorpheniramine but not ranitidine reversed the histamine-induced impairment of memory. Clonidine and prazosin decreased, but yohimbine and phenylephrine increased, memory retention. Yohimbine decreased the inhibitory response to histamine. Phenylephrine, clonidine and prazosin did not alter the histamine effect. It is concluded that a histamine-induced impairment of memory retention through histamine H(1) receptors and an alpha(2)-adrenoceptor mechanism may be involved in the histamine response.

  11. Structural basis of the histidine-mediated vitamin D receptor agonistic and antagonistic mechanisms of (23S)-25-dehydro-1alpha-hydroxyvitamin D3-26,23-lactone.

    PubMed

    Kakuda, Shinji; Ishizuka, Seiichi; Eguchi, Hiroshi; Mizwicki, Mathew T; Norman, Anthony W; Takimoto-Kamimura, Midori

    2010-08-01

    TEI-9647 antagonizes vitamin D receptor (VDR) mediated genomic actions of 1alpha,25(OH)2D3 in human cells but is agonistic in rodent cells. The presence of Cys403, Cys410 or of both residues in the C-terminal region of human VDR (hVDR) results in antagonistic action of this compound. In the complexes of TEI-9647 with wild-type hVDR (hVDRwt) and H397F hVDR, TEI-9647 functions as an antagonist and forms a covalent adduct with hVDR according to MALDI-TOF MS. The crystal structures of complexes of TEI-9647 with rat VDR (rVDR), H305F hVDR and H305F/H397F hVDR showed that the agonistic activity of TEI-9647 is caused by a hydrogen-bond interaction with His397 or Phe397 located in helix 11. Both biological activity assays and the crystal structure of H305F hVDR complexed with TEI-9647 showed that the interaction between His305 and TEI-9647 is crucial for antagonist activity. This study indicates the following stepwise mechanism for TEI-9647 antagonism. Firstly, TEI-9647 forms hydrogen bonds to His305, which promote conformational changes in hVDR and draw Cys403 or Cys410 towards the ligand. This is followed by the formation of a 1,4-Michael addition adduct between the thiol (-SH) group of Cys403 or Cys410 and the exo-methylene group of TEI-9647.

  12. Mutations in the extracellular domains of glutamate-gated chloride channel alpha3 and beta subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity.

    PubMed

    Njue, Annete I; Hayashi, Jon; Kinne, Lyle; Feng, Xiao-Peng; Prichard, Roger K

    2004-06-01

    Two full-length glutamate-gated chloride channel (GluCl) cDNAs, encoding GluClalpha3 and GluClbeta subunits, were cloned from ivermectin-susceptible (IVS) and -resistant (IVR) Cooperia oncophora adult worms. The IVS and IVR GluClalpha3 subunits differ at three amino acid positions, while the IVS and IVR GluClbeta subunits differ at two amino acid positions. The aim of this study was to determine whether mutations in the IVR subunits affect agonist sensitivity. The subunits were expressed singly and in combination in Xenopus laevis oocytes. Electrophysiological whole-cell voltage-clamp recordings showed that mutations in the IVR GluClalpha3 caused a modest but significant threefold loss of sensitivity to glutamate, the natural ligand for GluCl receptors. As well, a significant decrease in sensitivity to the anthelmintics ivermectin and moxidectin was observed in the IVR GluClalpha3 receptor. Mutations in the IVR GluClbeta subunit abolished glutamate sensitivity. Co-expressing the IVS GluClalpha3 and GluClbeta subunits resulted in heteromeric channels that were more sensitive to glutamate than the respective homomeric channels, demonstrating co-assembly of the subunits. In contrast, the heteromeric IVR channels were less sensitive to glutamate than the homomeric IVR GluClalpha3 channels. The heteromeric IVS channels were significantly more sensitive to glutamate than the heteromeric IVR channels. Of the three amino acids distinguishing the IVS and IVR GluClalpha3 subunits, only one of them, L256F, accounted for the differences in response between the IVS and IVR GluClalpha3 homomeric channels.

  13. Physical properties and small-scale structure of the Lyman-alpha forest: Inversion of the HE 1122-1628 UVES spectrum

    NASA Astrophysics Data System (ADS)

    Rollinde, E.; Petitjean, P.; Pichon, C.

    2001-09-01

    We study the physical properties of the Lyman-alpha forest by applying the inversion method described by Pichon et al. (\\cite{Pichon01}) to the high resolution and high S/N ratio spectrum of the zem=2.40 quasar HE 1122-1628 obtained during Science Verification of UVES at the VLT. We compare the column densities obtained with the new fitting procedure with those derived using standard Voigt profile methods. The agreement is good and gives confidence in the new description of the Lyman-alpha forest as a continuous field as derived from our method. We show that the observed number density of lines with log N > 13 and 14 is, respectively, 50 and 250 per unit redshift at z ~ 2. We study the physical state of the gas, neglecting peculiar velocities, assuming a relation between the overdensity and the temperature, T={/line T}(rho (x)/{bar rho })2beta . There is an intrinsic degeneracy between the parameters beta and {/line T}. We demonstrate that, at a fixed beta , the temperature at mean density, {/line T}, can be uniquely extracted, however. While applying the method to HE 1122-1628, we conclude that for 0.2 < beta < 0.3, 6000 < {/line T} < 15 000 K at z ~ 2. We investigate the small-scale structure of strong absorption lines using the information derived from the Lyman-beta , Lyman-gamma and C iv profiles. Introducing the Lyman-beta line in the fit allows us to reconstruct the density field up to rho /{bar rho } ~ 10 instead of 5 for the Lyman-alpha line only. The neutral hydrogen density is of the order of ~ 2x 10-9 cm-3 and the C IV/H I ratio varies from about 0.001 to 0.01 within the complexes of total column density N(H I) ~ 1015 cm-2. Such numbers are expected for photo-ionized gas of density nH ~ 10-4 cm-3 and [C/H] ~ -2.5. There may be small velocity shifts ( ~ 10 km s-1) between the peaks in the C iv and H I density profiles. Although the statistics is small, it seems that C IV/H I and nHI are anti-correlated. This could be a consequence of the high

  14. Selective estrogen receptor alpha agonist GTx-758 decreases testosterone with reduced side effects of androgen deprivation therapy in men with advanced prostate cancer.

    PubMed

    Yu, Evan Y; Getzenberg, Robert H; Coss, Christopher C; Gittelman, Marc M; Keane, Thomas; Tutrone, Ronald; Belkoff, Laurence; Given, Robert; Bass, Joel; Chu, Franklin; Gambla, Michael; Gaylis, Franklin; Bailen, James; Hancock, Michael L; Smith, Jordan; Dalton, James T; Steiner, Mitchell S

    2015-02-01

    A need remains for new therapeutic approaches for men with advanced prostate cancer, particularly earlier in the disease course. To assess the ability of an oral selective estrogen receptor α agonist (GTx-758) to lower testosterone concentrations compared with leuprolide while minimizing estrogen deficiency-related side effects of androgen-deprivation therapy. Hormone-naive advanced prostate cancer patients were randomized to oral GTx-758 1000 mg/d, 2000 mg/d, or leuprolide depot. GTx-758 and leuprolide. The primary end point was the proportion of patients achieving total testosterone ≤ 50 ng/dl by day 60. Secondary end points included serum free testosterone, prostate-specific antigen (PSA), sex hormone-binding globulin, hot flashes, bone turnover markers, and insulin-like growth factor (IGF)-1 levels. Of 159 randomized patients, leuprolide reduced total testosterone to ≤ 50 ng/dl in a greater proportion of patients than GTx-758 by day 60 (43.4%, 63.6%, and 88.2% of subjects receiving GTx-758 1000 mg [p<0.001], GTx-758 2000 mg [p=0.004], and leuprolide, respectively). GTx-758 reduced free testosterone and PSA earlier and to a greater degree than leuprolide. GTx-758 led to fewer hot flashes, decreases in bone turnover markers, and alterations in IGF-1 compared with leuprolide. A higher incidence of venous thromboembolic events (VTEs) was seen with GTx-758 (4.1%) compared with leuprolide (0.0%). Although leuprolide reduced total testosterone to ≤ 50 ng/dl in a greater proportion of patients compared with GTx-758, GTx-758 was superior in lowering free testosterone and PSA. GTx-758 reduced estrogen deficiency side effects of hot flashes, bone loss, and insulin resistance but with a higher incidence of VTEs. This paper reports findings that leuprolide lowered total testosterone more than GTx-758 but that GTx-758 lowered free testosterone and prostate-specific antigen more than leuprolide. GTx-758 also reduced estrogen deficiency side effects, albeit at a higher

  15. Interferon-alpha, -beta and -gamma induce CXCL9 and CXCL10 secretion by human thyrocytes: modulation by peroxisome proliferator-activated receptor-gamma agonists.

    PubMed

    Antonelli, Alessandro; Ferrari, Silvia Martina; Fallahi, Poupak; Ghiri, Emiliano; Crescioli, Clara; Romagnani, Paola; Vitti, Paolo; Serio, Mario; Ferrannini, Ele

    2010-06-01

    It has been hypothesized that interferon (IFN) alpha and beta cause autoimmune thyroid dysfunctions by changing the Th1/Th2 balance, but the mechanisms involved are not yet known. The aims of this study were: (a) to test the effect of IFNalpha, IFNbeta and IFNgamma on the secretion of the Th1 chemokines CXCL9 and CXCL10, in "primary cultures of human thyroid follicular cells" (TFC); (b) to assess the effect of PPARgamma activation on CXCL9 and CXCL10 secretion. In TFC, CXCL9 and CXCL10 were undetectable in the supernatant. IFNgamma, IFNalpha and IFNbeta, dose dependently induced CXCL9 and CXCL10 release. TNFalpha alone had no effect. The combination of each of the IFNs with TNFalpha had a significant synergistic effect on CXCL9 and CXCL10 secretion. Treatment of TFC with rosiglitazone dose dependently inhibited the IFNs-stimulated CXCL9 and CXCL10 release. Compared with IFNalpha and IFNbeta, IFNgamma was the most potent stimulus of CXCL9 and CXCL10 secretion. In conclusion, IFNalpha, IFNbeta, IFNgamma and TNFalpha (synergistically with IFNs) dose-dependently induce the release of CXCL9 and CXCL10 by TFC, suggesting that this process may be related, at least in part, to the appearance of thyroid dysfunction during IFNs therapy. Furthermore, PPARgamma activation partially inhibits this process.

  16. Mechanisms of vasoconstrictor responses to KCl in rat isolated perfused tail arteries: interaction with the alpha 2-adrenoceptor agonist UK14304.

    PubMed

    Xiao, X H; Rand, M J

    1991-04-17

    The vasoconstriction in rat tail arteries during exposure to 56 mM KCl for 2-5 min consisted of an initial sharp peak followed by a secondary plateau. Both components were reduced by the alpha 1-adrenoceptor antagonists prazosin and WB4010. In arteries from reserpine-pretreated rats, the plateau was markedly reduced and only slightly further attenuated by prazosin, however the initial peak was not reduced but was now not affected by prazosin. Thus, the response to KCl in arteries from normal rats is partly due to release of noradrenaline, and this occurs to a greater extent in the plateau than in the peak component. Addition of UK14304 during the plateau reduced the vasoconstriction in arteries from normal rats; however, in arteries from reserpine-pretreated rats there was increased vasoconstriction. These effects of UK14304 were abolished by idazoxan and were not affected by prazosin, and can be attributed to prejunctional inhibition of noradrenaline release in arteries from normal rats and postjunctional enhancement of vasoconstriction in arteries from reserpine-pretreated rats.

  17. Evolution of peroxisome proliferator-activated receptor agonists.

    PubMed

    Chang, Feng; Jaber, Linda A; Berlie, Helen D; O'Connell, Mary Beth

    2007-06-01

    To discuss the evolution of peroxisome proliferator-activated receptor (PPAR) agonists from single site to multiple subtype or partial agonists for the treatment of type 2 diabetes, dyslipidemia, obesity, and the metabolic syndrome. Information was obtained from MEDLINE (1966-March 2007) using search terms peroxisome proliferator-activated receptor agonist, PPAR dual agonist, PPAR alpha/gamma agonist, PPAR pan agonist, partial PPAR, and the specific compound names. Other sources included pharmaceutical companies, the Internet, and the American Diabetes Association 64th-66th Scientific Sessions abstract books. Animal data, abstracts, clinical trials, and review articles were reviewed and summarized. PPAR alpha, gamma, and delta receptors play an important role in lipid metabolism, regulation of adipocyte proliferation and differentiation, and insulin sensitivity. The PPAR dual agonists were developed to combine the triglyceride lowering and high-density lipoprotein cholesterol elevation from the PPAR-alpha agonists (fibrates) with the insulin sensitivity improvement from the PPAR-gamma agonists (thiazolidinediones). Although the dual agonists reduced hemoglobin A(1C) (A1C) and improved the lipid profile, adverse effects led to discontinued development. Currently, PPAR-delta agonists (GW501516 in Phase I trials), partial PPAR-gamma agonists (metaglidasen in Phase II and III trials), and pan agonists (alpha, gamma, delta; netoglitazone in Phase II and III trials) with improved cell and tissue selectivity are undergoing investigation to address multiple aspects of the metabolic syndrome with a single medication. By decreasing both A1C and triglycerides, metaglidasen did improve multiple aspects of the metabolic syndrome with fewer adverse effects than compared with placebo. Metaglidasen is now being compared with pioglitazone. Influencing the various PPARs results in improved glucose, lipid, and weight management, with effects dependent on full or partial agonist

  18. Discovery of an oxybenzylglycine based peroxisome proliferator activated receptor alpha selective agonist 2-((3-((2-(4-chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic acid (BMS-687453).

    PubMed

    Li, Jun; Kennedy, Lawrence J; Shi, Yan; Tao, Shiwei; Ye, Xiang-Yang; Chen, Stephanie Y; Wang, Ying; Hernández, Andrés S; Wang, Wei; Devasthale, Pratik V; Chen, Sean; Lai, Zhi; Zhang, Hao; Wu, Shung; Smirk, Rebecca A; Bolton, Scott A; Ryono, Denis E; Zhang, Huiping; Lim, Ngiap-Kie; Chen, Bang-Chi; Locke, Kenneth T; O'Malley, Kevin M; Zhang, Litao; Srivastava, Rai Ajit; Miao, Bowman; Meyers, Daniel S; Monshizadegan, Hossain; Search, Debra; Grimm, Denise; Zhang, Rongan; Harrity, Thomas; Kunselman, Lori K; Cap, Michael; Kadiyala, Pathanjali; Hosagrahara, Vinayak; Zhang, Lisa; Xu, Carrie; Li, Yi-Xin; Muckelbauer, Jodi K; Chang, Chiehying; An, Yongmi; Krystek, Stanley R; Blanar, Michael A; Zahler, Robert; Mukherjee, Ranjan; Cheng, Peter T W; Tino, Joseph A

    2010-04-08

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

  19. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  20. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  1. Discovery of N-[(4R)-6-(4-chlorophenyl)-7-(2,4-dichlorophenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridin-4-yl]-5-methyl-1H-pyrazole-3-carboxamide (MK-5596) as a novel cannabinoid-1 receptor (CB1R) inverse agonist for the treatment of obesity.

    PubMed

    Yan, Lin; Huo, Pei; Debenham, John S; Madsen-Duggan, Christina B; Lao, Julie; Chen, Richard Z; Xiao, Jing Chen; Shen, Chun-Pyn; Stribling, D Sloan; Shearman, Lauren P; Strack, Alison M; Tsou, Nancy; Ball, Richard G; Wang, Junying; Tong, Xinchun; Bateman, Thomas J; Reddy, Vijay B G; Fong, Tung M; Hale, Jeffrey J

    2010-05-27

    This paper describes the discovery of N-[(4R)-6-(4-chlorophenyl)-7-(2,4-dichlorophenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridin-4-yl]-5-methyl-1H-pyrazole-3-carboxamide (MK-5596, 12c) as a novel cannabinoid-1 receptor (CB1R) inverse agonist for the treatment of obesity. Structure-activity relationship (SAR) studies of lead compound 3, which had off-target hERG (human ether-a-go-go related gene) inhibition activity, led to the identification of several compounds that not only had attenuated hERG inhibition activity but also were subject to glucuronidation in vitro providing the potential for multiple metabolic clearance pathways. Among them, pyrazole 12c was found to be a highly selective CB1R inverse agonist that reduced body weight and food intake in a DIO (diet-induced obese) rat model through a CB1R-mediated mechanism. Although 12c was a substrate of P-glycoprotein (P-gp) transporter, its high in vivo efficacy in rodents, good pharmacokinetic properties in preclinical species, good safety margins, and its potential for a balanced metabolism profile in man allowed for the further evaluation of this compound in the clinic.

  2. Alpha 1-adrenergic receptors in brown adipose tissue. Thermogenic significance and mode of action.

    PubMed

    Mohell, N

    1984-01-01

    shown regarding beta 1-receptors, it is concluded that cold acclimation (i.e. chronic agonist treatment in-situ) leads to inverse regulation of alpha 1- and beta 1-receptors (the ratio alpha 1/beta 1 increases). These results, together with some recent reports from other laboratories, indicate that the increased alpha 1-receptor density and increased significance of alpha 1-adrenergic pathways are associated with the activated state of the brown fat.

  3. Synthesis and SAR of potent LXR agonists containing an indole pharmacophore

    SciTech Connect

    Washburn, David G.; Hoang, Tram H.; Campobasso, Nino; Smallwood, Angela; Parks, Derek J.; Webb, Christine L.; Frank, Kelly A.; Nord, Melanie; Duraiswami, Chaya; Evans, Christopher; Jaye, Michael; Thompson, Scott K.

    2009-03-27

    A novel series of 1H-indol-1-yl tertiary amine LXR agonists has been designed. Compounds from this series were potent agonists with good rat pharmacokinetic parameters. In addition, the crystal structure of an LXR agonist bound to LXR{alpha} will be disclosed.

  4. Inverse agonism and its therapeutic significance

    PubMed Central

    Khilnani, Gurudas; Khilnani, Ajeet Kumar

    2011-01-01

    A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H1 and H2 antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D2 receptors antagonist), antihypertensive (AT1 receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT2A inverse

  5. DPI-3290 [(+)-3-((alpha-R)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. II. A mixed opioid agonist with potent antinociceptive activity and limited effects on respiratory function.

    PubMed

    Gengo, Peter J; Pettit, Hugh O; O'Neill, Scott J; Su, Ying Fu; McNutt, Robert; Chang, Kwen-Jen

    2003-12-01

    Allyl-2,5-dimethyl-1-piperazines have been of interest as analgesic agents for the management of moderate-to-severe pain. In this study, we compared the antinociceptive properties and respiratory depressant activity of one such agent, (+)-3-((alpha-R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide (DPI-3290), with those of established narcotic analgesics, morphine and fentanyl. Intravenous administration of DPI-3290 in conscious laboratory rats increased antinociception in a dose-dependent manner with a corresponding ED(50) value of 0.05 +/- 0.0072 mg/kg. Simultaneous measurement of arterial blood gas in animals treated with DPI-3290 demonstrated dose-dependent increases in pCO2 with an ED(50) value of 0.91 +/- 0.22 mg/kg. In comparison, morphine and fentanyl increased antinociception in rats with ED(50) values of 2.01 +/- 0.0005 and 0.0034 +/- 0.00024 mg/kg, respectively, and the ED(50) value for morphine-induced changes in pCO2 was 4.23 +/- 0.72 mg/kg, whereas the ED(50) value for fentanyl-induced changes in pCO2 was 0.0127 +/- 0.0035 mg/kg. A separate series of experiments were designed to examine the effects of DPI-3290 on mu-opioid receptor induced antinociception and hypercapnia. Intravenous bolus doses of DPI-3290 that ranged from 0.2 to 1.0 mg/kg had no effect on antinociception mediated by alfentanil (2 microg/kg/min i.v.) but reduced hypercapnia by approximately 50%. Results from these studies demonstrate the equivalent antinociceptive efficacy of DPI-3290, morphine, and fentanyl but dramatic differences in the hypercapnia that antinociceptive doses of these drugs produce. When measured simultaneously, DPI-3290 had an 18.2-fold difference in the ratio comparing the ED(50) value for antinociception with the ED(50) value for changes in pCO2; this ratio was 2.1 for morphine and 3.7 for fentanyl. Furthermore, DPI-3290 reduced the alfentanil-mediated hypercapnia without any effect on antinociception

  6. β2 Agonists.

    PubMed

    Billington, Charlotte K; Penn, Raymond B; Hall, Ian P

    2017-01-01

    History suggests β agonists, the cognate ligand of the β2 adrenoceptor, have been used as bronchodilators for around 5,000 years, and β agonists remain today the frontline treatment for asthma and chronic obstructive pulmonary disease (COPD). The β agonists used clinically today are the products of significant expenditure and over 100 year's intensive research aimed at minimizing side effects and enhancing therapeutic usefulness. The respiratory physician now has a therapeutic toolbox of long acting β agonists to prophylactically manage bronchoconstriction, and short acting β agonists to relieve acute exacerbations. Despite constituting the cornerstone of asthma and COPD therapy, these drugs are not perfect; significant safety issues have led to a black box warning advising that long acting β agonists should not be used alone in patients with asthma. In addition there are a significant proportion of patients whose asthma remains uncontrolled. In this chapter we discuss the evolution of β agonist use and how the understanding of β agonist actions on their principal target tissue, airway smooth muscle, has led to greater understanding of how these drugs can be further modified and improved in the future. Research into the genetics of the β2 adrenoceptor will also be discussed, as will the implications of individual DNA profiles on the clinical outcomes of β agonist use (pharmacogenetics). Finally we comment on what the future may hold for the use of β agonists in respiratory disease.

  7. Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus.

    PubMed

    Yoshimoto, Ryo; Miyamoto, Yasuhisa; Shimamura, Ken; Ishihara, Akane; Takahashi, Kazuhiko; Kotani, Hidehito; Chen, Airu S; Chen, Howard Y; Macneil, Douglas J; Kanatani, Akio; Tokita, Shigeru

    2006-09-12

    Histamine H3 receptors (H3Rs) are located on the presynaptic membranes and cell soma of histamine neurons, where they negatively regulate the synthesis and release of histamine. In addition, H3Rs are also located on nonhistaminergic neurons, acting as heteroreceptors to regulate the releases of other amines such as dopamine, serotonin, and norepinephrine. The present study investigated the effects of H3R ligands on appetite and body-weight regulation by using WT and H3R-deficient mice (H3RKO), because brain histamine plays a pivotal role in energy homeostasis. The results showed that thioperamide, an H3R inverse agonist, increases, whereas imetit, an H3R agonist, decreases appetite and body weight in diet-induced obese (DiO) WT mice. Moreover, in DiO WT mice, but not in DiO H3RKO mice, imetit reduced fat mass, plasma concentrations of leptin and insulin, and hepatic triglyceride content. The anorexigenic effects of imetit were associated with a reduction in histamine release, but a comparable reduction in histamine release with alpha-fluoromethylhistidine, an inhibitor of histamine synthesis, increased appetite. Moreover, the anorexigenic effects of imetit were independent of the melanocortin system, because imetit comparably reduced appetite in melanocortin 3 and 4 receptor-deficient mice. The results provide roles of H3Rs in energy homeostasis and suggest a therapeutic potential for H3R agonists in the treatment of obesity and diabetes mellitus.

  8. Suppression of acute herpetic pain-related responses by the kappa-opioid receptor agonist (-)-17-cyclopropylmethyl-3,14beta-dihydroxy-4,5alpha-epoxy-beta-[n-methyl-3-trans-3-(3-furyl) acrylamido] morphinan hydrochloride (TRK-820) in mice.

    PubMed

    Takasaki, Ichiro; Suzuki, Tomohiko; Sasaki, Atsushi; Nakao, Kaoru; Hirakata, Mikito; Okano, Kiyoshi; Tanaka, Toshiaki; Nagase, Hiroshi; Shiraki, Kimiyasu; Nojima, Hiroshi; Kuraishi, Yasushi

    2004-04-01

    (-)-17-Cyclopropylmethyl-3,14beta-dihydroxy-4,5alpha-epoxy-6beta-[N-methyl-3-trans-3-(3-furyl) acrylamido] morphinan hydrochloride (TRK-820) is a kappa-opioid receptor agonist that has pharmacological characteristics different from typical kappa-opioid receptor agonists. This study was conducted to determine the antiallodynic and antihyperalgesic effects of TRK-820 in a mouse model of acute herpetic pain and to compare them with those of the kappa-opioid receptor agonist enadoline and the mu-opioid receptor agonist morphine. Percutaneous inoculation with herpes simplex virus type-1 induced tactile allodynia and mechanical hyperalgesia in the hind paw on the inoculated side. TRK-820 (0.01-0.1 mg/kg p.o.), enadoline (1-10 mg/kg p.o.) and morphine (5-20 mg/kg p.o.) dose dependently inhibited the allodynia and hyperalgesia, but the antiallodynic and antihyperalgesic dose of enadoline markedly decreased spontaneous locomotor activity. The antinociceptive action of TRK-820 (0.1 mg/kg) was completely antagonized by pretreatment with norbinaltorphimine, a kappa-opioid receptor antagonist, but not by naltrexone, a mu-opioid receptor antagonist. Repeated treatment with morphine (20 mg/kg, four times) resulted in the reduction of antiallodynic and antihyperalgesic effects, whereas the inhibitory potency of TRK-820 (0.1 mg/kg) was almost the same even after the fourth administration. There was no cross-tolerance in antinociceptive activities between TRK-820 and morphine. Intrathecal and intracerebroventricular, but not intraplantar, injections of TRK-820 (10-100 ng/site) suppressed the allodynia and hyperalgesia. These results suggest that TRK-820 inhibits acute herpetic pain through kappa-opioid receptors in the spinal and supraspinal levels. TRK-820 may have clinical efficacy in acute herpetic pain with enough safety margins.

  9. [Uterine inversion].

    PubMed

    Neves, J; Cardoso, E; Araújo, C; Santo, S; Gonçalves, P; Melo, A; Rodrigues, R; Coelho, A Pereira

    2006-01-01

    The uterine inversion is a rare but serious pathology of the delivery. We describe two cases of uterine inversion of secondary and quaternary degree; the first had a delay diagnosis and the second having a return after the manual replacement, finishing both on surgical resolution. The authors describe the causal factors, the diagnosis and the therapeutic of uterine inversion.

  10. New 2-aryloxy-3-phenyl-propanoic acids as peroxisome proliferator-activated receptors alpha/gamma dual agonists with improved potency and reduced adverse effects on skeletal muscle function.

    PubMed

    Fracchiolla, Giuseppe; Laghezza, Antonio; Piemontese, Luca; Tortorella, Paolo; Mazza, Fernando; Montanari, Roberta; Pochetti, Giorgio; Lavecchia, Antonio; Novellino, Ettore; Pierno, Sabata; Conte Camerino, Diana; Loiodice, Fulvio

    2009-10-22

    The preparation of a new series of 2-aryloxy-3-phenyl-propanoic acids, resulting from the introduction of a linker into the diphenyl system of the previously reported PPARalpha/gamma dual agonist 1, allowed the identification of new ligands with improved potency on PPARalpha and unchanged activity on PPARgamma. For the most interesting stereoisomers S-2 and S-4, X-ray studies in PPARgamma and docking experiments in PPARalpha provided a molecular explanation for their different behavior as full and partial agonists of PPARalpha and PPARgamma, respectively. Due to the adverse effects provoked by hypolipidemic drugs on skeletal muscle function, we also investigated the blocking activity of S-2 and S-4 on skeletal muscle membrane chloride channel conductance and found that these ligands have a pharmacological profile more beneficial compared to fibrates currently used in therapy.

  11. Toxicological Evaluation of a Potential Immunosensitizer for Use as a Mucosal Adjuvant—Bacillus thuringiensis Cry1Ac Spore-Crystals: A Possible Inverse Agonist that Deserves Further Investigation

    PubMed Central

    Mezzomo, Bélin Poletto; Miranda-Vilela, Ana Luisa; Grisolia, Cesar Koppe

    2015-01-01

    In addition to their applicability as biopesticides, Bacillus thuringiensis (Bt) Cry1Ac spore-crystals are being researched in the immunology field for their potential as adjuvants in mucosal and parenteral immunizations. We aimed to investigate the hematotoxicity and genotoxicity of Bt spore-crystals genetically modified to express Cry1Ac individually, administered orally (p.o.) or with a single intraperitoneal (i.p.) injection 24 h before euthanasia, to simulate the routes of mucosal and parenteral immunizations in Swiss mice. Blood samples were used to perform hemogram, and bone marrow was used for the micronucleus test. Cry1Ac presented cytotoxic effects on erythroid lineage in both routes, being more severe in the i.p. route, which also showed genotoxic effects. The greater severity noted in this route, mainly at 6.75 mg/kg, as well as the intermediate effects at 13.5 mg/kg, and the very low hematotoxicity at 27 mg/kg, suggested a possible inverse agonism. The higher immunogenicity for the p.o. route, particularly at 27 mg/kg, suggested that at this dose, Cry 1Ac could potentially be used as a mucosal adjuvant (but not in parenteral immunizations, due to the genotoxic effects observed). This potential should be investigated further, including making an evaluation of the proposed inverse agonism and carrying out cytokine profiling. PMID:26690217

  12. The Pro12Ala variant of the PPARG gene is a risk factor for peroxisome proliferator-activated receptor-gamma/alpha agonist-induced edema in type 2 diabetic patients.

    PubMed

    Hansen, Lars; Ekstrøm, Claus T; Tabanera Y Palacios, René; Anant, Madan; Wassermann, Karsten; Reinhardt, Rickey R

    2006-09-01

    Activation of peroxisome proliferator-activated receptors (PPARs)-gamma by thiazolidinediones (pioglitazone, rosiglitazone) and dual-acting PPARalpha/gamma agonists (pargluva, ragaglitazar) is a widely used pharmacological principle to treat insulin resistance and type 2 diabetes. Clinically, however, fluid retention and edema are worrying side effects with these drugs. The objective of the present study was to investigate any variation in the PPARG and PPARA genes associated with the risk of fluid retention and development of peripheral edema in patients with type 2 diabetes treated with the dual-acting PPARalpha/gamma agonist ragaglitazar. Single-nucleotide polymorphism and haplotype analyses of the PPARA and PPARG genes were performed on DNA obtained from 345 type 2 diabetic patients randomized to 26-wk monotherapy with the dual-acting PPARalpha/gamma agonist ragaglitazar. At 26 wk, edema was recorded in 48 of the patients (14%) treated with ragaglitazar, and Cox regression analyses identified the common Pro12Ala variant of the PPARG gene as biologically the most important risk factor (hazard ratio 4.42, P = 0.0081) for edema. Other risk factors included female gender (hazard ratio 3.34, P = 0.0005) and weight change during treatment (hazard ratio 1.20, P = 0.0017). A population-attributable risk of approximately 50% for the Pro12Pro genotype indicates that testing for the Pro12Ala of the PPARG gene in addition to the already identified clinical risk factors may become a useful tool to further reduce the risk of PPARgamma agonist-induced fluid retention and edema in patients with type 2 diabetes.

  13. Development of time-resolved fluorescent based [EU]-GTP binding assay for selection of human Histamine 3 receptor antagonists/inverse agonist: a potential target for Alzheimer's treatment.

    PubMed

    Singh, Jitendra K; Maniyar, Reema C; Shirsath, Vikas S

    2012-04-01

    The histamine H3 receptor is an attractive G protein-coupled receptor drug target that regulates neurotransmission in the central nervous system and plays a crucial role in cognitive and homeostatic functions. This receptor exhibits molecular, pharmacological, and functional heterogeneity that affects the preclinical development of effective antagonists. The range of assay technologies like radio isotope based [35S] GTPγS binding assay, luminescent based reporter gene assay (In-direct cAMP measurement) for binding and signaling have been developed in High Throughput Screening (HTS) laboratories for the identification of hit or lead compounds acting on H3 receptor. The [35S] GTPγS binding assay still remains a useful and a simple technique to demonstrate receptor activation and is one of the few functional, cell-free assays that has set the standards in the field of research. However, its radioactive nature imposes clear limitations to its use in regular laboratory practice and in high-throughput experimentation. Herein, we have developed and optimized a membrane based non-radioactive assay using a europium-labeled GTP analogue in which europium-GTP binding can be assayed using time-resolved fluorescence technology. The characterization of H3 agonist or antagonist with HTRF platform has revealed a rank order potency (pEC50 & P K B) comparable to that from isotopic functional studies measured by liquid scintillation counter (LSC). Lastly, the Eu-GTP binding assay has been found to be highly robust (Z' factor 0.84) with high percentage over basal counts. This assay can be utilized as a component of cascade for the screening of H3 receptor ligands.

  14. [Uterine inversion].

    PubMed

    Dirken, J J; Vlaanderen, W

    1994-01-01

    Inversion of the uterus is a rare complication of childbirth. A primigravida aged 21 and a multigravida aged 32, hospitalized as emergency cases because of inversion of the uterus with major blood loss, were treated with infusion of liquids (to combat shock), repositioning of the uterus under anaesthesia and prevention of reinversion by uterine tonics. Inversion of the uterus should be part of the differential diagnosis in every case of fluxus post partum.

  15. Intrinsic cardiac neurons involved in cardiac regulation possess alpha 1-, alpha 2-, beta 1- and beta 2-adrenoceptors.

    PubMed

    Armour, J A

    1997-03-01

    To determine whether intrinsic cardiac neurons involved in cardiac regulation possess alpha 1-, alpha 2-, beta 1-, or beta 2-adrenoceptors. The alpha1-adrenoceptor agonist phenylephrine, the alpha 2-adrenoceptor agonist clonidine, the beta 1-adrenoceptor agonist prenaterol and the beta 2-adrenoceptor agonist terbutaline were administered individually to a population of spontaneously active intrinsic cardiac neurons either locally (10 microL of 100 microM solution; eight dogs) or via the local arterial blood supply (0.1 mL of 100 microM solution; 20 dogs) in artificially ventilated, open chest anesthetized dogs. Neuronal and cardiac effects induced by each of the adrenergic agonists were also tested in the presence of an antagonist selective to each adrenoceptor subtype studied. The activity of intrinsic cardiac neurons was modified by at least one of the adrenoceptor agonists tested, and 34% of the spontaneously active neurons were affected by all four agonists. Alpha-adrenoceptor agonists either increased or decreased neuronal activity, depending on the population of neurons studied. On the other hand, the activity generated by intrinsic cardiac neurons was augmented by beta-adrenoceptor agonists. Ventricular contractile force increased when intrinsic cardiac neurons were excited by adrenoceptor agonists. The spontaneous activity generated by neurons was suppressed by beta-adrenoceptor, but not alpha-adrenoceptor, blockade. Neuronal and cardiovascular responses were no longer elicited by an agonist in the presence of its selective antagonist; they were elicited in the presence of antagonists to the other receptor subtypes studied. Intrinsic cardiac neurons involved in cardiac regulation possess alpha 1-, alpha 2-, beta 1- or beta 2-adrenoceptors. Intrinsic cardiac adrenergic neurons receive tonic inputs via beta-, but not alpha-, adrenoceptors. These data indicate that adrenergic blockade may affect cardiac function, in part, via modification of the intrinsic

  16. Identification of a novel selective peroxisome proliferator-activated receptor alpha agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674), that produces marked changes in serum lipids and apolipoprotein A-1 expression.

    PubMed

    Singh, Jai Pal; Kauffman, Raymond; Bensch, William; Wang, Guoming; McClelland, Pam; Bean, James; Montrose, Chahrzad; Mantlo, Nathan; Wagle, Asavari

    2005-09-01

    Low high-density lipoprotein-cholesterol (HDL-c) is an important risk factor of coronary artery disease (CAD). Optimum therapy for raising HDL-c is still not available. Identification of novel HDL-raising agents would produce a major impact on CAD. In this study, we have identified a potent (IC50 approximately 24 nM) and selective peroxisome proliferator-activated receptor alpha (PPARalpha) agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674). In human apolipoprotein A-1 (apoA-1) transgenic mice, LY518674 produced a dose-dependent increase in serum HDL-c, resulting in 208 +/- 15% elevation at optimum dose. A new synthesis of apoA-1 contributed to the increase in HDL-c. LY518674 increased apoA-1 mRNA levels in liver. Moreover, liver slices from animals treated with LY518674 secreted 3- to 6-fold more apoA-1 than control liver slices. In cultured hepatocytes, LY518674 produced 50% higher apoA-1 secretion, which was associated with increase in radiolabeled methionine incorporation in apoA-1. Thus, LY518674 is a potent and selective PPARalpha agonist that produced a much greater increase in serum HDL-c than the known fibrate drugs. The increase in HDL-c was associated with de novo synthesis of apoA-1.

  17. Interactions between responses mediated by activation of adenosine A2 receptors and alpha 1-adrenoceptors in the rabbit isolated aorta.

    PubMed

    Wiener, H L; Thalody, G P; Maayani, S

    1993-06-01

    1. This paper describes aspects of the functional antagonism between the responses mediated by activated alpha 1-adrenoceptors and adenosine A2 receptors in the adventitia- and endothelium-denuded aorta of the rabbit. 2. Adenosine A2 receptor agonists relaxed aortic rings pre-contracted with phenylephrine. The relaxation response was agonist concentration-dependent and saturable. The respective contractile and relaxation responses were stable, reproducible, and reversible. 3. Increasing the phenylephrine concentration caused a progressive attenuation of the action of adenosine A2 receptor agonists, consisting of a decreased maximal response and a dextral shift of the adenosine agonist concentration-response curve. This functional antagonism could be completely reversed upon removal of adenosine by either the addition of adenosine deaminase or by wash-out of the adenosine agonist from the tissue. The relaxation response to the adenosine A2 receptor partial agonists, N6-cyclohexyladenosine and R-(-)-N6-(2-phenylisopropyl)adenosine, was abolished at higher phenylephrine concentrations (e.g. 30 EC50). 4. A 1000 fold increase in the adenosine concentration was required to shift the value of the EC50 of phenylephrine six fold, while a similar increase in the value of the EC50 of adenosine could be elicited by only a 32 fold increase in the phenylephrine concentration. A 30 fold increase in the phenylephrine concentration shifted the value of the EC50 of 5'-N-ethylcarboxamidoadenosine four fold. 5. Analysis of the functional antagonism between the responses mediated by these receptors using the Black & Leff (1983) operational model of agonism allowed for the estimation of the agonist dissociation constant, KA, and the apparent efficacy, tau, for both phenylephrine and adenosine A2 receptor agonists. Increasing the concentration of phenylephrine reduced the value of tau for adenosine agonists in a concentration-dependent and saturable manner. Similarly, increasing the

  18. Interactions between responses mediated by activation of adenosine A2 receptors and alpha 1-adrenoceptors in the rabbit isolated aorta.

    PubMed Central

    Wiener, H. L.; Thalody, G. P.; Maayani, S.

    1993-01-01

    1. This paper describes aspects of the functional antagonism between the responses mediated by activated alpha 1-adrenoceptors and adenosine A2 receptors in the adventitia- and endothelium-denuded aorta of the rabbit. 2. Adenosine A2 receptor agonists relaxed aortic rings pre-contracted with phenylephrine. The relaxation response was agonist concentration-dependent and saturable. The respective contractile and relaxation responses were stable, reproducible, and reversible. 3. Increasing the phenylephrine concentration caused a progressive attenuation of the action of adenosine A2 receptor agonists, consisting of a decreased maximal response and a dextral shift of the adenosine agonist concentration-response curve. This functional antagonism could be completely reversed upon removal of adenosine by either the addition of adenosine deaminase or by wash-out of the adenosine agonist from the tissue. The relaxation response to the adenosine A2 receptor partial agonists, N6-cyclohexyladenosine and R-(-)-N6-(2-phenylisopropyl)adenosine, was abolished at higher phenylephrine concentrations (e.g. 30 EC50). 4. A 1000 fold increase in the adenosine concentration was required to shift the value of the EC50 of phenylephrine six fold, while a similar increase in the value of the EC50 of adenosine could be elicited by only a 32 fold increase in the phenylephrine concentration. A 30 fold increase in the phenylephrine concentration shifted the value of the EC50 of 5'-N-ethylcarboxamidoadenosine four fold. 5. Analysis of the functional antagonism between the responses mediated by these receptors using the Black & Leff (1983) operational model of agonism allowed for the estimation of the agonist dissociation constant, KA, and the apparent efficacy, tau, for both phenylephrine and adenosine A2 receptor agonists. Increasing the concentration of phenylephrine reduced the value of tau for adenosine agonists in a concentration-dependent and saturable manner. Similarly, increasing the

  19. Structural determinant for inducing RORgamma specific inverse agonism triggered by a synthetic benzoxazinone ligand.

    PubMed

    Marcotte, Douglas J; Liu, YuTing; Little, Kevin; Jones, John H; Powell, Noel A; Wildes, Craig P; Silvian, Laura F; Chodaparambil, Jayanth V

    2016-06-01

    The nuclear hormone receptor RORγ regulates transcriptional genes involved in the production of the pro-inflammatory interleukin IL-17 which has been linked to autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. This transcriptional activity of RORγ is modulated through a protein-protein interaction involving the activation function 2 (AF2) helix on the ligand binding domain of RORγ and a conserved LXXLL helix motif on coactivator proteins. Our goal was to develop a RORγ specific inverse agonist that would help down regulate pro-inflammatory gene transcription by disrupting the protein protein interaction with coactivator proteins as a therapeutic agent. We identified a novel series of synthetic benzoxazinone ligands having an agonist (BIO592) and inverse agonist (BIO399) mode of action in a FRET based assay. We show that the AF2 helix of RORγ is proteolytically sensitive when inverse agonist BIO399 binds. Using x-ray crystallography we show how small modifications on the benzoxazinone agonist BIO592 trigger inverse agonism of RORγ. Using an in vivo reporter assay, we show that the inverse agonist BIO399 displayed specificity for RORγ over ROR sub-family members α and β. The synthetic benzoxazinone ligands identified in our FRET assay have an agonist (BIO592) or inverse agonist (BIO399) effect by stabilizing or destabilizing the agonist conformation of RORγ. The proteolytic sensitivity of the AF2 helix of RORγ demonstrates that it destabilizes upon BIO399 inverse agonist binding perturbing the coactivator protein binding site. Our structural investigation of the BIO592 agonist and BIO399 inverse agonist structures identified residue Met358 on RORγ as the trigger for RORγ specific inverse agonism.

  20. P633H, a novel dual agonist at peroxisome proliferator-activated receptors alpha and gamma, with different anti-diabetic effects in db/db and KK-Ay mice.

    PubMed

    Chen, Wei; Zhou, Xin-Bo; Liu, Hong-Ying; Xu, Cheng; Wang, Li-Li; Li, Song

    2009-07-01

    Peroxisome proliferator-activated receptors (PPARs) are attractive targets for the treatment of type 2 diabetes and the metabolic syndrome. P633H (2-[4-(2-Fluoro-benzenesulphonyl)-piperazin-1-yl]-3-{4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl}-propionic acid), a novel PPARalpha/gamma dual agonist, was investigated for its very different effects on insulin resistance and dyslipidemia in db/db and KK-A(y) mice. The action of P633H at PPARalpha/gamma was characterized by using transactivation assays. Functional activation of PPARalpha/gammain vitro was confirmed by pre-adipocyte differentiation and regulation of target gene expression. Anti-diabetic studies were performed in two different diabetic mice models in vivo. P633H activated both PPARalpha and PPAR gamma, (with EC(50) values of 0.012 micromol and 0.032 micromol respectively). Additionally, P633H promoted pre-adipocyte differentiation, up-regulated expression of adipose specific transport protein (aP2) mRNA (3T3-Ll cells) and acyl-CoA oxidase mRNA (LO2 cells). In db/db mice, P633H reduced serum glucose, insulin, triglycerides, non-esterified fatty acids and liver triglycerides. It also improved glucose intolerance without affecting food intake and body weight after 15 days of treatment. However in KK-A(y) mice, hyperglycaemia, dyslipidemia and impaired glucose tolerance were not relieved even after a 25 day treatment with P633H. Further studies with real-time PCR and electron microscopy revealed that P633H promoted progression of diabetes in KK-A(y) mice by increasing hepatic gluconeogenesis and exacerbating pancreatic pathology. Although P633H was a high-potency PPARalpha/gamma dual agonist, with good functional activity in vitro, it produced opposing anti-diabetic effects in db/db and KK-A(y) mice.

  1. The effect of urapidil, an alpha-1 adrenoceptor antagonist and a 5-HT1A agonist, on the vascular tone of the porcine coronary and pulmonary arteries, the rat aorta and the human pulmonary artery.

    PubMed

    Bopp, Claire; Auger, Cyril; Diemunsch, Pierre; Schini-Kerth, Valérie

    2016-05-15

    Urapidil (Eupressyl(®)) an antihypertensive drug acting as an α1 antagonist and a 5-HT1A agonist, may be of special interest in the treatment of hypertension associated with preeclamptic toxaemia and hypoxia-induced pulmonary arterial vasoconstriction. However, the effect of urapidil on vascular tone has been poorly investigated. Vascular reactivity was evaluated using pulmonary and coronary arteries from 36 pigs, aortae from 22 rats and 9 human pulmonary artery samples suspended in organ chambers. Concentration-relaxation curves either to urapidil, 5-HT, or the 5-HT1A receptor agonist 8-OH-DPAT were constructed after pre-contraction of rings. Pig pulmonary and coronary artery rings were contracted with U46619, a thromboxane mimetic, rat aortic rings with either endothelin-1 or phenylephrine, and human pulmonary artery rings with U46619 or phenylephrine. Urapidil markedly inhibited phenylephrine-induced contractions in rat aortic rings with and without endothelium with a more pronounced effect observed in rings without endothelium. Both 5-HT and 8-OH-DPAT failed to induce relaxation in rat aortic rings with an intact endothelium. 5-HT, but not urapidil and 8-OH-DPAT, induced a concentration-dependent relaxation in the porcine coronary and pulmonary artery rings with an intact endothelium (P<0.05). 5-HT and phenylephrine but not urapidil caused concentration-dependent contractions in human pulmonary artery rings. The present findings, while confirming that urapidil is a potent inhibitor of α1-adrenoceptor-induced contraction, do not support the role of 5-HT1A receptor activation in the control of the vascular tone of the different types of arteries tested in response to urapidil. In addition, they indicate that urapidil seems to preferentially target arteries with endothelial dysfunction.

  2. Synergistic alpha-1 and alpha-2 adrenergic stimulation of rat proximal nephron Na+/H+ exchange

    SciTech Connect

    Gesek, F.A.; Cragoe, E.J. Jr.; Strandhoy, J.W.

    1989-06-01

    Both alpha-1 and alpha-2 adrenoceptors have been localized to the renal cortex, with the majority of binding sites on the proximal tubule. Because the major regulator of Na+ uptake into the proximal tubule is the Na+/H+ exchanger, and because alpha-1 and alpha-2 adrenoceptors stimulate it in other tissues, we tested the hypothesis that both alpha adrenoceptor subtypes can increase Na+ uptake into the proximal nephron by stimulating the Na+/H+ antiporter. Enhancement of Na+ transport by agonists was studied in isolated rat proximal tubules by determining the uptake of 22Na that was suppressible by the Na+/H+ inhibitor, 5-(N-ethyl-N-isopropyl)amiloride (EIPA). The phorbol ester, phorbol-12-myristate-13-acetate, (0.1 microM), directly stimulated the antiporter through protein kinase C and increased EIPA-suppressible 22Na uptake 250% above control. The alpha-1 adrenoceptor agonists, cirazoline and phenylephrine, in addition to the mixed agonist, norepinephrine, maximally stimulated uptake by 226 to 232% at 1 microM concentrations. alpha-2 agonists produced a range of maximal stimulations at 1 microM from 65% with guanabenz to 251% with B-HT 933. Increases in 22Na uptake by agonists were inhibited by selective adrenergic antagonists and by EIPA. The drugs did not change the EIPA-resistant component of 22Na uptake. Inasmuch as the adrenoceptor subtypes likely stimulated Na+/H+ exchange by differing intracellular pathways impinging upon common transport steps, we examined whether simultaneous stimulation of both pathways was additive. Submaximal concentrations (5 nM each) of alpha-1 and alpha-2 adrenoceptor agonists in combination synergistically enhanced 22Na uptake to a level similar to 1 microM concentrations of adrenoceptor agonists alone or in combination.

  3. Intracerebral adrenoceptor agonists influence rat duodenal mucosal bicarbonate secretion.

    PubMed

    Larson, G M; Jedstedt, G; Nylander, O; Flemström, G

    1996-11-01

    We have studied the effects of intracerebral administration of selective alpha-adrenergic agonists on duodenal bicarbonate secretion. Duodenum free of Brunner's glands was cannulated in situ in anesthetized rats, and bicarbonate secretion into the luminal reperfusate was continuously titrated by pH stat. Infusion of the alpha 1-selective adrenoceptor agonist, phenylephrine (1,000-2,500 micrograms.kg-1.h-1), into a lateral brain ventricle increased (P < 0.01) duodenal bicarbonate secretion. Pretreatment with prazosin, an alpha 1-antagonist, significantly (P < 0.01) reduced the stimulatory effect when infused into the lateral ventricle (30 micrograms.kg-1.h-1), but not when administered intravenously (1,000 micrograms.kg-1.h-1). Hexamethonium (10 mg.kg-1.h-1 iv) abolished stimulation, whereas cervical vagotomy, epidural blockade, and naloxone were each without effect. Vasopressin, vasopressin antagonists, ts, and oxytocin did not affect basal secretion. Intracerebro-ventricular administration of the alpha 2-adrenoceptor agonist, clonidine (1,000 micrograms.kg-1.h-1), in contrast to alpha 1-receptor activation, decreased (P < 0.01) the secretion. Thus central nervous adrenoceptors influence duodenal mucosal bicarbonate te secretion, and alpha 1-adrenoceptor stimulation may provide protection against luminal acid. This potent stimulation was not mediated by the vagal nerves, spinal cord pathways, or the release of beta-endorphin but involves nicotinic, possibly enteric nervous transmission.

  4. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  5. [Melatonin receptor agonist].

    PubMed

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  6. [beta]1-Adrenoceptor or [alpha]1-Adrenoceptor Activation Initiates Early Odor Preference Learning in Rat Pups: Support for the Mitral Cell/cAMP Model of Odor Preference Learning

    ERIC Educational Resources Information Center

    Harley, Carolyn W.; Darby-King, Andrea; McCann, Jennifer; McLean, John H.

    2006-01-01

    We proposed that mitral cell [beta]1-adrenoceptor activation mediates rat pup odor preference learning. Here we evaluate [beta]1-, [beta]2-, [alpha]1-, and [alpha]2-adrenoceptor agonists in such learning. The [beta]1-adrenoceptor agonist, dobutamine, and the [alpha]1-adrenoceptor agonist, phenylephrine, induced learning, and both exhibited an…

  7. [beta]1-Adrenoceptor or [alpha]1-Adrenoceptor Activation Initiates Early Odor Preference Learning in Rat Pups: Support for the Mitral Cell/cAMP Model of Odor Preference Learning

    ERIC Educational Resources Information Center

    Harley, Carolyn W.; Darby-King, Andrea; McCann, Jennifer; McLean, John H.

    2006-01-01

    We proposed that mitral cell [beta]1-adrenoceptor activation mediates rat pup odor preference learning. Here we evaluate [beta]1-, [beta]2-, [alpha]1-, and [alpha]2-adrenoceptor agonists in such learning. The [beta]1-adrenoceptor agonist, dobutamine, and the [alpha]1-adrenoceptor agonist, phenylephrine, induced learning, and both exhibited an…

  8. Characterization of the specificities of human blood group H gene-specified alpha 1,2-L-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: evidence for an inverse relationship between alpha 1,2-L-fucosylation of Gal and alpha 1,6-L-fucosylation of asparagine-linked GlcNAc.

    PubMed

    Chandrasekaran, E V; Jain, R K; Larsen, R D; Wlasichuk, K; Matta, K L

    1996-07-09

    The assembly of complex structures bearing the H determinant was examined by characterizing the specificities of a cloned blood group H gene-specified alpha 1,2-L-fucosyltransferase (FT) toward a variety of sulfated, sialylated, or fucosylated Gal beta 1,3/4GlcNAc beta- or Gal beta 1,3GalNAc alpha-based acceptor structures. (a) As compared to the basic type 2, Gal beta 1,4GlcNAc beta-(K(m) = 1.67 mM), the basic type 1 was 137% active (K(m) = 0.83 mM). (b) On C-6 sulfation of Gal, type 1 became 142.1% active and type 2 became 223.0% active (K(m) = 0.45 mM). (c) On C-6 sulfation of GlcNAc, type 2 showed 33.7% activity. (d) On C-3 or C-4 fucosylation of GlcNAc, both types 1 and 2 lost activity. (e) Type 1 showed 70.8% and 5.8% activity, respectively, on C-6 and C-4 O-methylation of GlcNAc. (f) Type 1 retained 18.8% activity on alpha 2,6-sialylation of GlcNAc. (g) Terminal type 1 or 2 of extended chain had lower activity. (h) With Gal in place of GlcNAc in type 1, the activity became 43.2%. (i) Compounds with terminal alpha 1,3-linked Gal were inactive. (j) Gal beta 1,3GalNAc alpha- (the T-hapten) was approximately 0.4-fold as active as Gal beta 1,4GlcNAc beta-. (k) C-6 sulfation of Gal on the T-hapten did not affect the acceptor activity. (l) C-6 sulfation of GalNAc decreased the activity to 70%, whereas on C-6 sulfation of both Gal and GalNAc the T-hapten lost the acceptor ability. (m) C-6 sialylation of GalNAc also led to inactivity. (n) beta 1,6 branching from GalNAc of the T-hapten by a GlcNAc residue or by units such as Gal beta 1, 4GlcNAc-, Gal beta 1,4(Fuc alpha 1,3)GlcNAc-, or 3-sulfoGal beta 1,4GlcNAc- resulted in 111.9%, 282.8%, 48.3%, and 75.3% activities, respectively. (o) The enhancement of enzyme affinity by a sulfo group on C-6 of Gal was demonstrated by an increase (approximately 5-fold) in the K(m) for Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn in presence of 6-sulfoGal beta 1,- 4GlcNAc beta-O-Me (3.0 mM). (p) Among the two sites in

  9. Investigational melatonin receptor agonists.

    PubMed

    Hardeland, Rüdiger

    2010-06-01

    Melatonin is a major chronobiological regulator involved in circadian phasing, sleep, and numerous other functions including cyto-/neuroprotection, immune modulation, and energy metabolism. The suitability of melatonin as a drug is limited because of its short half-life. Therefore, various indolic and non-indolic melatonergic agonists have been developed. Frequent health problems such as sleep disturbances, neuropsychiatric disorders related to circadian dysphasing, and metabolic diseases associated with insulin resistance are targeted by melatonergic agonists. Various synthetic melatonergic drugs are compared with regard to receptor affinities, selectivity, effects on sleep, endogenous melatonin, circadian phase and insulin-related metabolism. The chemical design of melatonin receptor agonists is discussed in relation to consequences for receptor affinity, selectivity, metabolism, and spectrum of effects. Melatonergic agonists are suitable for phase-shifting circadian rhythms, and may be used for treating disorders related to circadian dysfunction including sleep difficulties. Facilitation of sleep onset is a general property, whereas promotion of sleep maintenance is demonstrable but not always fully sufficient. Details are especially available for tasimelteon. Support of insulin sensitivity may become a new area of application for compounds such as NEU-P11. Some drugs acting additionally as serotonergic antagonists display antidepressant properties.

  10. The PPAR alpha gene is associated with triglyceride, low-density cholesterol and inflammation marker response to fenofibrate intervention: the GOLDN study

    USDA-ARS?s Scientific Manuscript database

    As a peroxisome proliferator-activated receptor alpha (PPAR Alpha) agonist, fenofibrate favorably modulates dyslipidemia and inflammation markers, which are associated with cardiovascular risk. To determine whether variation in the PPAR Alpha receptor gene was associated with lipid and inflammatory ...

  11. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The first alpha helix of interleukin (IL)-2 folds as a homotetramer, acts as an agonist of the IL-2 receptor beta chain, and induces lymphokine-activated killer cells.

    PubMed

    Eckenberg, R; Rose, T; Moreau, J L; Weil, R; Gesbert, F; Dubois, S; Tello, D; Bossus, M; Gras, H; Tartar, A; Bertoglio, J; Chouaïb, S; Goldberg, M; Jacques, Y; Alzari, P M; Thèze, J

    2000-02-07

    Interleukin (IL)-2 interacts with two types of functional receptors (IL-2Ralphabetagamma and IL-2Rbetagamma) and acts on a broad range of target cells involved in inflammatory reactions and immune responses. For the first time, we show that a chemically synthesized fragment of the IL-2 sequence can fold into a molecule mimicking the quaternary structure of a hemopoietin. Indeed, peptide p1-30 (containing amino acids 1-30, covering the entire alpha helix A of IL-2) spontaneously folds into an alpha-helical homotetramer and stimulates the growth of T cell lines expressing human IL-2Rbeta, whereas shorter versions of the peptide lack helical structure and are inactive. We also demonstrate that this neocytokine interacts with a previously undescribed dimeric form of IL-2Rbeta. In agreement with its binding to IL-2Rbeta, p1-30 activates Shc and p56(lck) but unlike IL-2, fails to activate Janus kinase (Jak)1, Jak3, and signal transducer and activator of transcription 5 (STAT5). Unexpectedly, we also show that p1-30 activates Tyk2, thus suggesting that IL-2Rbeta may bind to different Jaks depending on its oligomerization. At the cellular level, p1-30 induces lymphokine-activated killer (LAK) cells and preferentially activates CD8(low) lymphocytes and natural killer cells, which constitutively express IL-2Rbeta. A significant interferon gamma production is also detected after p1-30 stimulation. A mutant form of p1-30 (Asp20-->Lys), which is likely unable to induce vascular leak syndrome, remains capable of generating LAK cells, like the original p1-30 peptide. Altogether, our data suggest that p1-30 has therapeutic potential.

  13. Agonistic behavior in males and females: effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice

    PubMed Central

    Allen, Amy E. Clipperton; Cragg, Cheryl L.; Wood, Alexis J.; Pfaff, Donald W.; Choleris, Elena

    2010-01-01

    Summary Affiliative and agonistic social interactions are mediated by gonadal hormones. Research with estrogen receptor alpha (ERα) or beta (ERβ) knockout (KO) mice show that long-term inactivation of ERα decreases, while inactivation of ERβ increases, male aggression. Opposite effects were found in female αERKO and βERKO mice. The role of acute activation of ERα or ERβ in the agonistic responses of adult non-KO mice is unknown. We report here the effects of the ERβ selective agonist WAY-200070 on agonistic and social behavior in gonadally intact and gonadectomized (gonadex) male and female CD-1 mice towards a gonadex, same-sex intruder. All 15 min resident-intruder tests were videotaped for comprehensive behavioral analysis. Separate analyses assessed: 1) effects of WAY-200070 on each sex and gonadal condition; 2) differences between sexes, and between gonadally intact and gonadex mice, in untreated animals. Results show that in gonadally intact male and female mice WAY-200070 increased agonistic behaviors such as pushing down and aggressive grooming, while leaving attacks unaffected. In untreated mice, males attacked more than females, and gonadex animals showed less agonistic behavior than same-sex, gonadally intact mice. Overall, our detailed behavioral analysis suggested that in gonadally intact male and female mice, ERβ mediates patterns of agonistic behavior that are not directly involved in attacks. This suggests that specific aspects of aggressive behavior are acutely mediated by ERβ in adult mice. Our results also showed that, in resident-intruder tests, female mice spend as much time in intrasexual agonistic interactions as males, but use agonistic behaviors that involve extremely low levels of direct attacks. This non-attack aggression in females is increased by acute activation of ERβ. Thus, acute activation of ERβ similarly mediates agonistic behavior in adult male and female CD-1 mice. PMID:20129736

  14. Meperidine, remifentanil and tramadol but not sufentanil interact with alpha(2)-adrenoceptors in alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptor knock out mice brain.

    PubMed

    Höcker, Jan; Weber, Bernd; Tonner, Peter H; Scholz, Jens; Brand, Philipp-Alexander; Ohnesorge, Henning; Bein, Berthold

    2008-03-17

    alpha(2)-adrenoceptor agonists like clonidine or dexmedetomidine increase the sedative and analgesic actions of opioids. Furthermore opioids like meperidine show potent anti-shivering effects like alpha(2)-adrenoceptor agonists. The underlying molecular mechanisms of these effects are still poorly defined. The authors therefore studied the ability of four different opioids (meperidine, remifentanil, sufentanil and tramadol) to interact with different alpha(2)-adrenoceptor subtypes in mice lacking individual alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptors (alpha(2)-adrenoceptor knock out (alpha(2)-AR KO) mice)). The interaction of opioids with alpha(2)-adrenoceptors was investigated by quantitative receptor autoradiography in brain slices of alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptor deficient mice. Displacement of the radiolabelled alpha(2)-adrenoceptor agonist [(125)I]-paraiodoclonidine ([(125)I]-PIC) from alpha(2)-adrenoceptors in different brain regions by increasing opioid concentrations was measured, and binding affinity of the analysed opioids to alpha(2)-adrenoceptor subtypes in different brain regions was quantified. Meperidine, remifentanil and tramadol but not sufentanil provoked dose dependent displacement of specifically bound [(125)I]-PIC from all alpha(2)-adrenoceptor subtypes in cortex, cerebellum, medulla oblongata, thalamus, hippocampus and pons. Required concentrations of meperidine and remifentanil for [(125)I]-PIC displacement from alpha(2B)- and alpha(2C)-adrenoceptors were lower than from alpha(2A)-adrenoceptors, indicating higher binding affinity for alpha(2B)- and alpha(2C)-adrenoceptors. In contrast, [(125)I]-PIC displacement by tramadol indicated higher binding affinity to alpha(2A)-adrenoceptors than to alpha(2B)- and alpha(2C)-adrenoceptors. Our results indicate that meperidine, remifentanil and tramadol interact with alpha(2)-adrenoceptors in mouse brain showing different affinity for alpha(2A)-, alpha(2B)- and alpha(2C

  15. Indirect inversions

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Since Doug MacAyeal's pioneering studies of the ice-stream basal traction optimizations by control methods, inversions for unknown parameters (e.g., basal traction, accumulation patterns, etc) have become a hallmark of the present-day ice-sheet modeling. The common feature of such inversion exercises is a direct relationship between optimized parameters and observations used in the optimization procedure. For instance, in the standard optimization for basal traction by the control method, ice-stream surface velocities constitute the control data. The optimized basal traction parameters explicitly appear in the momentum equations for the ice-stream velocities (compared to the control data). The inversion for basal traction is carried out by minimization of the cost (or objective, misfit) function that includes the momentum equations facilitated by the Lagrange multipliers. Here, we build upon this idea, and demonstrate how to optimize for parameters indirectly related to observed data using a suite of nested constraints (like Russian dolls) with additional sets of Lagrange multipliers in the cost function. This method opens the opportunity to use data from a variety of sources and types (e.g., velocities, radar layers, surface elevation changes, etc.) in the same optimization process.

  16. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised. PMID:27713285

  17. Melatonin agonists and insomnia.

    PubMed

    Ferguson, Sally A; Rajaratnam, Shantha M W; Dawson, Drew

    2010-02-01

    The ability of melatonin to shift biological rhythms is well known. As a result, melatonin has been used in the treatment of various circadian rhythm sleep disorders, such as advanced and delayed sleep phase disorders, jet lag and shiftwork disorder. The current evidence for melatonin being efficacious in the treatment of primary insomnia is less compelling. The development of agents that are selective for melatonin receptors provides opportunity to further elucidate the actions of melatonin and its receptors and to develop novel treatments for specific types of sleep disorders. The agonists reviewed here - ramelteon, tasimelteon and agomelatine - all appear to be efficacious in the treatment of circadian rhythm sleep disorders and some types of insomnia. However, further studies are required to understand the mechanisms of action, particularly for insomnia. Clinical application of the agonists requires a good understanding of their phase-dependent properties. Long-term effects of melatonin should be evaluated in large-scale, independent randomized controlled trials.

  18. Insights into the mechanisms of ifosfamide encephalopathy: drug metabolites have agonistic effects on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors and induce cellular acidification in mouse cortical neurons.

    PubMed

    Chatton, J Y; Idle, J R; Vågbø, C B; Magistretti, P J

    2001-12-01

    Therapeutic value of the alkylating agent ifosfamide has been limited by major side effects including encephalopathy. Although the underlying biochemical processes of the neurotoxic side effects are still unclear, they could be attributed to metabolites rather than to ifosfamide itself. In the present study, the effects of selected ifosfamide metabolites on indices of neuronal activity have been investigated, in particular for S-carboxymethylcysteine (SCMC) and thiodiglycolic acid (TDGA). Because of structural similarities of SCMC with glutamate, the Ca(2+)(i) response of single mouse cortical neurons to SCMC and TDGA was investigated. SCMC, but not TDGA, evoked a robust increase in Ca(2+)(i) concentration that could be abolished by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), but only partly diminished by the N-methyl-D-aspartate receptor antagonist 10,11-dihydro-5-methyl-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK=801). Cyclothiazide (CYZ), used to prevent AMPA/kainate receptor desensitization, potentiated the response to SCMC. Because activation of AMPA/kainate receptors is known to induce proton influx, the intracellular pH (pH(i)) response to SCMC was investigated. SCMC caused a concentration-dependent acidification that was amplified by CYZ. Since H(+)/monocarboxylate transporter (MCT) activity leads to similar cellular acidification, we tested its potential involvement in the pH(i) response. Application of the lactate transport inhibitor quercetin diminished the pH(i) response to SCMC and TDGA by 43 and 51%, respectively, indicating that these compounds may be substrates of MCTs. Taken together, this study indicates that hitherto apparently inert ifosfamide metabolites, in particular SCMC, activate AMPA/kainate receptors and induce cellular acidification. Both processes could provide the biochemical basis of the observed ifosfamide-associated encephalopathy.

  19. Labeled ALPHA4BETA2 ligands and methods therefor

    DOEpatents

    Mukherjee, Jogeshwar; Pichika, Ramaiah; Potkin, Steven; Leslie, Frances; Chattopadhyay, Sankha

    2013-02-19

    Contemplated compositions and methods are employed to bind in vitro and in vivo to an .alpha.4.beta.2 nicotinic acetylcholine receptor in a highly selective manner. Where such compounds are labeled, compositions and methods employing such compounds can be used for PET and SPECT analysis. Alternatively, and/or additionally contemplated compounds can be used as antagonists, partial agonists or agonists in the treatment of diseases or conditions associated with .alpha.4.beta..beta.2 dysfunction.

  20. Involvement of central alpha1-adrenoceptors on renal responses to central moxonidine and alpha-methylnoradrenaline.

    PubMed

    de Andrade, Carina A F; de Andrade, Glaucia M F; De Paula, Patricia M; De Luca, Laurival A; Menani, José V

    2009-04-01

    Moxonidine (alpha2-adrenoceptor/imidazoline receptor agonist) injected into the lateral ventricle induces diuresis, natriuresis and renal vasodilation. Moxonidine-induced diuresis and natriuresis depend on central imidazoline receptors, while central alpha1-adrenoceptors are involved in renal vasodilation. However, the involvement of central alpha1-adrenoceptors on diuresis and natriuresis to central moxonidine was not investigated yet. In the present study, the effects of moxonidine, alpha-methylnoradrenaline (alpha2-adrenoceptor agonist) or phenylephrine (alpha1-adrenoceptor agonist) alone or combined with previous injections of prazosin (alpha1-adrenoceptor antagonist), yohimbine or RX 821002 (alpha2-adrenoceptor antagonists) intracerebroventricularly (i.c.v.) on urinary sodium, potassium and volume were investigated. Male Holtzman rats (n = 5-18/group) with stainless steel cannula implanted into the lateral ventricle and submitted to gastric water load (10% of body weight) were used. Injections of moxonidine (20 nmol) or alpha-methylnoradrenaline (80 nmol) i.c.v. induced natriuresis (196 +/- 25 and 171 +/- 30, respectively, vs. vehicle: 101 +/- 9 microEq/2 h) and diuresis (9.0 +/- 0.4 and 12.3 +/- 1.6, respectively, vs. vehicle: 5.2 +/- 0.5 ml/2 h). Pre-treatment with prazosin (320 nmol) i.c.v. abolished the natriuresis (23 +/- 4 and 76 +/- 11 microEq/2 h, respectively) and diuresis (5 +/- 1 and 7.6 +/- 0.8 ml/2 h, respectively) produced by i.c.v. moxonidine or alpha-methylnoradrenaline. RX 821002 (320 nmol) i.c.v. abolished the natriuretic effect of alpha-methylnoradrenaline, however, yohimbine (320 nmol) did not change renal responses to moxonidine. Phenylephrine (80 nmol) i.c.v. induced natriuresis and kaliuresis that were blocked by prazosin. Therefore, the present data suggest that moxonidine and alpha-methylnoradrenaline acting on central imidazoline receptors and alpha2-adrenoceptors, respectively, activate central alpha1-adrenergic mechanisms to

  1. The decrease of dopamine D₂/D₃ receptor densities in the putamen and nucleus caudatus goes parallel with maintained levels of CB₁ cannabinoid receptors in Parkinson's disease: a preliminary autoradiographic study with the selective dopamine D₂/D₃ antagonist [³H]raclopride and the novel CB₁ inverse agonist [¹²⁵I]SD7015.

    PubMed

    Farkas, Szabolcs; Nagy, Katalin; Jia, Zhisheng; Harkany, Tibor; Palkovits, Miklós; Donohou, Sean R; Pike, Victor W; Halldin, Christer; Máthé, Domokos; Csiba, László; Gulyás, Balázs

    2012-04-10

    Cannabinoid type-1 receptors (CB₁Rs) modulate synaptic neurotransmission by participating in retrograde signaling in the adult brain. Increasing evidence suggests that cannabinoids through CB₁Rs play an important role in the regulation of motor activities in the striatum. In the present study, we used human brain samples to examine the relationship between CB₁R and dopamine receptor density in case of Parkinson's disease (PD). Post mortem putamen, nucleus caudatus and medial frontal gyrus samples obtained from PD patients were used for CB₁R and dopamine D₂/D₃ receptor autoradiography. [¹²⁵I]SD7015, a novel selective CB₁R inverse agonist, developed by a number of the present co-authors, and [³H]raclopride, a dopamine D₂/D₃ antagonist, were used as radioligands. Our results demonstrate unchanged CB₁R density in the putamen and nucleus caudatus of deceased PD patients, treated with levodopa (L-DOPA). At the same time dopamine D₂/D₃ receptors displayed significantly decreased density levels in case of PD putamen (control: 47.97 ± 10.00 fmol/g, PD: 3.73 ± 0.07 fmol/g (mean ± SEM), p<0.05) and nucleus caudatus (control: 30.26 ± 2.48 fmol/g, PD: 12.84 ± 5.49 fmol/g, p<0.0005) samples. In contrast to the putamen and the nucleus caudatus, in the medial frontal gyrus neither receptor densities were affected. Our data suggest the presence of an unaltered CB₁R population even in late stages of levodopa treated PD. This further supports the presence of an intact CB₁R population which, in line with the conclusion of earlier publications, may be utilized as a pharmacological target in the treatment of PD. Furthermore we found discrepancy between a maintained CB₁R population and a decreased dopamine D₂/D₃ receptor population in PD striatum. The precise explanation of this conundrum requires further studies with simultaneous examination of the central cannabinoid and dopaminergic systems in PD using higher sample size. Copyright © 2012

  2. Contamination with retinoic acid receptor agonists in two rivers in the Kinki region of Japan.

    PubMed

    Inoue, Daisuke; Nakama, Koki; Sawada, Kazuko; Watanabe, Taro; Takagi, Mai; Sei, Kazunari; Yang, Min; Hirotsuji, Junji; Hu, Jianying; Nishikawa, Jun-ichi; Nakanishi, Tsuyoshi; Ike, Michihiko

    2010-04-01

    This study was conducted to investigate the agonistic activity against human retinoic acid receptor (RAR) alpha in the Lake Biwa-Yodo River and the Ina River in the Kinki region of Japan. To accomplish this, a yeast two-hybrid assay was used to elucidate the spatial and temporal variations and potential sources of RARalpha agonist contamination in the river basins. RARalpha agonistic activity was commonly detected in the surface water samples collected along two rivers at different periods, with maximum all-trans retinoic acid (atRA) equivalents of 47.6 ng-atRA/L and 23.5 ng-atRA/L being observed in Lake Biwa-Yodo River and Ina River, respectively. The results indicated that RARalpha agonists are always present and widespread in the rivers. Comparative investigation of RARalpha and estrogen receptor alpha agonistic activities at 20 stations along each river revealed that the spatial variation pattern of RARalpha agonist contamination was entirely different from that of the estrogenic compound contamination. This suggests that the effluent from municipal wastewater treatment plants, a primary source of estrogenic compounds, seemed not to be the cause of RARalpha agonist contamination in the rivers. Fractionation using high performance liquid chromatography (HPLC) directed by the bioassay found two bioactive fractions from river water samples, suggesting the presence of at least two RARalpha agonists in the rivers. Although a trial conducted to identify RARalpha agonists in the major bioactive fraction was not completed as part of this study, comparison of retention times in HPLC analysis and quantification with liquid chromatography-mass spectrometry analysis revealed that the major causative contaminants responsible for the RARalpha agonistic activity were not RAs (natural RAR ligands) and 4-oxo-RAs, while 4-oxo-RAs were identified as the major RAR agonists in sewage in Beijing, China. These findings suggest that there are unknown RARalpha agonists with high

  3. Elucidation of the biochemical basis for a clinical drug-drug interaction between atorvastatin and 5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778875), a subtype selective agonist of the peroxisome proliferator-activated receptor alpha.

    PubMed

    Kalgutkar, Amit S; Chen, Danny; Varma, Manthena V; Feng, Bo; Terra, Steven G; Scialis, Renato J; Rotter, Charles J; Frederick, Kosea S; West, Mark A; Goosen, Theunis C; Gosset, James R; Walsky, Robert L; Francone, Omar L

    2013-11-01

    1. 5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778875), an agonist of the peroxisome proliferator-activated receptor alpha, has been evaluated in the clinic to treat dyslipidemia and type 2 diabetes mellitus. Herein, we investigate the effect of CP-778875 on the pharmacokinetics of atorvastatin acid and its metabolites in humans. 2. The study incorporated a fixed-sequence design conducted in two groups. Group A was designed to estimate the effects of multiple doses of CP-778875 on the single dose pharmacokinetics of atorvastatin. Subjects in group A (n = 26) received atorvastatin (40 mg) on days 1 and 9 and CP-778875 (1.0 mg QD) on days 5-12. Group B was designed to examine the effects of multiple doses of atorvastatin on the single dose pharmacokinetics of CP-778875. Subjects in group B (n = 29) received CP-778875 (0.3 mg) on days 1 and 9 and atorvastatin (40 mg QD) on days 5-12. 3. Mean maximum serum concentration (Cmax) and area under the curve of atorvastatin were increased by 45% and 20%, respectively, upon co-administration with CP-778875. Statistically significant increases in the systemic exposure of ortho- and para-hydroxyatorvastatin were also observed upon concomitant dosing with CP-778875. CP-778875 pharmacokinetics, however, were not impacted upon concomitant dosing with atorvastatin. 4.  Inhibition of organic anion transporting polypeptide 1B1 by CP-778875 (IC50 = 2.14 ± 0.40 μM) could be the dominant cause of the pharmacokinetic interaction as CP-778875 did not exhibit significant inhibition of cytochrome P450 3A4/3A5, multidrug resistant protein 1 or breast cancer resistant protein, which are also involved in the hepatobiliary disposition of atorvastatin.

  4. Inverse Floatation

    NASA Astrophysics Data System (ADS)

    Nath, Saurabh; Mukherjee, Anish; Chatterjee, Souvick; Ganguly, Ranjan; Sen, Swarnendu; Mukhopadhyay, Achintya; Boreyko, Jonathan

    2014-11-01

    We have observed that capillarity forces may cause floatation in a few non-intuitive configurations. These may be divided into 2 categories: i) floatation of heavier liquid droplets on lighter immiscible ones and ii) fully submerged floatation of lighter liquid droplets in a heavier immiscible medium. We call these counter-intuitive because of the inverse floatation configuration. For case (i) we have identified and studied in detail the several factors affecting the shape and maximum volume of the floating drop. We used water and vegetable oil combinations as test fluids and established the relation between Bond Number and maximum volume contained in a floating drop (in the order of μL). For case (ii), we injected vegetable oil drop-wise into a pool of water. The fully submerged configuration of the drop is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number establishes the assumption of lubrication regime in the thin gap. A brief theoretical formulation also shows the temporal variation of the gap thickness. Jadavpur University, Jagadis Bose Centre of Excellence, Virginia Tech.

  5. Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic acid compounds.

    PubMed

    Schmieden, V; Betz, H

    1995-11-01

    To define structure-activity relations for ligands binding to the inhibitory glycine receptor (GlyR), the agonistic and antagonistic properties of alpha- and beta-amino acids were analyzed at the recombinant human alpha 1 GlyR expressed in Xenopus oocytes. The agonistic activity of alpha-amino acids exhibited a marked stereoselectivity and was highly susceptible to substitutions at the C alpha-atom. In contrast, alpha-amino acid antagonism was not enantiomer dependent and was influenced little by C alpha-atom substitutions. The beta-amino acids taurine, beta-aminobutyric acid (beta-ABA), and beta-aminoisobutyric acid (beta-AIBA) are partial agonists at the GlyR. Low concentrations of these compounds competitively inhibited glycine responses, whereas higher concentrations elicited a significant membrane current. Nipecotic acid, which contains a trans-beta-amino acid configuration, behaved as purely competitive GlyR antagonist. Our data are consistent with the existence of a common binding site for all amino acid agonists and antagonists, at which the functional consequences of binding depend on the particular conformation a given ligand adopts within the binding pocket. In the case of beta-amino acids, the trans conformation appears to mediate antagonistic receptor binding, and the cis conformation appears to mediate agonistic receptor binding. This led us to propose that the partial agonist activity of a given beta-amino acid is determined by the relative mole fractions of the respective cis/trans conformers.

  6. Bayesian Meta-Analysis of Coefficient Alpha

    ERIC Educational Resources Information Center

    Brannick, Michael T.; Zhang, Nanhua

    2013-01-01

    The current paper describes and illustrates a Bayesian approach to the meta-analysis of coefficient alpha. Alpha is the most commonly used estimate of the reliability or consistency (freedom from measurement error) for educational and psychological measures. The conventional approach to meta-analysis uses inverse variance weights to combine…

  7. Bayesian Meta-Analysis of Coefficient Alpha

    ERIC Educational Resources Information Center

    Brannick, Michael T.; Zhang, Nanhua

    2013-01-01

    The current paper describes and illustrates a Bayesian approach to the meta-analysis of coefficient alpha. Alpha is the most commonly used estimate of the reliability or consistency (freedom from measurement error) for educational and psychological measures. The conventional approach to meta-analysis uses inverse variance weights to combine…

  8. [Mivazerol and other benzylimidazoles with alpha-2 adrenergic properties].

    PubMed

    Cossement, E; Geerts, J P; Michel, P; Motte, G; Noyer, M

    1994-01-01

    4-Benzyl-imidazole compounds derived from Salbutanol are evaluated for potential adrenergic activities. The prevalent property of a series of new bioisosteres of catecholamines either of the saligenol-(ucb LO61) or benzamide-(Mivazerol) type is a selective alpha-adrenergic agonism, at the presynaptic level. The present study stresses the structural features responsible for the alpha-2-agonistic property.

  9. The checkpoint for agonist selection precedes conventional selection in human thymus.

    PubMed

    Verstichel, Greet; Vermijlen, David; Martens, Liesbet; Goetgeluk, Glenn; Brouwer, Margreet; Thiault, Nicolas; Van Caeneghem, Yasmine; De Munter, Stijn; Weening, Karin; Bonte, Sarah; Leclercq, Georges; Taghon, Tom; Kerre, Tessa; Saeys, Yvan; Van Dorpe, Jo; Cheroutre, Hilde; Vandekerckhove, Bart

    2017-02-24

    The thymus plays a central role in self-tolerance, partly by eliminating precursors with a T cell receptor (TCR) that binds strongly to self-antigens. However, the generation of self-agonist-selected lineages also relies on strong TCR signaling. How thymocytes discriminate between these opposite outcomes remains elusive. Here, we identified a human agonist-selected PD-1(+) CD8αα(+) subset of mature CD8αβ(+) T cells that displays an effector phenotype associated with agonist selection. TCR stimulation of immature post-β-selection thymocyte blasts specifically gives rise to this innate subset and fixes early T cell receptor alpha variable (TRAV) and T cell receptor alpha joining (TRAJ) rearrangements in the TCR repertoire. These findings suggest that the checkpoint for agonist selection precedes conventional selection in the human thymus. Copyright © 2017, American Association for the Advancement of Science.

  10. Mechanisms of inverse agonism of antipsychotic drugs at the D(2) dopamine receptor: use of a mutant D(2) dopamine receptor that adopts the activated conformation.

    PubMed

    Wilson, J; Lin, H; Fu, D; Javitch, J A; Strange, P G

    2001-04-01

    The antipsychotic drugs have been shown to be inverse agonists at the D(2) dopamine receptor. We have examined the mechanism of this inverse agonism by making mutations in residue T343 in the base of the sixth transmembrane spanning region of the receptor. T343R, T343S and T343K mutant D(2) dopamine receptors were made and the T343R mutant characterized in detail. The T343R mutant D(2) dopamine receptor exhibits properties of a receptor that resides more in the activated state, namely increased agonist binding affinity (independent of G-protein coupling and dependent on agonist efficacy), increased agonist potency in functional tests (adenylyl cyclase inhibition) and increased inverse agonist effects. The binding of agonists to the mutant receptor also shows sensitivity to sodium ions, unlike the native receptor, so that isomerization of the receptor to its inactive state may be driven by sodium ions. The binding of inverse agonists to the receptor is, however, unaffected by the mutation. We conclude that inverse agonism at this receptor is not achieved by the inverse agonist binding preferentially to the non-activated state of the receptor over the activated state. Rather the inverse agonist appears to bind to all forms of the receptor but then renders the receptor inactive.

  11. Retinoid-related orphan receptor alpha and the regulation of lipid homeostasis.

    PubMed

    Fitzsimmons, Rebecca L; Lau, Patrick; Muscat, George E O

    2012-07-01

    Many nuclear hormone receptors (NRs) control lipid, glucose and energy homeostasis in an organ specific manner. Concordantly, dysfunctional NR signalling results in metabolic disease. The Retinoic acid receptor-related orphan receptor alpha (RORα), a member of the NR1F subgroup, is expressed in metabolic tissues. Previous studies identified the role of this NR in dyslipidemia, apo-lipoprotein metabolism and atherosclerosis. Recent data is underscoring the significant role of this orphan NR in the regulation of phase I/II metabolism (bile acids, xenobiotics, steroids etc.), adiposity, insulin signalling, and glucose tolerance. Moreover, oxygenated sterols, have been demonstrated to function as native ligands and inverse agonists. This review focuses on the rapidly emerging and evolving role of RORα in the control of lipid and glucose homeostasis in major mass metabolic tissues. Article from the special issue orphan receptors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Characterization of melanocortin NDP-MSH agonist peptide fragments at the mouse central and peripheral melanocortin receptors.

    PubMed

    Haskell-Luevano, C; Holder, J R; Monck, E K; Bauzo, R M

    2001-06-21

    The central melanocortin receptors, melanocortin-4 (MC4R) and melanocortin-3 (MC3R), are involved in the regulation of satiety and energy homeostasis. The MC4R in particular has become a pharmaceutical industry drug target due to its direct involvement in the regulation of food intake and its potential therapeutic application for the treatment of obesity-related diseases. The melanocortin receptors are stimulated by the native ligand, alpha-melanocyte stimulating hormone (alpha-MSH). The potent and enzymatically stable analogue NDP-MSH (Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2)) is a lead peptide for the identification of melanocortin amino acids important for receptor molecular recognition and stimulation. We have synthesized nine peptide fragments of NDP-MSH, deleting N- and C-terminal amino acids to determine the "minimally active" sequence of NDP-MSH. Additionally, five peptides were synthesized to study stereochemical inversion at the Phe 7 and Trp 9 positions in attempts to increase tetra- and tripeptide potencies. These peptide analogues were pharmacologically characterized at the mouse melanocortin MC1, MC3, MC4, and MC5 receptors. This study has identified the Ac-His-DPhe-Arg-Trp-NH(2) tetrapeptide as possessing 10 nM agonist activity at the brain MC4R. The tripeptide Ac-DPhe-Arg-Trp-NH(2) possessed micromolar agonist activities at the MC1R, MC4R, and MC5R but only slight stimulatory activity was observed at the MC3R (at up to 100 microM concentration). This study has also examined to importance of both N- and C-terminal NDP-MSH amino acids at the different melanocortin receptors, providing information for drug design and identification of putative ligand-receptor interactions.

  13. Discovery of Azetidinone Acids as Conformationally-Constrained Dual PPARalpha/gamma Agonists

    SciTech Connect

    Wang, W.; Devasthale, P; Farrelly, D; Gu, L; Harrity, T; Cap, M; Chu, C; Kunselman, L; Morgan, N; et. al.

    2008-01-01

    A novel class of azetidinone acid-derived dual PPAR{alpha}/{gamma} agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARa and PPAR? receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.

  14. Protection against Acetylcholinesterase Inhibitor Toxicity by Alpha- Adrenergic Agonists

    DTIC Science & Technology

    1992-10-28

    30912-2300 S EL CELECTE REPORT DATE: October 28, 1992 SEP 3 01993 TYPE OF REPORT: Final A PREPARED FOR: U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT...endorsement or approval of the products or services of these organizations. _ _ I n conducting research using animals, the investigator(s) adhered to the...Resources, National Research Council (NIH Publication No. 86-23, Revised 1985). For the protection of human subjects, the investigator(s) adhered to

  15. Behavioral models in mice. Implication of the alpha noradrenergic system.

    PubMed

    Hascoët, M; Bourin, M; Bradwejn, J

    1991-01-01

    1. The mechanism of action of drugs might change according to the test used. Several noradrenergic drugs were tested in order to understand their implication in the mobility tests. 2. It was found that clonidine, an Alpha 2 agonist, acted differently according to the test used. It provoked sedation in spontaneous activity test, and anti-immobility effects in the other tests. 3. Tail suspension test is able to show the double acting of clonidine. 4. Idazoxan might act either as an alpha 2 antagonist or as partial alpha 2 agonist. TST shown the unexpected partial alpha agonist effect of the molecule. 5. Forced swimming test is more specific for predicting antidepressant activity than tail suspension test which is close to a spontaneous activity model.

  16. Direct Measurement of {sup 21}Na+{alpha} Stellar Reaction

    SciTech Connect

    Binh, D. N.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Hashimoto, T.; Kahl, D.; Teranishi, T.; Iwasa, N.; Kume, N.; Kato, S.; Khiem, L. H.; Tho, N. T.; Wakabayashi, Y.

    2010-08-12

    The measurement of the resonant alpha scattering and the {sup 21}Na({alpha}, p) reaction were performed for the first time in inverse kinematics with the thick target method using a {sup 21}Na radioisotope (RI) beam. This paper reports the current result of alpha scattering measurement and its astrophysics implication.

  17. Agonist-activated ion channels

    PubMed Central

    Colquhoun, David

    2006-01-01

    This paper looks at ion channels as an example of the pharmacologist's stock in trade, the action of an agonist on a receptor to produce a response. Looked at in this way, ion channels have been helpful because they are still the only system which is simple enough for quantitative investigation of transduction mechanisms. A short history is given of attempts to elucidate what happens between the time when agonist first binds, and the time when the channel opens. PMID:16402101

  18. Point mutations affecting antagonist affinity and agonist dependent gating of GABAA receptor channels.

    PubMed Central

    Sigel, E; Baur, R; Kellenberger, S; Malherbe, P

    1992-01-01

    Two variant amino acid sequences, which differ in a single amino acid residue, have been reported for the alpha 1-subunit of the rat brain GABAA receptor. We separately co-expressed these two variants in Xenopus oocytes, in combination with beta 2 and gamma 2. This experiment showed that substitution of alpha 1-Phe64 by Leu strongly decreases the apparent affinity for GABA dependent channel gating from 6 microM to 1260 microM. Starting from this observation, we used in vitro mutagenesis to obtain information relevant for the localization of the agonist/antagonist binding site in the GABAA receptor. Homologous mutation in alpha 5 had similar consequences for alpha 5 beta 2 gamma 2. Homologous mutation in beta 2 and gamma 2 resulted in intermediate and small shifts in EC50, respectively. The apparent affinities of the competitive antagonists bicuculline methiodide and SR95531, the latter sharing close structural similarity with the agonist GABA, were decreased 60- to 200-fold by these mutations in alpha-subunits. Interestingly, these affinities remained nearly unaffected upon introduction of the homologous mutations in beta 2 and gamma 2, or upon mutation of the neighbouring amino acid in alpha 1, Phe65 to Leu. These results suggest close functional and structural association of alpha-subunits with the agonist/antagonist binding site, and involvement of N-terminal portions of the extracellular domains of all subunits in the gating of the channel. PMID:1376242

  19. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  20. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  1. Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes.

    PubMed

    Katritch, Vsevolod; Reynolds, Kimberly A; Cherezov, Vadim; Hanson, Michael A; Roth, Christopher B; Yeager, Mark; Abagyan, Ruben

    2009-01-01

    The 2.4 A crystal structure of the beta(2)-adrenergic receptor (beta(2)AR) in complex with the high-affinity inverse agonist (-)-carazolol provides a detailed structural framework for the analysis of ligand recognition by adrenergic receptors. Insights into agonist binding and the corresponding conformational changes triggering G-protein coupled receptor (GPCR) activation mechanism are of special interest. Here we show that while the carazolol pocket captured in the beta(2)AR crystal structure accommodates (-)-isoproterenol and other agonists without steric clashes, a finite movement of the flexible extracellular part of TM-V helix (TM-Ve) obtained by receptor optimization in the presence of docked ligand can further improve the calculated binding affinities for agonist compounds. Tilting of TM-Ve towards the receptor axis provides a more complete description of polar receptor-ligand interactions for full and partial agonists, by enabling optimal engagement of agonists with two experimentally identified anchor sites, formed by Asp113/Asn312 and Ser203/Ser204/Ser207 side chains. Further, receptor models incorporating a flexible TM-V backbone allow reliable prediction of binding affinities for a set of diverse ligands, suggesting potential utility of this approach to design of effective and subtype-specific agonists for adrenergic receptors. Systematic differences in capacity of partial, full and inverse agonists to induce TM-V helix tilt in the beta(2)AR model suggest potential role of TM-V as a conformational "rheostat" involved in the whole spectrum of beta(2)AR responses to small molecule signals.

  2. Alpha Blockers

    MedlinePlus

    ... conditions such as high blood pressure and benign prostatic hyperplasia. Find out more about this class of medication. ... these conditions: High blood pressure Enlarged prostate (benign prostatic hyperplasia) Though alpha blockers are commonly used to treat ...

  3. Alpha Thalassemia

    MedlinePlus

    ... an apparently normal individual has a child with hemoglobin H disease or alpha thalassemia minor. It can ... gene on one chromosome 25% 25% 25% 25% hemoglobin H disease there is a 25% chance with ...

  4. Use-dependent inhibition of P2X3 receptors by nanomolar agonist.

    PubMed

    Pratt, Emily B; Brink, Thaddeus S; Bergson, Pamela; Voigt, Mark M; Cook, Sean P

    2005-08-10

    P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nM) of desensitized P2X3 receptors for agonist. We found that agonist binding to the desensitized state provided a mechanism for potent inhibition of P2X3 current. Sustained applications of 0.5 nM ATP inhibited > 50% of current to repetitive applications of P2X3 agonist. Inhibition occurred at 1000-fold lower agonist concentrations than required for channel activation and showed strong use dependence. No inhibition occurred without previous activation and desensitization. Our data are consistent with a model whereby inhibition of P2X3 by nanomolar [agonist] occurs by the rebinding of agonist to desensitized channels before recovery from desensitization. For several ATP analogs, the concentration required to inhibit P2X3 current inversely correlated with the rate of recovery from desensitization. This indicates that the affinity of the desensitized state and recovery rate primarily depend on the rate of agonist unbinding. Consistent with this hypothesis, unbinding of [32P]ATP from desensitized P2X3 receptors mirrored the rate of recovery from desensitization. As expected, disruption of agonist binding by site-directed mutagenesis increased the IC50 for inhibition and increased the rate of recovery.

  5. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs.

  6. Alpha-adrenergic modulation of synaptic transmission in rabbit pancreatic ganglia.

    PubMed

    Yi, Eunyoung; Love, Jeffrey A

    2005-10-30

    Pancreatic ganglia contain noradrenergic nerve terminals whose role in ganglionic transmission is unknown. Intracellular recordings from rabbit pancreatic neurons were used to study the effects of alpha-adrenergic agonists and antagonists on ganglionic transmission and to determine if endogenously released norepinephrine contributed to synaptic depression. Significant regional differences in alpha adrenergic effects were observed. In neurons from ganglia of the head/neck region norepinephrine or selective alpha(2) agonists presynaptically inhibited ganglionic transmission and this effect was antagonized by the alpha(2) antagonist yohimbine. In the majority of cells membrane hyperpolarization accompanied presynaptic inhibition during superfusion of alpha(2) agonists. Repetitive nerve stimulation evoked a presynaptic post-train depression (PTD) of ganglionic transmission in all neurons tested. A combination of nisoxetine (selective inhibitor of the norepinephrine transporter) and tyramine (releaser of endogenous catecholamines) increased PTD. Pretreatment with clonidine inhibited synaptic transmission and abolished PTD while yohimbine did not affect it. Pretreatment with guanethidine (>or=3.5 h) also failed reduce PTD while neurons unresponsive to alpha(2) adrenoceptor agonists routinely exhibited PTD, implying the presence of other inhibitory neurotransmitters sharing a common presynaptic mechanism with alpha(2) agonists. In the majority of neurons from ganglia of the body region superfusion of norepinephrine or the selective alpha(1) agonist phenylephrine evoked membrane depolarization and facilitated ganglionic transmission. These effects were antagonized by the alpha(1) antagonist prazosin. The remaining neurons exhibited either alpha(2)-mediated synaptic inhibition or no-response. In conclusion, inhibitory alpha(2) and excitatory alpha(1) adrenoceptors exist in pancreatic ganglia and predominate in the head/neck and body, respectively. Norepinephrine, released

  7. Agonists for the Chemokine Receptor CXCR4

    PubMed Central

    2011-01-01

    The development of agonists for the chemokine receptor CXCR4 could provide promising therapeutic candidates. On the basis of previously forwarded two site model of chemokine–receptor interactions, we hypothesized that linking the agonistic N-terminus of SDF-1 to the T140 backbone would yield new high-affinity agonists of CXCR4. We developed chimeras with the agonistic SDF-1 N-terminus grafted to a T140 side chain and tested their binding affinity and chemotactic agonist activity. While chimeras with the peptide grafted onto position 12 of T140 remained high-affinity antagonists, those bearing the peptide on position 14 were in part agonists. One chimera was a full CXCR4 agonist with 25 nM affinity, and several chimeras showed low nanomolar affinities with partial agonist activity. Our results confirmed that we have developed high-affinity agonists of CXCR4. PMID:21841963

  8. cap alpha. -2 adrenergic receptor: a radiohistochemical study

    SciTech Connect

    Unnerstall, J.R.

    1984-01-01

    ..cap alpha..-2 adrenergic agents have been shown to influence blood pressure, heart rate and other physiological and behavioral functions through interactions with adrenergic pathways within the central nervous system. Pharmacologically relevant ..cap alpha..-1 adrenergic receptors were biochemically characterized and radiohistochemically analyzed in intact tissue sections of the rat and human central nervous system. The anatomical distribution of the ..cap alpha..-2 receptors, labeled with the agonist (/sup 3/H)para-aminoclonidine, verified the concept that ..cap alpha..-2 receptors are closely associated with adrenergic nerve terminals and that ..cap alpha..-2 agents can influence autonomic and endocrine function through an action in the central nervous system. Since ..cap alpha..-2 agonists can influence sympathetic outflow, ..cap alpha..-2 binding sites were closely analyzed in the intermediolateral cell column of the thoracic spinal cord. The transport of putative presynaptic ..cap alpha..-2 binding sites in the rat sciatic nerve was analyzed by light microscopic radiohistochemical techniques. Finally, in intact tissue section of the rat central nervous system, the biochemical characteristics of (/sup 3/H)rauwolscine binding were analyzed. Data were also shown which indicates that the synthetic ..cap alpha..-2 antagonist (/sup 3/H)RX781094 also binds to ..cap alpha..-2 receptors with high-affinity. Further, the distribution of (/sup 3/H)RX781094 binding sites in the rat central nervous system was identical to the distribution seen when using (/sup 3/H)para-aminoclonidine.

  9. Alpha fetoprotein

    MedlinePlus

    ... the liver Liver cancer Malignant teratoma Recovery from hepatitis Problems during pregnancy Alternative Names Fetal alpha globulin; AFP Images Blood ... JL, et al, eds. Obstetrics: Normal and Problem Pregnancies . 6th ed. Philadelphia, PA: Elsevier Saunders; 2012:chap 11. Read More ... cancer - hepatocellular carcinoma Malignant teratoma of the ...

  10. Interaction between alpha(1)- and alpha(2)-adrenoreceptors contributes to enhanced constrictor effects of norepinephrine in mesenteric veins compared to arteries.

    PubMed

    Sporkova, Alexandra; Perez-Rivera, Alex; Galligan, James J

    2010-09-25

    Mesenteric veins are more sensitive than arteries to the constrictor effects of sympathetic nerve stimulation and alpha-adrenoceptor agonists. We tested the hypothesis that alpha(1)- and alpha(2)-adrenoceptors interact to enhance adrenergic reactivity of mesenteric veins. We studied neurogenic and agonist-induced constrictions of mesenteric veins and arteries in vitro. Norepinephrine concentration-response curves were left-shifted in veins compared to arteries. UK 14,304 (0.01-1 microM, alpha(2)-adrenoceptor receptor agonist) did not constrict arteries or veins but enhanced constrictions and Ca(2+) signals mediated by alpha(1)-adrenoceptor stimulation in veins. Yohimbine (alpha(2)-adrenoceptor receptor antagonist) and MK912 (alpha(2C)-adrenoceptor receptor antagonist), but not alpha(2A)- or alpha(2B)-adrenoceptor antagonists, produced rightward shifts in norepinephrine concentration-response curves in veins. Pharmacological studies revealed that alpha(1D)-adrenoceptors mediate venous constrictions. Norepinephrine responses in veins from alpha(2C)-adrenoceptor knock-out (KO) mice were not different from wild type veins. Yohimbine inhibited norepinephrine constrictions in alpha(2C)-adrenoceptor KO veins suggesting that there is upregulation of other alpha(2)-adrenoceptors in alpha(2C)-KO mice. These data indicate that alpha(1D)- and alpha(2C)-adrenoceptors interact in veins but not in arteries. This interaction enhances venous adrenergic reactivity. Mesenteric vein-specific alpha(2)-adrenoceptor linked Ca(2+) and perhaps other signaling pathways account for enhanced venous adrenergic reactivity. 2010 Elsevier B.V. All rights reserved.

  11. Reversal of caffeine-induced anxiety by neurosteroid 3-alpha-hydroxy-5-alpha-pregnane-20-one in rats.

    PubMed

    Jain, N S; Hirani, K; Chopde, C T

    2005-04-01

    Caffeine has been shown to increase brain and plasma content of neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) that allosterically modulates GABA(A) receptors. The present study evaluated the role of neurosteroid 3alpha,5alpha-THP in the caffeine-induced anxiogenic-like effect using the elevated plus-maze (EPM) test in rats. Acute administration of caffeine (50 or 100mg/kg, i.p.) produced anxiogenic-like activity that was reversed by pretreatment with the neurosteroid 3alpha,5alpha-THP or progesterone, the GABA(A) agonist muscimol, or the benzodiazepine receptor agonist diazepam. On the contrary, caffeine produced higher anxiety in animals previously treated with the GABA(A) receptor antagonist, bicuculline or either of the various neurosteroid biosynthesis enzyme inhibitors viz. trilostane, finasteride or indomethacin. Furthermore, pretreatment with DHEAS, a neurosteroid that negatively modulates GABA(A) receptors also enhanced the caffeine-induced anxiety. Moreover, adrenalectomy potentiated the anxiogenic-like response of caffeine indicating the contributory role of peripheral steroidogenesis. Thus, it is speculated that neurosteroid 3alpha,5alpha-THP through positive modulation of GABA(A) receptor activity may serve as a counter-regulatory mechanism against caffeine-induced anxiety.

  12. Dopamine agonist therapy in hyperprolactinemia.

    PubMed

    Webster, J

    1999-12-01

    Introduction of the dopamine agonist bromocriptine heralded a major advance in the management of hyperprolactinemic disorders. Although its side effects of nausea, dizziness and headache and its short elimination half-life are limiting factors, its efficacy established it as a reference compound against the activity of which several dopamine agonists, like pergolide, lysuride, metergoline, terguride and dihydroergocristine, fell by the wayside. More recently, two new agents, cabergoline and quinagolide, have been introduced and appear to offer considerable advantages over bromocriptine. Cabergoline, an ergoline D2 agonist, has a long plasma half-life that enables once- or twice-weekly administration. Quinagolide, in contrast, is a nonergot D2 agonist with an elimination half-life intermediate between those of bromocriptine and cabergoline, allowing the drug to be administered once daily. Comparative studies indicate that cabergoline is clearly superior to bromocriptine in efficacy (prolactin suppression, restoration of gonadal function) and in tolerability. In similar studies, quinagolide appeared to have similar efficacy and superior tolerability to that of bromocriptine. Results of a small crossover study indicate that cabergoline is better tolerated, with a trend toward activity superior to that of quinagolide. In hyperprolactinemic men and in women not seeking to become pregnant, cabergoline may be regarded as the treatment of choice.

  13. Tumor necrosis factor-alpha inversely regulates prostaglandin D2 and prostaglandin E2 production in murine macrophages. Synergistic action of cyclic AMP on cyclooxygenase-2 expression and prostaglandin E2 synthesis.

    PubMed

    Fournier, T; Fadok, V; Henson, P M

    1997-12-05

    Increased synthesis of insulin-like growth factor-1 is induced in murine macrophages by prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNFalpha). Accordingly, we have investigated mechanisms regulating synthesis of PGE2 that might contribute to autocrine/paracrine effects on insulin-like growth factor-1 production. In response to zymosan, TNFalpha specifically induced a 5-fold increase in PGE2 synthesis, at the same time decreasing PGD2 production in a reciprocal fashion. Activators of cyclic AMP-dependent protein kinase (PKA), such as PGE2 itself or dibutyryl cyclic AMP, did not modify PGE2 production by themselves but potentiated the TNFalpha-induced increase in PGE2; this effect required both RNA and protein synthesis. No significant change in arachidonate release or production of other eicosanoids was observed. The inducible form of cyclooxygenase-2 (COX2) but not of the constitutive form COX1 was implicated in the generation of both PGE2 and PGD2 in these cells by use of specific inhibitors and effects of dexamethasone. Neither COX1 nor COX2 protein levels were affected by TNFalpha or PKA activators used alone, whereas in association, marked up-regulation of COX2 mRNA and protein was observed. Incubations of cells carried out with PGH2 demonstrated that PGE2 synthase activity was increased after a TNFalpha pretreatment. Taken together, our results suggest that TNFalpha induced a switch from the PGD2 to PGE2 synthesis pathway by regulating PGE2 synthase expression and/or activity and that activators of PKA markedly potentiated the TNFalpha-induced increase in PGE2 through up-regulation of COX2 gene expression.

  14. Locative Inversion in Cantonese.

    ERIC Educational Resources Information Center

    Mok, Sui-Sang

    This study investigates the phenomenon of "Locative Inversion" in Cantonese. The term "Locative Inversion" indicates that the locative phrase (LP) syntactic process in Cantonese and the appears at the sentence-initial position and its logical subject occurs postverbally. It is demonstrated that this Locative Inversion is a…

  15. Peroxisome proliferator-activated receptors (PPARs) and their agonists for hypertension and heart failure: are the reagents beneficial or harmful?

    PubMed

    Chen, Rui; Liang, Fengxia; Moriya, Junji; Yamakawa, Jun-ichi; Takahashi, Takashi; Shen, Lin; Kanda, Tsugiyasu

    2008-11-12

    Peroxisome proliferator-activated receptors (PPARs) alpha and gamma regulate nearly every step in cellular fatty acid uptake, utilization, oxidation, and storage pathways. They also control cell growth and migration, oxidative stress, and inflammation in the cardiovascular system. Recent studies have shown that PPARs have paradoxical effects on cardiovascular diseases, especially hypertension and heart failure. It is still unclear whether the blood pressure increases or decreases after treatment with a PPAR alpha agonist; it is also uncertain whether PPAR agonists are beneficial or harmful for heart failure. In order to clarify these issues, the literature on PPAR alpha and gamma and their agonists, as well as their effect on hypertension and heart failure not only in humans but also in experimental animals, was reviewed.

  16. Opioid-induced prejunctional inhibition of vasoconstriction in the rabbit ear artery: alpha-2 adrenoceptor activation and external calcium.

    PubMed

    Budai, D; Duckles, S P

    1989-11-01

    Inhibition of norepinephrine release by opioid agonists is inversely related to the stimulation train length. The possible interaction between activation of prejunctional alpha-2 adrenergic receptors and the release-inhibiting opioid receptors as well as the effect of changes in Ca++ entry into adrenergic varicosities during repetitive stimulation were investigated by recording vasoconstriction of the rabbit ear artery perfused in vitro. Neither the activation of the alpha-2 adrenoceptor-mediated negative feedback by clonidine nor its inhibition by yohimbine altered the neuroinhibitory potency for dynorphin 1-13 or Met-enkephalin at any stimulus train length. Experimental conditions known to increase the entry of calcium into the varicosities mimicked the effect of the increase in the stimulation train length on the modulation of norepinephrine release by opioids. Increasing the extracellular calcium concentration (from 1.6-5 or 8 mM) diminished the inhibitory effect of opioids and tended to abolish the dependence on stimulation train length. Conversely, lowering the calcium concentration (from 1.6-1 mM) increased the inhibition by opioids and enhanced the dependence on train length. These results do not suggest a direct interaction between activation of opioid receptors and alpha-2 adrenoceptors. Rather, they indicate the role of opioid receptor activation in a primary modulation of Ca++ influx which becomes masked by the high levels of axoplasmic calcium which are achieved during a continued stimulation train.

  17. Alpha-2 adrenergic receptors and attention-deficit/hyperactivity disorder.

    PubMed

    Cinnamon Bidwell, L; Dew, Rachel E; Kollins, Scott H

    2010-10-01

    Pharmacologic management of attention-deficit/hyperactivity disorder (ADHD) has expanded beyond stimulant medications to include alpha-2 adrenergic agonists. These agents exert their actions through presynaptic stimulation and likely involve facilitation of dopamine and noradrenaline neurotransmission, both of which are thought to play critical roles in the pathophysiology of ADHD. Furthermore, frontostriatal dysfunction giving rise to neuropsychological weaknesses has been well-established in patients with ADHD and may explain how alpha-2 agents exert their beneficial effects. In the following review, we consider relevant neurobiological underpinnings of ADHD with respect to why alpha-2 agents may be effective in treating this condition. We also review new formulations of alpha-2 agonists, emerging data on their use in ADHD, and implications for clinical practice. Integrating knowledge of pathophysiologic mechanisms and mechanisms of drug action may inform our medication choices and facilitate treatment of ADHD and related disorders.

  18. Alpha-2 Adrenergic Receptors and Attention—Deficit/Hyperactivity Disorder

    PubMed Central

    Bidwell, L. Cinnamon; Dew, Rachel E.; Kollins, Scott H.

    2013-01-01

    Pharmacological management of attention-deficit hyperactivity disorder (ADHD) has expanded beyond stimulant medications to include alpha 2 adrenergic agonists. These agents exert their actions through presynaptic stimulation and likely involve facilitation of both dopamine and noradrenaline neurotransmission, which are both thought to play critical roles in the pathophysiology of ADHD. Further, frontostratial dysfunction giving rise to neuropsychological weaknesses has been well-established in patients with ADHD and may explain how alpha 2 agents exert their beneficial effects. In the following review, we consider relevant neurobiological underpinnings of ADHD with respect to why alpha 2 agents may be effective in treating this condition. We also review new formulations of alpha 2 agonists, emerging data on their use in ADHD, and implications for clinical practice. Integrating knowledge of pathphysiological mechanisms and mechanisms of drug action may inform our medication choices and facilitate treatment of ADHD and related disorders. PMID:20652773

  19. The alpha9/alpha10-containing nicotinic ACh receptor is directly modulated by opioid peptides, endomorphin-1, and dynorphin B, proposed efferent cotransmitters in the inner ear.

    PubMed

    Lioudyno, M I; Verbitsky, M; Glowatzki, E; Holt, J C; Boulter, J; Zadina, J E; Elgoyhen, A B; Guth, P S

    2002-08-01

    Opioid peptides have been detected in the auditory and vestibular efferent neurons where they colocalize with the major neurotransmitter, acetylcholine. We investigated the function of opioids to modulate neurotransmission mediated by hair cell's alpha9/alpha10-containing nicotinic acetylcholine receptors (alpha9/alpha10nAChRs). The endogenous opioid peptides, endomorphin-1 (mu agonist) and dynorphin B (kappa agonist), but not a delta agonist [D-Pen2,D-Pen-5]enkephalin, inhibited the acetylcholine-evoked currents in frog saccular hair cells and rat inner hair cells. This inhibition was noncompetitive, voltage-independent, and was accompanied by an acceleration of the rate of current decay. Selective mu- and kappa-opioid receptor antagonists did not block the inhibition, although partial reduction by naloxone was observed. All opioid antagonists tested also reduced the acetylcholine response. Endomorphin-1 and dynorphin B inhibited the acetylcholine-evoked currents in alpha9/alpha10-expressing Xenopus oocytes. Because oocytes lack opioid receptors, it provides strong evidence for the direct interaction of opioid peptides with alpha9/alpha10nAChR. alpha9/alpha10nAChR is a target for modulation by endomorphin-1 and dynorphin B, efferent cotransmitters in the inner ear.

  20. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology.

    PubMed

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B; Mikkelsen, Jens D

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha nAChR and the cognitive effects of alpha(7) nAChR activation, focusing on the translational aspects in the development of these drugs. The functional properties and anatomical localization of the alpha(7) nAChR makes it well suited to modulate cognitive function. Accordingly, systemic administration of alpha(7) nAChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this has been a major concern in the development of alpha(7) nAChR agonists as putative drugs. Our review of the existing literature shows that development of tolerance to the behavioral effects of alpha(7) nAChR agonists does not occur in animal models or humans. However, the long-term memory-enhancing effects seen in animal models are not mimicked in healthy humans and schizophrenic patients, where attentional improvement predominates. This discrepancy may result from inherent differences in testing methods or from species differences in the level of expression of alpha(7) nAChRs in limbic brain regions, and may hamper preclinical evaluation of alpha(7) nAChR activation. It is therefore important to consider the translational power of the animal models used before entering into a clinical evaluation of the pro-cognitive effects of alpha(7) nAChR activation.

  1. Structure-Activity Relationship and Signaling of New Chimeric CXCR4 Agonists.

    PubMed

    Mona, Christine E; Besserer-Offroy, Élie; Cabana, Jérôme; Lefrançois, Marilou; Boulais, Philip E; Lefebvre, Marie-Reine; Leduc, Richard; Lavigne, Pierre; Heveker, Nikolaus; Marsault, Éric; Escher, Emanuel

    2016-08-25

    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gαi full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor-ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series.

  2. A "voice inversion effect?".

    PubMed

    Bédard, Catherine; Belin, Pascal

    2004-07-01

    Voice is the carrier of speech but is also an "auditory face" rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a "voice inversion effect," by analogy to the classical "face inversion effect," which could support the hypothesis of a voice-specific module. Experiment 1 consisted of a gender identification task on two syllables pronounced by 90 speakers (boys, girls, men, and women). Experiment 2 consisted of a speaker discrimination task on pairs of syllables (8 men and 8 women). Experiment 3 consisted of an instrument discrimination task on pairs of melodies (8 string and 8 wind instruments). In all three experiments, stimuli were presented in 4 conditions: (1) no inversion; (2) temporal inversion (e.g., backwards speech); (3) frequency inversion centered around 4000 Hz; and (4) around 2500 Hz. Results indicated a significant decrease in performance caused by sound inversion, with a much stronger effect for frequency than for temporal inversion. Interestingly, although frequency inversion markedly affected timbre for both voices and instruments, subjects' performance was still above chance. However, performance at instrument discrimination was much higher than for voices, preventing comparison of inversion effects for voices vs. non-vocal stimuli. Additional experiments will be necessary to conclude on the existence of a possible "voice inversion effect."

  3. Gremlin: vexing VEGF receptor agonist.

    PubMed

    Claesson-Welsh, Lena

    2010-11-04

    Gremlins are mischievous creatures in English folklore, believed to be the cause of otherwise unexplainable breakdowns (the word gremlins is derived from the Old English "gremian" or "gremman," "to vex"). Gremlin (or Gremlin-1) is also the designation of a secreted protein that is known to regulate bone formation during development. In this issue of Blood, Mitola et al report the novel role of Gremlin as a VEGFR2 agonist and the function of the Gremlin protein seems vexing indeed.

  4. The Alpha-1A Adrenergic Receptor in the Rabbit Heart

    PubMed Central

    Myagmar, Bat-Erdene; Swigart, Philip M.; Baker, Anthony J.; Simpson, Paul C.

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  5. Novel diazabicycloalkane delta opioid agonists.

    PubMed

    Loriga, Giovanni; Lazzari, Paolo; Manca, Ilaria; Ruiu, Stefania; Falzoi, Matteo; Murineddu, Gabriele; Bottazzi, Mirko Emilio Heiner; Pinna, Giovanni; Pinna, Gérard Aimè

    2015-09-01

    Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity