Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating
Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.
1983-11-16
It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.
NASA Astrophysics Data System (ADS)
Ma, Wen-Jong; Wang, Shih-Chieh; Chen, Chi-Ning; Hu, Chin-Kun
2013-06-01
It is found that the mean square log-returns calculated from the high-frequency one-day moving average of US and Taiwan stocks with the time internal τ show ballistic behavior \\theta \\tau^{\\alpha_1} with the exponent \\alpha_1 \\approx 2 for small τ and show diffusion-like behavior D \\tau^{\\alpha_2} with the exponent \\alpha_2 \\approx 1 for large τ. Such a crossover behavior can be well described by the mean square displacements of particles governed by the Langevin equation of motion. Thus, θ and D can be considered, respectively, as the temperature-like and diffusivity-like kinetic parameters of the market, and they can be used to characterize the behavior of the market.
Alpha particle confinement in tandem mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devoto, R.S.; Ohnishi, M.; Kerns, J.
1980-10-10
Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.
NASA Technical Reports Server (NTRS)
Randall, B. A.
1973-01-01
A comprehensive study of the temporal behavior of trapped protons, alpha particles and ions (Z 2) in outer zone of the earth's magnetosphere has been made. These observations were made by the Injun V satellite during the first 21 months of operation, August 1968 to May 1970. Rapid increases in the observed number of particles followed by slower exponential decay characterize the data. Comparisons are made with the temporal behavior of interplanetary particles of the same energy observed by Explorer 35. Increases in the trapped fluxes generally correspond to enhanced interplanetary activity. The energy spectra of protons and alpha particles at L = 3 have similar shapes when compared on an energy per charge basis while the respective polar cap spectra have similar shape on an energy per nucleon basis. Apparent inward trans-L motion of energetic protons is observed. These particles are diffused inward by a process involving fluctuating electric fields. The loss of trapped low altitude protons, alpha particles and ions (Z 2) is controlled by coulombic energy loss in the atmosphere.
Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating
Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane
1986-04-22
Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.
Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.
2010-01-01
Since the publication of the BEIR VI report in 1999 on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, at low domestic and workplace radon levels, in particular the Bystander Effect (BE) and the Adaptive Response radio-protection (AR). We analyzed the microbeam and broadbeam alpha particle data of Miller et al. (1995, 1999), Zhou et al. (2001, 2003, 2004), Nagasawa and Little (1999, 2002), Hei et al. (1999), Sawant et al. (2001a) and found that the shape of the cellular response to alphas is relatively independent of cell species and LET of the alphas. The same alpha particle traversal dose response behavior should be true for human lung tissue exposure to radon progeny alpha particles. In the Bystander Damage Region of the alpha particle response, there is a variation of RBE from about 10 to 35. There is a transition region between the Bystander Damage Region and Direct Damage Region of between one and two microdose alpha particle traversals indicating that perhaps two alpha particle “hits” are necessary to produce the direct damage. Extrapolation of underground miners lung cancer risks to human risks at domestic and workplace levels may not be valid. PMID:21731539
An empirical approach to predicting long term behavior of metal particle based recording media
NASA Technical Reports Server (NTRS)
Hadad, Allan S.
1992-01-01
Alpha iron particles used for magnetic recording are prepared through a series of dehydration and reduction steps of alpha-Fe2O3-H2O resulting in acicular, polycrystalline, body centered cubic (bcc) alpha-Fe particles that are single magnetic domains. Since fine iron particles are pyrophoric by nature, stabilization processes had to be developed in order for iron particles to be considered as a viable recording medium for long term archival (i.e., 25+ years) information storage. The primary means of establishing stability is through passivation or controlled oxidation of the iron particle's surface. A study was undertaken to examine the degradation in magnetic properties as a function of both temperature and humidity on silicon-containing iron particles between 50-120 C and 3-89 percent relative humidity. The methodology to which experimental data was collected and analyzed leading to predictive capability is discussed.
An empirical approach to predicting long term behavior of metal particle based recording media
NASA Technical Reports Server (NTRS)
Hadad, Allan S.
1991-01-01
Alpha iron particles used for magnetic recording are prepared through a series of dehydration and reduction steps of alpha-Fe2O3-H2O resulting in acicular, polycrystalline, body centered cubic (bcc) alpha-Fe particles that are single magnetic domains. Since fine iron particles are pyrophoric by nature, stabilization processes had to be developed in order for iron particles to be considered as a viable recording medium for long term archival (i.e., 25+ years) information storage. The primary means of establishing stability is through passivation or controlled oxidation of the iron particle's surface. Since iron particles used for magnetic recording are small, additional oxidation has a direct impact on performance especially where archival storage of recorded information for long periods of time is important. Further stabilization chemistry/processes had to be developed to guarantee that iron particles could be considered as a viable long term recording medium. In an effort to retard the diffusion of iron ions through the oxide layer, other elements such as silicon, aluminum, and chromium have been added to the base iron to promote more dense scale formation or to alleviate some of the non-stoichiometric behavior of the oxide or both. The presence of water vapor has been shown to disrupt the passive layer, subsequently increasing the oxidation rate of the iron. A study was undertaken to examine the degradation in magnetic properties as a function of both temperature and humidity on silicon-containing iron particles between 50-120 deg C and 3-89 percent relative humidity. The methodology to which experimental data was collected and analyzed leading to predictive capability is discussed.
Adsorption behavior of alpha -cypermethrin on cork and activated carbon.
Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina
2007-08-01
Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.
Quartz Crystal Microbalance: Aerosol Viscoelastic Measurement Calibration and Subsiquent H2O Uptake
NASA Astrophysics Data System (ADS)
Farland, D. R., Jr.; Gilles, M. K.; Harder, T.; Weis, J.; Mueller, S.
2015-12-01
Aerosol particles exposed to various atmospheric relative humidity (RH) levels exhibit hygroscopic properties which are not fully understood. Water adsorption or diffusion depends on particle viscosity in semi-solid to liquid states. This relationship between particle viscosity as a function of RH and the corresponding hygroscopic behavioral response is the purpose of this study. However, reliable techniques for viscosity quantification have been limited. A Quartz Crystal Microbalance with Dissipation (QCM-D) was used for viscosity measurements and to determine phase changes. Prior to studies on field samples, microscope immersion/viscosity standard oils, salt crystals, sugars and alpha-pinene secondary organic aerosol (SOA) surrogates are used for viscosity, RH calibrations, water uptake and phase change measurements. RH was controlled by flowing N2 gas saturated with H2O for RH's between 0-75% RH. For higher RH values, (75-100% RH range) saturated salt solutions were flowed over a gore membrane to protect the QCM sensor from direct contact with the solutions. The viscosity calibration constructed via QTools fitting software illustrates the limitations as well as the ranges of reliability of the QCM viscosity measurements. Deliquescing salt crystals of differing deliquescence relative humidity's (DRH), sugars and alpha-pinene SOA's provided insight into the detection of various phase change behaviors. Water uptake experiments performed on alpha-pinene SOA and sucrose sugar yielded significantly different frequency and dissipation responses than the deliquescing salts. Future work will apply these experimental methods and analysis on aerosol particles collected during the GoAmazon field campaign.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Laboratoire des plasmas de Decharges, Centre de Developement des Technologies Avancees, Cite du 20 Aout BP 17 Baba Hassen, 16081 Algiers; Raimbault, J.-L.
2013-04-15
A one-dimensional electronegative plasma situated between two symmetrical parallel electrodes under DC bias is studied by Particle-In-Cell simulation with Monte Carlo Collisions. By varying the electronegativity {alpha}{identical_to}n{sub -}/n{sub e} from the limit of electron-ion plasmas (negative ion free) to ion-ion plasmas (electron free), the sheaths formation, the negative ion flux flowing towards the electrodes, and the particle velocities at the sheath edges are investigated. Depending on {alpha}, it is shown that the electronegative plasma behavior can be described by four regimes. In the lowest regime of {alpha}, i.e., {alpha} < 50, negative ions are confined by two positive sheaths withinmore » the plasma, while in the higher regimes of {alpha}, a negative sheath is formed and the negative ion flux can be extracted from the bulk plasma. In the two intermediate regimes of {alpha}, i.e., 50 < {alpha} < 10{sup 5}, both the electron and the negative ion fluxes are involved in the neutralization of the positive ions flux that leaves the plasma. In particular, we show that the velocity of the negative ions entering the negative sheath is affected by the presence of the electrons, and is not given by the modified Bohm velocity generally accepted for electronegative plasmas. For extremely high electronegativity, i.e., {alpha} > 10{sup 5}, the presence of electrons in the plasma is marginal and the electronegative plasma can be considered as an ion-ion plasma (electron free).« less
Current inversion in the Lévy ratchet.
Dybiec, Bartłomiej
2008-12-01
We study the motion of an overdamped test particle in a static periodic potential lacking spatial symmetry under the influence of periodically modulated alpha -stable (Lévy) type noise. Due to the nonthermal character of the driving noise, the particle exhibits a motion with a preferred direction. The additional periodic modulation of the noise asymmetry changes the behavior of the static "Lévy ratchet." For the fast rate of the noise asymmetry modulation, the Lévy ratchet behaves like the one driven by the symmetric alpha -stable noise. When the modulation period is larger, the nontrivial effects of the noise asymmetry on the behavior of the Lévy ratchet are visible. In particular, the current inversion is observed in the system at hand. The properties of the Lévy ratchet are studied by use of the robust measures of directionality, which are defined regardless of the type of the stochastic driving.
Alpha channeling in a rotating plasma.
Fetterman, Abraham J; Fisch, Nathaniel J
2008-11-14
The wave-particle alpha-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with alpha particles in a mirror machine with ExB rotation to diffuse the alpha particles along constrained paths in phase space. Of major interest is that the alpha-particle energy, in addition to amplifying the rf waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Kawaguchi, Wataru
2018-06-01
For precise distribution measurements of alpha particles, a high-resolution alpha particle imaging detector is required. Although combining a thin scintillator with a silicon photomultiplier (Si-PM) array is a promising method for achieving high resolution, the spatial resolution is limited. Reducing the size of the Si-PM array is a possible approach to improving the spatial resolution of the alpha particle imaging detector. Consequently, we employed a 1 mm channel size Si-PM array combined with a thin ZnS(Ag) sheet to form an alpha particle imaging detector and evaluated the performance. For the developed alpha particle imaging detector, an Si-PM array with 1 mm x 1 mm channel size arranged 8 x 8 was optically coupled to a ZnS(Ag) sheet with a 1-mm-thick light guide between them. The size of the alpha particle imaging detector was 9.5 mm x 9.5 mm. The spatial resolution of the developed alpha particle imaging detector was 0.14 mm FWHM, and the energy resolution was 74% FWHM for 5.5 MeV alpha particles. The uniformity of the imaging detector at the central part of the field of view (FOV) was ±4.7%. The background count rate was 0.06 counts/min. We obtained various high-resolution phantom images for alpha particles with the developed system. We conclude that the developed imaging detector is promising for high-resolution distribution measurements of alpha particles.
Detection of alpha radiation in a beta radiation field
Mohagheghi, Amir H.; Reese, Robert P.
2001-01-01
An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.
Al Darwish, R; Staudacher, A H; Li, Y; Brown, M P; Bezak, E
2016-11-01
In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, there is a lack of data related to alpha particle distribution in TAT. These data are required to more accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In this study, as an initial step, the authors present a transmission dosimetry design for alpha particles using A549 lung carcinoma cells, an external alpha particle emitting source (radium 223; Ra-223) and a Timepix pixelated semiconductor detector. The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells were either unirradiated (control) or irradiated for 12, 1, 2, or 3 h with alpha particles emitted from a Ra-223 source positioned below a monolayer of A549 cells. The Timepix detector was used to determine the number of transmitted alpha particles passing through the A549 cells and DNA double strand breaks (DSBs) in the form of γ-H2AX foci were examined by fluorescence microscopy. The number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo code SRIM. Approximately 20% of alpha particles were transmitted and detected by Timepix. The frequency and number of γ-H2AX foci increased significantly following alpha particle irradiation as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after 12, 1, 2, and 3 h irradiation, respectively, considering a relative biological effectiveness of alpha particles of 5.5. The study confirmed that the Timepix detector can be used for transmission alpha particle dosimetry. If cross-calibrated using biological dosimetry, this method will give a good indication of the biological effects of alpha particles without the need for repeated biological dosimetry which is costly, time consuming, and not readily available.
Miederer, Matthias; Scheinberg, David A.; McDevitt, Michael R.
2013-01-01
Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225Ac to potently and specifically affect cancer. PMID:18514364
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzone, R. G.; Spitaleri, C.; Lamia, L.
2011-04-15
The Trojan horse nucleus invariance for the binary reaction cross section extracted from the Trojan horse reaction was tested using the quasifree {sup 3}He({sup 6}Li,{alpha}{alpha})H and {sup 3}He({sup 7}Li,{alpha}{alpha}){sup 2}H reactions. The cross sections for the {sup 6}Li(d,{alpha}){sup 4}He and {sup 7}Li(p,{alpha}){sup 4}He binary processes were extracted in the framework of the plane wave approximation. They are compared with direct behaviors as well as with cross sections extracted from previous indirect investigations of the same binary reactions using deuteron as the Trojan horse nucleus instead of {sup 3}He. The very good agreement confirms the applicability of the plane wave approximationmore » which suggests the independence of the binary indirect cross section on the chosen Trojan horse nucleus, at least for the investigated cases.« less
Alpha particle spectroscopy using FNTD and SIM super-resolution microscopy.
Kouwenberg, J J M; Kremers, G J; Slotman, J A; Wolterbeek, H T; Houtsmuller, A B; Denkova, A G; Bos, A J J
2018-06-01
Structured illumination microscopy (SIM) for the imaging of alpha particle tracks in fluorescent nuclear track detectors (FNTD) was evaluated and compared to confocal laser scanning microscopy (CLSM). FNTDs were irradiated with an external alpha source and imaged using both methodologies. SIM imaging resulted in improved resolution, without increase in scan time. Alpha particle energy estimation based on the track length, direction and intensity produced results in good agreement with the expected alpha particle energy distribution. A pronounced difference was seen in the spatial scattering of alpha particles in the detectors, where SIM showed an almost 50% reduction compared to CLSM. The improved resolution of SIM allows for more detailed studies of the tracks induced by ionising particles. The combination of SIM and FNTDs for alpha radiation paves the way for affordable and fast alpha spectroscopy and dosimetry. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF ALPHA PARTICLES IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G., E-mail: daniel.verscharen@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: benjamin.chandran@unh.edu
2013-08-20
We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w{sub Parallel-To {alpha}} {approx}> 0.25v{sub A}, where w{sub Parallel-To {alpha}} is the parallel alpha-particle thermal speed and v{sub A} is the Alfven speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w{sub Parallel-To {alpha}}/v{sub A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. Wemore » validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U{sub {alpha}} than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U{sub {alpha}} = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.« less
NASA Astrophysics Data System (ADS)
Bian, Po; Liu, Ping; Wu, Yuejin
Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability
Optical Polarization and Spectral Variability in the M87 Jet
NASA Technical Reports Server (NTRS)
Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Bourque, Matthew; Harris, D. E.; Madrid, Juan P.; Simons, Raymond C.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz;
2011-01-01
During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST -1 shows a highly significant correlation between flux and polarization, with P increasing from approx 20% at minimum to > 40% at maximum, while the orientation of its electric vector stayed constant. HST-l's optical-UV spectrum is very hard (alpha(sub uv-0) approx. 0.5, F(sub v) varies as (v(exp -alpha)), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2alpha upper limits of 0.5 delta parsecs and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ((alpha(sub uv-0) approx. 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.
Analysis of radiation risk from alpha particle component of solar particle events
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.
1994-01-01
The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.
A Novel Experiment to Investigate the Attenuation of Alpha Particles in Air
ERIC Educational Resources Information Center
Andrews, D. G. H.
2008-01-01
A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium…
A method to reproduce alpha-particle spectra measured with semiconductor detectors.
Timón, A Fernández; Vargas, M Jurado; Sánchez, A Martín
2010-01-01
A method is proposed to reproduce alpha-particle spectra measured with silicon detectors, combining analytical and computer simulation techniques. The procedure includes the use of the Monte Carlo method to simulate the tracks of alpha-particles within the source and in the detector entrance window. The alpha-particle spectrum is finally obtained by the convolution of this simulated distribution and the theoretical distributions representing the contributions of the alpha-particle spectrometer to the spectrum. Experimental spectra from (233)U and (241)Am sources were compared with the predictions given by the proposed procedure, showing good agreement. The proposed method can be an important aid for the analysis and deconvolution of complex alpha-particle spectra. Copyright 2009 Elsevier Ltd. All rights reserved.
Alpha particle-induced soft errors in microelectronic devices. I
NASA Astrophysics Data System (ADS)
Redman, D. J.; Sega, R. M.; Joseph, R.
1980-03-01
The article provides a tutorial review and trend assessment of the problem of alpha particle-induced soft errors in VLSI memories. Attention is given to an analysis of the design evolution of modern ICs, and the characteristics of alpha particles and their origin in IC packaging are reviewed. Finally, the process of an alpha particle penetrating an IC is examined.
Development of an alpha/beta/gamma detector for radiation monitoring
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Hatazawa, Jun
2011-11-01
For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.
Development of an alpha/beta/gamma detector for radiation monitoring.
Yamamoto, Seiichi; Hatazawa, Jun
2011-11-01
For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd(2)SiO(5) (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required. © 2011 American Institute of Physics
Development of a three-layer phoswich alpha-beta-gamma imaging detector
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Ishibashi, Hiroyuki
2015-06-01
For radiation monitoring at the sites of such nuclear power plant accidents as Fukushima Daiichi, radiation detectors are needed not only for gamma photons but also for alpha and beta particles because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. In some applications, imaging detectors are required to detect the distribution of plutonium particles that emit alpha particles and radiocesium in foods that emits beta particles and gamma photons. To solve these requirements, we developed an imaging detector that can measure the distribution of alpha and beta particles as well as gamma photons. The imaging detector consists of three-layer scintillators optically coupled to each other and to a position sensitive photomultiplier tube (PSPMT). The first layer, which is made of a thin plastic scintillator (decay time: 5 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol% Ce (decay time: 70 ns) detects gamma photons. Using pulse shape discrimination, the images of these layers can be separated. The position information is calculated by the Anger principle from 8×8 anode signals from the PSPMT. The images for the alpha and beta particles and the gamma photons are individually formed by the pulse shape discriminations for each layer. We detected alpha particle images in the first layer and beta particle images in the second layer. Gamma photon images were detected in the second and third layers. The spatial resolution for the alpha and beta particles was 1.25 mm FWHM and less than 2 mm FWHM for the gamma photons. We conclude that our developed alpha-beta-gamma imaging detector is promising for imaging applications not only for the environmental monitoring of radionuclides but also for medical and molecular imaging.
Thermal and suprathermal protons and alpha particles in the earth's plasma sheet
NASA Technical Reports Server (NTRS)
Ipavich, F. M.; Scholer, M.
1983-01-01
Detailed proton energy spectra in the quasi-stable distant plasma sheet over the energy range from approximately 13 keV to approximately 130 keV are presented. These spectra are compared with spectra of simultaneously measured alpha particles in the energy range from approximately 30 keV/Q to approximately 130 keV/Q. The proton spectra are then extended into the higher energy range up to approximately 1 MeV, thereby supplementing the study of Sarris et al. (1981). The temporal behavior of the spectra in the higher energy range is discussed. It is found that below about 16 keV the proton spectra can be represented by a Maxwellian distribution; above this level, a suprathermal tail is found that cannot be represented by a single power law.
Characterization of Makrofol ® DE 1-1 for alpha particle radiography
NASA Astrophysics Data System (ADS)
El Ghazaly, M.; Aydarous, Abdulkadir; Al-Thomali, Talal A.
2017-09-01
Makrofol ® DE 1-1 (bisphenol-A polycarbonate) was investigated for alpha particle radiography. The edge spread function (ESF) was measured by razor-blade's edge. Makrofol ® DE 1-1 detectors were irradiated with perpendicular incident alpha particles of energy 2.5, 4 and 5.4 MeV, thereafter they were etched in 75% 6N KOH+25% C2H5OH at a temperature of 50 °C for different durations. The etched Makrofol®DE 1-1 detectors were imaged with an optical microscope equipped with a CCD camera. The results revealed that the green channel of the original RGB image provides the highest contrast comparing with red and blue channel by a factor of 27.6% of the original RGB image. The image contrast of alpha particle-irradiated Makrofol®DE 1-1 detector was found to be inversely related to the etching time since the alpha particle tracks proceed from a conical phase to spherical phase. The spatial resolution of alpha particle-irradiated Makrofol®DE 1-1 detector, in terms of line spread function, was found to deteriorate as the etching time increases for all examined alpha particle energies. The results revealed the potential capability of Makrofol®DE 1-1 detector as an efficient detector for alpha particle radiography such as autoradiography.
Alpha voltaic batteries and methods thereof
NASA Technical Reports Server (NTRS)
Jenkins, Phillip (Inventor); Scheiman, David (Inventor); Castro, Stephanie (Inventor); Raffaelle, Ryne P. (Inventor); Wilt, David (Inventor); Chubb, Donald (Inventor)
2011-01-01
An alpha voltaic battery includes at least one layer of a semiconductor material comprising at least one p/n junction, at least one absorption and conversion layer on the at least one layer of semiconductor layer, and at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction in the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the one p/n junction in the layer of semiconductor material.
NASA Technical Reports Server (NTRS)
Mendiratta, M. G.
1973-01-01
Appreciable strength levels were retained to 650 C in a Ti-10Al-1Si alloy aged in the (alpha + alpha sub 2) phase field to yield optimum room temperature strength and ductility. The aging treatment precipitated a uniform distribution of alpha sub 2-particles such that, at room temperature, dislocations bypassed instead of shearing the particles at low strains. Specimens fractured at room temperature exhibited fine uniform dimples even for those aging conditions that imparted no macroscopic ductility. The main crack appeared to propagate through the planar slip bands that had cut through the alpha sub 2-particles. A two-step aging process produced a higher volume fraction of bimodally distributed alpha sub 2-particles that led to higher strength levels at elevated temperatures. Both for the single size and the bimodal alpha sub 2-particle distributions, elevated-temperature deformation structures consisted mainly of planar slip bands that sheared through the alpha sub 2-particles.
Imaging alpha particle detector
Anderson, David F.
1985-01-01
A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
Imaging alpha particle detector
Anderson, D.F.
1980-10-29
A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
Self absorption of alpha and beta particles in a fiberglass filter.
Luetzelschwab, J W; Storey, C; Zraly, K; Dussinger, D
2000-10-01
Environmental air sampling uses fiberglass filters to collect particulate matter from the air and then a gas flow detector to measure the alpha and beta activity on the filter. When counted, the filter is located close to the detector so the alpha and beta particles emerging from the filter travel toward the detector at angles ranging from zero to nearly 90 degrees to the normal to the filter surface. The particles at small angles can readily pass through the filter, but particles at large angles pass through a significant amount of filter material and can be totally absorbed. As a result, counting losses can be great. For 4 MeV alpha particles, the filter used in this experiment absorbs 43% of the alpha particles; for 7.5 MeV alphas, the absorption is 13%. The measured beta activities also can have significant counting losses. Beta particles with maximum energies of 0.2 and 2.0 MeV have absorptions of 44 and 2%, respectively.
Lehnert, B E; Goodwin, E H
1997-01-01
The mechanism(s) by which alpha (alpha) particles like those emitted from inhaled radon and radon progeny cause their carcinogenic effects in the lung remains unclear. Although direct nuclear traversals by alpha-particles may be involved in mediating these outcomes, increasing evidence indicates that a particles can cause alterations in DNA in the absence of direct hits to cell nuclei. Using the occurrence of excessive sister chromatid exchanges (SCE) as an index of DNA damage in human lung fibroblasts, we investigated the hypothesis that alpha-particles may induce DNA damage through the generation of extracellular factors. We have found that a relatively low dose of alpha-particles can result in the generation of extracellular factors, which, upon transfer to unexposed normal human cells, can cause excessive SCE to an extent equivalent to that observed when the cells are directly irradiated with the same irradiation dose. A short-lived, SCE-inducing factor(s) is generated in alpha-irradiated culture medium containing serum in the absence of cells. A more persistent SCE-inducing factor(s), which can survive freeze-thaw and is heat labile is produced by fibroblasts after exposure to the alpha-particles. These results indicate that the initiating target for alpha-particle-induced genetic changes can be larger than a cell's nucleus or even a whole cell. How transmissible factors like those observed here in vitro may extend to the in vivo condition in the context of a-particle-induced carcinogenesis in the respiratory tract remains to be determined. PMID:9400706
Measurement of alpha particle energy using windowless electret ion chambers.
Dua, S K; Kotrappa, P; Srivastava, R; Ebadian, M A; Stieff, L R
2002-10-01
Electret ion chambers are inexpensive, lightweight, robust, commercially available, passive, charge-integrating devices for accurate measurement of different ionizing radiations. In an earlier work a chamber of dimensions larger than the range of alpha particles having aluminized Mylar windows of different thickness was used for measurement of alpha radiation. Correlation between electret mid-point voltage, alpha particle energy, and response was developed and it was shown that this chamber could be used for estimating the effective energy of an unknown alpha source. In the present study, the electret ion chamber is used in the windowless mode so that the alpha particles dissipate their entire energy inside the volume, and the alpha particle energy is determined from the first principles. This requires that alpha disintegration rate be accurately known or measured by an alternate method. The measured energies were within 1 to 4% of the true values for different sources (230Th, 237Np, 239Pu, 241Am, and 224Cm). This method finds application in quantitative determination of alpha energy absorbed in thin membrane and, hence, the absorbed dose.
Luminescence imaging of water during alpha particle irradiation
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki
2016-05-01
The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.
Scholz, V; Weidner, J; Köhnlein, W; Frekers, D; Wörtche, H J
1997-01-01
The yield of single-strand breaks (ssb) and double-strand breaks (dsb) produced by alpha-particles at the end of their track in DNA-films was determined experimentally. Helium nuclei were accelerated to 600 keV in the 400 kV ion accelerator and scattered at a carbon target. The elastically scattered alpha-particles with energies of 344 keV and 485 keV were used to irradiate supercircular plasmid DNA in vacuo. For the dosimetry of the alpha-particles a surface barrier detector was used and the energy distribution of the alpha-particles determined. The energy loss of the particles in the DNA-layer was calculated. DNA samples were separated into the three conformational isomers using agarose gel electrophoresis. After fluorochromation the number of ssb and dsb per plasmid DNA molecule was established from the band intensities assuming the validity of Poisson statistics. Linear dose effect correlations were found for ssb and dsb per plasmid molecule. In the case of 344 keV-alpha-particles the yield of dsb was (8.6 +/- 0.9) x 10(-11) breaks/Gy x dalton. The ratio of ssb/dsb was 0.5 +/- 0.2. This is at least a factor of six larger than the ratio found in experiments with higher energy alpha-particles and from model calculations. Similar experiments with protons yielded a relative biological effectiveness (rbe) value of 2.8 for the induction of double-strand breaks by track end alpha-particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisch, N. J.
2015-12-10
Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a waymore » that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.« less
NASA Astrophysics Data System (ADS)
Fisch, N. J.
2015-12-01
Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.
Autoradiography imaging in targeted alpha therapy with Timepix detector.
A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul
2015-01-01
There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.
Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector
AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul
2015-01-01
There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285
Measurements of geomagnetically trapped alpha particles, 1968-1970. I - Quiet time distributions
NASA Technical Reports Server (NTRS)
Krimigis, S. M.; Verzariu, P.
1973-01-01
Results of observations of geomagnetically trapped alpha particles over the energy range from 1.18 to 8 MeV performed with the aid of the Injun 5 polar-orbiting satellite during the period from September 1968 to May 1970. Following a presentation of a time history covering this entire period, a detailed analysis is made of the magnetically quiet period from Feb. 11 to 28, 1970. During this period the alpha particle fluxes and the intensity ratio of alpha particles to protons attained their lowest values in approximately 20 months; the alpha particle intensity versus L profile was most similar to the proton profile at the same energy per nucleon interval; the intensity ratio was nearly constant as a function of L in the same energy per nucleon representation, but rose sharply with L when computed in the same total energy interval; the variation of alpha particle intensity with B suggested a steep angular distribution at small equatorial pitch angles, while the intensity ratio showed little dependence on B; and the alpha particle spectral parameter showed a markedly different dependence on L from the equivalent one for protons.
In situ chemical analyses of extraterrestrial bodies
NASA Technical Reports Server (NTRS)
Economou, Thanasis E.; Turkevich, Anthony L.
1988-01-01
One of the most important tasks on any sample return mission will have to be a quick sample characterization in order to guarantee a variety of collected samples. An alpha particle instrument with alpha, proton and X-ray modes can provide a quick and almost complete chemical analysis of Mars samples. This instrument is based on three interactions of the alpha particles from a radioactive source with matter: elastic scattering of the alpha particles by nuclei (alpha mode), (alpha,p) nuclear reaction with some light elements (proton mode), and excitation of the atomic structure of atoms by alpha particles, leading to emission of characteristic X-rays of the lunar surface at three sites during the Surveyor mission of 1967 to 1968. Since then the instrument has been improved and miniaturized substantially. As shown in the past, the alpha particle instrument can operate under Martian conditions without any degradation in the performance. The alpha and proton modes can provide vital information about the light elements, while the X-ray mode with its ambient temperature X-ray detector will be useful for the heavier elements. The excitation of the atomic structure is provided by the same alpha radioactive source that is used by alpha and proton modes or by an auxiliary X-ray source that is selected to enhance the sensitivity to some important geochemical elements.
Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos
Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok
2016-01-01
The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure. PMID:26937024
Tawn, E Janet; Janet, E; Whitehouse, Caroline A; Holdsworth, Duncan; De Ruyck, Kim; Vandenbulcke, Katia; Thierens, Hubert
2008-06-01
To investigate the profiles of chromosome damage induced in vitro by exposure to alpha-particles and gamma-rays. Human peripheral blood lymphocytes were exposed to three dose regimes: alpha-particle doses of 0.2 and 0.5 Gy and a gamma-ray dose of 1.5 Gy. After culturing for 47 hours, chromosome aberrations involving the number 5 chromosomes were identified using a multi-coloured banding (mBAND) technique. Analysis of the frequencies of chromosome 5 breaks within aberrant cells and within aberrant number 5 chromosomes demonstrated that alpha-particle irradiation is more likely to result in multiple breaks in a chromosome than gamma-irradiation. Additionally, overdispersion was observed for all doses for the distribution of breaks amongst all cells analysed and breaks amongst total number 5 chromosomes, with this being greatest for the 0.2 Gy alpha-particle dose. The ratio of interchanges to intrachanges (F ratio) was 1.4 and 2.4 for 0.2 and 0.5 Gy alpha-particles respectively and 5.5 for 1.5 Gy gamma-rays. Evaluation of simple versus complex exchanges indicated ratios of 1.9 and 2.7 for 0.2 and 0.5 Gy alpha-particles respectively and 10.6 for 1.5 Gy gamma-rays. The majority of the intrachanges involving chromosomes 5 induced by alpha-particle radiation were associated with more complex exchanges. This study has confirmed that exchanges induced by exposure to high linear energy transfer (LET) alpha-particle radiation comprise a greater proportion of intrachanges than those induced by exposure to low LET gamma-rays. However, since the majority of these are associated with complex rearrangements and likely to be non-transmissible, this limits their applicability as a marker of past in vivo exposure.
Alpha particle spectrometry using superconducting microcalorimeters
NASA Astrophysics Data System (ADS)
Horansky, Robert; Ullom, Joel; Beall, James; Hilton, Gene; Stiehl, Gregory; Irwin, Kent; Plionis, Alexander; Lamont, Stephen; Rudy, Clifford; Rabin, Michael
2009-03-01
Alpha spectrometry is the preferred technique for analyzing trace samples of radioactive material because the alpha particle flux can be significantly higher than the gamma-ray flux from nuclear materials of interest. Traditionally, alpha spectrometry is performed with Si detectors whose resolution is at best 8 keV FWHM. Here, we describe the design and operation of a microcalorimeter alpha detector with an energy resolution of 1.06 keV FWHM at 5 MeV. We demonstrate the ability of the microcalorimeter to clearly resolve the alpha particles from Pu-239 and Pu-240, whose ratio differentiates reactor-grade Pu from weapons-grade. We also show the first direct observation of the decay of Po-209 to the ground state of Pb-205 which has traditionally been obscured by a much stronger alpha line 2 keV away. Finally, the 1.06 keV resolution observed for alpha particles is far worse than the 0.12 keV resolution predicted from thermal fluctuations and measurement of gamma-rays. The cause of the resolution degradation may be ion damage in the tin. Hence, alpha particle microcalorimeters may provide a novel tool for studying ion damage and lattice displacement energies in bulk materials.
2008-04-01
lamellae which had not fully globularized by the warm working operation. These ‘dog- leg ’ shaped particles (e.g., those marked by arrows in Figure 1c...the micrograph. Those particles consisting of a ‘dog- leg ’ geometry were counted as being 1.5 particles in number to provide an approximate estimate...0.95 1.00 1.05 1.10 1000/T(K) Beta Transus (995C) lo g (A D , m 2 / s) d = d d = d Q=160 kJ/mol Q=284 kJ/mol n=1.67 p=2 DV DAl DTi 47
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozzi, Roberta; De Berardis, Barbara; Paoletti, Luigi
2005-11-15
Epidemiological data show an association between exposure to elevated levels of particulate matter (PM), in particular the fine fraction (<2.5{mu}m in diameter), and an increase in cardiovascular mortality and respiratory symptoms. The aim of this study was to compare the in vitro toxicity of coarse and fine particulate matter collected with a cascade impactor during winter in an urban area of Rome in relation to their physicochemical characterization (size distribution and chemical composition) as assessed by analytical electron microscopy (SEM/EDX). The X-ray microanalysis data of single particles of coarse and fine matter were analyzed by hierarchical cluster analysis to determinemore » the principal component of the two granulometric fractions. The main chemical difference between the two fractions was the greater abundance of carbonaceous particles in the fine fraction. We compared the ability of coarse and fine fractions, carbon black (CB), and residual oil fly ash (ROFA) to induce arachidonic acid release and tumor necrosis factor-{alpha} (TNF-{alpha}) production in the monocytic-macrophagic RAW 264.7 cell line at concentrations of 30 and 120{mu}g/mL. Our results showed that CB and ROFA were consistently less effective than both fractions of urban particles at inducing an inflammatory reaction in RAW 264.7 cells. Both PM fractions dose-dependently increased TNF-{alpha} production in RAW 264.7 cells after 5 and 24h of incubation, and only the TNF-{alpha} production induced by coarse particles at 30{mu}g/mL decreased significantly (P<0.01) after 24h of treatment. In our in vitro model the winter fine fraction was more reactive than the winter coarse fraction, in contrast to a previously examined summer sample. In the summer sample, coarse particles produced higher levels of inflammatory mediators than fine particles and the CB was consistently less effective than the urban particles. The different behaviors between summer and winter urban fractions may be due to their different physicochemical characteristics; in fact, the comparison of the two samples' characterization by SEM/EDX and X-ray photoelectron spectroscopy (XPS) analysis showed that in winter the carbonaceous particles are more abundant than in summer and that winter particles carry a greater quantity of organic compounds. We suggest that the higher concentration of organic compounds on fine carbonaceous particles may partially explain the higher activation of RAW 264.7 cells by fine particles.« less
Actinium-225 in targeted alpha-particle therapeutic applications
Scheinberg, David A.; McDevit, Michael R.
2017-01-01
Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium-225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day half-life; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer. PMID:22202153
Extrusion and rheology of fine particulate ceramic pastes
NASA Astrophysics Data System (ADS)
Mazzeo, Fred Anthony
A rheological study was conducted on an extruded blend of two alumina powders, Alcoa A-3500-SG and Reynolds ERC. These extruded blends were mixed in four compositions, varying in distribution modulus. This work focuses on the interaction of the composition components, mainly particle size distribution and amount of water at a constant binder amount. The rheological parameters of extruded pastes, Sigma, Tau, alpha and beta, were determined by using capillary rheometry modeling by the methodology set forth by Benbow and Bridgwater. This methodology makes use of capillary rheometer to determine extrusion parameters, which describe the flow behavior of a paste. The parameter values are indirectly determined by extrapolating high shear rate information obtained by the extrusion process. A goal of this research was to determine fundamental rheological properties directly from fundamental rheological equations of state. This was accomplished by assessing the material properties by using a dynamic stress rheometer. The rheological parameters used in this study to characterize the paste are elastic modulus, viscosity, tan delta, and relaxation time. This technique approaches a step closer in understanding the microstructural influence on flow behavior of a paste. This method directly determines rheological properties by using linear viscoelastic theory, giving a quantitative analysis of material properties. A strong correlation between the elastic modulus and sigma, and viscosity and alpha is shown to exist, indicating a relationship between these two techniques. Predictive process control methodology, based on particle packing modeling, quantitatively determined structural parameters useful in evaluating a composition. The determined parameters are: distribution modulus, interparticle separation distance, porosity, and particle crowding index, which are important to understand the extrudates packed state. A connection between the physical structure of the extrudate and its rheological behavior, can lead to a better understanding of what conditions and parameters are necessary to characterize the extrusion process. This study shows how particle packing and particle size influences the rheological behavior of the paste. Results showed that an optimally packed system was found to occur at a distribution modulus of 0.51. This system was determined both experimentally and quantitatively to exhibit the lowest porosity at any water content. The 0.51 system required a lower amount of water to extrude and the parameters of both rheological techniques agreed well, in which all parameters are influenced by the packing state of the paste, and a consistent trend was generally found. The capillary rheometry results can be explained by the strong interaction of particles that occurs at high shear rates. The dynamic stress rheometer results can be explained by the particle packing characteristics, interparticle separation distance and particle-crowding index, and the capillary forces between particles. The excess amount of liquid that is present in the structure decreases the role of the capillary attraction between particles and an increase in the particle size role on the rheological behavior of the pastes occurs.
Alessio, Nicola; Esposito, Giuseppe; Galano, Giovanni; De Rosa, Roberto; Anello, Pasquale; Peluso, Gianfranco; Tabocchini, Maria Antonella; Galderisi, Umberto
2017-09-01
The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The effects of proton exposure on neurochemistry and behavior
NASA Technical Reports Server (NTRS)
Shukitt-Hale, B.; Szprengiel, A.; Pluhar, J.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, alpha particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints. Published by Elsevier Ltd on behalf of COSPAR.
Long range alpha particle detector
MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.
1993-01-01
An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.
Long range alpha particle detector
MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.
1993-02-02
An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.
Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham J. Fetterman and Nathaniel J. Fisch
Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.
Measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys
NASA Technical Reports Server (NTRS)
Buchheit, Rudolph G., Jr.; Stoner, Glenn E.
1990-01-01
Like most heat treatable aluminum alloys, localized corrosion and stress corrosion of Al-Li-Cu alloys is strongly dependent on the nature and distribution of second phase particles. To develop a mechanistic understanding of the role of localized corrosion in the stress corrosion process, bulk samples of T(sub 1) (Al2CuLi) and a range of Al-Cu-Fe impurity phases were prepared for electrochemical experiments. Potentiodynamic polarization and galvanic couple experiments were performed in standard 0.6 M NaCl and in simulated crevice solutions to assess corrosion behavior of these particles with respect to the alpha-Al matrix. A comparison of time to failure versus applied potential using a constant load, smooth bar SCC test technique in Cl(-), Cl(-)/CrO4(2-), and Cl(-)/CO3(2-) environments shows that rapid failures are to be expected when applied potentials are more positive than the breakaway potential (E sub br) of T(sub 1) (crack tip) but less than E(sub br) of alpha-Al (crack walls). It is shown that this criterion is not satisfied in aerated Cl(-) solutions. Accordingly, SCC resistance is good. This criterion is satisfied, however, in an alkaline isolated fissure exposed to a CO2 containing atmosphere. Rapid failure induced by these fissures was recently termed preexposure embrittlement. Anodic polarization shows that the corrosion behavior of T(sub 1) is relatively unaffected in alkaline CO3(2-) environments but the alpha-Al phase is rapidly passivated. X ray diffraction of crevice walls from artificial crevices suggests that passivation of alpha-Al occurs as hydrotalcite-type compound (LiAl2(OH)6)2(+) - CO3(2-) - nH2O.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... For the purposes of monitoring for gross alpha particle activity, radium-226, radium-228, uranium, and... monitoring: Systems must conduct initial monitoring for gross alpha particle activity, radium-226, radium-228...) For gross alpha particle activity, uranium, radium-226, and radium-228 monitoring, the State may waive...
NASA Astrophysics Data System (ADS)
Malmi Kakkada, Abdul; Li, Xin; Samanta, Himadri S.; Sinha, Sumit; Thirumalai, Dave
2018-02-01
Collective migration dominates many phenomena, from cell movement in living systems to abiotic self-propelling particles. Focusing on the early stages of tumor evolution, we enunciate the principles involved in cell dynamics and highlight their implications in understanding similar behavior in seemingly unrelated soft glassy materials and possibly chemokine-induced migration of CD8$^{+}$ T cells. We performed simulations of tumor invasion using a minimal three dimensional model, accounting for cell elasticity and adhesive cell-cell interactions as well as cell birth and death to establish that cell growth rate-dependent tumor expansion results in the emergence of distinct topological niches. Cells at the periphery move with higher velocity perpendicular to the tumor boundary, while motion of interior cells is slower and isotropic. The mean square displacement, $\\Delta(t)$, of cells exhibits glassy behavior at times comparable to the cell cycle time, while exhibiting super-diffusive behavior, $\\Delta (t) \\approx t^{\\alpha}$ ($\\alpha > 1$), at longer times. We derive the value of $\\alpha \\approx 1.33$ using a field theoretic approach based on stochastic quantization. In the process we establish the universality of super-diffusion in a class of seemingly unrelated non-equilibrium systems. Super diffusion at long times arises only if there is an imbalance between cell birth and death rates. Our findings for the collective migration, which also suggests that tumor evolution occurs in a polarized manner, are in quantitative agreement with {\\it in vitro} experiments. Although set in the context of tumor invasion the findings should also hold in describing collective motion in growing cells and in active systems where creation and annihilation of particles play a role.
Nature of alpha and beta particles in glycogen using molecular size distributions.
Sullivan, Mitchell A; Vilaplana, Francisco; Cave, Richard A; Stapleton, David; Gray-Weale, Angus A; Gilbert, Robert G
2010-04-12
Glycogen is a randomly hyperbranched glucose polymer. Complex branched polymers have two structural levels: individual branches and the way these branches are linked. Liver glycogen has a third level: supramolecular clusters of beta particles which form larger clusters of alpha particles. Size distributions of native glycogen were characterized using size exclusion chromatography (SEC) to find the number and weight distributions and the size dependences of the number- and weight-average masses. These were fitted to two distinct randomly joined reference structures, constructed by random attachment of individual branches and as random aggregates of beta particles. The z-average size of the alpha particles in dimethylsulfoxide does not change significantly with high concentrations of LiBr, a solvent system that would disrupt hydrogen bonding. These data reveal that the beta particles are covalently bonded to form alpha particles through a hitherto unsuspected enzyme process, operative in the liver on particles above a certain size range.
NASA Technical Reports Server (NTRS)
Tkalcevic, S.
1982-01-01
The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.
Method of and apparatus for measuring the mean concentration of thoron and/or radon in a gas mixture
Lucas, Henry
1990-01-01
A method of and an apparatus for detecting and accurately measuring the mean concentrations of .sup.222 Rn and .sup.220 Tn in a gas mixture, such as the ambient atmosphere in a mine, is provided. The apparatus includes an alpha target member which defines at least one operative target surface and which is preferably fabricated from a single piece of an alpha particle sensitive material. At least one portion of the operative target surface is covered with an alpha particle filter. The uncovered and filter covered operative surface is exposed to the gas mixture containing the .sup.222 Rn and .sup.220 Tn. In the radioactive decay series of these isotopes the maximum kinetic energy emitted by the alpha decay of .sup.222 Rn is about 1.1 MeV less than the maximum kinetic energy emitted by the alpha decay of a .sup.220 Tn. The alpha particle filter has a predetermined mass per unit area of the covered portion of the operative target surface that prevents penetration of alpha particles which originate from .sup.222 Rn decay, but which allows passage therethrough of the maximum kinetic energy alpha particles from .sup.220 Tn decay. Thus, a count of the alpha particle tracks in the uncovered portion of the target member is proportional to the mean concentration of sum of .sup.222 Rn and .sup.220 Tn in the gas mixture, while the count of alpha tracks in the target member under the filter is proportional to the concentration of only the .sup.220 Tn in the gas mixture.
WIND measurements of proton and alpha particle flow and number density
NASA Technical Reports Server (NTRS)
Steinberg, J. T.; Lazarus, A. J.; Ogilvie, J. T.; Lepping, R.; Byrnes, J.; Chornay, D.; Keller, J.; Torbert, R. B.; Bodet, D.; Needell, G. J.
1995-01-01
We propose to review measurements of the solar wind proton and alpha particle flow velocities and densities made since launch with the WIND SWE instrument. The SWE Faraday cup ion sensors are designed to be able to determine accurately flow vector directions, and thus can be used to detect proton-alpha particle differential flow. Instances of differential flow, and the solar wind features with which they are associated will be discussed. Additionally, the variability of the percentage of alpha particles as a fraction of the total solar wind ion density will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funaki, Y.; Horiuchi, H.; International Institute for Advanced Studies, Kizugawa 619-0225
2008-06-15
At low densities, with decreasing temperatures, in symmetric nuclear matter {alpha} particles are formed, which eventually give raise to a quantum condensate with four-nucleon {alpha}-like correlations (quartetting). Starting with a model of {alpha} matter, where undistorted {alpha} particles interact via an effective interaction such as the Ali-Bodmer potential, the suppression of the condensate fraction at zero temperature with increasing density is considered. Using a Jastrow-Feenberg approach, it is found that the condensate fraction vanishes near saturation density. Additionally, the modification of the internal state of the {alpha} particle due to medium effects will further reduce the condensate. In finite systems,more » an enhancement of the S-state wave function of the center-of-mass orbital of {alpha}-particle motion is considered as the correspondence to the condensate. Wave functions have been constructed for self-conjugate 4n nuclei that describe the condensate state but are fully antisymmetrized on the nucleonic level. These condensate-like cluster wave functions have been successfully applied to describe properties of low-density states near the n{alpha} threshold. Comparison with orthogonality condition model calculations in {sup 12}C and {sup 16}O shows strong enhancement of the occupation of the S-state center-of-mass orbital of the {alpha} particles. This enhancement is decreasing if the baryon density increases, similar to the density-induced suppression of the condensate fraction in {alpha} matter. The ground states of {sup 12}C and {sup 16}O show no enhancement at all, thus a quartetting condensate cannot be formed at saturation densities.« less
NASA Technical Reports Server (NTRS)
Smialek, James L.; Garg, Anita
2010-01-01
The surface structure of scales formed on Ni(Pt)Al coatings was characterized by SEM/EDS/BSE in plan view. Two nominally identical {100} samples of aluminide coated CMSX4 single crystal were oxidized at 1150 C for 2000 1-h cycles and were found to produce somewhat disparate behavior. One sample, with less propensity for coating grain boundary ridge deformation, presented primarily alpha-Al2O3 scale structures, with minimal weight loss and spallation. The original scale structure, still retained over most of the sample, consisted of the classic theta-alpha transformation-induced ridge network structure, with approx. 25 nm crystallographic steps and terraces indicative of surface rearrangement to low energy alumina planes. The scale grain boundary ridges were often decorated with a fine, uniform distribution of (Hf,Ti)O2 particles. Another sample, producing steady state weight losses, exhibited much interfacial spallation and a complex assortment of different structures. Broad areas of interfacial spalling, crystallographically-faceted (Ni,Co)(Al,Cr)2O4 spinel, with an alpha-Al2O3 base scale, were the dominant features. Other regions exhibited nodular spinel grains, with fine or (Ta,Ti)-rich (rutile) particles decorating or interspersed with the spinel. While these features were consistent with a coating that presented more deformation at extruded grain boundaries, the root cause of the different behavior between the duplicate samples could not be conclusively identified.
Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events
NASA Technical Reports Server (NTRS)
Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.
1988-01-01
This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.
Diffusion bonding of Ti-48Ni-2Mn-2Nb (at.%)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, S.P.; Strangwood, M.; Threadgill, P.L.
The diffusion bonding behavior of Ti-48at. % Al-2at. % Mn-2at. %Nb has been studied as a function of temperature (in the range 1,200--1,350C), time (15--45 minutes) and starting microstructure (lamellar, duplex and near {gamma}) at constant bonding pressure of 10 MPa. It was found, that under the above conditions, small twin related {gamma} grains, approximately 10-20 {mu}m in size, nucleated at the original interface and grew into the matrix forming a double necklace grain structure. Particles of {alpha}{sub 2} were observed around the interface, the formation of {alpha}{sub 2} particles was believed to be related to oxygen partitioning and stabilizationmore » effects from dissolved oxide films during the bonding process. Evidence for this mechanism was obtained from parallel electron energy loss spectroscopy (PEELS), which identified oxygen partitioning in the (X2) particles. For the fully lamellar structure bonded at 1,250 C for 45 minutes the failure strength of the bond was found to be 250 MPa, approximately 50 MPa lower than the failure strength of the base material.« less
Priest, N D
2007-09-01
Data on the distribution and redistribution patterns in the laboratory rat of three trivalent elements with a similar ionic radius have been compared. This showed that these distributions for the two ions with the same ionic radius (111 pm), i.e., those of promethium (a lanthanoid) and curium (an actinoid), were indistinguishable and that americium, with a slightly larger ion size (111.5 pm), behaved similarly. The results are consistent with the suggestion that ion size is the only important factor controlling the deposition and redistribution patterns of trivalent lanthanoids and actinoids in rats. The result is important because it suggests that the same radiological protection dosimetry models should be used for trivalent actinoids and lanthanoids, that human volunteer data generated for lanthanoid isotopes can be used to predict the behavior of actinoids with the same ion size, and that appropriate pairs of beta-particle-emitting lanthanoid and alpha-particle-emitting actinoids could be used to study the relative toxicity of alpha and beta particles in experimental animals.
Crompton, Anita J.; Jenkins, Alex
2018-01-01
The United Kingdom (UK) has a significant legacy of nuclear installations to be decommissioned over the next 100 years and a thorough characterisation is required prior to the development of a detailed decommissioning plan. Alpha radiation detection is notoriously time consuming and difficult to carry out due to the short range of alpha particles in air. Long-range detection of alpha particles is therefore highly desirable and this has been attempted through the detection of secondary effects from alpha radiation, most notably the air-radioluminescence caused by ionisation. This paper evaluates alpha induced air radioluminescence detectors developed to date and looks at their potential to develop a stand-off, alpha radiation detector which can be used in the nuclear decommissioning field in daylight conditions to detect alpha contaminated materials. PMID:29597340
Generalized clustering conditions of Jack polynomials at negative Jack parameter {alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernevig, B. Andrei; Department of Physics, Princeton University, Princeton, New Jersey 08544; Haldane, F. D. M.
We present several conjectures on the behavior and clustering properties of Jack polynomials at a negative parameter {alpha}=-(k+1/r-1), with partitions that violate the (k,r,N)- admissibility rule of [Feigin et al. [Int. Math. Res. Notices 23, 1223 (2002)]. We find that the ''highest weight'' Jack polynomials of specific partitions represent the minimum degree polynomials in N variables that vanish when s distinct clusters of k+1 particles are formed, where s and k are positive integers. Explicit counting formulas are conjectured. The generalized clustering conditions are useful in a forthcoming description of fractional quantum Hall quasiparticles.
Alpha-particle emission probabilities of ²³⁶U obtained by alpha spectrometry.
Marouli, M; Pommé, S; Jobbágy, V; Van Ammel, R; Paepen, J; Stroh, H; Benedik, L
2014-05-01
High-resolution alpha-particle spectrometry was performed with an ion-implanted silicon detector in vacuum on a homogeneously electrodeposited (236)U source. The source was measured at different solid angles subtended by the detector, varying between 0.8% and 2.4% of 4π sr, to assess the influence of coincidental detection of alpha-particles and conversion electrons on the measured alpha-particle emission probabilities. Additional measurements were performed using a bending magnet to eliminate conversion electrons, the results of which coincide with normal measurements extrapolated to an infinitely small solid angle. The measured alpha emission probabilities for the three main peaks - 74.20 (5)%, 25.68 (5)% and 0.123 (5)%, respectively - are consistent with literature data, but their precision has been improved by at least one order of magnitude in this work. © 2013 Published by Elsevier Ltd.
Misdaq, M A; Aitnouh, F; Khajmi, H; Ezzahery, H; Berrazzouk, S
2001-08-01
A Monte Carlo computer code for determining detection efficiencies of the CR-39 and LR-115 II solid-state nuclear track detectors (SSNTD) for alpha-particles emitted by the uranium and thorium series inside different natural material samples was developed. The influence of the alpha-particle initial energy on the SSNTD detection efficiencies was investigated. Radon (222Rn) and thoron (220Rn) alpha-activities per unit volume were evaluated inside and outside the natural material samples by exploiting data obtained for the detection efficiencies of the SSNTD utilized for the emitted alpha-particles, and measuring the resulting track densities. Results obtained were compared to those obtained by other methods. Radon emanation coefficients have been determined for some of the considered material samples.
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Nixon, Robert H. (Inventor); Soli, George A. (Inventor); Blaes, Brent R. (Inventor)
1995-01-01
A method for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. A technique utilizing test structures to quickly and inexpensively characterize the SEU sensitivity of standard cell latches intended for use in a space environment. This bench-level approach utilizes alpha particles to induce upsets in a low LET sensitive 4-k bit test SRAM. This SRAM consists of cells that employ an offset voltage to adjust their upset sensitivity and an enlarged sensitive drain junction to enhance the cell's upset rate.
Hunt, J G; Watchman, C J; Bolch, W E
2007-01-01
Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D microCT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo--VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windl, Wolfgang; Blue, Thomas
In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling tomore » understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.« less
Elgqvist, Jörgen; Timmermand, Oskar Vilhelmsson; Larsson, Erik; Strand, Sven-Erik
2016-01-01
The purpose of the present study was to investigate the radiosensitivity of the prostate cancer cell lines LNCaP, DU145, and PC3 when irradiated with beta particles emitted from (177)Lu, and to compare the effect with irradiation using alpha particles or gamma rays. Cells were irradiated with beta particles emitted from (177)Lu, alpha particles from (241)Am, or gamma rays from (137)Cs. A non-specific polyclonal antibody was labeled with (177)Lu and used to irradiate cells in suspension with beta particles. A previously described in-house developed alpha-particle irradiator based on a (241)Am source was used to irradiate cells with alpha particles. External gamma-ray irradiation was achieved using a standard (137)Cs irradiator. Cells were irradiated to absorbed doses equal to 0, 0.5, 1, 2, 4, 6, 8, or 10 Gy. The absorbed doses were calculated as mean absorbed doses. For evaluation of cell survival, the tetrazolium-based WST-1 assay was used. After irradiation, WST-1 was added to the cell solutions, incubated, and then measured for level of absorbance at 450 nm, indicating the live and viable cells. LNCaP, DU145, and PC3 cell lines all had similar patterns of survival for the different radiation types. No significant difference in surviving fractions were observed between cells treated with beta-particle and gamma-ray irradiation, represented for example by the surviving fraction values (mean±SD) at 2, 6, and 10 Gy (SF2, SF6, and SF10) for DU145 after beta-particle irradiation: 0.700±0.090, 0.186±0.050 and 0.056±0.010, respectively. A strong radiosensitivity to alpha particles was observed, with SF2 values of 0.048±0.008, 0.018±0.006 and 0.015±0.005 for LNCaP, DU145, and PC3, respectively. The surviving fractions after irradiation using beta particles or gamma rays did not differ significantly at the absorbed dose levels and dose rates used. Irradiation using alpha particles led to a high level of cell killing. The results show that the beta-particle emitter (177)Lu as well as alpha-particles are both good candidates for radionuclide-therapy applications in the treatment of prostate cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Alpha-particle spectrometer experiment
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Bjorkholm, P.
1972-01-01
Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.
A history of nuclear transmutations by natural alpha particles
NASA Astrophysics Data System (ADS)
Leone, Matteo
2005-11-01
A systematic account of the use of alpha particles up to the 1930s for promoting the disintegration of atoms is here provided. As will be shown, a number of different radium family alpha sources were used in the experiments that led to the discoveries of the proton (Rutherford E 1919 Phil. Mag. 37 581-7) and neutron (Chadwick J 1932 Nature 129 312). The reasons leading to the employment of a particular alpha particle source, as well as the relationship between these sources and the available methods of recording, will be closely addressed.
Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells
NASA Technical Reports Server (NTRS)
Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.
1995-01-01
We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).
Durante, M; Grossi, G F; Gialanella, G; Pugliese, M; Nappo, M; Yang, T C
1995-08-01
We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS)
TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.
Das, Achintya; Duttagupta, Siddhartha P
2015-12-01
There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Scholer, M.; Ipavich, F. M.; Gloeckler, G.
1981-01-01
Two beamlike particle events (30 keV/charge to 160 keV/charge) upstream of the earth's bow shock have been investigated with the Max-Planck-Institut/University of Maryland ultralow energy and charge analyzer on ISEE 1. These beams consist of protons as well as of alpha particles, and the spectra are generally steep and are decreasing with increasing energy. During one event the spectra of both protons and alpha particles have a maximum at approximately 65 keV/charge. During these events, the interplanetary magnetic field through the satellite position was almost tangent to the bow shock, and application of the theory of acceleration predicts acceleration of a solar wind particle up to 60 keV/nucleon in a single reflection. The observation of reflected protons as well as alpha particles has implications for the physical reflection process usually not discussed in acceleration theories.
Mechanical properties and microstructures of glass-ionomer cements.
Xie, D; Brantley, W A; Culbertson, B M; Wang, G
2000-03-01
The objective of this study was to determine the flexural strength (FS), compressive strength (CS), diametral tensile strength (DTS), Knoop hardness (KHN) and wear resistance of ten commercial glass-ionomer cements (GICs). The fracture surfaces of these cements were examined using scanning electron microscopic (SEM) techniques to ascertain relationships between the mechanical properties and microstructures of these cements. Specimens were fabricated according to the instructions from each manufacturer. The FS, CS, DTS, KHN and wear rate were measured after conditioning the specimens for 7 d in distilled water at 37 degrees C. One-way analysis of variance with the post hoc Tukey-Kramer multiple range test was used to determine which specimen groups were significantly different for each test. The fracture surface of one representative specimen of each GIC from the FS tests was examined using a scanning electron microscope. The resin-modified GICs (RM GICs) exhibited much higher FS and DTS, not generally higher CS, often lower Knoop hardness and generally lower wear resistance, compared to the conventional GICs (C GICs). Vitremer (3M) had the highest values of FS and DTS; Fuji II LC (GC International) and Ketac-Molar (ESPE) had the highest CS; Ketac-Fil (ESPE) had the highest KHN. Ketac-Bond (ESPE) had the lowest FS; alpha-Silver (DMG-Hamburg) had the lowest CS. Four GICs (alpha-Fil (DMG-Hamburg), alpha-Silver, Ketac-Bond and Fuji II) had the lowest values of DTS, which were not significantly different from each other; alpha-Silver and Ketac-Silver had the lowest values of KHN. The highest wear resistance was exhibited by alpha-Silver and Ketac-Fil; F2LC had the lowest wear resistance. The C GICs exhibited brittle behavior, whereas the RM GICs underwent substantial plastic deformation in compression. The more integrated the microstructure, the higher were the FS and DTS. Higher CS was correlated with smaller glass particles, and higher KHN was found where there was a combination of smaller glass particles and lower porosity. Larger glass particle sizes and a more integrated microstructure contributed to a higher wear resistance. The mechanical properties of GICs were closely related to their microstructures. Factors such as the integrity of the interface between the glass particles and the polymer matrix, the particle size, and the number and size of voids have important roles in determining the mechanical properties.
Alpha particles diffusion due to charge changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R.
2015-12-15
Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processormore » unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.« less
Effect of alpha-particle irradiation on the electrical properties of n-type Ge
NASA Astrophysics Data System (ADS)
Roro, K. T.; Janse van Rensburg, P. J.; Auret, F. D.; Coelho, S.
2009-12-01
Deep-level transient spectroscopy was used to investigate the effect of alpha particle irradiation on the electrical properties of n-type Ge. The samples were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radionuclide source. The main defects introduced were found to be electron traps with energy levels at EC-0.38, EC-0.21, EC-0.20, EC-0.15, and EC-0.10 eV, respectively. The main defects in alpha particle irradiation are similar to those introduced by MeV electron irradiation, where the main defect is the E-center. A quadratic increase in concentration as a function of dose is observed.
NASA Astrophysics Data System (ADS)
Tanguay, Jesse; Benard, Francois; Celler, Anna; Ruth, Thomas; Schaffer, Paul
2017-03-01
Attaching alpha-emitting radionuclides to cancer-targeting agents increases the anti-tumor effects of targeted cancer therapies. The success of alpha therapy for treating bone metastases has increased interest in using targeted alpha therapy (TAT) to treat a broad spectrum of metastatic cancers. Estimating radiation doses to targeted tumors, including small (<250 μm) clusters of cancer cells, and to non-targeted tissues is critical in the pre-clinical development of TATs. However, accurate quantification of heterogeneous distributions of alpha-emitters in small metastases is not possible with existing pre-clinical in-vivo imaging systems. Ex-vivo digital autoradiography using a scintillator in combination with an image intensifier and a charged coupled device (CCD) has gained interest for pre-clinical ex-vivo alpha particle imaging. We present a simulation-based analysis of the fundamental spatial resolution limits of digital autoradiography systems. Spatial resolution was quantified in terms of the modulation transfer function (MTF) and Wagner's equivalent aperture. We modeled systems operating in either particle-counting (PC) or energy-integrating (EI) mode using a cascaded systems approach that accounts for: 1) the stopping power of alpha particles; 2) the distance alpha particles travel within the scintillator; 3) optical blur, and; 4) binning in detector elements. We applied our analysis to imaging of astatine-211 using an LYSO scintillator with thickness ranging from 10 μm to 20 μm. Our analysis demonstrates that when these systems are operated in particle-counting mode with a centroid-calculation algorithm, the effective apertures of 35 μm can be achieved, which suggests that digital autoradiography may enable quantifying the uptake of alpha emitters in tumors consisting of a few cancer cells. Future work will investigate the image noise and energy-resolution properties of digital autoradiography systems.
Modelling and Dosimetry for Alpha-Particle Therapy
Sgouros, George; Hobbs, Robert F.; Song, Hong
2015-01-01
As a consequence of the high potency and short range of alpha-particles, radiopharmaceutical therapy with alpha-particle emitting radionuclides is a promising treatment approach that is under active pre-clinical and clinical investigation. To understand and predict the biological effects of alpha-particle radiopharmaceuticals, dosimetry is required at the micro or multi-cellular scale level. At such a scale, highly non-uniform irradiation of the target volume may be expected and the utility of a single absorbed dose value to predict biological effects comes into question. It is not currently possible to measure the pharmacokinetic input required for micro scale dosimetry in humans. Accordingly, pre-clinical studies are required to provide the pharmacokinetic data for dosimetry calculations. The translation of animal data to the human requires a pharmacokinetic model that links macro- and micro-scale pharmacokinetics thereby enabling the extrapolation of micro-scale kinetics from macroscopic measurements. These considerations along with a discussion of the appropriate physical quantity and related units for alpha-particle radiopharmaceutical therapy are examined in this review. PMID:22201712
Shielding of manned space vehicles against protons and alpha particles
NASA Technical Reports Server (NTRS)
Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.
1972-01-01
The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.
The effect of particle size on the dehydration/rehydration behaviour of lactose.
Crisp, J L; Dann, S E; Edgar, M; Blatchford, C G
2010-05-31
Ethanolic suspensions of spray dried and micronized alpha lactose monohydrate (L(alpha)xH(2)O) with average particle size between 3 and 200 microm, have been prepared and their dehydration behaviour was investigated by (13)C CP-MASNMR spectroscopy. Sub-micron lactose suspension prepared by a novel high pressure homogenisation method has been compared with the standard ethanolic suspensions of (L(alpha).H(2)O prepared by reflux or static room temperature methods. In all cases, suspensions were shown to contain the stable anhydrous form of lactose ((L(alpha)(S)). Several approaches were employed to remove ethanol from these suspensions and the resulting dry lactose powders were then analysed by FT-IR, PXRD and SEM to evaluate the effect of drying procedure on type and distribution of lactose polymorphs and particle size. For samples with mean particle size greater than 1 microm, the stable anhydrous polymorphic form of lactose was retained on removal of the ethanol, although differences in the morphology and particle size of the crystals were apparent depending on method of suspension formation. Sub-micron (L(alpha)(S), while stable in dry conditions, has been shown to be less stable to atmospheric water vapour than (L(alpha)(S) with particle size between 3 and 200 microm. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil
2014-01-01
Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.
2007-04-19
These levels are provided to assist in making decisions in case of a large accident. Assessment can be made based on what health effects can be...a beta particle to become polonium -214 (99.98% of decays), or it can emit an alpha particle to become thallium- 210 (0.02% of decays). Bismuth-214...lead- 210 , and polonium - 210 . A decay of bismuth-214 will eventually yield 5 alpha particles and 4 beta particles. Four radionuclides that occur in
Lee, Dongyoul; Li, Mengshi; Bednarz, Bryan; Schultz, Michael K
2018-06-26
The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 ( 212 Pb), actinium-225 ( 225 Ac) and bismuth-213 ( 213 Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 ( 90 Y) and lutetium-177 ( 177 Lu) and an Auger-electron-emitting radionuclide indium-111 ( 111 In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, 212 Pb and 213 Bi decay series produced S-values that were 50- to 120-fold higher than 177 Lu, while 225 Ac decay series analysis suggested S-values that were 240- to 520-fold higher than 177 Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus when compared to 0% internalization. The tumor dosimetry model defines the relative merit of radionuclides and suggests alpha particles may be effective for large tumors as well as small tumor metastases. These results from PHITS modeling substantiate emerging evidence that alpha-particle-emitting radionuclides may be an effective alternative to beta-particle-emitting radionuclides for targeted radionuclide therapy due to preferred dose-deposition profiles in the cellular and tumor metastasis context. These results further suggest that internalization of alpha-particle-emitting radionuclides via radiolabeled ligands may increase the relative biological effectiveness of radiotherapeutics.
NASA Astrophysics Data System (ADS)
Garcia, Timothy Richard
Pyroprocessing is a method of using high-temperature molten salts and electric fields to separate and collect fuel isotopes of used nuclear fuel. It has been has been tested in the U.S. at Idaho National Laboratory as a key step in closing the nuclear fuel cycle. One technical problem with the pyroprocessing method is a lack of knowledge regarding the actinide concentrations in the salt bath during operation, since on-line techniques for measuring these concentrations are not presently available. 4H-SiC Schottky diode detectors can potentially fulfill this need. Such detectors would operate in contact with the molten salt, and measure concentrations via alpha-particle spectroscopy. This work seeks to fabricate and characterize 4H-SiC Schottky diode detectors at high temperature, model the alpha particle spectrum expected in a molten salt, and model the operation of the detectors to confirm the physics of operation is as expected. In this work, 4H-SiC Schottky diode detectors were fabricated at OSU Nanotech West. After fabrication, these detectors were characterized using both I-V curves and Am-241 alpha-particle energy spectra. All measurements were made as a function of temperature, from room temperature up to 500°C. The average energy required to create an electron-hole pair was observed to decrease with an increase of temperature, due to a decrease of both the 4H-SiC bandgap and non-linear energy loss terms. Furthermore, the FWHM of the spectra was observed to be dependent on the leakage current at a certain temperature, and not dependent on the temperature itself. Secondly, the alpha particle energy spectrum in the pyroprocessing environment was modeled using SRIM. The molten salt was modeled in 3 different geometries, with or without a protective cover material on top of the detector. Due to the loss of alpha-particle energy in the molten salt itself, a high-energy alpha emitter may completely cover the spectrum from a lower-energy alpha emitter. Each of the geometries simulated showed a different sensitivity to the lower-energy alpha emitter. Regardless of which geometry was modeled, it was observed that it is possible to measure both the emission energy of the alpha particles, as well as the concentration of the alpha emitter in the liquid. Lastly, Sentaurus TCAD was used to simulate the detection of alpha-particle charge collection in situations that are relevant to the molten salt alpha particle energy spectra. The effect of electric field negation was investigated, as well as velocity saturation. Finally, the dependence of charge recombination on temperature, alpha particle energy, and angle of incidence was investigated. These simulations captured the measurements performed at room temperature. With changed angle of incidence, the change in the amount of charge collected was less than 1 percent, indicating a weak dependence. Also, the amount of charge lost to Auger recombination was seen to increase with temperature. This disagrees with observations from experiment, indicating that the temperature dependence of one or more parameters of the model may not be accurate.
Angular momentum dependence in 22 MeV $alpha$-particle elastic scattering by light nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lega, J.; Macq, P.C.
1974-01-01
Elastic scattering of 22 MeV alpha -particles by /sup 23, /sup 24,15,26/ Mg, /sup 27/Al and /sup 28/Si was measured between 24 and 174 deg lab. Partial angular distributions, from 120 to 174 deg , were also measured at incident energies of 18.4 and 20.7 MeV for /sup 24/Mg, and 18.9 and 20.5 MeV for /sup 28/ Si. The most striking feature of the data is the large-angle behavior spin-zero nuclei display more pronounced backward oscillations and the cross section rises more steeply towards 180 deg for 4n nuclei than for the others. Optical Model analyses with an l-dependent absorptionmore » and a minimum of free parameters are used to describe the general trend of the data for A = 23 to 28 nuclei at different energies; a spinorbit coupling term, 2.75 MeV deep, is added to describe the /sup 23/Na scattering data. (auth)« less
NASA Technical Reports Server (NTRS)
Blaes, B. R.; Soli, G. A.; Buehler, M. G.
1991-01-01
A methodology is described for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. Measurements were made on a 1.6-micron n-well CMOS 4-kb test SRAM irradiated with an Am-241 alpha-particle source. A collection depth of 6.09 micron was determined using these results and TRIM computer code. Using this collection depth and SPICE derived critical charge results on the latch design, an LET threshold of 34 MeV sq cm/mg was predicted. Heavy ion tests were then performed on the latch and an LET threshold of 41 MeV sq cm/mg was determined.
Alternating current long range alpha particle detector
MacArthur, Duncan W.; McAtee, James L.
1993-01-01
An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.
Alternating current long range alpha particle detector
MacArthur, D.W.; McAtee, J.L.
1993-02-16
An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.
Hippocampal 3alpha,5alpha-THP may alter depressive behavior of pregnant and lactating rats.
Frye, Cheryl A; Walf, Alicia A
2004-07-01
The 5alpha-reduced metabolite of progesterone (P), 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), may mediate progestins' effects to reduce depressive behavior of female rats in part through actions in the hippocampus. To investigate, forced swim test behavior and plasma and hippocampal progestin levels were assessed in groups of rats expected to differ in their 3alpha,5alpha-THP levels due to endogenous differences (pregnant and postpartum), administration of a 5alpha-reductase inhibitor (finasteride; 50 mg/kg sc), and/or gestational stress [prenatal stress (PNS)], an animal model of depression. Pregnant rats had higher plasma and hippocampal 3alpha,5alpha-THP levels and less depressive behavior (decreased immobility, increased struggling and swimming) in the forced swim test than did postpartum rats. Finasteride, compared to vehicle-administration, reduced plasma and hippocampal 3alpha,5alpha-THP levels and increased depressive behavior (increased immobility, decreased struggling and swimming). PNS was associated with lower hippocampal, but not plasma, 3alpha,5alpha-THP levels and increased swimming compared to that observed in control rats. Together, these data suggest that 3alpha,5alpha-THP in the hippocampus may mediate antidepressive behavior of female rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yifu; Liu Xinghai, E-mail: liuxh@whu.edu.c; Nie Jiaorong
2011-02-15
Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value of the designed synthetic system, respectively. The sphere-like {alpha}-Fe{sub 2}O{sub 3} particles with diameter about 25 nm on average were encapsulated into carbon shells to fabricate a novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C) through the coating experiments. The catalytic performance of the products on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermal gravimetric analyzer (TG) and differential thermal analysis (DTA). The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3},more » sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which show that {alpha}-Fe{sub 2}O{sub 3}-C core-shell composites have higher catalytic activity than that of {alpha}-Fe{sub 2}O{sub 3}. -- Graphical abstract: The catalytic performance of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C on the thermal decomposition of ammonium perchlorate (AP). Display Omitted Research highlights: {yields} Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value. {yields} A novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C core-shell structured composite) has been successfully synthesized using sphere-like {alpha}-Fe{sub 2}O{sub 3} particles as the cores and glucose as the source of carbon. {yields} The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which shows that these materials have high catalytic activity.« less
NASA Astrophysics Data System (ADS)
Kulp-McDowall, Taylor; Ochs, Ian; Fisch, Nathaniel
2016-10-01
A particle pusher was constructed in MATLAB using a fourth order Runge-Kutta algorithm to investigate the wave-particle interactions within theoretical models of the MCMF. The model simplified to a radial electric field and a magnetic field focused in the z direction. Studies on an average velocity calculation were conducted in order to test the program's behavior in the large radius limit. The results verified that the particle pusher was behaving correctly. Waves were then simulated on the rotating particles with a periodic divergenceless perturbation in the Bz component of the magnetic field. Preliminary runs indicate an agreement of the particle's motion with analytical predictions-ie. cyclic contractions of the doubly rotating particle's gyroradius.The next stage of the project involves the implementation of particle collisions and turbulence within the particle pusher in order to increase its accuracy and applicability. This will allow for a further investigation of the alpha channeling electrode replacement thesis first proposed by Abraham Fetterman in 2011. Made possible by Grants from the Princeton Environmental Institute (PEI) and the Program for Plasma Science and Technology (PPST).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Z.; Nazikian, R.; Fu, G.Y.
1997-02-01
Alpha-driven toroidal Alfven eigenmodes (TAEs) are observed as predicted by theory in the post neutral beam phase in high central q (safety factor) deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR). The mode location, poloidal structure and the importance of q profile for TAE instability are discussed. So far no alpha particle loss due to these modes was detected due to the small mode amplitude. However, alpha loss induced by kinetic ballooning modes (KBMs) was observed in high confinement D-T discharges. Particle orbit simulation demonstrates that the wave-particle resonant interaction can explain the observed correlation between the increasemore » in alpha loss and appearance of multiple high-n (n {ge} 6, n is the toroidal mode number) modes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J.
An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and themore » impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ({sup 226}Ra, and {sup 137}Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm{sup 2}) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)« less
Alpha particle backscattering measurements used for chemical analysis of surfaces
NASA Technical Reports Server (NTRS)
Patterson, J. H.
1967-01-01
Alpha particle backscattering performs a chemical analysis of surfaces. The apparatus uses a curium source and a semiconductor detector to determine the energy spectrum of the particles. This in turn determines the chemical composition of the surface after calibration to known samples.
Theory of activated glassy dynamics in randomly pinned fluids.
Phan, Anh D; Schweizer, Kenneth S
2018-02-07
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.
Theory of activated glassy dynamics in randomly pinned fluids
NASA Astrophysics Data System (ADS)
Phan, Anh D.; Schweizer, Kenneth S.
2018-02-01
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun; Zou Hong; Li Cong
2006-12-15
The effect of microstructural evolution on hardening behavior of 17-4PH stainless steel in long-term aging at 350 deg. C was studied by X-ray diffraction and transmission electron microscopy. The results showed that there is the matrix of lath martensite and nanometer-sized particles of {epsilon}-Cu precipitated from the matrix after the alloy is solution treated and tempered. When the alloy was aged 350 deg. C for 9 months, {alpha}-{alpha}' spinodal decomposition occurred along the grain boundaries and caused an increase in hardness which compensated for the weakening effect due to ripening of the {epsilon}-copper precipitates. Upon further aging to 12 months,more » the Cr-rich {alpha}'-phase and M{sub 23}C{sub 6} precipitated, both of which strengthened the alloy considerably and led to enhanced hardening despite the continued softening by overaging of the {epsilon}-copper precipitates. With the aging time extended to 15 months, substantial reversed austenite transformed and precipitation of the intermetallic G-phase occurred near the {epsilon}-Cu precipitates in the matrix. The abundant amount of reversed austenite that transformed led to rapid softening.« less
Monte Carlo simulation of semiconductor detector response to (222)Rn and (220)Rn environments.
Irlinger, J; Trinkl, S; Wielunksi, M; Tschiersch, J; Rühm, W
2016-07-01
A new electronic radon/thoron monitor employing semiconductor detectors based on a passive diffusion chamber design has been recently developed at the Helmholtz Zentrum München (HMGU). This device allows for acquisition of alpha particle energy spectra, in order to distinguish alpha particles originating from radon and radon progeny decays, as well as those originating from thoron and its progeny decays. A Monte-Carlo application is described which uses the Geant4 toolkit to simulate these alpha particle spectra. Reasonable agreement between measured and simulated spectra were obtained for both (220)Rn and (222)Rn, in the energy range between 1 and 10 MeV. Measured calibration factors could be reproduced by the simulation, given the uncertainties involved in the measurement and simulation. The simulated alpha particle spectra can now be used to interpret spectra measured in mixed radon/thoron atmospheres. The results agreed well with measurements performed in both radon and thoron gas environments. It is concluded that the developed simulation allows for an accurate prediction of calibration factors and alpha particle energy spectra. Copyright © 2016 Elsevier Ltd. All rights reserved.
Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)
2004-01-01
A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.
FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matteini, L.; Schwartz, S. J.; Hellinger, P.
We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion speciesmore » have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.« less
Topics in Diffusion Limited Reaction Processes
NASA Astrophysics Data System (ADS)
Lin, Jian-Cheng
We study, both theoretically and numerically, the macroscopic particle concentration in a class of simple diffusion-limited reactions: one species coagulation A + A to A, reversible coagulation A + A rightleftharpoons A, A + A to A with particle input, A + A rightleftharpoons A with particle input, single species annihilation A + A to inert, and two species annihilation A + B to inert. The main interest is in the asymptotic behavior of the particle concentration. We review the standard mean-field theory, mass-reaction kinetics and the associated nonlinear rate and diffusion-reaction equations. Theoretically we study the concentration using several closure schemes for truncating the infinite hierarchy of the kinetic equations for the joint density functions. Our goal is to evaluate the quality of some nonsystematic approximations by comparison with exact solutions. It is found that these approximations are very good at capturing the asymptotic behavior of the particle concentrations in the irreversible reactions, while they fail to predict the far-from-equilibrium dynamic phase transition in the one dimensional reversible coagulation reaction predicted by exact results. Numerically we use Monte Carlo simulation to study concentrations in the single species reversible coagulation process. In one dimension the numerical results are in excellent agreement with the exact analytic results. In two dimensions, our simulation data in the transient states suggest an interesting scaling for the deviation of the concentration from its equilibrium value, delta C(t) ~ exp( -beta(C_0)t^{alpha(C_0) }), where alpha(C_0) and beta(C_0) are functions of the initial concentration C_0. However, it seems unlikely to be able to answer the question of the existence of a dynamic phase transition in two dimensions by Monte Carlo simulation within a reasonable CPU time due to the long persistence of the transient states. In an appendix we solve exactly an annihilation-related percolation problem.
Synthesis of plastic scintillation microspheres: alpha/beta discrimination.
Santiago, L M; Bagán, H; Tarancón, A; Garcia, J F
2014-11-01
Plastic scintillation microspheres (PSm) have been developed as an alternative for liquid scintillation cocktails due to their ability to avoid the mixed waste, besides other strengths in which the possibility for alpha/beta discrimination is included. The aim of this work was to evaluate the capability of PSm containing two combinations of fluorescence solutes (PPO/POPOP and pT/Bis-MSB) and variable amounts of a second organic solvent (naphthalene) to enhance the alpha/beta discrimination. Two commercial detectors with different Pulse Shape Discrimination performances (Quantulus and Triathler) were used to evaluate the alpha/beta discrimination. An optimal discrimination of alpha/beta particles was reached, with very low misclassification values (2% for beta particles and 0.5% for alpha particles), when PSm containing PPO/POPOP and between 0.6 and 2.0 g of naphthalene were evaluated using Triathler and the appropriate programme for data processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rammah, Y. S.; Awad, E. M.
2018-05-01
Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.
Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y
2010-01-01
This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.
Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+
NASA Astrophysics Data System (ADS)
Mesick, K. E.; Coupland, D. D. S.; Stonehill, L. C.
2017-01-01
Cs2LiLaBr6:Ce3+(CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas. A linear quenching relationship Lα =Eα × q +L0 was found at alpha particle energies above 5 MeV, with a quenching factor q = 0.71 MeVee / MeV and an offset L0 = - 1.19 MeVee .
Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak
2018-02-01
Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Campbell, John L.; Ganly, Brianna; Heirwegh, Christopher M.; Maxwell, John A.
2018-01-01
Multiple ionization satellites are prominent features in X-ray spectra induced by MeV energy alpha particles. It follows that the accuracy of PIXE analysis using alpha particles can be improved if these features are explicitly incorporated in the peak model description when fitting the spectra with GUPIX or other codes for least-squares fitting PIXE spectra and extracting element concentrations. A method for this incorporation is described and is tested using spectra recorded on Mars by the Curiosity rover's alpha particle X-ray spectrometer. These spectra are induced by both PIXE and X-ray fluorescence, resulting in a spectral energy range from ∼1 to ∼25 keV. This range is valuable in determining the energy-channel calibration, which departs from linearity at low X-ray energies. It makes it possible to separate the effects of the satellites from an instrumental non-linearity component. The quality of least-squares spectrum fits is significantly improved, raising the level of confidence in analytical results from alpha-induced PIXE.
Fluorescence-Assisted Gamma Spectrometry for Surface Contamination Analysis
NASA Astrophysics Data System (ADS)
Ihantola, Sakari; Sand, Johan; Perajarvi, Kari; Toivonen, Juha; Toivonen, Harri
2013-02-01
A fluorescence-based alpha-gamma coincidence spectrometry approach has been developed for the analysis of alpha-emitting radionuclides. The thermalization of alpha particles in air produces UV light, which in turn can be detected over long distances. The simultaneous detection of UV and gamma photons allows detailed gamma analyses of a single spot of interest even in highly active surroundings. Alpha particles can also be detected indirectly from samples inside sealed plastic bags, which minimizes the risk of cross-contamination. The position-sensitive alpha-UV-gamma coincidence technique reveals the presence of alpha emitters and identifies the nuclides ten times faster than conventional gamma spectrometry.
Effect of human alpha 2HS glycoprotein on mouse macrophage function.
Lewis, J G; André, C M
1980-01-01
alpha 2HS glycoprotein was isolated from normal adult serum. The ability of alpha 2HS glycoprotein to promote the endocytosis of radiolabelled DNA and radiolabelled latex particles by mouse macrophages was investigated. The results using both radiolabelled latex particles and radiolabelled DNA show that alpha 2HS glycoprotein enhances the ability of mouse macrophages to take up these radiolabelled substrates as compared to control cells. Images Figure 1 Figure 2 PMID:7439929
Nuclear diagnostic for fast alpha particles
Grisham, L.R.; Post, D.E. Jr.; Dawson, J.M.
1983-11-23
This invention relates generally to high energy confined plasmas and more particularly is directed to measuring the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a confined energetic plasma.
Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos.
Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok
2017-02-11
Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish ( Danio rerio ) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.
Nuclear diagnostic for fast alpha particles
Grisham, Larry R.; Post Jr., Douglass E.; Dawson, John M.
1986-06-03
Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.
Nuclear diagnostic for fast alpha particles
Grisham, Larry R.; Post, Jr., Douglass E.; Dawson, John M.
1986-01-01
Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.
Velocity space instabilities of alpha particles in tokamak reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigmar, D.J.
1979-01-01
In this lecture on high frequency instability due to isotropic hollow alpha velocity distributions it was first shown that such distributions can actually arise under thermonuclear conditions in a tokamak reactor, particularly for the case of imperfect alpha particle confinement. The toroidal geometry (i.e., the poloidal variation of the alpha gyrofrequency) then leads to linear instability of the compressional Alfven wave ..omega.. = C/sub A/k/sub perpendicular/ with k/sub parallel/ congruent to O, k/sub perpendicular/ rho/sub ..cap alpha../ greater than or equal to 1, v/sub ..cap alpha../ > C/sub A/, at the low harmonics ..omega.. congruent to n ..omega../sub c..cap alpha../.more » Thus the free energy of the inverted alpha distribution is accessible and produces anomalously rapid diffusion of F/sub ..cap alpha../(v/sub perpendicular/). (MOW)« less
Wave induced supersonic rotation in mirrors
NASA Astrophysics Data System (ADS)
Fetterman, Abraham
2010-11-01
Wave-particle interactions in ExB supersonically rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy [1]. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field [2]. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particle's total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation [3]. [4pt] [1] A. J. Fetterman and N. J. Fisch, Phys Rev Lett 101, 205003 (2008). [0pt] [2] A. J. Fetterman and N. J. Fisch, Phys. Plasmas 17, 042112 (2010). [0pt] [3] A. J. Fetterman and N. J. Fisch, Plasma Sources Sci. Tech. 18, 045003 (2009).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S.S.; Duong, H.H.; Fisher, R.K.
1996-05-01
Radially-resolved energy and density distributions of the energetic confined alpha particles in D-T experiments on TFTR are being measured by active neutral particle analysis using low-Z impurity pellet injection. When injected into a high temperature plasma, an impurity pellet (e.g. Lithium or Boron) rapidly ablates forming an elongated cloud which is aligned with the magnetic field and moves with the pellet. This ablation cloud provides a dense target with which the alpha particles produced in D-T fusion reactions can charge exchange. A small fraction of the alpha particles incident on the pellet ablation cloud will be converted to helium neutralsmore » whose energy is essentially unchanged by the charge transfer process. By measuring the resultant helium neutrals escaping from the plasma using a mass and energy resolving charge exchange analyzer, this technique offers a direct measurement of the energy distribution of the incident high-energy alpha particles. Other energetic ion species can be detected as well, such as tritons generated in D-D plasmas and H or He{sup 3} RF-driven minority ion tails. The diagnostic technique and its application on TFTR are described in detail.« less
Pulse shape discrimination of plastic scintillator EJ 299-33 with radioactive sources
NASA Astrophysics Data System (ADS)
Pagano, E. V.; Chatterjee, M. B.; De Filippo, E.; Russotto, P.; Auditore, L.; Cardella, G.; Geraci, E.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; De Luca, S.; Maiolino, C.; Martorana, N. S.; Pagano, A.; Papa, M.; Parsani, T.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Trifirò, A.; Trimarchi, M.
2018-05-01
The present study has been carried out in order to investigate about the possibility of using EJ 299-33 scintillator in a multi-detector array to detect neutrons along with light charged particles. In a reaction induced by stable and exotic heavy-ions beams, where copious production of neutrons and other light charged particles occurs, discrimination with low identification threshold of these particles are of great importance. In view of this, EJ 299-33 scintillator having dimension of 3 cm × 3 cm × 3 cm backed by a photomultiplier tube was tested and used under vacuum to detect neutrons, gamma-rays and alpha particles emitted by radioactive sources. Anode pulses from the photomultiplier tube were digitized through GET electronics, recorded and stored in a data acquisition system for the purpose of an off-line analysis. The measurements, under vacuum and low background conditions, show good pulse shape discrimination properties characterized by low identification threshold for neutrons, gamma-rays and alpha particles. The Figures of Merit for neutron-gamma and alpha particles-gamma discriminations have been evaluated together with the energy resolution for gamma-ray and alpha particles.
Dynamic radioactive particle source
Moore, Murray E; Gauss, Adam Benjamin; Justus, Alan Lawrence
2012-06-26
A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.
Deosarkar, Sudhir P; Malgor, Ramiro; Fu, Jie; Kohn, Leonard D; Hanes, Justin; Goetz, Douglas J
2008-10-01
The increased expression of VCAM-1 on endothelial segments within plaque regions could be used as a target to deliver polymeric drug carriers selectively to sites of atherosclerosis. We probed the hypothesis that polymeric particles conjugated with a ligand for VCAM-1 exhibit selective and avid adhesion to sites of atherosclerosis. Particles made from polystyrene or the biodegradable polymer poly(sebacic acid)-block-polyethylene glycol (PSA-PEG) were conjugated with an antibody to VCAM-1 (alpha-VCAM-1) or IgG (negative control). The particles were injected into the jugular vein of ApoE(-/-) (a murine model of atherosclerosis) or wild type mice and their adhesion to the aorta determined. alpha-VCAM-1 particles exhibited significantly greater adhesion to ApoE(-/-) mouse aorta [32 +/- 5 (mean +/- SEM) particles/mm(2) for polystyrene particles and 31 +/- 7 particles/mm(2) for PSA-PEG particles] compared to the level of adhesion to wild type mouse aorta (18 +/- 1 particles/mm(2) for polystyrene particles and 6 +/- 1 particles/mm(2) for PSA-PEG particles). Within ApoE(-/-) mice, the alpha-VCAM-1 particles exhibited significantly greater adhesion to the aorta (32 +/- 5 particles/mm(2) for polystyrene particles and 31 +/- 7 particles/mm(2) for PSA-PEG particles) compared to the adhesion of IgG particles (1 +/- 1 particles/mm(2) for polystyrene particles and 2 +/- 1 particles/mm(2) for PSA-PEG particles). Detailed analysis of the adhesion revealed that alpha-VCAM-1 particles exhibited focal adhesion to plaque regions, in particular the periphery of the plaques, within the ApoE(-/-) mouse aorta. Combined the data demonstrate that polymeric particles conjugated with a ligand to VCAM-1 exhibit selective, avid and focal adhesion to sites of atherosclerosis providing strong evidence that VCAM-1 ligand bearing polymeric particles could be used for targeting drugs selectively to atherosclerotic tissue.
Electrorheological suspensions of laponite in oil: rheometry studies.
Parmar, K P S; Méheust, Y; Schjelderupsen, Børge; Fossum, J O
2008-03-04
We have studied the effect of an external direct current (DC) electric field ( approximately 1 kV/mm) on the rheological properties of colloidal suspensions consisting of aggregates of laponite particles in a silicone oil. Microscopy observations show that, under application of an electric field greater than a triggering electric field Ec approximately 0.6 kV/mm, laponite aggregates assemble into chain- and/or columnlike structures in the oil. Without an applied electric field, the steady-state shear behavior of such suspensions is Newtonian-like. Under application of an electric field larger than Ec, it changes dramatically as a result of the changes in the microstructure: a significant yield stress is measured, and under continuous shear the fluid is shear-thinning. The rheological properties, in particular the dynamic and static shear stress, were studied as a function of particle volume fraction for various strengths (including null) of the applied electric field. The flow curves at constant shear rate can be scaled with respect to both the particle fraction and electric field strength onto a master curve. This scaling is consistent with simple scaling arguments. The shape of the master curve accounts for the system's complexity; it approaches a standard power-law model at high Mason numbers. Both dynamic and static yield stresses are observed to depend on the particle fraction Phi and electric field E as PhibetaEalpha, with alpha approximately 1.85 and beta approximately 1 and 1.70 for the dynamic and static yield stresses, respectively. The yield stress was also determined as the critical stress at which there occurs a bifurcation in the rheological behavior of suspensions that are submitted to a constant shear stress; a scaling law with alpha approximately 1.84 and beta approximately 1.70 was obtained. The effectiveness of the latter technique confirms that such electrorheological (ER) fluids can be studied in the framework of thixotropic fluids. The method is very reproducible; we suggest that it could be used routinely for studying ER fluids. The measured overall yield stress behavior of the suspensions may be explained in terms of standard conduction models for electrorheological systems. Interesting prospects include using such systems for guided self-assembly of clay nanoparticles.
NASA Astrophysics Data System (ADS)
Tan, Y.; Yuan, H.; Kearfott, K. J.
2018-04-01
CR-39 detectors are widely used to measure environmental levels of Rn-222, Rn-220 and their progeny. Prior research reported the CR-39 detection efficiency for alpha particles from Rn-222, Rn-220 and their progeny under a variety of etching conditions. This paper provides an explanation for interesting observations included in that work, namely that the critical incidence angle decreases with the increasing particle energy and the detection efficiency for 8.78 MeV alpha particles is zero. This paper explains these phenomena from a consideration of the interaction of alpha particles with the CR-39 detectors and the physics of etching dynamics. The proposed theory provides a rationale for an approach to optimizing the etching conditions of CR-39 detector for measuring Rn-222, Rn-220 and their progenies.
An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses
NASA Technical Reports Server (NTRS)
Economou, T. E.; Turkevich, A. L.
1976-01-01
The interaction of alpha particles with matter is employed in a compact instrument that could provide rather complete in-situ chemical analyses of surfaces and thin atmospheres of extraterrestrial bodies. The instrument is a miniaturized and improved version of the Surveyor lunar instrument. The backscattering of alpha particles and (alpha, p) reactions provide analytical data on the light elements (carbon-iron). An X-ray mode that detects the photons produced by the alpha sources provides sensitivity and resolution for the chemical elements heavier than about silicon. The X-rays are detected by semiconductor detectors having a resolution between 150 and 250 eV at 5.9 keV. Such an instrument can identify and determine with good accuracy 99 percent of the atoms (except hydrogen) in rocks. For many trace elements, the detecting sensitivity is a few ppm. Auxiliary sources could be used to enhance the sensitivities for elements of special interest. The instrument could probably withstand the acceleration involved in semi-hard landings.
In vitro cell irradiation systems based on 210Po alpha source: construction and characterisation
NASA Technical Reports Server (NTRS)
Szabo, J.; Feher, I.; Palfalvi, J.; Balashazy, I.; Dam, A. M.; Polonyi, I.; Bogdandi, E. N.
2002-01-01
One way of studying the risk to human health of low-level radiation exposure is to make biological experiments on living cell cultures. Two 210Po alpha-particle emitting devices, with 0.5 and 100 MBq activity, were designed and constructed to perform such experiments irradiating monolayers of cells. Estimates of dose rate at the cell surface were obtained from measurements by a PIPS alpha-particle spectrometer and from calculations by the SRIM 2000, Monte Carlo charged particle transport code. Particle fluence area distributions were measured by solid state nuclear track detectors. The design and dosimetric characterisation of the devices are discussed. c2002 Elsevier Science Ltd. All rights reserved.
Kurudirek, Murat
2016-09-01
To compare some biological materials in respect to the water and tissue equivalence properties for photon, electron, proton and alpha particle interactions as means of the effective atomic number (Zeff) and electron density (Ne). A Z-wise interpolation procedure has been adopted for calculation of Zeff using the mass attenuation coefficients for photons and the mass stopping powers for charged particles. At relatively low energies (100 keV-3 MeV), Zeff and Ne for photons and electrons were found to be constant while they vary much more for protons and alpha particles. In contrast, Zeff and Ne for protons and alpha particles were found to be constant after 3 MeV whereas for photons and electrons they were found to increase with the increasing energy. Also, muscle eq. liquid (with sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) within low relative differences below 9%. Muscle eq. liquid (without sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) with difference below 10%. The reported data should be useful in determining best water as well as tissue equivalent materials for photon, electron, proton and alpha particle interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Lei, E-mail: lye@ipp.ac.cn; Guo, Wenfeng; Xiao, Xiaotao
2014-12-15
A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile canmore » be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delbar, T.; Gregoire, G.; Paic, G.
1978-09-01
Angular distributions for ..cap alpha.. particle elastic scattering by /sup 40,44/Ca and excitation of the 3.73 MeV 3/sup -/ collective state of /sup 40/Ca were measured for incident energies ranging from 40 to 62 MeV. An extensive optical model analysis of these elastic scattering cross sections and other available data, using squared Woods-Saxon form factors, results in potentials with fixed geometry for both real and imaginary parts and depths with smooth energy behavior over a broad incident energy range. These results are discussed in the frame of the semi-classical approximation developed by Brink and Takigawa. The sensitiveness of the calculatedmore » elastic scattering cross sections to the real part of the potentials as a function of the projectile-target distance has been investigated by means of a notch test. Distorted-wave Born-approximtion calculations for the excitation of the 3.73 MeV 3/sup -/ state of /sup 40/Ca are presented.« less
DEAD ZONE IN THE POLAR-CAP ACCELERATOR OF PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Alexander Y.; Beloborodov, Andrei M.
We study plasma flows above pulsar polar caps using time-dependent simulations of plasma particles in the self-consistent electric field. The flow behavior is controlled by the dimensionless parameter {alpha} = j/c{rho}{sub GJ}, where j is the electric current density and {rho}{sub GJ} is the Goldreich-Julian charge density. The region of the polar cap where 0 < {alpha} < 1 is a {sup d}ead zone{sup -}in this zone, particle acceleration is inefficient and pair creation is not expected even for young, rapidly rotating pulsars. Pulsars with polar caps near the rotation axis are predicted to have a hollow-cone structure of radiomore » emission, as the dead zone occupies the central part of the polar cap. Our results apply to charge-separated flows of electrons (j < 0) or ions (j > 0). In the latter case, we consider the possibility of a mixed flow consisting of different ion species, and observe the development of two-stream instability. The dead zone at the polar cap is essential for the development of an outer gap near the null surface {rho}{sub GJ} = 0.« less
Depth Measurements Using Alpha Particles and Upsettable SRAMs
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Reier, M.; Soli, G. A.
1995-01-01
A custom designed SRAM was used to measure the thickness of integrated circuit over layers and the epi-layer thickness using alpha particles and a test SRAM. The over layer consists of oxide, nitride, metal, and junction regions.
Solar wind alpha particle capture at Mars and Venus
NASA Astrophysics Data System (ADS)
Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, A.; Brain, David; André, Mats
Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.
Selective flow path alpha particle detector and method of use
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore
2002-01-01
A method and apparatus for monitoring alpha contamination are provided in which ions generated in the air surrounding the item, by the passage of alpha particles, are moved to a distant detector location. The parts of the item from which ions are withdrawn can be controlled by restricting the air flow over different portions of the apparatus. In this way, detection of internal and external surfaces separately, for instance, can be provided. The apparatus and method are particularly suited for use in undertaking alpha contamination measurements during the commissioning operations.
Wave-particle interactions in rotating mirrorsa)
NASA Astrophysics Data System (ADS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-05-01
Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
Alpha particle condensation in {sup 12}C and nuclear rainbow scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, S.; Hirabayashi, Y.
2008-05-12
It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.
ALPHACAL: A new user-friendly tool for the calibration of alpha-particle sources.
Timón, A Fernández; Vargas, M Jurado; Gallardo, P Álvarez; Sánchez-Oro, J; Peralta, L
2018-05-01
In this work, we present and describe the program ALPHACAL, specifically developed for the calibration of alpha-particle sources. It is therefore more user-friendly and less time-consuming than multipurpose codes developed for a wide range of applications. The program is based on the recently developed code AlfaMC, which simulates specifically the transport of alpha particles. Both cylindrical and point sources mounted on the surface of polished backings can be simulated, as is the convention in experimental measurements of alpha-particle sources. In addition to the efficiency calculation and determination of the backscattering coefficient, some additional tools are available to the user, like the visualization of energy spectrum, use of energy cut-off or low-energy tail corrections. ALPHACAL has been implemented in C++ language using QT library, so it is available for Windows, MacOs and Linux platforms. It is free and can be provided under request to the authors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy
NASA Astrophysics Data System (ADS)
Watchman, Christopher J.
Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological induction of bone cancer. In addition, new data are presented on the location of bone-marrow stem cells within the marrow cavities of trabecular bone of the pelvis. All results presented in this work may be applied to occupational exposures, but their greatest utility lies in dose assessments for alpha-emitters in molecular radiotherapy.
Stochastic simulation of radium-223 dichloride therapy at the sub-cellular level
NASA Astrophysics Data System (ADS)
Gholami, Y.; Zhu, X.; Fulton, R.; Meikle, S.; El-Fakhri, G.; Kuncic, Z.
2015-08-01
Radium-223 dichloride (223Ra) is an alpha particle emitter and a natural bone-seeking radionuclide that is currently used for treating osteoblastic bone metastases associated with prostate cancer. The stochastic nature of alpha emission, hits and energy deposition poses some challenges for estimating radiation damage. In this paper we investigate the distribution of hits to cells by multiple alpha particles corresponding to a typical clinically delivered dose using a Monte Carlo model to simulate the stochastic effects. The number of hits and dose deposition were recorded in the cytoplasm and nucleus of each cell. Alpha particle tracks were also visualized. We found that the stochastic variation in dose deposited in cell nuclei (≃ 40%) can be attributed in part to the variation in LET with pathlength. We also found that ≃ 18% of cell nuclei receive less than one sigma below the average dose per cell (≃ 15.4 Gy). One possible implication of this is that the efficacy of cell kill in alpha particle therapy need not rely solely on ionization clustering on DNA but possibly also on indirect DNA damage through the production of free radicals and ensuing intracellular signaling.
Registration of alpha particles in Makrofol-E nuclear track detectors
NASA Astrophysics Data System (ADS)
Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.
2016-06-01
Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.
Summary of the discussion meeting on alpha particle theory problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigmar, D.J.
1988-04-01
The agenda of the meeting (consisting of {approximately}20 theoreticians and 2 experimentalists working on single {alpha}-particle effects and diagnostics) was to discuss the spectrum of relevant {alpha}-theory problems as it is presently understood, its impact on ignited plasma performance, and possible paths to stabilization. The purpose was to expose existing efforts to peer review and to focus on the most important topics. Twenty-one talks were given which are summarized. Overall, there emerged a consensus about the existence of robust (MHD-like) collective oscillations affecting both the {alpha}-species and the bulk plasma. In addition, improved calculations of classical {alpha}-phenomena due to driftmore » orbits and collisions and {alpha}-RF interactions were discussed. An overview of topics covered is given in the attached conference program.« less
Fast particles in a steady-state compact FNS and compact ST reactor
NASA Astrophysics Data System (ADS)
Gryaznevich, M. P.; Nicolai, A.; Buxton, P.
2014-10-01
This paper presents results of studies of fast particles (ions and alpha particles) in a steady-state compact fusion neutron source (CFNS) and a compact spherical tokamak (ST) reactor with Monte-Carlo and Fokker-Planck codes. Full-orbit simulations of fast particle physics indicate that a compact high field ST can be optimized for energy production by a reduction of the necessary (for the alpha containment) plasma current compared with predictions made using simple analytic expressions, or using guiding centre approximation in a numerical code. Alpha particle losses may result in significant heating and erosion of the first wall, so such losses for an ST pilot plant have been calculated and total and peak wall loads dependence on the plasma current has been studied. The problem of dilution has been investigated and results for compact and big size devices are compared.
Single and double grid long-range alpha detectors
MacArthur, Duncan W.; Allander, Krag S.
1993-01-01
Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.
Single and double grid long-range alpha detectors
MacArthur, D.W.; Allander, K.S.
1993-03-16
Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.
Can Bose condensation of alpha particles be observed in heavy ion collisions?
NASA Technical Reports Server (NTRS)
Tripathi, Ram K.; Townsend, Lawrence W.
1993-01-01
Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of alpha particles with a concomitant phase transition in heavy ion collisions. Suggestions for the experimental observation of the signature of the onset of this phenomenon are made.
Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments
NASA Astrophysics Data System (ADS)
Chang, Zuoyang
1996-11-01
Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K.-L. Wong and S. Zweben, Princeton Plasma Physics Lab. Department of Physics, University of California, Irvine, CA 92717 ^*Work supported by the U.S. Department of Energy DoE Contract No. DE-AC02-76CH03073.
NASA Astrophysics Data System (ADS)
Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.
2010-03-01
Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.
Cryogenic Microcalorimeter System for Ultra-High Resolution Alpha-Particle Spectrometry
NASA Astrophysics Data System (ADS)
Croce, M. P.; Bacrania, M. K.; Hoover, A. S.; Rabin, M. W.; Hoteling, N. J.; LaMont, S. P.; Plionis, A. A.; Dry, D. E.; Ullom, J. N.; Bennett, D. A.; Horansky, R. D.; Kotsubo, V.; Cantor, R.
2009-12-01
Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with ˜15-μK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis. This paper will discuss design and operation of our microcalorimeter alpha-particle spectrometer, and will show recent results.
Exposure to particulate matter (PM2.5-10), including diesel exhaust particles (DEP) has been reported to induce lung injury and exacerbation of asthma and chronic obstructive pulmonary disease. Alveolar macrophages play a major role in the lung's response to inhaled particles and...
Pulse-shape discrimination and energy quenching of alpha particles in Cs 2LiLaBr 6:Ce 3+
Mesick, Katherine Elizabeth; Coupland, Daniel David S.; Stonehill, Laura Catherine
2016-10-19
Cs 2LiLaBr 6:Ce 3+ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. Here, we also measured the electron-equivalent-energy ofmore » the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas.« less
Alpha-power modulation reflects the balancing of task requirements in a selective attention task.
Limbach, Katharina; Corballis, Paul M
2017-02-01
Recent research has related the orienting of selective attention to the lateralization of posterior EEG alpha power (∼8 to 12 Hz). Typically, alpha power decreases over the side of the head contralateral to the cued side of space. However, it is not clear how this lateralization affects behavior. We recorded EEG from 20 participants while they performed a cued visual discrimination task under three different response-deadline conditions to investigate the effect of alpha-power modulation on behavioral performance in more detail. Although all participants benefited from the cue behaviorally and adjusted their performance according to the response deadlines, we found the cue-related alpha-power modulation to depend on the general alpha-power level at baseline: Only participants with high baseline alpha power showed significant cue-related alpha-power lateralization that was, however, strikingly similar across response-deadline conditions. On the other hand, participants with low alpha power at baseline did not show any lateralization, but adjusted their alpha levels according to the response-deadline instructions and, more importantly, showed a stronger influence of the task instructions on behavioral performance and adapted their response accuracies to the task requirements more flexibly. These findings challenge the often-assumed role of alpha-power lateralization for attentional deployment. While alpha power seems to be related to behavioral performance and the orienting of attention, this relationship is rather complex and, at least under the current task requirements, the general alpha-power state seems to be more strongly related to behavioral performance (in our case, the flexible adjustment to task requirements) than the cue-related lateralization. © 2016 Society for Psychophysiological Research.
Rojas-Calderón, E L; Ávila, O; Ferro-Flores, G
2018-05-01
S-values (dose per unit of cumulated activity) for alpha particle-emitting radionuclides and monoenergetic alpha sources placed in the nuclei of three cancer cell models (MCF7, MDA-MB231 breast cancer cells and PC3 prostate cancer cells) were obtained by Monte Carlo simulation. The MCNPX code was used to calculate the fraction of energy deposited in the subcellular compartments due to the alpha sources in order to obtain the S-values. A comparison with internationally accepted S-values reported by the MIRD Cellular Committee for alpha sources in three sizes of spherical cells was also performed leading to an agreement within 4% when an alpha extended source uniformly distributed in the nucleus is simulated. This result allowed to apply the Monte Carlo Methodology to evaluate S-values for alpha particles in cancer cells. The calculation of S-values for nucleus, cytoplasm and membrane of cancer cells considering their particular geometry, distribution of the radionuclide source and chemical composition by means of Monte Carlo simulation provides a good approach for dosimetry assessment of alpha emitters inside cancer cells. Results from this work provide information and tools that may help researchers in the selection of appropriate radiopharmaceuticals in alpha-targeted cancer therapy and improve its dosimetry evaluation. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kurudirek, Murat; Onaran, Tayfur
2015-07-01
Effective atomic numbers (Zeff) and electron densities (Ne) of some essential biomolecules have been calculated for total electron interaction, total proton interaction and total alpha particle interaction using an interpolation method in the energy region 10 keV-1 GeV. Also, the spectrum weighted Zeff for multi-energetic photons has been calculated using Auto-Zeff program. Biomolecules consist of fatty acids, amino acids, carbohydrates and basic nucleotides of DNA and RNA. Variations of Zeff and Ne with kinetic energy of ionizing charged particles and effective photon energies of heterogeneous sources have been studied for the given materials. Significant variations in Zeff and Ne have been observed through the entire energy region for electron, proton and alpha particle interactions. Non-uniform variation has been observed for protons and alpha particles in low and intermediate energy regions, respectively. The maximum values of Zeff have found to be in higher energies for total electron interaction whereas maximum values have found to be in relatively low energies for total proton and total alpha particle interactions. When it comes to the multi-energetic photon sources, it has to be noted that the highest Zeff values were found at low energy region where photoelectric absorption is the pre-dominant interaction process. The lowest values of Zeff have been shown in biomolecules such as stearic acid, leucine, mannitol and thymine, which have highest H content in their groups. Variation in Ne seems to be more or less the same with the variation in Zeff for the given materials as expected.
Escape driven by alpha-stable white noises.
Dybiec, B; Gudowska-Nowak, E; Hänggi, P
2007-02-01
We explore the archetype problem of an escape dynamics occurring in a symmetric double well potential when the Brownian particle is driven by white Lévy noise in a dynamical regime where inertial effects can safely be neglected. The behavior of escaping trajectories from one well to another is investigated by pointing to the special character that underpins the noise-induced discontinuity which is caused by the generalized Brownian paths that jump beyond the barrier location without actually hitting it. This fact implies that the boundary conditions for the mean first passage time (MFPT) are no longer determined by the well-known local boundary conditions that characterize the case with normal diffusion. By numerically implementing properly the set up boundary conditions, we investigate the survival probability and the average escape time as a function of the corresponding Lévy white noise parameters. Depending on the value of the skewness beta of the Lévy noise, the escape can either become enhanced or suppressed: a negative asymmetry parameter beta typically yields a decrease for the escape rate while the rate itself depicts a non-monotonic behavior as a function of the stability index alpha that characterizes the jump length distribution of Lévy noise, exhibiting a marked discontinuity at alpha=1. We find that the typical factor of 2 that characterizes for normal diffusion the ratio between the MFPT for well-bottom-to-well-bottom and well-bottom-to-barrier-top no longer holds true. For sufficiently high barriers the survival probabilities assume an exponential behavior versus time. Distinct non-exponential deviations occur, however, for low barrier heights.
The Apollo Alpha Spectrometer.
NASA Technical Reports Server (NTRS)
Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.
1973-01-01
Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.
The Remote Detection of Alpha-Radioactive Nucleus Decay
NASA Astrophysics Data System (ADS)
Gurkovskiy, Boris; Miroshnichenko, Vladimir; Onishchenko, Evgeny; Simakov, Andrey; Streil, Thomas
Results of the new device design for the alpha-radiation remote detection are presented. Negative ions from the alpha particle tracks are detected by the discharge wire counter opened to air. Ion clusters being transferred from the particle tracks to the detector volume by an air flux. The detector works in a counting mode that provides sharp selectivity and accuracy of measurements. The basic parameters of the device are: detecting distance -0.5 m; measurement time -30 s; the square sensitivity -0.05 Bq/cm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.
Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmatov, M. L., E-mail: M.Shmatov@mail.ioffe.ru
2016-09-15
It is shown that a rapid deceleration of alpha particles in matter of electron temperature up to 100 keV leads a strong suppression of the chain nuclear fusion reaction on the basis of the p+{sup 11}B reaction with the reproduction of fast protons in the α+{sup 11}B and n+{sup 10}B reactions. The statement that the chain nuclear fusion reaction based on the p+{sup 11}B reaction with an acceleration of {sup 11}B nuclei because of elastic alpha-particle scattering manifests itself in experiments at the PALS (Prague Asterix Laser System) facility is analyzed.
Bi-Modal Model for Neutron Emissions from PuO{sub 2} and MOX Holdup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menlove, Howard; Lafleur, Adrienne
2015-07-01
The measurement of uranium and plutonium holdup in plants during process activity and for decommissioning is important for nuclear safeguards and material control. The amount of plutonium and uranium holdup in glove-boxes, pipes, ducts, and other containers has been measured for several decades using both neutron and gamma-ray techniques. For the larger containers such as hot cells and glove-boxes that contain processing equipment, the gamma-ray techniques are limited by self-shielding in the sample as well as gamma absorption in the equipment and associated shielding. The neutron emission is more penetrating and has been used extensively to measure the holdup formore » the large facilities such as the MOX processing and fabrication facilities in Japan and Europe. In some case the totals neutron emission rates are used to determine the holdup mass and in other cases the coincidence rates are used such as at the PFPF MOX fabrication plant in Japan. The neutron emission from plutonium and MOX has 3 primary source terms: 1) Spontaneous fission (SF) from the plutonium isotopes, 2) The (α,n) reactions from the plutonium alpha particle emission reacting with the oxygen and other impurities, and 3) Neutron multiplication (M) in the plutonium and uranium as a result of neutrons created by the first two sources. The spontaneous fission yield per gram is independent of thickness, whereas, the above sources 2) and 3) are very dependent on the thickness of the deposit. As the effective thickness of the deposit becomes thin relative to the alpha particle range, the (α,n) reactions and neutrons from multiplication (M) approach zero. In any glove-box, there will always be two primary modes of holdup accumulation, namely direct powder contact and non-contact by air dispersal. These regimes correspond to surfaces in the glove-box that have come into direct contact with the process MOX powder versus surface areas that have not had direct contact with the powder. The air dispersal of PuO{sub 2} particles has been studied for several decades by health physicists, because the primary health hazard of plutonium is breathing the airborne particles. The air dispersal mechanism results from the smaller particles in the top layer of powder that are lifted into the air by the electrostatic charge buildup from the alpha decay process, and the air convection carries the particles to new more distant locations. If there is open plutonium powder in a glove-box, the surfaces at more distant locations will become contaminated over time. The range of an alpha particle in a solid or powder is a function of the particle energy, the material density, and the atomic number A of the material. The average energy of a plutonium alpha particle is ∼5.2 MeV and the range in air is ∼37 mm. The range in other materials can be estimated via the Bragg-Kleenman equation. For plutonium, A is 94, and the typical density for a single particle is ∼11.5 g/cm{sup 3}, but for a powder, the density would be less because of the air packing fraction. The significance of the small diameter is that the range of the alpha particle is ∼50 μm for powder density 2.5 and significantly less for a single particle with density 11.5, so the thin deposit of separate small particles will have a greatly reduced (α,n) yield. The average alpha transit length to the surface in the isolated MOX particle would be < 2.5 μm; whereas, the range of the alpha particle is much longer. Thus, most of the alpha particles would escape from the MOX particle and be absorbed by the walls and air. The air dispersal particles will have access to a large surface area that includes the walls, whereas, the powder contact surface area will be orders of magnitude smaller. Thus, the vast majority of the glove-box surface area does not produce the full (α,n) reaction neutron yield, even from the O{sub 2} in the PuO{sub 2} as well as any impurity contamination such as H{sub 2}O. To obtain a more quantitative estimate of the neutron (α,n) yields as a function of holdup deposit thickness, we have used MCNPX calculations to estimate the absorption of alpha particles in PuO{sub 2} holdup deposits. The powder thickness was varied from 0.1 μm to 5000 μm and the alpha particle escape probability was calculated. As would be expected, as the thickness approaches zero, the escape probability approaches 1.0, and as the thickness gets much greater than the alpha particle range (∼50 μm), the escape probability becomes small. Typically, the neutron holdup calibration measurement are performed using sealed containers of thick MOX that has all 3 sources of neutrons [SF, (α,n), and M], and no significant impurities. Thus, the calibration counting rates need to include corrections for M and (α,n) yields that are different for the holdup compared with the calibration samples. If totals neutron counting is used for the holdup measurements, the variability of the (α,n) term needs to be considered.« less
Fusion alpha-particle diagnostics for DT experiments on the joint European torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiptily, V. G.; Beaumont, P.; Syme, D. B.
2014-08-21
JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of α-particles in DT operation. The direct measurements of alphas are very difficult and α-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the α-particle source and its evolution in space and time, α-particle energy distribution, and α-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for α-particle measurements, and what options exist formore » keeping the essential α-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, α-particle diagnostics for ITER are discussed.« less
Polarized Nuclei in a Simple Mirror Fusion Reactor
NASA Technical Reports Server (NTRS)
Noever, David A.
1995-01-01
The possibility of enhancing the ratio of output to input power Q in a simple mirror machine by polarizing Deuterium-Tritium (D- T) nuclei is evaluated. Taking the Livermore mirror reference design mirror ratio of 6.54, the expected sin(sup 2) upsilon angular distribution of fusion decay products reduces immediate losses of alpha particles to the loss cone by 7.6% and alpha-ion scattering losses by approx. 50%. Based on these findings, alpha- particle confinement times for a polarized plasma should therefore be 1.11 times greater than for isotropic nuclei. Coupling this enhanced alpha-particle heating with the expected greater than 50% D- T reaction cross section, a corresponding power ratio for polarized nuclei, Q(sub polarized), is found to be 1.63 times greater than the classical unpolarized value Q(sub classical). The effects of this increase in Q are assessed for the simple mirror.
[Wear behavior of enamel and veneering ceramics].
Gao, Qing-ping; Chao, Yong-lie; Jian, Xin-chun; Guo, Feng; Meng, Yu-kun
2007-10-01
To compare the wear between the enamel and two types of dental decoration porcelains for all-ceramic restorations (Vita-alpha, Vintage AL). Friction coefficients, wear scar width, element concentrations and wear surface evolution were considered relatively to the tribology of that in vivo situation. The wear scars of the samples were characterized by means of dynamic atomic force microscopy (DFM). The different element concentrations of the surface before/after the wear test were determined with energy dispersion spectrometry (EDS). The friction coefficient varied from time in each kind of material. The statistical differences between materials were observed in wear scar width and properties of materials (P<0.05). DFM results showed wear surface of natural tooth full of abrasive particles and denaturation of dental texture. Wear surface of veneering ceramics consisted mainly of abrasive particles, plough and microcracking. EDS results showed that the element concentration of Fe was obviously found on the samples after wear. The main underlying mechanisms of natural teeth wear are abrasive, and denaturation of dental texture. Abrasive wear, adhesion and fatigue of veneering ceramics characterize the wear patterns which plays different role in Vita-alpha and Vintage AL. The wear patterns of veneering ceramics can be described as mild wear.
Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.
Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd
2015-05-21
Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.
Making A D-Latch Sensitive To Alpha Particles
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Blaes, Brent R.; Nixon, Robert H.
1994-01-01
Standard complementary metal oxide/semiconductor (CMOS) D-latch integrated circuit modified to increase susceptibility to single-event upsets (SEU's) (changes in logic state) caused by impacts of energetic alpha particles. Suitable for use in relatively inexpensive bench-scale SEU tests of itself and of related integrated circuits like static random-access memories.
Nucleon-Alpha Particle Disequilibrium and Short-Lived r-Process Radioactivities
NASA Technical Reports Server (NTRS)
Meyer, B. S.; Clayton, D. D.; Chellapilla, S.; The, L.-S.
2002-01-01
r-Process yields can be extremely sensitive to expansion parameters when a persistent disequilibrium between free nucleons and alpha particles is present. This may provide a natural scenario for understanding the variation of heavy and light r-process isotopes in different r-process events. Additional information is contained in the original extended abstract.
The Explanation of the Pauli Exclusion Principle
NASA Astrophysics Data System (ADS)
Vasiliev, Victor; Moon, Russell
2006-11-01
Using the principles of the Vortex Theory, the construction of the alpha particle, and the theory that the nucleus is constructed out of alpha particles, the explanation of the Pauli Exclusion Principle is explained. If protons and electrons are connected to each other via fourth dimensional vortices, they spin in opposite directions. Since the alpha particle possesses two protons possessing opposite spins, their electrons also possess opposite spins. With a nucleus constructed out of alpha particles, all paired electrons in shells and sub-shells will spin in opposite directions. 1. Victor Vasiliev, Russell Moon. Controversy surrounding the Experiment conducted to prove the Vortex Theory, 2006 8th Annual Meeting of the Northwest Section, May 18-20, 2006, University of Puget Sound, Tacoma, Washington, USA, Abstract C1.00009. 2. Russell Moon. To the Photon Acceleration Effect, 2006 Texas Section APS/AAPT/SPS Joint Spring Meeting, Thursday--Saturday, March 23--25, 2006; San Angelo, Texas, Abstract: POS.00008. 3. Russell Moon, Fabian Calvo, Victor Vasiliev. The Neutral Pentaquark, 2006 APS March Meeting, March 13-17, Baltimore, MD, USA, Session Q1: GENERAL POSTER SESSION, Abstract Q1.00147.
Jejcic, Alenka; Höglund, Stefan; Vahlne, Anders
2010-03-15
The synthetic peptide glycyl-prolyl-glycine amide (GPG-NH2) was previously shown to abolish the ability of HIV-1 particles to fuse with the target cells, by reducing the content of the viral envelope glycoprotein (Env) in progeny HIV-1 particles. The loss of Env was found to result from GPG-NH2 targeting the Env precursor protein gp160 to the ER-associated protein degradation (ERAD) pathway during its maturation. However, the anti-viral effect of GPG-NH2 has been shown to be mediated by its metabolite alpha-hydroxy-glycineamide (alphaHGA), which is produced in the presence of fetal bovine serum, but not human serum. In accordance, we wanted to investigate whether the targeting of gp160 to the ERAD pathway by GPG-NH2 was attributed to its metabolite alphaHGA. In the presence of fetal bovine serum, GPG-NH2, its intermediary metabolite glycine amide (G-NH2), and final metabolite alphaHGA all induced the degradation of gp160 through the ERAD pathway. However, when fetal bovine serum was replaced with human serum only alphaHGA showed an effect on gp160, and this activity was further shown to be completely independent of serum. This indicated that GPG-NH2 acts as a pro-drug, which was supported by the observation that it had to be added earlier to the cell cultures than alphaHGA to induce the degradation of gp160. Furthermore, the substantial reduction of Env incorporation into HIV-1 particles that occurs during GPG-NH2 treatment was also achieved by treating HIV-1 infected cells with alphaHGA. The previously observed specificity of GPG-NH2 towards gp160 in HIV-1 infected cells, resulting in the production of Env (gp120/gp41) deficient fusion incompetent HIV-1 particles, was most probably due to the action of the GPG-NH2 metabolite alphaHGA.
NASA Astrophysics Data System (ADS)
Omotoso, Ezekiel; Meyer, Walter E.; Auret, F. Danie; Paradzah, Alexander T.; Legodi, Matshisa J.
2016-03-01
Deep-level transient spectroscopy (DLTS) and Laplace-DLTS were used to investigate the effect of alpha-particle irradiation on the electrical properties of nitrogen-doped 4H-SiC. The samples were bombarded with alpha-particles at room temperature (300 K) using an americium-241 (241Am) radionuclide source. DLTS revealed the presence of four deep levels in the as-grown samples, E0.09, E0.11, E0.16 and E0.65. After irradiation with a fluence of 4.1 × 1010 alpha-particles-cm-2, DLTS measurements indicated the presence of two new deep levels, E0.39 and E0.62 with energy levels, EC - 0.39 eV and EC - 0.62 eV, with an apparent capture cross sections of 2 × 10-16 and 2 × 10-14 cm2, respectively. Furthermore, irradiation with fluence of 8.9 × 1010 alpha-particles-cm-2 resulted in the disappearance of shallow defects due to a lowering of the Fermi level. These defects re-appeared after annealing at 300 °C for 20 min. Defects, E0.39 and E0.42 with close emission rates were attributed to silicon or carbon vacancy and could only be separated by using high resolution Laplace-DLTS. The DLTS peaks at EC - (0.55-0.70) eV (known as Z1/Z2) were attributed to an isolated carbon vacancy (VC).
Mutagenic effects of a single and an exact number of alpha particles in mammalian cells
NASA Technical Reports Server (NTRS)
Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.
1997-01-01
One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.
Mutagenic effects of a single and an exact number of alpha particles in mammalian cells.
Hei, T K; Wu, L J; Liu, S X; Vannais, D; Waldren, C A; Randers-Pehrson, G
1997-04-15
One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.
NASA Technical Reports Server (NTRS)
Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.
1994-01-01
The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.
Combined effects of depleted uranium and ionising radiation on zebrafish embryos.
Ng, C Y P; Pereira, S; Cheng, S H; Adam-Guillermin, C; Garnier-Laplace, J; Yu, K N
2015-11-01
In the environment, living organisms are exposed to a mixture of stressors, and the combined effects are deemed as multiple stressor effects. In the present work, the authors studied the multiple stressor effect in embryos of the zebrafish (Danio rerio) from simultaneous exposure to alpha particles and depleted uranium (DU) through quantification of apoptotic signals at 24 h post-fertilisation (hpf) revealed by vital dye acridine orange staining. In each set of experiments, dechorionated zebrafish embryos were divided into 4 groups, each having 10 embryos: Group (C) in which the embryos did not receive any further treatment; Group (IU) in which the embryos received an alpha-particle dose of 0.44 mGy at 5 hpf and were then exposed to 100 µg l(-1) of DU from 5 to 6 hpf; Group (I) in which the embryos received an alpha-particle dose of 0.44 mGy at 5 hpf and Group (U) in which the dechorionated embryos were exposed to 100 µg l(-1) of DU from 5 to 6 hpf. The authors confirmed that an alpha-particle dose of 0.44 mGy and a DU exposure for 1 h separately led to hormetic and toxic effects assessed by counting apoptotic signals, respectively, in the zebrafish. Interestingly, the combined exposure led to an effect more toxic than that caused by the DU exposure alone, so effectively DU changed the beneficial effect (hormesis) brought about by alpha-particle irradiation into an apparently toxic effect. This could be explained in terms of the promotion of early death of cells predisposed to spontaneous transformation by the small alpha-particle dose (i.e. hormetic effect) and the postponement of cell death upon DU exposure. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Detection of special nuclear materials with the associate particle technique
NASA Astrophysics Data System (ADS)
Carasco, Cédric; Deyglun, Clément; Pérot, Bertrand; Eléon, Cyrille; Normand, Stéphane; Sannié, Guillaume; Boudergui, Karim; Corre, Gwenolé; Konzdrasovs, Vladimir; Pras, Philippe
2013-04-01
In the frame of the French trans-governmental R&D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xinliang; Lu, Quanming; Hao, Yufei
2014-01-01
The parametric instabilities of an Alfvén wave in a proton-electron plasma system are found to have great influence on proton dynamics, where part of the protons can be accelerated through the Landau resonance with the excited ion acoustic waves, and a beam component along the background magnetic field is formed. In this paper, with a one-dimensional hybrid simulation model, we investigate the evolution of the parametric instabilities of a monochromatic left-hand polarized Alfvén wave in a proton-electron-alpha plasma with a low beta. When the drift velocity between the protons and alpha particles is sufficiently large, the wave numbers of themore » backward daughter Alfvén waves can be cascaded toward higher values due to the modulational instability during the nonlinear evolution of the parametric instabilities, and the alpha particles are resonantly heated in both the parallel and perpendicular direction by the backward waves. On the other hand, when the drift velocity of alpha particles is small, the alpha particles are heated in the linear growth stage of the parametric instabilities due to the Landau resonance with the excited ion acoustic waves. Therefore, the heating occurs only in the parallel direction, and there is no obvious heating in the perpendicular direction. The relevance of our results to the preferential heating of heavy ions observed in the solar wind within 0.3 AU is also discussed in this paper.« less
NASA Astrophysics Data System (ADS)
Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.
2016-12-01
Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.
Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A
2011-07-01
A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.
Austruy, E; Bagnis, C; Carbuccia, N; Maroc, C; Birg, F; Dubreuil, P; Mannoni, P; Chabannon, C
1998-01-01
Using the LXSN backbone, a defective retroviral vector (LISN) was constructed that encodes the human interferon (IFN)-alpha2 (hIFN-alpha2) gene and the neomycin resistance gene; the hIFN-alpha2 gene was cloned from human placental genomic DNA. High titers of the LISN retrovirus were produced by the amphotropic packaging cell line GP+envAM12. LISN is able to infect three human hematopoietic and leukemic cell lines: K562, LAMA-84, and TF-1. G418-resistant cells were detected in a similar proportion after infection with either the LISN retroviral vector or the LnLSN retroviral vector (encoding the nlsLacZ gene instead of hIFN-alpha2), suggesting that hIFN-alpha2 does not inhibit (or only partially inhibits) the production of retroviral particles by the packaging cell line and the infection of human cells. LISN-infected cells express and secrete hIFN-alpha2 as demonstrated by Northern blot analysis of poly(A)+ RNA, detection of the intracellular protein by fluorescence-activated cell sorter analysis, and detection of secreted hIFN-alpha in cell supernatants using an enzyme-linked immunosorbent assay. Retrovirally produced hIFN-alpha2 is biologically active, as demonstrated by the partial inhibition of the growth of K562 and TF-1, the modulation of the expression of cell surface antigens, the induction of the (2'-5') oligoadenylate synthetase, and, for LAMA-84, the down-modulation of the BCR-ABL protein. We conclude that the infection of human leukemic cell lines with a retroviral vector encoding hIFN-alpha2 is feasible and induces the expected biological effects. This experimental model will be useful in investigating the possibility of transducing normal and leukemic cells and hematopoietic progenitors and in determining the consequences of the autocrine production of hIFN-alpha2 on the behavior of these cells.
Role of IL-10 -1082, IFN-gamma +874, and TNF-alpha -308 genes polymorphisms in suicidal behavior.
Omrani, Mir Davood; Bushehri, Behzad; Bagheri, Morteza; Salari-Lak, Shaker; Alipour, Azize; Anoshae, Mohamad-Reza; Massomi, Reza
2009-01-01
In this study, it was determined whether the IL-10 -1082, IFN-gamma +874, and TNF-alpha -308 polymorphisms were associated with suicidal behavior. One hundred forty five patients with suicidal behavior and 160 normal individuals were genotyped for IL-10 -1082, IFN-gamma +874, and TNF-alpha -308 polymorphisms using ASO-PCR method. TNF-alpha -308 G/G genotype has been increased in males with completed suicide behavior versus control group (p value = 0.017). IL-10 -1082 A/A genotype is higher in both male and female suicide completed groups (p value = 0.017). IFN-gamma (+874) A/A genotype was significantly higher in males with completed suicide behavior versus normal male control (p value = 0.027). It can be concluded that IL-10, IFN-gamma, and TNF-alpha polymorphisms may play a role in suicidal behavior.
Khisti, Rahul T; Deshpande, Laxmikant S; Chopde, Chandrabhan T
2002-05-01
The neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) has been previously shown to induce catalepsy in mice that is modified by GABAergic, dopaminergic, adenosinergic and serotonergic agents. In light of the interaction of this endogenous neurosteroid with GABAergic and dopaminergic transmission, there is potential interest in the possible role of 3alpha,5alpha-THP in psychotic disorders. This study assessed the effect of 3alpha,5alpha-THP in certain dopamine-mediated behavioral paradigms that are widely used to predict antipsychotic-like activity. 3alpha,5alpha-THP (1-8 microg per animal, i.c.v.), the classic neuroleptic (dopamine receptor antagonist) haloperidol (0.25 mg/kg, i.p.), and the benzodiazepine diazepam (7 mg/kg, i.p.) were injected into different groups of animals, and their behavior was screened using the following animal tests: conditioned avoidance response, apomorphine-induced climbing, and amphetamine-induced motor hyperactivity. Separate groups of mice that received 3alpha,5alpha-THP (1-8 microg per animal, i.c.v.) were screened for catalepsy. Furthermore, the effect of a sub-cataleptic dose (0.1 microg per mouse, i.c.v.) of 3alpha,5alpha-THP, either alone or in combination with the GABA(A) receptor antagonist picrotoxin (0.8 mg/kg, i.p.) was measured on haloperidol-induced catalepsy. 3alpha,5alpha-THP like haloperidol reduced conditioned avoidance, apomorphine-induced cage climbing and amphetamine-induced motor hyperactivity. Diazepam only affected conditioned avoidance. 3alpha,5alpha-THP also induced dose-dependent catalepsy. Furthermore, sub-cataleptic doses of 3alpha,5alpha-THP potentiated haloperidol-induced catalepsy. This potentiation was blocked by prior treatment with the GABA(A) receptor antagonist picrotoxin. These findings suggest that 3alpha,5alpha-THP, by its action at the GABA(A) receptors, increases GABAergic tone leading to a behavioral profile similar to that of dopamine receptor antagonists.
Effect of Alpha-Particle Irradiation on Brain Glycogen in the Rat
NASA Technical Reports Server (NTRS)
Wolfe, L. S.; Klatzo, Igor; Miquel, Jaime; Tobias, Cornelius; Haymaker, Webb
1962-01-01
The studies of Klatzo, Miquel, Tobias and Haymaker (1961) have shown that one of the earliest and most sensitive indications of the effects of alpha-particle irradiation on rat bran is the appearance of glycogen granules mainly in the neuroglia of the exposed area of the brain. Periodic acid-Schiff (PAS) positive, alpha-amylase soluble granules were demonstrated within 12 hr after irradiation, preceding by approximately 36 hr the first microscopically detectable vascular permeability disturbances, as shown by the fluorescein labeled serum protein technique. These studies suggested that the injurious effects of alpha-particle energy were on cellular elements primarily, according to the physical properties and distribution of the radiation in the tissue, and that the vascular permeability disturbances played a secondary role in pathogenesis. The purpose of this study was to correlate the histochemical observations on glycogen with a quantitative assessment of the glycogen in the irradiated brain tissue. It is felt that such a study may contribute to the understanding of radiation injury at the molecular level. A practical aspect of this problem is that the information on biological radiation effects due to accelerated particles from the cyclotron source, is employed in this study, is applicable to radiation from cosmic particles both in free space and entrapped in the Van Allen belts.
Vlasov Simulations of Multi-ion Plasma Turbulence in the Solar Wind
NASA Astrophysics Data System (ADS)
Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.
2013-01-01
Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles, and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according to solar wind observations. The anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy and also depends on the local differential flow between the two species. Evident distortions of the particle distribution functions are present, with the production of bumps along the direction of the local magnetic field. The physical phenomenology recovered in these numerical simulations reproduces very common measurements in the turbulent solar wind, suggesting that the multi-ion Vlasov model constitutes a valid approach to understanding the nature of complex kinetic effects in astrophysical plasmas.
Processing and properties of SiC whisker- and particulate-reinforced reaction bonded Si3N4
NASA Technical Reports Server (NTRS)
Lightfoot, A.; Ewart, L.; Haggerty, J.; Cai, Z. Q.; Ritter, J.; Nair, S.
1991-01-01
The microstructure and mechanical properties of reaction bonded Si3N4 (RBSN) reinforced with SiC whiskers of particles were investigated using RBSN composites made from colloidally pressed octanol dispersions of high-purity Si powders mixed with either SiC whiskers or alpha-SiC particles. Results of investigations, revealing high conversions of Si to Si3N4, specific surface areas, and constant relative densities and strengths, showed that the uniform microstructure and small flaw size of the matrix were maintained in the composites and that no degradation of the reinforcements was taking place. Neither the monolithic nor the composite materials exhibited R-curve behavior. A modest increase in fracture toughness was observed only in the RBSN containing 33 vol pct SiC(p).
A Strange Box and a Stubborn Brit: Rutherford's Experiments with Alpha Particles.
ERIC Educational Resources Information Center
Digilov, M.
1991-01-01
Discusses 5 innovative experiments conducted by Rutherford in early 1900s utilizing the 30 milligrams of radium salt he personally carried from Europe to Canada in 1903. Traces his work with alpha particles from his original results which determined their nature, charge, and mass, to his technique of backscattering which helped to advance…
The electric potential of particles in interstellar space released from a nuclear waste payload
NASA Technical Reports Server (NTRS)
Williams, A. C.
1980-01-01
Mechanisms for charging a grain in the interplanetary medium include: (1) capture of solar wind electrons; (2) capture of solar wind protons; (3) ejection of electrons through the photoelectric effect due to the solar radiation; (4) escape of beta particles from beta emitters in the grain; and (5) escape of alpha particles from alpha emitters in the grain. The potentials on both nonradioactive and radioactive grains are considered with relation to particle size and time, and the distance from the Sun. Numerical results are presented where the waste mix is assumed to be PW-4b.
Multielement mapping of alpha-SiC by scanning Auger microscopy
NASA Technical Reports Server (NTRS)
Browning, Ray; Smialek, James L.; Jacobson, Nathan S.
1987-01-01
Fine second-phase particles, numerous in sintered alpha-SiC, were analyzed by scanning Auger microscopy and conventional techniques. The Auger analysis utilized computer-controlled data acquisition, multielement correlation diagrams, and a high spatial resolution of 100 nm. This procedure enabled construction of false color maps and the detection of fine compositional details within these particles. Carbon, silicon oxide, and boron-rich particles (qualitatively as BN or B4C) predominated. The BN particles, sometimes having a carbon core, are believed to result from reaction between B4C additives and nitrogen sintering atmospheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aushev, A A; Barinov, S P; Vasin, M G
2015-06-30
We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied bymore » alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)« less
Charged-particle emission tomography
NASA Astrophysics Data System (ADS)
Ding, Yijun
Conventional charged-particle imaging techniques--such as autoradiography-- provide only two-dimensional (2D) images of thin tissue slices. To get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick sections, thus increasing laboratory throughput and eliminating distortions due to registration. In CPET, molecules or cells of interest are labeled so that they emit charged particles without significant alteration of their biological function. Therefore, by imaging the source of the charged particles, one can gain information about the distribution of the molecules or cells of interest. Two special case of CPET include beta emission tomography (BET) and alpha emission tomography (alphaET), where the charged particles employed are fast electrons and alpha particles, respectively. A crucial component of CPET is the charged-particle detector. Conventional charged-particle detectors are sensitive only to the 2-D positions of the detected particles. We propose a new detector concept, which we call particle-processing detector (PPD). A PPD measures attributes of each detected particle, including location, direction of propagation, and/or the energy deposited in the detector. Reconstruction algorithms for CPET are developed, and reconstruction results from simulated data are presented for both BET and alphaET. The results show that, in addition to position, direction and energy provide valuable information for 3D reconstruction of CPET. Several designs of particle-processing detectors are described. Experimental results for one detector are discussed. With appropriate detector design and careful data analysis, it is possible to measure direction and energy, as well as position of each detected particle. The null functions of CPET with PPDs that measure different combinations of attributes are calculated through singular-value decomposition. In general, the more particle attributes are measured from each detection event, the smaller the null space of CPET is. In other words, the higher dimension the data space is, the more information about an object can be recovered from CPET.
Login, G R; Yang, J; Bryan, K P; Digenis, E C; McBride, J; Elovic, A; Quissell, D O; Dvorak, A M; Wong, D T
1997-03-01
Although the expression and biological role of transforming growth factor-alpha (TGF-alpha) have been explored in a variety of normal cells in mammalian species, little is known about the storage of TGF-alpha in secretory cells of exocrine organs. Parotid glands from four rats were homogenized for RNA isolation followed by reverse transcription-polymerase chain reaction to determine the presence of TGF-alpha message. In situ hybridization using a hamster-specific TGF-alpha riboprobe was done on paraffin sections. Parotid gland and isolated acinar cells were processed for transmission electron microscopy (TEM) and postembedding immunogold labeled for TGF-alpha. Gold particles were counted on approximately 200 granules in 10 acinar cells and in 10 intercalated duct cells. Labeling density was calculated as the number of gold particles per square micrometer +/- SD. Statistical significance was calculated using one-way analysis of variance. Using multiple technologies, we have established that rat parotid acinar and intercalated duct cells synthesize TGF-alpha and store the precursor form of this cytokine in their secretory granules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Brian W.; Frost, Sophia; Frayo, Shani
Abstract Alpha emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50–80 μm) causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with alpha emitters may inactivate targeted cells with minimal radiation damage to surrounding tissues. For accurate dosimetry in alpha-RIT, tools are needed to visualize and quantify the radioactivity distribution and absorbed dose to targeted and non-targeted cells, especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterizemore » a novel single-particle digital autoradiography imager, iQID (ionizing-radiation Quantum Imaging Detector), for use in alpha-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection technology that images and identifies charged-particle and gamma-ray/X-ray emissions spatially and temporally on an event-by-event basis. It employs recent advances in CCD/CMOS cameras and computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, we evaluated this system’s characteristics for alpha particle imaging including measurements of spatial resolution and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 (211At) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at ~20 μm full width at half maximum (FWHM) and the alpha particle background was measured at a rate of (2.6 ± 0.5) × 10–4 cpm/cm2 (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was performed using a large-area iQID configuration (ø 11.5 cm). Estimation of the 211At activity distribution was demonstrated at mBq/μg levels. Conclusion: Single-particle digital autoradiography of alpha emitters has advantages over traditional autoradiographic techniques in terms of spatial resolution, sensitivity, and activity quantification capability. The system features and characterization results presented in this study show that iQID is a promising technology for microdosimetry, because it provides necessary information for interpreting alpha-RIT outcomes and for predicting the therapeutic efficacy of cell-targeted approaches using alpha emitters.« less
Frye, Cheryl A; Rhodes, Madeline E
2005-03-15
5 alpha-Pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), progesterone (P4)'s 5 alpha-reduced, 3 alpha-hydroxysteroid oxidoreduced product, facilitates lordosis of rodents in part via agonist-like actions at GABA(A)/benzodiazepine receptor complexes in the ventral tegmental area (VTA). Whether 3 alpha,5 alpha-THP influences another reproductively-relevant behavior, lateral displacement, of hamsters was investigated. Lateral displacement is the movement that female hamsters make with their perineum towards male-like tactile stimulation. This behavior facilitates, and is essential for, successful mating. Hamsters in behavioral estrus had greater lateral displacement responses when endogenous progestin levels were elevated compared to when progestin levels were lower. Administration of P4, a prohormone for 3 alpha,5 alpha-THP, dose-dependently (500 > 200 > 100, 50, or 0 microg) enhanced lateral displacement of ovariectomized hamsters that had been primed with SC estradiol benzoate (5 or 10 microg). Inhibiting P4's metabolism to 3 alpha,5 alpha-THP by co-administering finasteride, a 5 alpha-reductase inhibitor, or indomethacin, a 3 alpha-hydroxysteroid oxidoreductase inhibitor, either systemically or to the VTA, significantly decreased lateral displacement and midbrain progestin levels of naturally receptive or hormone-primed hamsters compared to controls. These data suggest that lateral displacement is progestin-sensitive and requires the formation of 3 alpha,5 alpha-THP in the midbrain VTA.
Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks
NASA Technical Reports Server (NTRS)
Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.
1989-01-01
The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.
Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas
Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; ...
2015-03-01
The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K α and K β x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those notmore » exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less
NASA Technical Reports Server (NTRS)
Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.
1994-01-01
The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.
Growth and Characterization of alpha-PbO for Room Temperature Radiation Detection
NASA Astrophysics Data System (ADS)
Ford, Erin Leigh
A global trading structure and high throughput of shipping containers into ports around the world increases the chance of nuclear terrorism via cargo containers. Harmless radioactive sources confuse and impede detection of the materials that pose a real threat, making spectroscopy difficult and requiring detectors with high resolution. The current methods that are used to check containers in ports have security flaws, and only 5% of all shipping containers are checked. The development of semiconductor gamma-ray detectors is one of the protocols being advanced to alleviate this risk because they can function at room temperature and they are cost effective, easily produced, and have high resolution. This dissertation has addressed the current lack of "perfect" room temperature detector materials by investigating alpha-PbO, a novel material in this field. This includes the development of a growth process for alpha-PbO thin films, as well as its structural and performance characterization as a detector material. Because we intend alpha-PbO to be a photoconductive detector, it should have certain properties. A photoconductive detector consists of a highly resistive material with a voltage bias across it. It absorbs incident gamma-rays, creating electron-hole pairs that provide a signal. To function well, it must have a high atomic number and a high density in order to absorb high-energy photons via the photoelectric effect. It should also have a large resistivity and a wide band gap to avoid large leakage currents at room temperature. Finally, it must have good charge carrier transport properties and detector resolution in order to be able to determine the characteristic energy peaks of the radiation-emitting source. We chose alpha-PbO because it has a very high Z and a very high density and a band gap in the correct range. It also has a rich history of use as a photoconductor that reaches back to the 1950s. Numerous methods have been used to grow thin films of alpha-PbO. However, rarely are those films single phase or highly oriented. Pulsed laser deposition provides a method to grow epitaxial thin films of alpha-PbO. The structure of the grown films was characterized using X-ray diffraction 2θ-o scans, rocking curves, and reciprocal space mapping. Feedback from a parameterized study of the structural characterization enabled optimization of the growth process to improve the quality of the thin films. The methods used for the optical measurement of alpha-PbO films included absorption spectroscopy and ellipsometry. Determination of the spectral absorption coefficient was achieved by transmission spectroscopy and reflection spectroscopy via a PerkinElmer Lambda 950 UV-Vis spectrophotometer. Study of the electronic and transport properties of alpha-PbO is important in order to understand how the material will behave as a radiation detector. Spectral photoconductivity was measured to ensure that alpha-PbO's response to light was large enough for it to be a useful detector material and to confirm the band gap measurements. In the field of detector materials, the mutau-product is commonly used as a figure of merit because it enables a measurement of the trapping length of the charge carriers within the detector. Many's equation, which is a derivation of the photocurrent with respect to the applied voltage across a wide band gap semiconductor, is one of the methods used to determine the mutau-product. The photocurrent voltage measurements were obtained from the 0.5 V to 80 V range. This data was difficult to fit with Many's equation over that whole range. Higher voltages displayed deviation from ideal behavior due to the contact effects, but at the lower voltages the data were unaffected. Fits to the lower voltage range, from 0.5 V to 10 V, yielded mutau = 6.8 x 10-4 cm2/V. Room temperature photoconductors will ultimately be used to detect gamma-rays; however, thin films do not have enough stopping power to absorb the total energy of a gamma-ray. Therefore, we study the alpha-PbO detector response to radiation in the form of alpha particles because they are large, charged, and relatively easy to stop. SRIM calculation estimated that alpha particles have a range of up to 16 mum in alpha-PbO. The initial long-duration film growth yielded films that were ˜ 8 mum thick. Therefore, a full energy peak from alpha particles was not seen in alpha-PbO. We did see a shoulder protruding out of the noise peak due to the charge carriers that were created before the alpha particles escaped the detector volume. (Abstract shortened by UMI.)
The luminescence characteristics of CsI(Na) crystal under α and X/γ excitation
NASA Astrophysics Data System (ADS)
Liu, Jinliang; Liu, Fang; Ouyang, Xiaoping; Liu, Bin; Chen, Liang; Ruan, Jinlu; Zhang, Zhongbing; Liu, Jun
2013-01-01
In this paper, we study the effective decay time characteristic of CsI(Na) crystal under 239Pu alpha particle and 137Cs gamma-ray excitation using a single photon counting decay time measurement system. The measurement system employs a silicon optical fiber to couple and transit single photon. The slow decay time component of CsI(Na) crystal is 460-550 ns. We observe a 15 ns fast decay component under alpha particle excitation. In addition, we find that the primary stage of the falling edge in the decay time curve is non-exponential and drops rapidly when CsI(Na) crystal is excited by 239Pu alpha particles. Since the high density of self-trapped-excitons (STEs) is produced in alpha particle excitation process, we propose that the fast falling edge is corresponding to the quenching process of STEs which transit with non-radiation in the case of high excitation density. To prove this proposal, we excited the CsI(Na) crystal with sub-nanosecond intensive pulsed X-ray radiation. Our X-ray impinging results show that the fast falling edge also exists under low energy (average 100 keV) bremsstrahlung X-ray excitation.
NASA Astrophysics Data System (ADS)
Figueiredo, A. C. A.; Rodrigues, P.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.
2016-07-01
The linear stability of Alfvén eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach based on CASTOR-K (Borba and Kerner 1999 J. Comput. Phys. 153 101; Nabais et al 2015 Plasma Sci. Technol. 17 89) is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfvén eigenmodes. The largest growth-rates occur in the scenario variant with higher core temperatures, which has the highest alpha-particle density and density gradient, for eigenmodes with toroidal mode numbers n≈ 30 . Although these eigenmodes suffer significant radiative damping, which is also evaluated, their growth rates remain larger than those of the most unstable eigenmodes found in the variant of the ITER baseline scenario with lower core temperatures, which have n≈ 15 and are not affected by radiative damping.
The limitations of associated alpha particle technique for contraband container inspections
NASA Astrophysics Data System (ADS)
Sudac, Davorin; Blagus, Sasa; Valkovic, Vladivoj
2007-10-01
Inspection of a shipping container for the presence of the threat materials has been investigated in the laboratory by using a 14 MeV neutron beam, a BaF2 gamma detector and the associated alpha particle technique. The associated alpha particle technique is proposed as a part of a two sensor system for contraband container inspections. This method is effective in the reduction of background radiation with the possibility of collimating electronically the neutron beam. The intrinsic time resolution has been experimentally estimated to be 1.3 ns (FWHM), which allows inspection of a minimum voxel having 7 cm depth along the neutron flight path. The neutron beam intensity plays a crucial role as a limiting factor for the acquisition time reduction. Single counting rates of the gamma and alpha detector were investigated as a function of the neutron intensity, distance between the gamma detector and the neutron source and the type of shielding. The time and the energy spectra for different neutron intensities were evaluated.
Sensitivity of alpha-particle-driven Alfvén eigenmodes to q-profile variation in ITER scenarios
NASA Astrophysics Data System (ADS)
Rodrigues, P.; Figueiredo, A. C. A.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.
2016-11-01
A perturbative hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfvén eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the {{I}\\text{p}}=15 MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight variations (of the order of 1% ) of the safety-factor value on axis are seen to cause large changes in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core, raising issues about reliable predictions of alpha-particle transport in burning plasmas.
Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.; ...
2017-03-07
Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less
NASA Astrophysics Data System (ADS)
Carbajal, L.; Dendy, R. O.; Chapman, S. C.; Cook, J. W. S.
2017-03-01
Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity PICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, nα/ni, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.
Carbajal, L; Dendy, R O; Chapman, S C; Cook, J W S
2017-03-10
Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P_{ICE} scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n_{α}/n_{i}, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.
{sup 12}C formation: A classical quest in new light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tengblad, O.; Alcorta, M.; Borge, M. J. G.
2011-10-28
In this work we have studied the break-up of {sup 12}C following the reactions {sup 10}B({sup 3}He,p{alpha}{alpha}{alpha}) and {sup 11}B({sup 3}He,d{alpha}{alpha}{alpha}). The study was performed at the 5 MV tandem in Madrid. The break-up gives us information on excited states in {sup 12}C from the famous Hoyle state up to an energy of almost 18 MeV. Using a highly segmented experimental set-up the simultaneous detection of the three alpha particles in coincidence with a proton or deuteron respectively made possible a full kinematic reconstruction of the break-up. On the basis of the energies of the 3 {alpha} particles and theirmore » angular correlations it has been possible to determine the spin and parity of states for cases in which the assignment has been doubtful. Some of these levels will also de-excite via electromagnetic emission. The comparison between the energy of proton that populate a state of {sup 12}C and the sum of the energies of the 3{alpha} emitted from the same state makes possible to determine the presence of electromagnetic disintegration ({gamma}) to lower states within {sup 12}C followed by the 3{alpha} break-up.« less
Nuclear radiation-warning detector that measures impedance
Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven
2013-06-04
This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.
NASA Astrophysics Data System (ADS)
Goodman, S. A.; Auret, F. D.; Meyer, W. E.
1994-05-01
Radiation damage effects were studied in n-GaAs grown by organo-metallic vapour phase epitaxy (OMVPE) for a wide range of alpha-particle (2.0 MeV and 5.4 MeV) and proton (2.0 MeV) particle fluences, using an americium-241 (Am-241) radio-nuclide and a linear Van de Graaff accelerator as the particle sources. The samples were irradiated at 300 K, after fabricating palladium Schottky barrier diodes (SBDs) on the 1.2 × 10 16 cm 3 Si-doped epitaxial layers. The irradiation-induced defects are characterized using conventional deep level transient spectroscopy (DLTS). A correlation is made between the change in SBD characteristics and the quantity and type of defects introduced during irradiation. It is shown that the two parameters most susceptible to this irradiation are the reverse leakage current of the SBDs and the free carrier density of the epilayer. The introduction rate and the "signatures" of the alpha-particle and proton irradiation-induced defects are calculated and compared to those of similar defects introduced during electron irradiation.
Molecular chaperone properties of the high molecular weight aggregate from aged lens
NASA Technical Reports Server (NTRS)
Takemoto, L.; Boyle, D.; Spooner, B. S. (Principal Investigator)
1994-01-01
The high molecular weight aggregate (HMWA) fraction was isolated from the water soluble proteins of aged bovine lenses. Its composition and ability to inhibit heat-induced denaturation and aggregation were compared with the lower molecular weight, oligomeric fraction of alpha isolated from the same lens. Although the major components of both fractions were the alpha-A and alpha-B chains, the HMWA fraction possessed a decreased ability to protect other proteins against heat-induced denaturation and aggregation. Immunoelectron microscopy of both fractions demonstrated that alpha particles from the HMWA fraction contained increased amounts of beta and gamma crystallins, bound to a central region of the supramolecular complex. Together, these results demonstrate that alpha crystallins found in the HMWA fraction possess a decreased ability to protect against heat-induced denaturation and aggregation, and suggest that at least part of this decrease could be due to the increased presence of beta and gamma crystallins complexed to the putative chaperone receptor site of the alpha particles.
Thomas, Patricia; Tracy, Bliss; Ping, Tilly; Baweja, Anar; Wickstrom, Mark; Sidhu, Narinder; Hiebert, Linda
2007-03-01
Northern peoples can receive elevated radiation doses (1- 10 mSv/y) from transfer of polonium-210 (210Po) through the lichen-caribou-human food chain. Ingested 210Po is primarily blood-borne and thus many of its short range alpha particles irradiate the endothelial cells lining the blood vessels. The relative biological effectiveness (RBE) of alpha particles vs. x-rays was examined in porcine aortic endothelial cells as a surrogate for understanding what might happen to human endothelial cells in northern populations consuming traditional foods. Cultured porcine aortic endothelial cells were exposed to x-ray and 210Po alpha particle radiation. Alpha irradiation was applied to the cell cultures internally via the culture medium and externally, using thin-bottomed culture dishes. The results given here are based on the external irradiation method, which was found to be more reliable. Dose-response curves were compared for four lethal endpoints (cell viability, live cell fraction, release of lactate dehydrogenase [LDH] and clonogenic survival) to determine the relative biological effectiveness (RBE) of alpha radiation. The alpha RBE for porcine cells varied from 1.6-21, depending on the endpoint: 21.2+/-4.5 for cell viability, 12.9+/-2.7 for decrease in live cell number, 5.3+/-0.4 for LDH release to the medium but only 1.6 +/-0.1 for clonogenic survival. The low RBE of 1.6 was due to x-ray hypersensitivity of endothelial cells at low doses.
An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder
NASA Astrophysics Data System (ADS)
Rieder, R.; Wanke, H.; Economou, T.
1996-09-01
Mars Pathfinder and the Russian Mars-96 will carry an Alpha Proton X-Ray Spectrometer (APXS) for the determination of the chemical composition of Martian rocks and soil. The instrument will measure the concentration of all major and many minor elements, including C,N and O, at levels above typically 1%. The method employed consist of bombarding a sample of 50 mm diameter with alpha particles from a radioactive source (50 mCi of Cm-244) and measuring: (i) backscattered alpha particles (alpha mode) (ii) protons from (a,p) reactions with some light elements (proton mode) (iii) characteristic X-rays emitted from the sample (X-ray mode). The APXS has a long standing space heritage, going back to Surveyor V,VI and VII (1967/68) and the Soviet Phobos (1988) missions. The present design is the result of an endeavour to reduce mass and power consumption to 600g/ 300mW. It consist of a sensor head containing the alpha sources, a telescope of a silicon detectors for the detection of the alpha particles and protons and a separate X-ray detector with its preamplifier, and an electronics box (80x70x60 mm) containing a microcontroller based multichannel spectrometer. The paper will describe the APXS flight hardware and present results obtained with the flight instrument that will show the instrument capabili- ties and the expected results to be obtained during surface operations on Mars.
Growth rates of new parametric instabilities occurring in a plasma with streaming He(2+)
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1994-01-01
We consider parametic instabilities of a circularly polarized pump Alfven wave, which propagates parallel to the ambient magnetic field; the daughter waves are also parallel-propagating. We follow Hollweg et al. (1993) and consider several new instabilites that owe their existence to the presence of streaming alpha particles. One of the new instabilites is similar to the famililar decay instability, but the daughter waves are a forward going alpha sound wave and a backward going Alfven wave. The growth rate of this instability is usually small if the alpha abundance is small. The other three new instabilities occur at high frequencies and small wavelengths. We find that the new instability which involves the proton cyclotron wave and alpha sound (i.e., the +f, - alpha) instability, which involves both the proton and alpha cycltron resonances, but if the pump wave must have low frequency and large amplitude. These instabilities may be a means of heating and accelerating alpha particles in the solar wind, but this claim is unproven until a fully kinetic study is carried out.
Transfer reactions induced by lithium ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogloblin, A.A.
The review deals with nuclear reactions induced by /sup 6/Li and /sup 7/ Li io ns having energies between 10 and 30 MeV. Due to the cluster structure of / sup 6/Li (/sup 6/Li= alpha +d) and /sup 7/Li (/sup 7/Li= alpha +t) and the low bindi ng energy of these nuclei, one of the clustcr is directly transferred in (/ sup 6/Li, d), (/sup 7/Li, t) (/sup 6/Li alpha ) and (/sup 7/Li, alpha ) reactions, i.e., the alpha p article, the deuteron, or the triton is directly transferred. Particular attention is paid to the (/sup 6/Li, d) andmore » (/sup 7/Li, t) reactions, in which the cluster-transfe r mechanism (alpha-particle transfer) appear in ita purest fomn. These reactions can be used to study the alpha- particle or quartet states of light nuclei, which are difficult or impossible to excite in any other way. The present state of the theory of multinucleon transfcr reactions is considered and the application of the theory to thc analysis of reactions induced by lithium atoms is discussed. (auth)« less
NASA Technical Reports Server (NTRS)
Wood, R. A.; Boyd, J. D.; Williams, D. N.; Jaffee, R. I.
1972-01-01
A detailed study was made of the relation between the size distribution of Ti3Al particles in a Ti-8Al alloy and the tensile properties measured in air and in saltwater. The size distribution of Ti3Al was varied by isothermal aging for various times at temperatures in the range 770 to 970 K (930 to 1290 F). The aging kinetics were found to be relatively slow. Quantitative measurements of the particle coarsening rate at 920 K (1200 F) showed good agreement with the predicted behavior for coarsening controlled by matrix diffusion, and suggested that the specific free energy of the Ti3Al alpha interface in negligible small. In all cases, the Ti3Al particles were sheared by the glide dislocations. It was concluded that there is a definite correlation between the presence of deformable Ti3Al particles and an alloy's susceptibility to aqueous stress corrosion cracking. Furthermore, the appearance of the surface slip lines and the dislocation substructure in deformed specimens suggest that the specific effect of the Ti3Al particles is to cause a nonhomogeneous planar slip character and an enhanced chemical potential of the slip bands.
Spirit Switches on Its X-ray Vision
NASA Technical Reports Server (NTRS)
2004-01-01
This image shows the Mars Exploration Rover Spirit probing its first target rock, Adirondack. At the time this picture was snapped, the rover had begun analyzing the rock with the alpha particle X-ray spectrometer located on its robotic arm. This instrument uses alpha particles and X-rays to determine the elemental composition of martian rocks and soil. The image was taken by the rover's hazard-identification camera.
Acceleration and heating of heavy ions in high speed solar wind streams
NASA Technical Reports Server (NTRS)
Gomberoff, L.; Gratton, F. T.; Gnavi, G.
1995-01-01
Left hand polarized Alfven waves generated in coronal holes propagate in the direction of high speed solar wind streams, accelerating and heating heavy ions. As the solar wind expands, the ratio between the frequency of the Alfven waves and the proton gyrofrequency increases, due to the decrease of the interplanetary magnetic field, and encounter first the local ion gyrofrequency of the species with the largest M(sub l) = m(sub l)/z(sub l)m(sub p) (m(sub l) is the mass of species l, m(sub p) is the proton mass and z(sub l) is the degree of ionization of species l). It is shown that the Alfven waves experience there strong absorption and cannot propagate any further until the ions are accelerated and heated. Once this occurs, the Alfven waves continue to propagate until they meet the gyrofrequency of the next species giving rise to a similar phenomenon. In order to show this contention, we use the linear dispersion relation of ion cyclotron waves in a multicomponent plasma consisting of oxygen ions, alpha particles and protons. We assume that at any distance from the sun, the Alfven waves follow the local dispersion relation of electromagnetic ion cyclotron waves. To illustrate the results, we solve the dispersion relation for oxygen ions and alpha particles drifting relative to the protons. The dispersion relation has three branches. The first branch starts at zero frequency and goes to the Doppler-shifted oxygen ion gyrofrequency. The second branch starts close to the oxygen gyrofrequency, and goes to the Doppler-shifted alpha particle gyrofrequency. The third branch starts close to the alpha particle gyrofrequency, and goes to the proton gyrofrequency. The Alfven waves propagate following the first branch of the dispersion relation. When they reach the Doppler-shifted oxygen ion gyrofrequency, the ions are accelerated and heated to some definite values. When these values are reached, the dispersion relation changes, and it is now the first branch of the dispersion relation, the one which goes to the Doppler-shifted alpha particle gyrofrequency. The Alfven waves continue to propagate along the first branch of the dispersion relation and proceed to accelerate and heat the alpha particles.
The measurement of alpha particle emissions from semiconductor memory materials
NASA Astrophysics Data System (ADS)
Bouldin, D. P.
1981-07-01
With the increasing concern for the affects of alpha particles on the reliability of semiconductor memories, an interest has arisen in characterizing semiconductor manufacturing materials for extremely low-level alpha-emitting contaminants. It is shown that four elements are of primary concern: uranium, thorium, radium, and polonium. Measurement of contamination levels are given relevance by first correlating them with alpha flux emission levels and then corre1ating these flux values with device soft error rates. Measurement techniques involve either measurements of elemental concentrations-applicable to only uranium and thorium - or direct measurements of alpha emission fluxes. Alpha fluxes are most usefully measured by means of ZnS scintillation counting, practical details of which are discussed. Materials measurements are reported for ceramics, solder, silicon, quartz, and various metals and organic materials. Ceramics and most metals have contamination levels of concern, but the high temperature processing normally used in semiconductor manufacturing and low total amounts reduce problems, at least for metals. Silicon, silicon compounds, and organic materials have been found to have no detectable alpha emitters. Finally, a brief discussion of the calibration of alpha sources for accelerated device testing is given, including practical details on the affects of source/chip separation and alignment variations.
(E,E)-alpha-farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons.
Sobotník, Jan; Hanus, Robert; Kalinová, Blanka; Piskorski, Rafal; Cvacka, Josef; Bourguignon, Thomas; Roisin, Yves
2008-04-01
The behavioral and electroantennographic responses of Prorhinotermes canalifrons to its soldier frontal gland secretion, and two separated major components of the secretion, (E)-1-nitropentadec-1-ene and (E,E)-alpha-farnesene, were studied in laboratory experiments. Behavioral experiments showed that both the frontal gland secretion and (E,E)-alpha-farnesene triggered alarm reactions in P. canalifrons, whereas (E)-1-nitropentadec-1-ene did not affect the behavior of termite groups. The alarm reactions were characterized by rapid walking of activated termites and efforts to alert and activate other members of the group. Behavioral responses to alarm pheromone differed between homogeneous and mixed groups, suggesting complex interactions. Antennae of both soldiers and pseudergates were sensitive to the frontal gland secretion and to (E,E)-alpha-farnesene, but soldiers showed stronger responses. The dose responses to (E,E)-alpha-farnesene were identical for both soldiers and pseudergates, suggesting that both castes use similar receptors to perceive (E,E)-alpha-farnesene. Our data confirm (E,E)-alpha-farnesene as an alarm pheromone of P. canalifrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zasneda, Sabriani; Widita, Rena
2010-06-22
Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometricalmore » factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.« less
NASA Technical Reports Server (NTRS)
Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.
2014-01-01
The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.
Monte Carlo Calculations of Suprathermal Alpha Particles Trajectories in the Rippled Field of TFTR
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Lam, Maria; Boozer, Allen
1996-11-01
We study the transport of suprathermal alpha particles and their energy deposition into electrons, deuterons, tritons and carbon-12 impurity in the rippled field of TFTR. The Monte Carlo code (Punjabi A., Boozer A., Lam M., Kim M., and Burke K., J. Plasma Phys.), 44, 405 (1990) developed by Punjabi and Boozer for the transport of plasma particles due to MHD modes in toroidal plasmas is used in conjunction with the SHAF code (White R. B., and Boozer A., PPPL -3094) (1995) of White. we integrate drift Hamiltonian equation of motion in non-canonical, rectangular, Boozer coordinates. The deposition of alpha energy into electrons, deuterons, tritons and C-12 particles is calculated and recorded. The effects of energy and pitch angle scattering are included. The result of this study will be presented. This work is supported by the US DOE. The assistance provided by Professors R. B. White and S. Zweben of PPPL is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Yamada, Y.; Park, M. S.; Okinaka, R. T.; Chen, D. J.
1996-01-01
Genetic alterations in gamma-ray- and alpha-particle-induced HPRT mutants were examined by multiplex polymerase chain reaction (PCR) analysis. A total of 39-63% of gamma-ray-induced and 31-57% of alpha-particle-induced mutants had partial or total deletions of the HPRT gene. The proportion of these deletion events was dependent on radiation dose, and at the resolution limits employed there were no significant differences between the spectra induced by equitoxic doses of alpha particles (0.2-0.4 Gy) and gamma rays (3 Gy). The molecular nature of the deletions was analyzed by the use of sequence tagged site (STS) primers and PCR amplification as a "probe" for specific regions of the human X chromosome within the Xq26 region. These STSs were closely linked and spanned regions approximately 1.7 Mbp from the telomeric side and 1.7 Mbp from the centromeric side of the HPRT gene. These markers include: DXS53, 299R, DXS79, yH3L, 3/19, PR1, PR25, H2, yH3R, 1/44, 1/67, 1/1, DXS86, D8C6, DXS10 and DXS144. STS analyses indicated that the maximum size of total deletions in radiation-induced HPRT mutants can be greater than 2.7 Mbp and deletion size appears to be dependent on radiation dose. There were no apparent differences in the sizes of the deletions induced by alpha particles or gamma rays. On the other hand, deletions containing portions of the HPRT gene were observed to be 800 kbp or less, and the pattern of the partial deletion induced by alpha particles appeared to be different from that induced by gamma rays.
Amorphous silicon ionizing particle detectors
Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.
1988-01-01
Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.
Thomas, P A; Tracy, B L; Ping, T; Wickstrom, M; Sidhu, N; Hiebert, L
2003-02-01
Alpha-radiation from polonium-210 ((210)Po) can elevate background radiation dose by an order of magnitude in people consuming large quantities of meat and seafood, particularly caribou and reindeer. Because up to 50% of the ingested (210)Po body burden is initially found in the blood, a primary target for the short range alpha-particles is the endothelial cells lining the blood vessels. This study examined the relative biological effectiveness (RBE) of (210)Po alpha-particles versus 250 kVp X-rays in producing injury to cultured bovine aortic endothelial cells. Radiation effects on cells were measured in four different ways: the percentage viable cells by trypan blue dye exclusion, the number of live cells, the lactate dehydrogenase (LDH) release to medium and the ability to form colonies (clonogenic survival). Comparison of dose-response curves yielded RBE values of 13.1+/-2.5 (SEM) for cell viability, 10.3+/-1.0 for live cell number and 11.1+/-3.0 for LDH activity. The RBE values for clonogenic survival were 14.0+/-1.0 based on the ratio of the initial slopes of the dose-response curves and 13.1, 9.9 and 7.7 for 50, 10 and 1% survival rate, respectively. At X-ray doses <0.25 Gy, a pronounced stimulatory effect on proliferation was noted. Exposure to (210)Po alpha-particles was seven to 14 times more effective than X-ray exposure in causing endothelial cell damage.
Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure
NASA Technical Reports Server (NTRS)
Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)
1996-01-01
Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.
NASA Astrophysics Data System (ADS)
Carnelli, P. F. F.; Martinez Heimann, D.; Pacheco, A. J.; Arazi, A.; Capurro, O. A.; Fernández Niello, J. O.; Cardona, M. A.; de Barbará, E.; Figueira, J. M.; Hojman, D. L.; Martí, G. V.; Negri, A. E.
2018-01-01
In this work we have studied the production of alpha particles emitted as a consequence of different reactions in the 7Li + 144Sm system at near-barrier energies. We have obtained absolute cross sections of the total yield at backward angles and at bombarding energies of 24 and 30 MeV. We have also performed complementary exclusive measurements of non-capture breakup processes at 30 MeV. In particular, the neutron transfer followed by non-capture breakup of the 6Li ejectile, which was found to be the dominant process in the studied region, could be accounted for by estimations of a classical dynamical model. This contribution, together with estimations for the incomplete fusion and alpha particle evaporation following compound-nucleus formation, are compared to the experimental inclusive angular distributions obtained in this work.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2014-10-01
A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.
Characteristics of solar coronal source regions producing He-3-rich particle events
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Lin, R. P.; Reames, D. V.; Stone, R. G.; Liggett, M.
1987-01-01
H-alpha, X-ray, and kilometric radio data are used to examine solar coronal activity associated with energetic He-3-rich particle events observed near earth. The basis of the study is the 12 He-3-rich events observed in association with impulsive 2-100 keV electron events reported by Reames et al. (1985). In three or four events, associated H-alpha or X-ray flares were found, and in two events even the metric type III bursts were weak or absent. The measured low energy electron spectra for these events show no evidence of a flattening due to Coulomb collisional losses. These results and several other recent findings are consistent with the idea that the He-3/electron events are due to particle acceleration in the corona well above the associated H-alpha and X-ray flares.
New measurements of W-values for protons and alpha particles.
Giesen, U; Beck, J
2014-10-01
The increasing importance of ion beams in cancer therapy and the lack of experimental data for W-values for protons and heavy ions in air require new measurements. A new experimental set-up was developed at PTB and consistent measurements of W-values in argon, nitrogen and air for protons and alpha particles with energies from 0.7 to 3.5 MeV u(-1) at PTB, and for carbon ions between 3.6 and 7.0 MeV u(-1) at GSI were carried out. This publication concentrates on the measurements with protons and alpha particles at PTB. The experimental methods and the determination of corrections for recombination effects, beam-induced background radiation and additional effects are presented. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocbach, Anette; Herseth, Jan Inge; Lag, Marit
2008-10-15
The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure tomore » particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.« less
Nadra, Imad; Boccaccini, Aldo R; Philippidis, Pandelis; Whelan, Linda C; McCarthy, Geraldine M; Haskard, Dorian O; Landis, R Clive
2008-01-01
Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.
Autism, Attention, and Alpha Oscillations: An Electrophysiological Study of Attentional Capture.
Keehn, Brandon; Westerfield, Marissa; Müller, Ralph-Axel; Townsend, Jeanne
2017-09-01
Autism spectrum disorder (ASD) is associated with deficits in adaptively orienting attention to behaviorally-relevant information. Neural oscillatory activity plays a key role in brain function and provides a high-resolution temporal marker of attention dynamics. Alpha band (8-12 Hz) activity is associated with both selecting task-relevant stimuli and filtering task-irrelevant information. The present study used electroencephalography (EEG) to examine alpha-band oscillatory activity associated with attentional capture in nineteen children with ASD and twenty-one age- and IQ-matched typically developing (TD) children. Participants completed a rapid serial visual presentation paradigm designed to investigate responses to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors, which either did or did not share a behaviorally-relevant feature. Participants also completed six minutes of eyes-open resting EEG. In contrast to their TD peers, children with ASD did not evidence posterior alpha desynchronization to behaviorally-relevant targets. Additionally, reduced target-related desynchronization and poorer target detection were associated with increased ASD symptomatology. TD children also showed behavioral and electrophysiological evidence of contingent attention capture, whereas children with ASD showed no behavioral facilitation or alpha desynchronization to distractors that shared a task-relevant feature. Lastly, children with ASD had significantly decreased resting alpha power, and for all participants increased resting alpha levels were associated with greater task-related alpha desynchronization. These results suggest that in ASD under-responsivity and impairments in orienting to salient events within their environment are reflected by atypical EEG oscillatory neurodynamics, which may signify atypical arousal levels and/or an excitatory/inhibitory imbalance.
The fractography-modeling link in cleavage fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, A.W.
1997-12-31
Cleavage fracture has historically been modelled, out of necessity, in rather idealized terms. In real materials, however, there are a number of difficulties in linking such models with metallographic and fractographic observations. Some of the most vivid examples occur for {alpha}{sub 2} titanium aluminide alloys, in which, when the microstructure contains primary {alpha}{sub 2} particles, the primary particles crack first. When basketweave or Widmanstaetten structures of {alpha}{sub 2} laths comprise the microstructure, it appears that individual laths crack first. And in colony structures, cracking occurs first across the {alpha}{sub 2} lath colonies. Both detailed fractographic observations, and also a statisticalmore » model for brittle fracture by failure of weakest links, have been developed. The extent to which this can be interpreted in classical cleavage terms will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golwala, Sunil R.
2013-12-20
The eventual full-size, radiopure BetaCage will be a low-background, atmospheric-pressure neon drift chamber with unprecedented sensitivity to emitters of low-energy electrons and alpha particles. We expect that the prototype BetaCage already developed will be an excellent screener of alpha particles. Both the prototype and final BetaCage will provide new infrastructure for rare-event science.
Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ting; Guo, Xiaode, E-mail: guoxiaodenj@sina.com; Zhang, Xiang
Highlights: • The nano α-Al{sub 2}O{sub 3} with good dispersion was prepared by two-step hydrolysis. • α-Al{sub 2}O{sub 3} powders were added as seed particles in the hydrolysis. • This article indicated that the glucose could impel the γ-Al{sub 2}O{sub 3} transformed to α-Al{sub 2}O{sub 3} directly. • This article indicated that the addictive of α-Al{sub 2}O{sub 3} seed could improve the phase transformation rate of γ-Al{sub 2}O{sub 3} to α-Al{sub 2}O{sub 3}. • In this article, the pure α-Al{sub 2}O{sub 3} could be obtained by calcining at 1000 °C for 1.5 h. - Abstract: The ultral fine alpha-alumina powdermore » has been successfully synthesized via two-step hydrolysis of aluminum isopropoxide. Glucose and polyvinyl pyrrolidone were used as surfactants during the appropriate processing step. The alpha-alumina powder was used as seed particles. Several synthesis parameters, such as the amount of seeds, surfactants, and calcination temperature, were studied by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), Thermogravimetry-differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results showed that glucose greatly lower the phase transformation temperature of alpha-alumina by impelling the gamma-alumina transformed to alpha-alumina directly, and the seed could improve the phase transformation rate of alpha-alumina, the polyvinylpyrrolidone have an effect on preventing excessive grain growth and agglomeration of alpha-alumina powder. Comparatively well dispersed alpha-alumina powder with particle size less than 50 nm can be synthesized through this method after calcinations at 1000 °C for 2 h.« less
Amorphous silicon ionizing particle detectors
Street, R.A.; Mendez, V.P.; Kaplan, S.N.
1988-11-15
Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas-Herrera, J., E-mail: jimmy06@mit.edu; Rinderknecht, H. G.; Zylstra, A. B.
The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K{sub α} and K{sub β} x-rays. The CR-39 detectors were then exposed to 1–5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those notmore » exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less
NASA Astrophysics Data System (ADS)
Ifergan, Y.; Dadon, S.; Israelashvili, I.; Osovizky, A.; Gonen, E.; Yehuda-Zada, Y.; Smadja, D.; Knafo, Y.; Ginzburg, D.; Kadmon, Y.; Cohen, Y.; Mazor, T.
2015-06-01
Low level radioactive surface contamination measurements require lightweight, large area and high efficiency detector. In most existing scintillation detectors there is a tradeoff between effective area and scintillation light collection. By using wavelength shifting (WLS) fibers the scintillation light may be collected efficiently also in a large area detector. In this study, WLS fibers were coupled to a beta sensitive plastic scintillator layer and to a alpha sensitive silver-activated zinc sulfide ZnS(Ag) layer for detecting both alpha and beta particles. The WLS fibers collect the scintillation light from the whole detector and transfer it to a single PMT. This first prototype unique configuration enables monitoring radioactive contaminated surfaces by both sides of the detector and provides high gamma rejection. In this paper, the detector structure, as well as the detector's measured linear response, will be described. The measured detection efficiency of 238Pu alpha particles (5.5 MeV) is 63%. The measured detection efficiency for beta particles is 89% for 90Sr-90Y (average energy of 195.8 keV, 934.8 keV), 50% for 36Cl (average energy of 251.3 keV), and 35% for 137Cs (average energy of 156.8 keV).
Effect of low electric fields on alpha scintillation light yield in liquid argon
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-01-01
Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.
SCATTERING OF NEUTRONS BY $alpha$-PARTICLES AT 14.1 Mev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasoli, U.; Zago, G.
1963-12-01
The angular distribution of 14.1-Mev neutrons elastically scattered by alpha particles was measured by observing the alpha recoils in a helium-filled cloud chamber. The results are in satisfactory agreement with those previously obtained by others. Inspection of the small-angle region of the measured distribution shows that phase shifts of orbital angular momentum higher than L = 1 are not negligible, although, according to the present experiment, quantitative information on D-waves turns out to be somewhat elusive. The azimuthal angular distribution agrees well with the value P = 0.02 of the neutron beam polarization, as measured by Perkins. (auth)
A survey of the alpha-nucleon interaction
NASA Astrophysics Data System (ADS)
Ali, S.; Ahmad, A. A. Z.; Ferdous, N.
1985-10-01
This paper gives a survey of the alpha-nucleon interaction and then describes experimental work on angular distributions of differential scattering cross sections and polarizations in proton-alpha and neutron-alpha scattering. The phenomenological approach, which includes the study of both local and nonlocal potentials reproducing the experimental alpha-nucleon scattering data, is discussed. Basic studies of the alpha-nucleon interaction attempting to build an interaction between an alpha particle and a nucleon from first principles are then described. The authors then present a critical discussion of the results with some concluding remarks suggesting the direction for further investigation.
Mitev, Krasimir K
2016-04-01
This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study on the rheoformability of semi-solid 7075 wrought aluminum alloy using seed process =
NASA Astrophysics Data System (ADS)
Zhao, Qinfu
Semisolid metal forming is becoming more and more attractive in the foundry industry due to its low cost and easy operation to produce high quality near-net-shape components. Over the past years, semisolid forming technique is mainly applied on the casting aluminum alloys due to their superior castability because of low melting temperature and viscosity. In semisolid forming field, thixoforming has been majorly used which involves of reheating the billet into semisolid state followed by casting process. Rheocasting is a more economic semisolid processing compared to thixoforming, which the semisolid billet is produced directly from liquid phase. The SEED process is one of reliable rheocasting techniques to produce high quality semisolid billets. To produce high quality semisolid billets, their unique rheological properties have been the most important issue need to be fully investigated. The aim of present project is to produce high quality semisolid AA7075 billets by SEED process and analyze their rheological properties under various process conditions. The effect of the SEED processing parameters and grain refiners on the semisolid microstructure and rheoformability were investigated. The deformation and rheological behavior of the semisolid billets of AA7075 base and its grain-refined alloys were studied using parallel-plate viscometer. In the first part, the evolution of liquid fraction to temperature of semisolid AA7075 alloy was investigated using Differential Scanning Calorimetry (DSC). It was found that the liquidus and solidus temperature of AA7075 alloy were 631 °C and 490°C respectively. And the corresponding temperatures of solid fraction of 40% and 60% were 622°C and 610°C, which was recognized as the temperature window for semisolid forming of this alloy. In the second part, the semisolid slurries were rheocasted using SEED technology and the effect of the SEED process parameters like swirling frequency and demolding temperature on evolution of microstructure was studied. It was found that the swirling frequency has a strong influence on the mean grain size and morphology of primary alpha-Al particles. With increasing swirling frequency, the mean size of alpha-Al particles first decreased significantly and then kept constant or increased slightly, due to the fragment and aggregation of solid particles. Microstructures also revealed that the alpha-Al particles tend to transform from dendrite-like to rosette-like to globular-like morphology due to the stirring movement. In the third part, the effects of TiB2 and Zr on the microstructure of semisolid AA7075 alloy were investigated. The microstructure observation and the intermetallic phase identification were carried out by optical microscopy equipped with Clemex analyzer and scanning electron microscopy (SEM). The mean size of primary alpha-Al particles decreases from more than 110 mum to less than 90 mum and the morphology changes from dendritic-like to globular-like with the addition of TiB2. With the addition of Zr or Zr + TiB 2, the mean size and morphology of primary alpha-Al particles didn't show significant modification. Furthermore, the addition of TiB2 shows significant refinement on three intermetallic phases (Mg(Zn,Cu,Al) 2, Fe-rich Al(Fe,Mn)Si and Mg2Si. All the intermetallic phases become finer in size and more uniform distribution among the grains. Finally, the rheological behavior and microstructure of deformed semisolid billets of AA7075 base and grain-refined alloys were investigated using parallel-plate viscometer. Images analysis shows that liquid segregates from center to edge of the billet during compression and with increasing temperature the liquid segregation becomes more significant. The apparent viscosity of two alloys decreases with the increasing shear rate, indicating shear thinning behavior. Shear rate jump phenomenon (first increase and then decrease) occurred at lower solid fraction, reaching a maximum shear rate value. The whole compression processing is divided into two parts: shear rate increasing part and shear rate decreasing part. For higher solid fraction, the shear rate decreases continuously and slowly. The attainable maximum shear rate value increases with the decreasing solid fraction. During the shear rate decreasing part, at any given shear rate the viscosity increases with the increasing solid fraction. The comparison of the viscosity of two alloys indicated that the TiB2-refined AA7075 alloy has lower viscosity (shear rate decreasing part) due to small grain size and globular grain shape. In addition, the grain refinement significantly expands the solid fraction range of good rheoformability from 42%-48% for the base alloy to 42%-55% for the refined alloy.
Induction of a bystander mutagenic effect of alpha particles in mammalian cells
NASA Technical Reports Server (NTRS)
Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Vannais, D.; Hall, E. J.; Hei, T. K.; Chatterjee, A. (Principal Investigator)
2000-01-01
Ever since the discovery of X-rays was made by Rontgen more than a hundred years ago, it has always been accepted that the deleterious effects of ionizing radiation such as mutation and carcinogenesis are attributable mainly to direct damage to DNA. Although evidence based on microdosimetric estimation in support of a bystander effect appears to be consistent, direct proof of such extranuclear/extracellular effects are limited. Using a precision charged particle microbeam, we show here that irradiation of 20% of randomly selected A(L) cells with 20 alpha particles each results in a mutant fraction that is 3-fold higher than expected, assuming no bystander modulation effect. Furthermore, analysis by multiplex PCR shows that the types of mutants induced are significantly different from those of spontaneous origin. Pretreatment of cells with the radical scavenger DMSO had no effect on the mutagenic incidence. In contrast, cells pretreated with a 40 microM dose of lindane, which inhibits cell-cell communication, significantly decreased the mutant yield. The doses of DMSO and lindane used in these experiments are nontoxic and nonmutagenic. We further examined the mutagenic yield when 5-10% of randomly selected cells were irradiated with 20 alpha particles each. Results showed, likewise, a higher mutant yield than expected assuming no bystander effects. Our studies provide clear evidence that irradiated cells can induce a bystander mutagenic response in neighboring cells not directly traversed by alpha particles and that cell-cell communication process play a critical role in mediating the bystander phenomenon.
Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki
2017-04-01
Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.
Direct measurement of neon production rates by (α,n) reactions in minerals
NASA Astrophysics Data System (ADS)
Cox, Stephen E.; Farley, Kenneth A.; Cherniak, Daniele J.
2015-01-01
The production of nucleogenic neon from alpha particle capture by 18O and 19F offers a potential chronometer sensitive to temperatures higher than the more widely used (U-Th)/He chronometer. The accuracy depends on the cross sections and the calculated stopping power for alpha particles in the mineral being studied. Published 18O(α,n)21Ne production rates are in poor agreement and were calculated from contradictory cross sections, and therefore demand experimental verification. Similarly, the stopping powers for alpha particles are calculated from SRIM (Stopping Range of Ions in Matter software) based on a limited experimental dataset. To address these issues we used a particle accelerator to implant alpha particles at precisely known energies into slabs of synthetic quartz (SiO2) and barium tungstate (BaWO4) to measure 21Ne production from capture by 18O. Within experimental uncertainties the observed 21Ne production rates compare favorably to our predictions using published cross sections and stopping powers, indicating that ages calculated using these quantities are accurate at the ∼3% level. In addition, we measured the 22Ne/21Ne ratio and (U-Th)/He and (U-Th)/Ne ages of Durango fluorapatite, which is an important model system for this work because it contains both oxygen and fluorine. Finally, we present 21Ne/4He production rate ratios for a variety of minerals of geochemical interest along with software for calculating neon production rates and (U-Th)/Ne ages.
Pushing Particles with Waves: Current Drive and α-Channeling
FISCH, Nathaniel J.
2016-01-01
It can be advantageous to push particles with waves in tokamaks or other magnetic confinement devices, relying on wave-particle resonances to accomplish specific goals. Waves that damp on electrons or ions in toroidal fusion devises can drive currents if the waves are launched with toroidal asymmetry. Theses currents are important for tokamaks, since they operate in the absence of an electric field with curl, enabling steady state operation. The lower hybrid wave and the electron cyclotron wave have been demonstrated to drive significant currents. Non-inductive current also stabilizes deleterious tearing modes. Waves can also be used to broker the energymore » transfer between energetic alpha particles and the background plasma. Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled instead into useful energy, that heats fuel ions or drives current. Furthermore, an important question is the extent to which these effects can be accomplished together.« less
Assessing the deposition of radon progeny from a uranium glass necklace.
Hansen, M F; Moss, G R
2015-06-01
Could jewellery made from uranium glass beads pose an increased risk to skin cancer? The literature Eatough (Alpha-particle dosimetry for the basal layer of the skin and the radon progeny (218)Po and (214)Po. Phys. Med. Biol. 1997; 42: 1899-1911.) suggests that the alphas from the short-lived radon daughters, (218)Po and (214)Po, may reach the basal layer of the epidermis, which is believed to be important in the induction of skin cancers. The deposition of the alphas from the (218)Po and (214)Po daughters was investigated using PADC detector material. The expectation would be that no alpha particles would penetrate through the dead skin layer, assuming the average of 70 microns used in radiation protection, but the skin around the collar bone could potentially be thinner than the assumed average. It should be noticed that by inserting a slice of pig skin in between the necklace and the PADC, no great excess of alpha tracks were seen after 1 week of exposure in the freezer. There was, however, a clear signal through the pig skin from beta particles, confirming the potential of a uranium bead necklace posing a health risk. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Film Vetoes for Alpha Background Rejection in Bolometer Detectors
NASA Astrophysics Data System (ADS)
Deporzio, Nicholas; Bucci, Carlo; Canonica, Lucia; Divacri, Marialaura; Cuore Collaboration; Absurd Team
2015-04-01
This study characterizes the effectiveness of encasing bolometer detectors in scintillator, metal ionization, and more exotic films to veto alpha radiation background. Bolometers are highly susceptible to alpha background and a successful veto should boost the statistical strength, speed, and signal-background ratio of bolometer particle searches. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4 MeV to 6.0 MeV alpha particles representative of detector conditions. Photomultipliers detect the keV range scintillation light and produce a veto signal. Also, layered films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased with 0.1V to 100V to produce a current signal when incident 1.4 MeV to 6.0 MeV alpha particles ionize conduction paths through the film. Veto signals are characterized by their affect on bolometer detection of 865 keV target signals. Similar methods are applied to more exotic films. Early results show scintillator films raise target signal count rate and suppress counts above target energy by at least a factor of 10. This indicates scintillation vetoes are effective and that metal ionization and other films under study will also be effective.
NASA Astrophysics Data System (ADS)
Deyglun, Clément; Carasco, Cédric; Pérot, Bertrand
2014-06-01
The detection of Special Nuclear Materials (SNM) by neutron interrogation is extensively studied by Monte Carlo simulation at the Nuclear Measurement Laboratory of CEA Cadarache (French Alternative Energies and Atomic Energy Commission). The active inspection system is based on the Associated Particle Technique (APT). Fissions induced by tagged neutrons (i.e. correlated to an alpha particle in the DT neutron generator) in SNM produce high multiplicity coincidences which are detected with fast plastic scintillators. At least three particles are detected in a short time window following the alpha detection, whereas nonnuclear materials mainly produce single events, or pairs due to (n,2n) and (n,n'γ) reactions. To study the performances of an industrial cargo container inspection system, Monte Carlo simulations are performed with the MCNP-PoliMi transport code, which records for each neutron history the relevant information: reaction types, position and time of interactions, energy deposits, secondary particles, etc. The output files are post-processed with a specific tool developed with ROOT data analysis software. Particles not correlated with an alpha particle (random background), counting statistics, and time-energy resolutions of the data acquisition system are taken into account in the numerical model. Various matrix compositions, suspicious items, SNM shielding and positions inside the container, are simulated to assess the performances and limitations of an industrial system.
Almayahi, B A; Tajuddin, A A; Jaafar, M S
2014-03-01
In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm(-2) and 0.061 ± 0.008 mBq cm(-2), whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm(-2) and 0.7700 ± 0.0282 mBq cm(-2), respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm(-2), whereas that of female teeth was 0.0199 ± 0.0010 mBq cm(-2). The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm(-2)) than in non-smokers (0.0179 ± 0.0008 mBq cm(-2)). Such difference was found statistically significant (p < 0.01). Copyright © 2014 Elsevier Ltd. All rights reserved.
Determination of the alpha(s) using jet rates at LEP
NASA Astrophysics Data System (ADS)
Donkers, Michael A.
Jets are produced in any high energy collision of particles in which quarks are produced in the final state. Using the OPAL detector to measure particles produced in e+e- collisions at the LEP accelerator, the rate of jet formation has been measured at 91 GeV as well as each of the LEP2 energies, ranging from 161 GeV to 207 GeV. The jet rate observables, in particular the differential 2-jet rate and the average jet rate can be used to determine a value of the strong coupling constant, alphas, by fitting to various theoretical predictions. The value of alphas has been determined using data at 91 GeV and a combined sample comprising all of the LEP2 energies with a luminosity weighted centre-of-mass energy of 195.8 GeV for 10 theoretical predictions and two jet clustering algorithms. A fit of the 91 GeV and LEP2 values of alphas determined using the ln R matching prediction is also performed on the D2 and
Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morelli, D.; Imme, G.; Catalano, R.
2011-12-13
Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected tomore » a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.« less
Two-cluster structure of some alpha-scattering resonances in the sd shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Grotowski, K.; Strzalkowski, A.
1975-01-01
The excitation functions of the elastic scattering of alpha particles at backward angles on $sup 24$Mg and $sup 28$Si nuclei in the energy range from 23 to 28 MeV measured by Bobrowska et al. exhibit distinct maxima. It was shown that these maxima are not correlated with the structures seen in the excitation functions of the ($alpha$,$alpha$') and ($alpha$,p) reactions leading to low- lying excited states of the final nucleus possibly indicating the presence of Ericson fluctuations. (auth)
Continued observations of the H Ly alpha emission from Uranus
NASA Technical Reports Server (NTRS)
Clarke, J.; Durrance, S.; Moos, W.; Murthy, J.; Atreya, S.; Barnes, A.; Mihalov, J.; Belcher, J.; Festou, M.; Imhoff, C.
1986-01-01
Observations of Uranus obtained over four years with the IUE Observatory supports the initial identification of a bright H Ly alpha flux which varies independently of the solar H Ly alpha flux, implying a largely self-excited emission. An average brightness of 1400 Rayleighs is derived, and limits for the possible contribution by reflected solar H Ly alpha emission, estimated to be about 200 Rayleighs, suggest that the remaining self-excited emission is produced by an aurora. Based on comparison with solar wind measurements obtained in the vicinity of Uranus by Voyager 2 and Pioneer 11, no evidence for correlation between the solar wind density and the H Ly alpha brightness is found. The upper limit to H2 emission gives a lower limit to the ratio of H Ly alpha/H2 emissions of about 2.4, suggesting that the precipitating particles may be significantly less energetic on Uranus than those responsible for the aurora on Jupiter. The average power in precipitating particles is estimated to be of the order of 10 to the 12th W.
Liu, B; Zhang, Q; Li, Y
1997-12-01
This paper introduces a method to determine the volume activity concentration of alpha and/or beta artificial radionuclides in the environment and radon/thoron progeny background-compensation based on a Si surface-barrier detector. By measuring the alpha peak counts of 218Po and 214Po in two time intervals, the activity concentration of 218Po, 214Pb and 214Bi aerosol particles were determined; meanwhile, the total beta count of 214Pb and 214Bi aerosols was also calculated from their decay scheme. With the average equilibrium factor of thoron progeny in general environment, the alpha and beta counts of thoron progeny were approximately evaluated by 212Po alpha peak counts. The alpha count of transuranic aerosols was determined by subtracting the trail counts of radon/thoron progeny alpha peaks. The total count of beta artificial radionuclides was determined by subtracting the beta counts of radon/thoron progeny aerosol particles. In our preliminary experiments, if the radon progeny concentration is less than 15 Bq m(-3), the lower limit of detection of transuranics concentration is less than 0.1 Bq m(-3). Even if the radon progeny concentration is as high as 75 Bq m(-3), the lower limit of detection of total beta activity concentration of artificial nuclides aerosols is less than 1 Bq m(-3).
Evaluating 99mTc Auger electrons for targeted tumor radiotherapy by computational methods.
Tavares, Adriana Alexandre S; Tavares, João Manuel R S
2010-07-01
Technetium-99m (99mTc) has been widely used as an imaging agent but only recently has been considered for therapeutic applications. This study aims to analyze the potential use of 99mTc Auger electrons for targeted tumor radiotherapy by evaluating the DNA damage and its probability of correct repair and by studying the cellular kinetics, following 99mTc Auger electron irradiation in comparison to iodine-131 (131I) beta minus particles and astatine-211 (211At) alpha particle irradiation. Computational models were used to estimate the yield of DNA damage (fast Monte Carlo damage algorithm), the probability of correct repair (Monte Carlo excision repair algorithm), and cell kinetic effects (virtual cell radiobiology algorithm) after irradiation with the selected particles. The results obtained with the algorithms used suggested that 99mTc CKMMX (all M-shell Coster-Kroning--CK--and super-CK transitions) electrons and Auger MXY (all M-shell Auger transitions) have a therapeutic potential comparable to high linear energy transfer 211At alpha particles and higher than 131I beta minus particles. All the other 99mTc electrons had a therapeutic potential similar to 131I beta minus particles. 99mTc CKMMX electrons and Auger MXY presented a higher probability to induce apoptosis than 131I beta minus particles and a probability similar to 211At alpha particles. Based on the results here, 99mTc CKMMX electrons and Auger MXY are useful electrons for targeted tumor radiotherapy.
New approach to statistical description of fluctuating particle fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenko, V. V.
2009-01-15
The probability density functions (PDFs) of the increments of fluctuating particle fluxes are investigated. It is found that the PDFs have heavy power-law tails decreasing as x{sup -{alpha}-1} at x {yields} {infinity}. This makes it possible to describe these PDFs in terms of fractionally stable distributions (FSDs) q(x; {alpha}, {beta}, {theta}, {lambda}). The parameters {alpha}, {beta}, {gamma}, and {lambda} were estimated statistically using as an example the time samples of fluctuating particle fluxes measured in the edge plasma of the L-2M stellarator. Two series of fluctuating fluxes measured before and after boronization of the vacuum chamber were processed. It ismore » shown that the increments of fluctuating fluxes are well described by DSDs. The effect of boronization on the parameters of FSDs is analyzed. An algorithm for statistically estimating the FSD parameters and a procedure for processing experimental data are described.« less
Random deposition of particles of different sizes.
Forgerini, F L; Figueiredo, W
2009-04-01
We study the surface growth generated by the random deposition of particles of different sizes. A model is proposed where the particles are aggregated on an initially flat surface, giving rise to a rough interface and a porous bulk. By using Monte Carlo simulations, a surface has grown by adding particles of different sizes, as well as identical particles on the substrate in (1+1) dimensions. In the case of deposition of particles of different sizes, they are selected from a Poisson distribution, where the particle sizes may vary by 1 order of magnitude. For the deposition of identical particles, only particles which are larger than one lattice parameter of the substrate are considered. We calculate the usual scaling exponents: the roughness, growth, and dynamic exponents alpha, beta, and z, respectively, as well as, the porosity in the bulk, determining the porosity as a function of the particle size. The results of our simulations show that the roughness evolves in time following three different behaviors. The roughness in the initial times behaves as in the random deposition model. At intermediate times, the surface roughness grows slowly and finally, at long times, it enters into the saturation regime. The bulk formed by depositing large particles reveals a porosity that increases very fast at the initial times and also reaches a saturation value. Excepting the case where particles have the size of one lattice spacing, we always find that the surface roughness and porosity reach limiting values at long times. Surprisingly, we find that the scaling exponents are the same as those predicted by the Villain-Lai-Das Sarma equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeeva, E.; Smith, D. S.; Yu, W.
2010-01-01
The effect of average particle sizes on basic macroscopic properties and heat transfer performance of {alpha}-SiC/water nanofluids was investigated. The average particle sizes, calculated from the specific surface area of nanoparticles, were varied from 16 to 90 nm. Nanofluids with larger particles of the same material and volume concentration provide higher thermal conductivity and lower viscosity increases than those with smaller particles because of the smaller solid/liquid interfacial area of larger particles. It was also demonstrated that the viscosity of water-based nanofluids can be significantly decreased by pH of the suspension independently from the thermal conductivity. Heat transfer coefficients weremore » measured and compared to the performance of base fluids as well as to nanofluids reported in the literature. Criteria for evaluation of the heat transfer performance of nanofluids are discussed and optimum directions in nanofluid development are suggested.« less
Quality assurance of alpha-particle dosimetry using peeled-off Gafchromic EBT3® film
NASA Astrophysics Data System (ADS)
Ng, C. Y. P.; Chun, S. L.; Yu, K. N.
2016-08-01
A novel alpha-particle dosimetry technique using Gafchromic EBT3 film has recently been proposed for calibrating the activity of alpha-emitting radiopharmaceuticals. In the present paper, we outlined four measures which could further help assure the quality of the method. First, we suggested an alternative method in fabricating the peeled-off EBT3 film. Films with a chosen size were cut from the original films and all the edges were sealed with silicone. These were immersed into deionized water for 19 d and the polyester covers of the EBT3 films could then be easily peeled off. The active layers in these peeled-off EBT3 films remained intact, and these films could be prepared reproducibly with ease. Second, we proposed a check on the integrity of the peeled-off film by comparing the responses of the pristine and peeled-off EBT3 films to the same X-ray irradiation. Third, we highlighted the importance of scanning directions of the films. The ;landscape; and ;portrait; scanning directions were defined as the scanning directions perpendicular and parallel to the long edge of the original EBT3 films, respectively. Our results showed that the responses were different for different scanning directions. As such, the same scanning direction should be used every time. Finally, we cautioned the need to confirm the uniformity of the alpha-particle source used for calibration. Radiochromic films are well known for their capability of providing two-dimensional dosimetric information. As such, EBT3 films could also be conveniently used to check the uniformity of the alpha-particle source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dion, Michael P.; Miller, Brian W.; Warren, Glen A.
2016-09-01
A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55more » keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.« less
Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2010
Oden, Jeannette H.; Brown, Dexter W.; Oden, Timothy D.
2011-01-01
Gross alpha-particle activities and beta-particle activities for all 47 samples were analyzed at 72 hours after sample collection and again at 30 days after sample collection, allowing for the measurement of the activity of short-lived isotopes. Gross alpha-particle activities reported in this report were not adjusted for activity contributions by radon or uranium and, therefore, are conservatively high estimates if compared to the U.S. Environmental Protection Agency National Primary Drinking Water Regulation for adjusted gross alpha-particle activity. The gross alpha-particle activities at 30 days in the samples ranged from R0.60 to 25.5 picocuries per liter and at 72 hours ranged from 2.58 to 39.7 picocuries per liter, and the "R" preceding the value of 0.60 picocuries per liter refers to a nondetected result less than the sample-specific critical level. Gross beta-particle activities measured at 30 days ranged from 1.17 to 14.4 picocuries per liter and at 72 hours ranged from 1.97 to 4.4 picocuries per liter. Filtered uranium was detected in quantifiable amounts in all of the 47 wells sampled. The uranium concentrations ranged from 0.03 to 42.7 micrograms per liter. One sample was analyzed for carbon-14, and the amount of modern atmospheric carbon was reported as 0.2 percent. Six source-water samples collected from municipal supply wells were analyzed for radium-226, and all of the concentrations were considered detectable concentrations (greater than their associated sample-specific critical level). Three source-water samples collected were analyzed for radon-222, and all of the concentrations were substantially greater than the associated sample-specific critical level.
Timepix Device Efficiency for Pattern Recognition of Tracks Generated by Ionizing Radiation
NASA Astrophysics Data System (ADS)
Leroy, Claude; Asbah, Nedaa; Gagnon, Louis-Guilaume; Larochelle, Jean-Simon; Pospisil, Stanislav; Soueid, Paul
2014-06-01
A hybrid silicon pixelated TIMEPIX detector (256 × 256 pixels with 55 μm pitch) operated in Time Over Threshold (TOT) mode was exposed to radioactive sources (241Am, 106Ru, 137Cs), protons and alpha-particles after Rutherford Backscattering on a thin gold foil of protons and alpha-particles beams delivered by the Tandem Accelerator of Montreal University. Measurements were also performed with different mixed radiation fields of heavy charged particles (protons and alpha-particles), photons and electrons produced by simultaneous exposure of TIMEPIX to the radioactive sources and to protons beams on top of the radioactive sources. All measurements were performed in vacuum. The TOT mode of operation has allowed the direct measurement of the energy deposited in each pixel. The efficiency of track recognition with this device was tested by comparing the experimental activities (determined from number of tracks measurements) of the radioactive sources with their expected activities. The efficiency of track recognition of incident protons and alpha-particles of different energies as a function of the incidence angle was measured. The operation of TIMEPIX in TOT mode has allowed a 3D mapping of the charge sharing effect in the whole volume of the silicon sensor. The effect of the bias voltage on charge sharing was investigated as the level of charge sharing is related to the local profile of the electric field in the sensor. The results of the present measurements demonstrate the TIMEPIX capability of differentiating between different types of particles species from mixed radiation fields and measuring their energy deposition. Single track analysis gives a good precision (significantly better than the 55 μm size of one detector pixel) on the coordinates of the impact point of protons interacting in the TIMEPIX silicon layer.
Multi-particle inspection using associated particle sources
Bingham, Philip R.; Mihalczo, John T.; Mullens, James A.; McConchie, Seth M.; Hausladen, Paul A.
2016-02-16
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing combined neutron and gamma ray radiography. For example, one exemplary system comprises: a neutron source; a set of alpha particle detectors configured to detect alpha particles associated with neutrons generated by the neutron source; neutron detectors positioned to detect at least some of the neutrons generated by the neutron source; a gamma ray source; a set of verification gamma ray detectors configured to detect verification gamma rays associated with gamma rays generated by the gamma ray source; a set of gamma ray detectors configured to detect gamma rays generated by the gamma ray source; and an interrogation region located between the neutron source, the gamma ray source, the neutron detectors, and the gamma ray detectors.
Ultrastructural studies of human and rabbit alpha-M-globulins.
Bloth, B; Chesebro, B; Svehag, S E
1968-04-01
Electron micrographs of isolated human alpha(2)M-molecules, obtained by the negative contrast technique, revealed morphologically homogenous structures resembling a graceful monogram of the two letters H and I. The modal values for the length and width of the alpha(2)M particles were 170 A and 100 A, respectively. Purified rabbit alphamacroglobulins contained about 80% alpha(1)M- and 20% alpha(2)M-globulins. The isolated rabbit alpha(1)M- and alpha(2)M-molecules were morphologically indistinguishable from one another and from human alpha(2)M-molecules. Preliminary immunoprecipitation studies demonstrated that the two rabbit alphaM-globulins were antigenically different. Sedimentation constant determinations gave s(20, w) values of 18.8 and 18.2 for rabbit alpha(1)M and alpha(2)M, respectively.
Induction of mutations by bismuth-212 alpha particles at two genetic loci in human B-lymphoblasts.
Metting, N F; Palayoor, S T; Macklis, R M; Atcher, R W; Liber, H L; Little, J B
1992-12-01
The human lymphoblast cell line TK6 was exposed to the alpha-particle-emitting radon daughter 212Bi by adding DTPA-chelated 212Bi directly to the cell suspension. Cytotoxicity and mutagenicity at two genetic loci were measured, and the molecular nature of mutant clones was studied by Southern blot analysis. Induced mutant fractions were 2.5 x 10(-5)/Gy at the hprt locus and 3.75 x 10(-5)/Gy at the tk locus. Molecular analysis of HPRT- mutant DNAs showed a high frequency (69%) of clones with partial or full deletions of the hprt gene among radiation-induced mutants compared with spontaneous mutants (31%). Chi-squared analyses of mutational spectra show a significant difference (P < or = 0.005) between spontaneous mutants and alpha-particle-induced mutants. Comparison with published studies of accelerator-produced heavy-ion exposures of TK6 cells indicates that the induction of mutations at the hprt locus, and perhaps a subset of mutations at the tk locus, is a simple linear function of particle fluence regardless of the ion species or its LET.
NASA Astrophysics Data System (ADS)
Pallone, Arthur
Necessity often leads to inspiration. Such was the case when a traditional amplifier quit working during the collection of an alpha particle spectrum. I had a 15 battery-powered audio amplifier in my box of project electronics so I connected it between the preamplifier and the multichannel analyzer. The alpha particle spectrum that appeared on the computer screen matched expectations even without correcting for impedance mismatches. Encouraged by this outcome, I have begun to systematically replace each of the parts in a traditional charged particle spectrometer with audio and video components available through consumer electronics stores with the goal of producing an inexpensive charged particle spectrometer for use in education and research. Hopefully my successes, setbacks, and results to date described in this presentation will inform and inspire others.
Effect of low electric fields on alpha scintillation light yield in liquid argon
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...
2017-01-24
Measurements were made of scintillation light yield of alpha particles from themore » $$^{222}$$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. Furthermore, the light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.« less
NASA Astrophysics Data System (ADS)
Kim, Do Yoon; Ham, Cheolmin; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio
2016-05-01
We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting a particles emitted from an 241Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of a particles from the 241Am source can be varied by changing the flight path of the a particle from the 241Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the a particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for a particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that a particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGAS detector for a particles under the present conditions is found to be ~97.3%.
Avalanche proton-boron fusion based on elastic nuclear collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliezer, Shalom; Martinez Val, Josè Maria; Hora, Heinrich
2016-05-15
Recent experiments done at Prague with the 600 J/0.2 ns PALS laser interacting with a layer of boron dopants in a hydrogen enriched target have produced around 10{sup 9} alphas. We suggest that these unexpected very high fusion reactions of proton with {sup 11}B indicate an avalanche multiplication for the measured anomalously high nuclear reaction yields. This can be explained by elastic nuclear collisions in the broad 600 keV energy band, which is coincident with the high nuclear p-{sup 11}B fusion cross section, by the way of multiplication through generation of three secondary alpha particles from a single primarily produced alpha particle.
The Fission of Thorium with Alpha Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newton, Amos S.
1948-04-15
The fission distribution of fission of thorium with alpha particle of average energy 37.5 Mev has been measured by the chemical method. The distribution found shows that the characteristic dip in the fission yield mass spectrum has been raised to within a factor of two of the peaks compared to a factor of 600 in slow neutron fission of U{sup 235}. The raise in the deip has caused a corresponding lowering in fission yield of these elements at the peaks. The cross section for fission of thorium with 37.5 Mev alphas was found to be about 0.6 barn, and themore » threshold for fission was found to be 23 to 24 Mev.« less
NASA Astrophysics Data System (ADS)
Lipson, A. G.; Miley, G. H.; Lipson, A. G.; Lyakhov, B. F.; Roussetski, A. S.
2006-02-01
In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that He4 doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by He4 doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals.
Progress in tagged neutron beams for cargo inspections
NASA Astrophysics Data System (ADS)
Pesente, S.; Nebbia, G.; Viesti, G.; Daniele, F.; Fabris, D.; Lunardon, M.; Moretto, S.; Nad, K.; Sudac, D.; Valkovic, V.
2007-08-01
The use of neutron beams produced via the D + T reaction and tagged by the associated particle technique has been recently applied to cargo container inspections. In the EURITRACK project, a portable sealed-tube neutron generator has been designed and built to deliver 14 MeV neutron beams tagged by a matrix of 64 YAP:Ce alpha-particle detectors read by a multi-anode HAMAMATSU H8500 Photomultiplier Tube. The performances of this alpha-particle detector have been determined as a function of the count rate at the Rudjer Boskovic Institute, Zagreb (Croatia). Moreover, tests of the final detector operated inside the sealed-tube neutron generator are fully satisfactory.
Multiply charged particles of the primary cosmic rays with energies greater than about 2 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenko, I.P.; Grigorov, N.L.; Shestoperov, V.IA.
1986-08-01
Data on the energy spectra and charge composition of primary cosmic ray particles with energies greater than about 2 TeV are analyzed. The equipment on the Kosmos 1543 satellite used to obtain the data is described. Protons and alpha particles are detected, and the nuclei are separated into H, M, VH, and alpha groups. It is determined that the charge compositions of the primary nuclei with z greater than about 2 at energies greater than about 2 TeV compare well with data obtained at energies greater than about 1-10 GeV/nucleon. 8 references.
Natural protection from zoonosis by alpha-gal epitopes on virus particles in xenotransmission.
Kim, Na Young; Jung, Woon-Won; Oh, Yu-Kyung; Chun, Taehoon; Park, Hong-Yang; Lee, Hoon-Taek; Han, In-Kwon; Yang, Jai Myung; Kim, Young Bong
2007-03-01
Clinical transplantation has become one of the preferred treatments for end-stage organ failure, and one of the novel approaches being pursued to overcome the limited supply of human organs involves the use of organs from other species. The pig appears to be a near ideal animal due to proximity to humans, domestication, and ability to procreate. The presence of Gal-alpha1,3-Gal residues on the surfaces of pig cells is a major immunological obstacle to xenotransplantation. Alpha1,3galactosyltransferase (alpha1,3GT) catalyzes the synthesis of Gal alpha 1-3Gal beta 1-4GlcNAc-R (alpha-gal epitope) on the glycoproteins and glycolipids of non-primate mammals, but this does not occur in humans. Moreover, the alpha-gal epitope causes hyperacute rejection of pig organs in humans, and thus, the elimination of this antigen from pig tissues is highly desirable. Recently, concerns have been raised that the risk of virus transmission from such pigs may be increased due to the absence of alpha-gal on their viral particles. In this study, transgenic cells expressing alpha1,3GT were selected using 1.25 mg/ml neomycin. The development of HeLa cells expressing alpha1,3GT now allows accurate studies to be conducted on the function of the alpha-gal epitope in xenotransmission. The expressions of alpha-gal epitopes on HeLa/alpha-gal cells were demonstrated by flow cytometry and confocal microscopy using cells stained with IB4-fluorescein isothiocyanate lectin. Vaccinia viruses propagated in HeLa/alpha-gal cells also expressed alpha-gal on their viral envelopes and were more sensitive to inactivation by human sera than vaccinia virus propagated in HeLa cells. Moreover, neutralization of vaccinia virus was inhibited in human serum by 10 mm ethylene glycol bis(beta-aminoethylether)tetraacetic acid (EDTA) treatment. Our data indicated that alpha-gal epitopes are one of the major barriers to zoonosis via xenotransmission.
Acceleration of low-energy protons and alpha particles at interplanetary shock waves
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.
1983-01-01
The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.
Szabo, Zoltan; dePaul, Vincent T.; Kraemer, Thomas F.; Parsa, Bahman
2005-01-01
Water in the unconfined Kirkwood-Cohansey aquifer system in the New Jersey Coastal Plain contains elevated concentrations (above 3 pCi/L (picocuries per liter)) of the alpha-particle-emitting radionuclide radium-224. Previously, water from the aquifer system had been found to contain radium-226 and radium-228. This observation is of concern because the previously undetected presence of radium-224 may pose an additional, quantifiable health risk that currently is not accounted for by the Maximum Contaminant Level (MCL) of 5 pCi/L for combined radium (the sum of radium-226 plus radium-228 is termed 'combined radium') in drinking water. Water samples were collected from a regional network of 88 wells for determination of concentrations of radium-224, radium-226, and radium-228; gross alpha-particle activity; and concentrations of major ions and selected trace elements. Both gamma and alpha spectroscopic techniques were used to determine concentrations of radium-224, which ranged from <0.5 to 16.8 pCi/L (median 2.1 pCi/L, interquartile range 1.2-3.7 pCi/L). Concentrations of radium-226 and radium-228 in the same samples ranged from <0.5 to 17.4 pCi/L (median 1.7 pCi/L, interquartile range 0.9-2.9 pCi/L) and <0.5 to 12.8 pCi/L (median 1.6 pCi/L, interquartile range, 0.9-2.6 pCi/L), respectively. Concentrations of radium-224 typically were greater than those of the other two radium radionuclides, as evidenced by the highest median, third quartile, and maximum concentrations, as well as the highest concentration among the three radium radioisotopes in 52 (59 percent) of the 88 samples. Concentrations of 5.0 to 5.5 pCi/L of radium-224 result in a gross alpha-particle activity of about 15 pCi/L (the MCL) 36 to 48 hours, respectively, after sample collection when ingrowth of radium-224 progeny radionuclides is considered, even with the unlikely assumption that no other alpha-particle-emitting radionuclide is present in the water. Concentrations of 3.4 to 3.7 pCi/L radium-224 result in a gross alpha-particle activity of 10 pCi/L 36 to 48 hours, respectively, after sample collection when ingrowth of Ra-224 progeny radionuclides is considered. In this latter case, it is possible that the summed alpha-particle activity from radium-226 present at a concentration less than or equal to 5 pCi/L (the MCL for combined radium) and from radium-224 present at a concentration about 3.4 pCi/L or greater may exceed the 15-pCi/L MCL for gross alpha-particle activity. In this study, gross alpha-particle activities were measured within 48 hours after sample collection and were found to exceed the MCL of 15 pCi/L in nearly half (43) of the 88 samples collected. The concentration of radium-224 exceeded that of radium-226 in 55 (62.5 percent) of the 88 samples. Concentrations of radium-224 correlate strongly with those of both radium-226 and radium-228 (Spearman correlation coefficients r=0.74 and 0.91, respectively). Concentrations of radium-224, radium-226, and radium-228 were greatest in the most acidic ground water. Concentrations of radium-224 and combined radium-226 and radium-228 in samples of ground water with pH less than 4.7 exceeded 5 pCi/L in 33 and 67 percent of the samples, respectively. Concentrations of radium-224, radium-226, and radium-228 (measured separately) were greatest in water from the southern part of the aquifer outcrop area. In water from the northern part of the aquifer system outcrop area, radium-224 concentrations were as high as 3.6 pCi/L, and concentrations of combined radium and gross alpha-particle activity in some samples exceeded their respective MCLs. The presence of gross alpha-particle activities greater than 15 pCi/L and combined radium-226 and radium-228 concentrations greater than 5 pCi/L in the southwestern part of the aquifer system outcrop area is common and had been documented before 1997. Results of this study confirm these earlier findings. In northeastern and southeastern parts of the aquifer
Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, Michael W; Hoover, Andrew S; Bacrania, Mnesh K
2009-01-01
Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with {approx}15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by amore » commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.« less
Barquinero, J F; Stephan, G; Schmid, E
2004-02-01
To evaluate by the fluorescent in-situ hybridization (FISH) technique the dose-response and intercellular distribution of alpha-particle-induced chromosome aberrations. In particular, the validity of using the yield of characteristic types of chromosome abnormalities in stable cells as quantitative indicators for retrospective dose reconstruction has been evaluated. Monolayers of human peripheral lymphocytes were exposed at doses from 0.02 to 1 Gy to alpha-particles emitted from a source of americium-241. The most probable energy of the alpha-particles entering the cells was 2.7 MeV. FISH painting was performed using DNA probes for chromosomes 2, 4 and 8 in combination with a pan-centromeric probe. In complete first-division cells, identified by harlequin staining, aberrations involving painted target chromosomal material were recorded as well as aberrations involving only unpainted chromosomal material. In total, the percentage of complex aberrations was about 35% and no dose dependence was observed. When complex-type exchanges were reduced to simple base types, the different cell distributions were clearly over-dispersed, and the linear coefficients of the dose-effect curves for translocations were significantly higher than for dicentrics. For past dose reconstruction, only a few complex aberrations were in stable cells. The linear coefficient obtained for transmissible aberrations in stable cells was more than seven times lower than that obtained in all analysed cells, i.e. including unstable cells. FISH-based analysis of complex rearrangements allows discrimination between partial-body exposures to low-linear energy transfer radiation and high-linear energy transfer exposures. In assessing past or chronic exposure to alpha-particles, the use of a dose-effect curve obtained by FISH-based translocation data, which had not excluded data determined in unstable cells, would underestimate the dose. Insertions are ineffective biomarkers because their frequency is too low.
NASA Astrophysics Data System (ADS)
Medley, S. S.; Budny, R. V.; Mansfield, D. K.; Redi, M. H.; Roquemore, A. L.; Fisher, R. K.; Duong, H. H.; McChesney, J. M.; Parks, P. B.; Petrov, M. P.; Gorelenkov, N. N.
1996-10-01
The energy distributions and radial density profiles of the fast confined trapped alpha particles in DT experiments on TFTR are being measured in the energy range 0.5 - 3.5 MeV using the pellet charge exchange (PCX) diagnostic. A brief description of the measurement technique which involves active neutral particle analysis using the ablation cloud surrounding an injected impurity pellet as the neutralizer is presented. This paper focuses on alpha and triton measurements in the core of MHD quiescent TFTR discharges where the expected classical slowing-down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. In particular, the first measurement of the alpha slowing-down distribution up to the birth energy, obtained using boron pellet injection, is presented. The measurements are compared with predictions using either the TRANSP Monte Carlo code and/or a Fokker - Planck Post-TRANSP processor code, which assumes that the alphas and tritons are well confined and slow down classically. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with the code calculations. We can conclude that the PCX measurements are consistent with classical thermalization of the fusion-generated alphas and tritons.
Global alpha-particle optical potentials
NASA Astrophysics Data System (ADS)
Ferdous, N.
1991-12-01
A search for a global optical potential (for alpha-particles) is described. It was not possible to find a potential that was valid for a wide range of energies and nuclei, even treating the absorbing potential as an adjustable parameter for each nucleus. For practical purposes the best that can be done is to define an average potential, and such a potential is compared with a wide range of experimental data. Its energy variation is determined by fitting the total reaction cross-section.
First-order shock acceleration in solar flares
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Ramaty, R.
1985-01-01
The first order Fermi shock acceleration model is compared with specific observations where electron, proton, and alpha particle spectra are available. In all events, it is found that a single shock with a compression ratio as inferred from the low energy proton spectra can reasonably produce the full proton, electron, and alpha particle spectra. The model predicts that the acceleration time to a given energy will be approximately equal for electrons and protons and, for reasonable solar parameters, can be less than 1 sec to 100 MeV.
NASA Astrophysics Data System (ADS)
Salyer, Kaitlin; Rogachev, Grigory; Hooker, Joshua
2016-09-01
This project studied the capabilities of two different scintillators, Cesium Iodide (CsI) and p-Terphenyl. First, the resolution of a CsI detector was investigated by exposing only very small areas of its surface at a time to an alpha source. Second, the abilities of p-Terphenyl to detect alpha particles, gamma particles, and neutrons were analyzed through pulse shape discrimination. p-Terphenyl is of particular interest because it will be used in the Mitchell Institute Neutrino Experiment at Reactor (MINER) at Texas A&M University for measuring background data. The information learned from conducting these tests will be useful in understanding and expanding the limits of the experiments in which these detectors will ultimately be used.
Yanpallewar, Sudhirkumar U; Fernandes, Kimberly; Marathe, Swananda V; Vadodaria, Krishna C; Jhaveri, Dhanisha; Rommelfanger, Karen; Ladiwala, Uma; Jha, Shanker; Muthig, Verena; Hein, Lutz; Bartlett, Perry; Weinshenker, David; Vaidya, Vidita A
2010-01-20
Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine, supporting a role for alpha(2)-heteroceptors on progenitor cells, rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore, coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for faster acting antidepressants.
Rojas-Ortiz, Yoel Antonio; Rundle-González, Valerie; Rivera-Ramos, Isamar; Jorge, Juan Carlos
2006-01-01
Exposure to supraphysiological doses of androgens may disrupt affective components of behavior. In this study, behavior of adult C57Bl/6 male mice was studied after exposure to the anabolic androgenic steroid (AAS) 17alpha-methyltestosterone (17alpha-meT; 7.5 mg/kg) via a subcutaneous osmotic pump for 17 days. Controls received vehicle implants (0.9% NaCl + 30% cyclodextrine). On day 15, experimental animals were challenged with an ethanol (EtOH) injection (i.p.; 1 g/kg) while controls received saline injections. Five minutes after the injection, animals were tested in an automated elevated plus maze (EPM) or in automated activity chambers. In addition, injection-free animals were tested for ethanol consumption on day 16 after an overnight water deprivation period. Whereas chronic exposure to 17alpha-meT did not modulate open arm behavior, EtOH-exposed animals made more entries into the open arms than controls (P < 0.05). A significant reduction of risk assessment behaviors (rearing, flat approach behavior, and stretch attended posture) over the EPM was noted for EtOH-exposed animals whereas a reduction in stretch attended postures was observed among 17alpha-meT-exposed animals. Locomotor activity, and light-dark transitions in activity chambers remained unaltered. Exposure to AAS did not modulate EtOH consumption. Our data suggest that exposure to a supraphysiological dose of 17alpha-meT has minimal effects on exploratory-based anxiety.
Scattering of 42-MeV alpha particles from Cu-65
NASA Technical Reports Server (NTRS)
Stewart, W. M.; Seth, K. K.
1972-01-01
The extended particle-core coupling model was used to predict the properties of low-lying levels of Cu-65. A 42-MeV alpha particle cyclotron beam was used for the experiment. The experiment included magnetic analysis of the incident beam and particle detection by lithium-drifted silicon semiconductors. Angular distributions were measured for 10 to 50 degrees in the center of mass system. Data was reduced by fitting the peaks with a skewed Gaussian function using a least squares computer program with a linear background search. The energy calibration of each system was done by pulsar, and the excitation energies are accurate to + or - 25 keV. The simple weak coupling model cannot account for the experimentally observed quantities of the low-lying levels of Cu-65. The extended particle-core calculation showed that the coupling is not weak and that considerable configuration mixing of the low-lying states results.
A CAM (continuous air monitor) sampler for collecting and assessing alpha-emitting aerosol particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarland, A.R.; Bethel, E.L.; Ortiz, C.A.
1991-07-01
A new continuous air monitor (CAM) sampler for assessing alpha-emitting transuranic aerosol particles has been developed. The system has been designed to permit collection of particles that can potentially penetrate into the thoracic region of the human respiratory system. Wind tunnel testing of the sampler has been used to characterize the penetration of aerosol to the collection filter. Results show that greater than or equal to 50% of 10-micrograms aerodynamic equivalent diameter (AED) particles are collected by the filter at wind speeds of 0.3 to 2 m s-1 and at sampling flow rates of 28 to 113 L min-1 (1more » to 4 cfm). The deposition of 10-microns AED particles takes place primarily in the center of the filter, where the counting efficiency of the detector is highest.« less
Fluorescent nuclear track detectors for alpha radiation microdosimetry.
Kouwenberg, J J M; Wolterbeek, H T; Denkova, A G; Bos, A J J
2018-06-07
While alpha microdosimetry dates back a couple of decades, the effects of localized energy deposition of alpha particles are often still unclear since few comparative studies have been performed. Most modern alpha microdosimetry studies rely for large parts on simulations, which negatively impacts both the simplicity of the calculations and the reliability of the results. A novel microdosimetry method based on the Fluorescent Nuclear Track Detector, a versatile tool that can measure individual alpha particles at sub-micron resolution, yielding accurate energy, fluence and dose rate measurements, was introduced to address these issues. Both the detectors and U87 glioblastoma cell cultures were irradiated using an external Am241 alpha source. The alpha particle tracks measured with a Fluorescent Nuclear Track Detector were used together with high resolution 3D cell geometries images to calculate the nucleus dose distribution in the U87 glioblastoma cells. The experimentally obtained microdosimetry parameters were thereafter applied to simulations of 3D U87 cells cultures (spheroids) with various spatial distributions of isotopes to evaluate the effect of the nucleus dose distribution on the expected cell survival. The new experimental method showed good agreement with the analytically derived nucleus dose distributions. Small differences (< 5%) in the relative effectiveness were found for isotopes in the cytoplasm and on the cell membrane versus external irradiation, while isotopes located in the nucleus or on the nuclear membrane showed a substantial increase in relative effectiveness (33 - 51%). The ease-of-use, good accuracy and use of experimentally derived characteristics of the radiation field make this method superior to conventional simulation-based microdosimetry studies. Considering the uncertainties found in alpha radionuclide carriers in-vivo and in-vitro, together with the large contributions from the relative biological effectiveness and the oxygen enhancement ratio, it is expected that only carriers penetrating or surrounding the cell nucleus will substantially benefit from microdosimetry.
NASA Technical Reports Server (NTRS)
Sellers, B.; Hunerwadel, J. L.; Hanser, F. A.
1972-01-01
An alpha particle densitometer was developed for possible application to measurement of the atmospheric density-altitude profile on Martian entry. The device uses an Am-241 radioactive-foil source, which emits a distributed energy spectrum, located about 25 to 75 cm from a semiconductor detector. System response - defined as the number of alphas per second reaching the detector with energy above a fixed threshold - is given for Ar and CO2. The altitude profile of density measurement accuracy is given for a pure CO2 atmosphere with 5 mb surface pressure. The entire unit, including dc-dc converters, requires less than 350 milliwatts of power from +28 volts, weighs about 0.85 lb and occupies less than 15 cubic inches volume.
Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.
Yuan, J; Moses, G A; McKenty, P W
2005-10-01
A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.
NASA Astrophysics Data System (ADS)
Zhu, Zhifu; Zhang, Heqiu; Liang, Hongwei; Tang, Bin; Peng, Xincun; Liu, Jianxun; Yang, Chao; Xia, Xiaochuan; Tao, Pengcheng; Shen, Rensheng; Zou, Jijun; Du, Guotong
2018-06-01
The temperature-dependent radiation-detection performance of an alpha-particle detector that was based on a gallium-nitride (GaN)-based pin structure was studied from 290 K to 450 K. Current-voltage-temperature measurements (I-V-T) of the reverse bias show the exponential dependence of leakage currents on the voltage and temperature. The current transport mechanism of the GaN-based pin diode from the reverse bias I-V fitting was analyzed. The temperature-dependent pulse-height spectra of the detectors were studied using an 241 Am alpha-particle source at a reverse bias of 10 V, and the peak positions shifted from 534 keV at 290 K to 490 keV at 450 K. The variation of full width at half maximum (FWHM) from 282 keV at 290 K to 292 keV at 450 K is almost negligible. The GaN-based pin detectors are highly promising for high-temperature environments up to 450 K.
Revisiting alpha decay-based near-light-speed particle propulsion.
Zhang, Wenwu; Liu, Zhen; Yang, Yang; Du, Shiyu
2016-08-01
Interplanet and interstellar travels require long-term propulsion of spacecrafts, whereas the conventional schemes of propulsion are limited by the velocity of the ejected mass. In this study, alpha particles released by nuclear decay are considered as a potential solution for long-time acceleration. The principle of near-light-speed particle propulsion (NcPP) was elucidated and the stopping and range of ions in matter (SRIM) was used to predict theoretical accelerations. The results show that NcPP by means of alpha decay is feasible for long-term spacecraft propulsion and posture adjustment in space. A practical NcPP sail can achieve a speed >150km/s and reach the brink of the solar system faster than a mass equivalent solar sail. Finally, to significantly improve the NcPP sail, the hypothesis of stimulated acceleration of nuclear decay (SAND) was proposed, which may shorten the travel time to Mars to within 20 days. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low-energy neutron detector based upon lithium lanthanide borate scintillators
Czirr, John B.
1998-01-01
An apparatus for detecting neutrons includes a cerium activated scintillation crystal containing .sup.10 B, with the scintillation crystal emitting light in response to .alpha. particles emitted from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus also includes a gamma scintillator positioned adjacent the crystal and which generates light in response to gamma rays emitted from the decay of Li*. The apparatus further includes a first and a second light-to-electronic signal converter each positioned to respectively receive light from the crystal and the gamma scintillator, and each respectively outputting first and second electronic signals representative of .alpha. particles from the .sup.10 B(n,.alpha.)Li* reaction and gamma rays from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus includes a coincidence circuit connected to receive the first and second signals and which generates a coincidence signal when the first and second signals coincide. The apparatus also includes a data analyzer for receiving an additional signal from at least one of the first and second converters, and for operating in response to the coincidence signal.
Development of optical monitor of alpha radiations based on CR-39.
Joshirao, Pranav M; Shin, Jae Won; Vyas, Chirag K; Kulkarni, Atul D; Kim, Hojoong; Kim, Taesung; Hong, Seung-Woo; Manchanda, Vijay K
2013-11-01
Fukushima accident has highlighted the need to intensify efforts to develop sensitive detectors to monitor the release of alpha emitting radionuclides in the environment caused by the meltdown of the discharged spent fuel. Conventionally, proportional counting, scintillation counting and alpha spectrometry are employed to assay the alpha emitting radionuclides but these techniques are difficult to be configured for online operations. Solid State Nuclear Track Detectors (SSNTDs) offer an alternative off line sensitive technique to measure alpha emitters as well as fissile radionuclides at ultra-trace level in the environment. Recently, our group has reported the first ever attempt to use reflectance based fiber optic sensor (FOS) to quantify the alpha radiations emitted from (232)Th. In the present work, an effort has been made to develop an online FOS to monitor alpha radiations emitted from (241)Am source employing CR-39 as detector. Here, we report the optical response of CR-39 (on exposure to alpha radiations) employing techniques such as Atomic Force Microscopy (AFM) and Reflectance Spectroscopy. In the present work GEANT4 simulation of transport of alpha particles in the detector has also been carried out. Simulation includes validation test wherein the projected ranges of alpha particles in the air, polystyrene and CR-39 were calculated and were found to agree with the literature values. An attempt has been further made to compute the fluence as a function of the incidence angle and incidence energy of alphas. There was an excellent correlation in experimentally observed track density with the simulated fluence. The present work offers a novel approach to design an online CR-39 based fiber optic sensor (CRFOS) to measure the release of nanogram quantity of (241)Am in the environment. © 2013 Elsevier Ltd. All rights reserved.
A sulfhydryl-rich IgM protein with multiple serological specificities.
Merlini, G; Zettervall, O; Forsgren, A; Galliano, M; Lindberg, A A; Svenson, S B; Pavesi, F; Turesson, I
1987-01-01
A monoclonal IgM lambda protein from a patient (E.T.) suffering from a lymphocytic lymphoma agglutinated Salmonella typhi bacteria and uncoated acryl particles. The antigenic determinant on Salmonella typhi bacteria was found to be 0-12 (alpha-D-Galp-(1-2)-alpha-D-Manp) while the structure on acryl particles recognized by IgM ET has not been defined. Both binding sites for bacteria and acryl particle determinants are localized on the same IgM molecule. The uncommon affinity of this IgM protein for some divalent heavy metal ions led to the finding of an unusually high content of sulfhydryl groups in the Fab portion of the molecule. PMID:2443287
Planetesimal Formation in the Protoplanetary Nebula
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Mrad, Susan (Technical Monitor)
1998-01-01
In this talk we will address two distinct phases of planetesimal formation, each of which is fundamentally dependent upon the coupled interactions of particles and turbulent nebula gas. It has been shown both numerically and experimentally that 3-D (three dimensional) turbulence concentrates aerodynamically size-selected particles by orders of magnitude. In a previous review chapter we illustrated the initial predictions of Turbulent Concentration (TC) as applied to the solar nebula. We predicted the particle size which will be most effectively concentrated by turbulence; it is the particle which has a gas drag stopping time equal to the overturn time of the smallest (Kolmogorov scale) eddy. The primary uncertainty is the level of nebula turbulence, or Reynolds number Re, which can be expressed in terms of the standard nebula eddy viscosity parameter alpha = Rev(sub m)/cH, where v(sub m) is molecular viscosity, c is sound speed, and H is vertical scale height. Several studies, and observed lifetimes of circumstellar disks, have suggested that the level of nebula turbulence can be described by alpha = 10(exp -2) - 10(exp -4). There is some recent concern about how energy is provided to maintain this turbulence, but the issue remains open. We adopt a canonical minimum mass nebula with a range of alpha is greater than 0. We originally showed that chondrule-sized particles are selected for concentration in the terrestrial planet region if alpha = 10(exp -3) - 10(exp -4). In addition, Paque and Cuzzi found that the size distribution of chondrules is an excellent match for theoretical predictions. One then asks by what concentration factor C these particles can be concentrated; our early numerical results indicated an increase of C with alpha, and were supported by simple scaling arguments, but the extrapolation range was quite large and the predictions (C is approximately equal to 10(exp 5) - 10(exp 6) not unlikely) uncertain. The work presented here, which makes use of our recent demonstration that the particle density field is a multifractal with flow-independent properties provides a far more secure ground for such predictions. We also indicate how fine-grained dust rims on chondrules might enter into constraining the situation. Once large particles (meter-size mass equivalent) reach the midplane, perhaps in the form of dense aggregates of the sort formed in 3D turbulence, they remain stable against gravitational instability but might grow rapidly by accretion of their drifting neighbors, depending on the level of global turbulence.
Jung, Joo-Young; Yoon, Do-Kun; Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo
2017-06-13
The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy.
NASA Technical Reports Server (NTRS)
Ma Sung, L. S.; Gloeckler, G.; Fan, C. Y.; Hovestadt, D.
1980-01-01
The mean ionization states of 44-260 keV per charge ions observed as bursts in and near the earth's magnetosphere have been determined by using the particle data collected by the University of Maryland experiment on Imp 8. We find that during the period from October 1973 to December 1976 (1) the abundance ratio of heavy ions (Z greater than 2) to alphas ranges from 0.04 to 0.10, with a mean value of 0.08 plus or minus 0.02; (2) the energy spectra of alphas and Z greater than 2 ions in these bursts are adequately represented as exponentials in energy per charge with e-folding energies of 30-50 keV/Q; (3) the e-folding energies of both alpha particles and heavier ions are generally harder upstream from the bow shock than in the magnetotail and magnetosheath; and (4) the elemental abundances and ionization state distribution of the heavy ions are consistent with those of the corona at an equilibrium coronal temperature of 1-2 x 10 to the 6th K, which tends to support a solar wind origin for these particles.
Khoo, Kay-Sen; Teh, E-Jen; Leong, Yee-Kwong; Ong, Ban Choon
2009-04-09
Adsorbed phosphate on smooth platelet alpha-Al2O3 particles at saturation surface coverage gives rise to strong interparticle attractive forces in dispersion. The maximum yield stress at the point of zero charge was increased by 2-fold. This was attributed to a high density of intermolecular hydrogen bonding between the adsorbed phosphate layers of the interacting particles. Adsorbed citrate at saturation surface coverage, however, reduced the maximum yield stress by 50%. It adsorbed to form a very effective steric barrier as intramolecular hydrogen bonding between -OH and the free terminal carboxylic group prevented strong interactions with other adsorbed citrate molecules residing on the second interacting particle. This steric barrier kept the interacting platelet particles further apart, thereby weakening the van der Waals attraction. The platelet alpha-Al2O3 dispersions were flocculated at all pH level. These dispersions displayed a maximum yield stress at the point of zero zeta potential at the pH approximately 8.0. They also obeyed the yield stress-DLVO force model as characterized by a linear decrease in the yield stress with the square of the zeta potential.
Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo
2017-01-01
The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy. PMID:28427153
Phase and microstructural development in alumina sol-gel coatings on CoCr alloy.
Bae, I J; Standard, O C; Roger, G J; Brazil, D
2004-09-01
Phase transformation of gamma-Al(2)O(3) to alpha-Al(2)O(3) in alumina sol gel coatings on biomedical CoCr alloy was studied as function of heat treatment temperature and time. Transformation in unseeded coatings was significant only above approximately 1200 degrees C. Addition of alpha-Al(2)O(3) seed particles having an average size of approximately 40 nm lowered the phase transformation temperature to around 800 degrees C. These particles were considered to act as heterogeneous nucleation sites for epitaxial growth of the alpha-Al(2)O(3) phase. The kinetics and activation energy (420 kJ/mol) for the phase transformation in the seeded coatings were similar to those reported for seeded monolithic alumina gels indicating that the transformation mechanism is the same in the two material configurations. Avrami growth parameters indicated that the mechanism was diffusion controlled and invariant over the temperature range studied but that growth was possibly constrained by the finite size of the seed particles and/or coating thickness. The phase transformation occurred by the growth of alpha-Al(2)O(3) grains at the expense of the precursor fine-grained gamma-Al(2)O(3) matrix and near-complete transformation coincided with physical impingement of the growing grains. The grain size at impingement was approximately 100 nm which agreed well with that predicted from the theoretical linear spacing of seed particles in the initial sol.
Voyager observations of O(+6) and other minor ions in the solar wind
NASA Technical Reports Server (NTRS)
Villanueva, Louis; Mcnutt, Ralph L., Jr.; Lazarus, Alan J.; Steinberg, John T.
1994-01-01
The plasma science (PLS) experiments on the Voyager 1 and 2 spacecraft began making measurements of the solar wind shortly after the two launches in the fall of 1977. In reviewing the data obtained prior to the Jupiter encounters in 1979, we have found that the large dynamic range of the PLS instrument generally allows a clean separation of signatures of minor ions (about 2.5% of the time) during a single instrument scan in energy per charge. The minor ions, most notably O(+6), are well separated from the protons and alpha particles during times when the solar wind Mach number (ratio of streaming speed to thermal speed) is greater than approximately 15. During the Earth to Jupiter cruise we find that the average ratio of alpha particle number density to that of oxygen is 66 +/- 7 (Voyager 1) and 71 +/- 17 (Voyager 2). These values are consistent with the value 75 +/- 20 inferred from the Ion Composition Instrument on ISEE 3 during the period spanning 1978 and 1982. We have inferred an average coronal temperature of (1.7 +/- 0.1) x 10(exp 6) K based on the ratio of O(+7) to O(+6) number densities. Our observations cover a period of increasing solar activity. During this time we have found that the alpha particle to proton number density ratio is increasing with the solar cycle, the oxygen to proton ratio increases, and the alpha particle to oxygen ratio remains relatively constant in time.
Cigarette smoke radioactivity and lung cancer risk.
Karagueuzian, Hrayr S; White, Celia; Sayre, James; Norman, Amos
2012-01-01
To determine the tobacco industry's policy and action with respect to radioactive polonium 210 ((210)Po) in cigarette smoke and to assess the long-term risk of lung cancer caused by alpha particle deposits in the lungs of regular smokers. Analysis of major tobacco industries' internal secret documents on cigarette radioactivity made available online by the Master Settlement Agreement in 1998. The documents show that the industry was well aware of the presence of a radioactive substance in tobacco as early as 1959. Furthermore, the industry was not only cognizant of the potential "cancerous growth" in the lungs of regular smokers but also did quantitative radiobiological calculations to estimate the long-term (25 years) lung radiation absorption dose (rad) of ionizing alpha particles emitted from the cigarette smoke. Our own calculations of lung rad of alpha particles match closely the rad estimated by the industry. According to the Environmental Protection Agency, the industry's and our estimate of long-term lung rad of alpha particles causes 120-138 lung cancer deaths per year per 1,000 regular smokers. Acid wash was discovered in 1980 to be highly effectively in removing (210)Po from the tobacco leaves; however, the industry avoided its use for concerns that acid media would ionize nicotine converting it into a poorly absorbable form into the brain of smokers thus depriving them of the much sought after instant "nicotine kick" sensation. The evidence of lung cancer risk caused by cigarette smoke radioactivity is compelling enough to warrant its removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krieger, G L
1976-06-01
W (the average energy to form an ion pair) for 5.4 MeV /sup 241/Am alpha particles in a Rossi-type tissue equivalent (T.E.) gas, argon and methane was determined to an accuracy better than 0.2% using a new automated data handling system. A vibrating reed electrometer and current digitizer were used to measure the current produced by completely stopping the alpha particles in a large cylindrical ionization chamber. A multichannel analyzer, operating in a slow multiscalar mode, was used to store pulses from the current digitizer. The dwell time, on the order of 60 minutes per channel, was selected with anmore » external timer gate. Current measurements were made at reduced pressures (approximately 200 torr) to reduce ion-recombination. The average current, over many repeated measurements, was compared to the current produced in nitrogen and its previously published W-value of 36.39 +- 0.04 eV/ion pair. The resulting W-values were (in eV/ion pair): 26.29 +- 0.05 for argon, 29.08 +- 0.03 for methane and 30.72 +- 0.04 for T.E. gas, which had an analyzed composition of 64.6% methane, 32.4% CO/sub 2/, and 2.7% nitrogen. Although the methane and argon values agree within 0.1% with previously published values, the value for T.E. is 1.2% lower than the single previously reported value.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClements, K.G.
A full orbit code is used to compute collisionless losses of fusion {alpha} particles from three proposed burning plasma tokamaks: the International Tokamak Experimental Reactor (ITER); a spherical tokamak power plant (STPP) [T. C. Hender, A. Bond, J. Edwards, P. J. Karditsas, K. G. McClements, J. Mustoe, D. V. Sherwood, G. M. Voss, and H. R. Wilson, Fusion Eng. Des. 48, 255 (2000)]; and a spherical tokamak components test facility (CTF) [H. R. Wilson, G. M. Voss, R. J. Akers, L. Appel, A. Dnestrovskij, O. Keating, T. C. Hender, M. J. Hole, G. Huysmans, A. Kirk, P. J. Knight, M.more » Loughlin, K. G. McClements, M. R. O'Brien, and D. Yu. Sychugov, Proceedings of the 20th IAEA Fusion Energy Conference, Invited Paper FT/3-1Ra]. It has been suggested that {alpha} particle transport could be enhanced due to cyclotron resonance with the toroidal magnetic field ripple. However, calculations for inductive operation in ITER yield a loss rate that appears to be broadly consistent with the predictions of guiding center theory, falling monotonically as the number of toroidal field coils N is increased (and hence the ripple amplitude is decreased). For STPP and CTF the loss rate does not decrease monotonically with N, but collisionless losses are generally low in absolute terms. As in the case of ITER, there is no evidence that finite Larmor radius effects would seriously degrade fusion {alpha}-particle confinement.« less
NASA Astrophysics Data System (ADS)
Ioan, M.-R.
2018-01-01
Almost all optical diagnostic systems associated with classical particle accelerators or with new state-of-the-art particle accelerators, such as those developed within the European Collaboration ELI-NP (Extreme Light Infrastructure-Nuclear Physics) (involving extreme power laser beams), contain in their infrastructure high quality laser mirrors, used for their reflectivity and/or their partial transmittance. These high quality mirrors facilitate the extraction and handling of optical signals. When optical mirrors are exposed to high energy ionizing radiation fields, their optical and structural properties will change over time and their functionality will be affected, meaning that they will provide imprecise information. In some experiments, being exposed to mixed laser and accelerated particle beams, the deterioration of laser mirrors is even more acute, since the destruction mechanisms of both types of beams are cumulated. The main task of the work described in this paper was to find a novel specific method to analyse and highlight such degradation processes. By using complex fractal techniques integrated in a MATLAB code, the effects induced by alpha radiation to laser mirrors were studied. The fractal analysis technique represents an alternative approach to the classical Euclidean one. It can be applied for the characterization of the defects occurred in mirrors structure due to their exposure to high energy alpha particle beams. The proposed method may be further integrated into mirrors manufacturing process, as a testing instrument, to obtain better quality mirrors (enhanced resistance to high energy ionizing beams) by using different types of reflective coating materials and different deposition techniques. Moreover, the effect of high energy alpha ionizing particles on the optical properties of the exposed laser mirrors was studied by using spectrophotometric techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Guoyong; Budny, Robert; Gorelenkov, Nikolai
We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfvenmore » modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (R. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady-state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally, the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.« less
Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.
Castranova, V; Ma, J Y; Yang, H M; Antonini, J M; Butterworth, L; Barger, M W; Roberts, J; Ma, J K
2001-08-01
There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposure to diesel exhaust particles on these alveolar macrophage functions and the role of adsorbed organic chemicals compared to the carbonaceous core in the toxicity of diesel particles. In vitro exposure of rat alveolar macrophages to diesel exhaust particles decreased the ability of lipopolysaccharide (LPS), a bacterial product] to stimulate the production of inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). Methanol extract exhibited this potential but methanol-washed diesel particles did not. Exposure of rats to diesel exhaust particles by intratracheal instillation also decreased LPS-induced TNF-alpha and IL-1 production from alveolar macrophages. In contrast, carbon black did not exhibit this inhibitory effect. Exposure of rats to diesel exhaust particles by inhalation decreased the ability of alveolar macrophages to produce antimicrobial reactive oxidant species in response to zymosan (a fungal component). In contrast, exposure to coal dust increased zymosan-stimulated oxidant production. In vivo exposure to diesel exhaust particles but not to carbon black decreased the ability of the lungs to clear bacteria. Inhalation exposure of mice to diesel exhaust particles but not to coal dust depressed the ability of the lung to produce the antiviral agent interferon and increased viral multiplication in the lung. These results support the hypothesis that exposure to diesel exhaust particles increases the susceptibility of the lung to infection by depressing the antimicrobial potential of alveolar macrophages. This inhibitory effect appears to be due to adsorbed organic chemicals rather than the carbonaceous core of the diesel particles.
Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.
Castranova, V; Ma, J Y; Yang, H M; Antonini, J M; Butterworth, L; Barger, M W; Roberts, J; Ma, J K
2001-01-01
There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposure to diesel exhaust particles on these alveolar macrophage functions and the role of adsorbed organic chemicals compared to the carbonaceous core in the toxicity of diesel particles. In vitro exposure of rat alveolar macrophages to diesel exhaust particles decreased the ability of lipopolysaccharide (LPS), a bacterial product] to stimulate the production of inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). Methanol extract exhibited this potential but methanol-washed diesel particles did not. Exposure of rats to diesel exhaust particles by intratracheal instillation also decreased LPS-induced TNF-alpha and IL-1 production from alveolar macrophages. In contrast, carbon black did not exhibit this inhibitory effect. Exposure of rats to diesel exhaust particles by inhalation decreased the ability of alveolar macrophages to produce antimicrobial reactive oxidant species in response to zymosan (a fungal component). In contrast, exposure to coal dust increased zymosan-stimulated oxidant production. In vivo exposure to diesel exhaust particles but not to carbon black decreased the ability of the lungs to clear bacteria. Inhalation exposure of mice to diesel exhaust particles but not to coal dust depressed the ability of the lung to produce the antiviral agent interferon and increased viral multiplication in the lung. These results support the hypothesis that exposure to diesel exhaust particles increases the susceptibility of the lung to infection by depressing the antimicrobial potential of alveolar macrophages. This inhibitory effect appears to be due to adsorbed organic chemicals rather than the carbonaceous core of the diesel particles. PMID:11544172
Suprathermal O(+) and H(+) ion behavior during the March 22, 1979 (CDAW 6), substorms
NASA Technical Reports Server (NTRS)
Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Scholer, M.; Hovestadt, D.; Klecker, B.
1985-01-01
The present investigation has the objective to report on the behavior of energetic (approximately 130 keV) O(+) ions in the earth's plasma sheet, taking into account observations by the ISEE 1 spacecraft during a magnetically active time interval encompassing two major substorms on March 22, 1979. Attention is also given to suprathermal H(+) and He(++) ions. ISEE 1 plasma sheet observations of the proton and alpha particle phase space densities as a function of energy per charge during the time interval 0933-1000 UT on March 22, 1979 are considered along with the proton phase space density versus energy in the energy interval approximately 10 to 70 keV for the selected time periods 0933-1000 UT (presubstorm) and 1230-1243 UT (recovery phase) during the 1055 substorm on March 22, 1979. A table listing the proton energy density for presubstorm and recovery periods is also provided.
Hoffeld, J T
1983-05-01
This study was undertaken to determine whether and by what means particles which induce granulomata in vivo can affect murine spleen lymphoproliferative and antibody responses in vitro. Particles of silica, talc, Bentonite or C. parvum cells inhibited lipopolysaccharide- or concanavalin A-stimulated proliferation and sheep red blood cell-induced antibody response in vitro. The inhibition required at least 48 hours exposure of the cells to the particles. The late onset of inhibition and its reproducibility at different cell or mitogen concentrations implicated particle-induced injury to both phagocytes and lymphocytes. Either alpha-tocopherol or 2-mercaptoethanol prevented the particle-induced inhibition of spleen cell responses. alpha-Tocopherol and 2-mercaptoethanol have in common the capacity to protect cells against membrane lipid peroxidation. The inhibitory peroxidative process(es) implicated by these studies are most likely attributable to: (a) stimulation of oxidative metabolism of phagocytic cells by particles; and (b) iron-catalyzed peroxidation directly by the particles. These data may be relevant in understanding the pathogenesis of and devising therapeutic approaches toward various granulomatous conditions.
Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T
2000-09-01
Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.
Haegens, Saskia; Händel, Barbara F; Jensen, Ole
2011-04-06
The brain receives a rich flow of information which must be processed according to behavioral relevance. How is the state of the sensory system adjusted to up- or downregulate processing according to anticipation? We used magnetoencephalography to investigate whether prestimulus alpha band activity (8-14 Hz) reflects allocation of attentional resources in the human somatosensory system. Subjects performed a tactile discrimination task where a visual cue directed attention to their right or left hand. The strength of attentional modulation was controlled by varying the reliability of the cue in three experimental blocks (100%, 75%, or 50% valid cueing). While somatosensory prestimulus alpha power lateralized strongly with a fully predictive cue (100%), lateralization was decreased with lower cue reliability (75%) and virtually absent if the cue had no predictive value at all (50%). Importantly, alpha lateralization influenced the subjects' behavioral performance positively: both accuracy and speed of response improved with the degree of alpha lateralization. This study demonstrates that prestimulus alpha lateralization in the somatosensory system behaves similarly to posterior alpha activity observed in visual attention tasks. Our findings extend the notion that alpha band activity is involved in shaping the functional architecture of the working brain by determining both the engagement and disengagement of specific regions: the degree of anticipation modulates the alpha activity in sensory regions in a graded manner. Thus, the alpha activity is under top-down control and seems to play an important role for setting the state of sensory regions to optimize processing.
Lyman alpha radiation in external galaxies
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Mckee, Christopher F.
1990-01-01
The Ly alpha line of atomic hydrogen is often a luminous component of the radiation emitted by distant galaxies. Except for those galaxies which have a substantial central source of non-stellar ionizing radiation, most of the Ly alpha radiation emitted by galaxies is generated within regions of the interstellar medium which are photoionized by starlight. Conversely, much of the energy radiated by photoionized regions is carried by the Ly alpha line. Only hot, massive stars are capable of ionizing hydrogen in the interstellar medium which surrounds them, and because such stars are necessarily short-lived, Ly alpha emission traces regions of active star formation. Researchers argue that the strength of the Ly alpha emission observed from external galaxies may be used to estimate quantitatively the dust content of the emitting region, while the Ly alpha line profile is sensitive to the presence of shock waves. Interstellar dust particles and shock waves are intimately associated with the process of star formation in two senses. First, both dust particles and shock waves owe their existence to stellar activity; second, they may both serve as agents which facilitate the formation of stars, shocks by triggering gravitational instabilities in the interstellar gas that they compress, and dust by shielding star-forming molecular clouds from the ionizing and dissociative effects of external UV radiation. By using Ly alpha observations as a probe of the dust content in diffuse gas at high redshift, we might hope to learn about the earliest epochs of star formation.
Crompton, Anita J; Gamage, Kelum A A; Bell, Steven; Wilson, Andrew P; Jenkins, Alex; Trivedi, Divyesh
2017-11-29
In this work, a robust stand-off alpha detection method using the secondary effects of alpha radiation has been sought. Alpha particles ionise the surrounding atmosphere as they travel. Fluorescence photons produced as a consequence of this can be used to detect the source of the alpha emissions. This paper details experiments carried out to detect this fluorescence, with the focus on photons in the ultraviolet C (UVC) wavelength range (180-280 nm). A detector, UVTron R9533 (Hamamatsu, 325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref., 430-8587, Japan), designed to detect the UVC emissions from flames for fire alarm purposes, was tested in various gas atmospheres with a 210 Po alpha source to determine if this could provide an avenue for stand-off alpha detection. The results of the experiments show that this detector is capable of detecting alpha-induced air fluorescence in normal indoor lighting conditions, as the interference from daylight and artificial lighting is less influential on this detection system which operates below the UVA and UVB wavelength ranges (280-315 nm and 315-380 nm respectively). Assuming a standard 1 r 2 drop off in signal, the limit of detection in this configuration can be calculated to be approximately 240 mm, well beyond the range of alpha-particles in air, which indicates that this approach could have potential for stand-off alpha detection. The gas atmospheres tested produced an increase in the detector count, with xenon having the greatest effect with a measured 52% increase in the detector response in comparison to the detector response in an air atmosphere. This type of alpha detection system could be operated at a distance, where it would potentially provide a more cost effective, safer, and faster solution in comparison with traditional alpha detection methods to detect and characterise alpha contamination in nuclear decommissioning and security applications.
Crompton, Anita J.; Wilson, Andrew P.; Jenkins, Alex; Trivedi, Divyesh
2017-01-01
In this work, a robust stand-off alpha detection method using the secondary effects of alpha radiation has been sought. Alpha particles ionise the surrounding atmosphere as they travel. Fluorescence photons produced as a consequence of this can be used to detect the source of the alpha emissions. This paper details experiments carried out to detect this fluorescence, with the focus on photons in the ultraviolet C (UVC) wavelength range (180–280 nm). A detector, UVTron R9533 (Hamamatsu, 325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref., 430-8587, Japan), designed to detect the UVC emissions from flames for fire alarm purposes, was tested in various gas atmospheres with a 210Po alpha source to determine if this could provide an avenue for stand-off alpha detection. The results of the experiments show that this detector is capable of detecting alpha-induced air fluorescence in normal indoor lighting conditions, as the interference from daylight and artificial lighting is less influential on this detection system which operates below the UVA and UVB wavelength ranges (280–315 nm and 315–380 nm respectively). Assuming a standard 1r2 drop off in signal, the limit of detection in this configuration can be calculated to be approximately 240 mm, well beyond the range of alpha-particles in air, which indicates that this approach could have potential for stand-off alpha detection. The gas atmospheres tested produced an increase in the detector count, with xenon having the greatest effect with a measured 52% increase in the detector response in comparison to the detector response in an air atmosphere. This type of alpha detection system could be operated at a distance, where it would potentially provide a more cost effective, safer, and faster solution in comparison with traditional alpha detection methods to detect and characterise alpha contamination in nuclear decommissioning and security applications. PMID:29186051
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslam, J J; Wall, M A; Johnson, D L
We have measured and modeled the change in electrical resistivity due to partial transformation to the martensitic {alpha}{prime}-phase in a {delta}-phase Pu-Ga matrix. The primary objective is to relate the change in resistance, measured with a 4-probe technique during the transformation, to the volume fraction of the {alpha}{prime} phase created in the microstructure. Analysis by finite element methods suggests that considerable differences in the resistivity may be anticipated depending on the orientational and morphological configurations of the {alpha}{prime} particles. Finite element analysis of the computed resistance of an assembly of lenticular shaped particles indicates that series resistor or parallel resistormore » approximations are inaccurate and can lead to an underestimation of the predicted amount of {alpha}{prime} in the sample by 15% or more. Comparison of the resistivity of a simulated network of partially transformed grains or portions of grains suggests that a correction to the measured resistivity allows quantification of the amount of {alpha}{prime} phase in the microstructure with minimal consideration of how the {alpha}{prime} morphology may evolve. It is found that the average of the series and parallel resistor approximations provide the most accurate relationship between the measured resistivity and the amount of {alpha}{prime} phase. The methods described here are applicable to any evolving two-phase microstructure in which the resistance difference between the two phases is measurable.« less
Reducing DRIFT backgrounds with a submicron aluminized-mylar cathode
NASA Astrophysics Data System (ADS)
Battat, J. B. R.; Daw, E.; Dorofeev, A.; Ezeribe, A. C.; Fox, J. R.; Gauvreau, J.-L.; Gold, M.; Harmon, L.; Harton, J.; Lafler, R.; Landers, J.; Lauer, R. J.; Lee, E. R.; Loomba, D.; Lumnah, A.; Matthews, J.; Miller, E. H.; Mouton, F.; Murphy, A. St. J.; Paling, S. M.; Phan, N.; Sadler, S. W.; Scarff, A.; Schuckman, F. G.; Snowden-Ifft, D.; Spooner, N. J. C.; Walker, D.
2015-09-01
Background events in the DRIFT-IId dark matter detector, mimicking potential WIMP signals, are predominantly caused by alpha decays on the central cathode in which the alpha particle is completely or partially absorbed by the cathode material. We installed a 0.9 μm thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on the ratio of background events to alpha decays. Two independent methods of measuring the absolute alpha decay rate are used to ensure an accurate result, and agree to within 10%. Using alpha range spectroscopy, we measure the radiologically cleanest cathode version to have a contamination of 3.3±0.1 ppt 234U and 73±2 ppb 238U. This cathode reduces the probability of producing an RPR from an alpha decay by a factor of 70±20 compared to the original stainless steel wire cathode. First results are presented from a texturized version of the cathode, intended to be even more transparent to alpha particles. These efforts, along with other background reduction measures, have resulted in a drop in the observed background rate from 500/day to 1/day. With the recent implementation of full-volume fiducialization, these remaining background events are identified, allowing for background-free operation.
Deuterium-tritium experiments on the Tokamak Fusion Test reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosea, J.; Adler, J.H.; Alling, P.
The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to {approx}9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning;more » possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS {approx}6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored.« less
Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh
2016-01-01
Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors. PMID:27160654
Clean galena, contaminated lead, and soft errors in memory chips
NASA Astrophysics Data System (ADS)
Lykken, G. I.; Hustoft, J.; Ziegler, B.; Momcilovic, B.
2000-10-01
Lead (Pb) disks were exposed to a radon (Rn)-rich atmosphere and surface alpha particle emissions were detected over time. Cumulative 210Po alpha emission increased nearly linearly with time. Conversely, cumulative emission for each of 218Po and 214Po was constant after one and two hours, respectively. Processing of radiation-free Pb ore (galena) in inert atmospheres was compared with processing in ambient air. Galena processed within a flux heated in a graphite crucible while exposed to an inert atmosphere, resulted in lead contaminated with 210Po (Trial 1). A glove box was next used to prepare a baseline radiation-free flux sample in an alumina crucible that was heated in an oven with an inert atmosphere (Trials 2 and 3). Ambient air was thereafter introduced, in place of the inert atmosphere, to the radiation-free flux mixture during processing (Trial 4). Ambient air introduced Rn and its progeny (RAD) into the flux during processing so that the processed Pb contained Po isotopes. A typical coke used in lead smelting also emitted numerous alpha particles. We postulate that alpha particles from tin/lead solder bumps, a cause of computer chip memory soft errors, may originate from Rn and RAD in the ambient air and/or coke used as a reducing agent in the standard galena smelting procedure.
Hypoadrenocorticism in beagles exposed to aerosols of plutonium-238 dioxide by inhalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, R.E.; Buschbom, R.L.; Dagle, G.E.
1996-12-01
Hypoadrenocorticism, known as Addison`s disease in humans, was diagnosed in six beagles after inhalation of at least 1.7 kBq/g lung of {sup 238}PuO{sub 2}. Histological examination of adrenal gland specimens obtained at necropsy revealed marked adrenal cortical atrophy in all cases. Autoadiographs showed only slight {alpha}-particle activity. Although the pathogenesis of adrenal cortical atrophy in these dogs is unclear, there is evidence to suggest an automimmune disorder linked to damage resulting from {alpha}-particle irradiation to the lymphatic system.
NASA Technical Reports Server (NTRS)
Freier, P. S.; Atwater, T. W.
1985-01-01
A determination of primary energy is required in order to study the energy dependence of meson multiplicity in A-A collisions in cosmic rays. Various procedures which estimate the energy of a primary nucleus from its interaction were investigated. An average of two methods were used, one using the pions and wounded protons and the other using spectator protons and alpha particles. The high P sub T tail observed for Z = 2 fragments requires a modification of the latter method.
Current-drive by lower hybrid waves in the presence of energetic alpha-particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisch, N.J.; Rax, J.M.
1991-10-01
Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.
Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bristow, T.
2014-01-01
Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.
Darrow, D S; Cecil, F E; Kiptily, V; Fullard, K; Horton, A; Murari, A
2010-10-01
The loss of MeV alpha particles from JET plasmas has been measured with a set of thin foil Faraday cup detectors during third harmonic heating of helium neutral beam ions. Tail temperatures of ∼ 2 MeV have been observed, with radial scrape off lengths of a few centimeters. Operational experience from this system indicates that such detectors are potentially feasible for future large tokamaks, but careful attention to screening rf and MHD induced noise is essential.
Bolton, Richard D.; MacArthur, Duncan W.
1996-01-01
An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.
Bolton, R.D.; MacArthur, D.W.
1996-08-27
An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.
NASA Astrophysics Data System (ADS)
Stratton, B. C.; Budny, R. V.; Darrow, D. S.; Fisher, R. K.; Fredrickson, E. D.; Fu, G. Y.; Medley, S. S.; Nazikian, R.; Petrov, M. P.; Redi, M. H.; Ruskov, E.; Taylor, G.; White, R. B.; Zweben, S. J.; TFTR Group
1999-09-01
The article reviews the physics of fusion alpha particles and energetic neutral beam ions studied in the final phase of TFTR operation, with an emphasis on observations in reversed magnetic shear (RS) and enhanced reversed shear (ERS) DT plasmas. Energy resolved measurements of the radial profiles of confined, trapped alphas in RS plasmas exhibit reduced core alpha density with increasing alpha energy, in contrast to plasmas with normal monotonic shear. The measured profiles are consistent with predictions of increased alpha loss due to stochastic ripple diffusion and increased first orbit loss in RS plasmas. In experiments in which a short tritium beam pulse is injected into a deuterium RS plasma, the measured DT neutron emission is lower than standard predictions assuming first orbit loss and stochastic ripple diffusion of the beam ions. A microwave reflectometer measured the spatial localization of low toroidal mode number (n), alpha driven toroidal Alfvén eigenmodes (TAEs) in DT RS discharges. Although the observed ballooning character of the n = 4 mode is consistent with predictions of a kinetic MHD stability code, the observed antiballooning nature of the n = 2 mode is not. Furthermore, the modelling does not show the observed strong dependence of mode frequency on n. These alpha driven TAEs do not cause measurable alpha loss in TFTR. Other Alfvén frequency modes with n = 2-4 seen in both DT and DD ERS and RS discharges are localized to the weak magnetic shear region near qmin. In 10-20% of DT discharges, normal low n MHD activity causes alpha loss at levels above the first orbit loss rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuvin, S. A.; Wuosmaa, A. H.; Lister, C. J.
The rate of the T = 1, 2(+) to T = 1, 0(+) transition in B-10 (T = 1, T-z = 0) is compared to the analog transitions in Be-10 (T = 1, T-z = -1) and C-10 (T = 1, T-z = +1) to provide constraints on ab initio calculations using realistic nuclear forces. The relevant state in B-10, at E-x = 5.164 MeV, is particle unbound. Therefore, a determination of the B(E2) electromagnetic transition rate requires a precise and accurate determination of the width of the state, as well as the alpha-particle and gamma-ray branching ratios. Previous measurementsmore » of the a-particle branching ratio are just barely in agreement. We report on a new study of the alpha-particle branch by studying the B-10(p, p') B-10* reaction in inverse kinematics with the HELIOS spectrometer. The alpha-particle branching ratio that we observe, 0.144 +/- 0.027, is in good agreement with the evaluated value and improves the associated uncertainty. The resulting experimental B(E2) value is 7.0 +/- 2.2 e(2)fm(4) and is more consistent with a flat trend across the A = 10 triplet than previously reported. This is inconsistent with Green's functionMonte Carlo predictions using realistic three-nucleon Hamiltonians, which overpredict the B(E2) value in C-10 and B-10.« less
Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception
Helfrich, Randolph F.; Huang, Melody; Wilson, Guy; Knight, Robert T.
2017-01-01
Conscious visual perception is proposed to arise from the selective synchronization of functionally specialized but widely distributed cortical areas. It has been suggested that different frequency bands index distinct canonical computations. Here, we probed visual perception on a fine-grained temporal scale to study the oscillatory dynamics supporting prefrontal-dependent sensory processing. We tested whether a predictive context that was embedded in a rapid visual stream modulated the perception of a subsequent near-threshold target. The rapid stream was presented either rhythmically at 10 Hz, to entrain parietooccipital alpha oscillations, or arrhythmically. We identified a 2- to 4-Hz delta signature that modulated posterior alpha activity and behavior during predictive trials. Importantly, delta-mediated top-down control diminished the behavioral effects of bottom-up alpha entrainment. Simultaneous source-reconstructed EEG and cross-frequency directionality analyses revealed that this delta activity originated from prefrontal areas and modulated posterior alpha power. Taken together, this study presents converging behavioral and electrophysiological evidence for frontal delta-mediated top-down control of posterior alpha activity, selectively facilitating visual perception. PMID:28808023
Felger, Jennifer C.; Cole, Steve W.; Pace, Thaddeus W. W.; Hu, Fang; Woolwine, Bobbi J.; Doho, Gregory H.; Raison, Charles L.; Miller, Andrew H.
2012-01-01
Background Interferon (IFN)-alpha treatment for infectious disease and cancer causes high rates of depression and fatigue, and has been used to investigate the impact of inflammatory cytokines on brain and behavior. However, little is known about the transcriptional impact of chronic IFN-alpha on immune cells in vivo and its relationship to IFN-alpha-induced behavioral changes. Methods Genome-wide transcriptional profiling was performed on peripheral blood mononuclear cells from 21 patients with chronic hepatitis C either awaiting IFN-alpha therapy (n=10) or at 12 weeks of IFN-alpha treatment (n=11). Results Significance analysis of microarray data identified 252 up-regulated and 116 down-regulated gene transcripts. Of up-regulated genes, 2'-5'-oligoadenylate synthetase 2 (OAS2), a gene linked to chronic fatigue syndrome (CFS), was the only gene that was differentially expressed in patients with IFN-alpha-induced depression/fatigue, and correlated with depression and fatigue scores at 12 weeks (r=0.80, p=0.003 and r=0.70, p=0.017, respectively). Promoter-based bioinformatic analyses linked IFN-alpha-related transcriptional alterations to transcription factors involved in myeloid differentiation, IFN-alpha signaling, AP1 and CREB/ATF pathways, which were derived primarily from monocytes and plasmacytoid dendritic cells. IFN-alpha-treated patients with high depression/fatigue scores demonstrated up-regulation of genes bearing promoter motifs for transcription factors involved in myeloid differentiation, IFN-alpha and AP1 signaling, and reduced prevalence of motifs for CREB/ATF, which has been implicated in major depression. Conclusions Depression and fatigue during chronic IFN-alpha administration were associated with alterations in the expression (OAS2) and transcriptional control (CREB/ATF) of genes linked to behavioral disorders including CFS and major depression, further supporting an immune contribution to these diseases. PMID:22152193
Alpha particle spectroscopy in radon/thoron progeny measurements.
Thiessen, N P
1994-12-01
A comparison is made between the relative variances and counting time requirements for obtaining radon and thoron progeny air concentrations from total alpha count data and from spectroscopically resolved alpha count data collected from air sampling filters. Spectral resolution is shown to have significant advantages, especially in mixed radon/thoron atmospheres. Systematic biases resulting from imperfect energy peak resolution are shown to be subject to accurate mathematical compensation.
Computational modeling of radiobiological effects in bone metastases for different radionuclides.
Liberal, Francisco D C Guerra; Tavares, Adriana Alexandre S; Tavares, João Manuel R S
2017-06-01
Computational simulation is a simple and practical way to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aimed to evaluate and compare cellular effects modelled for different radioisotopes currently in use or under research for treatment of bone metastases using computational methods. Computational models were used to estimate the radiation-induced cellular effects (Virtual Cell Radiobiology algorithm) post-irradiation with selected particles emitted by Strontium-89 ( 89 Sr), Samarium-153 ( 153 Sm), Lutetium-177 ( 177 Lu), and Radium-223 ( 223 Ra). Cellular kinetics post-irradiation using 89 Sr β - particles, 153 Sm β - particles, 177 Lu β - particles and 223 Ra α particles showed that the cell response was dose- and radionuclide-dependent. 177 Lu beta minus particles and, in particular, 223 Ra alpha particles, yielded the lowest survival fraction of all investigated particles. 223 Ra alpha particles induced the highest cell death of all investigated particles on metastatic prostate cells in comparison to irradiation with β - radionuclides, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice. Moreover, the data obtained suggest that the used computational methods might provide some perception about cellular effects following irradiation with different radionuclides.
Thermal force induced by the presence of a particle near a solidifying interface.
Hadji, L
2001-11-01
The presence of a foreign particle in the melt, ahead of a solid-liquid interface, leads to the onset of interfacial deformations if the thermal conductivity of the particle, k(p), differs from that of the melt, k(l). In this paper, the influence of the thermal conductivity contrast on the interaction between the solidifying interface and the particle is quantified. We show that the interface distortion gives rise to a thermal force whose expression is given by F(th)=2piLGa3(1-alpha)/(2+alpha)T(m), where L is the latent heat of fusion per unit volume, T(m) is the melting point, a is the particle's radius, G the thermal gradient in the liquid phase and alpha=k(p)/k(l). The derivation makes use of the following assumptions: (i) the particle is small compared to the horizontal extent of the interface, (ii) the particle is placed in the near proximity of the deformable solid-liquid interface, and (iii) the interface is practically immobile in the calculation of the thermal field, i.e., V
Testing the stand-alone microbeam at Columbia University.
Garty, G; Ross, G J; Bigelow, A W; Randers-Pehrson, G; Brenner, D J
2006-01-01
The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplets. Using a 'home made' 6.5 mCi polonium source, a 1 alpha particle s(-1), 10 microm diameter microbeam can, in principle, be realised. As the alpha source energy is constant, once the microbeam has been set up, no further adjustments are necessary apart from a periodic replacement of the source. The use of permanent magnets eliminates the need for bulky power supplies and cooling systems required by other types of ion lenses and greatly simplifies operation. It also makes the microbeam simple and cheap enough to be realised in any large lab. The Microbeam design as well as first tests of its performance, using an accelerator-based beam are presented here.
Development and irradiation test of lost alpha detection system for ITER.
Nishiura, M; Nagasaka, T; Fujioka, K; Fujimoto, Y; Tanaka, T; Ido, T; Yamamoto, S; Kashiwa, S; Sasao, M
2010-10-01
We developed a lost alpha detection system to use in burning plasma experiments. The scintillators of Ag:ZnS and polycrystalline Ce:YAG were designed for a high-temperature environment, and the optical transmission line was designed to transmit from the scintillator to the port plug. The required optical components of lenses and mirrors were irradiated using the fission reactor with the initial result that there was no clear change after the irradiation with a neutron flux of 9.6×10(17) nm(-2) s(-1) for 48 h. We propose a diagnostic of alpha particle loss, so-called alpha particle induced gamma ray spectroscopy. The initial laboratory test has been carried out by the use of the Ce doped Lu(2)SiO(5) scintillator detector and an Am-Be source to detect the 4.44 MeV high energy gamma ray due to the (9)Be(α,nγ)(12)C reaction.
Bone-bonding behavior of alumina bead composite.
Shinzato, S; Kobayashi, M; Choju, K; Kokubo, T; Nakamura, T
1999-08-01
Previously we developed an alumina bead composite (ABC) consisting of alumina bead powder (AL-P) and bisphenol-alpha-glycidyl methacrylate (Bis-GMA)-based resin and reported its excellent osteoconductivity in rat tibiae. In the present study, are evaluated histologically and mechanically the effect of alumina crystallinity on the osteoconductivity and bone-bonding strength of the composite. AL-P was manufactured by fusing crushed alpha-alumina powder and quenching it. The AL-P was composed mainly of amorphous and delta-crystal phases of alumina. Its average particle size was 3.5 microm, and it took a spherical form. Another composite (alpha ALC), filled with pure alpha-alumina powder (alpha AL-P), was used as a referential material. The proportion of powder added to each composite was 70% w/w. Mechanical testing of ABC and alpha ALC indicated that they would be strong enough for use under weight-bearing conditions. The affinity indices for ABC, determined using male Wistar rat tibiae, were significantly higher than those for alpha ALC (p < 0.0001) up to 8 weeks. Composite plates (15 x 10 x 2 mm) that had an uncured surface layer on one side were made in situ in a rectangular mold. One of the plates was implanted into the proximal metaphysis of the tibia of a male Japanese white rabbit, and the failure load was measured by a detaching test 10 weeks after implantation. The failure loads for ABC on its uncured surface [1.91+/-1.23 kgf (n = 8)] were significantly higher than those for alpha ALC on its uncured surface [0.35+/-0.33 kgf (n = 8); (p < 0.0001)], and they also were significantly higher than those for ABC on the other (cured surface) side (p < 0.0001). Histological examinations using rabbit tibiae revealed bone ingrowth into the composite only on the uncured surface of ABC. This study revealed that the amorphous phase of alumina and formation of an uncured surface layer are needed for the osteoconductive and bone-bonding ability of ABC. ABC shows promise as a basis for the development of a highly osteoconductive and mechanically strong biomaterial.
Analytical model of brittle destruction based on hypothesis of scale similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakcheev, A. S., E-mail: asarakcheev@gmail.com; Lotov, K. V.
2012-08-15
The size distribution of dust particles in thermonuclear (fusion) devices is closely described by a power law, which may be related to the brittle destruction of materials. The hypothesis of scale similarity leads to the conclusion that the size distribution of particles formed as a result of a brittle destruction is described by a power law with the exponent -{alpha} that can range from -4 to -1. The model of brittle destruction is described in terms of the fractal geometry, and the distribution exponent is expressed via the fractal dimension of packing. Under additional assumptions, it is possible to refinemore » the {alpha} value and, vice versa, to determine the type of destruction using the measured size distribution of particles.« less
Liu, Lin-Yue; Wang, Ling; Jin, Peng; Liu, Jin-Liang; Zhang, Xian-Peng; Chen, Liang; Zhang, Jiang-Fu; Ouyang, Xiao-Ping; Liu, Ao; Huang, Run-Hua; Bai, Song
2017-10-13
Silicon carbide (SiC) detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1-4 cm² were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.
NASA Astrophysics Data System (ADS)
Mamor, M.; Auret, F. D.; Goodman, S. A.; Meyer, W. E.; Myburg, G.
1998-06-01
Titanium (Ti) Schottky barrier diodes on epitaxially grown boron-doped p-type Si films with a free carrier density of 6-8×1016cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. We report the electronic and transformation characteristics of an α-particle irradiation-induced defect Hα2 in epitaxially grown p-Si with metastable properties. The energy level and apparent capture cross section, as determined by deep-level transient spectroscopy, are Ev+0.43 eV and 1.4×10-15 cm2, respectively. This defect can be removed and re-introduced using a conventional bias-on/off cooling technique.
Analysis of hydrogen H-alpha observations of the coma of Comet P/Halley
NASA Technical Reports Server (NTRS)
Smyth, William H.; Marconi, M. L.; Scherb, Frank; Roesler, Fred L.
1993-01-01
The Monte Carlo Particle Trajectory Model of Combi and Smyth (1988) is used here to analyze observations of the H-alpha coma of Comet Halley. The solar excitation mechanism for the H-alpha emissions line is described. The H2O production rates derived for the H-alpha brightness measurements are shown to be very consistent with the H2O production rates determined from other Comet Halley observations of the H, O, and OH comae. Revised H2O production rates determined from 6300 A brightness measurements are presented.
Scattering of 42 MeV alpha particles from copper-65
NASA Technical Reports Server (NTRS)
Stewart, W. M.; Seth, K. K.
1973-01-01
Beams of 42-MeV alpha particles were elastically and inelastically scattered from Cu-65 in an attempt to excite states which may be described in terms of an excited core model. Angular distributions were measured for 17 excited states. Seven of the excited states had angular distributions similar to a core quadrupole excitation and eight of the excited states had angular distributions similar to a core octupole excitation. The excited state at 2.858 MeV had an angular distribution which suggests that it may have results from the particle coupling to a two-phonon core state. An extended particle-core coupling calculation was performed and the predicted energy levels and reduced transition probabilities compared to the experimental data. The low lying levels are described quite well and the wavefunctions of these states explain the large spectroscopic factors measured in stripping reactions. For Cu-65 the coupling of the particle to the core is no larger weak as in the simpler model, and configuration mixing results.
Volchegorskiĭ, I A; Miroshnichenko, I Iu; Rassokhina, L M; Faĭzullin, R M; Priakhina, K E
2014-01-01
The effect of domestic derivatives of 3-oxypyridine and succinic acid (emoxipine, reamberin, and mexidol) on obsessive-compulsive behavior of mice was studied in the marble-burying test. Additionally the effect of these drugs on the behavior of animals was assessed in the open field test. Amitriptylin and alpha-lipoic acid were used as reference drugs. It was established that single administration of the investigated drugs in optimal doses, corresponding to therapeutic range in humans, inhibits obsessive-compulsive behavior of mice in the marble-burying test. Amitriptylin and alpha-lipoic acid produced similar effects. It is established that emoxipine stimulates the behavior of mice in the open field after single administration. An increase in the emoxipine dose led to decrease of stimulation and gradual development of sedative effect. Reamberin and mexidol, as well as alpha-lipoic acid and amitriptyline, caused sedation in mice tested in the open field. Inhibiting effect of emoxipine, reamberin, mexidol and alpha-lipoic acid on the obsessive-compulsive behavior in mice directly depended on sedative action of these drugs.
NASA Astrophysics Data System (ADS)
Seki, A.; Tobo, I.; Omori, Y.; Muto, J.; Nagahama, H.
2013-12-01
Anomalous luminous phenomena and electromagnetic wave emission before or during earthquakes have been reported (e.g., the 1965 Matsushiro earthquake swarm). However, their mechanism is still unsolved, in spite of many models for these phenomena. Here, we propose a new model about luminous phenomena and electromagnetic wave emission during earthquake by focusing on atmospheric radon (Rn-222) and its daughter nuclides (Po-218 and Po-214). Rn-222, Po-218 and Po-214 are alpha emitters, and these alpha particles ionize atmospheric molecules. A light emission phenomenon, called 'the air luminescence', is caused by de-excitation of the ionized molecules of atmospheric nitrogen due to electron impact ionization from alpha particles. The de-excitation is from the second positive system of neutral nitrogen molecules and the first negative system of nitrogen molecule ion. Wavelengths of lights by these transitions include the visible light wavelength. So based on this mechanism, we proposed a new luminous phenomenon model before or during earthquake: 1. The concentration of atmospheric radon and its daughter nuclides increase anomalously before or during earthquakes, 2. Nitrogen molecules and their ions are excited by alpha particles emitted from Rn-222, Po-218 and Po-214, and air luminescence is generated by their de-excitation. Similarly, electromagnetic VHF wave emission can be explained by ionizing effect of radon and its daughter nuclides. Boyarchuk et al. (2005) proposed a model that electromagnetic VHF wave emission is originated when excited state of neutral clusters changes. Radon gas ionizes atmosphere and forms positively and negatively charged heavy particles. The process of ion hydration in ordinary air can be determined by the formation of complex chemically active structures of the various types of ion radicals. As a result of the association of such hydration radical ions, a neutral cluster, which is dipole quasi-molecules, is formed. A neutral cluster's rotation-rotation transition causes electromagnetic VHF wave emission. We also discuss a possibility of electromagnetic VHF wave emission from excitation of polyatomic molecules by alpha particles from Rn-222 and its daughter nuclides, similar to air luminescence by excitation of nitrogen molecule in the viewpoint of electromagnetic radiation in quantum theory.
Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos
NASA Astrophysics Data System (ADS)
Ng, C. Y. P.; Cheng, S. H.; Yu, K. N.
2017-04-01
In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander effects in previous studies, as neutron sources invariably emit neutrons with concomitant gamma-ray photons, which is often referred to as gamma-ray contamination.
Simpson, Jr, J A
1950-12-05
A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.
NASA Astrophysics Data System (ADS)
Chim, Chi Yung
First in Chapter 2, we discuss the collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses, but both with singly-ionized atoms. In a limit of high cyclotron frequencies O j, the total cyclotron action Ij for the two species are adiabatic invariants. In a few collisions, maximizing entropy yields a modified Gibbs distribution of the form exp[-H/T ∥-alpha1 I 1-alpha2I2]. Here, H is the total Hamiltonian and alphaj's are related to parallel and perpendicular temperatures through T ⊥j=(1/T∥ +alphaj/Oj) -1. On a longer timescale, the two species share action so that alpha 1 and alpha2 relax to a common value alpha. On an even longer timescale, the total action ceases to be a constant of the motion and alpha relaxes to zero. Next, weak transport produces a low density halo of electrons moving radially outward from the pure electron plasma core, and the m = 1 mode begins to damp algebraically when the halo reaches the wall. The damping rate is proportional to the particle flux through the resonant layer at the wall. Chapter 3 explains analytically the new algebraic damping due to both mobility and diffusion transport. Electrons swept around the resonant "cat's eye" orbits form a dipole (m = 1) density distribution, setting up a field that produces ExB-drift of the core back to the axis, that is, damps the mode. Finally, Chapter 4 provides a simple mechanistic interpretation of the resonant wave-particle interaction of Landau. For the simple case of a Vlasov plasma oscillation, the non-resonant electrons are driven resonantly by the bare electric field from the resonant electrons, and this complex driver field is of a phase to reduce the oscillation amplitude. The wave-particle resonant interaction also occurs in 2D ExB-drift waves, such as a diocotron wave. In this case, the bare electric field from the resonant electrons causes ExB-drift motion back in the core plasma, thus damping the wave.
Apparatus having reduced background for measuring radiation activity in aerosol particles
Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.
1992-01-01
Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.
Monte Carlo analysis of tagged neutron beams for cargo container inspection.
Pesente, S; Lunardon, M; Nebbia, G; Viesti, G; Sudac, D; Valkovic, V
2007-12-01
Fast neutrons produced via D+T reactions and tagged by the associated particle technique have been recently proposed to inspect cargo containers. The general characteristics of this technique are studied with Monte Carlo simulations by determining the properties of the tagged neutron beams as a function of the relevant design parameters (energy and size of the deuteron beam, geometry of the charged particle detector). Results from simulations, validated by experiments, show that the broadening of the correlation between the alpha-particle and the neutron, induced by kinematical as well as geometrical (beam and detector size) effects, is important and limits the dimension of the minimum voxel to be inspected. Moreover, the effect of the container filling is explored. The material filling produces a sizeable loss of correlation between alpha-particles and neutrons due to scattering and absorption. Conditions in inspecting cargo containers are discussed.
NASA Astrophysics Data System (ADS)
Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.
2016-07-01
Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.
Validation of the Karolinska sleepiness scale against performance and EEG variables.
Kaida, Kosuke; Takahashi, Masaya; Akerstedt, Torbjörn; Nakata, Akinori; Otsuka, Yasumasa; Haratani, Takashi; Fukasawa, Kenji
2006-07-01
The Karolinska sleepiness scale (KSS) is frequently used for evaluating subjective sleepiness. The main aim of the present study was to investigate the validity and reliability of the KSS with electroencephalographic, behavioral and other subjective indicators of sleepiness. Participants were 16 healthy females aged 33-43 (38.1+/-2.68) years. The experiment involved 8 measurement sessions per day for 3 consecutive days. Each session contained the psychomotor vigilance task (PVT), the Karolinska drowsiness test (KDT-EEG alpha & theta power), the alpha attenuation test (AAT-alpha power ratio open/closed eyes) and the KSS. Median reaction time, number of lapses, alpha and theta power density and the alpha attenuation coefficients (AAC) showed highly significant increase with increasing KSS. The same variables were also significantly correlated with KSS, with a mean value for lapses (r=0.56). The KSS was closely related to EEG and behavioral variables, indicating a high validity in measuring sleepiness. KSS ratings may be a useful proxy for EEG or behavioral indicators of sleepiness.
NASA Technical Reports Server (NTRS)
Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)
2004-01-01
A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.
Energetic Particles Investigation (EPI). [during pre-entry of Galileo Probe in Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Fischer, H. M.; Mihalov, J. D.; Lanzerotti, L. J.; Wibberenz, G.; Rinnert, K.; Gliem, F. O.; Bach, J.
1992-01-01
The EPI instrument operates during the pre-entry phase of the Galileo Probe. The main objective is the study of the energetic particle population in the inner Jovian magnetosphere and in the upper atmosphere. This will be achieved through omnidirectional measurements of electrons, protons, alpha-particles and heavy ions (Z greater than 2) and recording intensity profiles with a spatial resolution of about 0.02 Jupiter radii. Sectored data will also be obtained for electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted circular silicon surface-barrier detectors surrounded by cylindrical tungsten shielding. The lower energy threshold of the particle species investigated during the Probe's pre-entry phase is determined by the material thickness of the Probe's rear heat shield which is required for heat protection of the scientific payload during entry into the Jovian atmosphere. The EPI instrument is combined with the Lightning and Radio Emission Detector and both instruments share one interface of the Probe's power, command, and data unit.
Sollazzo, Alice; Brzozowska, Beata; Cheng, Lei; Lundholm, Lovisa; Scherthan, Harry
2018-01-01
Cells react differently to clustered and dispersed DNA double strand breaks (DSB). Little is known about the initial reaction to simultaneous induction of DSBs with different complexities. Here, we used live cell microscopy to analyse the behaviour of 53BP1-GFP (green fluorescence protein) foci formation at DSBs induced in U2OS cells by alpha particles, X-rays or mixed beams over a 75 min period post irradiation. X-ray-induced foci rapidly increased and declined over the observation interval. After an initial increase, mixed beam-induced foci remained at a constant level over the observation interval, similarly as alpha-induced foci. The average areas of radiation-induced foci were similar for mixed beams and X-rays, being significantly smaller than those induced by alpha particles. Pixel intensities were highest for mixed beam-induced foci and showed the lowest level of variability over time as compared to foci induced by alphas and X-rays alone. Finally, mixed beam-exposed foci showed the lowest level of mobility as compared to alpha and X-ray exposure. The results suggest paralysation of chromatin around foci containing clustered DNA damage. PMID:29419809
A DERMAL LESION FROM IMPLANTED PLUTONIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lushbaugh, C.C.; Langham, J.
1962-10-01
Histologic and autoradiographic examination of a piece of palmar human skin said to have been cortaminated by a penetrating piece of plutonium revealed intense alpha -track concertration in a minute focus of subacute and chronic radiodermatitis, Although the penetration of the alpha -particles was minimal, the severe local effects seemed to indicate that a massive dose of alpha - radiation had been delivered to the area in the 4 years the contamination had been presert. (auth)
Switchable radioactive neutron source device
Boyar, Robert E.; DeVolpi, Alexander; Stanford, George S.; Rhodes, Edgar A.
1989-01-01
This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.
Dekempeneer, Yana; Keyaerts, Marleen; Krasniqi, Ahmet; Puttemans, Janik; Muyldermans, Serge; Lahoutte, Tony; D’huyvetter, Matthias; Devoogdt, Nick
2016-01-01
ABSTRACT Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease. PMID:27145158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanz, J.; Betti, R.
A sharp boundary model for the deceleration phase of imploding capsules in inertial confinement fusion, in both direct and indirect drive, has been developed. The model includes heat conduction, local {alpha}-particle energy deposition, and shell compressibility effects. A differential equation for the temporal evolution of the modal amplitude interface is obtained. It is found that the {alpha}-particle energy has a strong influence on the evolution of the low l modes, via the compressibility of the shell. The modes are damped by vorticity convection, fire polishing, and {alpha}-particle energy deposition. The existence of a cutoff l number arises from the highmore » blow of velocity into the hot region (rocket effect) if density gradient scale length effects are taken into account at the interface. The differential equation for the modal amplitude is used as a postprocessor to the results of 1D-SARA code [J. J. Honrubia, J. Quant. Spectrosc. Radiat. Transfer. 49, 491 (1993)] in a typical capsule for indirect-drive ignition designed on the National Ignition Facility. It is found that modes with l>180 are completely stabilized. The results are in agreement with two-dimensional simulations.« less
Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreeraj, T., E-mail: sreerajt13@iigs.iigm.res.in; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: gslakhina@gmail.com
2016-08-15
The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron andmore » acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.« less
Jäncke, Lutz; Brunner, Béatrice; Esslen, Michaela
2008-07-16
Little is currently known about the neural underpinnings of the cognitive control of driving behavior in realistic situations and of the driver's speeding behavior in particular. In this study, participants drove in realistic scenarios presented in a high-end driving simulator. Scalp-recorded EEG oscillations in the alpha-band (8-13 Hz) with a 30-electrode montage were recorded while the participants drove under different conditions: (i) excessively fast (Fast), (ii) in a controlled manner at a safe speed (Correct), and (iii) impatiently in the context of testing traffic conditions (Impatient). Intracerebral sources of alpha-band activation were estimated using low resolution electrical tomography. Given that previous studies have shown a strong negative correlation between the Bold response in the frontal cortex and the alpha-band power, we used alpha-band-related activity as an estimation of frontal activation. Statistical analysis revealed more alpha-band-related activity (i.e. less neuronal activation) in the right lateral prefrontal cortex, including the dorsolateral prefrontal cortex, during fast driving. Those participants who speeded most and exhibited greater risk-taking behavior demonstrated stronger alpha-related activity (i.e. less neuronal activation) in the left anterior lateral prefrontal cortex. These findings are discussed in the context of current theories about the role of the lateral prefrontal cortex in controlling risk-taking behavior, task switching, and multitasking.
SEPARATION AND CHARACTERIZATION OF HUMAN SERUM CHYLOMICRONS
Scanu, Angelo; Page, Irvine H.
1959-01-01
Chylomicrons were separated by low and high speed ultracentrifugation from lipemic sera of human subjects in the absorptive phase. The final chylomicron preparation was free from other serum components and contained a small constant amount of protein, approximately 2 per cent of the chylomicron fraction. Electrophoresis, immunochemical analysis, and absorption experiments identified the protein component as derived from a mixture of beta and alpha1 serum lipoproteins. Large aliquots of an emulsion of serum freed of chylomicrons and coconut oil were incubated at 37°C. for 2 hours and ultracentrifuged as in the preparation of chylomicrons. The fat particles now showed the presence of minute amounts of beta and alpha1 serum lipoproteins in almost the same proportion as found in chylomicrons. "Finger prints" of delipidized samples of chylomicrons and particles from serum-coconut oil emulsion gave similar, although not identical patterns. The data on "clearing factor" activity corroborated the finding that serum alpha1 lipoproteins are contained in chylomicrons and particles from serum-coconut oil emulsion. These two lipide particles, partially delipidized, were both able to activate a "clearing factor" system in vitro, a property exhibited only by intact or partially delipidized alpha1 serum lipoproteins. Clearing activity was satisfactorily determined by using an emulsion of coconut oil mixed in agar as a substrate to give an opaque gel, in which the diffusing enzyme showed its activity by areas of clearing. The results obtained by this technique were in agreement with those based on fall in optical density and non-esterified fatty acid production. Chemical analysis of serum chylomicrons showed a concentration of cholesterol and phospholipides higher than could be accounted for by the attached beta and alpha1 serum lipoproteins. On the basis of these results the assumption is made that in the blood stream small amounts of serum lipoproteins, by a process of adsorption, form a complex with the absorbed triglycerides, cholesterol, and phospholipides, to produce chylomicrons. PMID:13620852
Cornil, Charlotte A; Dejace, Christel; Ball, Gregory F; Balthazart, Jacques
2005-08-30
In rats, dopamine (DA) facilitates male sexual behavior through its combined action on D1- and D2-like receptors, in the medial preoptic area (MPOA) as well as other brain areas. In Japanese quail, systemic injections of dopaminergic drugs suggested a similar pharmacology but central injections have never been performed. Recent electrophysiological experiments demonstrated that DA effects in the MPOA of quail are mediated mainly through the activation of alpha2-noradrenergic receptors. Previous studies of DA action on behavior used specific dopaminergic agonists/antagonists and therefore unintentionally avoided the potential cross-reaction with alpha2-receptors. The present study was thus designed to investigate directly the effects of DA on male sexual behavior and to test whether the interaction of DA with heterologous receptors affects this behavior. Intracerebroventricular (i.c.v.) injection of DA or NE inhibited copulation in a dose-dependent manner. Systemic injections of yohimbine, an alpha2-noradrenergic antagonist, modulated copulation in a bimodal manner depending on the dose injected. Interestingly, a behaviorally ineffective dose of yohimbine markedly reduced the inhibitory effects of DA when injected 15min before. Together, these results show for the first time that i.c.v. injections of DA itself inhibit male sexual behavior in quail and suggest that the interaction of DA with alpha2-receptors has behavioral significance.
Seasonal changes in testicular steroidogenesis in the toad Bufo arenarum H.
Canosa, L F; Ceballos, N R
2002-02-15
The biosynthesis of androgens in Bufo arenarum takes place through the 5-ene pathway that includes 5-androstane-3beta,17beta-diol as intermediate in testosterone biosynthesis. Besides testosterone and 5alpha-dihydrotestosterone, testes are able to synthesize 5alpha-pregnan-3,20-dione and several 3alpha- and 20alpha-reduced derivatives. Steroid biosynthesis changes during the breeding period (spring and early summer), turning from androgen to C21 steroid production. During the reproductive season, the production of progesterone, 5alpha-pregnan-3alpha,20alpha-diol, 3alpha-hydroxy-5alpha-pregnan-20-one, and 5alpha-pregnan-3,20-dione increases significantly. The function of most of these steroids in amphibians remains unknown. However, 5alpha-androstan-3alpha,17beta-diol and 3alpha-hydroxy-5alpha-pregnan-20-one were shown to be neuroactive in mammals, modulating sexual behavior. Thus, 5alpha/3alpha-reduced steroids could be involved in the regulation of the reproductive behavior in B. arenarum, a species with a dissociated reproductive pattern. Percentage contribution of each enzymes to the total metabolism reveals that neither 3beta-hydroxysteroid dehydrogenase/isomerase nor 5alpha-reductase change throughout the reproductive cycle. However, a strong reduction in 17-hydroxylase-C(17-20) lyase activity occurs in the reproductive season, suggesting that this enzyme could represent a key enzyme in the regulation of the seasonal change of steroidogenesis. Also, 3alpha-hydroxysteroid dehydrogenase and 20-hydroxysteroid dehydrogenase activities increase during the reproductive period, implying that steroid metabolism is clearly focused on C21-reduced steroids. (C)2002 Elsevier Science (USA).
Boom, René; Sol, Cees; Beld, Marcel; Weel, Jan; Goudsmit, Jaap; Wertheim-van Dillen, Pauline
1999-01-01
DNA purified from clinical cerebrospinal fluid and urine specimens by a silica-guanidiniumthiocyanate procedure frequently contained an inhibitor(s) of DNA-processing enzymes which may have been introduced by the purification procedure itself. Inhibition could be relieved by the use of a novel lysis buffer containing alpha-casein. When the novel lysis buffer was used, alpha-casein was bound by the silica particles in the first step of the procedure and eluted together with DNA in the last step, after which it exerted its beneficial effects for DNA-processing enzymes. In the present study we have compared the novel lysis buffer with the previously described lysis buffer with respect to double-stranded DNA yield (which was nearly 100%) and the performance of DNA-processing enzymes. PMID:9986822
Alpha-ray spectrometry at high temperature by using a compound semiconductor detector.
Ha, Jang Ho; Kim, Han Soo
2013-11-01
The use of conventional radiation detectors in harsh environments is limited by radiation damage to detector materials and by temperature constraints. We fabricated a wide-band gap semiconductor radiation detector based on silicon carbide. All the detector components were considered for an application in a high temperature environment like a nuclear reactor core. The radiation response, especially to alpha particles, was measured using an (241)Am source at variable operating voltages at room temperature in the air. The temperature on detector was controlled from 30°C to 250°C. The alpha-particle spectra were measured at zero bias operation. Even though the detector is operated at high temperature, the energy resolution as a function of temperature is almost constant within 3.5% deviation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pahlavani, M. R.; Motevalli, S. M.
2008-03-01
The muon catalyzed fusion cycle in mixtures of deuterium and tritium is of particular interest due to the observation of high fusion yields. In the D-T mixture, the most serious limitation to the efficiency of the fusion chain is the probability of muon sticking to the alpha -particle produced in the nuclear reaction. An accurate kinetic treatment has been applied to the muonic helium atoms formed by a muon sticking to the alpha -particles. In this work accurate rates for collisions of alpha mu + ions with hydrogen atoms have been used for calculation of muon stripping probability and the intensities of X-ray transitions by solving a set of coupled differential equations numerically. Our calculated results are in good agreement with experimental data available in literature.
Le Postollec, A; Incerti, S; Dobrijevic, M; Desorgher, L; Santin, G; Moretto, P; Vandenabeele-Trambouze, O; Coussot, G; Dartnell, L; Nieminen, P
2009-04-01
Simulations with a Monte Carlo tool kit have been performed to determine the radiation environment a specific device, called a biochip, would face if it were placed into a rover bound to explore Mars' surface. A biochip is a miniaturized device that can be used to detect organic molecules in situ. Its specific detection part is constituted of proteins whose behavior under cosmic radiation is completely unknown and must be investigated to ensure a good functioning of the device under space conditions. The aim of this study is to define particle species and energy ranges that could be relevant to investigate during experiments on irradiation beam facilities. Several primary particles have been considered for galactic cosmic ray (GCR) and solar energetic particle (SEP) contributions. Ionizing doses accumulated in the biochip and differential fluxes of protons, alphas, neutrons, gammas, and electrons have been established for both the Earth-Mars transit and the journey at Mars' surface. Neutrons and gammas appear as dominant species on martian soil, whereas protons dominate during the interplanetary travel. Depending on solar event occurrence during the mission, an ionizing dose of around a few Grays (1 Gy = 100 rad) is expected.
Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer.
Rieder, R; Gellert, R; Anderson, R C; Brückner, J; Clark, B C; Dreibus, G; Economou, T; Klingelhöfer, G; Lugmair, G W; Ming, D W; Squyres, S W; d'Uston, C; Wänke, H; Yen, A; Zipfel, J
2004-12-03
The Alpha Particle X-ray Spectrometer on the Opportunity rover determined major and minor elements of soils and rocks in Meridiani Planum. Chemical compositions differentiate between basaltic rocks, evaporite-rich rocks, basaltic soils, and hematite-rich soils. Although soils are compositionally similar to those at previous landing sites, differences in iron and some minor element concentrations signify the addition of local components. Rocky outcrops are rich in sulfur and variably enriched in bromine relative to chlorine. The interaction with water in the past is indicated by the chemical features in rocks and soils at this site.
Development of a Si-PM based alpha camera for plutonium detection in nuclear fuel facilities
NASA Astrophysics Data System (ADS)
Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toi, Kohei; Tsubota, Youichi
2014-05-01
Alpha particles are monitored for detecting nuclear fuel material (i.e., plutonium and uranium) at nuclear fuel facilities. Currently, for monitoring the airborne contamination of nuclear fuel, only energy information measured by Si-semiconductor detectors is used to distinguish nuclear fuel material from radon daughters. In some cases, however, such distinguishing is difficult when the radon concentration is high. In addition, a Si-semiconductor detector is generally sensitive to noise. In this study, we developed a new alpha-particle imaging system by combining a Si-PM array, which is insensitive to noise, with a Ce-doped Gd3Al2Ga3O12(GAGG) scintillator, and evaluated our developed system's fundamental performance. The scintillator was 0.1-mm thick, and the light guide was 3.0 mm thick. An 241Am source was used for all the measurements. We evaluated the spatial resolution by taking an image of a resolution chart. A 1.6 lp/mm slit was clearly resolved, and the spatial resolution was estimated to be less than 0.6-mm FWHM. The energy resolution was 13% FWHM. A slight distortion was observed in the image, and the uniformity near its center was within ±24%. We conclude that our developed alpha-particle imaging system is promising for plutonium detection at nuclear fuel facilities.
MEASUREMENTS OF AIRBORNE CONCENTRATIONS OF RADON AND THORON DECAY PRODUCTS.
Chalupnik, S; Skubacz, K; Urban, P; Wysocka, M
2017-11-01
Liquid scintillation counting (LSC) is a measuring technique, broadly applied in environmental monitoring of radionuclides. One of the possible applications of LSC is the measurement of radon and thoron decay products. But this method is suitable only for grab sampling. For long-term measurements a different technique can be applied-monitors of potential alpha energy concentration (PAEC) with thermoluminescent detectors (TLD). In these devices, called Alfa-2000 sampling probe, TL detectors (CaSO4:Dy) are applied for alpha particles counting. Three independent heads are placed over the membrane filter in a dust sampler's microcyclone. Such solution enables simultaneous measurements of PAEC and dust content. Moreover, the information which is stored in TLD chips is the energy of alpha particles, not the number of counted particles. Therefore, the readout of TL detector shows directly potential alpha energy, with no dependence on equilibrium factor, etc. This technique, which had been used only for radon decay products measurements, was modified by author to allow simultaneous measurements of radon and thoron PAEC. The LSC method can be used for calibration of portable radon decay products monitors. The LSC method has the advantage to be an absolute one, the TLD method to measure directly the (dose relevant) deposited energy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers
NASA Astrophysics Data System (ADS)
Rieder, R.; Gellert, R.; Brückner, J.; Klingelhöfer, G.; Dreibus, G.; Yen, A.; Squyres, S. W.
2003-11-01
The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium, depending on their concentrations. The backscattered alpha spectra, measured by a ring of detectors, provide additional data on carbon and oxygen. By means of a proper calibration, the elemental concentrations are derived. Together with data from the two other Athena instruments mounted on the IDD, the samples under investigation can be fully characterized. Key APXS objectives are the determination of the chemistry of crustal rocks and soils and the examination of water-related deposits, sediments, or evaporates. Using the rock abrasion tool attached to the IDD, issues of weathering can be addressed by measuring natural and abraded surfaces of rocks.
Spatial Attention and the Effects of Frontoparietal Alpha Band Stimulation
van Schouwenburg, Martine R.; Zanto, Theodore P.; Gazzaley, Adam
2017-01-01
A frontoparietal network has long been implicated in top-down control of attention. Recent studies have suggested that this network might communicate through coherence in the alpha band. Here we aimed to test the effect of coherent alpha (8–12 Hz) stimulation on the frontoparietal network. To this end, we recorded behavioral performance and electroencephalography (EEG) data while participants were engaged in a spatial attention task. Furthermore, participants received transcranial alternating current stimulation (tACS) over the right frontal and parietal cortex, which oscillated coherently in-phase within the alpha band. Compared to a group of participants that received sham stimulation, we found that coherent frontoparietal alpha band stimulation altered a behavioral spatial attention bias. Neurally, the groups showed hemispheric-specific differences in alpha coherence between the frontal and parietal-occipital cortex. These results provide preliminary evidence that alpha coherence in the frontoparietal network might play a role in top-down control of spatial attention. PMID:28174529
Particle induced nuclear reaction calculations of Boron target nuclei
NASA Astrophysics Data System (ADS)
Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem
2017-09-01
Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.
Five-Body Cluster Structure of the Double-{Lambda} Hypernucleus {sub {Lambda}{Lambda}}{sup 11}Be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiyama, E.; Kamimura, M.; Yamamoto, Y.
2010-05-28
Energy levels of the double {Lambda} hypernucleus, {sub {Lambda}{Lambda}}{sup 11}Be are calculated within the framework of a {alpha}{alpha}n{Lambda}{Lambda} five-body model. Interactions between constituent particles are determined so as to reproduce reasonably the observed low-energy properties of the {alpha}{alpha}, {alpha}{alpha}n nuclei and the existing data for {Lambda}-binding energies of the {alpha}{Lambda}, {alpha}{alpha}{Lambda}, {alpha}n{Lambda}, and {alpha}{alpha}n{Lambda} systems. An effective {Lambda}{Lambda} interaction is constructed so as to reproduce, within the {alpha}{Lambda}{Lambda} three-body model, the B{sub {Lambda}{Lambda}}of {sub {Lambda}{Lambda}}{sup 6}He, which was extracted from the emulsion experiment, the NAGARA event. With no adjustable parameters for the {alpha}{alpha}n{Lambda}{Lambda} system, B{sub {Lambda}{Lambda}}of the ground and boundmore » excited states of {sub {Lambda}{Lambda}}{sup 11}Be are calculated with the Gaussian expansion method. The Hida event, recently observed at KEK-E373 experiment, is interpreted as an observation of the ground state of the {sub {Lambda}{Lambda}}{sup 11}Be.« less
Petrović, Z Lj; Phelps, A V
2009-12-01
Absolute spectral emissivities for Doppler broadened H(alpha) profiles are measured and compared with predictions of energetic hydrogen ion, atom, and molecule behavior in low-current electrical discharges in H2 at very high electric field E to gas density N ratios E/N and low values of Nd , where d is the parallel-plate electrode separation. These observations reflect the energy and angular distributions for the excited atoms and quantitatively test features of multiple-scattering kinetic models in weakly ionized hydrogen in the presence of an electric field that are not tested by the spatial distributions of H(alpha) emission. Absolute spectral intensities agree well with predictions. Asymmetries in Doppler profiles observed parallel to the electric field at 4
Switchable radioactive neutron source device
Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.
1987-11-06
This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.
Intense alpha-particle emitting crystallites in uranium mill wastes
Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R.
1994-01-01
Nuclear emulsion microscopy has demonstrated the presence of small, intense ??-particle emitting crystallites in laboratory-produced tailings derived from the sulfuric acid milling of uranium ores. The ??-particle activity is associated with the isotope pair 210Pb 210Po, and the host mineral appears to be PbSO4 occurring as inclusions in gypsum laths. These particles represent potential inhalation hazards at uranium mill tailings disposal areas. ?? 1994.
Alcohol self-control behaviors of adolescents.
Glassman, Tavis; Werch, Chudley Chad; Jobli, Edessa
2007-03-01
The aims of the present study were to: (1) factor analyze a 13-item adolescent alcohol self-control behavior scale, (2) examine associations between frequency of self-control behavior use and alcohol consumption, and (3) to determine which self-control behaviors best predict alcohol use and consequences. A confidential standardized survey was used to collect data on participant's 30-day frequency, quantity, and heavy use of alcohol; alcohol-related consequences; and alcohol self-control behaviors. A principal component factor analysis produced the following three components: Healthy Alternatives (alpha=.81), Self-regulation (alpha=.72), and Assertive Communication (alpha=.73). MANOVAs indicated strong associations between frequency of use of the three types of self-control behaviors and alcohol consumption (p values< or =.001). Logistic regression analysis revealed that Self-regulation behaviors were the best predictor for all alcohol use measures and consequences (p values< or =.001). Self-control behaviors differ in their ability to predict alcohol use and consequences. Self-regulation strategies emerged as the most consistent predictor of alcohol use patterns and consequences among adolescents, followed by Healthy Alternatives.
Particles from wood smoke and road traffic differently affect the innate immune system of the lung.
Samuelsen, Mari; Cecilie Nygaard, Unni; Løvik, Martinus
2009-09-01
The effect of particles from road traffic and wood smoke on the innate immune response in the lung was studied in a lung challenge model with the intracellular bacterium Listeria monocytogenes. Female Balb/cA mice were instilled intratracheally with wood smoke particles, particles from road traffic collected during winter (studded tires used; St+), and during autumn (no studded tires; St-), or diesel exhaust particles (DEP). Simultaneously with, and 1 or 7 days after particle instillation, 10(5) bacteria were inoculated intratracheally. Bacterial numbers in the lungs and spleen 1 day after Listeria challenge were determined, as an indicator of cellular activation. In separate experiments, bronchoalveolar lavage (BAL) fluid was collected 4 h and 24 h after particle instillation. All particles tested reduced the numbers of bacteria in the lung 24 h after bacterial inoculation. When particles were given simultaneously with Listeria, the reduction was greatest for DEP, followed by St+ and St-, and least for wood smoke particles. Particle effects were no longer apparent after 7 days. Neutrophil numbers in BAL fluid were increased for all particle exposed groups. St+ and St- induced the highest levels of IL-1beta, MIP-2, MCP-1, and TNF-alpha, followed by DEP, which induced no TNF-alpha. In contrast, wood smoke particles only increased lactate dehydrogenase (LDH) activity, indicating a cytotoxic effect of these particles. In conclusion, all particles tested activated the innate immune system as determined with Listeria. However, differences in kinetics of anti-Listeria activity and levels of proinflammatory mediators point to cellular activation by different mechanisms.
Schramm, N L; McDonald, M P; Limbird, L E
2001-07-01
The noradrenergic system is involved in the regulation of many physiological and psychological processes, including the modulation of mood. The alpha(2)-adrenergic receptors (alpha(2)-ARs) modulate norepinephrine release, as well as the release of serotonin and other neurotransmitters, and are therefore potential targets for antidepressant and anxiolytic drug development. The current studies were undertaken to examine the role of the alpha(2A) subtype of alpha(2)-AR in mouse behavioral models of depression and anxiety. We have observed that the genetic knock-out of the alpha(2A)-AR makes mice less active in a modified version of Porsolt's forced swim test and insensitive to the antidepressant effects of the tricyclic drug imipramine in this paradigm. Furthermore, alpha(2A)-AR knock-out mice appear more anxious than wild-type C57 Bl/6 mice in the rearing and light-dark models of anxiety after injection stress. These findings suggest that the alpha(2A)-AR may play a protective role in some forms of depression and anxiety and that the antidepressant effects of imipramine may be mediated by the alpha(2A)-AR.
Simson, P G; Weiss, J M; Hoffman, L J; Ambrose, M J
1986-04-01
This experiment demonstrated that behavioral depression produced by exposure of rats to strong uncontrollable shocks could be reversed by infusion of the alpha-2 adrenergic agonist clonidine into the region of the locus coeruleus (LC). A 20-min infusion, through bilateral cannulae, into the locus coeruleus of clonidine, piperoxane (alpha-2 antagonist) or inactive vehicle (0.85% saline), was given beginning 70 min after the animals were removed from the stress situation. The dose and volume of drug given in the infusion (0.16 microgram/microliter, 0.1 microliter/min) had been previously shown to produce effects specific to the locus coeruleus (Weiss, Simson, Hoffman, Ambrose, Cooper and Webster, 1986; Neuropharmacology 25: 367-384). At the conclusion of the infusion, active behavior of animals was measured in a 15-min swim test. Results showed that stressed animals infused with vehicle exhibited significantly less active behavior in the swim test than did non-stressed animals infused with vehicle, thereby showing the usual behavioral depression seen after exposure to an uncontrollable stress. Stressed animals infused with clonidine showed no difference in active behavior in comparison to non-stressed animals infused with vehicle and showed significantly more activity than did the stressed animals infused with vehicle. Stressed animals infused with piperoxane showed no significant difference in activity in comparison to the stressed animals infused with vehicle and were significantly less active than either the non-stressed animals infused with vehicle or the stressed animals infused with clonidine. Thus, infusion into the locus coeruleus of the alpha-2 agonist clonidine, but not the alpha-2 antagonist piperoxane, eliminated behavioral depression.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesick, Katherine Elizabeth; Coupland, Daniel David S.; Stonehill, Laura Catherine
Cs 2LiLaBr 6:Ce 3+ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. Here, we also measured the electron-equivalent-energy ofmore » the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas.« less
Satoh, K; Noguchi, M; Higuchi, H; Kitamura, K
1984-12-01
Liquid scintillation counting of alpha rays with pulse shape discrimination was applied to the analysis of 226Ra and 239+240Pu in environmental samples and of alpha-emitters in/on a filter paper. The instrument used in this study was either a specially designed detector or a commercial liquid scintillation counter with an automatic sample changer, both of which were connected to the pulse shape discrimination circuit. The background counting rate in alpha energy region of 5-7 MeV was 0.01 or 0.04 cpm/MeV, respectively. The figure of merit indicating the resolving power for alpha- and beta-particles in time spectrum was found to be 5.7 for the commercial liquid scintillation counter.
System for testing optical fibers
Davies, Terence J.; Franks, Larry A.; Nelson, Melvin A.
1981-01-01
A system for nondestructively determining the attenuation coefficient, .alpha.(.lambda.), of low-loss optical fiber wave guides. Cerenkov light pulses are generated at a plurality of locations in the fiber by a beam of charged particles. The transit times of selected spectral components and their intensities are utilized to unfold the .alpha.(.lambda.) values over the measured spectrum.
Liapidevskiĭ, V K
2001-01-01
The variations in the fine structure of distributions of the results of alpha-radioactivity measurements are explained by changes in the velocity of Earth's movement relative to some selected frame of reference.
NASA Astrophysics Data System (ADS)
Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.
2018-04-01
We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury
Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap}more » (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.« less
Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures
NASA Technical Reports Server (NTRS)
Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi
2004-01-01
Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.
Differential Velocity Between Solar Wind Protons and Alpha Particles in Pressure Balance Structures
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Suess, S. T.; Steinberg, J. T.; Sakurai, T.
2003-01-01
Pressure balance structures (PBSs) are a common high plasma beta feature in high latitude, high speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high latitude, high speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high speed, high latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.
Slowing down of alpha particles in ICF DT plasmas
NASA Astrophysics Data System (ADS)
He, Bin; Wang, Zhi-Gang; Wang, Jian-Guo
2018-01-01
With the effects of the projectile recoil and plasma polarization considered, the slowing down of 3.54 MeV alpha particles is studied in inertial confinement fusion DT plasmas within the plasma density range from 1024 to 1026 cm-3 and the temperature range from 100 eV to 200 keV. It includes the rate of the energy change and range of the projectile, and the partition fraction of its energy deposition to the deuteron and triton. The comparison with other models is made and the reason for their difference is explored. It is found that the plasmas will not be heated by the alpha particle in its slowing down the process once the projectile energy becomes close to or less than the temperature of the electron or the deuteron and triton in the plasmas. This leads to less energy deposition to the deuteron and triton than that if the recoil of the projectile is neglected when the temperature is close to or higher than 100 keV. Our model is found to be able to provide relevant, reliable data in the large range of the density and temperature mentioned above, even if the density is around 1026 cm-3 while the deuteron and triton temperature is below 500 eV. Meanwhile, the two important models [Phys. Rev. 126, 1 (1962) and Phys. Rev. E 86, 016406 (2012)] are found not to work in this case. Some unreliable data are found in the last model, which include the range of alpha particles and the electron-ion energy partition fraction when the electron is much hotter than the deuteron and triton in the plasmas.
Nikezic, D; Lau, B M F; Stevanovic, N; Yu, K N
2006-01-01
To calculate the absorbed dose in the human lung due to inhaled radon progeny, ICRP focussed on the layers containing the target cells, i.e., the basal and secretory cells. Such an approach did not consider details of the sensitive cells in the layers. The present work uses the microdosimetric approach and determines the absorbed alpha-particle energy in non-spherical nuclei of target cells (basal and secretory cells). The absorbed energy for alpha particles emitted by radon progeny in the human respiratory tract was calculated in basal- and secretory-cell nuclei, assuming conical and ellipsoidal forms for these cells. Distributions of specific energy for different combinations of alpha-particle sources, energies and targets are calculated and shown. The dose conversion coefficient for radon progeny is reduced for about 2mSv/WLM when conical and ellipsoidal cell nuclei are considered instead of the layers. While changes in the geometry of secretory-cell nuclei do not have significant effects on their absorbed dose, changes from spherical to conical basal-cell nuclei have significantly reduced their absorbed dose from approximately 4 to approximately 3mGy/WLM. This is expected because basal cells are situated close to the end of the range of 6MeV alpha particles. This also underlines the significance of better and more precise information on targets in the T-B tree. A further change in the dose conversion coefficient can be achieved if a different weighting scheme is adopted for the doses for the cells. The results demonstrate the necessity for better information on the target cells for more accurate dosimetry for radon progeny.
Chen, A M; Lucas, J N; Simpson, P J; Griffin, C S; Savage, J R; Brenner, D J; Hlatky, L R; Sachs, R K
1997-11-01
With fluorescence in situ hybridization (FISH), many different categories of chromosome aberrations can be recognized-dicentrics, translocations, rings and various complex aberrations such as insertions or three-way interchanges. Relative frequencies for the various aberration categories indicate mechanisms of radiation-induced damage and reflect radiation quality. Data obtained with FISH support a proximity version of the classic random breakage-and-reunion model for the formation of aberrations. A Monte Carlo computer implementation of the model, called the CAS (chromosome aberration simulator), is generalized here to high linear energy transfer (LET) and compared to published data for human cells irradiated with X rays or 238Pu alpha particles. For each kind of radiation, the CAS has two adjustable parameters: the number of interaction sites per cell nucleus and the number of reactive double-strand breaks (DSBs) per gray. Aberration frequencies for various painted chromosomes, of varying lengths, and for 11 different categories of simple or complex aberrations were simulated and compared to the data. The optimal number of interaction sites was found to be approximately 13 for X irradiation and approximately 25 for alpha-particle irradiation. The relative biological effectiveness (RBE) of alpha particles for the induction of reactive DSBs (which are a minority of all DSBs) was found to be approximately 4. The two-parameter CAS model adequately matches data for many different categories of aberrations. It can use data obtained with FISH for any one painting pattern to predict results for any other kind of painting pattern or whole-genome staining, and to estimate a suggested overall numerical damage indicator for chromosome aberration studies, the total misrejoining number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittame, Amina; Université Grenoble Alpes, 38042 Grenoble; Effantin, Grégory
2015-03-27
The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressedmore » in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii.« less
Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei
NASA Astrophysics Data System (ADS)
Saleh Ahmed, Saad M.
2017-06-01
The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 < Z < 114, 111 < N < 174. This probability was calculated using the energy-dependent formula derived from the formulation of clusterisation states representation (CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.
Novembre, Giacomo; Sammler, Daniela; Keller, Peter E
2016-08-01
Shared knowledge and interpersonal coordination are prerequisites for most forms of social behavior. Influential approaches to joint action have conceptualized these capacities in relation to the separate constructs of co-representation (knowledge) and self-other entrainment (coordination). Here we investigated how brain mechanisms involved in co-representation and entrainment interact to support joint action. To do so, we used a musical joint action paradigm to show that the neural mechanisms underlying co-representation and self-other entrainment are linked via a process - indexed by EEG alpha oscillations - regulating the balance between self-other integration and segregation in real time. Pairs of pianists performed short musical items while action familiarity and interpersonal (behavioral) synchronization accuracy were manipulated in a factorial design. Action familiarity referred to whether or not pianists had rehearsed the musical material performed by the other beforehand. Interpersonal synchronization was manipulated via congruent or incongruent tempo change instructions that biased performance timing towards the impending, new tempo. It was observed that, when pianists were familiar with each other's parts, millisecond variations in interpersonal synchronized behavior were associated with a modulation of alpha power over right centro-parietal scalp regions. Specifically, high behavioral entrainment was associated with self-other integration, as indexed by alpha suppression. Conversely, low behavioral entrainment encouraged reliance on internal knowledge and thus led to self-other segregation, indexed by alpha enhancement. These findings suggest that alpha oscillations index the processing of information about self and other depending on the compatibility of internal knowledge and external (environmental) events at finely resolved timescales. Copyright © 2016 Elsevier Ltd. All rights reserved.
The BetaCage: Ultrasensitive Screener for Radioactive Backgrounds
NASA Astrophysics Data System (ADS)
Thompson, Michael; BetaCage Collaboration
2017-09-01
Rare event searches, such as dark matter detection and neutrinoless double beta decay, require screening of materials for backgrounds such as beta emission and alpha decaying isotopes. The BetaCage is a proposed ultra-sensitive time-projection chamber to screen for alpha-emitting and low energy beta-emitting (10-200 keV) contaminants. The expected sensitivity is 0.1 beta particles (perkeV -m2 - day) and 0.1 alpha particles (perm2 - day) , where the former will be limited by Compton scattering of external photons in the screening samples and the latter is expected to be signal-limited. The prototype BetaCage under commissioning at South Dakota School of Mines & Technology is filled with P10 gas (10% methane, 90% argon) in place of neon and is 40×40×20 cm in size. Details on design, construction and characterization will be presented.
Radiation-induced chromosomal instability in human mammary epithelial cells
NASA Technical Reports Server (NTRS)
Durante, M.; Grossi, G. F.; Yang, T. C.
1996-01-01
Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.
Radiation-induced chromosomal instability in human mammary epithelial cells
NASA Astrophysics Data System (ADS)
Durante, M.; Grossi, G. F.; Yang, T. C.
Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.
Final Report for grant entitled "Production of Astatine-211 for U.S. Investigators"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbur, Daniel Scott
2012-12-12
Alpha-particle emitting radionuclides hold great promise in the therapy of cancer, but few alpha-emitters are available to investigators to evaluate. Of the alpha-emitters that have properties amenable for use in humans, 211At is of particular interest as it does not have alpha-emitting daughter radionuclides. Thus, there is a high interest in having a source of 211At for sale to investigators in the US. Production of 211At is accomplished on a cyclotron using an alpha-particle beam irradiation of bismuth metal. Unfortunately, there are few cyclotrons available that can produce an alpha particle beam for that production. The University of Washington hasmore » a cyclotron, one of three in the U.S., that is currently producing 211At. In the proposed studies, the things necessary for production and shipment of 211At to other investigators will be put into place at UW. Of major importance is the efficient production and isolation of 211At in a form that can be readily used by other investigators. In the studies, production of 211At on the UW cyclotron will be optimized by determining the best beam energy and the highest beam current to maximize 211At production. As it would be very difficult for most investigators to isolate the 211At from the irradiated target, the 211At-isolation process will be optimized and automated to more safely and efficiently obtain the 211At for shipment. Additional tasks to make the 211At available for distribution include obtaining appropriate shipping vials and containers, putting into place the requisite standard operating procedures for Radiation Safety compliance at the levels of 211At activity to be produced / shipped, and working with the Department of Energy, Isotope Development and Production for Research and Applications Program, to take orders, make shipments and be reimbursed for costs of production and shipment.« less
Measurement system for alpha emitters in solution
NASA Astrophysics Data System (ADS)
Robert, A.; Sella, C.; Heindl, R.
1984-08-01
The measurement of alpha emitter concentrations in solution corresponds to a need felt in particular by laboratories working on actinides and in the spent fuel reprocessing industry. The instrument present here allows this measurement continuously by the use of a new scintillator that is insensitive to corrosive liquids. The extreme thinness of the scintillator guarantees good detection selectivity of alpha particles in the presence of beta and gamma emissions. Examples of uranium-233, plutonium-239 and americium-241 concentration measurements are presented.
A continuous sampler with background suppression for monitoring alpha-emitting aerosol particles.
McFarland, A R; Rodgers, J C; Ortiz, C A; Moore, M E
1992-05-01
A continuous air monitor has been developed that includes provisions for improving the detection of alpha-emitting aerosol particles in the presence of radon/thoron progeny that are unattached to ambient aerosol particles. Wind tunnel tests show that 80% of 10-microns aerodynamic equivalent diameter particles penetrate the flow system from the ambient air to the collection filter when the flow rate is 57 L min-1 (2 cfm) and the wind speed is 1 m s-1. Uniformity of aerosol collection on the filter, as characterized by the coefficient of variation of the areal density deposits, is less than 15% for 10-microns aerodynamic-equivalent-diameter aerosol particles. Tests with unattached radon daughters in a flow-through chamber showed that approximately 99% of the 218Po was removed by an inlet screen that is designed to collect radon daughters that are in the size range of molecular clusters. The inlet screen offers the opportunity to improve the signal-to-noise ratio of energy spectra in the regions of interest (subranges of the energy spectrum) of transuranic elements and thereby enhance the performance of background compensation algorithms.
Nuclear Threshold States: Yesterday, Today, Tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogloblin, A. A.; Danilov, A. N.; Demyanova, A. S.
2010-04-30
50 years ago exotic nuclear states with abnormally large radii located close to the thresholds of emission of nucleons or clusters were predicted. Recently a hypothesis of possible existence of alpha-particle Bose condensation was proposed. The 0{sup +}{sub 2}(7.65 MeV) state of {sup 12}C(so-called Hoyle state) is considered to be the prototype of such condensed state and have a dilute structure. We propose two methods for searching the alpha-condensate signatures in the Hoyle state and some other ones near the alpha-thresholds by using inelastic diffractive and rainbow scattering. Inelastic scattering of {sup 2}H, {sup 3}He, {sup 4}He, {sup 6}Li, andmore » {sup 12}C on {sup 12}C was studied and the enhancement of the {sup 12}C radius in the Hoyle state relatively the ground state radius by a factor of 1.2 was demonstrated. Another signature of the condensate structure, 70% probability of all three alpha-particles to be in the s-state, was observed for the Hoyle state by studying the {sup 8}Be transfer reaction. The analogs of the Hoyle state with enhanced radii were identified in {sup 11}B and {sup 13}C. The proposed methods of measuring the nuclear radii allowed observation of neutron halos in the excited states of {sup 9}Be and {sup 13}C. The conception of abnormal dimensions of the threshold states finds its confirmation in many nuclear phenomena both well-known and new ones. One of the perspective domains of its manifestation are the nuclei heavier than {sup 100}Sn with N = Z, which are able to emit several alpha particles.« less
Multidetector system for nanosecond tagged neutron technology based on hardware selection of events
NASA Astrophysics Data System (ADS)
Karetnikov, M. D.; Korotkov, S. A.; Khasaev, T. O.
2016-09-01
At the T( d, n)He4 reaction a neutron is accompanied by an associated alpha-particle emitted in the opposite direction. A time and a direction of the neutron escape can be determined by measuring a time and coordinates of the alpha particle at the position-sensitive alpha-detector. The nanosecond tagged neutron technology (NTNT) based on this principle has great potentialities for various applications, e.g., for remote detection of explosives. A spectrum of gamma-rays emitted at the interaction of tagged neutrons with nuclei of chemical elements allows identify a chemical composition of an irradiated object. For practical realization of NTNT, a time resolution of recording the alpha-gamma coincidences should be close to 1 ns. The total intensity of signals can exceed 1 × 106 1/s from all gamma-detectors and 7 × 106 1/s from the alpha-detector. The processing of such stream of data without losses and distortion of information is one of challenging problems of NTNT. Several models of analog DAQ system based on hardware selection of events were devised and their characteristics are examined. The comparison with the digital DAQ systems demonstrated that the analog DAQ provides better timing parameters, lower power consumption, and higher maximum rate of useful events.
Quark matter or new particles?
NASA Technical Reports Server (NTRS)
Michel, F. Curtis
1988-01-01
It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopes, E.S.N.; Cremasco, A.; Afonso, C.R.M.
Aging heat treatment can be a good way to optimize mechanical properties, changing the microstructure, and hence, the mechanical behavior of Ti alloys. The effects of aging heat treatments on {beta}-type Ti-30Nb alloy were investigated to evaluate the kinetics of {alpha}'' {yields} {alpha} + {beta} transformation. The results obtained from differential scanning calorimetry and high-temperature X-ray diffraction experiments indicated the complete decomposition of orthorhombic {alpha}'' phase at close to 300 deg. C, followed by {alpha} phase precipitation at 470 deg. C. The aging heat treatments also enabled us to observe a transformation sequence {alpha}'' {yields} {beta} + {omega} {yields} {beta}more » + {omega} + {alpha}, indicating martensite decomposition and {omega} phase precipitation at 260 deg. C after 2 h, followed by {alpha} phase nucleation after heating at 400 deg. C for 1 h. The elastic modulus and Vickers hardness of Ti-30Nb alloy were found to be very sensitive to the microstructural changes caused by heat treatment. - Highlights: {yields} DSC and XRD shed light on the {alpha}'' decomposition and nucleation of {omega} and {alpha} phases. {yields} Aging allows for {alpha}''{yields}{beta} transformation and nucleation of {omega} dispersed in the {beta} matrix. {yields} During aging, {alpha}'' interplanar distances are reduced to enable {beta} phase nucleation. {yields} Mechanical behavior is dependent on the microstructure and the phases in the alloy. {yields} It is not possible to obtain high strength and low elastic modulus by applying aging.« less
Benham, Rebecca S; Hewage, Nishani B; Suckow, Raymond F; Engin, Elif; Rudolph, Uwe
2017-08-14
Deficits in neuronal inhibition via gamma-aminobutyric acid (GABA) type A receptors (GABAA-Rs) are implicated in the pathophysiology of major depressive disorder and the therapeutic effects of current antidepressant treatments, however, the relevant GABAA-R subtype as defined by its alpha subunit is still unknown. We previously reported anxiety- and depressive-like behavior in alpha2+/- and alpha2-/- mice, respectively (Vollenweider, 2011). We sought to determine whether this phenotype could be reversed by chronic antidepressant treatment. Adult male mice received 4 or 8mg/kg fluoxetine or 53mg/kg desipramine in their drinking water for four weeks before undergoing behavioral testing. In the novelty suppressed feeding test, desipramine had anxiolytic-like effects reducing the latencies to bite and to eat the pellet in both wild-type and alpha2+/- mice. Surprisingly, 4mg/kg fluoxetine had anxiogenic-like effects in alpha2+/- mice increasing latency to bite and to eat while 8mg/kg fluoxetine increased the latency to eat in both wild-type and alpha2+/- mice. In the forced swim and tail suspension tests, chronic desipramine treatment increased latency to immobility in wild-type and alpha2-/- mice. In contrast, chronic fluoxetine treatment increased immobility in alpha2-/- mice in both tasks while generally having no effect in wild-type mice. These findings suggest that in preclinical paradigms of anxiety and behavioral despair the antidepressant-like effects of desipramine are independent of alpha2-containing GABAA-Rs, while a reduction in alpha2 expression leads to an increased sensitivity to anxiogenic- and prodepressant-like effects with chronic fluoxetine treatment, pointing to a potential role of alpha2-containing GABAA-Rs in the response to serotonin-selective antidepressants. Copyright © 2017 Elsevier B.V. All rights reserved.
Observations of solar energetic particles at a synchronous orbit
NASA Technical Reports Server (NTRS)
Takenaka, T.; Ohi, Y.; Yanagimachi, T.; Ito, K.; Kohno, T.; Sakurai, K.
1985-01-01
The Space Environment Monitors (SEM) on board the Japanese geostationary meteorological satellites (GMS-1 and GMS-2) observed energetic protons, alpha particles and electrons continuously for February 1978 to September 1984. The satellites were at 6.6 Earth radii above 140 deg E equator.
Radiation-induced bystander effect and adaptive response in mammalian cells
NASA Technical Reports Server (NTRS)
Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.
2004-01-01
Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
R-matrix description of particle energy spectra produced by low-energy 3H + 3H reactions
Brune, C. R.; Caggiano, J. A.; Sayre, D. B.; ...
2015-07-20
An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the 3H + 3H→ 2n + α reaction. The calculation includes the n alpha and n n interactions in the final state, angular momentum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from 3H + 3H as well as particle spectra from 3He + 3He. The R-matrix approach presented heremore » is very general, and can be adapted to a wide variety of problems with three-body final states.« less
Radiation Environment Model of Protons and Heavier Ions at Jupiter
NASA Technical Reports Server (NTRS)
Sierra, Luz Maria Martinez; Garrett, Henry B.; Jun, Insoo
2015-01-01
We performed an in depth study of the methods used to review the geometric factors (GF) and sensitivity to charge particles of the Energetic Particle Detector instrument on board the Galileo Spacecraft. Monte Carlo simulations were performed to understand the interactions of electrons and ions (i. e., protons and alphas) with the sensitive regions of the instrument. The DC0 and B0 channels were studied with the intention of using them to update the jovian proton radiation model. The results proved that the B0 is a clean proton chanel without any concerns for contamination by heavier ions and electrons. In contrast, DC0 was found to be contaminated by electrons. Furthermore, we also found out that the B2 channel is a clean alpha particle channel (in other words, no contamination by electrons and/or protons).
Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott
2015-11-01
Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.
NASA Astrophysics Data System (ADS)
Hoppock, I. W.; Chandran, B. D. G.
2017-12-01
The dissipation of turbulence is a prime candidate to explain the heating of collisionless plasmas like the solar wind. We consider the heating of protons and alpha particles using test particle simulations with a broad spectrum of randomly phased kinetic Alfvén waves (KAWs). Previous research extensively simulated and analytically considered stochastic heating at low plasma beta for conditions similar to coronal holes and the near-sun solar wind. We verify the analytical models of proton and alpha particle heating rates, and extend these simulations to plasmas with beta of order unity like in the solar wind at 1 au. Furthermore, we consider cases with very large beta of order 100, relevant to other astrophysical plasmas. We explore the parameter dependency of the critical KAW amplitude that breaks the gyro-center approximation and leads to stochastic gyro-orbits of the particles. Our results suggest that stochastic heating by KAW turbulence is an efficient heating mechanisms for moderate to high beta plasmas.
Modeling proton and alpha elastic scattering in liquid water in Geant4-DNA
NASA Astrophysics Data System (ADS)
Tran, H. N.; El Bitar, Z.; Champion, C.; Karamitros, M.; Bernal, M. A.; Francis, Z.; Ivantchenko, V.; Lee, S. B.; Shin, J. I.; Incerti, S.
2015-01-01
Elastic scattering of protons and alpha (α) particles by water molecules cannot be neglected at low incident energies. However, this physical process is currently not available in the "Geant4-DNA" extension of the Geant4 Monte Carlo simulation toolkit. In this work, we report on theoretical differential and integral cross sections of the elastic scattering process for 100 eV-1 MeV incident protons and for 100 eV-10 MeV incident α particles in liquid water. The calculations are performed within the classical framework described by Everhart et al., Ziegler et al. and by the ICRU 49 Report. Then, we propose an implementation of the corresponding classes into the Geant4-DNA toolkit for modeling the elastic scattering of protons and α particles. Stopping powers as well as ranges are also reported. Then, it clearly appears that the account of the elastic scattering process in the slowing-down of the charged particle improves the agreement with the existing data in particular with the ICRU recommendations.
Systems and methods for neutron detection using scintillator nano-materials
Letant, Sonia Edith; Wang, Tzu-Fang
2016-03-08
In one embodiment, a neutron detector includes a three dimensional matrix, having nanocomposite materials and a substantially transparent film material for suspending the nanocomposite materials, a detector coupled to the three dimensional matrix adapted for detecting a change in the nanocomposite materials, and an analyzer coupled to the detector adapted for analyzing the change detected by the detector. In another embodiment, a method for detecting neutrons includes receiving radiation from a source, converting neutrons in the radiation into alpha particles using converter material, converting the alpha particles into photons using quantum dot emitters, detecting the photons, and analyzing the photons to determine neutrons in the radiation.
An improved electrostatic integrating radon monitor with the CR-39 as alpha-particle detector.
Fan, D; Zhuo, W; Chen, B; Zhao, C; Yi, Y; Zhang, Y
2015-11-01
In this study, based on the electrostatic integrating radon monitor (EIRM) developed by Iida et al., a new type of EIRM with the allyl glycol carbonate (CR-39) as alpha-particle detector was developed for outdoor radon measurements. Besides using the CR-39 to replace the cellulose nitrate film as alpha-particle detector, the electrode and the setting place of the CR-39 were also optimally designed based on the simulation results of the electric field and the detection efficiency. The calibration factor of the new EIRM was estimated to be 0.136±0.002 tracks cm(-2) (Bq m(-3) h)(-1), with the lower detection limit of 0.6 Bq m(-3) for a 2-month exposure. Furthermore, both the battery and the dry agent were also replaced to protect the environment. The results of intercomparison and field experiments showed that the performances of the new EIRM were much better than the original one. It suggests that the new type of ERIM is more suitable for large-scale and long-term outdoor radon surveys. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C
2015-08-01
Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.
Fusion programs in applied plasma physics
NASA Astrophysics Data System (ADS)
1992-07-01
The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (1) Applied Plasma Physics Theory Program, (2) Alpha Particle Diagnostic, (3) Edge and Current Density Diagnostic, and (4) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (RF). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described.
Defect annealing of alpha-particle irradiated n-GaAs
NASA Astrophysics Data System (ADS)
Goodman, S. A.; Auret, F. D.; Myburg, G.
1994-09-01
The annealing behaviour of irradiation induced defects in n-type GaAs irradiated at 300 K with 5.4 MeV alpha-particles from an americium-241 (Am-241) radio nuclide have been investigated. The annealing kinetics are presented for the alpha-particle induced defects Eα1 Eα5 detected in Organo-Metallic Vapor Phase Epitaxially (OMVPE) grown n-GaAs doped with silicon to 1.2×1016 cm-3, these kinetics are compared to those obtained for similar defects (E1 E5) detected after electron irradiation. While defects Pα1 and Pα2 were detected after removal of the electron defects Eα4 and Eα5, respectively, a new defect labelled Pα0, located 0.152 eV below the conduction band, was introduced by annealing. The thermal behaviour and trap characteristics of these three defects (Pα0 Pα2) are presented. In an attempt to further characterise defects Pα0 and Pα1 a preiliminary study investigating the emission rate field dependence of these defects was conducted, it was observed that defect Pα0 exhibited a fairly strong field dependence while Pα1 exhibited a much weaker dependence.
Protons and alpha particles in the expanding solar wind: Hybrid simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Trávníček, Pavel M.
2013-09-01
We present results of a two‒dimensional hybrid expanding box simulation of a plasma system with three ion populations, beam and core protons, and alpha particles (and fluid electrons), drifting with respect to each other. The expansion with a strictly radial magnetic field leads to a decrease of the ion perpendicular to parallel temperature ratios as well as to an increase of the ratio between the ion relative velocities and the local Alfvén velocity creating a free energy for many different instabilities. The system is most of the time marginally stable with respect to kinetic instabilities mainly due to the ion relative velocities; these instabilities determine the system evolution counteracting some effects of the expansion. Nonlinear evolution of these instabilities leads to large modifications of the ion velocity distribution functions. The beam protons and alpha particles are decelerated with respect to the core protons and all the populations are cooled in the parallel direction and heated in the perpendicular one. On the macroscopic level, the kinetic instabilities cause large departures of the system evolution from the double adiabatic prediction and lead to perpendicular heating and parallel cooling rates which are comparable to the heating rates estimated from the Helios observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baccou, C., E-mail: claire.baccou@polytechnique.edu; Yahia, V.; Labaune, C.
Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detectormore » for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.« less
Kurudirek, Murat; Aksakal, Oğuz; Akkuş, Tuba
2015-11-01
A direct method has been used for the first time, to compute effective atomic numbers (Z eff) of water, air, human tissues, and some organic and inorganic compounds, for total electron proton and alpha particle interaction in the energy region 10 keV-1 GeV. The obtained values for Z eff were then compared to those obtained using an interpolation procedure. In general, good agreement has been observed for electrons, and the difference (%) in Z eff between the results of the direct and the interpolation method was found to be <10 % for all materials, in the energy range from 10 keV to 1 MeV. More specifically, results of the two methods were found to agree well (Dif. <10 %) for air, calcium fluoride, kapton polyimide film, paraffin wax and plastic scintillator in the entire energy region with respect to the total electron interaction. On the other hand, values for Z eff calculated using both methods for protons and alpha particles generally agree with each other in the high-energy region above 10 MeV.
de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L
2008-10-01
A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.
Description of alpha-nucleus interaction cross sections for cosmic ray shielding studies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1993-01-01
Nuclear interactions of high-energy alpha particles with target nuclei important for cosmic ray studies are discussed. Models for elastic, quasi-elastic, and breakup reactions are presented and compared with experimental data. Energy-dependent interaction cross sections and secondary spectra are presented based on theoretical models and the limited experimental data base.
Associated-particle sealed-tube neutron probe for nonintrusive inspection
NASA Astrophysics Data System (ADS)
Rhodes, E.; Dickerman, C. E.
1997-02-01
The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential for the associated-particle method to move out of the laboratory into field applications. This paper is a review of ANL investigations of this technology. Alpha particles associated with 14-MeV neutrons generated from the D-T reaction travel in the opposite direction and are detected inside the sealed tube. Gamma-ray spectra of resulting neutron reactions in the inspected volume encompassed by the alpha-detector solid angle identify many nuclides. Flight-times determined from detection times of the gamma rays and alpha particles separate the prompt and delayed gamma-rays and can yield a separate coarse tomographic image of each identified nuclide, from a single orientation without collimation. A continuous ion beam allows data acquisition by relatively low-bandwidth electronics. When a compact sealed-tube neutron generator is used, a relatively small and easily maintainable inspection system can be developed, that is rugged enough to be transportable. Proof-of-concept laboratory experiments have been performed for simulated explosives, drugs, special nuclear materials, and chemical warfare agents. Efficient collection of maximum information from each detected neutron with low background rates can allow a much lower source intensity than pulsed accelerator methods and yield a preference for an APSTNG system, when it can provide adequate usable source intensity. Based on lessons learned with the present system, an advanced APSTNG system is being designed and built that will be transportable and yield substantial increases in neutron output and target lifetime.
Alpha-particle-induced cancer in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, C.W.
Updated information is given on alpha-particle-induced cancer in persons internally exposed to 222Rn progeny, Thorotrast, long-lived 226Ra and 228Ra, and short-lived 224Ra. The lung cancer risk to persons breathing 222Rn progeny in the indoor air of offices, schools, and homes is of increasing concern. About half of the recent deaths among the German Thorotrast patients have been from liver cancer. Animal studies indicate that the liver cancer risk from Thorotrast is mainly from its radioactivity and that the risk coefficient for the Thorotrast patients can be used provisionally for other alpha emitters in the human liver. Six skeletal cancers havemore » occurred in persons with average skeletal doses between 0.85 and 11.8 Gy from 226Ra and 228Ra. In the low-dose German 224Ra patients, two skeletal sarcomas have occurred at about 0.7 Gy compared to about six cases predicted by results from 224Ra patients at higher doses. The minimal appearance time for radiation-induced bone sarcomas in humans is about 4 y. Following brief irradiation, the vast majority of induced bone sarcomas are expressed by about 30 y. Recent evidence against the practical threshold hypothesis is given. With the downward revision of neutron doses to the atomic-bomb survivors, the follow-up of persons exposed to alpha particles may be the best opportunity to evaluate directly the effects of high LET radiation on humans. 90 references.« less
Alpha Training: A Technique for Changing Behavior in Children and Adults.
ERIC Educational Resources Information Center
Matthews, Doris B.
Several counseling methods have attempted to help individuals change their behavior patterns. Techniques that teach control of the internal functions of the mind, body, and emotions are designed to allow the individual to reach his/her potential. Alpha training is one such method that is concerned with a brain wave pattern yielding an alert,…
NASA Technical Reports Server (NTRS)
Hurley, Dana M.; Cook, Jason C.; Benna, Mehdi; Halekas, Jasper S.; Feldman, Paul D.; Retherford, Kurt D.; Hodges, R. Richard; Grava, Cesare; Mahaffy, Paul; Gladstone, G. Randall;
2015-01-01
Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 +/- 5% of the helium to the lunar exosphere. The remaining 36 +/- 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 +/- 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate.
Prototype development of ion exchanging alpha detectors
NASA Astrophysics Data System (ADS)
Krupp, Dominik; Scherer, Ulrich W.
2018-07-01
In contemporary alpha particle spectrometry, the sample preparation is separated from the detection of the radionuclides. The sample preparation itself requires much time and the equipment of a radiochemistry lab. If sample preparation and detection could be combined in one step, a huge time-saving potential becomes available. One way to realize such a combination is described here. The concept was explored by simulations with the well-established computer programs SRIM and AASI. In a proof of concept, the active surface of commercially available alpha detectors was modified with sulfonic acid groups as a well-known type of cation exchanger. It was shown, that in contrast to a pristine detector, a chemically modified detector is able to extract uranium-238 and -234 selectively as uranyl cations onto the detector surface from a diluted [238/234U]uranyl acetate solution. It was possible to measure directly in the sample solution for one week or to prepare the modified detector surfaces within 30 s for measurements in conventional alpha chambers. In either case, the full width at half maximum of the measured spectra was around 100 keV, allowing a clear nuclide identification. After regenerating the cation exchanger surfaces by rinsing with hydrochloric acid the typical uranium spectra had disappeared, proving chemical bonding of the uranium. Due to the large variety of potential functional groups this new way of alpha spectrometry could be beneficial for all fields of alpha particle spectrometry, from environmental analysis, over security measurements to studies of the heaviest elements.
NASA Astrophysics Data System (ADS)
Hurley, Dana M.; Cook, Jason C.; Benna, Mehdi; Halekas, Jasper S.; Feldman, Paul D.; Retherford, Kurt D.; Hodges, R. Richard; Grava, Cesare; Mahaffy, Paul; Gladstone, G. Randall; Greathouse, Thomas; Kaufmann, David E.; Elphic, Richard C.; Stern, S. Alan
2016-07-01
Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 ± 5% of the helium to the lunar exosphere. The remaining 36 ± 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 ± 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate.
Alpha Background Discrimination in the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Gruszko, Julieta; Majorana Collaboration
2017-09-01
The
Preliminary results from the lunar prospector alpha particle spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawson, S. L.
2001-01-01
The Lunar Prospector Alpha Particle Spectrometer (LP APS) builds on Apollo heritage and maps the distribution of outgassing sites on the Moon. The APS searches for lunar surface gas release events and maps their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life) and solid polonium-210 (5.3 MeV, 138 day half-life, but remains on the surface with a 21 year half-life as lead-210), which are radioactive daughters from the decay of uranium-238. Radon is in such small quantities that it is not released directly from the lunar interior, rather it is entrainedmore » in a stream of gases and serves as a tracer for such gases. Once released, the radon spreads out by 'bouncing' across the surface on ballistic trajectories in a random-walk process. The 3.8 day half-life of radon-222 allows the gas to spread out by several 100 km before it decays and allows the APS to detect gas release events up to a few days after they occur. The long residence time (10s of years) of the lead-210 precursor to the polonium-210 allows the mapping of gas vents which have been active over the last approximately 50 years. Because radon and polonium are daughter products of the decay of uranium, the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Using radioactive radon and polonium as tracers, the Apollo 15 and 16 Command Module orbital alpha particle experiments obtained evidence for the release of gases at several sites beneath the orbit tracks, especially over the Aristarchus Plateau and Mare Fecunditatis [1]. Aristarchus crater had previously been identified by ground-based observers as the site of transient optical events [2]. The Apollo 17 surface mass spectrometer showed that argon-40 is released from the lunar interior every few months, apparently in concert with some of the shallow moonquakes that are believed to be of tectonic origin [3]. The latter tectonic events could be associated with very young scarps identified in the lunar highlands [4] and are believed to indicate continued global contraction. Such quakes could open fissures leading to the release of gases that are trapped below the surface. The detection of radon-222 outgassing events at the margins of Fecunditatis basin was surprising because the observed surface distribution of uranium and thorium do not extend sufficiently eastward to cover Fecunditatis. If the Apollo detections prove sound, then those alpha particle emissions indicate substantial subsurface concentrations of uranium-238 within Fecunditatis. A primary goal of the APS was to map gas-release events, thus allowing both an appraisal of the current level of tectonic activity on the Moon and providing a probe of subsurface uranium concentrations.« less
Borkowski, C J
1954-01-19
This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.
Choleris, E; Ogawa, S; Kavaliers, M; Gustafsson, J-A; Korach, K S; Muglia, L J; Pfaff, D W
2006-10-01
Social recognition, processing, and retaining information about conspecific individuals is crucial for the development of normal social relationships. The neuropeptide oxytocin (OT) is necessary for social recognition in male and female mice, with its effects being modulated by estrogens in females. In previous studies, mice whose genes for the estrogen receptor-alpha (alpha-ERKO) and estrogen receptor-beta (beta-ERKO) as well as OTKO were knocked out failed to habituate to a repeatedly presented conspecific and to dishabituate when the familiar mouse is replaced by a novel animal (Choleris et al. 2003, Proc Natl Acad Sci USA 100, 6192-6197). However, a binary social discrimination assay, where animals are given a simultaneous choice between a familiar and a previously unknown individual, offers a more direct test of social recognition. Here, we used alpha-ERKO, beta-ERKO, and OTKO female mice in the binary social discrimination paradigm. Differently from their wild-type controls, when given a choice, the KO mice showed either reduced (beta-ERKO) or completely impaired (OTKO and alpha-ERKO) social discrimination. Detailed behavioral analyses indicate that all of the KO mice have reduced anxiety-related stretched approaches to the social stimulus with no overall impairment in horizontal and vertical activity, non-social investigation, and various other behaviors such as, self-grooming, digging, and inactivity. Therefore, the OT, ER-alpha, and ER-beta genes are necessary, to different degrees, for social discrimination and, thus, for the modulation of social behavior (e.g. aggression, affiliation).
Caldwell, Rodney R.; Nimick, David A.; DeVaney, Rainie M.
2014-01-01
The U.S. Geological Survey, in cooperation with Jefferson County and the Jefferson Valley Conservation District, sampled groundwater in southwestern Montana to evaluate the occurrence and concentration of naturally-occurring radioactive constituents and to identify geologic settings and environmental conditions in which elevated concentrations occur. A total of 168 samples were collected from 128 wells within Broadwater, Deer Lodge, Jefferson, Lewis and Clark, Madison, Powell, and Silver Bow Counties from 2007 through 2010. Most wells were used for domestic purposes and were primary sources of drinking water for individual households. Water-quality samples were collected from wells completed within six generalized geologic units, and analyzed for constituents including uranium, radon, gross alpha-particle activity, and gross beta-particle activity. Thirty-eight wells with elevated concentrations or activities were sampled a second time to examine variability in water quality throughout time. These water-quality samples were analyzed for an expanded list of radioactive constituents including the following: three isotopes of uranium (uranium-234, uranium-235, and uranium-238), three isotopes of radium (radium-224, radium-226, and radium-228), and polonium-210. Existing U.S. Geological Survey and Montana Bureau of Mines and Geology uranium and radon water-quality data collected as part of other investigations through 2011 from wells within the study area were compiled as part of this investigation. Water-quality data from this study were compared to data collected nationwide by the U.S. Geological Survey through 2011. Radionuclide samples for this study typically were analyzed within a few days after collection, and therefore data for this study may closely represent the concentrations and activities of water being consumed locally from domestic wells. Radioactive constituents were detected in water from every well sampled during this study regardless of location or geologic unit. Nearly 41 percent of sampled wells had at least one radioactive constituent concentration that exceeded U.S. Environmental Protection Agency drinking-water standards or screening levels. Uranium concentrations were higher than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 30 micrograms per liter in samples from 14 percent of the wells. Radon concentrations exceeded a proposed MCL of 4,000 picocuries per liter in 27 percent of the wells. Combined radium (radium-226 and radium-228) exceeded the MCL of 5 picocuries per liter in samples from 10 of 47 wells. About 40 percent (42 of 104 wells) of the wells had gross alpha-particle activities (72-hour count) at or greater than a screening level of 15 pCi/L. Gross beta-particle activity exceeded the U.S. Environmental Protection Agency 50 picocuries per liter screening level in samples from 5 of 104 wells. Maximum radium-224 and polonium-210 activities in study wells were 16.1 and 3.08 picocuries per liter, respectively; these isotopes are constituents of human-health concern, but the U.S. Environmental Protection Agency has not established MCLs for them. Radioactive constituent concentrations or activities exceeded at least one established drinking-water standard, proposed drinking-water standard, or screening level in groundwater samples from five of six generalized geologic units assessed during this study. Radioactive constituent concentrations or activities were variable not only within each geologic unit, but also among wells that were completed in the same geologic unit and in close proximity to one another. Established or proposed drinking-water standards were exceeded most frequently in water from wells completed in the generalized geologic unit that includes rocks of the Boulder batholith and other Tertiary through Cretaceous igneous intrusive rocks (commonly described as granite). Specifically, of the wells completed in the Boulder batholith and related rocks sampled as part of this study, 24 percent exceeded the MCL of 30 micrograms per liter for uranium, 50 percent exceeded the proposed alternative MCL of 4,000 picocuries per liter for radon, and 27 percent exceeded the MCL of 5 micrograms per liter for combined radium-226 and radium-228. Elevated radioactive constituent values were detected in samples representing a large range of field properties and water types. Correlations between radioactive constituents and pH, dissolved oxygen, and most major ions were not statistically significant (p-value > 0.05) or were weakly correlated with Spearman correlation coefficients (rho) ranging from -0.5 to 0.5. Moderate correlations did exist between gross beta-particle activity and potassium (rho = 0.72 to 0.82), likely because one potassium isotope (potassium-40) is a beta-particle emitter. Total dissolved solids and specific conductance also were moderately correlated (rho = 0.62 to 0.71) with gross alpha-particle and gross beta-particle activity, indicating that higher radioactivity values can be associated with higher total dissolved solids. Correlations were evaluated among radioactive constituents. Moderate to strong correlations occurred between gross alpha-particle and beta-particle activities (rho = 0.77 to 0.96) and radium isotopes (rho = 0.78 to 0.92). Correlations between gross alpha-particle activity (72-hour count) and all analyzed radioactive constituents were statistically significant (p-value Radiochemical results varied temporally in samples from several of the thirty-eight wells sampled at least twice during the study. The time between successive sampling events ranged from about 1 to 10 months for 29 wells to about 3 years for the other 9 wells. Radiochemical constituents that varied by greater than 30 percent between sampling events included uranium (29 percent of the resampled wells), and radon (11 percent of the resampled wells), gross alpha-particle activity (38 percent of the resampled wells), and gross beta-particle activity (15 percent of the resampled wells). Variability in uranium concentrations from two wells was sufficiently large that concentrations were less than the MCL in the first set of samples and greater than the MCL in the second. Sample holding times affect analytical results in this study. Gross alpha-particle and gross beta-particle activities were measured twice, 72 hours and 30 days after sample collection. Gross alpha-particle activity decreased an average of 37 percent between measurements, indicating the presence of short-lived alpha-emitting radionuclides in these samples. Gross beta-particle activity increased an average of 31 percent between measurements, indicating ingrowth of longer-lived beta-emitting radionuclides.
Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment
NASA Astrophysics Data System (ADS)
Xu, Jianwei; Zeng, Weidong; Jia, Zhiqiang; Sun, Xin; Zhao, Yawei
2016-03-01
The effects of alpha/beta heat treatment on microstructure evolution of Ti-17 alloy with a lamellar colony structure are established. Heat treatment experiments are conducted at 1103 or 1063 K for times ranging from 10 min to 8 h. The main features of microstructure evolution during heat treatment comprise static globularization and coarsening of primary alpha phase. Such behaviors can be accelerated by higher heat treatment temperature. Furthermore, globularization and coarsening behaviors show a faster rate at higher prestrain. In order to better understand the microstructure evolution of Ti-17 alloy during alpha/beta heat treatment, static globularization and coarsening behaviors are modeled in the theoretical frame of the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) and Lifshitz-Slyozov-Wagner (LSW) theories, respectively. The JMAK and LSW kinetics parameters are derived under different experimental conditions. Agreements between measurements and predictions are found, indicating that the JMAK and LSW theories can be used to predict and trace static globularization and coarsening processes of Ti-17 alloy during alpha/beta heat treatment.
ERIC Educational Resources Information Center
Linares-Palomino, Pablo J.; Salido, Sofia; Altarejos, Joaquin; Nogueras, Manuel; Sanchez, Adolfo
2006-01-01
The selective syntheses of the cyclic monoterpenoids alpha-terpineol or alpha-cyclogeraniol from the acyclic monoterpenoid nerol using p-toluenesulfonic acid or chlorosulfonic acid as cyclizing agents, respectively, are described. The different behavior of nerol under diverse experimental conditions such as nature of the acid agents, solvents, and…
Neutron detector using lithiated glass-scintillating particle composite
Wallace, Steven [Knoxville, TN; Stephan, Andrew C [Knoxville, TX; Dai, Sheng [Knoxville, TN; Im, Hee-Jung [Knoxville, TN
2009-09-01
A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.
Behavior of hydrogen in alpha-iron at lower temperatures
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1973-01-01
Evidence is presented that the low temperature anomalies in the hydrogen occlusive behavior of alpha iron can be explained by means of a molecular occlusion theory. This theory proposes that the stable state of the absorbed hydrogen changes from atomic at high temperatures to molecular as the temperature is lowered below a critical value. Theories proposing to explain the anomalous behavior as being due to the capture, at lower temperatures, of hydrogen in traps are shown to be unacceptable.
High resolution track etch autoradiography
Solares, G.; Zamenhof, R.G.
1994-12-27
A detector assembly is disclosed for use in obtaining alpha-track autoradiographs, the detector assembly including a substantially boron-free substrate; a detector layer deposited on the substantially boron-free substrate, the detector layer being capable of recording alpha particle tracks and exhibiting evidence of the alpha tracks in response to being exposed to an etchant, the detector layer being less than about 2 microns thick; and a protective layer deposited on the detector layer, the protective layer being resistant to the etchant and having a thickness of about 0.5 to 1 microns. 13 figures.
Intense Ly-alpha emission from Uranus
NASA Technical Reports Server (NTRS)
Durrance, S. T.; Moos, H. W.
1982-01-01
The existence of intense atomic hydrogen Ly-alpha emission from Uranus is demonstrated here by utilizing the monochromatic imaging capabilities of the International Ultraviolet Explorer (IUE) spectrograph. Observations show increased emission in the vicinity of Uranus superimposed on the geocoronal/interplanetary background. If resonant scattering of solar Ly-alpha is the source of the 1.6 + or - 0.4 kR disk averaged brightness, then very high column densities of atomic H above the absorbing methane are required. Precipitation of trapped charged particles, i.e., aurora, could explain the emissions. This would imply a planetary magnetic field.
High resolution track etch autoradiography
Solares, Guido; Zamenhof, Robert G.
1994-01-01
A detector assembly for use in obtaining alpha-track autoradiographs, the detector assembly including a substantially boron-free substrate; a detector layer deposited on the substantially boron-free substrate, the detector layer being capable of recording alpha particle tracks and exhibiting evidence of the alpha tracks in response to being exposed to an etchant, the detector layer being less than about 2 microns thick; and a protective layer deposited on the detector layer, the protective layer being resistant to the etchant and having a thickness of about 0.5 to 1 microns.
Studies on the reduction of radon plate-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, M.; Nakib, M.; Calkins, R.
The decay of common radioactive gases, such as radon, produces stable isotopes by a sequence of daughter particles with varied half-lives. These daughter particles are a significant source of gamma, neutron, and alpha (α) particle backgrounds that can mimic desired signals in dark matter and neutrinoless double beta decay experiments. In the LUMINA Laboratory at Southern Methodist University (SMU), studies of radon plate-out onto copper samples are conducted using one of XIA’s first five UltraLo 1800 alpha counters. We present results from investigations into various mitigation approaches. A custom-built copper holder (in either plastic or metal) has been designed andmore » produced to maximize the copper’s exposure to {sup 220}Rn. The {sup 220}Rn source is a collection of camping lantern mantles. We present the current status of control and experimental methods for addressing radon exposure levels.« less
On nonthermal processes in the core of the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voronchev, V. T., E-mail: voronchev@srd.sinp.msu.ru
2015-06-15
Nonthermal nuclear processes in the core of the Sun that are induced by fast particles appearing as nonthermalized products of exothermic reactions are discussed. Among other things, properties of 8.7-MeV alpha particles originating from the reaction p + {sup 7}Li → 2α are studied, and their effect on the balance of the processes p + {sup 17}O ai α + {sup 14}N, which close the CNO-II cycle, is determined. It is shown that the effective temperature of fast alpha particles is approximately 1000 times as high as the temperature of the plasma in the Sun’s core and that, under somemore » specific conditions, the rate of the reverse reaction α + {sup 14}N → p + {sup 17}O may be one to two orders of magnitude higher than the rate of the forward reaction p + {sup 17}O → α + {sup 14}N.« less
Infinite charge mobility in muscovite at 300 K
NASA Astrophysics Data System (ADS)
Russell, F. Michael; Archilla, Juan F. R.; Frutos, Fabian; Medina-Carrasco, Santiago
2017-11-01
Evidence is presented for infinite charge mobility in natural crystals of muscovite mica at room temperature. Muscovite has a basic layered structure containing a flat monatomic sheet of potassium sandwiched between mirror silicate layers. It is an excellent electrical insulator. Studies of defects in muscovite crystals indicated that positive charge could propagate over great distances along atomic chains in the potassium sheets in the absence of an applied electric potential. The charge moved in association with anharmonic lattice excitations that moved at about sonic speed and created by nuclear recoil of the radioactive isotope 40K. This was verified by measuring currents passing through crystals when irradiated with energetic alpha particles at room temperature. The charge propagated more than 1000 times the range of the alpha particles of average energy and 250 times the range of channelling particles of maximum energy. The range is limited only by size of the crystal.
NASA Technical Reports Server (NTRS)
Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.
2010-01-01
This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.
On the limit of field-aligned current intensity in the polar magnetosphere
NASA Technical Reports Server (NTRS)
Cole, Keith D.
1991-01-01
Field-aligned current (FAC) is here defined by 4 pi j = alpha B, where alpha is constant along a magnetic field line. The upper limit value of alpha in the polar magnetosphere, possible source regions of the strongest FAC and the relationship of them to some auroral and ionospheric irregularity cross-field scale sizes are discussed. Cross-field dimensions of the strongest FAC are related to the gyroradii of source particles (O(+), He(2+), He(+), H(+), e) in the current-generating region. It is suggested that experimental determination, and mapping of the values of alpha, may assist with the search for the generators of such currents in near-earth space including in the nearby solar wind. The upper limit of alpha is associated with the breakup of FAC systems.
SU-E-J-03: A Comprehensive Comparison Between Alpha and Beta Emitters for Cancer Radioimmunotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.Y.; Guatelli, S; Oborn, B
2014-06-01
Purpose: The purpose of this study is to perform a comprehensive comparison of the therapeutic efficacy and cytotoxicity of alpha and beta emitters for Radioimmunotherapy (RIT). For each stage of cancer development, specific models were built for the separate objectives of RIT to be addressed:a) kill isolated cancer cells in transit in the lymphatic and vascular circulation,b) regress avascular cell clusters,c) regress tumor vasculature and tumors. Methods: Because of the nature of short range, high LET alpha and long energy beta radiation and heterogeneous antigen expression among cancer cells, the microdosimetric approach is essential for the RIT assessment. Geant4 basedmore » microdosimetric models are developed for the three different stages of cancer progression: cancer cells, cell clusters and tumors. The energy deposition, specific energy resulted from different source distribution in the three models was calculated separately for 4 alpha emitting radioisotopes ({sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac) and 6 beta emitters ({sup 32}P, {sup 33}P, {sup 67}Cu, {sup 90}Y, {sup 131}I and {sup 177}Lu). The cell survival, therapeutic efficacy and cytotoxicity are determined and compared between alpha and beta emitters. Results: We show that internal targeted alpha radiation has advantages over beta radiation for killing isolated cancer cells, regressing small cell clusters and also solid tumors. Alpha particles have much higher dose specificity and potency than beta particles. They can deposit 3 logs more dose than beta emitters to single cells and solid tumor. Tumor control probability relies on deep penetration of radioisotopes to cancer cell clusters and solid tumors. Conclusion: The results of this study provide a quantitative understanding of the efficacy and cytotoxicity of RIT for each stage of cancer development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooks, Tomer; Schmidt, Michael; Bittan, Hadas
2009-07-01
Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with {sup 224}Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors inmore » athymic mice. The efficacy of the short-lived daughters of {sup 224}Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.« less
Manda, Kailash; Ueno, Megumi; Anzai, Kazunori
2008-03-05
Exposure to high-energy particle radiation (HZE) may cause oxidative stress and cognitive impairment in the same manner that seen in aged mice. This phenomenon has raised the concerns about the safety of an extended manned mission into deep space where a significant portion of the radiation burden would come from HZE particle radiation. The present study aimed at investigating the role of alpha-lipoic acid against space radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body irradiation of mice with high-LET (56)Fe beams (500 MeV/nucleon, 1.5 Gy) substantially impaired the reference memory at 30 day post-irradiation; however, no significant effect was observed on motor activities of mice. Acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such memory dysfunction. Radiation-induced apoptotic damage in cerebellum was examined using a neuronal-specific terminal deoxynucleotidyl transferase-mediated nick end-labeling method (NeuroTACS). Radiation-induced apoptotic and necrotic cell death of granule cells and Purkinje cells were inhibited significantly by alpha-lipoic acid pretreatment. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of DNA damage (comet tail movement and serum 8-OHdG), lipid proxidation products (MDA+HAE) and protein carbonyls in mice cerebellum. Further, radiation-induced decline of non-protein sulfhydryl (NP-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Results clearly indicate that alpha-lipoic acid is a potent neuroprotective antioxidant. Moreover, present finding also support the idea suggesting the cerebellar involvement in cognition.
Bagán, H; Tarancón, A; Rauret, G; García, J F
2010-06-18
Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides ((3)H-(241)Am or (90)Sr/(90)Y-(241)Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste. 2010 Elsevier B.V. All rights reserved.
Parsing anomalous versus normal diffusive behavior of bedload sediment particles
Fathel, Siobhan; Furbish, David; Schmeeckle, Mark
2016-01-01
Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.
QCD tests with SLD and polarized beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, M.G.
1994-12-01
The author presents a measurement of the strong coupling {alpha}{sub s} derived from multijet rates using data collected by the SLD experiment at SLAC and find that {alpha}{sub s}(M{sub Z}{sup 2}) = 0.118 {+-} 0.002(stat.) {+-} 0.003(syst.) {+-} 0.010(theory). He presents tests of the flavor independence of strong interactions via preliminary measurements of the ratios {alpha}{sub s}(b)/{alpha}{sub s}(udsc) and {alpha}{sub s}(uds)/{alpha}{sub s}(bc). In addition, the group has measured the difference in charged particle multiplicity between Z{sup 0} {yields} b{bar b} and Z{sup 0} {yields} u{bar u}, d{bar d}, s{bar s} events, and find that it supports the prediction of perturbativemore » QCD that the multiplicity difference be independent of center-of-mass energy. Finally, the group has made a preliminary study of jet polarization using the jet handedness technique.« less
Schmitt, Ulrich; Hiemke, Christoph; Fahrenholz, Falk; Schroeder, Anja
2006-12-15
Members of the ADAM family (adisintegrin and metalloprotease) are the main candidates for physiologically relevant alpha-secretases. The alpha-secretase cleaves in the non-amyloidogenic pathway the amyloid precursor protein within the region of the Abeta peptides preventing their aggregation in the brain. The increase of alpha-secretase activity in the brain provides a plausible strategy to prevent Abeta formation. Concerning this possibility two transgenic mouse lines (FVB/N) have been created: mice over-expressing the bovine form of the alpha-secretase (ADAM10) and mice over-expressing an inactive form of the alpha-secretase (ADAM10-E348A-HA; ADAM10-dn). For behavioral examination a F1 generation of transgenic mice (C57Bl/6 x FVB/N (tg)) was generated and compared to wild type F1 generation (C57Bl/6 x FVB/N). Behavior was characterized in the following tasks: standard open field, enriched open field, elevated plus-maze, and the Morris water maze hidden platform task. Concerning basal activity, exploration, and anxiety, transgenic mice behaved similar to controls. With respect to learning and memory both transgenic lines showed a significant deficit compared to controls. ADAM10 mice however, showed thigmotaxis with passive floating behavior in the Morris water maze indicating differences in motivation, whereas, ADAM10-dn mice displayed an inconspicuous but limited goal-directed search pattern. Thus variation of the enzymatic activity of alpha-secretase ADAM10 alters learning and memory differentially. Nevertheless, it could be concluded that both, ADAM10 and ADAM10-dn mice are suitable control mice for the assessment of alpha-secretase-related effects in animal models of Alzheimer's disease.
Pesnya, Dmitry S; Romanovsky, Anton V
2013-01-20
The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields. Copyright © 2012 Elsevier B.V. All rights reserved.
Alpha-Particle Gas-Pressure Sensor
NASA Technical Reports Server (NTRS)
Buehler, M. C.; Bell, L. D.; Hecht, M. H.
1996-01-01
An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.
Development of a He- and He0 beam source for alpha particle measurement in a burning plasma.
Tanaka, N; Sasao, M; Terai, K; Okamoto, A; Kitajima, S; Yamaoka, H; Wada, M
2012-02-01
Proof of principle experiments of neutral helium beam production for alpha particle diagnostics was carried out on a test stand. Negative helium ions were produced in the Li charge exchange cell, in which stable and long time operation was possible. He(-) beam was accelerated to 157 keV. Finally, He(0) beam was successfully produced after the flight in the drift-tube through the auto-electron-detachment process from He(-) to He(0). A neutral beam detector using a pyroelectric device was also developed to measure He(0) beam intensity. The metastable component in the neutral helium beam was found to be less than 2%.
Detection of Alpha Particles and Low Energy Gamma Rays by Thermo-Bonded Micromegas in Xenon Gas
NASA Astrophysics Data System (ADS)
Wei, Yuehuan; Guan, Liang; Zhang, Zhiyong; Lin, Qing; Wang, Xiaolian; Ni, Kaixuan; Zhao, Tianchi
2013-08-01
Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, motivated by its potential application in two-phase xenon detectors for dark matter and neutrinoless double beta decay experiments. The study is carried out in pure xenon at room temperature. Measurements with alpha particles from the Americium-241 source showed that gas gains larger than 200 can be obtained at xenon pressure up to 3 atm. Gamma rays down to 8 keV were observed with such a device.
Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer
NASA Technical Reports Server (NTRS)
Gellert, R.; Rieder, R.; Anderson, R. C.; Brueckner, J.; Clark, B. C.; Dreibus, G.; Economou, T.; Klingelhoefer, G.; Lugmair, G. W.; Ming, D. W.
2005-01-01
The alpha particle x-ray spectrometer on the Spirit rover determined major and minor elements of soils and rocks in Gusev crater in order to unravel the crustal evolution of planet Mars. The composition of soils is similar to those at previous landing sites, as a result of global mixing and distribution by dust storms. Rocks (fresh surfaces exposed by the rock abrasion tool) resemble volcanic rocks of primitive basaltic composition with low intrinsic potassium contents. High abundance of bromine (up to 170 parts per million) in rocks may indicate the alteration of surfaces formed during a past period of aqueous activity in Gusev crater.
Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.
Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B
2016-03-04
Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manjon, A.; Iborra, J.L.; Gomez, J.L.
A design equation is presented for packed-bed reactors containing immobilized enzymes in spherical porous particles with internal diffusion effects and obeying reversible one-intermediate Michaelis-Menten kinetics. The equation is also able to explain irreversible and competitive product inhibition kinetics. It allows the axial substrate profiles to be calculated and the dependence of the effectiveness factor along the reactor length to be continuously evaluated. The design equation was applied to explain the behavior of naringinase immobilized in Glycophase-coated porous glass operating in a packed-bed reactor and hydrolyzing both p-nitrophenyl-alpha-L-rhamnoside and naringin. The theoretically predicted results were found to fit well with experimentallymore » measured values. (Refs. 28).« less
Zhou, Wenbo; Milder, Julie B; Freed, Curt R
2008-04-11
Abnormal aggregation of human alpha-synuclein in Lewy bodies and Lewy neurites is a pathological hallmark of Parkinson disease and dementia with Lewy bodies. Studies have shown that oxidation and nitration of alpha-synuclein lead to the formation of stable dimers and oligomers through dityrosine cross-linking. Previously we have reported that tyrosine-to-cysteine mutations, particularly at the tyrosine 39 residue (Y39C), significantly enhanced alpha-synuclein fibril formation and neurotoxicity. In the current study, we have generated transgenic mice expressing the Y39C mutant human alpha-synuclein gene controlled by the mouse Thy1 promoter. Mutant human alpha-synuclein was widely expressed in transgenic mouse brain, resulting in 150% overexpression relative to endogenous mouse alpha-synuclein. At age 9-12 months, transgenic mice began to display motor dysfunction in rotarod testing. Older animals aged 15-18 months showed progressive accumulation of human alpha-synuclein oligomers, associated with worse motor function and cognitive impairment in the Morris water maze. By age 21-24 months, alpha-synuclein aggregates were further increased, accompanied by severe behavioral deficits. At this age, transgenic mice developed neuropathology, such as Lewy body-like alpha-synuclein and ubiquitin-positive inclusions, phosphorylation at Ser(129) of human alpha-synuclein, and increased apoptotic cell death. In summary, Y39C human alpha-synuclein transgenic mice show age-dependent, progressive neuronal degeneration with motor and cognitive deficits similar to diffuse Lewy body disease. The time course of alpha-synuclein oligomer accumulation coincided with behavioral and pathological changes, indicating that these oligomers may initiate protein aggregation, disrupt cellular function, and eventually lead to neuronal death.
Copernicus measurement of the Jovian Lyman-alpha emission and its aeronomical significance
NASA Technical Reports Server (NTRS)
Atreya, S. K.; Kerr, R. B.; Upson, W. L., II; Festou, M. C.; Donahue, T. M.; Barker, E. S.; Cochran, W. D.; Bertaux, J. L.
1982-01-01
It is pointed out that the intensity of the Lyman-alpha emission is a good indicator of the principal aeronomical processes on the major planets. The high-resolution ultraviolet spectrometer aboard the Orbiting Astronomical Observatory Copernicus was used in 1980 April and May to detect the Jovian Lyman-alpha emission by spectroscopically discriminating it from other Doppler shifted Lyman-alpha emissions such as those of the geocorona, and the interplanetary medium. Taking into consideration the reported emission data, it appears that an unusually large energy input due to the particle precipitation in the auroral region must have been responsible for the large observed Lyman-alpha intensity during the Voyager encounter. At most other times, the observed Jovian Lyman-alpha intensity can be explained, within the range of statistical uncertainty, by a model that takes into consideration the solar EUV flux, the solar Lyman-alpha flux, the high exospheric temperature, and the eddy diffusion coefficient without energy input from the auroral sources.
Colciago, A; Casati, L; Mornati, O; Vergoni, A V; Santagostino, A; Celotti, F; Negri-Cesi, P
2009-08-15
The gender-specific expression pattern of aromatase and 5alpha-reductases (5alpha-R) during brain development provides neurons the right amount of estradiol and DHT to induce a dimorphic organization of the structure. Polychlorinated biphenyls (PCBs) are endocrine disruptive pollutants; exposure to PCBs through placental transfer and breast-feeding may adversely affect the organizational action of sex steroid, resulting in long-term alteration of reproductive neuroendocrinology. The study was aimed at: a) evaluating the hypothalamic expression of aromatase, 5alpha-R1 and 5alpha-R2 in fetuses (GD20), infant (PN12), weaning (PN21) and young adult (PN60) male and female rats exposed to PCBs during development; b) correlating these parameters with the time of testicular descent, puberty onset, estrous cyclicity and copulatory behavior; c) evaluating possible alterations of some non reproductive behaviors (locomotion, learning and memory, depression/anxiety behavior). A reconstituted mixture of four indicator congeners (PCB 126, 138, 153 and 180) was injected subcutaneously to dams at the dose of 10 mg/kg daily from GD15 to GD19 and then twice a week till weanling. The results indicated that developmental PCB exposure produced important changes in the dimorphic hypothalamic expression of both aromatase and the 5alpha-Rs, which were still evident in adult animals. We observed that female puberty onset occurs earlier than in control animals without cycle irregularity, while testicular descent in males was delayed. A slight but significant impairment of sexual behavior and an important alteration in memory retention were also noted specifically in males. We conclude that PCBs might affect the dimorphic neuroendocrine control of reproductive system and of other neurobiological processes.
Measured 19F(α,n) with VANDLE for Nuclear Safeguards
NASA Astrophysics Data System (ADS)
Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Thomspon, S.; Grinder, M.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Avetisyan, R.; Gyurjinyan, A.; Lowe, M.; Ilyushkin, S.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Taylor, S. Z.; Smith, K.
2015-10-01
One of the most promising non-destructive assay (NDA) methods to monitor UF6 canisters consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have measured the cross section and coincident neutron spectrum for the alpha-decay energy range using the VANDLE system. This experiment had two parts: first at Notre Dame with a LaF3 target and and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and cross section results will be presented. This work is funded in part by the DOE Office of Science, the National Nuclear Security Administration SSAA and the Office of Defense Nuclear Nonproliferation R&D, and the NSF.
Issues with Strong Compression of Plasma Target by Stabilized Imploding Liner
NASA Astrophysics Data System (ADS)
Turchi, Peter; Frese, Sherry; Frese, Michael
2017-10-01
Strong compression (10:1 in radius) of an FRC by imploding liquid metal liners, stabilized against Rayleigh-Taylor modes, using different scalings for loss based on Bohm vs 100X classical diffusion rates, predict useful compressions with implosion times half the initial energy lifetime. The elongation (length-to-diameter ratio) near peak compression needed to satisfy empirical stability criterion and also retain alpha-particles is about ten. The present paper extends these considerations to issues of the initial FRC, including stability conditions (S*/E) and allowable angular speeds. Furthermore, efficient recovery of the implosion energy and alpha-particle work, in order to reduce the necessary nuclear gain for an economical power reactor, is seen as an important element of the stabilized liner implosion concept for fusion. We describe recent progress in design and construction of the high energy-density prototype of a Stabilized Liner Compressor (SLC) leading to repetitive laboratory experiments to develop the plasma target. Supported by ARPA-E ALPHA Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasita, S.M.; Iota, B.Z.; Malachkov, A.G.
1985-11-01
An extraction procedure has been developed for successive isolation of tungsten (/sup 178/W and /sup 181/W) and tantalum (/sup 179/Ta and /sup 182/Ta) isotopes without supports from ..cap alpha..particle-irradiated hafnium targets. The target, irradiated on a cyclotron, is dissolved in hydrofluoric acid. Tantalum isotopes are extracted with tributyl phosphate (TBP) from 1-5 M HF and are then reextracted with a 1:1 ammonia solution, and hydrofluoric acid is removed by heating. Tungsten isotopes are extracted with a chloroform solution or N-benzoyl-N-phenylhydroxylamine (BPHA) from 11-12 M H/sub 2/SO/sub 4/ or ..cap alpha..-benzoin oxime from 4.5-5.5 M H/sub 2/SO/sub 4/ and are thenmore » reextracted with a l:l ammonia solution. The yield of tungsten isotopes is not less than 95%, and the content of radioactive impurities of other isotopes is not more than 0.1%.« less
24Mg(p, α) 21Na reaction study for spectroscopy of 21Na
Cha, S. M.; Chae, K. Y.; Kim, A.; ...
2015-11-03
The Mg-24(p, alpha)Na-21 reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in Na-21 for the astrophysically important F-17(alpha, p)Ne-20 reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched Mg-24 solid targets were used. When recoiling He-4 particles from the Mg-24(p, alpha)Na-21 reaction we used a highly segmented silicon detector array to detect them; it measured the yields of He-4 particles over a range of angles simultaneously. A observed a new level at 6661 ± 5 keVmore » in the present work. The extracted angular distributions for the first four levels of Na-21 and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.« less
NASA Astrophysics Data System (ADS)
Gruszko, Julieta
Though the existence of neutrino oscillations proves that neutrinos must have non-zero mass, Beyond-the-Standard-Model physics is needed to explain the origins of that mass. One intriguing possibility is that neutrinos are Majorana particles, i.e., they are their own anti-particles. Such a mechanism could naturally explain the observed smallness of the neutrino masses, and would have consequences that go far beyond neutrino physics, with implications for Grand Unification and leptogenesis. If neutrinos are Majorana particles, they could undergo neutrinoless double-beta decay (0nBB), a hypothesized rare decay in which two antineutrinos annihilate one another. This process, if it exists, would be exceedingly rare, with a half-life over 1E25 years. Therefore, searching for it requires experiments with extremely low background rates. One promising technique in the search for 0nBB is the use of P-type point-contact (P-PC) high-purity Germanium (HPGe) detectors enriched in 76Ge, operated in large low-background arrays. This approach is used, with some key differences, by the MAJORANA and GERDA Collaborations. A problematic background in such large granular detector arrays is posed by alpha particles incident on the surfaces of the detectors, often caused by 222Rn contamination of parts or of the detectors themselves. In the MAJORANA DEMONSTRATOR, events have been observed that are consistent with energy-degraded alphas originating near the passivated surface of the detectors, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, high charge trapping occurs along with subsequent slow charge re-release. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. Here we discuss the characteristics of these events and the development of a filter that can identify the occurrence of this delayed charge recovery (DCR) effect, allowing for the efficient rejection of passivated surface alpha events in analysis. Using a dedicated test-stand called the TUM Upside-down BEGe (TUBE) scanner, we have characterized the response of a P-PC detector like those used in the DEMONSTRATOR to alphas incident on the sensitive surfaces, developing a model for the radial dependence of the energy loss to charge trapping and determining the dominant mechanism behind the delayed charge effect. We have also used these measurements to demonstrate the complementarity of the DCR analysis with the drift-time analysis that is used to identify alpha background candidate events in the GERDA detectors. Using these two methods, we demonstrate the ability to effectively reject all alpha events (to within statistical uncertainty) with only 0.2% bulk event sacrifice. Applying the DCR analysis to the events observed in the MAJORANA DEMONSTRATOR, we find that it reduces the backgrounds in the 0nBB region-of-interest by a factor of 29, increasing the expected experimental sensitivity by a factor of 3 over the lifetime of the DEMONSTRATOR. The results of the dedicated measurements in the TUBE scanner can be used to build a background model for alpha decays in the DEMONSTRATOR; here, we examine two simplified geometric models for the alpha source distribution and find that the observed spectral shape is consistent with alpha events originating in the plastics of the detector units.
Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors
Caldwell, J.T.; Kunz, W.E.; Atencio, J.D.
1982-03-31
A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify /sup 233/U, /sup 235/U and /sup 239/Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as /sup 240/Pu, /sup 244/Cm and /sup 252/Cf, and the spontaneous alpha particle emitter /sup 241/Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether permanent low-level burial is appropriate for the waste sample.
Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors
Caldwell, John T.; Kunz, Walter E.; Atencio, James D.
1984-01-01
A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify .sup.233 U, .sup.235 U and .sup.239 Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as .sup.240 Pu, .sup.244 Cm and .sup.252 Cf, and the spontaneous alpha particle emitter .sup.241 Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether "permanent" low-level burial is appropriate for the waste sample.
Observation of lunar radon emanation with the Apollo 15 alpha particle spectrometer.
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Bjorkholm, P.
1972-01-01
The alpha particle spectrometer, a component of the orbital Sim Bay group of 'geochemistry' experiments on Apollo 15, was designed to detect alpha particles emitted during the decay of isotopes of radon gas and her daughter products. The purpose was to measure the gross activity of radon on the lunar surface and to find possible regions of increased local activity. Results are presented from a partial analysis of Apollo 15 data. For the moon as a whole, Rn220 was not observed and the upper limit on its decay rate above the lunar surface is 0.00038 disintegrations/sq cm-sec. Rn222 was marginally observed. Possible variations of radon activity on the lunar surface are being investigated. Po210 (a daughter product of Rn222) has been detected in a broad region from west of Mare Crisium to the Van de Graaff-Orlov region. The observed count rate is (4.6 plus or minus 1.4) x 0.001 disintegrations/sq cm-sec. The observed level of Po210 activity is in excess of the amount that would be in equilibrium with Rn222 by about an order of magnitude. This implies that larger levels of radon emanation have occurred on the moon within a time scale of 10 to 100 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yong; Ezell, Michael J.; Zelenyuk, Alla
2008-06-01
The photooxidation of ~1 ppm alpha-pinene in the presence of increasing concentrations of NO2 was studied in a Teflon chamber at relative humidities from 70 - 88% and temperatures from 296 - 304 K. The loss of alpha-pinene and formation of gas phase products were followed using proton transfer reaction mass spectrometry (PTR-MS). Gas phase reaction products measured by PTR-MS and their yields include formaldehyde (5 + 1%), formic acid (2.5 + 1.4%), methanol (0.6 + 0.3%), acetaldehyde (3.9 + 1.7%), acetic acid (10 + 2%), acetone (11.5 + 3.1%), pinonaldehyde (22 + 6%), and pinene oxide (0.9 + 0.1%).more » There was evidence of organic nitrates in the gas phase and small peaks were tentatively assigned to norpinonaldehyde, 4-oxopinonaldehyde, propanedial, 2,3-dioxobutanal and 3,5,6-trioxoheptanal or 3-hydroxymethyl-2,2-dimethylcyclobutylethanone. The formation and growth of new particles were followed using a scanning mobility particle sizer (SMPS), and their chemical composition was probed using single particle mass spectrometry (SPLAT II). SPLAT II analysis also provided measurements of the vacuum aerodynamic diameters of the newly formed secondary organic aerosol (SOA) particles and, in combination with the electrical mobility diameter, a particle density of 1.21 + 0.02 g cm-3 was calculated, 20% larger than often assumed in calculating SOA yields. SPLAT II showed that the suspended SOA consisted of a complex mixture of organic nitrates and organics, possibly including pinonic acid, pinic acid and trans-sobrerol. Three-wavelength light scattering measurements made using an integrating nephelometer were consistent with particles having a refractive index characteristic of organic compounds, but the data could not be well matched at all three wavelengths with a single refractive index. The effect of addition of cyclohexane or NO on particle formation showed that ozonolysis was the major mechanism of SOA formation in this system. However, unlike simple ozonolysis, organic nitrates are formed in both the gas and particle phases. Identifying and measuring specific organic nitrates in both the gas and particle phases in air may help to elucidate why SOA formation has been reported in field studies to be associated with polluted urban areas, yet the carbon in these particles is largely contemporary, i.e., non-fossil fuel carbon.« less
Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters
NASA Astrophysics Data System (ADS)
Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I.
2007-08-01
A new method utilizing alpha particles to treat solid tumors is presented. Tumors are treated with interstitial radioactive sources which continually release short-lived alpha emitting atoms from their surface. The atoms disperse inside the tumor, delivering a high dose through their alpha decays. We implement this scheme using thin wire sources impregnated with 224Ra, which release by recoil 220Rn, 216Po and 212Pb atoms. This work aims to demonstrate the feasibility of our method by measuring the activity patterns of the released radionuclides in experimental tumors. Sources carrying 224Ra activities in the range 10-130 kBq were used in experiments on murine squamous cell carcinoma tumors. These included gamma spectroscopy of the dissected tumors and major organs, Fuji-plate autoradiography of histological tumor sections and tissue damage detection by Hematoxylin-Eosin staining. The measurements focused on 212Pb and 212Bi. The 220Rn/216Po distribution was treated theoretically using a simple diffusion model. A simplified scheme was used to convert measured 212Pb activities to absorbed dose estimates. Both physical and histological measurements confirmed the formation of a 5-7 mm diameter necrotic region receiving a therapeutic alpha-particle dose around the source. The necrotic regions shape closely corresponded to the measured activity patterns. 212Pb was found to leave the tumor through the blood at a rate which decreased with tumor mass. Our results suggest that the proposed method, termed DART (diffusing alpha-emitters radiation therapy), may potentially be useful for the treatment of human patients.
Fusion plasma theory project summaries
NASA Astrophysics Data System (ADS)
1993-10-01
This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.
Tuan, Rocky S; Lee, Francis Young-In; T Konttinen, Yrjö; Wilkinson, J Mark; Smith, Robert Lane
2008-01-01
New clinical and basic science data on the cellular and molecular mechanisms by which wear particles stimulate the host inflammatory response have provided deeper insight into the pathophysiology of periprosthetic bone loss. Interactions among wear particles, macrophages, osteoblasts, bone marrow-derived mesenchymal stem cells, fibroblasts, endothelial cells, and T cells contribute to the production of pro-inflammatory and pro-osteoclastogenic cytokines such as TNF-alpha, RANKL, M-SCF, PGE2, IL-1, IL-6, and IL-8. These cytokines not only promote osteoclastogenesis but interfere with osteogenesis led by osteoprogenitor cells. Recent studies indicate that genetic variations in TNF-alpha, IL-1, and FRZB can result in subtle changes in gene function, giving rise to altered susceptibility or severity for periprosthetic inflammation and bone loss. Continuing research on the biologic effects and mechanisms of action of wear particles will provide a rational basis for the development of novel and effective ways of diagnosis, prevention, and treatment of periprosthetic inflammatory bone loss.
A kinetic mechanism was used to link and model the gas-phase reactions and
aerosol accumulation resulting from src="/ncer/pubs/images/alpha.gif">-pinene reactions in the presence of sunlight,
ozone (O3), and oxides of nitrogen
(NO
Icilin-evoked behavioral stimulation is attenuated by alpha2-adrenoceptor activation
Kim, Jae; Cowan, Alan; Lisek, Renata; Raymondi, Natalie; Rosenthal, Aaron; Hirsch, Daniel D.; Rawls, Scott M.
2011-01-01
Icilin is a transient receptor potential cation channel subfamily M (TRPM8) agonist that produces behavioral activation in rats and mice. Its hallmark overt pharmacological effect is wet-dog shakes (WDS) in rats. The vigorous shaking associated with icilin is dependent on NMDA receptor activation and nitric oxide production, but little else is known about the biological systems that modulate the behavioral phenomenon. The present study investigated the hypothesis that alpha2-adrenoceptor activation inhibits icilin-induced WDS. Rats injected with icilin (0.5, 1, 2.5, 5 mg/kg, i.p.) displayed dose-related WDS that were inhibited by pretreatment with a fixed dose of clonidine (0.15 mg/kg, s.c.). Shaking behavior caused by a fixed dose (2.5 mg/kg) of icilin was also inhibited in a dose-related manner by clonidine pretreatment (0.03–0.15 mg/kg, s.c.) and reduced by clonidine posttreatment (0.15 mg/kg, s.c.). Pretreatment with a peripherally restricted alpha2-adrenoceptor agonist, ST91 (0.075, 0.15 mg/kg), also decreased the incidence of shaking elicited by 2.5 mg/kg of icilin. Pretreatment with yohimbine (2 mg/kg, i.p.) enhanced the shaking induced by a low dose of icilin (0.5 mg/kg). The imidazoline site agonists, agmatine (150 mg/kg, i.p.) and 2-BFI (7 mg/kg, i.p.), did not affect icilin-evoked shaking. These results suggest that alpha2-adrenoceptor activation inhibits shaking induced by icilin and that increases in peripheral, as well as central, alpha2-adrenoceptor signaling oppose the behavioral stimulant effect of icilin. PMID:21315691
Incorporation of alpha-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies.
Nacka, F; Cansell, M; Méléard, P; Combe, N
2001-12-01
Liposomes made from a natural marine lipid extract and containing a high polyunsaturated n-3 fatty lipid ratio were envisaged as oral route vectors and a potential alpha-tocopherol supplement. The behavior of vesicles obtained by simple filtration and of giant vesicles prepared by electroformation was investigated in gastrointestinal-like conditions. The influence of alpha-tocopherol incorporation into liposomes was studied on both physical and chemical membrane stability. Propanal, as an oxidation product of n-3 polyunsaturated fatty acids, was quantified by static headspace gas chromatography when alpha-tocopherol incorporation into liposome ratios ranged from 0.01 to 12 mol%. Best oxidative stability was obtained for liposomes that contained 5 mol% alpha-tocopherol. Compared to the other formulas, propanal formation was reduced, and time of the oxidation induction phase was longer. Moreover, alpha-tocopherol induced both liposome structural modifications, evidenced by turbidity, and phospholipid chemical hydrolysis, quantified as the amount of lysophospholipids. This physicochemical liposome instability was even more pronounced in acid storage conditions, i.e., alpha-tocopherol incorporation into liposome membranes accelerated the structural rearrangements and increased the rate of phospholipid hydrolysis. In particular, giant vesicles incubated at pH 1.5 underwent complex irreversible shape transformations including invaginations. In parallel, the absorption rate of alpha-tocopherol was measured in lymph-cannulated rats when alpha-tocopherol was administrated, as liposome suspension or added to sardine oil, through a gastrostomy tube. Alpha-tocopherol recovery in lymph was increased by almost threefold, following liposome administration. This may be related to phospholipids that should favor alpha-tocopherol solubilization and to liposome instability in the case of a high amount of alpha-tocopherol in the membranes. A need to correlate results obtained from in vitro liposome behavior with in vivo lipid absorption was demonstrated by this study.
Laser-driven deflection arrangements and methods involving charged particle beams
Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA
2011-08-09
Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.
NASA Astrophysics Data System (ADS)
Leya, Ingo; Wieler, Rainer
1999-07-01
The production of nucleogenic Ne in terrestrial crust and upper mantle by alpha particles from the decay of U and Th was calculated. The calculations are based on stopping powers for the chemical compounds and thin-target cross sections. This approach is more rigorous than earlier studies using thick-target yields for pure elements, since our results are independent of limiting assumptions about stopping-power ratios. Alpha induced reactions account for >99% of the Ne production in the crust and for most of the 20,21Ne in the upper mantle. On the other hand, our 22Ne value for the upper mantle is a lower limit because the reaction 25Mg(n,α)22Ne is significant in mantle material. Production rates calculated here for hypothetical crustal and upper mantle material with average major element composition and homogeneously distributed F, U, and Th are up to 100 times higher than data presented by Kyser and Rison [1982] but agree within error limits with the results by Yatsevich and Honda [1997]. Production of nucleogenic Ne in "mean" crust and mantle is also given as a function of the weight fractions of O and F. The alpha dose is calculated by radiogenic 4He as well as by the more retentive fissiogenic 136Xe. U and Th is concentrated in certain accessory minerals. Since the ranges of alpha particles from the three decay chains are comparable to mineral dimensions, most nucleogenic Ne is produced in U- and Th-rich minerals. Therefore nucleogenic Ne production in such accessories was also calculated. The calculated correlation between nucleogenic 21Ne and radiogenic 4He agrees well with experimental data for Earth's crust and accessories. Also, the calculated 22Ne/4He ratios as function of the F concentration and the dependence of 21Ne/22Ne from O/F for zircon and apatite agree with measurements.
Singh, Madan Kumar; Jayaraman, Narayanaswamy; Rao, D S Shankar; Prasad, S Krishna
2008-10-01
A homologous series of alkyl 2-deoxy-alpha-d-arabino-hexopyranosides and alkyl 2-deoxy-beta-d-arabino-hexopyranosides were synthesized, upon glycosylation of 1-alkanols (from C8 to C18 alkanols) with ethyl 2-deoxy-3,4,6-tri-O-acetyl-1-thio-d-arabino-hexopyranoside, followed by a deprotection. The thermotropic behavior of these new types of alkyl glycosides was investigated. It was observed that the beta-anomers of these alkyl glycosides, bearing nonyl to tetradecyl alkyl chain are mesomorphic, exhibiting monotropic smectic A phase. In contrast, the alpha-anomers are all non-mesomorphic. An effort to identify the liquid crystalline behavior of binary mixtures of the alpha- and beta-anomers was undertaken and it was found that mixtures containing equimolar amounts of the anomers exhibited mesomorphic behavior. A fine balance of the hydrophilic and hydrophobic components within the molecule is also found to be important for the alkyl 2-deoxy glycosides to form the mesophase.
NASA Astrophysics Data System (ADS)
Stork, D.; Baranov, Yu.; Belo, P.; Bertalot, L.; Borba, D.; Brzozowski, J. H.; Challis, C. D.; Ciric, D.; Conroy, S.; de Baar, M.; de Vries, P.; Dumortier, P.; Garzotti, L.; Hawkes, N. C.; Hender, T. C.; Joffrin, E.; Jones, T. T. C.; Kiptily, V.; Lamalle, P.; Mailloux, J.; Mantsinen, M.; McDonald, D. C.; Nave, M. F. F.; Neu, R.; O'Mullane, M.; Ongena, J.; Pearce, R. J.; Popovichev, S.; Sharapov, S. E.; Stamp, M.; Stober, J.; Surrey, E.; Valovic, M.; Voitsekhovitch, I.; Weisen, H.; Whiteford, A. D.; Worth, L.; Yavorskij, V.; Zastrow, K.-D.; EFDA contributors, JET
2005-10-01
Results are presented from the JET Trace Tritium Experimental (TTE) campaign using minority tritium (T) plasmas (nT/nD < 3%). Thermal tritium particle transport coefficients (DT, vT) are found to exceed neo-classical values in all regimes, except in ELMy H-modes at high densities and in the region of internal transport barriers (ITBs) in reversed shear plasmas. In ELMy H-mode dimensionless parameter scans, at q95 ~ 2.8 and triangularity δ = 0.2, the T particle transport scales in a gyro-Bohm manner in the inner plasma (r/a < 0.4), whilst the outer plasma particle transport scaling is more Bohm-like. Dimensionless parameter scans show contrasting behaviour for the trace particle confinement (increases with collisionality, ν* and β) and bulk energy confinement (decreases with ν* and is independent of β). In an extended ELMy H-mode data set, with ρ*, ν*, β and q varied but with neo-classical tearing modes (NTMs) either absent or limited to weak, benign core modes (4/3 or above), the multiparameter fit to the normalized diffusion coefficient in the outer plasma (0.65 < r/a < 0.8) gives DT/Bphi ~ ρ*2.46ν*-0.23β-1.01q2.03. In hybrid scenarios (qmin ~ 1, low positive shear, no sawteeth), the T particle confinement is found to scale with increasing triangularity and plasma current. Comparing regimes (ELMy H-mode, ITB plasma and hybrid scenarios) in the outer plasma region, a correlation of high values of DT with high values of vT is seen. The normalized diffusion coefficients for the hybrid and ITB scenarios do not fit the scaling derived for ELMy H-modes. The normalized tritium diffusion scales with normalized poloidal Larmor radius (\\rho_{\\theta}^\\ast=q\\rho^{\\ast}) in a manner close to gyro-Bohm ({\\sim}\\rho_{\\theta}^{\\ast 3}) , with an added inverse β dependence. The effects of ELMs, sawteeth and NTMs on the T particle transport are described. Fast-ion confinement in current-hole (CH) plasmas was tested in TTE by tritium neutral beam injection into JET CH plasmas. γ-rays from the reactions of fusion alpha and beryllium impurities (9Be(α, nγ)12C) characterized the fast fusion-alpha population evolution. The γ-decay times are consistent with classical alpha plus parent fast triton slowing down times (τTs + ταs) for high plasma currents (Ip > 2 MA) and monotonic q-profiles. In CH discharges the γ-ray emission decay times are much lower than classical (τTs+ταs), indicating alpha confinement degradation, due to the orbit losses and particle orbit drift predicted by a 3-D Fokker-Planck numerical code and modelled using TRANSP.
NASA Astrophysics Data System (ADS)
Mashood, K. K.; Singh, Vijay A.
2012-09-01
Student difficulties regarding the angular velocity (\\vec{\\omega }) and angular acceleration (\\vec{\\alpha }) of a particle have remained relatively unexplored in contrast to their linear counterparts. We present an inventory comprising multiple choice questions aimed at probing misconceptions and eliciting ill-suited reasoning patterns. The development of the inventory was based on interactions with students, teachers and experts. We report misconceptions, some of which are parallel to those found earlier in linear kinematics. Fixations with inappropriate prototypes were uncovered. Many students and even teachers mistakenly assume that all rotational motion is necessarily circular. A persistent notion that the direction of \\vec{\\omega } and \\vec{\\alpha } should be ‘along’ the motion exists. Instances of indiscriminate usage of equations were identified.
Measurements of the properties of solar wind plasma relevant to studies of its coronal sources
NASA Technical Reports Server (NTRS)
Neugebauer, M.
1982-01-01
Interplanetary measurements of the speeds, densities, abundances, and charge states of solar wind ions are diagnostic of conditions in the source region of the solar wind. The absolute values of the mass, momentum, and energy fluxes in the solar wind are not known to an accuracy of 20%. The principal limitations on the absolute accuracies of observations of solar wind protons and alpha particles arise from uncertain instrument calibrations, from the methods used to reduce the data, and from sampling biases. Sampling biases are very important in studies of alpha particles. Instrumental resolution and measurement ambiguities are additional major problems for the observation of ions heavier than helium. Progress in overcoming some of these measurement inadequacies is reviewed.
NASA Astrophysics Data System (ADS)
Fraeman, Abigail A.
2018-03-01
Mittlefehldt et al. (2018, https://doi.org/10.1002/2017JE005474) synthesize Alpha Particle X-Ray Spectrometer chemical measurements along more than 4.5 km of Endeavour crater's rim. Their analyses clarify details of Endeavour's geologic history, including evidence for three to four distinct episodes of aqueous alteration. Fracture-driven aqueous systems and Mn mobility are particularly important both here and at Curiosity's landing site on the opposite side of the planet. The detailed documentation of Alpha Particle X-Ray Spectrometer data products within this paper will be a key reference for researchers who want to perform future work on questions related to Mars aqueous geochemistry, impact processes, and Martian crustal and atmospheric evolution.
CMOS sensor as charged particles and ionizing radiation detector
NASA Astrophysics Data System (ADS)
Cruz-Zaragoza, E.; Piña López, I.
2015-01-01
This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained.
Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes
NASA Astrophysics Data System (ADS)
Ghantous, Katy
The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which results in two-dimensional diffusion with cross terms. A diffusion scheme is proposed and validated to resolve this dynamics in (Pφ,E) phase-space.
Lobier, Muriel; Palva, J Matias; Palva, Satu
2018-01-15
Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Shishkina, G T; Kalinina, T S; Dygalo, N N
2004-01-01
Brain alpha2-adrenergic receptors (alpha2-ARs) have been implicated in the regulation of anxiety, which is associated with stress. Environmental treatments during neonatal development could modulate the level of brain alpha2-AR expression and alter anxiety in adults, suggesting possible involvement of these receptors in early-life programming of anxiety state. The present study was undertaken to determine whether the reduction of the expression of A subtype of these receptors most abundant in the neonatal brain affects anxiety-related behavior in adulthood. We attenuated the expression of alpha2A-ARs during neonatal life by two different sequence specific approaches, antisense technology and RNA interference. Treatment of rats with the antisense oligodeoxynucleotide or short interfering RNA (siRNA) against alpha2A-ARs on the days 2-4 of their life, produced a marked acute decrease in the levels of both alpha2A-AR mRNA and [3H]RX821002 binding sites in the brainstem into which drugs were injected. The decrease of alpha2A-AR expression in the neonatal brainstem influenced the development of this receptor system in the brain regions as evidenced by the increased number of [3H]RX821002 binding sites in the hypothalamus of adult animals with both neonatal alpha2A-AR knockdown treatments; also in the frontal cortex of antisense-treated, and in the hippocampus of siRNA-treated adult rats. These adult animals also demonstrated a decreased anxiety in the elevated plus-maze as evidenced by an increased number of the open arm entries, greater proportion of time spent in the open arms, and more than a two-fold increase in the number of exploratory head dips. The results provide the first evidence that the reduction in the brain expression of a gene encoding for alpha2A-AR during neonatal life led to the long-term neurochemical and behavioral alterations. The data suggests that alterations in the expression of the receptor-specific gene during critical periods of brain development may be involved in early-life programming of anxiety-related behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B; Georgia Institute of Technology, Atlanta, GA; Wang, C
Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities.more » These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell survival curves for high-LET radiation.« less
Samuel C.C. Ting, the J/psi Particle (Charm), and the Alpha Magnetic
discoveries provided the first experimental evidence for a fourth quark, "charm," that theoretical Reader , December 1965 Experimental Observation of a Heavy Particle J; Physical Review Letters, Vol. 33 -- Eyewitness, PBS Top Some links on this page may take you to non-federal websites. Their policies may differ
Getachew, Bruk; Hauser, Sheketha R.; Csoka, Antonei B.; Taylor, Robert E.; Tizabi, Yousef
2017-01-01
Introduction Although a role for alpha-2 adrenoceptors (alpha-2 ARs) in alcohol use disorder (AUD) and depression is suggested, very little information on a direct interaction between alcohol and these receptors is available. Methods In this study adult female Wistar and Wistar-Kyoto (WKY) rats, a putative animal model of depression, were exposed to alcohol vapor 3 h daily for 10 days (blood alcohol concentration ~150 mg%) followed by daily injection of 10 mg/kg of imipramine (IMP, a selective norepinephrine NE/serotonin reuptake inhibitor) or nomifensine (NOMI, a selective NE/dopamine reuptake inhibitor). On day 11 animals were tested for open field locomotor activity (OFLA) and forced swim test (FST) and were sacrificed 2 h later for measurement of alpha-2 ARs densities in the frontal cortex and hippocampus using [3H]RX 821002 as the specific ligand. Results Chronic alcohol treatment increased the immobility in the FST, without affecting OFLA in both Wistar and WKY rats, suggesting induction of depressive-like behavior in Wistar rats and an exacerbation of this behavior in WKY rats. Alcohol treatment also resulted in an increase in cortical but not hippocampal alpha-2 ARs densities in both Wistar and WKY rats. The behavioral effects of alcohol were completely blocked by IMP and NOMI and the neurochemical effects (increases in alpha-2 ARs) were significantly attenuated by both drugs in both strains. Conclusions The results suggest a role for cortical alpha-2 ARs in alcohol withdrawal-induced depression and that selective subtype antagonists of these receptors may be of adjunct therapeutic potential in AUD-depression co-morbidity. PMID:28414989
NASA Technical Reports Server (NTRS)
Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.
2006-01-01
We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.
Investigation of the triple-α reaction in a full three-body approach
Nguyen, N. B.; Nunes, F. M.; Thompson, I. J.
2013-05-22
Here, the triple-alpha reaction is the key to our understanding about the nucleosynthesis and the observed abundance of 12C in stars. The theory of this process is well established at high temperatures but rather ambiguous in the low temperature regime where measurements are impossible. Develop a new three-body method, which tackles properly the scattering boundary condition for three charged particles and takes into account both the resonant and the non-resonant reaction mechanisms on the same footing, to compute the triple-alpha reaction rate at low temperatures. Methods: We combine the R-matrix expansion, the R-matrix propagation method, and the screening technique inmore » the hyperspherical harmonics basis. Both the 2 + 1 bound state and the 0 + 2 resonant state in 12C are well reproduced. We also study the cluster structure of these states. We calculate the triple-alpha reaction rate for T = 0.01 - 0.1 GK. In conclusion, we obtain the same rate as NACRE for temperatures above 0.07 GK, but the new rate is largely enhanced at lower temperatures (≈ 10 12 at 0.02 GK). The differences are caused by the direct capture contribution to the reaction when three alpha particles can not reach the resonant energies.« less
Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas
NASA Astrophysics Data System (ADS)
Asunta, O.; Kurki-Suonio, T.; Tala, T.; Sipilä, S.; Salomaa, R.; contributors, JET-EFDA
2008-12-01
Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger (~16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.