Science.gov

Sample records for alpha pparalpha protects

  1. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha.

    PubMed

    Fujita, Koichi; Maeda, Norikazu; Sonoda, Mina; Ohashi, Koji; Hibuse, Toshiyuki; Nishizawa, Hitoshi; Nishida, Makoto; Hiuge, Aki; Kurata, Akifumi; Kihara, Shinji; Shimomura, Iichiro; Funahashi, Tohru

    2008-05-01

    Adiponectin is recognized as an antidiabetic, antiatherosclerotic, and anti-inflammatory protein derived from adipocytes. However, the role of adiponectin in cardiac fibrosis remains uncertain. We herein explore the effects of adiponectin on cardiac fibrosis induced by angiotensin II (Ang II). Wild-type (WT), adiponectin knockout (Adipo-KO), and PPAR-alpha knockout (PPAR-alpha-KO) mice were infused with Ang II at 1.2 mg/kg/d. Severe cardiac fibrosis and left ventricular dysfunction were observed in Ang II-infused Adipo-KO mice compared to WT mice. Adenovirus-mediated adiponectin treatment improved the above phenotypes and the dysregulation of reactive oxygen species (ROS)-related mRNAs in Adipo-KO mice, whereas such amelioration was not observed in PPAR-alpha-KO mice despite adiponectin accumulation in heart tissue. In cultured cardiac fibroblasts, adiponectin improved the reduction of AMP-activated protein kinase (AMPK) activity and elevation of extracellular signal-regulated kinase 1/2 (ERK1/2) activity induced by Ang II. Adiponectin significantly enhanced PPAR-alpha activity, whereas the adiponectin-dependent PPAR-alpha activation was diminished by Compound C, an inhibitor of AMPK. The present study suggests that adiponectin protects against Ang II-induced cardiac fibrosis possibly through AMPK-dependent PPAR-alpha activation.

  2. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPAR{alpha} with clofibrate

    SciTech Connect

    Donthamsetty, Shashikiran; Bhave, Vishakha S.; Mitra, Mayurranjan S.; Latendresse, John R.; Mehendale, Harihara M.

    2008-08-01

    The objective was to investigate if the hepatotoxic sensitivity in nonalcoholic steatohepatitic mice to acetaminophen (APAP) is due to downregulation of nuclear receptor PPAR{alpha} via lower cell division and tissue repair. Male Swiss Webster mice fed methionine and choline deficient diet for 31 days exhibited NASH. On the 32nd day, a marginally toxic dose of APAP (360 mg/kg, ip) yielded 70% mortality in steatohepatitic mice, while all non steatohepatitic mice receiving the same dose survived. {sup 14}C-APAP covalent binding, CYP2E1 protein, and enzyme activity did not differ from the controls, obviating increased APAP bioactivation as the cause of amplified APAP hepatotoxicity. Liver injury progressed only in steatohepatitic livers between 6 and 24 h. Cell division and tissue repair assessed by {sup 3}H-thymidine incorporation and PCNA were inhibited only in the steatohepatitic mice given APAP suggesting that higher sensitivity of NASH liver to APAP-induced hepatotoxicity was due to lower tissue repair. The hypothesis that impeded liver tissue repair in steatohepatitic mice was due to downregulation of PPAR{alpha} was tested. PPAR{alpha} was downregulated in NASH. To investigate whether downregulation of PPAR{alpha} in NASH is the critical mechanism of compromised liver tissue repair, PPAR{alpha} was induced in steatohepatitic mice with clofibrate (250 mg/kg for 3 days, ip) before injecting APAP. All clofibrate pretreated steatohepatitic mice receiving APAP exhibited lower liver injury, which did not progress and the mice survived. The protection was not due to lower bioactivation of APAP but due to higher liver tissue repair. These findings suggest that inadequate PPAR{alpha} expression in steatohepatitic mice sensitizes them to APAP hepatotoxicity.

  3. PPAR-alpha in cutaneous inflammation

    PubMed Central

    Schmuth, Matthias

    2011-01-01

    Peroxisome proliferator-activated receptor (PPAR)-alpha is a fatty acid activated transcription factors that belongs to the nuclear hormone receptor family. Primarily PPAR-alpha serves as a lipid sensor. While PPAR-alpha controls enzymes from the lipid and glucose metabolism in the liver, heart and muscles, PPAR-alpha is also involved in skin homeostasis. PPAR-alpha controls keratinocyte proliferation/differentiation, contributes to wound healing and regulates skin inflammation. PPAR-alpha activation exerts anti-inflammatory effects in various skin conditions such as irritant and allergic contact dermatitis, atopic dermatitis and UV-induced erythema, rendering investigations into the functions of PPAR-alpha necessary to provide better understandings to treat many inflammatory skin disorders. PMID:21519405

  4. Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPAR{alpha} deterioration

    SciTech Connect

    Takahashi, Kyoko; Kamijo, Yuji; Hora, Kazuhiko; Hashimoto, Koji; Higuchi, Makoto; Nakajima, Takero; Ehara, Takashi; Shigematsu, Hidekazu; Gonzalez, Frank J.; Aoyama, Toshifumi

    2011-05-01

    Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPAR{alpha}), suggesting the benefit of PPAR{alpha} activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPAR{alpha} agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPAR{alpha} agonists without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPAR{alpha} deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NF{kappa}B activation. These effects are common to other fibrates and dependent on PPAR{alpha} function. Interestingly, however, clofibrate pretreatment also exerted PPAR{alpha}-independent tubular toxicities in PPAR{alpha}-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPAR{alpha}-dependent tubular protective effects outweigh their PPAR{alpha}-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPAR{alpha

  5. PPAR{alpha} agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity

    SciTech Connect

    Hou, Xiaoyang; Shen, Ying H.; Li, Chuanbao; Wang, Fei; Zhang, Cheng; Bu, Peili; Zhang, Yun

    2010-04-09

    Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors {alpha} (PPAR{alpha}) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs. Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.

  6. VLDL hydrolysis by LPL activates PPAR-alpha through generation of unbound fatty acids.

    PubMed

    Ruby, Maxwell A; Goldenson, Benjamin; Orasanu, Gabriela; Johnston, Thomas P; Plutzky, Jorge; Krauss, Ronald M

    2010-08-01

    Recent evidence suggests that lipoproteins serve as circulating reservoirs of peroxisomal proliferator activated receptor (PPAR) ligands that are accessible through lipolysis. The present study was conducted to determine the biochemical basis of PPAR-alpha activation by lipolysis products and their contribution to PPAR-alpha function in vivo. PPAR-alpha activation was measured in bovine aortic endothelial cells following treatment with human plasma, VLDL lipolysis products, or oleic acid. While plasma failed to activate PPAR-alpha, oleic acid performed similarly to VLDL lipolysis products. Therefore, fatty acids are likely to be the PPAR-alpha ligands generated by VLDL lipolysis. Indeed, unbound fatty acid concentration determined PPAR-alpha activation regardless of fatty acid source, with PPAR-alpha activation occurring only at unbound fatty acid concentrations that are unachievable under physiological conditions without lipase action. In mice, a synthetic lipase inhibitor (poloxamer-407) attenuated fasting-induced changes in expression of PPAR-alpha target genes. Apolipoprotein CIII (apoCIII), an endogenous inhibitor of lipoprotein and hepatic lipase, regulated access to the lipoprotein pool of PPAR-alpha ligands, because addition of exogenous apoCIII inhibited, and removal of endogenous apoCIII potentiated, lipolytic PPAR-alpha activation. These data suggest that the PPAR-alpha response is generated by unbound fatty acids released locally by lipase activity and not by circulating plasma fatty acids.

  7. Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation

    PubMed Central

    Estrela, Gabriel R.; Wasinski, Frederick; Batista, Rogério O.; Hiyane, Meire I.; Felizardo, Raphael J. F.; Cunha, Flavia; de Almeida, Danilo C.; Malheiros, Denise M. A. C.; Câmara, Niels O. S.; Barros, Carlos C.; Bader, Michael; Araujo, Ronaldo C.

    2017-01-01

    The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1β and TNF-α levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-α was activated in mice after CR. An antagonist of PPAR-α blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-α activation. PMID:28303105

  8. Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation.

    PubMed

    Estrela, Gabriel R; Wasinski, Frederick; Batista, Rogério O; Hiyane, Meire I; Felizardo, Raphael J F; Cunha, Flavia; de Almeida, Danilo C; Malheiros, Denise M A C; Câmara, Niels O S; Barros, Carlos C; Bader, Michael; Araujo, Ronaldo C

    2017-01-01

    The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1β and TNF-α levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-α was activated in mice after CR. An antagonist of PPAR-α blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-α activation.

  9. Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future.

    PubMed

    van Raalte, Daniel H; Li, Min; Pritchard, P Haydn; Wasan, Kishor M

    2004-09-01

    Peroxisome proliferator-activated receptor (PPAR)-alpha is a ligand-activated transcriptional factor that belongs to the family of nuclear receptors. PPAR-alpha regulates the expression of genes involved in fatty acid beta-oxidation and is a major regulator of energy homeostasis. Fibrates are PPAR-alpha agonists and have been used to treat dyslipidemia for several decades because of their triglyceride (TG) lowering and high-density lipoprotein cholesterol (HDL-C) elevating effects. More recent research has demonstrated anti-inflammatory and anti-thrombotic actions of PPAR-alpha agonists in the vessel wall as well. Thus, PPAR-alpha agonists decrease the progression of atherosclerosis by modulating metabolic risk factors and by their anti-inflammatory actions on the level of the vascular wall. This is confirmed by several clinical studies, in which fibrates have shown to reduce atherosclerotic plaque formation and the event rate of coronary heart disease (CHD), especially in patients suffering from metabolic syndrome (MS). MS is characterized by a group of metabolic risk factors that include obesity, raised blood pressure, dyslipidemia, insulin resistance or glucose intolerance, and a prothrombotic state, and its incidence in the Western world is rising to epidemic proportions. This review paper will focus on the functions of PPAR-alpha in fatty acid beta-oxidation, lipid metabolism, and vascular inflammation. Furthermore, PPAR-alpha genetics, the clinical use of PPAR-alpha activators and their future perspective will be discussed.

  10. PPAR{alpha} is a key regulator of hepatic FGF21

    SciTech Connect

    Lundasen, Thomas; Hunt, Mary C.; Nilsson, Lisa-Mari; Sanyal, Sabyasachi; Angelin, Bo; Alexson, Stefan E.H.; Rudling, Mats . E-mail: mats.rudling@cnt.ki.se

    2007-08-24

    The metabolic regulator fibroblast growth factor 21 (FGF21) has antidiabetic properties in animal models of diabetes and obesity. Using quantitative RT-PCR, we here show that the hepatic gene expression of FGF21 is regulated by the peroxisome proliferator-activated receptor alpha (PPAR{alpha}). Fasting or treatment of mice with the PPAR{alpha} agonist Wy-14,643 induced FGF21 mRNA by 10-fold and 8-fold, respectively. In contrast, FGF21 mRNA was low in PPAR{alpha} deficient mice, and fasting or treatment with Wy-14,643 did not induce FGF21. Obese ob/ob mice, known to have increased PPAR{alpha} levels, displayed 12-fold increased hepatic FGF21 mRNA levels. The potential importance of PPAR{alpha} for FGF21 expression also in human liver was shown by Wy-14,643 induction of FGF21 mRNA in human primary hepatocytes, and PPAR{alpha} response elements were identified in both the human and mouse FGF21 promoters. Further studies on the mechanisms of regulation of FGF21 by PPAR{alpha} in humans will be of great interest.

  11. Characterization of peroxisome proliferator-activiated receptor alpha (PPARalpha)-independent effects of PPARalpha activators in the rodent liver: Di(2-ethylehexyl) phthalate activates the constitutive activated receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Recent studies indicate that the plasticizer di-2-ethylhexyl ph...

  12. Characterization of peroxisome proliferator-activiated receptor alpha (PPARalpha)-independent effects of PPARalpha activators in the rodent liver: Di(2-ethylehexyl) phthalate activates the constitutive activated receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Recent studies indicate that the plasticizer di-2-ethylhexyl ph...

  13. PPAR{alpha} agonists up-regulate organic cation transporters in rat liver cells

    SciTech Connect

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus . E-mail: klaus.eder@landw.uni-halle.de

    2006-11-24

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-{alpha} agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPAR{alpha} agonists in livers of rats and in Fao cells. We conclude that PPAR{alpha} agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis.

  14. Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPAR{alpha}

    SciTech Connect

    Jedidi, Iness; Couturier, Martine; Therond, Patrice; Gardes-Albert, Monique; Legrand, Alain; Barouki, Robert; Bonnefont-Rousselot, Dominique; Aggerbeck, Martine . E-mail: Martine.Aggerbeck@univ-paris5.fr

    2006-12-22

    The uptake of oxidized LDL by macrophages is a key event in the development of atherosclerosis. The scavenger receptor CD36 is one major receptor that internalizes oxidized LDL. In differentiated human macrophages, we compared the regulation of CD36 expression by copper-oxidized LDL or their products. Only oxidized derivatives of cholesteryl ester (CEOOH) increased the amount of CD36 mRNA (2.5-fold). Both oxidized LDL and CEOOH treatment increased two to fourfold the transcription of promoters containing peroxisome-proliferator-activated-receptor responsive elements (PPRE) in the presence of PPAR{alpha} or {gamma}. Electrophoretic-mobility-shift-assays with nuclear extracts prepared from macrophages treated by either oxidized LDL or CEOOH showed increased binding of PPAR{alpha} to the CD36 gene promoter PPRE. In conclusion, CEOOH present in oxidized LDL increase CD36 gene expression in a pathway involving PPAR{alpha}.

  15. PPAR{alpha} is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    SciTech Connect

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio . E-mail: n.ishida@aist.go.jp

    2007-06-08

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPAR{alpha} ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erb{alpha} was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPAR{alpha} is involved in circadian clock control independently of the SCN and that PPAR{alpha} could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.

  16. Double gene deletion reveals the lack of cooperation between PPAR{alpha} and PPAR{beta} in skeletal muscle

    SciTech Connect

    Bedu, E.; Desplanches, D.; Pequignot, J.; Bordier, B.; Desvergne, B. . E-mail: beatrice.desvergne@unil.ch

    2007-06-15

    The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPAR{alpha} and PPAR{beta} isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPAR{alpha}-/-, PPAR{beta}-/-, and double PPAR{alpha}-/- {beta}-/- mice. Heart and soleus muscle analyses show that the deletion of PPAR{alpha} induces a decrease of the HAD activity ({beta}-oxidation) while soleus contractile phenotype remains unchanged. A PPAR{beta} deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPAR{beta} and PPAR{alpha} functions since double gene deletion PPAR{alpha}-PPAR{beta} mostly reproduces the null PPAR{alpha}-mediated reduced {beta}-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPAR{beta} is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPAR{alpha} in PPAR{alpha} null mice.

  17. A combined ligand and structure based approach to design potent PPAR-alpha agonists

    NASA Astrophysics Data System (ADS)

    Dhoke, Gaurao V.; Gangwal, Rahul P.; Sangamwar, Abhay T.

    2012-11-01

    A combined ligand and structure based pharmacophore modeling approach was employed to reveal structural and chemical features necessary for PPAR-alpha agonistic activity. The best HypoGen pharmacophore model Hypo1 for PPAR-alpha agonists contains two hydrogen-bond acceptor (HBA), two general hydrophobic (H), and one negative ionizable (NI) feature. In addition, one structure based pharmacophore model was developed using LigandScout3.0, which has identified additional three hydrophobic features. Further, molecular docking studies of all agonists showed hydrogen bond interactions with important amino acids (Ser280, Tyr314 and Tyr464) and these interactions were compared with Hypo1, which shows that the Hypo1 has a good predictive ability. The screened virtual hits from Hypo1 were subjected to the Lipinski's rule of five, structure based pharmacophore screening and molecular docking analysis. Finally, three novel compounds with diverse scaffolds were selected as possible candidates for the designing of potent PPAR-alpha agonists. Combination of these two approaches results in designing an ideal pharmacophore model, which provides a powerful tool for the discovery of novel PPAR-alpha agonists.

  18. PPAR{alpha} gene expression is up-regulated by LXR and PXR activators in the small intestine

    SciTech Connect

    Inoue, Jun; Satoh, Shin-ichi; Kita, Mariko; Nakahara, Mayuko; Hachimura, Satoshi; Miyata, Masaaki; Nishimaki-Mogami, Tomoko; Sato, Ryuichiro

    2008-07-11

    LXR, PXR, and PPAR{alpha} are members of a nuclear receptor family which regulate the expression of genes involved in lipid metabolism. Here, we show the administration of T0901317 stimulates PPAR{alpha} gene expression in the small intestine but not in the liver of both normal and FXR-null mice. The administration of LXR specific ligand GW3965, or PXR specific ligand PCN has the same effect, indicating that ligand-dependent activation of LXR and PXR, but not FXR, is responsible for the increased gene expression of PPAR{alpha} in the mouse small intestine.

  19. Isoform specific changes in PPAR{alpha} and {beta} in colon and breast cancer with differentiation

    SciTech Connect

    Aung, Cho S.; Faddy, Helen M.; Lister, Erin J.; Monteith, Gregory R.; Roberts-Thomson, Sarah J. . E-mail: S.Roberts-Thomson@pharmacy.uq.edu.au

    2006-02-10

    To investigate the role of peroxisome proliferator-activated receptors (PPARs) {alpha} and {beta} in the differentiation of colon cancer cells, we differentiated HT-29 cells using sodium butyrate (NaB) and culturing post-confluence and assessed differentiation using the marker intestinal alkaline phosphatase. While PPAR{alpha} levels only changed with culturing post confluence, PPAR{beta} levels increased independent of the method of differentiation. To explore further the differences induced by NaB, we assessed changes in both PPAR isoforms in MCF-7 breast cancer cells cultured in the presence of NaB over 48 h. Again a very different expression pattern was observed with PPAR{alpha} increasing after 4 h and remaining elevated, while PPAR{beta} increased transiently. Our studies suggest that the expression of PPARs is dependent upon both the method of differentiation and on time. Moreover, these studies show that changes in PPAR{alpha} levels are not required for the differentiation of colon cancer cell lines, whereas changes in PPAR{beta} are more closely associated with differentiation.

  20. The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPAR{alpha}

    SciTech Connect

    Danno, Hirosuke; Ishii, Kiyo-aki; Nakagawa, Yoshimi; Mikami, Motoki; Yamamoto, Takashi; Yabe, Sachiko; Furusawa, Mika; Kumadaki, Shin; Watanabe, Kazuhisa; Shimizu, Hidehisa; Matsuzaka, Takashi; Kobayashi, Kazuto; Takahashi, Akimitsu; Yatoh, Shigeru; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2010-01-08

    To elucidate the physiological role of CREBH, the hepatic mRNA and protein levels of CREBH were estimated in various feeding states of wild and obesity mice. In the fast state, the expression of CREBH mRNA and nuclear protein were high and profoundly suppressed by refeeding in the wild-type mice. In ob/ob mice, the refeeding suppression was impaired. The diet studies suggested that CREBH expression was activated by fatty acids. CREBH mRNA levels in the mouse primary hepatocytes were elevated by addition of the palmitate, oleate and eicosapenonate. It was also induced by PPAR{alpha} agonist and repressed by PPAR{alpha} antagonist. Luciferase reporter gene assays indicated that the CREBH promoter activity was induced by fatty acids and co-expression of PPAR{alpha}. Deletion studies identified the PPRE for PPAR{alpha} activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay confirmed that PPAR{alpha} directly binds to the PPRE. Activation of CREBH at fasting through fatty acids and PPAR{alpha} suggest that CREBH is involved in nutritional regulation.

  1. Functional activation of peroxisome proliferator-activated receptor alpha (PPARalpha) by environmental chemicals in relation to their toxicities.

    PubMed

    Nakajima, Tamie; Ichihara, Gaku; Kamijima, Michihiro; Itohara, Seiichiro; Aoyama, Toshifumi

    2002-11-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) may work in the processes of both physiological and toxicological response to various endogenous or exogenous substances. The literature on the study of functional activation of PPARalpha by environmental chemicals in relation to their toxicities were reviewed. Environmental chemicals that were found to induce peroxisomes (peroxisome proliferators) and to activate the function of PPARalpha included plasticizers, herbicides, and organic solvents that have carboxyl groups in their parent substances or their metabolites. Several studies have showed species differences in the constitutive expression of PPARalpha and activation of PPARalpha, which may result in species differences in the induction of transcription of the genes encoding several peroxisomal enzymes. Although much information has supported the view that PPARalpha is primarily involved in the hepatic carcinogenicity of peroxisome proliferators, conflicting evidence exists. Most of the peroxisome proliferators have been shown to induce reproductive and developmental disorders, which might, in part. be associated with the functional activation of PPARalpha. Few epidemiological studies on the effect of peroxisome proliferators on humans have been conducted. The effect of perfluorooctanoic acid on humans was evaluated from the aspect of lipid metabolism in one study, which concluded that there was no effect.

  2. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders.

    PubMed

    Leone, T C; Weinheimer, C J; Kelly, D P

    1999-06-22

    We hypothesized that the lipid-activated transcription factor, the peroxisome proliferator-activated receptor alpha (PPARalpha), plays a pivotal role in the cellular metabolic response to fasting. Short-term starvation caused hepatic steatosis, myocardial lipid accumulation, and hypoglycemia, with an inadequate ketogenic response in adult mice lacking PPARalpha (PPARalpha-/-), a phenotype that bears remarkable similarity to that of humans with genetic defects in mitochondrial fatty acid oxidation enzymes. In PPARalpha+/+ mice, fasting induced the hepatic and cardiac expression of PPARalpha target genes encoding key mitochondrial (medium-chain acyl-CoA dehydrogenase, carnitine palmitoyltransferase I) and extramitochondrial (acyl-CoA oxidase, cytochrome P450 4A3) enzymes. In striking contrast, the hepatic and cardiac expression of most PPARalpha target genes was not induced by fasting in PPARalpha-/- mice. These results define a critical role for PPARalpha in a transcriptional regulatory response to fasting and identify the PPARalpha-/- mouse as a potentially useful murine model of inborn and acquired abnormalities of human fatty acid utilization.

  3. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPAR{alpha} activation and oxidative stress

    SciTech Connect

    Zhang, X.; Li, L.; Prabhakaran, K.; Zhang, L.; Leavesley, H.B.; Borowitz, J.L.; Isom, G.E.

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential ({delta}{psi}{sub m}) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPAR{alpha} antagonist) or PPAR{alpha} knock-down by RNA interference (RNAi) inhibited PPAR{alpha} activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPAR{alpha} did not alter ROS generation, suggesting a PPAR{alpha}-independent component to the response. Co-treatment with PPAR{alpha}-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPAR{alpha}-mediated pathway and an oxidative stress pathway independent of PPAR{alpha} mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  4. Time-course comparison of xenobiotic activators of CAR and PPAR{alpha} in mouse liver

    SciTech Connect

    Ross, Pamela K.; Woods, Courtney G.; Bradford, Blair U.; Kosyk, Oksana; Gatti, Daniel M.; Cunningham, Michael L.; Rusyn, Ivan

    2009-03-01

    Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR){alpha} are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPAR{alpha} will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver, microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 h, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPAR {alpha}. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPAR{alpha} in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens.

  5. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size.

    PubMed

    Wayman, Nicole S; Hattori, Yoshiyuki; McDonald, Michelle C; Mota-Filipe, Helder; Cuzzocrea, Salvatore; Pisano, Babrbara; Chatterjee, Prabal K; Thiemermann, Christoph

    2002-07-01

    This study was designed to investigate the effects of various chemically distinct activators of PPAR-gamma and PPAR-alpha in a rat model of acute myocardial infarction. Using Northern blot analysis and RT-PCR in samples of rat heart, we document the expression of the mRNA for PPAR-gamma (isoform 1 but not isoform 2) as well as PPAR-beta and PPAR-alpha in freshly isolated cardiac myocytes and cardiac fibroblasts and in the left and right ventricles of the heart. Using a rat model of regional myocardial ischemia and reperfusion (in vivo), we have discovered that various chemically distinct ligands of PPAR-gamma (including the TZDs rosiglitazone, ciglitazone, and pioglitazone, as well as the cyclopentanone prostaglandins 15D-PGJ2 and PGA1) cause a substantial reduction of myocardial infarct size in the rat. We demonstrate that two distinct ligands of PPAR-alpha (including clofibrate and WY 14643) also cause a substantial reduction of myocardial infarct size in the rat. The most pronounced reduction in infarct size was observed with the endogenous PPAR-gamma ligand, 15-deoxyDelta12,14-prostagalndin J2 (15D-PGJ2). The mechanisms of the cardioprotective effects of 15D-PGJ2 may include 1) activation of PPAR-alpha, 2) activation of PPAR-gamma, 3) expression of HO-1, and 4) inhibition of the activation of NF-kappaB in the ischemic-reperfused heart. Inhibition by 15D-PGJ2 of the activation of NF-kappaB in turn results in a reduction of the 1) expression of inducible nitric oxide synthase and the nitration of proteins by peroxynitrite, 2) formation of the chemokine MCP-1, and 3) expression of the adhesion molecule ICAM-1. We speculate that ligands of PPAR-gamma and PPAR-alpha may be useful in the therapy of conditions associated with ischemia-reperfusion of the heart and other organs. Our findings also imply that TZDs and fibrates may help protect the heart against ischemia-reperfusion injury. This beneficial effect of 15D-PGJ2 was associated with a reduction in the

  6. PPAR{alpha} does not suppress muscle-associated gene expression in brown adipocytes but does influence expression of factors that fingerprint the brown adipocyte

    SciTech Connect

    Walden, Tomas B.; Petrovic, Natasa; Nedergaard, Jan

    2010-06-25

    Brown adipocytes and myocytes develop from a common adipomyocyte precursor. PPAR{alpha} is a nuclear receptor important for lipid and glucose metabolism. It has been suggested that in brown adipose tissue, PPAR{alpha} represses the expression of muscle-associated genes, in this way potentially acting to determine cell fate in brown adipocytes. To further understand the possible role of PPAR{alpha} in these processes, we measured expression of muscle-associated genes in brown adipose tissue and brown adipocytes from PPAR{alpha}-ablated mice, including structural genes (Mylpf, Tpm2, Myl3 and MyHC), regulatory genes (myogenin, Myf5 and MyoD) and a myomir (miR-206). However, in our hands, the expression of these genes was not influenced by the presence or absence of PPAR{alpha}, nor by the PPAR{alpha} activator Wy-14,643. Similarly, the expression of genes common for mature brown adipocyte and myocytes (Tbx15, Meox2) were not affected. However, the brown adipocyte-specific regulatory genes Zic1, Lhx8 and Prdm16 were affected by PPAR{alpha}. Thus, it would not seem that PPAR{alpha} represses muscle-associated genes, but PPAR{alpha} may still play a role in the regulation of the bifurcation of the adipomyocyte precursor into a brown adipocyte or myocyte phenotype.

  7. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  8. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  9. Activation of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) suppresses postprandial lipidemia through fatty acid oxidation in enterocytes

    SciTech Connect

    Kimura, Rino; Takahashi, Nobuyuki; Murota, Kaeko; Yamada, Yuko; Niiya, Saori; Kanzaki, Noriyuki; Murakami, Yoko; Moriyama, Tatsuya; Goto, Tsuyoshi; Kawada, Teruo

    2011-06-24

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. {yields} PPAR{alpha} activation also increased oxygen consumption rate and CO{sub 2} production and decreased secretion of triglyceride and ApoB from Caco-2 cells. {yields} Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO{sub 2} production in small intestinal epithelial cells. {yields} Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. {yields} It suggested that intestinal lipid metabolism regulated by PPAR{alpha} activation suppresses postprandial lipidemia. -- Abstract: Activation of peroxisome proliferator-activated receptor (PPAR)-{alpha} which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPAR{alpha} activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPAR{alpha} activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPAR{alpha} agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and

  10. Regulation of miR-200c by nuclear receptors PPAR{alpha}, LRH-1 and SHP

    SciTech Connect

    Zhang, Yuxia; Yang, Zhihong; Whitby, Richard; Wang, Li

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Knockdown of PPAR{alpha} and LRH-1 abolishes miR-200c inhibition of HCC cell migration. Black-Right-Pointing-Pointer SHP represses miR-200c expression via inhibition of the activity of PPAR{alpha} and LRH-1. Black-Right-Pointing-Pointer RJW100 exhibits strong ability to downregulate ZEB1 and ZEB2 proteins. -- Abstract: We investigated regulation of miR-200c expression by nuclear receptors. Ectopic expression of miR-200c inhibited MHCC97H cell migration, which was abrogated by the synergistic effects of PPAR{alpha} and LRH-1 siRNAs. The expression of miR-200c was decreased by PPAR{alpha}/LRH-1 siRNAs and increased by SHP siRNAs, and overexpression of the receptors reversed the effects of their respective siRNAs. SHP siRNAs also drastically enhanced the ability of the LRH-1 agonist RJW100 to induce miR-200c and downregulate ZEB1 and ZEB2 proteins. Co-expression of PPAR{alpha} and LRH-1 moderately transactivated the miR-200c promoter, which was repressed by SHP co-expression. RJW100 caused strong activation of the miR-200c promoter. This is the first report to demonstrate that miR-200c expression is controlled by nuclear receptors.

  11. Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPAR{alpha} agonist WY14643 in rat hepatocytes

    SciTech Connect

    Wieneke, N.; Neuschaefer-Rube, F.; Bode, L.M.; Kuna, M.; Andres, J.; Carnevali, L.C.; Hirsch-Ernst, K.I.; Pueschel, G.P.

    2009-10-01

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR{alpha} agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR{alpha} agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR{alpha} agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR{alpha}-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR{alpha} ligands. The synergism of the PPAR{alpha} agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

  12. PPAR-alpha and PPAR-beta expression changes in the hippocampus of rats undergoing global cerebral ischemia/reperfusion due to PPAR-gamma status

    PubMed Central

    2014-01-01

    Background Peroxisome proliferator-activated receptors (PPARs, including alpha, beta and gamma subtypes) and their agonists have a protective role in treatment of central nervous system (CNS) diseases. The present study was designed to investigate the expression changes of PPAR-alpha, -beta, -gamma and NF-kappa B in the hippocampus of rats with global cerebral ischemia/reperfusion injury (GCIRI) after treatment with agonists or antagonists of PPAR-gamma. Methods A rat GCIRI model was established by occlusion of bilateral common carotid arteries and cervical vena retransfusion. GW9662 (5 μg), a selective PPAR- gamma antagonist, was intraventricularly injected at 0.5 h before GCIR; Rosiglitazone (0.8, 2.4 and 7.2 mg/kg), a selective PPAR- gamma agonist, was injected intraperitoneally at 1 h before GCIRI. The expression changes of PPAR-alpha, -beta and -gamma at mRNA and protein levels were detected by RT-PCR and western blotting. The changes of spatial learning and memory (SLM) functions were assessed by using a Morris water maze; the pathohistological changes of hippocampal neurons were evaluated by hematoxylin-eosin (HE) staining; the contents of IL-1, IL-6, IL-10 and TNF-alpha, and the NF- kappa B expression were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were also detected. Results The SLM function and hippocampal neurons were significantly impaired after the occurrence of GCIRI. The MDA, IL-1, IL-6, IL-10, TNF-alpha content and expression of PPARs increased significantly, but the SOD activity and NF-kappa B expression were weakened in the hippocampus. Rosiglitazone treatment significantly protected rats from SLM function impairment and neuron death, and resulted in higher expressions of SOD activity and NF-kappa B, but lower contents of MDA and inflammatory factors. After treatment with rosiglitazone or GW9662, no significant change in PPAR-alpha

  13. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-{alpha}

    SciTech Connect

    Hsun-Wei Huang, Tom; Peng Gang; Qian Li, George; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-02-01

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-{alpha}, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-{alpha} mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-{alpha} luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-{alpha} antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-{alpha} activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity.

  14. Perfluorocarboxylic acids induce cytochrome P450 enzymes in mouse liver through activation of PPAR-alpha and CAR transcription factors.

    PubMed

    Cheng, Xingguo; Klaassen, Curtis D

    2008-11-01

    Cytochrome p450 enzymes (Cyps) are major phase-I xenobiotic-metabolizing enzymes. Cyps are regulated by many environmental chemicals and drugs. However, knowledge about regulation of Cyps by perfluorocarboxylic acids (PFCAs), which are persistent in the environment, is limited. Two days after a single i.p. administration (50 mg/kg) of perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) increased mRNA expression of Cyp2B10 (20-fold), 3A11 (two-fold), and 4A14 (32-fold), but not Cyp1A1/2 in mouse livers. PFDA and PFOA also markedly increased protein expression of Cyp2B (50-fold) and 4A (10-fold). PFDA increased Cyp4A14 mRNA expression at relatively low doses (0.5 mg/kg), but increased Cyp2B10 mRNA expression only at high doses (> 20 mg/kg). By using constitutive androstane receptor (CAR)-, pregnane-X receptor (PXR)-, peroxisome proliferator-activated receptor alpha (PPAR)-alpha-, and farnesoid X receptor-null mouse models, PPAR-alpha and CAR were shown to play central roles in the induction of Cyps by PFDA. Specifically, PFDA increased Cyp4A14 mRNA expression in wild-type (WT) mice, but much less in PPAR-alpha-null mice. PFDA increased Cyp2B10 mRNA expression in WT mice, but not in CAR-null mice. In addition, PFDA increased mRNA expression and nuclear translocation of the transcription factor CAR. Therefore, the current studies provide important insight into understanding the regulatory mechanisms initiated by PFCAs, and may help to better predict and understand the toxicokinetics and toxicodynamics of various PFCAs. In conclusion, PFCAs increased Cyp2B10 and 4A14 expression by activating PPAR-alpha and CAR nuclear receptors, respectively. PPAR-alpha is activated at much lower doses of PFDA than CAR.

  15. Oleoylethanolamide, a natural ligand for PPAR-alpha, inhibits insulin receptor signalling in HTC rat hepatoma cells.

    PubMed

    Martínez de Ubago, María; García-Oya, Inmaculada; Pérez-Pérez, Antonio; Canfrán-Duque, Alberto; Quintana-Portillo, Rocio; Rodríguez de Fonseca, Fernando; González-Yanes, Carmen; Sánchez-Margalet, Víctor

    2009-08-01

    Oleoylethanolamide (OEA) is a lipid mediator belonging to the fatty acid ethanolamides family. It is produced by intestine and adipose tissue. It inhibits food intake and body weight gain, and has hypolipemiant action in vivo, as well as a lipolytic effect in vitro. OEA is a PPAR-alpha agonist, and recently it has been found that OEA is an endogenous ligand of an orphan receptor. Previously, we have shown that OEA inhibits insulin-stimulated glucose uptake in isolated adipocytes, and produces glucose intolerance in rats. In the present work, we have studied another insulin target cell, the hepatocyte using a rat hepatoma cell line (HTC), and we have studied the cross-talk of OEA signalling with metabolic and mitotic signal transduction of insulin receptor. OEA dose-dependently activates JNK and p38 MAPK, and inhibits insulin receptor phosphorylation. OEA inhibits insulin receptor activation, blunting insulin signalling in the downstream PI3K pathway, decreasing phosphorylation of PKB and its target GSK-3. OEA also inhibits insulin-dependent MAPK pathway, as assessed by immunoblot of phosphorylated MEK and MAPK. These effects were reversed by blocking JNK or p38 MAPK using pharmacological inhibitors (SP 600125, and SB 203580). Since OEA is an endogenous PPAR-alpha agonist, we investigated whether a pharmacologic agonist (WY 14643) may mimic the OEA effect on insulin receptor signalling. Activation of PPAR-alpha by the pharmacological agonist WY14643 in HTC hepatoma cells is sufficient to inhibit insulin signalling and this effect is also dependent on p38 MAPK but not JNK kinase. In summary, OEA inhibits insulin metabolic and mitogenic signalling by activation of JNK and p38 MAPK via PPAR-alpha.

  16. PPAR{alpha} regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes

    SciTech Connect

    Thulin, Petra; Rafter, Ingalill; Stockling, Kenneth; Tomkiewicz, Celine; Norjavaara, Ensio; Aggerbeck, Martine; Hellmold, Heike; Ehrenborg, Ewa; Andersson, Ulf; Cotgreave, Ian; Glinghammar, Bjoern

    2008-08-15

    In this work, we investigated a potential mechanism behind the observation of increased aminotransferase levels in a phase I clinical trial using a lipid-lowering drug, the peroxisome proliferator-activated receptor (PPAR) {alpha} agonist, AZD4619. In healthy volunteers treated with AZD4619, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were elevated without an increase in other markers for liver injury. These increases in serum aminotransferases have previously been reported in some patients receiving another PPAR{alpha} agonist, fenofibrate. In subsequent in vitro studies, we observed increased expression of ALT1 protein and mRNA in human hepatocytes after treatment with fenofibric acid. The PPAR effect on ALT1 expression was shown to act through a direct transcriptional mechanism involving at least one PPAR response element (PPRE) in the proximal ALT1 promoter, while no effect of fenofibrate and AZD4619 was observed on the ALT2 promoter. Binding of PPARs to the PPRE located at - 574 bp from the transcriptional start site was confirmed on both synthetic oligonucleotides and DNA in hepatocytes. These data show that intracellular ALT expression is regulated by PPAR agonists and that this mechanism might contribute to increased ALT activity in serum.

  17. Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886.

    PubMed Central

    Kehrer, J P; Biswal, S S; La, E; Thuillier, P; Datta, K; Fischer, S M; Vanden Heuvel, J P

    2001-01-01

    Although MK886 was originally identified as an inhibitor of 5-lipoxygenase activating protein (FLAP), recent data demonstrate that this activity does not underlie its ability to induce apoptosis [Datta, Biswal and Kehrer (1999) Biochem. J. 340, 371--375]. Since FLAP is a fatty-acid binding protein, it is conceivable that MK886 may affect other such proteins. A family of nuclear receptors that are activated by fatty acids and their metabolites, the peroxisome-proliferator-activated receptors (PPARs), have been implicated in apoptosis and may represent a target for MK886. The ability of MK886 to inhibit PPAR-alpha, -beta and -gamma activity was assessed using reporter assay systems (peroxisome-proliferator response element--luciferase). Using a transient transfection system in monkey kidney fibroblast CV-1 cells, mouse keratinocyte 308 cells and human lung adenocarcinoma A549 cells, 10--20 microM MK886 inhibited Wy14,643 activation of PPAR alpha by approximately 80%. Similar inhibition of PPAR alpha by MK886 was observed with a stable transfection reporter system in CV-1 cells. Only minimal inhibitory effects were seen on PPAR beta and PPAR gamma. MK886 inhibited PPAR alpha by a non-competitive mechanism as shown by its effects on the binding of arachidonic acid to PPAR alpha protein, and a dose-response study using a transient transfection reporter assay in COS-1 cells. An assay assessing PPAR ligand-receptor interactions showed that MK886 prevents the conformational change necessary for active-complex formation. The expression of keratin-1, a protein encoded by a PPAR alpha-responsive gene, was reduced by MK886 in a culture of mouse primary keratinocytes, suggesting that PPAR inhibition has functional consequences in normal cells. Although Jurkat cells express all PPAR isoforms, various PPAR alpha and PPAR gamma agonists were unable to prevent MK886-induced apoptosis. This is consistent with MK886 functioning as a non-competitive inhibitor of PPAR alpha, but may

  18. Statins and PPAR{alpha} agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment

    SciTech Connect

    Johnson, Timothy E. . E-mail: Timothy_Johnson@merck.com; Zhang, Xiaohua; Shi, Shu; Umbenhauer, Diane R.

    2005-11-01

    Statins and fibrates (weak PPAR{alpha} agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPAR{alpha} agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPAR{alpha} compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPAR{gamma} agonist Rosiglitazone caused little or no cell death at up to 10 {mu}M and the PPAR{delta} ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPAR{alpha} agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPAR{alpha} agonism mediates in part the toxicity response to PPAR{alpha} compounds. Furthermore, PPAR{alpha} agonists and statins cause myotoxicity through distinct and independent pathways.

  19. Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage.

    PubMed

    Nakajima, Tamie; Kamijo, Yuji; Tanaka, Naoki; Sugiyama, Eiko; Tanaka, Eiji; Kiyosawa, Kendo; Fukushima, Yoshimitsu; Peters, Jeffrey M; Gonzalez, Frank J; Aoyama, Toshifumi

    2004-10-01

    The mechanisms underlying alcoholic liver disease are not completely understood, but lipid accumulation seems to be central to the cause of this disease. The peroxisome proliferator-activated receptor alpha (PPARalpha) plays an important role in the control of lipid homeostasis, metabolism of bioactive molecules, and modulation of inflammatory responses. To investigate the roles of PPARalpha in alcoholic liver injury, wild-type and PPARalpha-null mice were continuously fed a diet containing 4% ethanol, and liver injury was analyzed. PPARalpha-null mice fed ethanol exhibited marked hepatomegaly, hepatic inflammation, cell toxicity, fibrosis, apoptosis, and mitochondrial swelling. Some of these hepatic abnormalities were consistent with those of patients with alcoholic liver injury and were not found in wild-type mice. Next, the molecular mechanisms of ethanol-induced liver injury in PPARalpha-null mice were investigated, and changes related to ethanol and acetaldehyde metabolism, oxidative stress, inflammation, hepatocyte proliferation, fibrosis, and mitochondrial permeability transition activation occurred specifically in PPARalpha-null mice as compared with wild-type mice. In conclusion, these studies suggest a protective role for PPARalpha in alcoholic liver disease. Humans may be more susceptible to liver toxicity induced by ethanol as PPARalpha expression in human liver is considerably lower compared to that of rodents.

  20. Haploinsufficiency in the PPAR{alpha} and LDL receptor genes leads to gender- and age-specific obesity and hyperinsulinemia

    SciTech Connect

    Sugiyama, Eiko . E-mail: eikoyoko@nagano-kentan.ac.jp; Tanaka, Naoki; Nakajima, Tamie; Kamijo, Yuji; Yokoyama, Shin; Li Yufeng; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-11-17

    When preparing peroxisome proliferator-activated receptor (PPAR){alpha}:low-density lipoprotein receptor (LDLR) (-/-) double knockout mice, we unexpectedly found a unique gender- and age-specific obesity in the F1 generation, PPAR{alpha} (+/-):LDLR (+/-), even in mice fed standard chow. Body weights of the male heterozygous mice increased up to about 60 g at 75 weeks of age, then decreased by about 30 g at 100 weeks of age. More than 95% of the heterozygous mice between 35- and 75-week-olds were overweight. Of interest, the obese heterozygous mice also exhibited hyperinsulinemia correlating with moderate insulin resistance. Hepatic gene expression of LDLR was lower than expected in the heterozygous mice, particularly at 50 and 75 weeks of age. In contrast, the hepatic expression of PPAR{alpha} was higher than expected in obese heterozygous mice, but decreased in non-obese older heterozygous mice. Modulated expression of these genes may be partially associated with the onset of the hyperinsulinemia.

  1. Phytol directly activates peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) and regulates gene expression involved in lipid metabolism in PPAR{alpha}-expressing HepG2 hepatocytes

    SciTech Connect

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo . E-mail: fat@kais.kyoto-u.ac.jp

    2005-11-18

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPAR{alpha}-specific activator. Phytol induced the increase in PPAR{alpha}-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPAR{alpha}. Moreover, the addition of phytol upregulated the expression of PPAR{alpha}-target genes at both mRNA and protein levels in PPAR{alpha}-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPAR{alpha} ligand and that it stimulates the expression of PPAR{alpha}-target genes in intact cells. Because PPAR{alpha} activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism.

  2. The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist, AVE8134, attenuates the progression of heart failure and increases survival in rats.

    PubMed

    Linz, Wolfgang; Wohlfart, Paulus; Baader, Manuel; Breitschopf, Kristin; Falk, Eugen; Schäfer, Hans-Ludwig; Gerl, Martin; Kramer, Werner; Rütten, Hartmut

    2009-07-01

    To investigate the efficacy of the peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, AVE8134, in cellular and experimental models of cardiac dysfunction and heart failure. In Sprague Dawley rats with permanent ligation of the left coronary artery (post-MI), AVE8134 was compared to the PPARgamma agonist rosiglitazone and in a second study to the ACE inhibitor ramipril. In DOCA-salt sensitive rats, efficacy of AVE8134 on cardiac hypertrophy and fibrosis was investigated. Finally, AVE8134 was administered to old spontaneously hypertensive rats (SHR) at a non-blood pressure lowering dose with survival as endpoint. In cellular models, we studied AVE8134 on hypertrophy in rat cardiomyocytes, nitric oxide signaling in human endothelial cells (HUVEC) and LDL-uptake in human MonoMac-6 cells. In post-MI rats, AVE8134 dose-dependently improved cardiac output, myocardial contractility and relaxation and reduced lung and left ventricular weight and fibrosis. In contrast, rosiglitazone exacerbated cardiac dysfunction. Treatment at AVE8134 decreased plasma proBNP and arginine and increased plasma citrulline and urinary NOx/creatinine ratio. In DOCA rats, AVE8134 prevented development of high blood pressure, myocardial hypertrophy and cardiac fibrosis, and ameliorated endothelial dysfunction. Compound treatment increased cardiac protein expression and phosphorylation of eNOS. In old SHR, treatment with a low dose of AVE8134 improved cardiac and vascular function and increased life expectancy without lowering blood pressure. AVE8134 reduced phenylephrine-induced hypertrophy in adult rat cardiomyocytes. In HUVEC, Ser-1177-eNOS phosphorylation but not eNOS expression was increased. In monocytes, AVE8134 increased the expression of CD36 and the macrophage scavenger receptor 1, resulting in enhanced uptake of oxidized LDL. The PPARalpha agonist AVE8134 prevents post-MI myocardial hypertrophy, fibrosis and cardiac dysfunction. AVE8134 has beneficial effects against

  3. A Global Genomic Screening Strategy Reveals Genetic and Chemical Activators ofPeroxisome Proliferator-Activated Receptor alpha (PPARalpha)

    EPA Science Inventory

    A comprehensive survey of chemical, diet and genetic perturbations that activate PPARalpha in the mouse liver has not been carried out but would be useful to identify the factors that may contribute to PPARalpha-dependent liver tumors. A gene signature dependent on PPARalpha ac...

  4. A Global Genomic Screening Strategy Reveals Genetic and Chemical Activators ofPeroxisome Proliferator-Activated Receptor alpha (PPARalpha)

    EPA Science Inventory

    A comprehensive survey of chemical, diet and genetic perturbations that activate PPARalpha in the mouse liver has not been carried out but would be useful to identify the factors that may contribute to PPARalpha-dependent liver tumors. A gene signature dependent on PPARalpha ac...

  5. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    SciTech Connect

    Bouhlel, Mohamed Amine; Brozek, John; Derudas, Bruno; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.

  6. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  7. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  8. [Peroxisome proliferator-activated receptors-alpha (PPAR-alpha) and chronic heart failure: is there a reason to discuss the metabolic strategy of treatment?].

    PubMed

    Zhirov, I V; Zaseeva, A V; Masenko, V P; Tereshchenko, S N

    2014-01-01

    Despite improved prognosis in patients with heart failure (HF) treated with neurohumoral activation-suppressing drugs (such as angiotensin-converting enzyme inhibitors, angiotensin II receptor antagonists, beta-adrenergic receptor antagonists, aldosterone receptor antagonists), mortality from heart failure remains high, myocardial contractile dysfunction progresses, and the left ventricle becomes enlarged. This leads to the need to elaborate novel approaches to treating HF. The latter is obviously due to impaired myocardial energy substrate metabolism. The mechanisms underlying this phenomenon are numerous and complex. These include reduced myocardial expression and activity of key free fatty acid oxidative enzymes. The expression of these enzymes is controlled by peroxisome proliferator-activated receptors-alpha (PPAR-alpha). Thus, PPAR-alpha activation is a direct method to regulate myocardial fatty acid metabolism. Evidence for the efficiency of therapeutic strategies based on the fact that fatty acid metabolism may be modulated is controversial, which indicates that there may be more complex molecular/biochemical changes than supposed before. The data available in the literature suggest the promises of the above strategy and its serious therapeutic potential.

  9. Liver PPAR{alpha} and UCP2 are involved in the regulation of obesity and lipid metabolism by swim training in genetically obese db/db mice

    SciTech Connect

    Oh, Ki Sook; Kim, Mina; Lee, Jinmi; Kim, Min Jeong; Nam, Youn Shin; Ham, Jung Eun; Shin, Soon Shik; Lee, Chung Moo . E-mail: Chung@sookmyung.ac.kr; Yoon, Michung . E-mail: yoon60@mokwon.ac.kr

    2006-07-07

    Swim training for 6 weeks significantly decreased body weight gain, adipose tissue mass, and adipocyte size in both sexes of genetically obese db/db mice compared with their respective sedentary controls. Swim training also caused significant decreases in serum levels of free fatty acids, triglycerides, and total cholesterol in both sexes of obese mice. Concomitantly, hepatic mRNA levels of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) target enzymes responsible for mitochondrial and peroxisomal fatty acid {beta}-oxidation were significantly increased by swim training. Moreover, mRNA levels of uncoupling protein 2 (UCP2) in liver were also markedly increased by swim training. In conclusion, these results suggest that swim training-induced transcriptional activation of hepatic PPAR{alpha} target enzymes and UCP2 may effectively prevent body weight gain, adiposity, and lipid disorders caused by leptin receptor deficiency in both sexes of mice.

  10. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    SciTech Connect

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR{alpha

  11. Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice.

    PubMed Central

    Kok, Tineke; Bloks, Vincent W; Wolters, Henk; Havinga, Rick; Jansen, Peter L M; Staels, Bart; Kuipers, Folkert

    2003-01-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor that controls expression of genes involved in lipid metabolism and is activated by fatty acids and hypolipidaemic fibrates. Fibrates induce the hepatic expression of murine multidrug resistance 2 ( Mdr2 ), encoding the canalicular phospholipid translocator. The physiological role of PPARalpha in regulation of Mdr2 and other genes involved in bile formation is unknown. We found no differences in hepatic expression of the ATP binding cassette transporter genes Mdr2, Bsep (bile salt export pump), Mdr1a / 1b, Abca1 and Abcg5 / Abcg8 (implicated in cholesterol transport), the bile salt-uptake systems Ntcp (Na(+)-taurocholate co-transporting polypeptide gene) and Oatp1 (organic anion-transporting polypeptide 1 gene) or in bile formation between wild-type and Ppar alpha((-/-)) mice. Upon treatment of wild-type mice with ciprofibrate (0.05%, w/w, in diet for 2 weeks), the expression of Mdr2 (+3-fold), Mdr1a (+6-fold) and Mdr1b (+11-fold) mRNAs was clearly induced, while that of Oatp1 (-5-fold) was reduced. Mdr2 protein levels were increased, whereas Bsep, Ntcp and Oatp1 were drastically decreased. Exposure of cultured wild-type mouse hepatocytes to PPARalpha agonists specifically induced Mdr2 mRNA levels and did not affect expression of Mdr1a / 1b. Altered transporter expression in fibrate-treated wild-type mice was associated with a approximately 400% increase in bile flow: secretion of phospholipids and cholesterol was increased only during high-bile-salt infusions. No fibrate effects were observed in Ppar alpha((-/-)) mice. In conclusion, our results show that basal bile formation is not affected by PPARalpha deficiency in mice. The induction of Mdr2 mRNA and Mdr2 protein levels by fibrates is mediated by PPARalpha, while the induction of Mdr1a / 1b in vivo probably reflects a secondary phenomenon related to chronic PPARalpha activation. PMID:12381268

  12. Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): Hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice.

    PubMed

    Veiga, Flavia Maria Silva; Graus-Nunes, Francielle; Rachid, Tamiris Lima; Barreto, Aline Barcellos; Mandarim-de-Lacerda, Carlos Alberto; Souza-Mello, Vanessa

    2017-09-01

    Non-alcoholic fatty liver disease (NAFLD) presents with growing prevalence worldwide, though its pharmacological treatment remains to be established. This study aimed to evaluate the effects of a PPAR-alpha agonist on liver tissue structure, ultrastructure, and metabolism, focusing on gene and protein expression of de novo lipogenesis and gluconeogenesis pathways, in diet-induced obese mice. Male C57BL/6 mice (three months old) received a control diet (C, 10% of lipids, n = 10) or a high-fat diet (HFD, 50% of lipids, n = 10) for ten weeks. These groups were subdivided to receive the treatment (n = 5 per group): C, C-alpha (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the control diet), HFD and HFD-alpha group (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the HFD). The effects were compared with biometrical, biochemical, molecular biology and transmission electron microscopy (TEM) analyses. HFD showed greater body mass (BM) and insulinemia than C, both of which were tackled by the treatment in the HFD-alpha group. Increased hepatic protein expression of glucose-6-phosphatase, CHREBP and gene expression of PEPCK in HFD points to increased gluconeogenesis. Treatment rescued these parameters in the HFD-alpha group, eliciting a reduced hepatic glucose output, confirmed by the smaller GLUT2 expression in HFD-alpha than in HFD. Conversely, favored de novo lipogenesis was found in the HFD group by the increased expression of PPAR-gamma, and its target gene SREBP-1, FAS and GK when compared to C. The treatment yielded a marked reduction in the expression of all lipogenic factors. TEM analyses showed a greater numerical density of mitochondria per area of tissue in treated than in untreated groups, suggesting an increase in beta-oxidation and the consequent NAFLD control. PPAR-alpha activation reduced BM and treated insulin resistance (IR) and NAFLD by increasing the number of mitochondria and reducing hepatic gluconeogenesis and de novo lipogenesis protein and gene

  13. Critical role of PPAR-alpha in perfluorooctanoic acid- and perfluorodecanoic acid-induced downregulation of Oatp uptake transporters in mouse livers.

    PubMed

    Cheng, Xingguo; Klaassen, Curtis D

    2008-11-01

    Perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) have been detected globally in wildlife and humans. Data from a gene array indicate that PFOA decreases organic anion transporting polypeptides (Oatps) in liver. Na(+)-taurocholate cotransporting polypeptide (Ntcp) and Oatp1a1, 1a4, and 1b2 are major transporters responsible for uptake of bile acids (BAs) and other organic compounds into liver. The purpose of the present study was to determine the effects of two perfluorinated fatty acids, PFOA and PFDA, on mRNA and protein expression of hepatic uptake transporters Oatps and Ntcp, and to determine the underlying regulatory mechanisms by using peroxisome proliferator-activated receptor alpha (PPAR-alpha), constitutive androstane receptor, pregnane-X receptor, NF-E2-related factor 2, and farnesoid X receptor-null mouse models. After 2 days following a single i.p. administration, PFOA did not alter serum BA concentrations, but PFDA increased serum BA concentrations 300%. Furthermore, PFOA decreased mRNA and protein expression of Oatp1a1, 1a4, and 1b2, but not Ntcp in mouse liver. In contrast, PFDA decreased mRNA and protein expression of all four transporters, and decreased the mRNA expression in a dose-dependent manner, with the decrease of Oatp1a4 occurring at lower doses than the other three transporters. Multiple mechanisms are likely involved in the down-regulation of mouse Oatps and Ntcp by PFDA. By using the various transcription factor-null mice, PPAR-alpha was shown to play a central role in the down-regulation of Oatp1a1, 1a4, 1b2, and Ntcp by PFDA. The current studies provide important insight into understanding the mechanisms by which PFDA regulate the expression of hepatic uptake transporters. In conclusion, PFOA and PFDA decrease mouse liver uptake transporters primarily via activation of PPAR-alpha.

  14. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells

    SciTech Connect

    Huang, Tom Hsun-Wei; Van Hoan Tran; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2007-01-01

    Tissue factor (TF) is involved not only in the progression of atherosclerosis and other cardiovascular diseases, but is also associated with tumor growth, metastasis, and angiogenesis and hence may be an attractive target for directed cancer therapeutics. Gynostemma pentaphyllum (GP) is widely used in the treatment of various cardiovascular diseases including atherosclerosis, as well as cancers. Gypenoside (Gyp) XLIX, a dammarane-type glycoside, is one of the prominent components in GP. We have recently reported Gyp XLIX to be a potent peroxisome proliferator-activated receptor (PPAR)-alpha activator. Here we demonstrate that Gyp XLIX (0-300 {mu}M) concentration dependently inhibited TF promoter activity after induction by the inflammatory stimulus lipopolysaccharide (LPS) in human monocytic THP-1 cells transfected with promoter reporter constructs pTF-LUC. Furthermore, Gyp XLIX inhibited LPS-induced TF mRNA and protein overexpression in THP-1 monocyte cells. Its inhibition of LPS-induced TF hyperactivity was further confirmed by chromogenic enzyme activity assay. The activities of Gyp XLIX reported in this study were similar to those of Wy-14643, a potent synthetic PPAR-alpha activator. Furthermore, the Gyp XLIX-induced inhibitory effect on TF luciferase activity was completely abolished in the presence of the PPAR-alpha selective antagonist MK-886. The present findings suggest that Gyp XLIX inhibits LPS-induced TF overexpression and enhancement of its activity in human THP-1 monocytic cells via PPAR-alpha-dependent pathways. The data provide new insights into the basis of the use of the traditional Chinese herbal medicine G. pentaphyllum for the treatment of cardiovascular and inflammatory diseases, as well as cancers.

  15. Skeletal muscle glycogen synthase subcellular localization: effects of insulin and PPAR-alpha agonist (K-111) administration in rhesus monkeys.

    PubMed

    Ortmeyer, Heidi K; Adall, Yohannes; Marciani, Karina R; Katsiaras, Andreas; Ryan, Alice S; Bodkin, Noni L; Hansen, Barbara C

    2005-06-01

    Insulin covalently and allosterically regulates glycogen synthase (GS) and may also cause the translocation of GS from glycogen-poor to glycogen-rich locations. We examined the possible role of subcellular localization of GS and glycogen in insulin activation of GS in skeletal muscle of six obese monkeys and determined whether 1) insulin stimulation during a hyperinsulinemic euglycemic clamp and/or peroxisome proliferator-activated receptor (PPAR)-alpha agonist treatment (K-111, 3 mg.kg(-1).day(-1); Kowa) induced translocation of GS and 2) translocation of GS was associated with insulin activation of GS. GS and glycogen were present in all fractions obtained by differential centrifugation, except for the cytosolic fraction, under both basal and insulin-stimulated conditions. We found no evidence for translocation of GS by insulin. GS total (GST) activity was strongly associated with glycogen content (r = 0.70, P < 0.001). Six weeks of treatment with K-111 increased GST activity in all fractions, except the cytosolic fraction, and mean GST activity, GS independent activity, and glycogen content were significantly higher in the insulin-stimulated samples compared with basal samples, effects not seen with vehicle. The increase in GST activity was strongly related to the increase in glycogen content during the hyperinsulinemic euglycemic clamp after K-111 administration (r = 0.74, P < 0.001). Neither GS protein expression nor GS gene expression was affected by insulin or by K-111 treatment. We conclude that 1) in vivo insulin does not cause translocation of GS from a glycogen-poor to a glycogen-rich location in primate skeletal muscle and 2) the mechanism of action of K-111 to improve insulin sensitivity includes an increase in GST activity without an increase in GS gene or protein expression.

  16. PPAR-alpha L162V polymorphism in human hepatocellular carcinoma.

    PubMed

    Koytak, Elif Sare; Mizrak, Dilşa; Bektaş, Mehmet; Verdi, Hasibe; Arslan Ergül, Ayça; Idilman, Ramazan; Cinar, Kubilay; Yurdaydin, Cihan; Ersõz, Sadik; Karayalçin, Kaan; Uzunalimoğlu, Ozden; Bozkaya, Hakan

    2008-12-01

    Several lines of evidence suggest that peroxisome proliferator-activated receptor alpha may be involved in hepatocarcinogenesis. L162V polymorphism of the peroxisome proliferator-activated receptor alpha gene enhances the transactivation activity of this transcription factor. The aim of this study was to determine the frequency and clinical correlates of peroxisome proliferator-activated receptor alpha L162V polymorphism in hepatitis virus-induced hepatocellular carcinoma. 90 hepatocellular carcinoma patients diagnosed at Ankara University Gastroenterology Clinic between January 2002 and July 2003 and 80 healthy controls with normal body mass index, blood chemistry and with negative viral serology were included. peroxisome proliferator-activated receptor alpha L162V polymorphism was determined by PCR-RFLP. hepatocellular carcinoma etiologies were as follows: 56 HBV, 12 HBV+HDV, 22 HCV. Eighty-seven patients (97%) were cirrhotic, and 60 patients (67.5%) had advanced tumors. In 83 (92%) of 90 hepatocellular carcinoma patients, gene segment including polymorphic region could be amplified by PCR (50 HBV, 12 HBV+HDV, 21 HCV) and 6 of them (7.2%, all infected with HBV) had L162V polymorphism, while 2 (2.5%) of 80 controls had this polymorphism (p=0.162). This trend became more remarkable when only HBV (HBV+HDV)-infected patients were compared with controls (6/62, 9.7% vs. 2/80, 2.5%, respectively, p=0.071). Five of 6 patients with L162V had advanced disease. Peroxisome proliferator-activated receptor alpha L162V polymorphism tends to occur in HBV-induced hepatocellular carcinoma and is absent in HCV-related hepatocellular carcinoma. These findings may show clues for the existence of different carcinogenesis mechanisms in these two common etiologies. Frequent occurrence of advanced disease in patients with L162V polymorphism suggests a role for this polymorphism in tumor progression.

  17. The dominant negative thyroid hormone receptor beta-mutant delta337T alters PPAR-alpha signaling in heart

    USDA-ARS?s Scientific Manuscript database

    PPARalpha and TR independently regulate cardiac metabolism. Although ligands for both these receptors are currently under evaluation for treatment of congestive heart failure, their interactions or signaling cooperation have not been investigated in heart. We tested the hypothesis that cardiac TRs i...

  18. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer.

    PubMed

    Pyper, Sean R; Viswakarma, Navin; Yu, Songtao; Reddy, Janardan K

    2010-04-16

    The peroxisome proliferator-activated receptor alpha (PPARalpha, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARalpha in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARalpha agonists. For example, substrates involved in fatty acid oxidation can function as PPARalpha ligands. PPARalpha serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARalpha modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal beta-oxidation and microsomal omega-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARalpha by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARalpha requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity.

  19. Fenofibrate vs pioglitazone: Comparative study of the anti-arthritic potencies of PPAR-alpha and PPAR-gamma agonists in rat adjuvant-induced arthritis.

    PubMed

    Koufany, Meriem; Jouzeau, Jean-Yves; Moulin, David

    2014-01-01

    Rheumatoid arthritis is characterized by synovial hyperplasia, inflammatory infiltration, cartilage destruction and juxta-articular as well as generalized bone demineralization. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily which behave as ligand-activated transcription factors in response to endogenous fatty acids and eicosanoids or isotype selective synthetic compounds as fibrates and thiazolidinediones. Beyond their key role in lipid metabolism, increased evidence has shown a role of the three isotypes in inflammatory modulation. We and others demonstrated previously that PPAR-gamma agonists reduced the severity of experimental polyarthritis and the overall inflammatory-induced bone loss. To compare the anti-arthritic potencies of a PPAR-alpha agonist (fenofibrate, a lipid lowering drug) and a PPAR-gamma agonist (pioglitazone, formerly used as an antidiabetic drug) in rat adjuvant-induced arthritis. Male Lewis rats were sensitized by an intra-dermal injection of 1 mg complete Freund's adjuvant at the basis of the tail and were treated orally for 21 days with fenofibrate 100 mg/kg/day (FENO) or pioglitazone 30 mg/kg/day (PIO), or with vehicle only. Arthritis severity was evaluated by clinical observations (oedema, clinical score, body weight). Global and femoral bone mineral density (BMD), femoral bone mineral content (BMC) were measured by dual-energy X-ray absorptiometry (DEXA) before sensitization and at day 20. Synovial mRNA levels of IL-1beta and IL-6 were determined by real-time RT-PCR. Administration of fenofibrate (100mg/kg/d) and pioglitazone (30 mg/kg/d) significantly reduced hindpaw oedema and arthritis score. Treatment with fenofibrate exerted a better effect on clinical scoring. DEXA analysis revealed that pioglitazone and fenofibrate treatment to a greater extent, reduced inflammatory-bone loss and increased BMD versus vehicle-treated rats. Finally, we demonstrated that both agonists

  20. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)alpha agonist fenofibrate and the PPARgamma agonist pioglitazone.

    PubMed

    Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

    2009-03-30

    All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARgamma agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARalpha agonist fenofibrate (FENO) and the PPARgamma agonist pioglitazone (PIO) on bone in intact female rats. Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. We show opposite skeletal effects of PPARalpha and gamma agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARalpha activation.

  1. Time course investigation of PPAR{alpha}- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression

    SciTech Connect

    Woods, Courtney G.; Kosyk, Oksana; Bradford, Blair U.; Ross, Pamela K.; Burns, Amanda M.; Cunningham, Michael L.; Qu Pingping; Ibrahim, Joseph G.; Rusyn, Ivan

    2007-12-15

    Administration of peroxisome proliferators to rodents causes proliferation of peroxisomes, induction of {beta}-oxidation enzymes, hepatocellular hypertrophy and hyperplasia, with chronic exposure ultimately leading to hepatocellular carcinomas. Many responses associated with peroxisome proliferators are nuclear receptor-mediated events involving peroxisome proliferators-activated receptor alpha (PPAR{alpha}). A role for nuclear receptor-independent events has also been shown, with evidence of Kupffer cell-mediated free radical production, presumably through NAPDH oxidase, induction of redox-sensitive transcription factors involved in cytokine production and cytokine-mediated cell replication following acute treatment with peroxisome proliferators in rodents. Recent studies have demonstrated, by using p47{sup phox}-null mice which are deficient in NADPH oxidase, that this enzyme is not related to the phenotypic events caused by prolonged administration of peroxisome proliferators. In an effort to determine the timing of the transition from Kupffer cell-to PPAR{alpha}-dependent modulation of peroxisome proliferator effects, gene expression was assessed in liver from Ppar{alpha}-null, p47{sup phox}-null and corresponding wild-type mice following treatment with 4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid (WY-14,643) for 8 h, 24 h, 72 h, 1 week or 4 weeks. WY-14,643-induced gene expression in p47{sup phox}-null mouse liver differed substantially from wild-type mice at acute doses and striking differences in baseline expression of immune related genes were evident. Pathway mapping of genes that respond to WY-14,643 in a time- and dose-dependent manner demonstrates suppression of immune response, cell death and signal transduction and promotion of lipid metabolism, cell cycle and DNA repair. Furthermore, these pathways were largely dependent on PPAR{alpha}, not NADPH oxidase demonstrating a temporal shift in response to peroxisome proliferators. Overall, this

  2. PPARalpha suppresses insulin secretion and induces UCP2 in insulinoma cells.

    PubMed

    Tordjman, Karen; Standley, Kara N; Bernal-Mizrachi, Carlos; Leone, Teresa C; Coleman, Trey; Kelly, Daniel P; Semenkovich, Clay F

    2002-06-01

    Fatty acids may promote type 2 diabetes by altering insulin secretion from pancreatic beta cells, a process known as lipotoxicity. The underlying mechanisms are poorly understood. To test the hypothesis that peroxisome proliferator-activated receptor alpha (PPARalpha) has a direct effect on islet function, we treated INS-1 cells, an insulinoma cell line, with a PPARalpha adenovirus (AdPPARalpha) as well as the PPARalpha agonist clofibric acid. AdPPARalpha-infected INS-1 cells showed PPARalpha agonist- and fatty acid-dependent transactivation of a PPARalpha reporter gene. Treatment with either AdPPARalpha or clofibric acid increased both catalase activity (a marker of peroxisomal proliferation) and palmitate oxidation. AdPPARalpha induced carnitine-palmitoyl transferase-I (CPT-I) mRNA, but had no effect on insulin gene expression. AdPPARalpha treatment increased cellular triglyceride content but clofibric acid did not. Both AdPPARalpha and clofibric acid decreased basal and glucose-stimulated insulin secretion. Despite increasing fatty acid oxidation, AdPPARalpha did not increase cellular ATP content suggesting the stimulation of uncoupled respiration. Consistent with these observations, UCP2 expression doubled in PPARalpha-treated cells. Clofibric acid-induced suppression of glucose-simulated insulin secretion was prevented by the CPT-I inhibitor etomoxir. These data suggest that PPARalpha-stimulated fatty acid oxidation can impair beta cell function.

  3. In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR){alpha} and PPAR{gamma} and quantitative analysis of in vivo induction pathway

    SciTech Connect

    Takeuchi, Shinji; Matsuda, Tadashi; Kobayashi, Satoshi; Takahashi, Tetsuo; Kojima, Hiroyuki . E-mail: kojima@iph.pref.hokkaido.jp

    2006-12-15

    Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors and key regulators of lipid metabolism and cell differentiation. However, there have been few studies reporting on a variety of environmental chemicals, which may interact with these receptors. In the present study, we characterized mouse PPAR{alpha} and PPAR{gamma} agonistic activities of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 11 acid amides, 7 triazines, 8 ureas and 44 others) by in vitro reporter gene assays using CV-1 monkey kidney cells. Three of the 200 pesticides, diclofop-methyl, pyrethrins and imazalil, which have different chemical structures, showed PPAR{alpha}-mediated transcriptional activities in a dose-dependent manner. On the other hand, none of the 200 pesticides showed PPAR{gamma} agonistic activity at concentrations {<=} 10{sup -5} M. To investigate the in vivo effects of diclofop-methyl, pyrethrins and imazalil, we examined the gene expression of PPAR{alpha}-inducible cytochrome P450 4As (CYP4As) in the liver of female mice intraperitoneally injected with these compounds ({<=} 300 mg/kg). RT-PCR revealed significantly high induction levels of CYP4A10 and CYP4A14 mRNAs in diclofop-methyl- and pyrethrins-treated mice, whereas imazalil induced almost no gene expressions of CYP4As. In particular, diclofop-methyl induced as high levels of CYP4A mRNAs as WY-14643, a potent PPAR{alpha} agonist. Thus, most of the 200 pesticides tested do not activate PPAR{alpha} or PPAR{gamma} in in vitro assays, but only diclofop-methyl and pyrethrins induce PPAR{alpha} agonistic activity in vivo as well as in vitro.

  4. The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions.

    PubMed

    Yoon, Michung

    2009-09-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcription factor that belongs to the steroid hormone receptor superfamily. PPARalpha is expressed predominantly in tissues that have a high level of fatty acid catabolism, such as liver, heart, and muscle. PPARalpha regulates the expression of a number of genes critical for lipid and lipoprotein metabolism. PPARalpha ligand fibrates have been used for the treatment of dyslipidemia due to their ability to lower plasma triglyceride levels and elevate HDL cholesterol levels. PPARalpha activators have been shown to regulate obesity in rodents by both increasing hepatic fatty acid oxidation and decreasing the levels of circulating triglycerides responsible for adipose cell hypertrophy and hyperplasia. However, these effects of PPARalpha on obesity and lipid metabolism may be exerted with sexual dimorphism and seem to be influenced by estrogen. Estrogen inhibits the actions of PPARalpha on obesity and lipid metabolism through its effects on PPARalpha-dependent regulation of target genes. Thus, the use of fibrates seems to be effective in men and postmenopausal women with obesity and lipid disorders, but not in premenopausal women with functioning ovaries.

  5. PPAR-alpha L162V and PGC-1 G482S gene polymorphisms, but not PPAR-gamma P12A, are associated with alcohol consumption in a Spanish Mediterranean population.

    PubMed

    Francès, F; Verdú, F; Portolés, O; Castelló, A; Sorlí, J V; Guillen, M; Corella, D

    2008-12-01

    Peroxisome Proliferator-Activated Receptors (PPARs) and its co-activators are regulatory elements of the cellular lipid homeostasis and have been associated with feeding behavior modulation. Animal models suggest that these genes may be involved in alcohol consumption regulation. However, no studies in humans exist. Our aim is to estimate the possible association between polymorphisms in the PPAR-alpha, PPAR-gamma and PPAR-gamma co-activator 1A (PGC-1A) genes and alcohol consumption in humans. We have conducted a cross-sectional study between the PPAR-alpha L162V, PPAR-gamma P12A and PGC-1A G482S polymorphisms, and alcohol consumption in a general Mediterranean Spanish population (303 men and 443 women). We have found an association between the L162V polymorphism and alcohol consumption in which, carriers of the V allele were more prevalent among alcohol consumers (19.4% vs. 9.8%; OR 2.69; 95% CI: 1.31-5.54, p=0.007). The G482S polymorphism showed a significantly higher frequency in the group of high alcohol drinkers than in non-high alcohol drinkers (33.4% vs. 20.6%; OR 2.28; 95% CI: 1.07-4.88, p=0.034). Mean alcohol consumption was higher as the number of G alleles increased (GG 8.6+/-12.8 g/day, GS 6.6+/-9.2 g/day, SS 5.6+/-7.8 g/day, p=0.003). These results remained statistically significant after covariate adjustment. PPAR-alpha L162V and PGC-1A G482S polymorphisms are associated with alcohol consumption in the Mediterranean population.

  6. Basal and fasting/refeeding-regulated tissue levels of endogenous PPAR-alpha ligands in Zucker rats.

    PubMed

    Izzo, Angelo A; Piscitelli, Fabiana; Capasso, Raffaele; Marini, Pietro; Cristino, Luigia; Petrosino, Stefania; Di Marzo, Vincenzo

    2010-01-01

    N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) are endogenous lipids that activate peroxisome proliferator-activated receptor-alpha with high and intermediate potency, and exert anorectic and anti-inflammatory actions in rats, respectively. We investigated OEA and PEA tissue level regulation by the nutritional status in lean and obese rats. OEA and PEA levels in the brainstem, duodenum, liver, pancreas, and visceral (VAT) or subcutaneous (SAT) adipose tissues of 7-week-old wild-type (WT) and Zucker rats, fed ad libitum or following overnight food deprivation, with and without refeeding, were measured by liquid chromatography-mass spectrometry. In WT rats, duodenal OEA, but not PEA, levels were reduced by food deprivation and restored by refeeding, whereas the opposite was observed for OEA in the pancreas, and for both mediators in the liver and SAT. In ad lib fed Zucker rats, PEA and OEA levels were up to tenfold higher in the duodenum, slightly higher in the brainstem, and lower in the other tissues. Fasting/refeeding-induced changes in OEA levels were maintained in the duodenum, liver, and SAT, and lost in the pancreas, whereas fasting upregulated this compound also in the VAT. The observed changes in OEA levels in WT rats are relevant to the actions of this mediator on satiety, hepatic and adipocyte metabolism, and insulin release. OEA dysregulation in Zucker rats might counteract hyperphagia in the duodenum, but contribute to hyperinsulinemia in the pancreas, and to fat accumulation in adipose tissues and liver. Changes in PEA levels might be relevant to the inflammatory state of Zucker rats.

  7. Hepatic nuclear receptor PPARalpha in the koala (Phascolarctos cinereus): cloning and molecular characterisation.

    PubMed

    Ngo, Suong Ngoc Thi; McKinnon, Ross Allan; Stupans, Ieva

    2007-09-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear/steroid receptor gene superfamily that plays an essential role in fatty acid metabolism. PPARalpha modulates the expression of genes encoding peroxisomal fatty acid beta-oxidation enzymes and microsomal fatty acid hydroxylases CYP4As. We have previously reported that the obligate Eucalyptus feeder koala (Phascolarctos cinereus) exhibits a higher hepatic CYP4A activity and an absence of peroxisomal palmitoyl-CoA oxidation as compared to non-Eucalyptus feeders human, rat or wallaby. Here we describe the cloning, expression and molecular characterisation of koala hepatic PPARalpha. A full-length PPARalpha cDNA of size 1515 bp was cloned by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The koala PPARalpha cDNA encodes a protein of 468 amino acids. Transfection of the koala PPARalpha cDNA into Cos-7 cells resulted in the expression of a protein recognised by a rabbit anti-human PPARalpha polyclonal antibody. PPARalpha immunoreactive bands of the same molecular mass were detected in nuclear extracts of koala livers. The results of this study demonstrate the presence of koala hepatic PPARalpha which shares several common features with other published PPARalphas; however, it exhibits important differences in both the DNA and ligand binding domains.

  8. PPARalpha is involved in photoentrainment of the circadian clock.

    PubMed

    Oishi, Katsutaka; Shirai, Hidenori; Ishida, Norio

    2008-03-05

    We found that bezafibrate, a ligand of peroxisome proliferator-activated receptor alpha (PPARalpha), advances the active phase of mice under light-dark (LD) conditions in a photoperiod-dependent manner. Bezafibrate gradually advanced the activity onset that consequently almost completely reversed the active phase from the dark to the light period under a long photoperiod (18 h of light and 6 h of darkness: LD 18 : 6). The activity onset was not changed under a short photoperiod (LD 8 : 16) or under constant illumination. These observations suggest that PPARalpha is involved in entrainment of the circadian clock to environmental LD conditions.

  9. Atorvastatin reverses age-related reduction in rat hepatic PPARalpha and HNF-4.

    PubMed

    Sanguino, Elena; Roglans, Nuria; Alegret, Marta; Sánchez, Rosa M; Vázquez-Carrera, Manuel; Laguna, Juan C

    2005-08-01

    Old rats are resistant to fibrate-induced hypolipidemia owing to a reduction in hepatic peroxisome proliferator-activated receptor alpha (PPARalpha). We tested whether the age-related decrease in PPARalpha is prevented by atorvastatin (ATV), a hypolipidemic statin. We determined the activity and expression of Liver X receptor alpha (LXRalpha) and PPARalpha in the liver of 18-month-old rats treated with 10 mg kg(-1) of ATV for 21 days. We measured fatty acid oxidation (FAO), the expression of PPARalpha-target genes, liver triglyceride (TG) and cholesteryl ester (CE) contents and plasma concentrations of TG, cholesterol, glucose, nonesterified fatty acids (NEFA), insulin and leptin. While old female rats were practically unresponsive, ATV-treated old males showed lower liver TG (-41%) and CE (-48%), and plasma TG (-35%), glucose (-18%) and NEFA (-39%). Age-related alterations in LXRalpha expression and binding activity were reverted in ATV-treated old males. These changes were related to an increase in hepatic FAO (1.2-fold), and PPARalpha mRNA (2.2-fold), PPARalpha protein (1.6-fold), and PPARalpha-binding activity. Hepatic nuclear factor-4 (HNF-4) and chicken ovalbumin upstream-transcription factor-II participate in the transcriptional regulation of the PPARalpha gene, while peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) behaves as a PPAR coactivator. Ageing reduced the hepatic content of HNF-4 (74%) and PGC-1 (77%) exclusively in male rats. ATV administration to old males enhanced the hepatic expression and binding activity (two-fold) of HNF-4. ATV-induced changes in hepatic HNF-4 and PPARalpha may be responsible for the improvement of the lipid metabolic phenotype produced by ATV administration to senescent male rats.

  10. Design and biological evaluation of novel, balanced dual PPARalpha/gamma agonists.

    PubMed

    Grether, Uwe; Bénardeau, Agnes; Benz, Jörg; Binggeli, Alfred; Blum, Denise; Hilpert, Hans; Kuhn, Bernd; Märki, Hans Peter; Meyer, Markus; Mohr, Peter; Püntener, Kurt; Raab, Susanne; Ruf, Armin; Schlatter, Daniel

    2009-06-01

    An X-ray-guided design approach led to the identification of a novel, balanced class of alpha-ethoxy-phenylpropionic acid-derived dual PPARalpha/gamma agonists. The series shows a wide range of PPARalpha/gamma ratios within a rather narrow structural space. Advanced compounds possess favorable physicochemical and pharmacokinetic profiles and show a high efficacy in T2D and dyslipidemia animal models.

  11. PPARalpha, but not PPARgamma, activators decrease macrophage-laden atherosclerotic lesions in a nondiabetic mouse model of mixed dyslipidemia.

    PubMed

    Hennuyer, Nathalie; Tailleux, Anne; Torpier, Gérard; Mezdour, Hafid; Fruchart, Jean-Charles; Staels, Bart; Fiévet, Catherine

    2005-09-01

    Peroxisome proliferator-activated receptor (PPAR) alpha and gamma are nuclear receptors that may modulate atherogenesis, not only by correcting metabolic disorders predisposing to atherosclerosis but also by directly acting at the level of the vascular wall. The accumulation of lipid-laden macrophages in the arterial wall is an early pivotal event participating in the initiation and promotion of atherosclerotic lesion formation. Because PPARalpha and gamma modulate macrophage gene expression and cellular function, it has been suggested that their ligands may modulate atherosclerosis development via direct effects on macrophages. In this report, we investigated the effect of a PPARalpha ligand (fenofibrate) and 2 PPARgamma ligands (rosiglitazone and pioglitazone) on atherogenesis in a dyslipidemic nondiabetic murine model that develops essentially macrophage-laden lesions. Mice were fed a Western diet supplemented or not with fenofibrate (100 mpk), rosiglitazone (10 mpk), or pioglitazone (40 mpk) for 10 weeks. Atherosclerotic lesions together with metabolic parameters were measured after treatment. Fenofibrate treatment significantly improved lipoprotein metabolism toward a less atherogenic phenotype but did not affect insulin sensitivity. Contrarily, rosiglitazone and pioglitazone improved glucose homeostasis, whereas they did not improve lipoprotein metabolism. Fenofibrate treatment significantly decreased the accumulation of lipids and macrophages in the aortic sinus. However, surprisingly, neither rosiglitazone nor pioglitazone had an effect on lesion lipid accumulation or macrophage content. These results indicate that in a dyslipidemic nondiabetic murine model, PPARalpha, but not PPARgamma, activators protect against macrophage foam cell formation.

  12. PPARalpha ligands reduce PCB-induced endothelial activation: possible interactions in inflammation and atherosclerosis.

    PubMed

    Arzuaga, Xabier; Reiterer, Gudrun; Majkova, Zuzana; Kilgore, Michael W; Toborek, Michal; Hennig, Bernhard

    2007-01-01

    Exposure to polychlorinated biphenyls (PCBs) can activate inflammatory responses in vascular endothelial cells. Activation of peroxisome proliferator-activated receptors (PPARs) by nutrients or synthetic agonists has been shown to block pro-inflammatory responses both in vitro and in vivo. Here we demonstrate that activation of PPARalpha by synthetic agonists can reduce 3,3'4,4'-tetrachlorobiphenyl (PCB77)-induced endothelial cell activation. Primary vascular endothelial cells were pretreated with the PPARalpha ligands fenofibrate or WY14643 followed by exposure to PCB77. PPARalpha activation protected endothelial cells against PCB77-induced expression of the pro-inflammatory proteins vascular cell adhesion molecule-1 (VCAM-1), cycloxygenase-2 (COX-2), and PCB77-induced expression and activity of the aryl hydrocarbon receptor (AHR) responsive cytochrome P450 1A1 (CYP1A1). Furthermore, basal AHR expression was downregulated by fenofibrate and WY14643. We also investigated the possible interactions between PCBs, and basal PPAR activity and protein expression. Treatment with PCB77 significantly reduced basal mRNA expression of PPARalpha and the PPAR responsive gene CYP4A1, as well as PPARalpha protein expression. Also, PCB77 exposure caused a significant decrease in basal PPAR-dependent reporter gene expression in MCF-7 cells. Overall, these findings suggest that PPARalpha agonists can reduce PCB77 induction of endothelial cell activation by inhibition of the AHR pathway, and that coplanar PCB induced pro-inflammatory effects could be mediated, in part, by inhibition of PPARalpha expression and function.

  13. Developmental toxicity and serum levels of perfluorononanoic acid in the wild-type and PPAR-alpha knockout mouse after gestational exposure

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a perfluoroalkyl acid detected in.the environment and in tissues of humans and wildlife. PFNA activates peroxisome proliferator-activated receptor-alpha (PPARa) in vitro and negatively impacts development and survival of CD1 mice. Our objective wa...

  14. Developmental toxicity and serum levels of perfluorononanoic acid in the wild-type and PPAR-alpha knockout mouse after gestational exposure

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a perfluoroalkyl acid detected in.the environment and in tissues of humans and wildlife. PFNA activates peroxisome proliferator-activated receptor-alpha (PPARa) in vitro and negatively impacts development and survival of CD1 mice. Our objective wa...

  15. Link Between ER-Stress, PPAR-Alpha Activation, and BET Inhibition in Relation to Apolipoprotein A-I Transcription in HepG2 Cells.

    PubMed

    van der Krieken, Sophie E; Popeijus, Herman E; Mensink, Ronald P; Plat, Jogchum

    2017-08-01

    Activating transcription factor peroxisome proliferator-activated receptor alpha (PPARα) may increase apoA-I transcription. Furthermore, Bromodomain and Extra-Terminal domain (BET) protein inhibitors increase, whereas Endoplasmic Reticulum (ER) stress decreases apoA-I transcription. We examined possible links between these processes as related to apoA-I transcription in HepG2 cells. JQ1(+), thapsigargin, and GW7647 were used to induce, respectively BET inhibition, ER-stress, and PPARα activation. Expression of ER-stress markers (CHOP, XBP1s) was analyzed by western blotting. PPARα, KEAP1 (marker for BET inhibition), and apoA-I mRNAs were measured using qPCR. ER-stress and BET inhibition both decreased PPARα mRNA expression and activity, but did not interfere with each other, as ER-stress did not change KEAP1 and JQ1(+) did not influence ER-stress marker production. Interestingly, PPARα activation and BET-inhibition diminished ER-stress marker production and rescued apoA-I transcription during existing ER-stress. We conclude that the ER-stress mediated reduction in apoA-I transcription could be partly mediated via the inhibition of PPARα mRNA expression and activity. In addition, BET inhibition increased apoA-I transcription, even if PPARα production and activity were decreased. Finally, both BET inhibition and PPARα activation ameliorate the apoA-I lowering effect of ER-stress and are therefore interesting targets to elevate apoA-I transcription. J. Cell. Biochem. 118:2161-2167, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPARalpha activation and oxidative stress.

    PubMed

    Zhang, X; Li, L; Prabhakaran, K; Zhang, L; Leavesley, H B; Borowitz, J L; Isom, G E

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential (DeltaPsi(m)) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPARalpha antagonist) or PPARalpha knock-down by RNA interference (RNAi) inhibited PPARalpha activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPARalpha did not alter ROS generation, suggesting a PPARalpha-independent component to the response. Co-treatment with PPARalpha-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPARalpha-mediated pathway and an oxidative stress pathway independent of PPARalpha mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  17. Deletion of peroxisome proliferator-activated receptor-alpha induces an alteration of cardiac functions.

    PubMed

    Loichot, Cécile; Jesel, Laurence; Tesse, Angela; Tabernero, Antonia; Schoonjans, Kristina; Roul, Gérard; Carpusca, Irina; Auwerx, Johan; Andriantsitohaina, Ramaroson

    2006-07-01

    The peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a major role in the control of cardiac energy metabolism. The role of PPARalpha on cardiac functions was evaluated by using PPARalpha knockout (PPARalpha -/-) mice. Hemodynamic parameters by sphygmomanometric measurements show that deletion of PPARalpha did not affect systolic blood pressure and heart rate. Echocardiographic measurements demonstrated reduced systolic performance as shown by the decrease of left ventricular fractional shortening in PPARalpha -/- mice. Telemetric electrocardiography revealed neither atrio- nor intraventricular conduction defects in PPARalpha -/- mice. Also, heart rate, P-wave duration and amplitude, and QT interval were not affected. However, the amplitude of T wave from PPARalpha -/- mice was lower compared with wild-type (PPARalpha +/+) mice. When the myocardial function was measured by ex vivo Langendorff's heart preparation, basal and beta-adrenergic agonist-induced developed forces were significantly reduced in PPARalpha-null mice. In addition, Western blot analysis shows that the protein expression of beta1-adrenergic receptor is reduced in hearts from PPARalpha -/- mice. Histological analysis showed that hearts from PPARalpha -/- but not PPARalpha +/+ mice displayed myocardial fibrosis. These results suggest that PPARalpha-null mice have an alteration of cardiac contractile performance under basal and under stimulation of beta1-adrenergic receptors. These effects are associated with myocardial fibrosis. The data shed light on the role of PPARalpha in maintaining cardiac functions.

  18. Peroxisome proliferator-activated receptor alpha (PPARalpha) activators, bezafibrate and Wy-14,643, increase uncoupling protein-3 mRNA levels without modifying the mitochondrial membrane potential in primary culture of rat preadipocytes.

    PubMed

    Cabrero, A; Alegret, M; Sánchez, R; Adzet, T; Laguna, J C; Vázquez, M

    2000-08-15

    Uncoupling proteins (UCPs) are inner mitochondrial membrane transporters which act as pores for H(+) ions, dissipating the electrochemical gradient that develops during mitochondrial respiration at the expense of ATP synthesis. We have studied the effects of two fibrates, bezafibrate and Wy-14,643, on UCP-3 and UCP-2 mRNA levels in primary monolayer cultures of rat adipocytes and undifferentiated preadipocytes. Treatment with both PPARalpha activators for 24 h up-regulated UCP-3 mRNA levels. Thus, bezafibrate treatment resulted in an 8-fold induction in UCP-3 mRNA levels in preadipocytes compared with the 3.5-fold induction observed in adipocytes. Differences in the induction of UCP-3 between these cells correlated well with the higher expression of PPARalpha and RXRalpha mRNA values in preadipocytes compared to adipocytes. Wy-14,643 caused similar effects on UCP-3 mRNA expression. In contrast to UCP-3, UCP-2 mRNA levels were only slightly modified by bezafibrate in adipocytes. The induction in UCP-3 expression was not accompanied by changes in the mitochondrial membrane potential of rat primary preadipocytes after bezafibrate or Wy-14,643 treatment. Since it has been proposed that UCP-3 could be involved in the regulation of the use of fatty acids as fuel substrates, the UCP-3 induction achieved after bezafibrate and Wy-14, 643 treatment may indicate a higher oxidation of fatty acids, limiting their availability to be stored as triglycerides. This change may result in a reduced rate of conversion of preadipocytes to adipocytes, which directly affects fat depots.

  19. Differential action of 13-HPODE on PPARalpha downstream genes in rat Fao and human HepG2 hepatoma cell lines.

    PubMed

    König, Bettina; Eder, Klaus

    2006-06-01

    In rats, oxidized fats activate the peroxisome proliferator-activated receptor alpha (PPARalpha), leading to reduced triglyceride concentrations in liver, plasma and very low density lipoproteins. Oxidation products of linoleic acid constitute an important portion of oxidized dietary fats. This study was conducted to check whether the primary lipid peroxidation product of linoleic acid, 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), might be involved in the PPARalpha-activating effect of oxidized fats. Therefore, we examined the effect of 13-HPODE on the expression of PPARalpha target genes in the rat Fao and the human HepG2 hepatoma cell lines. In Fao cells, 13-HPODE increased the mRNA concentration of the PPARalpha target genes acyl-CoA oxidase (ACO), cytochrome P450 4A1 and carnitine-palmitoyltransferase 1A (CPT1A). Furthermore, the concentration of cellular and secreted triglycerides was reduced in Fao cells treated with 13-HPODE. Because PPARalpha mRNA was not influenced, we conclude that these effects are due to an activation of PPARalpha by 13-HPODE. In contrast, HepG2 cells seemed to be resistant to PPARalpha activation by 13-HPODE because no remarkable induction of the PPARalpha target genes ACO, CPT1A, mitochondrial HMG-CoA synthase and delta9-desaturase was observed. Consequently, cellular and secreted triglyceride levels were not changed after incubation of HepG2 cells with 13-HPODE. In conclusion, this study shows that 13-HPODE activates PPARalpha in rat Fao but not in human HepG2 hepatoma cells.

  20. Induction and repression of peroxisome proliferator-activated receptor alpha transcription by coregulator ARA70.

    PubMed

    Heinlein, Cynthia A; Chang, Chawnshang

    2003-07-01

    In an effort to understand transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha), we investigated the ability of a number of transcriptional coactivators to enhance PPARalpha:retinoic acid receptor (RXR) mediated transcription. We identified ARA70, a coactivator of the androgen receptor and PPARgamma, as a ligand-enhanced coactivator of PPARalpha in the prostate cancer cell line DU145. In prostate cancer cells, ARA70 demonstrated the strongest enhancement of PPARalpha transcription among the coactivators examined. Mutation of the N-terminal of the PPARalpha ligandbinding domain dramatically reduced the ability of ARA70 to enhance PPARalpha:RXR transcription. ARA70 was able to physically interact with both the wild-type and mutant PPARalpha as determined by coimmunoprecipitation. However, in the adrenal cell line Y1, ARA70 behaved as a repressor of PPARalpha while still able to coactivate PPARgamma.

  1. Radiation Protection by the Antioxidant Alpha-Tocopherol Succinate

    DTIC Science & Technology

    2005-01-01

    family of 8 tocols—4 each of α, β, γ, and δ tocopherols and tocotrienols (Figure 1). O CH3 R1 R2 HO CH3 CH3 CH3 CH3 CH3 R1 = R2 = CH3 d- alpha ...CH3 CH3 R1 = R2 = CH3 R1 = R2 = H R1 = H, R2 = CH3 R1 = CH3, R2 = H d- alpha - tocotrienol d-beta- tocotrienol d-gamma- tocotrienol d-delta- tocotrienol ...Radiation Protection by the Antioxidant Alpha -Tocopherol Succinate Vijay K. Singh1, V. Srinivasan1, Raymond Toles1, Patience Karikari1, Thomas

  2. Fenofibrate reduces intestinal cholesterol absorption via PPARalpha-dependent modulation of NPC1L1 expression in mouse.

    PubMed

    Valasek, Mark A; Clarke, Stephen L; Repa, Joyce J

    2007-12-01

    Fibrates, including fenofibrate, exert their biological effects by binding peroxisome proliferator-activated receptor alpha (PPARalpha), a member of the nuclear receptor superfamily of ligand-activated transcription factors. Treatment with PPARalpha agonists enhances fatty acid oxidation, decreases plasma triglycerides, and may promote reverse cholesterol transport. In addition, fibrate administration can reduce intestinal cholesterol absorption in patients, although the molecular mechanism for this effect is unknown. Because Niemann-Pick C1-Like 1 (NPC1L1) is already known to be a critical protein for cholesterol absorption, we hypothesized that fenofibrate might modulate NPC1L1 expression to alter intestinal cholesterol transport. Here, we find that fenofibrate-treated wild-type mice have decreased fractional cholesterol absorption (35-47% decrease) and increased fecal neutral sterol excretion (51-83% increase), which correspond to decreased expression of NPC1L1 mRNA and protein (38-66% decrease) in the proximal small intestine. These effects of fenofibrate are dependent on PPARalpha, as Ppar alpha-knockout mice fail to respond like wild-type littermates. Fenofibrate affects the ezetimibe-sensitive pathway and retains the ability to decrease cholesterol absorption and NPC1L1 mRNA expression in chow-fed liver X receptor alpha/beta-double-knockout mice and high-cholesterol- or cholic acid-fed wild-type mice. These data demonstrate that fenofibrate specifically acts via PPARalpha to decrease cholesterol absorption at the level of intestinal NPC1L1 expression.

  3. Palmitoylethanolamide protects dentate gyrus granule cells via peroxisome proliferator-activated receptor-α.

    PubMed

    Koch, Marco; Kreutz, Susanne; Böttger, Charlotte; Benz, Alexander; Maronde, Erik; Ghadban, Chalid; Korf, Horst-Werner; Dehghani, Faramarz

    2011-02-01

    Endocannabinoids like 2-arachidonoylglycerol strongly modulate the complex machinery of secondary neuronal damage and are shown to improve neuronal survival after excitotoxic lesion. Palmitoylethanolamide (PEA), the naturally occurring fatty acid amide of ethanolamine and palmitic acid, is an endogenous lipid known to mimic several effects of endocannabinoids even without binding to cannabinoid receptors. Here we show that PEA (0.001-1 μM) and the synthetic peroxisome proliferator-activated receptor (PPAR)-alpha agonist 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (Wy-14,643; 0.1-1 μM) reduced the number of microglial cells and protected dentate gyrus granule cells in excitotoxically lesioned organotypic hippocampal slice cultures (OHSCs). Treatment with the PPAR-alpha antagonist N-((2S)-2-(((1Z)-1-Methyl-3-oxo-3-(4-(trifluoromethyl)phenyl)prop-1-enyl)amino)-3-(4-(2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethoxy)phenyl)propyl)propanamide (GW6471; 0.05-5 μM) blocked PEA-mediated neuroprotection and reduction of microglial cell numbers whereas the PPAR-gamma antagonist 2-chloro-5-nitro-N-phenyl-benzamide (GW9662; 0.01-1 μM) showed no effects. Immunocytochemistry and Western blot analyses revealed a strong PPAR-alpha immunoreaction in BV-2 microglial cells and in HT22 hippocampal cells. Intensity and location of PPAR-alpha immunoreaction remained constant during stimulation with PEA (0.01 μM; 1-36 h). In conclusion our data provide evidence that (1) PEA counteracted excitotoxically induced secondary neuronal damage of dentate gyrus granule cells, (2) PPAR-alpha but not PPAR-gamma is the endogenous binding site for PEA-mediated neuroprotection, and (3) PEA may activate PPAR-alpha in microglial cells and hippocampal neurons to exert its neuroprotective effects. In addition to classical endocannabinoids, PEA-mediated PPAR-alpha activation represents a possible target for therapeutic interventions to mitigate symptoms of secondary neuronal damage.

  4. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  5. Changes in liver PPARalpha mRNA expression in response to two levels of high-safflower-oil diets correlate with changes in adiposity and serum leptin in rats and mice.

    PubMed

    Hsu, Shan-Ching; Huang, Ching-jang

    2007-02-01

    The ligand-dependent transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha) is known to be activated by common fatty acids and to regulate the expression of genes of various lipid oxidation pathways and transport. High-fat diets provide more fatty acids, which presumably could enhance lipid catabolism through up-regulation of PPARalpha signaling. However, high intake of fat could also lead to obesity. To examine PPARalpha signaling in high-fat feeding and obesity, this study examined the hepatic mRNA expression of PPARalpha and some of its target genes in Wistar rats and C57BL/6J mice fed two levels (20% or 30% wt/wt) of high-safflower-oil (SFO; oleic-acid-rich) diets until animals showed significantly higher body weight (13 weeks for rats and 22 weeks for mice) than those of control groups fed a 5% SFO diet. At the end of these respective feeding periods, only the rats fed 30% SFO and the mice fed 20% SFO among the two groups fed high-fat diets showed significantly higher body weight, white adipose tissue weight, serum leptin and mRNA expression of PPARalpha (P<.05) compared to the respective control groups. Despite elevated acyl-CoA (a PPARalpha target gene) protein and activity in both groups fed high-fat diets, the mRNA expression level of most PPARalpha target genes examined correlated mainly to PPARalpha mRNA levels and not to fat intake or liver lipid levels. The observation that the liver PPARalpha mRNA expression in groups fed high-fat diets was significantly higher only in obese animals with elevated serum leptin implied that obesity and associated hyperleptinemia might have a stronger impact than dietary SFO intake per se on PPARalpha-regulated mRNA expression in the liver.

  6. Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice.

    PubMed

    Rachid, Tamiris Lima; Penna-de-Carvalho, Aline; Bringhenti, Isabele; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A; Souza-Mello, Vanessa

    2015-02-15

    Browning is characterized by the formation of beige/brite fat depots in subcutaneous white adipose tissue (sWAT). This study aimed to examine whether the chronic activation of PPARalpha by fenofibrate could induce beige cell depots in the sWAT of diet-induced obese mice. High-fat fed animals presented overweight, insulin resistance and displayed adverse sWAT remodeling. Fenofibrate significantly attenuated these parameters. Treated groups demonstrated active UCP-1 beige cell clusters within sWAT, confirmed through higher gene expression of PPARalpha, PPARbeta, PGC1alpha, BMP8B, UCP-1, PRDM16 and irisin in treated groups. PPARalpha activation seems to be pivotal to trigger browning through irisin induction and UCP-1 transcription, indicating that fenofibrate increased the expression of genes typical of brown adipose tissue (BAT) in the sWAT, characterizing the formation of beige cells. These findings put forward a possible role of PPARalpha as a promising therapeutic for metabolic diseases via beige cell induction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Peroxisome proliferator-activated receptor alpha and the ketogenic diet.

    PubMed

    Cullingford, Tim

    2008-11-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a drug/fatty acid-activated trans cription factor involved in the starvation response, and is thus relevant to the ketogenic diet (KD). This article summarizes research indicating the role of PPARalpha in central and peripheral nervous system function with particular reference to downstream targets relevant to anticonvulsant action.

  8. PPARalpha activation and increased dietary lipid oppose thyroid hormone signaling and rescue impaired glucose-stimulated insulin secretion in hyperthyroidism.

    PubMed

    Holness, Mark J; Greenwood, Gemma K; Smith, Nicholas D; Sugden, Mary C

    2008-12-01

    The aim of the study was to investigate the impact of hyperthyroidism on the characteristics of the islet insulin secretory response to glucose, particularly the consequences of competition between thyroid hormone and peroxisome proliferator-activated receptor (PPAR)alpha in the regulation of islet adaptations to starvation and dietary lipid-induced insulin resistance. Rats maintained on standard (low-fat/high-carbohydrate) diet or high-fat/low-carbohydrate diet were rendered hyperthyroid (HT) by triiodothyronine (T(3)) administration (1 mg.kg body wt(-1).day(-1) sc, 3 days). The PPARalpha agonist WY14643 (50 mg/kg body wt ip) was administered 24 h before sampling. Glucose-stimulated insulin secretion (GSIS) was assessed during hyperglycemic clamps or after acute glucose bolus injection in vivo and with step-up and step-down islet perifusions. Hyperthyroidism decreased the glucose responsiveness of GSIS, precluding sufficient enhancement of insulin secretion for the degree of insulin resistance, in rats fed either standard diet or high-fat diet. Hyperthyroidism partially opposed the starvation-induced increase in the glucose threshold for GSIS and decrease in glucose responsiveness. WY14643 administration restored glucose tolerance by enhancing GSIS in fed HT rats and relieved the impact of hyperthyroidism to partially oppose islet starvation adaptations. Competition between thyroid hormone receptor (TR) and PPARalpha influences the characteristics of GSIS, such that hyperthyroidism impairs GSIS while PPARalpha activation (and increased dietary lipid) opposes TR signaling and restores GSIS in the fed hyperthyroid state. Increased islet PPARalpha signaling and decreased TR signaling during starvation facilitates appropriate modification of islet function.

  9. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors.

    PubMed

    Luchicchi, Antonio; Lecca, Salvatore; Carta, Stefano; Pillolla, Giuliano; Muntoni, Anna L; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2010-07-01

    The endocannabinoid system regulates neurotransmission in brain regions relevant to neurobiological and behavioral actions of addicting drugs. We recently demonstrated that inhibition by URB597 of fatty acid amide hydrolase (FAAH), the main enzyme that degrades the endogenous cannabinoid N-acylethanolamine (NAE) anandamide and the endogenous non-cannabinoid NAEs oleoylethanolamide and palmitoylethanolamide, blocks nicotine-induced excitation of ventral tegmental area (VTA) dopamine (DA) neurons and DA release in the shell of the nucleus accumbens (ShNAc), as well as nicotine-induced drug self-administration, conditioned place preference and relapse in rats. Here, we studied whether effects of FAAH inhibition on nicotine-induced changes in activity of VTA DA neurons were specific for nicotine or extended to two drugs of abuse acting through different mechanisms, cocaine and morphine. We also evaluated whether FAAH inhibition affects nicotine-, cocaine- or morphine-induced actions in the ShNAc. Experiments involved single-unit electrophysiological recordings from DA neurons in the VTA and medium spiny neurons in the ShNAc in anesthetized rats. We found that URB597 blocked effects of nicotine and cocaine in the ShNAc through activation of both surface cannabinoid CB1-receptors and alpha-type peroxisome proliferator-activated nuclear receptor. URB597 did not alter the effects of either cocaine or morphine on VTA DA neurons. These results show that the blockade of nicotine-induced excitation of VTA DA neurons, which we previously described, is selective for nicotine and indicate novel mechanisms recruited to regulate the effects of addicting drugs within the ShNAc of the brain reward system.

  10. Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths.

    PubMed

    Wolf, Cynthia J; Takacs, Margy L; Schmid, Judith E; Lau, Christopher; Abbott, Barbara D

    2008-11-01

    Perfluoroalkyl acids (PFAAs) are surfactants used in consumer products and persist in the environment. Some PFAAs elicit adverse effects on rodent development and survival. PFAAs can activate peroxisome proliferator-activated receptor alpha (PPARalpha) and may act via PPARalpha to produce some of their effects. This study evaluated the ability of numerous PFAAs to induce mouse and human PPARalpha activity in a transiently transfected COS-1 cell assay. COS-1 cells were transfected with either a mouse or human PPARalpha receptor-luciferase reporter plasmid. After 24 h, cells were exposed to either negative controls (water or dimethyl sulfoxide, 0.1%); positive control (WY-14643, PPARalpha agonist); perfluorooctanoic acid or perfluorononanoic acid at 0.5-100 microM; perfluorobutanoic acid, perfluorohexanoic acid, perfluorohexane sulfonate, or perfluorodecanoic acid (PFDA) at 5-100 microM; or perfluorobutane sulfonate or perfluorooctane sulfonate at 1-250 microM. After 24 h of exposure, luciferase activity from the plasmid was measured. Each PFAA activated both mouse and human PPARalpha in a concentration-dependent fashion, except PFDA with human PPARalpha. Activation of PPARalpha by PFAA carboxylates was positively correlated with carbon chain length, up to C9. PPARalpha activity was higher in response to carboxylates compared to sulfonates. Activation of mouse PPARalpha was generally higher compared to that of human PPARalpha. We conclude that, in general, (1) PFAAs of increasing carbon backbone chain lengths induce increasing activity of the mouse and human PPARalpha with a few exceptions, (2) PFAA carboxylates are stronger activators of mouse and human PPARalpha than PFAA sulfonates, and (3) in most cases, the mouse PPARalpha appears to be more sensitive to PFAAs than the human PPARalpha in this model.

  11. The PPARalpha Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    SciTech Connect

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-11-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) alpha agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARalpha knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of {sup 137}Cs gamma-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARalpha-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARalpha ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  12. Alterations in carbohydrate metabolism and its regulation in PPARalpha null mouse hearts.

    PubMed

    Gélinas, Roselle; Labarthe, François; Bouchard, Bertrand; Mc Duff, Janie; Charron, Guy; Young, Martin E; Des Rosiers, Christine

    2008-04-01

    Although a shift from fatty acids (FAs) to carbohydrates (CHOs) is considered beneficial for the diseased heart, it is unclear why subjects with FA beta-oxidation defects are prone to cardiac decompensation under stress conditions. The present study investigated potential alterations in the myocardial utilization of CHOs for energy production and anaplerosis in 12-wk-old peroxisome proliferator-activating receptor-alpha (PPARalpha) null mice (a model of FA beta-oxidation defects). Carbon-13 methodology was used to assess substrate flux through energy-yielding pathways in hearts perfused ex vivo at two workloads with a physiological substrate mixture mimicking the fed state, and real-time RT-quantitative polymerase chain reaction was used to document the expression of selected metabolic genes. When compared with that from control C57BL/6 mice, isolated working hearts from PPARalpha null mice displayed an impaired capacity to withstand a rise in preload (mimicking an increased venous return as it occurs during exercise) as reflected by a 20% decline in the aortic flow rate. At the metabolic level, beyond the expected shift from FA (5-fold down) to CHO (1.5-fold up; P < 0.001) at both preloads, PPARalpha null hearts also displayed 1) a significantly greater contribution of exogenous lactate and glucose and/or glycogen (2-fold up) to endogenous pyruvate formation, whereas that of exogenous pyruvate remained unchanged and 2) marginal alterations in citric acid cycle-related parameters. The lactate production rate was the only measured parameter that was affected differently by preloads in control and PPARalpha null mouse hearts, suggesting a restricted reserve for the latter hearts to enhance glycolysis when the energy demand is increased. Alterations in the expression of some glycolysis-related genes suggest potential mechanisms involved in this defective CHO metabolism. Collectively, our data highlight the importance of metabolic alterations in CHO metabolism

  13. Hepatic triacylglycerol hydrolysis regulates peroxisome proliferator-activated receptor alpha activity.

    PubMed

    Sapiro, Jessica M; Mashek, Mara T; Greenberg, Andrew S; Mashek, Douglas G

    2009-08-01

    Recent evidence suggests that fatty acids generated from intracellular triacylglycerol (TAG) hydrolysis may have important roles in intracellular signaling. This study was conducted to determine if fatty acids liberated from TAG hydrolysis regulate peroxisome proliferator-activated receptor alpha (PPARalpha). Primary rat hepatocyte cultures were treated with adenoviruses overexpressing adipose differentiation-related protein (ADRP) or adipose triacylglycerol lipase (ATGL) or treated with short interfering RNA (siRNA) targeted against ADRP. Subsequent effects on TAG metabolism and PPARalpha activity and target gene expression were determined. Overexpressing ADRP attenuated TAG hydrolysis, whereas siRNA-mediated knockdown of ADRP or ATGL overexpression resulted in enhanced TAG hydrolysis. Results from PPARalpha reporter activity assays demonstrated that decreasing TAG hydrolysis by ADRP overexpression resulted in a 35-60% reduction in reporter activity under basal conditions or in the presence of fatty acids. As expected, PPARalpha target genes were also decreased in response to ADRP overexpression. However, the PPARalpha ligand, WY-14643, was able to restore PPARalpha activity following ADRP overexpression. Despite its effects on PPARalpha, overexpressing ADRP did not affect PPARgamma activity. Enhancing TAG hydrolysis through ADRP knockdown or ATGL overexpression increased PPARalpha activity. These results indicate that TAG hydrolysis and the consequential release of fatty acids regulate PPARalpha activity.

  14. Unusual antioxidant behavior of alpha- and gamma-terpinene in protecting methyl linoleate, DNA, and erythrocyte.

    PubMed

    Li, Guo-Xiang; Liu, Zai-Qun

    2009-05-13

    The antioxidant effects of alpha-terpinene (alpha-TH) and gamma-terpinene (gamma-TH) on the oxidation of methyl linoleate (LH), DNA, and erythrocytes induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) were investigated. The results from erythrocytes and DNA were treated by means of chemical kinetic equations. It was found that either alpha- or gamma-TH was able to scavenge approximately 0.4 radicals when they protected DNA. alpha-TH can trap approximately 0.7 radicals when protecting erythrocytes and can trap approximately 0.5 radicals when protecting LH. gamma-TH can trap approximately 1.2 radicals when protecting erythrocytes and LH. Therefore, the antioxidant effectiveness of gamma-TH was higher than alpha-TH. gamma-TH contained a nonconjugated diene, and the diene in alpha-TH was conjugated. The obtained results implied that the nonconjugated diene benefited for antioxidant capacity more than a conjugated diene. Moreover, the reactions of alpha- and gamma-TH with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cation radical (ABTS(+) (*)) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) implicated that alpha- and gamma-TH were able to scavenge radicals directly. However, alpha- and gamma-TH promoted AAPH-induced hemolysis with a high concentration employed.

  15. Protective effect of alpha-tocotrienol against free radical-induced impairment of erythrocyte deformability.

    PubMed

    Begum, Aynun Nahar; Terao, Junji

    2002-02-01

    Alpha-tocotrienol (alpha-T3) has been suggested to protect cellular membranes against free radical damage. This study was done to estimate the effect of alpha-T3 on free radical-induced impairment of erythrocyte deformability by comparing it to alpha-tocopherol (alpha-T). An erythrocyte suspension containing 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) was forced to flow through microchannels with an equivalent diameter of 7 microm for measuring erythrocyte deformability. A higher concentration of AAPH caused a marked decrease in erythrocyte deformability with concomitant increase of membranous lipid peroxidation. Treatment of erythrocytes with alpha-T or alpha-T3 suppressed the impairment of erythrocyte deformability as well as membranous lipid peroxidation and they also increased erythrocyte deformability even in the absence of AAPH. In these cases, the protecting effect of alpha-T3 was significantly higher than that of alpha-T. We emphasize that higher incorporating activity of alpha-T3 into erythrocyte membranes seems to be the most important reason for higher protection against erythrocyte oxidation and impairment its deformability.

  16. Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L.).

    PubMed

    Chuang, Chia-Ying; Hsu, Chin; Chao, Che-Yi; Wein, Yung-Shung; Kuo, Yueh-Hsiung; Huang, Ching-jang

    2006-11-01

    Bitter gourd (Momordica charantia L.) is a common vegetable in Asia that has been used in traditional medicine for the treatment of Diabetes. PPARs are ligand-dependent transcription factors that belong to the steroid hormone nuclear receptor family and control lipid and glucose homeostasis in the body. We previously reported that the ethyl acetate (EA) extract of bitter gourd activated peroxisome proliferator receptors (PPARs) alpha and gamma. To identify the active compound that activated PPARalpha, wild bitter gourd EA extract was partitioned between n-hexane and 90% methanol/10% H(2)O, and the n-hexane soluble fraction was further separated by silica gel column chromatography and finally by preparative HPLC. A transactivation assay employing a clone of CHOK1 cells stably transfected with a (UAS)(4)-tk-alkaline phosphatase reporter and a chimeric receptor of GAL4-rPPARalpha LBD was used to track the active component. Based on Mass, NMR, and IR spectroscopy, 9cis, 11trans, 13trans-conjugated linolenic acid (9c, 11t, 13t-CLN) was identified as a PPARalpha activator in wild bitter gourd. The isolated 9c, 11t, 13t-CLN rich fraction also significantly induced acyl CoA oxidase (ACO) activity in a peroxisome proliferator-responsive murine hepatoma cell line, H4IIEC3, implying that 9c, 11t, 13t-CLN was able to act on a natural PPARalpha signaling pathway as well. The content of 9c, 11t, 13t-CLN was estimated to be about 7.1 g/kg of our dried wild bitter gourd sample. The concentration of 9c, 11t, 13t-CLN and activation activity in the hydrolyzed EA extract of the seeds was higher than that of the flesh. The potential health benefits of 9c, 11t, 13t-CLN through the PPARalpha regulated mechanism are worthy to be further characterized in in vivo studies.

  17. Cardiac hypertrophy is enhanced in PPAR alpha-/- mice in response to chronic pressure overload.

    PubMed

    Smeets, Pascal J H; Teunissen, Birgit E J; Willemsen, Peter H M; van Nieuwenhoven, Frans A; Brouns, Agnieszka E; Janssen, Ben J A; Cleutjens, Jack P M; Staels, Bart; van der Vusse, Ger J; van Bilsen, Marc

    2008-04-01

    Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a nuclear receptor regulating cardiac metabolism that also has anti-inflammatory properties. Since the activation of inflammatory signalling pathways is considered to be important in cardiac hypertrophy and fibrosis, it is anticipated that PPARalpha modulates cardiac remodelling. Accordingly, in this study the hypothesis was tested that the absence of PPARalpha aggravates the cardiac hypertrophic response to pressure overload. Male PPARalpha-/- and wild-type mice were subjected to transverse aortic constriction (TAC) for 28 days. TAC resulted in a more pronounced increase in ventricular weight and left ventricular (LV) wall thickness in PPARalpha-/- than in wild-type mice. Compared with sham-operated mice, TAC did not affect cardiac function in wild-type mice, but significantly depressed LV ejection fraction and LV contractility in PPARalpha-/- mice. Moreover, after TAC mRNA levels of hypertrophic (atrial natriuretic factor, alpha-skeletal actin), fibrotic (collagen 1, matrix metalloproteinase-2), and inflammatory (interleukin-6, tumour necrosis factor-alpha, cyclo-oxygenase-2) marker genes were higher in PPARalpha-/- than in wild-type mice. The mRNA levels of genes involved in fatty acid metabolism (long-chain acyl-CoA synthetase, hydroxyacyl-CoA dehydrogenase) were decreased in PPARalpha-/- mice, but were not further compromised by TAC. The present findings show that the absence of PPARalpha results in a more pronounced hypertrophic growth response and cardiac dysfunction that are associated with an enhanced expression of markers of inflammation and extracellular matrix remodelling. These findings indicate that PPARalpha exerts salutary effects during cardiac hypertrophy.

  18. PPARalpha regulates the production of serum Vanin-1 by liver.

    PubMed

    Rommelaere, Samuel; Millet, Virginie; Gensollen, Thomas; Bourges, Christophe; Eeckhoute, Jérôme; Hennuyer, Nathalie; Baugé, Eric; Chasson, Lionel; Cacciatore, Ivana; Staels, Bart; Pitari, Giuseppina; Galland, Franck; Naquet, Philippe

    2013-11-15

    The membrane-bound Vanin-1 pantetheinase regulates tissue adaptation to stress. We investigated Vnn1 expression and its regulation in liver. Vnn1 is expressed by centrolobular hepatocytes. Using novel tools, we identify a soluble form of Vnn1 in mouse and human serum and show the contribution of a cysteine to its catalytic activity. We show that liver contributes to Vanin-1 secretion in serum and that PPARalpha is a limiting factor in serum Vnn1 production. Functional PPRE sites are identified in the Vnn1 promoter. These results indicate that serum Vnn1 might be a reliable reporter of PPARalpha activity in liver. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Polymorphism in the peroxisome proliferator-activated receptor alpha gene influences the risk for Alzheimer's disease.

    PubMed

    Brune, S; Kölsch, H; Ptok, U; Majores, M; Schulz, A; Schlosser, R; Rao, M L; Maier, W; Heun, R

    2003-09-01

    The peroxisome proliferator-activated receptor alpha (PPAR-alpha) is a member of the steroid hormone super family of ligand-inducible transcription factors, involved in glucose and lipid metabolism. We screened for polymorphisms in the PPAR-alpha gene and detected two known polymorphisms located in exon 5 and intron 7. These polymorphisms were investigated for their possible association with Alzheimer's disease (AD) and for their effect in carriers of an insulin gene (INS) polymorphism. The PPAR-alpha C --> G polymorphism in exon 5 (L162V) was associated with AD, in that the V-allele was more frequent in AD patients than in healthy subjects. Further data analysis revealed that carriers of an PPAR-alpha L162V V-allele and an INS-1 allele presented with an increased risk for AD. Cerebrospinal fluid amyloid-beta levels were influenced by PPAR-alpha L162V genotype. These results suggest, that PPAR-alpha polymorphism may be a risk factor for AD.

  20. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    SciTech Connect

    Tachibana, Keisuke; Takeuchi, Kentaro; Inada, Hirohiko; Yamasaki, Daisuke; Ishimoto, Kenji; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Doi, Takefumi

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  1. Effect of berberine on PPARalpha/delta/gamma expression in type 2 diabetic rat retinae.

    PubMed

    Zhou, Ji-yin; Zhou, Shi-wen

    2007-12-01

    Retinopathy is a major cause of morbidity in diabetes and remains the primary cause of new blindness. Therefore, it is necessary to find new drug to treat diabetic retinopathy. Type 2 diabetes mellitus (T2DM) rats were induced by injection (ip) with streptozotocin (STZ) 35 mg x kg(-1) and fed with a high-carbohydrate/high-fat diet 2 weeks later. From week 17 to 32, diabetic rats were given different doses of berberine 75, 150, and 300 mg x kg(-1), fenofibrate 100 mg x kg(-1) and rosiglitazone 4 mg x kg(-1), separately. Retinal structure was observed with hematoxylin-eosin staining and peroxisome proliferator-activated receptors (PPARs) alpha/delta/gamma protein expressions were detected by immunohistochemistry. The retina of control rats was thicker than that of other groups, 16 weeks treatment with berberine (150 and 300 mg x kg(-1)) and rosiglitazone 4 mg x kg(-1) thickened the diabetic retina, but no difference existed in retinal structure among groups. Both berberine (150 and 300 mg x kg(-1)) and rosiglitazone 4 mg x kg(-1) significantly decreased PPARy expression in diabetic retina; while berberine (150 and 300 mg x kg(-1)) and fenofibrate 100 mg x kg(-1) obviously increased both PPARalpha and PPARdelta expressions in diabetic retina. Berberine modulates PPARalpha/delta/gamma protein levels in diabetic retina which may contribute to ameliorate retinopathy complication induced by STZ and a high-carbohydrate/high-fat diet. It is expected that berberine might be a more beneficial drug to treat diabetic retinal complication comparing with fenofibrate and rosiglitazone.

  2. Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.

    PubMed

    Rakhshandehroo, Maryam; Sanderson, Linda M; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; de Groot, Philip J; Müller, Michael; Kersten, Sander

    2007-01-01

    PPARalpha is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARalpha in hepatic lipid metabolism, many PPARalpha-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARalpha-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPARalpha target genes, livers from several animal studies in which PPARalpha was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPARalpha-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPARalpha-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein beta polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (HSL, Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Regulation of Pnpla2, Lipe, and Mgll, which are involved in triglyceride hydrolysis, was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPARalpha agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPARalpha. Our study illustrates the power of transcriptional profiling to uncover novel PPARalpha-regulated genes and pathways in liver.

  3. Exercise promotes alpha7 integrin gene transcription and protection of skeletal muscle.

    PubMed

    Boppart, Marni D; Volker, Sonja E; Alexander, Nicole; Burkin, Dean J; Kaufman, Stephen J

    2008-11-01

    The alpha7beta1 integrin is increased in skeletal muscle in response to injury-producing exercise, and transgenic overexpression of this integrin in mice protects against exercise-induced muscle damage. The present study investigates whether the increase in the alpha7beta1 integrin observed in wild-type mice in response to exercise is due to transcriptional regulation and examines whether mobilization of the integrin at the myotendinous junction (MTJ) is a key determinant in its protection against damage. A single bout of downhill running exercise selectively increased transcription of the alpha7 integrin gene in 5-wk-old wild-type mice 3 h postexercise, and an increased alpha7 chain was detected in muscle sarcolemma adjacent to tendinous tissue immediately following exercise. The alpha7B, but not alpha7A isoform, was found concentrated and colocalized with tenascin-C in muscle fibers lining the MTJ. To further validate the importance of the integrin in the protection against muscle damage following exercise, muscle injury was quantified in alpha7(-/-) mice. Muscle damage was extensive in alpha7(-/-) mice in response to both a single and repeated bouts of exercise and was largely restricted to areas of high MTJ concentration and high mechanical force near the Achilles tendon. These results suggest that exercise-induced muscle injury selectively increases transcription of the alpha7 integrin gene and promotes a rapid change in the alpha7beta integrin at the MTJ. These combined molecular and cellular alterations are likely responsible for integrin-mediated attenuation of exercise-induced muscle damage.

  4. Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARalpha, PPARgamma and LXRalpha.

    PubMed

    Goldwasser, Jonathan; Cohen, Pazit Y; Yang, Eric; Balaguer, Patrick; Yarmush, Martin L; Nahmias, Yaakov

    2010-08-25

    Disruption of lipid and carbohydrate homeostasis is an important factor in the development of prevalent metabolic diseases such as diabetes, obesity, and atherosclerosis. Therefore, small molecules that could reduce insulin dependence and regulate dyslipidemia could have a dramatic effect on public health. The grapefruit flavonoid naringenin has been shown to normalize lipids in diabetes and hypercholesterolemia, as well as inhibit the production of HCV. Here, we demonstrate that naringenin regulates the activity of nuclear receptors PPARalpha, PPARgamma, and LXRalpha. We show it activates the ligand-binding domain of both PPARalpha and PPARgamma, while inhibiting LXRalpha in GAL4-fusion reporters. Using TR-FRET, we show that naringenin is a partial agonist of LXRalpha, inhibiting its association with Trap220 co-activator in the presence of TO901317. In addition, naringenin induces the expression of PPARalpha co-activator, PGC1alpha. The flavonoid activates PPAR response element (PPRE) while suppressing LXRalpha response element (LXRE) in human hepatocytes, translating into the induction of PPAR-regulated fatty acid oxidation genes such as CYP4A11, ACOX, UCP1 and ApoAI, and inhibition of LXRalpha-regulated lipogenesis genes, such as FAS, ABCA1, ABCG1, and HMGR. This effect results in the induction of a fasted-like state in primary rat hepatocytes in which fatty acid oxidation increases, while cholesterol and bile acid production decreases. Our findings explain the myriad effects of naringenin and support its continued clinical development. Of note, this is the first description of a non-toxic, naturally occurring LXRalpha inhibitor.

  5. Alpha1-antitrypsin protects beta-cells from apoptosis.

    PubMed

    Zhang, Bin; Lu, Yuanqing; Campbell-Thompson, Martha; Spencer, Terry; Wasserfall, Clive; Atkinson, Mark; Song, Sihong

    2007-05-01

    Beta-cell apoptosis appears to represent a key event in the pathogenesis of type 1 diabetes. Previous studies have demonstrated that administration of the serine proteinase inhibitor alpha1-antitrypsin (AAT) prevents type 1 diabetes development in NOD mice and prolongs islet allograft survival in rodents; yet the mechanisms underlying this therapeutic benefit remain largely unclear. Herein we describe novel findings indicating that AAT significantly reduces cytokine- and streptozotocin (STZ)-induced beta-cell apoptosis. Specifically, strong antiapoptotic activities for AAT (Prolastin, human) were observed when murine insulinoma cells (MIN6) were exposed to tumor necrosis factor-alpha. In a second model system involving STZ-induced beta-cell apoptosis, treatment of MIN6 cells with AAT similarly induced a significant increase in cellular viability and a reduction in apoptosis. Importantly, in both model systems, treatment with AAT completely abolished induced caspase-3 activity. In terms of its activities in vivo, treatment of C57BL/6 mice with AAT prevented STZ-induced diabetes and, in agreement with the in vitro analyses, supported the concept of a mechanism involving the disruption of beta-cell apoptosis. These results propose a novel biological function for this molecule and suggest it may represent an effective candidate for attempts seeking to prevent or reverse type 1 diabetes.

  6. Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina.

    PubMed

    Halder, Sebok Kumar; Matsunaga, Hayato; Ishii, Ken J; Ueda, Hiroshi

    2015-12-01

    Prothymosin-alpha protects the brain and retina from ischemic damage. Although prothymosin-alpha contributes to toll-like receptor (TLR4)-mediated immnunopotentiation against viral infection, the beneficial effects of prothymosin-alpha-TLR4 signaling in protecting against ischemia remain to be elucidated. In this study, intravitreal administration of prothymosin-alpha 48 h before induction of retinal ischemia prevented retinal cellular damage as evaluated by histology, and retinal functional deficits as evaluated by electroretinography. Prothymosin-alpha preconditioning completely prevented the ischemia-induced loss of ganglion cells with partial survival of bipolar and photoreceptor cells, but not amacrine cells, in immunohistochemistry experiments. Prothymosin-alpha treatment in the absence of ischemia caused mild activation, proliferation, and migration of retinal microglia, whereas the ischemia-induced microglial activation was inhibited by prothymosin-alpha preconditioning. All these preventive effects of prothymosin-alpha preconditioning were abolished in TLR4 knock-out mice and by pre-treatments with anti-TLR4 antibodies or minocycline, a microglial inhibitor. Prothymosin-alpha preconditioning inhibited the retinal ischemia-induced up-regulation of TLR4-related injury genes, and increased expression of TLR4-related protective genes. Furthermore, the prothymosin-alpha preconditioning-induced prevention of retinal ischemic damage was abolished in TIR-domain-containing adapter-inducing interferon-β knock-out mice, but not in myeloid differentiation primary response gene 88 knock-out mice. Taken together, the results of this study suggest that prothymosin-alpha preconditioning selectively drives TLR4-TIR-domain-containing adapter-inducing interferon-β signaling and microglia in the prevention of retinal ischemic damage. We propose the following mechanism for prothymosin-alpha (ProTα) preconditioning-induced retinal prevention against ischemia: Pro

  7. Interferon-γ Protects from Staphylococcal Alpha Toxin-Induced Keratinocyte Death through Apolipoprotein L1.

    PubMed

    Brauweiler, Anne M; Goleva, Elena; Leung, Donald Y M

    2016-03-01

    Staphylococcus aureus is a bacterial pathogen that frequently infects the skin, causing lesions and cell destruction through its primary virulence factor, alpha toxin. Here we show that interferon gamma (IFN-?) protects human keratinocytes from cell death induced by staphylococcal alpha toxin. We find that IFN-? prevents alpha toxin binding and reduces expression of the alpha toxin receptor, a disintegrin and metalloproteinase 10 (ADAM10). We determine that the mechanism for IFN-?-mediated resistance to alpha toxin involves the induction of autophagy, a process of cellular adaptation to sublethal damage. We find that IFN-? potently stimulates activation of the primary autophagy effector, light chain 3 (LC3). This process is dependent on upregulation of apolipoprotein L1. Depletion of apolipoprotein L1 by small interfering RNA significantly increases alpha toxin-induced lethality and inhibits activation of light chain 3. We conclude that IFN-? plays a significant role in protecting human keratinocytes from the lethal effects of staphylococcal alpha toxin through apolipoprotein L1-induced autophagy.

  8. The inhibition of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor alpha and peroxisome proliferator-activated receptor alpha heterodimer.

    PubMed

    Gbaguidi, G Franck; Agellon, Luis B

    2004-01-01

    In previous work, we showed that the binding of the liver x receptor alpha:peroxisome proliferator-activated receptor alpha (LXRalpha:PPARalpha) heterodimer to the murine Cyp7a1 gene promoter antagonizes the stimulatory effect of their respective ligands. In this study, we determined if LXRalpha:PPARalpha can also regulate human CYP7A1 gene promoter activity. Co-expression of LXRalpha and PPARalpha in McArdle RH7777 hepatoma cells decreased the activity of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol. In vitro, the human CYP7A1 Site I bound LXRalpha:PPARalpha, although with substantially less affinity compared with the murine Cyp7a1 Site I. The binding of LXRalpha:PPARalpha to human CYP7A1 Site I was increased in the presence of either LXRalpha or PPARalpha ligands. In HepG2 hepatoblastoma cells, fibrates and 25-hydroxycholesterol inhibited the expression of the endogenous CYP7A1 gene as well as the human CYP7A1 gene promoter when co-transfected with plasmids encoding LXRalpha and PPARalpha. However, a derivative of the human CYP7A1 gene promoter that contains a mutant form of Site I that does not bind LXRalpha:PPARalpha was not inhibited by WY 14,643 or 25-hydroxycholesterol in both McArdle RH7777 and HepG2 cells. The ligand-dependent recruitment of LXRalpha:PPARalpha heterodimer onto the human CYP7A1 Site I can explain the inhibition of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol.

  9. Protective effect of alpha-linolenic acid on gentamicin-induced ototoxicity in mice.

    PubMed

    Kaplan, Halil Mahir; Şingirik, Ergin; Erdoğan, Kıvılcım Eren; Doran, Figen

    2017-07-31

    Alpha-linolenic acid is one of the fatty acids known as omega 3. Previous studies have shown the antioxidant and anti-inflammatory effects of alpha-linolenic acid, which prevented cell damage by inhibiting apoptotic pathway. Also, it is known that gentamicin activates apoptotic mediators and causes necrosis in the kidney. Due to this reason, we planned a study to evaluate the protective effects of alpha-linolenic acid on gentamicin induced ototoxicity by evaluating inflammation and apoptotic mediators. For this purpose, 100 mg/kg gentamicin (i.p; intraperitoneally) and 200 mg/kg alpha-linolenic acid (gavage) are administered to mice for 9 days. On 9th and 10th days, rotarod performance was assessed to test the effect of gentamicin and alpha-linolenic acid treatment on the motor coordination of mice. Gentamicin treatment decreased fall latency of mice and gentamicin treatment together with alpha-linolenic acid increased fall latency of mice. Gentamicin treatment also increased expression of phospholipase A2(plA2), cyclooxygenase-2(COX-2) and inducible nitric oxide syntheses (iNOS). Furthermore, it increased Bax and caspase-3, which are proapoptotic proteins and decreased bcl-2 that is an antiapoptotic protein. Gentamicin treatment together alpha-linolenic acid recovered the change of expression of these enzymes. In conclusion, this study showed that alpha-linolenic acid will be useful to prevent gentamicin-induced ototoxicity by inhibiting apoptosis and inflammation.

  10. Protection against Acetylcholinesterase Inhibitor Toxicity by Alpha- Adrenergic Agonists

    DTIC Science & Technology

    1992-10-28

    30912-2300 S EL CELECTE REPORT DATE: October 28, 1992 SEP 3 01993 TYPE OF REPORT: Final A PREPARED FOR: U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT...endorsement or approval of the products or services of these organizations. _ _ I n conducting research using animals, the investigator(s) adhered to the...Resources, National Research Council (NIH Publication No. 86-23, Revised 1985). For the protection of human subjects, the investigator(s) adhered to

  11. Protective mechanism of the Mexican bean weevil against high levels of alpha-amylase inhibitor in the common bean.

    PubMed

    Ishimoto, M; Chrispeels, M J

    1996-06-01

    Alpha-amylase inhibitor (alpha AI) protects seeds of the common bean (Phaseolus vulgaris) against predation by certain species of bruchids such as the cowpea weevil (Callosobruchus maculatus) and the azuki bean weevil (Callosobruchus chinensis), but not against predation by the bean weevil (Acanthoscelides obtectus) or the Mexican bean weevil (Zabrotes subfasciatus), insects that are common in the Americas. We characterized the interaction of alpha AI-1 present in seeds of the common bean, of a different isoform, alpha AI-2, present in seeds of wild common bean accessions, and of two homologs, alpha AI-Pa present in seeds of the tepary bean (Phaseolus acutifolius) and alpha AI-Pc in seeds of the scarlet runner bean (Phaseolus coccineus), with the midgut extracts of several bruchids. The extract of the Z. subfasciatus larvae rapidly digests and inactivates alpha AI-1 and alpha AI-Pc, but not alpha AI-2 or alpha AI-Pa. The digestion is caused by a serine protease. A single proteolytic cleavage in the beta subunit of alpha AI-1 occurs at the active site of the protein. When degradation is prevented, alpha AI-1 and alpha AI-Pc do not inhibit the alpha-amylase of Z. subfasciatus, although they are effective against the alpha-amylase of C. chinensis. Alpha AI-2 and alpha AI-Pa, on the other hand, do inhibit the alpha-amylase of Z. subfasciatus, suggesting that they are good candidates for genetic engineering to achieve resistance to Z. subfasciatus.

  12. Effect of pH on subunit association and heat protection of soybean alpha-galactosidase

    NASA Technical Reports Server (NTRS)

    Porter, J. E.; Sarikaya, A.; Herrmann, K. M.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1992-01-01

    Soybeans contain the enzyme alpha-galactosidase, which hydrolyzes alpha-1, 6 linkages in stachyose and raffinose to give sucrose and galactose. We have found that galactose, a competitive product inhibitor of alpha-galactosidase, strongly promotes the heat stability of the tetrameric form of the enzyme at pH 4.0 and at temperatures of up to 70 degrees C for 60 min. Stachyose and raffinose also protect alpha-galactosidase from denaturation at pH 4.0 although to a lesser extent. Glucose and mannose have little effect. At pH 7.0 the enzyme is a monomer, and galactose has no effect on the heat stability of the enzyme. In the absence of heat protection of the enzyme by added sugars, a series deactivation mechanism was found to describe the deactivation data. In comparison, a unimolecular, non-first order deactivation model applies at pH 4.0, where heat protection effects were observed. At a temperature above 60 degrees C, simple deactivation is a suitable model. The results suggest that alpha-galactosidase conformation and heat stability are directly related.

  13. Effect of pH on subunit association and heat protection of soybean alpha-galactosidase

    NASA Technical Reports Server (NTRS)

    Porter, J. E.; Sarikaya, A.; Herrmann, K. M.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1992-01-01

    Soybeans contain the enzyme alpha-galactosidase, which hydrolyzes alpha-1, 6 linkages in stachyose and raffinose to give sucrose and galactose. We have found that galactose, a competitive product inhibitor of alpha-galactosidase, strongly promotes the heat stability of the tetrameric form of the enzyme at pH 4.0 and at temperatures of up to 70 degrees C for 60 min. Stachyose and raffinose also protect alpha-galactosidase from denaturation at pH 4.0 although to a lesser extent. Glucose and mannose have little effect. At pH 7.0 the enzyme is a monomer, and galactose has no effect on the heat stability of the enzyme. In the absence of heat protection of the enzyme by added sugars, a series deactivation mechanism was found to describe the deactivation data. In comparison, a unimolecular, non-first order deactivation model applies at pH 4.0, where heat protection effects were observed. At a temperature above 60 degrees C, simple deactivation is a suitable model. The results suggest that alpha-galactosidase conformation and heat stability are directly related.

  14. Increased microerythrocyte count in homozygous alpha(+)-thalassaemia contributes to protection against severe malarial anaemia.

    PubMed

    Fowkes, Freya J I; Allen, Stephen J; Allen, Angela; Alpers, Michael P; Weatherall, David J; Day, Karen P

    2008-03-18

    The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). The increased erythrocyte count and

  15. Tumour necrosis factor (TNF alpha) in leishmaniasis. I. TNF alpha mediates host protection against cutaneous leishmaniasis.

    PubMed Central

    Liew, F Y; Parkinson, C; Millott, S; Severn, A; Carrier, M

    1990-01-01

    Genetically resistant CBA mice developed significantly larger lesions to Leishmania major infection when they were injected with rabbit anti-tumour necrosis factor (TNF)-specific antibodies compared to control mice injected with normal rabbit immunoglobulin. BALB/c mice recovered from a previous infection following prophylactic sublethal irradiation also developed exacerbated lesions when treated with the anti-TNF antibody. Injection of TNF into the lesion of infected CBA mice significantly reduced the lesion development. Furthermore, TNF activates macrophages to kill Leishmania in vitro. These data demonstrate that TNF plays an important role in mediating host-protection against cutaneous leishmaniasis. PMID:2335376

  16. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  17. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  18. The in vitro protective effect of alpha-tocopherol on oxidative injury in the dog retina.

    PubMed

    Zapata, G L; Guajardo, M H; Terrasa, A M

    2008-08-01

    Oxidative stress is a risk factor for eye diseases. Free radicals elicited during the inflammatory process often lead to oxidative damage of lipids (lipid peroxidation). The retina is highly vulnerable because of its high content of polyunsaturated fatty acids (PUFAs). The aim of this study was to investigate in vitro the effect of alpha-tocopherol on the Fe(2+)-ascorbate induced lipid peroxidation in the canine retina. Lipid peroxidation of retinal homogenates was carried out with and without the addition of alpha-tocopherol and monitored both by chemiluminescence and production of thiobarbituric acid reactive substances (TBARS). Total chemiluminescence counts per minute was lower in those homogenates pre-incubated with alpha-tocopherol. Thus, with 1 micromol alpha-tocopherol/mg of protein, 100% inhibition of chemiluminescence and a decrease of TBARS content from 20.46+/-0.85 to 2.62+/-2.77 nmol/mg protein were observed. Simultaneously, changes produced by oxidative stress were noted in the fatty acid composition of retinal lipids. Docosahexaenoic acid was decreased from 14.33+/-2.32% to 1.84+/-0.14% after peroxidation, but this fatty acid remained unaltered in the presence of 1 micromol alpha-tocopherol. These results show that under these experimental conditions, alpha-tocopherol may act as anti-oxidant protecting retinal membranes from deleterious effects. Further studies are required to assess its use in free radical generating conditions affecting the canine retina.

  19. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha.

    PubMed

    DeWitt, Jamie C; Shnyra, Alexander; Badr, Mostafa Z; Loveless, Scott E; Hoban, Denise; Frame, Steven R; Cunard, Robyn; Anderson, Stacey E; Meade, B Jean; Peden-Adams, Margie M; Luebke, Robert W; Luster, Michael I

    2009-01-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are environmentally widespread and persistent chemicals with multiple toxicities reported in experimental animals and humans. These compounds can trigger biological activity by activating the alpha isotype of peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors that regulate gene expression; however, some biological effects may occur independently of the receptor. Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) modulates lipid and glucose homeostasis, cell proliferation and differentiation, and inflammation. Reported immunomodulation in experimental animals exposed to PFOA and PFOS has included altered inflammatory responses, production of cytokines and other proteins, reduced lymphoid organ weights, and altered antibody synthesis. Mounting experimental animal evidence suggests PPARalpha independence of some immune effects. This evidence originates primarily from studies with PPARalpha knockout models exposed to PFOA that demonstrate hepatic peroxisome proliferation, reduced lymphoid organ weights, and altered antibody synthesis. As human PPARalpha expression is significantly less than that of rodents, potential PPARalpha independence indicates that future research must explore mechanisms of action of these compounds, including PPARalpha-dependent and -independent pathways. This multiauthored review contains brief descriptions of current and recently published work exploring immunomodulation by PFOA and PFOS, as well as a short overview of other PPARalpha ligands of therapeutic and environmental interest.

  20. Peroxisome proliferator-activated receptor {alpha}-independent peroxisome proliferation

    SciTech Connect

    Zhang Xiuguo; Tanaka, Naoki . E-mail: naopi@hsp.md.shinshu-u.ac.jp; Nakajima, Takero; Kamijo, Yuji; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-08-11

    Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPAR{alpha}-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPAR{alpha} dependence in the assay system. Surprisingly, a novel type of PPAR{alpha}-independent peroxisome proliferation and enlargement was uncovered in PPAR{alpha}-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11{alpha}, might be associated with the PPAR{alpha}-independent peroxisome proliferation at least in part.

  1. The identification of peroxisome proliferator-activated receptor alpha-independent effects of oleoylethanolamide on intestinal transit in mice.

    PubMed

    Cluny, N L; Keenan, C M; Lutz, B; Piomelli, D; Sharkey, K A

    2009-04-01

    Oleoylethanolamide (OEA) is an endogenous lipid produced in the intestine that mediates satiety by activation of peroxisome proliferator-activated receptor alpha (PPARalpha). OEA inhibits gastric emptying and intestinal motility, but the mechanism of action remains to be determined. We investigated whether OEA inhibits intestinal motility by activation of PPARalpha. PPARalpha immunoreactivity was examined in whole mount preparations of mouse gastrointestinal (GI) tract. The effect of OEA on motility was assessed in wildtype, PPARalpha, cannabinoid CB(1) receptor and CB(2) receptor gene-deficient mice and in a model of accelerated GI transit. In addition, the effect of OEA on motility was assessed in mice injected with the PPARalpha antagonist GW6471, transient receptor potential vanilloid 1 antagonist SB366791 or the glucagon-like peptide 1 antagonist exendin-3(9-39) amide. PPARalpha immunoreactivity was present in neurons in the myenteric and submucosal plexuses throughout the GI tract. OEA inhibited upper GI transit in a dose-dependent manner, but was devoid of an effect on whole gut transit or colonic propulsion. OEA-induced inhibition of motility was still present in PPARalpha, CB(1) and CB(2) receptor gene-deficient mice and in the presence of GW6471, SB366791 and exendin-3(9-39) amide, suggesting neither PPARalpha nor the cannabinoids and other likely receptors are involved in mediating the effects of OEA. OEA blocked stress-induced accelerated upper GI transit at a dose that had no effect on physiological transit. We show that PPARalpha is found in the enteric nervous system, but our results suggest that PPARalpha is not involved in the suppression of motility by OEA.

  2. Transforming growth factor alpha protection against drug-induced injury to the rat gastric mucosa in vivo.

    PubMed Central

    Romano, M; Polk, W H; Awad, J A; Arteaga, C L; Nanney, L B; Wargovich, M J; Kraus, E R; Boland, C R; Coffey, R J

    1992-01-01

    This study was designed to determine whether transforming growth factor alpha (TGF alpha) protects rat gastric mucosa against ethanol- and aspirin-induced injury. Systemic administration of TGF alpha dose-dependently decreased 100% ethanol-induced gastric mucosal injury; a dose of 50 micrograms/kg delivered intraperitoneally 15 min before ethanol decreased macroscopic mucosal injury by > 90%. At the microscopic level, TGF alpha prevented deep gastric necrotic lesions and reduced disruption of surface epithelium. Pretreatment with orogastric TGF alpha (200 micrograms/kg) only partially (40%) decreased macroscopic ethanol damage. Intraperitoneal administration of TGF alpha at a dose of 10 micrograms/kg, which does not significantly inhibit gastric acid secretion, decreased aspirin-induced macroscopic damage by > 80%. TGF alpha protection does not seem to be mediated by prostaglandin, glutathione, or ornithine decarboxylase-related events, as evidenced by lack of influence of the inhibition of their production. Pretreatment with the sulfhydryl blocking agent N-ethylmaleimide partially abolished (40%) the protective effect of TGF alpha. In addition, systemic administration of TGF alpha resulted in a two-fold increase in tyrosine phosphorylation of phospholipase C-gamma 1 and in a time- and dose-dependent increase in levels of immunoreactive insoluble gastric mucin; these events occurred in a time frame consistent with their participation in the protective effect of TGF alpha. Images PMID:1281834

  3. Peroxisome proliferator-activated receptor (PPAR)-gamma positively controls and PPARalpha negatively controls cyclooxygenase-2 expression in rat brain astrocytes through a convergence on PPARbeta/delta via mutual control of PPAR expression levels.

    PubMed

    Aleshin, Stepan; Grabeklis, Sevil; Hanck, Theodor; Sergeeva, Marina; Reiser, Georg

    2009-08-01

    Peroxisome proliferator-activated receptor (PPAR) transcription factors are pharmaceutical drug targets for treating diabetes, atherosclerosis, and inflammatory degenerative diseases. The possible mechanism of interaction between the three PPAR isotypes (alpha, beta/delta, and gamma) is not yet clear. However, this is important both for understanding transcription factor regulation and for the development of new drugs. The present study was designed to compare the effects of combinations of synthetic agonists of PPARalpha [2-[4-[2-[4-cyclohexylbutyl (cyclohexylcarbamoyl)amino]ethyl]phenyl] sulfanyl-2-methylpropanoic acid (GW7647)], PPARbeta/delta [4-(3-(2-propyl-3-hydroxy-4-acetyl)phenoxy)propyloxyphenoxy acetic acid, (L-165041)], and PPARgamma (rosiglitazone, ciglitazone) on inflammatory gene regulation in rat primary astrocytes. We measured cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) synthesis in lipopolysaccharide (LPS)-stimulated cells. PPARalpha, PPARbeta/delta, and PPARgamma knockdown models served to delineate the contribution of each PPAR isotype. Thiazolidinediones enhanced the LPS-induced COX-2 expression via PPARgamma-dependent pathway, whereas L-165041 and GW7647 had no influence. However, the addition of L-165041 potentiated the effect of PPARgamma activation through PPARbeta/delta-dependent mechanism. On the contrary, PPARalpha activation (GW7647) suppressed the effect of the combined L-165041/rosiglitazone application. The mechanism of the interplay arising from combined applications of PPAR agonists involves changes in PPAR expression levels. A PPARbeta/delta overexpression model confirmed that PPARbeta/delta expression level is the point at which PPARgamma and PPARalpha pathways converge in control of COX-2 gene expression. Thus, we discovered that in primary astrocytes, PPARgamma has a positive influence and PPARalpha has a negative influence on PPARbeta/delta expression and activity. A positive/negative-feedback loop is formed by

  4. Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice.

    PubMed

    Erol, Erdal; Kumar, Leena S; Cline, Gary W; Shulman, Gerald I; Kelly, Daniel P; Binas, Bert

    2004-02-01

    Liver fatty acid binding protein (L-FABP) has been proposed to limit the availability of long-chain fatty acids (LCFA) for oxidation and for peroxisome proliferator-activated receptor alpha (PPAR-alpha), a fatty acid binding transcription factor that determines the capacity of hepatic fatty acid oxidation. Here, we used L-FABP null mice to test this hypothesis. Under fasting conditions, this mutation reduced beta-hydroxybutyrate (BHB) plasma levels as well as BHB release and palmitic acid oxidation by isolated hepatocytes. However, the capacity for ketogenesis was not reduced: BHB plasma levels were restored by octanoate injection; BHB production and palmitic acid oxidation were normal in liver homogenates; and hepatic expression of key PPAR-alpha target (MCAD, mitochondrial HMG CoA synthase, ACO, CYP4A3) and other (CPT1, LCAD) genes of mitochondrial and extramitochondrial LCFA oxidation and ketogenesis remained at wild-type levels. During standard diet, mitochondrial HMG CoA synthase mRNA was selectively reduced in L-FABP null liver. These results suggest that under fasting conditions, hepatic L-FABP contributes to hepatic LCFA oxidation and ketogenesis by a nontranscriptional mechanism, whereas L-FABP can activate ketogenic gene expression in fed mice. Thus, the mechanisms whereby L-FABP affects fatty acid oxidation may vary with physiological condition.

  5. Estrogen-related receptor {alpha} is essential for the expression of antioxidant protection genes and mitochondrial function

    SciTech Connect

    Rangwala, Shamina M. . E-mail: shamina.rangwala@novartis.com; Li, Xiaoyan; Lindsley, Loren; Wang, Xiaomei; Shaughnessy, Stacey; Daniels, Thomas G.; Szustakowski, Joseph; Nirmala, N.R.; Wu, Zhidan; Stevenson, Susan C.

    2007-05-25

    Estrogen-related receptor {alpha} (ERR{alpha}) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERR{alpha} null mice. Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) stimulated mitochondrial gene expression program in control cells, but not in the ERR{alpha} null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1{alpha} levels was dependent on ERR{alpha}. Furthermore, we found that the PGC-1{alpha}-mediated induction of estrogen-related receptor {gamma} and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERR{alpha}. Basal levels of NRF-2 were decreased in the absence of ERR{alpha}. The absence of ERR{alpha} resulted in a decrease in citrate synthase enzyme activity in response to PGC-1{alpha} overexpression. Our results indicate an essential role for ERR{alpha} as a key regulator of oxidative metabolism.

  6. Sclareol protects Staphylococcus aureus-induced lung cell injury via inhibiting alpha-hemolysin expression.

    PubMed

    Ouyang, Ping; Sun, Mao; He, Xuewen; Wang, Kaiyu; Yin, Zhongqiong; Fu, Hualin; Li, Yinglun; Geng, Yi; Shu, Gang; He, Changliang; Liang, Xiaoxia; Lai, Weiming; Li, Lixia; Zou, Yuanfeng; Song, Xu; Yin, Lizi

    2016-09-23

    Staphylococcus aureus (S. aureus) is a common Gram-positive bacterium that causes serious infections in human and animals. With the continuous emergence of the methicillin-resistant S. aureus (MRSA) strains, antibiotics have limited efficacy in treating MRSA infections. Accordingly, novel agents that act on new targets are desperately needed to combat these infections. S. aureus alpha-hemolysin plays an indispensable role in its pathogenicity. In this study, we demonstrate that sclareol, a fragrant chemical compound found in clary sage, can prominently decrease alpha-hemolysin secretion in S. aureus strain USA300 at sub-inhibitory concentrations. Hemolysis assays, western-blotting and RT-PCR were used to detect the production of alpha-hemolysin in the culture supernatant. When USA300 was co-cultured with and A549 epithelial cells, sclareol could protect A549 cells at a final concentration of 8 µg/ml. The protective capability of sclareol against the USA300-mediated injury of A549 cells was further shown by cytotoxicity assays and live/dead analysis. In conclusion, sclareol was shown to inhibit the production of S. aureus alpha-hemolysin. Sclareol has potential for development as a new agent to treat S. aureus infections.

  7. Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant

    PubMed Central

    Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J.

    2009-01-01

    Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709

  8. Protecting the myocardium from ischemic injury: a critical role for alpha(1)-adrenoreceptors?

    PubMed

    Salvi, S

    2001-04-01

    Ischemic preconditioning (IPC) refers to the ability of short periods of ischemia to make the myocardium more resistant to a subsequent ischemic insult. It is the most powerful form of endogenous protection against myocardial infarction and has been demonstrated in all species evaluated to date. However, the cellular mechanisms that drive IPC remain poorly understood. This hypothesis describes an important role for alpha(1)-adrenoreceptors in mediating IPC and discusses the underlying mechanisms by which this is likely achieved. alpha(1)-Adrenoreceptors are present in the myocardium of all mammalian species, and several lines of evidence suggest that they play an important role in mediating IPC. During periods of myocardial hypoxia/ischemia, cardiomyocytes have to rely solely on anaerobic glycolysis for energy production; for this, the cells have to depend on increased glucose entry inside the cell as well as increased glycolysis. Stimulation of alpha(1)-adrenoreceptors increases glucose transport inside the cardiomyocytes by translocating glucose transporter (GLUT)-1 and GLUT-4 from the cytoplasm to the plasma membrane, enhances glycogenolysis by activating phosphorylase kinase, increases the rate of glycolysis by activating the enzyme phosphofructokinase, reduces intracellular acidity produced during excessive glycolysis by activating the Na(+)/H(+) exchanger, and inhibits apoptosis by increasing the levels of the antiapoptotic protein Bcl-2. Myocardial ischemia produces an increase in the expression of alpha(1)-adrenoreceptors in cardiomyocytes, as well as increases the levels of its agonist norepinephrine by several fold. During ischemic states, upregulation of alpha(1)-adrenoreceptors and increase in norepinephrine release could be a powerful adaptive mechanism that drives IPC. An understanding into the role of alpha(1)-adrenoreceptors in mediating IPC could not only point to newer treatments for limiting myocardial damage during myocardial infarction or heart

  9. A recombinant carboxy-terminal domain of alpha-toxin protects mice against Clostridium perfringens.

    PubMed

    Nagahama, Masahiro; Oda, Masataka; Kobayashi, Keiko; Ochi, Sadayuki; Takagishi, Teruhisa; Shibutani, Masahiro; Sakurai, Jun

    2013-05-01

    Clostridium perfringens alpha-toxin (CP, 370 residues) is one of the main agents involved in the development of gas gangrene. In this study, the immunogenicity and protective efficacy of the C-terminal domain (CP251-370) of the toxin and phospholipase C (PLC; CB, 372 residues) of Clostridum bifermentans isolated from cases of clostridium necrosis were examined. The recombinant proteins were expressed as glutathione S-transferase (GST) fusion proteins. Antibodies that cross-reacted with alpha-toxin were produced after immunization with recombinant proteins including GST-CP251-370, GST-CP281-370, GST-CP311-370, CB1-372 and GST-CB251-372. Anti-GST-CP251-370, anti-GST-CP281-370 and anti-GST-CP311-370 sera neutralized both the PLC and hemolytic activities of alpha-toxin, whereas anti-CB1-372 and anti-GST-CB251-372 weakly neutralized these activities. Immunization with GST-CP251-370 and GST-CP281-370 provided protection against the lethal effects of the toxin and C. perfringens type A NCTC8237. Partial protection from the toxin and C. perfringens was elicited by immunization with GST-CP311-370 and CB1-372. GST-CP251-370 and GST-CP281-370 are promising candidates for vaccines for clostridial-induced gas gangrene.

  10. Cumene hydroperoxide debilitates macrophage physiology by inducing oxidative stress: possible protection by alpha-tocopherol.

    PubMed

    Kaur, Gurpreet; Alam, M Sarwar; Athar, Mohammad

    2009-05-15

    Macrophages, the major phagocytes of body, are largely dependent on membrane for their apposite functioning. Cum-OOH, a catalyst used in chemical and pharmaceutical industry, is a peroxidative agent, which may induce oxidative stress in macrophages hampering the integrity of their membrane. Alpha-tocopherol is known to protect the membrane from oxidative modulation and preserve its integrity. In the present study, we investigated the effect of Cum-OOH on physiology of macrophages and evaluated the protective effect of alpha-tocopherol against Cum-OOH-induced functional impairment. An in vitro exposure to 10-200 microM Cum-OOH altered redox balance of murine peritoneal macrophages and led to a severe physiological impairment. It markedly augmented the release of proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta and prostaglandin E(2)), lipopolysaccharide primed nitric oxide release and inducible nitric oxide synthase expression, and lysosomal hydrolases secretion. It mitigated respiratory burst and phagocytosis and intracellular killing of yeast (Saccharomyces cerevisiae). Mannose receptor, a major macrophage phagocytic receptor (also implicated in S. cerevisiae phagocytosis), exhibited a hampered recycling with its number being reduced to about 54% of the untreated, control cells following Cum-OOH exposure. A 24-h pretreatment of macrophages with 25 microM alpha-tocopherol preserved most of the assessed functions close to their corresponding control values. These data suggest that exposure to Cum-OOH may impair the physiology of immune cells such as macrophages and that supplementation with alpha-tocopherol can safeguard these cells against Cum-OOH toxicity.

  11. Cervical mucins carry alpha(1,2)fucosylated glycans that partly protect from experimental vaginal candidiasis.

    PubMed

    Domino, Steven E; Hurd, Elizabeth A; Thomsson, Kristina A; Karnak, David M; Holmén Larsson, Jessica M; Thomsson, Elisabeth; Bäckström, Malin; Hansson, Gunnar C

    2009-12-01

    Cervical mucins are glycosylated proteins that form a protective cervical mucus. To understand the role of mucin glycans in Candida albicans infection, oligosaccharides from mouse cervical mucins were analyzed by liquid chromatography-mass spectrometry. Cervical mucins carry multiple alpha(1-2)fucosylated glycans, but alpha(1,2)fucosyltransferase Fut2-null mice are devoid of these epitopes. Epithelial cells in vaginal lavages from Fut2-null mice lacked Ulex europaeus agglutinin-1 (UEA-I) staining for alpha(1-2)fucosylated glycans. Hysterectomy to remove cervical mucus eliminated UEA-I and acid mucin staining in vaginal epithelial cells from wild type mice indicating the cervix as the source of UEA-I positive epithelial cells. To assess binding of alpha(1-2) fucosylated glycans on C. albicans infection, an in vitro adhesion assay was performed with vaginal epithelial cells from wild type and Fut2-null mice. Vaginal epithelial cells from Fut2-null mice were found to bind increased numbers of C. albicans compared to vaginal epithelial cells obtained from wild type mice. Hysterectomy lessened the difference between Fut2-null and wild type mice in binding of C. ablicans in vitro and susceptibility to experimental C. albicans vaginitis in vivo. We generated a recombinant fucosylated MUC1 glycanpolymer to test whether the relative protection of wild type mice compared to Fut2-null mice could be mimicked with exogenous mucin. While a small portion of the recombinant MUC1 epitopes displayed alpha(1-2)fucosylated glycans, the predominant epitopes were sialylated due to endogenous sialyltransferases in the cultured cells. Intravaginal instillation of recombinant MUC1 glycanpolymer partially reduced experimental yeast vaginitis suggesting that a large glycanpolymer, with different glycan epitopes, may affect fungal burden.

  12. The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Alpha crystallin was prepared from newborn and aged bovine lenses. SDS-PAGE and tryptic peptide mapping demonstrated that both preparations contained only the alpha-A and alpha-B chains, with no significant contamination of other crystallins. Compared with alpha crystallin from the aged lens, alpha crystallin from the newborn lens was much more effective in the inhibition of beta L crystallin denaturation and precipitation induced in vitro by heat. Together, these results demonstrate that during the aging process, the alpha crystallins lose their ability to protect against protein denaturation, consistent with the hypothesis that the alpha crystallins play an important role in the maintenance of protein native structure in the intact lens.

  13. The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Alpha crystallin was prepared from newborn and aged bovine lenses. SDS-PAGE and tryptic peptide mapping demonstrated that both preparations contained only the alpha-A and alpha-B chains, with no significant contamination of other crystallins. Compared with alpha crystallin from the aged lens, alpha crystallin from the newborn lens was much more effective in the inhibition of beta L crystallin denaturation and precipitation induced in vitro by heat. Together, these results demonstrate that during the aging process, the alpha crystallins lose their ability to protect against protein denaturation, consistent with the hypothesis that the alpha crystallins play an important role in the maintenance of protein native structure in the intact lens.

  14. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Emmons, T.; Horwitz, J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Recent studies have demonstrated that the alpha-crystallins can protect other proteins against heat-induced denaturation and aggregation. To determine the possible involvement of the C-terminal region in this activity, the alpha-crystallins were subjected to limited tryptic digestion, and the amount of cleavage from the N-terminal and C-terminal regions of the alpha-A and alpha-B crystallin chains was assessed using antisera specific for these regions. Limited tryptic digestion resulted in cleavage only from the C-terminal region of alpha-A crystallin. This trypsin-treated alpha-A crystallin preparation showed a decreased ability to protect proteins from heat-induced aggregation using an in vitro assay. Together, these results demonstrate that the C-terminal region of alpha-A crystallin is important for its ability to protect against heat-induced aggregation, which is consistent with the hypothesis that post-translational changes that are known to occur at the C-terminal region may have significant effects on the ability of alpha-A crystallin to protect against protein denaturation in vivo.

  15. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    SciTech Connect

    Madonna, Rosalinda; Shelat, Harnath; Xue, Qun; Willerson, James T.; De Caterina, Raffaele; Geng, Yong-Jian

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  16. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha.

    PubMed

    LoVerme, Jesse; Russo, Roberto; La Rana, Giovanna; Fu, Jin; Farthing, Jesse; Mattace-Raso, Giuseppina; Meli, Rosaria; Hohmann, Andrea; Calignano, Antonio; Piomelli, Daniele

    2006-12-01

    Severe pain remains a major area of unmet medical need. Here we report that agonists of the nuclear receptor PPAR-alpha (peroxisome proliferator-activated receptor-alpha) suppress pain behaviors induced in mice by chemical tissue injury, nerve damage, or inflammation. The PPAR-alpha agonists GW7647 [2-(4-(2-(1-cyclohexanebutyl)-3-cyclohexylureido)ethyl)phenylthio)-2-methylpropionic acid], Wy-14643 [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid], and palmitoylethanolamide (PEA) reduced nocifensive behaviors elicited in mice by intraplantar (i.pl.) injection of formalin or i.p. injection of magnesium sulfate. These effects were absent in PPAR-alpha-null mice yet occurred within minutes of agonist administration in wild-type mice, suggesting that they were mediated through a transcription-independent mechanism. Consistent with this hypothesis, blockade of calcium-operated IK(ca) (K(Ca)3.1) and BK(ca) (K(Ca)1.1) potassium channels prevented the effects of GW7647 and PEA in the formalin test. Three observations suggest that PPAR-alpha agonists may inhibit nocifensive responses by acting on peripheral PPAR-alpha. (i) PEA reduced formalin-induced pain at i.pl. doses that produced no increase in systemic PEA levels; (ii) PPAR-alpha was expressed in dorsal root ganglia neurons of wild-type but not PPAR-alpha-null mice; and (ii) GW7647 and PEA prevented formalin-induced firing of spinal cord nociceptive neurons in rats. In addition to modulating nociception, GW7647 and PEA reduced hyperalgesic responses in the chronic constriction injury model of neuropathic pain; these effects were also contingent on PPAR-alpha expression and were observed following either acute or subchronic PPAR-alpha agonist administration. Finally, acute administration of GW7647 and PEA reduced hyperalgesic responses in the complete Freund's adjuvant and carrageenan models of inflammatory pain. Our results suggest that PPAR-alpha agonists may represent a novel class of analgesics.

  17. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  18. Alpha-methyl-homocysteine thiolactone protects lung of BALB/c mice irradiated with 6 Gy

    NASA Astrophysics Data System (ADS)

    Lubec, G.; Foltinova, J.; Leplawy, T.; Mallinger, R.; Tichatschek, E.; Getoff, N.

    1996-06-01

    The radiation protective activity of intraperitoneally administered alpha-methyl-homocysteine thiolactone (α-MHCTL; 100 mg/kg body weight) in female BALB/c mice and such treated with cysteine treated (100 mg/kg body weight), using unirradiated and placebo treated irradiated mice were tested as controls. 6 Gy whole body irradiated was applied and after a period of three weeks the animals were sacrificed and lungs were taken for morphometry and the determination of o-tyrosine. Septal areas were highest in the irradiated, placebo treated mice (68.67 + 9.82% septal area to total area)and lowest in the α-MHCTL treated irradiated mice (55.67 +11.29%), significant at the p < 0.05 level. Morphometric data were accompanied by highest levels of o-tyrosine, a reliable parameter for OH-attack, in the irradiated, placebo treated group with 1.87 + 0.40 μM/g lung tissue and 0.32 + 0.13 gmM/g lung tissue in the αMHCTL treated group; the statistical difference was significant. Significant radiation protection in the mammalian system at the morphological and biochemical level were found. The potent effect could be explained by the influence of alpha-alkylation in homocysteine thiolactone (HCTL) which renders amino acids unmetabolizeable, nontoxic, increases lipophilicity and therefore improving permeability through membranes. The present report confirms morphological data on the radiation protective activity of this interesting thiol compound.

  19. Coenzyme Q{sub 10} and alpha-tocopherol protect against amitriptyline toxicity

    SciTech Connect

    Cordero, Mario D.; Moreno-Fernandez, Ana Maria; Gomez-Skarmeta, Jose Luis; Miguel, Manuel de; Garrido-Maraver, Juan; Oropesa-Avila, Manuel; Rodriguez-Hernandez, Angeles; Navas, Placido; Sanchez-Alcazar, Jose Antonio

    2009-03-15

    Since amitriptyline is a very frequently prescribed antidepressant drug, it is not surprising that amitriptyline toxicity is relatively common. Amitriptyline toxic systemic effects include cardiovascular, autonomous nervous, and central nervous systems. To understand the mechanisms of amitriptyline toxicity we studied the cytotoxic effects of amitriptyline treatment on cultured primary human fibroblasts and zebrafish embryos, and the protective role of coenzyme Q{sub 10} and alpha-tocopherol, two membrane antioxidants. We found that amitriptyline treatment induced oxidative stress and mitochondrial dysfunction in primary human fibroblasts. Mitochondrial dysfunction in amitriptyline treatment was characterized by reduced expression levels of mitochondrial proteins and coenzyme Q{sub 10}, decreased NADH:cytochrome c reductase activity, and a drop in mitochondrial membrane potential. Moreover, and as a consequence of these toxic effects, amitriptyline treatment induced a significant increase in apoptotic cell death activating mitochondrial permeability transition. Coenzyme Q{sub 10} and alpha-tocopherol supplementation attenuated ROS production, lipid peroxidation, mitochondrial dysfunction, and cell death, suggesting that oxidative stress affecting cell membrane components is involved in amitriptyline cytotoxicity. Furthermore, amitriptyline-dependent toxicity and antioxidant protection were also evaluated in zebrafish embryos, a well established vertebrate model to study developmental toxicity. Amitriptyline significantly increased embryonic cell death and apoptosis rate, and both antioxidants provided a significant protection against amitriptyline embryotoxicity.

  20. Irbesartan treatment up-regulates hepatic expression of PPARalpha and its target genes in obese Koletsky (fa(k)/fa(k)) rats: a link to amelioration of hypertriglyceridaemia.

    PubMed

    Rong, X; Li, Y; Ebihara, K; Zhao, M; Kusakabe, T; Tomita, T; Murray, M; Nakao, K

    2010-08-01

    Hypertriglyceridaemia is associated with an increased risk of cardiovascular disease. Irbesartan, a well-established angiotensin II type 1 receptor (AT(1)) blocker, improves hypertriglyceridaemia in rodents and humans but the underlying mechanism of action is unclear. Male obese Koletsky (fa(k)/fa(k)) rats, which exhibit spontaneous hypertension and metabolic abnormalities, received irbesartan (40 mg x kg(-1) x day(-1)) or vehicle by oral gavage over 7 weeks. Adipocyte-derived hormones in plasma were measured by ELISA. Gene expression in liver and other tissues was assessed by real-time PCR and Western immunoblotting. In Koletsky (fa(k)/fa(k)) rats irbesartan lowered plasma concentrations of triglycerides and non-esterified fatty acids, and decreased plasma insulin concentrations and the homeostasis model assessment of insulin resistance index. However, this treatment did not affect food intake, body weight, epididymal white adipose tissue weight, adipocyte size and plasma leptin concentrations, although plasma adiponectin was decreased. Irbesartan up-regulated hepatic expression of mRNAs corresponding to peroxisome proliferator-activated receptor (PPAR)alpha and its target genes (carnitine palmitoyltransferase-1a, acyl-CoA oxidase and fatty acid translocase/CD36) that mediate hepatic fatty acid uptake and oxidation; the increase in hepatic PPARalpha expression was confirmed at the protein level. In contrast, irbesartan did not affect expression of adipose PPARgamma and its downstream genes or hepatic genes that mediate fatty acid synthesis. These findings demonstrate that irbesartan treatment up-regulates PPARalpha and several target genes in liver of obese spontaneously hypertensive Koletsky (fa(k)/fa(k)) rats and offers a novel insight into the lipid-lowering mechanism of irbesartan.

  1. An investigation of the protective effect of alpha+-thalassaemia against severe Plasmodium falciparum amongst children in Kumasi, Ghana.

    PubMed

    Opoku-Okrah, C; Gordge, M; Kweku Nakua, E; Abgenyega, T; Parry, M; Robertson, C; Smith, C L

    2014-02-01

    Several factors influence the severity of Plasmodium falciparum; here, we investigate the impact of alpha+-thalassaemia genotype on P. falciparum parasitemia and prevalence of severe anaemia amongst microcytic children from Kumasi, Ghana. Seven hundred and thirty-two children (≤10 years) with P. falciparum were categorised into normocytic and microcytic (mean cell volume ≤76 fL). Microcytic individuals were genotyped for the -α(3.7) deletional thalassaemia mutation and parasite densities determined. Amongst microcytic patients both parasite densities and prevalence of severe malaria parasitemia (≥100 000/μL) were significantly lower (P < 0.001) in the presence of an alpha+-thalassaemia genotype compared with non-alpha+-thalassaemia genotype. There was no evidence that alpha+-thalassaemia protected against severe anaemia. The protection conferred by alpha-thalassaemia genotype against severe P. falciparum parasitemia did not change with increasing age. The severity of P. falciparum parasitemia was significantly lower in both the homozygous and heterozygous alpha+-thalassaemia groups compared with microcytic individuals with non-alpha+-thalassaemia genotype. The protective effect, from severe malaria, of the alpha+-thalassaemia allele does not alter with age. © 2013 John Wiley & Sons Ltd.

  2. Anticancer Properties of PPARalpha-Effects on Cellular Metabolism and Inflammation.

    PubMed

    Grabacka, Maja; Reiss, Krzysztof

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) have lately attracted much attention as therapeutic targets. Previously, PPAR ligands were associated with the treatment of diabetes, hyperlipidemia and cardiovascular diseases, as they modulate the expression of genes regulating glucose and lipid metabolism. Recently, PPAR ligands have been also considered as potential anticancer agents, with relatively low systemic toxicity. The emerging evidence for antiproliferative, proapoptotic, antiinflammatory and potential antimetastatic properties of PPARalpha ligands prompted us to discuss possible roles of PPARalpha in tumor suppression. PPARalpha activation can target cancer cells energy balance by blocking fatty acid synthesis and by promoting fatty acid beta-oxidation. In the state of limited nutrient availability, frequently presents in the tumor microenvironment, PPARalpha cooperates with AMP-dependent protein kinase in: (i) repressing oncogenic Akt activity, (ii) inhibiting cell proliferation, and (iii) forcing glycolysis-dependent cancer cells into "metabolic catastrophe." Other potential anticancer effects of PPARalpha include suppression of inflammation, and upregulation of uncoupling proteins (UCPs), which attenuates mitochondrial reactive oxygen species production and cell proliferation. In conclusion, there are strong premises that the low-toxic and well-tolerated PPAR ligands should be considered as new therapeutic agents to fight disseminating cancer, which represents the major challenge for modern medicine and basic research.

  3. In vitro protective effect of bacteria-derived bovine alpha interferon I1 against selected bovine viruses.

    PubMed

    Gillespie, J H; Robson, D S; Scott, F W; Schiff, E I

    1985-12-01

    We used bacteria-derived bovine alpha-interferon I1 (Bo IFN-alpha I1) to study its antiviral effect in a bovine turbinate cell line on bovine diarrhea virus, infectious bovine rhinotracheitis virus, parainfluenza 3 virus, and pseudorabies virus. We based our study upon replicate tests for each strain by using a block titration system with various concentrations of Bo IFN-alpha I1 against various concentrations of virus. The data were compiled in two-axis tables (replicate X concentration) and were statistically analyzed by the Spearman-Kärber method. An increase in the concentration of Bo IFN-alpha I1 enhanced its protective effect against every test virus strain. Bo IFN-alpha I1 had a marked in vitro effect on the bovine diarrhea viral strains. It demonstrated less protection against the pseudorabies and parainfluenza 3 viruses. Its effectiveness against the two infectious bovine rhinotracheitis viral strains was lesser and of a low order.

  4. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    SciTech Connect

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao; Han, Xiang Hua; Lee, Dong-Ho; Lee, Hak-Ju; Hwang, Bang Yeon; Lee, Sung-Joon

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  5. Role of Eosinophils and Tumor Necrosis Factor Alpha in Interleukin-25-Mediated Protection from Amebic Colitis

    PubMed Central

    Noor, Zannatun; Watanabe, Koji; Abhyankar, Mayuresh M.; Burgess, Stacey L.; Buonomo, Erica L.

    2017-01-01

    ABSTRACT The parasite Entamoeba histolytica is a cause of diarrhea in infants in low-income countries. Previously, it was shown that tumor necrosis factor alpha (TNF-α) production was associated with increased risk of E. histolytica diarrhea in children. Interleukin-25 (IL-25) is a cytokine that is produced by intestinal epithelial cells that has a role in maintenance of gut barrier function and inhibition of TNF-α production. IL-25 expression was decreased in humans and in the mouse model of amebic colitis. Repletion of IL-25 blocked E. histolytica infection and barrier disruption in mice, increased gut eosinophils, and suppressed colonic TNF-α. Depletion of eosinophils with anti-Siglec-F antibody prevented IL-25-mediated protection. In contrast, depletion of TNF-α resulted in resistance to amebic infection. We concluded that IL-25 provides protection from amebiasis, which is dependent upon intestinal eosinophils and suppression of TNF-α. PMID:28246365

  6. Effects of modifications of the linker in a series of phenylpropanoic acid derivatives: Synthesis, evaluation as PPARalpha/gamma dual agonists, and X-ray crystallographic studies.

    PubMed

    Casimiro-Garcia, Agustin; Bigge, Christopher F; Davis, Jo Ann; Padalino, Teresa; Pulaski, James; Ohren, Jeffrey F; McConnell, Patrick; Kane, Christopher D; Royer, Lori J; Stevens, Kimberly A; Auerbach, Bruce J; Collard, Wendy T; McGregor, Christine; Fakhoury, Stephen A; Schaum, Robert P; Zhou, Hairong

    2008-05-01

    A new series of alpha-aryl or alpha-heteroarylphenyl propanoic acid derivatives was synthesized that incorporate acetylene-, ethylene-, propyl-, or nitrogen-derived linkers as a replacement of the commonly used ether moiety that joins the central phenyl ring with the lipophilic tail. The effect of these modifications in the binding and activation of PPARalpha and PPARgamma was first evaluated in vitro. Compounds possessing suitable profiles were then evaluated in the ob/ob mouse model of type 2 diabetes. The propylene derivative 40 and the propyl derivative 53 demonstrated robust plasma glucose lowering activity in this model. Compound 53 was also evaluated in male Zucker diabetic fatty rats and was found to achieve normalization of glucose, triglycerides, and insulin levels. An X-ray crystal structure of the complex of 53 with the PPARgamma-ligand-binding domain was obtained and discussed in this report.

  7. Evaluation of Genetically Inactivated Alpha Toxin for Protection in Multiple Mouse Models of Staphylococcus aureus Infection

    PubMed Central

    Brady, Rebecca A.; Mocca, Christopher P.; Prabhakara, Ranjani; Plaut, Roger D.; Shirtliff, Mark E.; Merkel, Tod J.; Burns, Drusilla L.

    2013-01-01

    Staphylococcus aureus is a major human pathogen and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. While S. aureus protective antigens have been identified in the literature, the majority have only been tested in a single animal model of disease. We wished to evaluate the ability of one S. aureus vaccine antigen to protect in multiple mouse models, thus assessing whether protection in one model translates to protection in other models encompassing the full breadth of infections the pathogen can cause. We chose to focus on genetically inactivated alpha toxin mutant HlaH35L. We evaluated the protection afforded by this antigen in three models of infection using the same vaccine dose, regimen, route of immunization, adjuvant, and challenge strain. When mice were immunized with HlaH35L and challenged via a skin and soft tissue infection model, HlaH35L immunization led to a less severe infection and decreased S. aureus levels at the challenge site when compared to controls. Challenge of HlaH35L-immunized mice using a systemic infection model resulted in a limited, but statistically significant decrease in bacterial colonization as compared to that observed with control mice. In contrast, in a prosthetic implant model of chronic biofilm infection, there was no significant difference in bacterial levels when compared to controls. These results demonstrate that vaccines may confer protection against one form of S. aureus disease without conferring protection against other disease presentations and thus underscore a significant challenge in S. aureus vaccine development. PMID:23658662

  8. Protein profiling of mouse livers with peroxisome proliferator-activated receptor alpha activation.

    PubMed

    Chu, Ruiyin; Lim, Hanjo; Brumfield, Laura; Liu, Hong; Herring, Chris; Ulintz, Peter; Reddy, Janardan K; Davison, Matthew

    2004-07-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is important in the induction of cell-specific pleiotropic responses, including the development of liver tumors, when it is chronically activated by structurally diverse synthetic ligands such as Wy-14,643 or by unmetabolized endogenous ligands resulting from the disruption of the gene encoding acyl coenzyme A (CoA) oxidase (AOX). Alterations in gene expression patterns in livers with PPARalpha activation were delineated by using a proteomic approach to analyze liver proteins of Wy-14,643-treated and AOX(-/-) mice. We identified 46 differentially expressed proteins in mouse livers with PPARalpha activation. Up-regulated proteins, including acetyl-CoA acetyltransferase, farnesyl pyrophosphate synthase, and carnitine O-octanoyltransferase, are involved in fatty acid metabolism, whereas down-regulated proteins, including ketohexokinase, formiminotransferase-cyclodeaminase, fructose-bisphosphatase aldolase B, sarcosine dehydrogenase, and cysteine sulfinic acid decarboxylase, are involved in carbohydrate and amino acid metabolism. Among stress response and xenobiotic metabolism proteins, selenium-binding protein 2 and catalase showed a dramatic approximately 18-fold decrease in expression and a modest approximately 6-fold increase in expression, respectively. In addition, glycine N-methyltransferase, pyrophosphate phosphohydrolase, and protein phosphatase 1D were down-regulated with PPARalpha activation. These observations establish proteomic profiles reflecting a common and predictable pattern of differential protein expression in livers with PPARalpha activation. We conclude that livers with PPARalpha activation are transcriptionally geared towards fatty acid combustion.

  9. In vivo postirradiation protection by a vitamin E analog, alpha-TMG.

    PubMed

    Satyamitra, Merriline; Uma Devi, P; Murase, Hironobu; Kagiya, V T

    2003-12-01

    The water-soluble vitamin E derivative alpha-TMG is an excellent radical scavenger. A dose of 600 mg/kg TMG significantly reduced radiation clastogenicity in mouse bone marrow when administered after irradiation. The present study was aimed at investigating the radioprotective effect of postirradiation treatment with alpha-TMG against a range of whole-body lethal (8.5-12 Gy) and sublethal (1-5 Gy) doses of radiation in adult Swiss albino mice. Protection against lethal irradiation was evaluated from 30-day mouse survival and against sublethal doses was assessed from micronuclei and chromosomal aberrations in the bone marrow 24 h after irradiation. An intraperitoneal injection of 600 mg/kg TMG within 10 min of lethal irradiation increased survival, giving a dose modification factor (DMF) of 1.09. TMG at doses of 400 mg/kg and 600 mg/kg significantly reduced the percentage of aberrant metaphases, the different types of aberrations, and the number of micronucleated erythrocytes. DMFs of 1.22 and 1.48 for percentage aberrant metaphases and 1.6 and 1.98 for micronuclei were obtained for 400 mg/kg and 600 mg/kg TMG, respectively. No drug toxicity was observed at these doses. The effectiveness of TMG when administered postirradiation suggests its possible utility for protection against unplanned radiation exposures.

  10. Human hyperimmune globulin protects against the cytotoxic action of staphylococcal alpha-toxin in vitro and in vivo.

    PubMed Central

    Bhakdi, S; Mannhardt, U; Muhly, M; Hugo, F; Ronneberger, H; Hungerer, K D

    1989-01-01

    Alpha-toxin, the major cytolysin of Staphylococcus aureus, preferentially attacks human platelets and cultured monocytes, thereby promoting coagulation and the release of interleukin-1 and tumor necrosis factor. Titers of naturally occurring antibodies in human blood are not high enough to substantially inhibit these pathological reactions. In the present study, F(ab')2 fragment preparations from hyperimmune globulin obtained from immunized volunteers were tested for their capacity to inhibit the cytotoxic action of alpha-toxin in vitro and in vivo. These antibody preparations exhibited neutralizing anti-alpha-toxin titers of 80 to 120 IU/ml, whereas titers in commercial immunoglobulin preparations were 1 to 4 IU/ml. In vitro, the presence of 2 to 4 mg of hyperimmune globulin per ml protected human platelets against the action of 1 to 2 micrograms of alpha-toxin per ml. Similarly, these antibodies fully protected human monocytes against the ATP-depleting and cytokine-liberating effects of 0.1 to 1 microgram of alpha-toxin per ml. Intravenous application of 0.5 mg (85 to 120 micrograms/kg of body weight) of alpha-toxin in cynomolgus monkeys elicited acute pathophysiological reactions which were heralded by a selective drop in blood platelet counts. Toxin doses of 1 to 2 mg (170 to 425 micrograms/kg) had a rapid lethal effect, the animals presenting with signs of cardiovascular collapse and pulmonary edema. Prior intravenous application of 4 ml of hyperimmune globulins per kg inhibited the systemic toxic and lethal effects of 1 mg (200 micrograms/kg) of alpha-toxin. In contrast, normal human immunoglobulins exhibited no substantial protective efficacy in vitro and only marginal effects in vivo. It is concluded that high-titered anti-alpha-toxin antibodies effectively protect against the cytotoxic actions of alpha-toxin. PMID:2777380

  11. Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction.

    PubMed

    Skyschally, Andreas; Gres, Petra; Hoffmann, Simone; Haude, Michael; Erbel, Raimund; Schulz, Rainer; Heusch, Gerd

    2007-01-05

    In patients with unstable angina, plaque rupture and coronary microembolization (ME) can precede complete coronary artery occlusion and impending infarction. ME-induced microinfarcts initiate an inflammatory reaction with increased tumor necrosis factor-alpha (TNF-alpha) expression, resulting in progressive contractile dysfunction. However, TNF-alpha is not only a negative inotrope but can also protect the myocardium against infarction. In anesthetized pigs, we studied whether ME protects against infarction when TNF-alpha expression is increased. ME (group1; n=7) was induced by intracoronary infusion of microspheres (42 microm; 3000 per mL/min inflow). Controls (group 2; n=8) received saline. Groups 3 and 4 (n=4 each) were pretreated with ovine TNF-alpha antibodies (25 mg/kg body weight) 30 minutes before ME or placebo, respectively. Ischemia (90 minutes) was induced 6 hours after ME when TNF-alpha was increased (66+/-21 pg/g wet weight; mean+/-SEM) or after placebo (TNF-alpha, 21+/-10 pg/g; P<0.05). Infarct size (percentage area at risk) was determined after 2 hours of reperfusion (triphenyl tetrazolium chloride staining). ME decreased systolic wall thickening progressively over 6 hours (group 1 versus group 2, 65+/-4% versus 90+/-1%; percentage of baseline; P<0.05). TNF-alpha antibodies attenuated the progressive decrease in systolic wall thickening following ME (group 3, 77+/-5% of baseline; P<0.05 versus group 1) with no effect in controls (group 4; 90+/-8% of baseline). With ME, infarct size was decreased to 18+/-4% versus 33+/-4% in group 2 (P<0.05). The infarct size reduction was abolished by TNF-alpha antibodies (group 3 versus group 4, 29+/-3% versus 35+/-5%). In ME, TNF-alpha is responsible for both progressive contractile dysfunction and delayed protection against infarction.

  12. Role of Eosinophils and Tumor Necrosis Factor Alpha in Interleukin-25-Mediated Protection from Amebic Colitis.

    PubMed

    Noor, Zannatun; Watanabe, Koji; Abhyankar, Mayuresh M; Burgess, Stacey L; Buonomo, Erica L; Cowardin, Carrie A; Petri, William A

    2017-02-28

    The parasite Entamoeba histolytica is a cause of diarrhea in infants in low-income countries. Previously, it was shown that tumor necrosis factor alpha (TNF-α) production was associated with increased risk of E. histolytica diarrhea in children. Interleukin-25 (IL-25) is a cytokine that is produced by intestinal epithelial cells that has a role in maintenance of gut barrier function and inhibition of TNF-α production. IL-25 expression was decreased in humans and in the mouse model of amebic colitis. Repletion of IL-25 blocked E. histolytica infection and barrier disruption in mice, increased gut eosinophils, and suppressed colonic TNF-α. Depletion of eosinophils with anti-Siglec-F antibody prevented IL-25-mediated protection. In contrast, depletion of TNF-α resulted in resistance to amebic infection. We concluded that IL-25 provides protection from amebiasis, which is dependent upon intestinal eosinophils and suppression of TNF-α.IMPORTANCE The intestinal epithelial barrier is important for protection from intestinal amebiasis. We discovered that the intestinal epithelial cytokine IL-25 was suppressed during amebic colitis in humans and that protection could be restored in the mouse model by IL-25 administration. IL-25 acted via eosinophils and suppressed TNF-α. This work illustrates a previously unrecognized pathway of innate mucosal immune response. Copyright © 2017 Noor et al.

  13. The protective and therapeutic effects of alpha-solanine on mice breast cancer.

    PubMed

    Mohsenikia, Maryam; Alizadeh, Ali Mohammad; Khodayari, Saeed; Khodayari, Hamid; Kouhpayeh, Seyed Amin; Karimi, Aliasghar; Zamani, Mina; Azizian, Saleh; Mohagheghi, Mohammad Ali

    2013-10-15

    Alpha-solanine, a naturally steroidal glycoalkaloid, is found in leaves and fruits of plants as a defensive agent against fungi, bacteria and insects. Herein, we investigated solanine toxicity in vitro and in vivo, and assessed its protective and the therapeutic effects on a typical animal model of breast cancer. The study conducted in three series of experiments to obtain (i) solanine effects on cell viability of mammary carcinoma cells, (ii) in vivo toxicity of solanine, and (iv) the protective and therapeutic effects of solanine on animal model of breast cancer. Alpha-solanine significantly suppressed proliferation of mouse mammary carcinoma cells both in vitro and in vivo (P<0.05). Under the dosing procedure, 5 mg/kg solanine has been chosen for assessing its protective and therapeutic effects in mice breast cancer. Tumor take rate in the solanine-treated group was zero compared with a 75% rate in its respective control group (P<0.05). The average tumor size and weight were significantly lower in solanine-treated animals than its respective control ones (P<0.05). Proapoptotic Bax protein expression increased in breast tumor by solanine compared with its respective control group (P<0.05). Antiapoptotic Bcl-2 protein expression found to be lower in solanine-treated animals (P<0.05). Proliferative and angiogenic parameters greatly decreased in solanine-treated mice (P<0.05). Data provide evidence that solanine exerts a significant chemoprotective and chemotherapeutic effects on an animal model of breast cancer through apoptosis induction, cell proliferation and angiogenesis inhibition. These findings reveal a new therapeutic potential for solanine in cancer.

  14. Sequestration of mutated alpha1-antitrypsin into inclusion bodies is a cell-protective mechanism to maintain endoplasmic reticulum function.

    PubMed

    Granell, Susana; Baldini, Giovanna; Mohammad, Sameer; Nicolin, Vanessa; Narducci, Paola; Storrie, Brian; Baldini, Giulia

    2008-02-01

    A variant alpha1-antitrypsin with E342K mutation has a high tendency to form intracellular polymers, and it is associated with liver disease. In the hepatocytes of individuals carrying the mutation, alpha1-antitrypsin localizes both to the endoplasmic reticulum (ER) and to membrane-surrounded inclusion bodies (IBs). It is unclear whether the IBs contribute to cell toxicity or whether they are protective to the cell. We found that in hepatoma cells, mutated alpha1-antitrypsin exited the ER and accumulated in IBs that were negative for autophagosomal and lysosomal markers, and contained several ER components, but not calnexin. Mutated alpha1-antitrypsin induced IBs also in neuroendocrine cells, showing that formation of these organelles is not cell type specific. In the presence of IBs, ER function was largely maintained. Increased levels of calnexin, but not of protein disulfide isomerase, inhibited formation of IBs and lead to retention of mutated alpha1-antitrypsin in the ER. In hepatoma cells, shift of mutated alpha1-antitrypsin localization to the ER by calnexin overexpression lead to cell shrinkage, ER stress, and impairment of the secretory pathway at the ER level. We conclude that segregation of mutated alpha1-antitrypsin from the ER to the IBs is a protective cell response to maintain a functional secretory pathway.

  15. AlphaB-crystallin is involved in oxidative stress protection determined by VEGF in skeletal myoblasts.

    PubMed

    Mercatelli, Neri; Dimauro, Ivan; Ciafré, Silvia Anna; Farace, Maria Giulia; Caporossi, Daniela

    2010-08-01

    Recent studies suggest that the effects of VEGF-A, the prototype VEGF ligand, may extend to a variety of cell types other than endothelial cells. The expression of VEGF-A and its main receptors, Flt-1/VEGFR-1 and KDR/Flk-1/VEGFR-2, was indeed detected in several cell types, including cardiac myocytes and regenerating myotubes. In addition to its proangiogenic activity, evidence indicates that VEGF-A can sustain skeletal muscle regeneration by enhancing the survival and migration of myogenic cells and by promoting the growth of myogenic fibers. In this study, our aim was to investigate whether VEGF could protect skeletal muscle satellite cells from apoptotic cell death triggered by reactive oxygen species and to identify the main molecular mechanisms. C2C12 mouse myoblasts, cultured in vitro in the presence of exogenous VEGF or stably transfected with a plasmid vector expressing VEGF-A, were subjected to oxidative stress and analyzed for cell growth and survival, induction of apoptosis, and molecular signaling. The results of our study demonstrated that VEGF protects C2C12 myoblasts from apoptosis induced by oxidative or hypoxic-like stress. This protection did not correlate with the modulation of the expression of VEGF receptors, but is clearly linked to the phosphorylation of the KDR/Flk-1 receptor, the activation of NF-kappaB, and/or the overexpression of the antiapoptotic protein alphaB-crystallin. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Peroxisome proliferator-activated receptor alpha-independent actions of fenofibrate exacerbates left ventricular dilation and fibrosis in chronic pressure overload.

    PubMed

    Duhaney, Toni-Ann S; Cui, Lei; Rude, Mary K; Lebrasseur, Nathan K; Ngoy, Soeun; De Silva, Deepa S; Siwik, Deborah A; Liao, Ronglih; Sam, Flora

    2007-05-01

    Progressive cardiac remodeling is characterized by subsequent chamber hypertrophy, enlargement, and pump dysfunction. It is also associated with increased cardiac fibrosis and matrix turnover. Interestingly, peroxisome proliferator-activated receptor (PPAR) alpha activators reduce cardiac hypertrophy, inflammation, and fibrosis. Little is known about the role of fenofibrates in mediating PPARalpha-independent effects in response to chronic pressure overload (PO). Wild-type and PPARalpha-deficient mice were subjected to chronic PO caused by ascending aortic constriction to test the role of fenofibrates in chronic, progressive cardiac remodeling by a PPARalpha-independent mechanism. Mice were randomized to regular chow or chow-containing fenofibrate (100 mg/kg of body weight per day) for 1 week before and 8 weeks after ascending aortic constriction. In the presence of PPARalpha, wild-type chronic PO mice, treated with fenofibrate, had improved cardiac remodeling. However, PO PPARalpha-deficient mice treated with fenofibrate had increased mortality, significantly adverse left ventricular end diastolic (3.4+/-0.1 versus 4.2+/-0.1 mm) and end systolic (1.5+/-0.2 versus 2.5+/-0.2 mm) dimensions, and fractional shortening (57+/-3% versus 40+/-3%). Fenofibrate also increased myocardial hypertrophy, cardiac fibrosis, and the ratio of matrix metalloproteinase-2/tissue inhibitor of matrix metalloproteinase-2 in PO PPARalpha-deficient mice. Fenofibrate inhibited matrix metalloproteinase activity in vitro and aldosterone-induced increases in extracellular signal-regulated kinase phosphorylation. Thus, fenofibrate improved cardiac remodeling in chronic PO mice. However, in PPARalpha-deficient mice, this chronic PO was exacerbated and associated with increased myocardial fibrosis and altered matrix remodeling. In the absence of PPARalpha, fenofibrates exerts deleterious, pleiotropic myocardial actions. This is an important observation, because PPARalpha agonists are considered

  17. Peroxisome proliferator-activated receptor alpha controls hepatic heme biosynthesis through ALAS1.

    PubMed

    Degenhardt, Tatjana; Väisänen, Sami; Rakhshandehroo, Maryam; Kersten, Sander; Carlberg, Carsten

    2009-05-01

    Heme is an essential prosthetic group of proteins involved in oxygen transport, energy metabolism and nitric oxide production. ALAS1 (5-aminolevulinate synthase) is the rate-limiting enzyme in heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target for the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). In primary human hepatocytes and in HepG2 cells, PPARalpha agonists induced an increase in ALAS1 mRNA levels, which was abolished by PPARalpha silencing. These effects are mediated by two functional PPAR binding sites at positions -9 and -2.3 kb relative to the ALAS1 transcription start site. PPARalpha ligand treatment also up-regulated the mRNA levels of the genes ALAD (5-aminolevulinate dehydratase), UROS (uroporphyrinogen III synthase), UROD (uroporphyrinogen decarboxylase), CPOX (coproporphyrinogen oxidase) and PPOX (protoporphyrinogen oxidase) encoding for enzymes controlling further steps in heme biosynthesis. In HepG2 cells treated with PPARalpha agonists and in mouse liver upon fasting, the association of PPARalpha, its partner retinoid X receptor, PPARgamma co-activator 1alpha and activated RNA polymerase II with the transcription start site region of all six genes was increased, leading to higher levels of the metabolite heme. In conclusion, these data strongly support a role of PPARalpha in the regulation of human ALAS1 and of five additional genes of the pathway, consequently leading to increased heme synthesis.

  18. Protective role for heat shock protein-reactive alpha beta T cells in murine yersiniosis.

    PubMed Central

    Noll, A; Roggenkamp, A; Heesemann, J; Autenrieth, I B

    1994-01-01

    To investigate the role of heat shock proteins (HSP) of Yersinia enterocolitica for the host immune response against this pathogen, we cloned and expressed a 60-kDa HSP of Y. enterocolitica serotype O8. A fragment of Y. enterocolitica O8 HSP60 encoded by amino acids 90 to 286 was sequenced and showed more than 90% homology with HSP60 of Y. enterocolitica O3 and GroEL of Escherichia coli and 59% homology with HSP65 of Mycobacterium bovis. The arthritogenic T-cell epitope of mycobacterial HSP65 (amino acid residues 180 to 188) was not found on Yersinia HSP60. To determine whether Yersinia HSP60 is an immunodominant antigen, the immune responses of Yersinia-infected C57BL/6 mice were analyzed. Yersinia-infected mice evolved a significant serum antibody and splenic T-cell response against Yersinia HSP60. CD4+ alpha beta T-cell clones which were generated from splenic T cells isolated from either Yersinia-infected or Yersinia HSP60-immunized mice, recognized both heat-killed Yersinia serotypes O3 and O8 as well as recombinant Yersinia HSP60 but not heat-killed Yersinia pseudotuberculosis, Salmonella typhimurium, or recombinant HSP65 of Mycobacterium bovis. The adoptive transfer of HSP60-reactive T-cell clones mediated significant protection against a lethal infection with Y. enterocolitica O8. These results indicate that HSP60 of Y. enterocolitica is an immunodominant antigen which is recognized by both antibodies and CD4+ alpha beta T cells. Moreover, this is the first report providing direct evidence that microbial HSP may elicit a protective immune response which is not associated with autoimmunity. Images PMID:7911784

  19. alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress.

    PubMed

    Katsoulieris, Elias; Mabley, Jon G; Samai, Mohamed; Green, Irene C; Chatterjee, Prabal K

    2009-11-25

    Unsaturated fatty acids may counteract the lipotoxicity associated with saturated fatty acids. Palmitic acid induced endoplasmic reticulum (ER) stress and caused apoptotic and necrotic cell death in the renal proximal tubular cell line, NRK-52E. We investigated whether alpha-linolenic acid, an unsaturated fatty acid, protected against ER stress and cell death induced by palmitic acid or by other non-nutrient ER stress generators. Incubation of NRK-52E cells for 24h with palmitic acid produced a significant increase in apoptosis and necrosis. Palmitic acid also increased levels of three indicators of ER stress - the phosphorylated form of the eukaryotic initiation factor 2alpha (eIF2alpha), C/EBP homologous protein (CHOP), and glucose regulated protein 78 (GRP78). alpha-Linolenic acid dramatically reduced cell death and levels of all three indicators of ER stress brought about by palmitic acid. Tunicamycin, which induces ER stress by glycosylation of proteins, produced similar effects to those obtained using palmitic acid; its effects were partially reversed by alpha-linolenic acid. Salubrinal (a phosphatase inhibitor) causes increased levels of the phosphorylated form of eIF2alpha - this effect was partially reversed by alpha-linolenic acid. Palmitoleate, a monosaturated fatty acid, had similar effects to those of alpha-linolenic acid. These results suggest that part of the mechanism of protection of the kidney by unsaturated fatty acids is through inhibition of ER stress, eIF2alpha phosphorylation and consequential reduction of CHOP protein expression and apoptotic renal cell death.

  20. DT-diaphorase Protects Against Autophagy Induced by Aminochrome-Dependent Alpha-Synuclein Oligomers.

    PubMed

    Muñoz, Patricia S; Segura-Aguilar, Juan

    2017-05-06

    Alpha-synuclein (SNCA) oligomers have been reported to inhibit autophagy. Aminochrome-induced SNCA oligomers are neurotoxic, but the flavoenzyme DT-diaphorase prevents both their formation and their neurotoxicity. However, the possible protective role of DT-diaphorase against autophagy impairment by aminochrome-induced SNCA oligomers remains unclear. To test this idea, we used the cell line RCSN-3NQ7SNCA, with constitutive expression of a siRNA against DT-diaphorase and overexpression SNCA, and RCSN-3 as control cells. A significant increase in LC3-II expression was observed in RCSN-3 cells treated with 20 μM aminochrome and 10 μM rapamycin followed by a decrease in cell death compared to RCSN-3 cells incubated with 20 μM aminochrome alone. The incubation of RCSN-3NQ7SNCA cells with 20 μM aminochrome and 10 μM rapamycin does not change the expression of LC3-II in comparison with RCSN-3NQ7SNCA cells incubated with 20 μM aminochrome alone. The incubation of both cell lines preincubated with 100 nM bafilomycin and 20 μM aminochrome increases the level of LC3-II. Under the same conditions, cell death increases in both cell lines in comparison with cells incubated with 20 μM aminochrome. These results support the protective role of DT-diaphorase against SNCA oligomers-induced autophagy inhibition.

  1. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    SciTech Connect

    Cao, Xueming; Chen, Aihua Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  2. Negative epistasis between the malaria-protective effects of alpha+-thalassemia and the sickle cell trait.

    PubMed

    Williams, Thomas N; Mwangi, Tabitha W; Wambua, Sammy; Peto, Timothy E A; Weatherall, David J; Gupta, Sunetra; Recker, Mario; Penman, Bridget S; Uyoga, Sophie; Macharia, Alex; Mwacharo, Jedidah K; Snow, Robert W; Marsh, Kevin

    2005-11-01

    The hemoglobinopathies, disorders of hemoglobin structure and production, protect against death from malaria. In sub-Saharan Africa, two such conditions occur at particularly high frequencies: presence of the structural variant hemoglobin S and alpha(+)-thalassemia, a condition characterized by reduced production of the normal alpha-globin component of hemoglobin. Individually, each is protective against severe Plasmodium falciparum malaria, but little is known about their malaria-protective effects when inherited in combination. We investigated this question by studying a population on the coast of Kenya and found that the protection afforded by each condition inherited alone was lost when the two conditions were inherited together, to such a degree that the incidence of both uncomplicated and severe P. falciparum malaria was close to baseline in children heterozygous with respect to the mutation underlying the hemoglobin S variant and homozygous with respect to the mutation underlying alpha(+)-thalassemia. Negative epistasis could explain the failure of alpha(+)-thalassemia to reach fixation in any population in sub-Saharan Africa.

  3. Structure of Oxidized Alpha-Haemoglobin Bound to AHSP Reveals a Protective Mechanism for HAEM

    SciTech Connect

    Feng,L.; Zhou, S.; Gu, L.; Gell, D.; MacKay, J.; Weiss, M.; Gow, A.; Shi, Y.

    2005-01-01

    The synthesis of hemoglobin A (HbA) is exquisitely coordinated during erythrocyte development to prevent damaging effects from individual {alpha}- and {beta}-subunits. The {alpha}-hemoglobin-stabilizing protein (AHSP) binds {alpha}-hemoglobin ({alpha}Hb), inhibits the ability of {alpha}Hb to generate reactive oxygen species and prevents its precipitation on exposure to oxidant stress. The structure of AHSP bound to ferrous {alpha}Hb is thought to represent a transitional complex through which {alpha}Hb is converted to a non-reactive, hexacoordinate ferric form. Here we report the crystal structure of this ferric {alpha}Hb-AHSP complex at 2.4 Angstrom resolution. Our findings reveal a striking bis-histidyl configuration in which both the proximal and the distal histidines coordinate the haem iron atom. To attain this unusual conformation, segments of {alpha}Hb undergo drastic structural rearrangements, including the repositioning of several {alpha}-helices. Moreover, conversion to the ferric bis-histidine configuration strongly and specifically inhibits redox chemistry catalysis and haem loss from {alpha}Hb. The observed structural changes, which impair the chemical reactivity of haem iron, explain how AHSP stabilizes {alpha}Hb and prevents its damaging effects in cells.

  4. Alpha-beta T cells provide protection against lethal encephalitis in the murine model of VEEV infection

    SciTech Connect

    Paessler, Slobodan Yun, Nadezhda E.; Judy, Barbara M.; Dziuba, Natallia; Zacks, Michele A.; Grund, Anna H.; Frolov, Ilya; Campbell, Gerald A.; Weaver, Scott C.; Estes, D. Mark

    2007-10-25

    We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta ({alpha}{beta}) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta ({gamma}{delta}) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chain and a minority of vaccinated immunoglobulin heavy chain-deficient ({mu}MT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3{sup +} T cells are required for protection.

  5. In vitro protective effect of bacteria-derived bovine alpha interferon I1 against selected bovine viruses.

    PubMed Central

    Gillespie, J H; Robson, D S; Scott, F W; Schiff, E I

    1985-01-01

    We used bacteria-derived bovine alpha-interferon I1 (Bo IFN-alpha I1) to study its antiviral effect in a bovine turbinate cell line on bovine diarrhea virus, infectious bovine rhinotracheitis virus, parainfluenza 3 virus, and pseudorabies virus. We based our study upon replicate tests for each strain by using a block titration system with various concentrations of Bo IFN-alpha I1 against various concentrations of virus. The data were compiled in two-axis tables (replicate X concentration) and were statistically analyzed by the Spearman-Kärber method. An increase in the concentration of Bo IFN-alpha I1 enhanced its protective effect against every test virus strain. Bo IFN-alpha I1 had a marked in vitro effect on the bovine diarrhea viral strains. It demonstrated less protection against the pseudorabies and parainfluenza 3 viruses. Its effectiveness against the two infectious bovine rhinotracheitis viral strains was lesser and of a low order. PMID:2999188

  6. Alpha-lipoic acid protects against potassium cyanide-induced seizures and mortality.

    PubMed

    Abdel-Zaher, Ahmed O; Abdel-Hady, Randa H; Abdel Moneim, Wafaa M; Salim, Safa Y

    2011-01-01

    This study was proposed to investigate the potential protective effect of alpha-lipoic acid (α-LA) against potassium cyanide (KCN)-induced seizures and lethality in mice. The intraperitoneal ED(50) value of KCN, as measured by induction of clonic and tonic seizures was increased by pretreatment of mice with α-LA (25, 50 and 100 mg/kg) intraperitoneally in a dose-dependent manner. Similarly, the intraperitoneal LD(50) value of KCN, based on 24h mortality, was increased by pretreatment with α-LA in a dose-dependent manner. Intraperitoneal injection of the estimated ED(50) of KCN (4.8 mg/kg) into mice increased, 1h later, nitric oxide (NO) production and brain glutamate and malondialdehyde (MDA) levels. The estimated ED(50) of KCN also decreased brain intracellular reduced glutathione (GSH) level and glutathione peroxidase (GSH-Px) activity in these animals. Administration of the estimated LD(50) of KCN (6 mg/kg) produced, 24h later, similar marked biochemical alterations in surviving animals. Pretreatment of mice with α-LA inhibited; dose-dependently KCN (ED(50) and LD(50))-induced an increase in NO production and brain MDA level as well as a decrease in brain intracellular GSH level and GSH-Px activity. The elevation induced by KCN in brain glutamate level was not inhibited by α-LA. It can be concluded that the protective effect of α-LA against KCN-induced seizures and lethality may be due to inhibition of NO overproduction and maintenance of intracellular antioxidant defense mechanisms.

  7. Radiation-induced cognitive dysfunction and cerebellar oxidative stress in mice: protective effect of alpha-lipoic acid.

    PubMed

    Manda, Kailash; Ueno, Megumi; Moritake, Takashi; Anzai, Kazunori

    2007-02-12

    Reactive oxygen species are implicated in neurodegeneration and cognitive disorders due to higher vulnerability of neuronal tissues. The cerebellum is recently reported to be involved in cognitive function. Therefore, present study aimed at investigating the role alpha-lipoic acid against radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body X-irradiation (6 Gy) of mice substantially impaired the reference memory and motor activities of mice. However, acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such cognitive dysfunction. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of protein carbonyls and thiobarbituric acid reactive substance (TBARS) in mice cerebellum. Further, radiation-induced deficit of total, nonprotein and protein-bound sulfhydryl (T-SH, NP-SH, PB-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Moreover, alpha-lipoic acid treated mice showed an intact cytoarchitecture of cerebellum, higher counts of intact Purkinje cells and granular cells in comparison to untreated irradiated mice. Results clearly indicate that alpha-lipoic acid is potent neuroprotective antioxidant.

  8. The protective effect of Clostridium novyi type B alpha-toxoid against challenge with spores in guinea pigs.

    PubMed

    Amimoto, K; Sasaki, O; Isogai, M; Kitajima, T; Oishi, E; Okada, N; Yasuhara, H

    1998-06-01

    Clostridium novyi (C. novyi) Type B alpha-toxin was purified from culture supernatant by column chromatography, and was inactivated by formalin. A purified alpha-toxoid vaccine was prepared by mixing it with an aluminum phosphate gel adjuvant. Guinea pigs immunized twice with 4 micrograms or more of alpha-toxin survived against challenge with C. novyi Type B spores. Anti-alpha-toxin (antitoxin) titer was measured by toxin neutralization test using Vero cells. All of the guinea pigs having antitoxin titers of 10 units (U) or more at challenge were survived. In another experiment, guinea pigs were immunized with crude alpha-toxoid vaccines prepared by inactivated culture supernatant or by adding broken bacterial cells to the former. In this experiment, 10 U of antitoxin titer was the border of survival or death after challenge. Guinea pigs with antitoxin titers of less than 5 U, 5 U and 10 U died at 2, 3 to 4 and 4 days, respectively, after challenge. These results suggest that C. novyi alpha-toxin was the main protective antigen against challenge exposure to spores in guinea pigs.

  9. Potential protective effects of alpha-pinene against cytotoxicity caused by aspirin in the IEC-6 cells.

    PubMed

    Bouzenna, Hafsia; Hfaiedh, Najla; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-09-01

    Alpha-pinene is a key compound of the essential oils extracted from many species of coniferous trees. It is known for its biological activities. The aim of the present study was to determine the preventive effect of alpha-pinene on aspirin-induced toxicity in vitro, using IEC-6 cells, and to investigate its antioxidant activities. The antioxidant activities were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). The cytotoxicity and oxidative stress were detected by cell viability, antioxidant enzyme activity, malondialdehyde (MDA) and GSH production, and the activation of MAPK pathways. The results indicated that alpha-pinene revealed an important antioxidant activity. It was evaluated by DPPH test (EC50=310±10μg/mL) and FRAP test (EC50=238±18.92μg/mL). The co-exposure of alpha-pinene with aspirin on cells significantly increased the survival of cells and the level of GSH, and decreased the levels of MDA and total SOD and the activity of Mn-SOD. In addition, the activation of p38 and JNK was blocked by alpha-pinene. Therefore, these findings suggest that alpha-pinene can protect IEC-6 cells against aspirin-induced oxidative stress. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Alpha 7 nicotinic acetylcholine receptor-mediated protection against ethanol-induced neurotoxicity.

    PubMed

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-11-01

    The alpha(7)-selective nicotinic partial agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) was examined for its ability to modulate ethanol-induced neurotoxicity in primary cultures of rat neurons. Primary cultures of hippocampal neurons were established from Long-Evans, embryonic day (E)-18 rat fetuses and maintained for 7 days. Ethanol (0-150 mM), DMXB (0-56 microM), or both were subsequently co-applied to cultures. Ethanol was added two additional times to the cultures to compensate for evaporation. After 5 days, neuronal viability was assessed with the MTT cell proliferation assay. Results demonstrated that ethanol reduces neuronal viability in a concentration-dependent fashion and that DMXB protects against this ethanol-induced neurotoxicity, also in a concentration-dependent fashion. These results support the suggestion that nicotinic partial agonists may be useful in treating binge drinking-induced neurotoxicity and may provide clues as to why heavy drinkers are usually smokers.

  11. Protective effects of alpha lipoic acid versus N-acetylcysteine on ifosfamide-induced nephrotoxicity.

    PubMed

    El-Sisi, Alaa El-Din E; El-Syaad, Magda E; El-Desoky, Karima I; Moussa, Ethar A

    2015-02-01

    Ifosfamide (IFO) is a highly effective chemotherapeutic agent for treating a variety of pediatric solid tumors. However, its use is limited due to its serious side effect on kidneys. The side-chain oxidation of IFO in renal tubular cells produces a reactive toxic metabolite that is believed to be responsible for its nephrotoxic effect. Therefore, this study was carried out to investigate the possible underlying mechanisms that may be involved in IFO-induced nephrotoxicity, including free radical generation and the possible role of alpha lipoic acid (ALA) versus N-acetylcysteine (NAC) in protection against this toxicity. Male albino rats were injected intraperitoneally with saline, IFO (50 mg/kg daily for 5 days), IFO + ALA (100 mg/kg daily for 8 days) and IFO + NAC (200 mg/kg daily for 8 days). Kidney malondialdehyde, nitric oxide and glutathione contents and serum biochemical parameters and histopathological analysis were determined. Both ALA and NAC markedly reduced the severity of renal dysfunction induced by IFO. NAC was more nephroprotective than ALA. This study suggests that oxidative stress is possibly involved in the IFO-induced nephrotoxicity in rats. The study also suggests the potential therapeutic role for ALA and NAC against IFO-induced nephrotoxicity.

  12. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    SciTech Connect

    Rogue, Alexandra; Renaud, Marie Pierre; Claude, Nancy; Guillouzo, Andre; Spire, Catherine

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes induced by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.

  13. Dehydroepiandrosterone up-regulates the Adrenoleukodystrophy-related gene (ABCD2) independently of PPARalpha in rodents.

    PubMed

    Gueugnon, F; Gondcaille, C; Leclercq, S; Bellenger, J; Bellenger, S; Narce, M; Pineau, T; Bonnetain, F; Savary, S

    2007-11-01

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC transporter, ALDP, supposed to participate in the transport of very long chain fatty acids (VLCFA). The adrenoleukodystrophy-related protein (ALDRP), which is encoded by the ABCD2 gene, is the closest homolog of ALDP and is considered as a potential therapeutic target since functional redundancy has been demonstrated between the two proteins. Pharmacological induction of Abcd2 by fibrates through the activation of PPARalpha has been demonstrated in rodent liver. DHEA, the most abundant steroid in human, is described as a PPARalpha activator and also as a prohormone able to mediate induction of several genes. Here, we explored the in vitro and in vivo effects of DHEA on the expression of peroxisomal ABC transporters. We show that Abcd2 and Abcd3 but not Abcd4 are induced in primary culture of rat hepatocytes by DHEA-S. We also demonstrate that Abcd2 and Abcd3 but not Abcd4 are inducible by an 11-day treatment with DHEA in the liver of male rodents but not in brain, testes and adrenals. Finally and contrary to Abcd3, we show that the mechanism of induction of Abcd2 is independent of PPARalpha.

  14. Heterologous protection against alpha toxins of Clostridium perfringens and Staphylococcus aureus induced by binding domain recombinant chimeric protein.

    PubMed

    Uppalapati, Siva R; Kingston, Joseph J; Murali, Harishchandra S; Batra, Harsh V

    2014-05-23

    Clostridium perfringens and Staphylococcus aureus are the two important bacteria frequently associated with majority of the soft tissue infections. The severity and progression of the diseases caused by these pathogens are attributed primarily to the alpha toxins they produce. Previously, we synthesized a non-toxic chimeric molecule r-αCS encompassing the binding domains of C. perfringens and S. aureus alpha toxins and demonstrated that the r-αCS hyperimmune polysera reacts with both the native wild type toxins. In the present report, we evaluated efficacy of r-αCS in conferring protection against C. perfringens and S. aureus alpha toxin infections in murine model. Immunization of BALB/c with r-αCS was effective in inducing both high titers of serum anti-r-αCS antibodies after three administrations. Sub-typing the antibody pool revealed high proportions of IgG1 indicating a Th2-polarized immune response. The r-αCS stimulated the proliferation of splenocytes from the immunized mice upon re-induction by the antigen, in vitro. The levels of interleukin-10 increased while TNF-α was found to be downregulated in the r-αCS induced splenocytes. Mice immunized with r-αCS were protected against intramuscular challenge with 5×LD100 doses of C. perfringens and S. aureus alpha toxins with >80% survival, which killed control animals within 48-72h. Passive immunization of mice with anti-r-αCS serum resulted in 50-80% survival. Our results indicate that r-αCS is a remarkable antigen with protective efficacy against alpha toxin mediated C. perfringens and S. aureus soft tissue co-infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Filling gaps in PPAR-alpha signaling through comparative nutrigenomics analysis

    PubMed Central

    2009-01-01

    Background The application of high-throughput genomic tools in nutrition research is a widespread practice. However, it is becoming increasingly clear that the outcome of individual expression studies is insufficient for the comprehensive understanding of such a complex field. Currently, the availability of the large amounts of expression data in public repositories has opened up new challenges on microarray data analyses. We have focused on PPARα, a ligand-activated transcription factor functioning as fatty acid sensor controlling the gene expression regulation of a large set of genes in various metabolic organs such as liver, small intestine or heart. The function of PPARα is strictly connected to the function of its target genes and, although many of these have already been identified, major elements of its physiological function remain to be uncovered. To further investigate the function of PPARα, we have applied a cross-species meta-analysis approach to integrate sixteen microarray datasets studying high fat diet and PPARα signal perturbations in different organisms. Results We identified 164 genes (MDEGs) that were differentially expressed in a constant way in response to a high fat diet or to perturbations in PPARs signalling. In particular, we found five genes in yeast which were highly conserved and homologous of PPARα targets in mammals, potential candidates to be used as models for the equivalent mammalian genes. Moreover, a screening of the MDEGs for all known transcription factor binding sites and the comparison with a human genome-wide screening of Peroxisome Proliferating Response Elements (PPRE), enabled us to identify, 20 new potential candidate genes that show, both binding site, both change in expression in the condition studied. Lastly, we found a non random localization of the differentially expressed genes in the genome. Conclusion The results presented are potentially of great interest to resume the currently available expression data, exploiting the power of in silico analysis filtered by evolutionary conservation. The analysis enabled us to indicate potential gene candidates that could fill in the gaps with regards to the signalling of PPARα and, moreover, the non-random localization of the differentially expressed genes in the genome, suggest that epigenetic mechanisms are of importance in the regulation of the transcription operated by PPARα. PMID:20003344

  16. Alpha B-Crystallin Protects Rat Articular Chondrocytes against Casein Kinase II Inhibition-Induced Apoptosis.

    PubMed

    Lee, Sung Won; Rho, Jee Hyun; Lee, Sang Yeob; Yoo, Seung Hee; Kim, Hye Young; Chung, Won Tae; Yoo, Young Hyun

    2016-01-01

    Although alpha (α)B-crystallin is expressed in articular chondrocytes, little is known about its role in these cells. Protein kinase casein kinase 2 (CK2) inhibition induces articular chondrocyte death. The present study examines whether αB-crystallin exerts anti-apoptotic activity in articular chondrocytes. Primary rat articular chondrocytes were isolated from knee joint slices. Cells were treated with CK2 inhibitors with or without αB-crystallin siRNA. To examine whether the silencing of αB-crystallin sensitizes rat articular chondrocytes to CK2 inhibition-induced apoptosis, we assessed apoptosis by performing viability assays, mitochondrial membrane potential measurements, flow cytometry, nuclear morphology observations, and western blot analysis. To investigate the mechanism by which αB-crystallin modulates the extent of CK2 inhibition-mediated chondrocyte death, we utilized confocal microscopy to observe the subcellular location of αB-crystallin and its phosphorylated forms and performed a co-immunoprecipitation assay to observe the interaction between αB-crystallin and CK2. Immunochemistry was employed to examine αB-crystallin expression in cartilage obtained from rats with experimentally induced osteoarthritis (OA). Our results demonstrated that silencing of αB-crystallin sensitized rat articular chondrocytes to CK2 inhibitor-induced apoptosis. Furthermore, CK2 inhibition modulated the expression and subcellular localization of αB-crystallin and its phosphorylated forms and dissociated αB-crystallin from CK2. The population of rat articular chondrocytes expressing αB-crystallin and its phosphorylated forms was reduced in an experimentally induced rat model of OA. In summary, αB-crystallin protects rat articular chondrocytes against CK2 inhibition-induced apoptosis. αB-crystallin may represent a suitable target for pharmacological interventions to prevent OA.

  17. Alpha B-Crystallin Protects Rat Articular Chondrocytes against Casein Kinase II Inhibition-Induced Apoptosis

    PubMed Central

    Rho, Jee Hyun; Lee, Sang Yeob; Yoo, Seung Hee; Kim, Hye Young; Chung, Won Tae; Yoo, Young Hyun

    2016-01-01

    Although alpha (α)B-crystallin is expressed in articular chondrocytes, little is known about its role in these cells. Protein kinase casein kinase 2 (CK2) inhibition induces articular chondrocyte death. The present study examines whether αB-crystallin exerts anti-apoptotic activity in articular chondrocytes. Primary rat articular chondrocytes were isolated from knee joint slices. Cells were treated with CK2 inhibitors with or without αB-crystallin siRNA. To examine whether the silencing of αB-crystallin sensitizes rat articular chondrocytes to CK2 inhibition-induced apoptosis, we assessed apoptosis by performing viability assays, mitochondrial membrane potential measurements, flow cytometry, nuclear morphology observations, and western blot analysis. To investigate the mechanism by which αB-crystallin modulates the extent of CK2 inhibition-mediated chondrocyte death, we utilized confocal microscopy to observe the subcellular location of αB-crystallin and its phosphorylated forms and performed a co-immunoprecipitation assay to observe the interaction between αB-crystallin and CK2. Immunochemistry was employed to examine αB-crystallin expression in cartilage obtained from rats with experimentally induced osteoarthritis (OA). Our results demonstrated that silencing of αB-crystallin sensitized rat articular chondrocytes to CK2 inhibitor-induced apoptosis. Furthermore, CK2 inhibition modulated the expression and subcellular localization of αB-crystallin and its phosphorylated forms and dissociated αB-crystallin from CK2. The population of rat articular chondrocytes expressing αB-crystallin and its phosphorylated forms was reduced in an experimentally induced rat model of OA. In summary, αB-crystallin protects rat articular chondrocytes against CK2 inhibition-induced apoptosis. αB-crystallin may represent a suitable target for pharmacological interventions to prevent OA. PMID:27851782

  18. The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures.

    PubMed

    Martin, Shelley E; de Fiebre, Nancy Ellen C; de Fiebre, Christopher M

    2004-10-01

    Studies have suggested that the neuroprotective actions of alpha7 nicotinic agonists arise from activation of receptors and not from the extensive desensitization which rapidly follows activation. Here, we report that the alpha7-selective nicotinic antagonist, methyllycaconitine (MLA), protects against beta-amyloid-induced neurotoxicity; whereas the alpha4beta2-selective antagonist, dihydro-beta-erythroidine, does not. These findings suggest that neuroprotective actions of alpha7-acting agents arise from receptor inhibition/desensitization and that alpha7 antagonists may be useful neuroprotective agents.

  19. Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferator-activated receptor {alpha}

    SciTech Connect

    Lee, Hyunghee; Gonzalez, Frank J.; Yoon, Michung . E-mail: yoon60@mokwon.ac.kr

    2006-01-06

    We investigated whether ginseng regulates lipoprotein metabolism by altering peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})-mediated pathways, using a PPAR{alpha}-null mouse model. Administration of ginseng extract, ginsenosides, and ginsenoside Rf (Rf) to wild-type mice not only significantly increased basal levels of hepatic apolipoprotein (apo) A-I and C-III mRNA compared with wild-type controls, but also substantially reversed the reductions in mRNA levels of apo A-I and C-III expected following treatment with the potent PPAR{alpha} ligand Wy14,643. In contrast, no effect was detected in the PPAR{alpha}-null mice. Testing of eight main ginsenosides on PPAR{alpha} reporter gene expression indicated that Rf was responsible for the effects of ginseng on lipoprotein metabolism. Furthermore, the inhibition of PPAR{alpha}-dependent transactivation by Rf seems to occur at the level of DNA binding. These results demonstrate that ginseng component Rf regulates apo A-I and C-III mRNA and the actions of Rf on lipoprotein metabolism are mediated via interactions with PPAR{alpha}.

  20. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    SciTech Connect

    Antonelli, Alessandro; Ferrari, Silvia Martina; Frascerra, Silvia; Corrado, Alda; Pupilli, Cinzia; Bernini, Giampaolo; Benvenga, Salvatore; Ferrannini, Ele; Fallahi, Poupak

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.

  1. NK T cell-induced protection against diabetes in V alpha 14-J alpha 281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen.

    PubMed

    Laloux, V; Beaudoin, L; Jeske, D; Carnaud, C; Lehuen, A

    2001-03-15

    The onset of autoimmune diabetes is related to defective immune regulation. Recent studies have shown that NK T cells are deficient in number and function in both diabetic patients and nonobese diabetic (NOD) mice. NK T cells, which are CD1d restricted, express a TCR with an invariant V alpha 14-J alpha 281 chain and rapidly produce large amounts of cytokines. V alpha 14-J alpha 281 transgenic NOD mice have increased numbers of NK T cells and are protected against diabetes onset. In this study we analyzed where and how NK T cells interfere with the development of the anti-islet autoimmune response. NK T cells, which are usually rare in lymph nodes, are abundant in pancreatic lymph nodes and are also present in islets. IL-4 mRNA levels are increased and IFN-gamma mRNA levels decreased in islets from diabetes-free V alpha 14-J alpha 281 transgenic NOD mice; the IgG1/IgG2c ratio of autoantibodies against glutamic acid decarboxylase is also increased in these mice. Treatment with IL-12 (a pro-Th1 cytokine) or anti-IL-4 Ab abolishes the diabetes protection in V alpha 14-J alpha 281 NOD mice. The protection from diabetes conferred by NK T cells is thus associated with a Th2 shift within islets directed against autoantigen such as glutamic acid decarboxylase. Our findings also demonstrate the key role of IL-4.

  2. Effect of sub-acute oral cyanide administration in rats: protective efficacy of alpha-ketoglutarate and sodium thiosulfate.

    PubMed

    Tulsawani, R K; Debnath, M; Pant, S C; Kumar, Om; Prakash, A O; Vijayaraghavan, R; Bhattacharya, R

    2005-09-10

    Chronic toxicity of cyanide in humans and animals has been previously described. Alpha-ketoglutarate (alpha-KG) and sodium thiosulfate (STS) are known to confer remarkable protection against acute cyanide poisoning in rodents. Their efficacy against sub-acute or chronic cyanide exposure is not known. The objective of the present study was to assess the sub-acute toxicity of potassium cyanide (KCN) in female rats following oral administration of 7.0 mg/kg (0.5 LD50) for 14 d. The effect of alpha-KG (oral; 1.0 g/kg) and/or STS (intraperitoneal, 1.0 g/kg) on cyanide toxicity was also evaluated. Various hematological and biochemical indices were determined after 7 d of treatment and additional parameters like organ-body weight index (OBI) and histology of brain, heart, lung, liver, kidney and spleen were performed after 14 and 21 d (recovery group) of cyanide exposure. Sub-acute exposure of KCN did not produce any significant change in body weight of the animals, OBI, hematology and the levels of blood urea, creatinine, aspartate aminotransferase, triiodothyronine (T3) and tetraiodothyronine (T4). The levels of temporal glutathione disulfide (GSSG) and hepatic malondialdehyde (MDA), reduced glutathione (GSH) and GSSG were unaffected. However, in KCN treated animals elevated levels of blood glucose and reduced levels of alanine aminotransferase were observed. Activities of cytochrome c oxidase in the brain and rhodanese in the liver were diminished. Reduced levels of GSH and enhanced levels of MDA in brain were observed. Increased levels of blood thiocyanate were observed in all the treatments of KCN. Additionally, KCN also produced various histological changes in the brain, heart, liver and kidney. Although, treatment of alpha-KG and STS alone significantly blunted the toxicity of KCN, concomitant use of both interventions afforded to maximum protection. This study indicates a promising role of alpha-KG and STS for the treatment of prolonged cyanide exposures.

  3. Pilocarpine protects cobalt chloride-induced apoptosis of RGC-5 cells: involvement of muscarinic receptors and HIF-1 alpha pathway.

    PubMed

    Zhu, Xu; Zhou, Wei; Cui, Yongyao; Zhu, Liang; Li, Juan; Feng, Xuemei; Shao, Biyun; Qi, Hong; Zheng, Jun; Wang, Hao; Chen, Hongzhuan

    2010-04-01

    The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl(2))-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1 alpha (HIF-1 alpha), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 microM CoCl(2) for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 microM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 microM pilocarpine could significantly prevent CoCl(2)-induced HIF-1 alpha translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1 alpha, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1 alpha pathway. The findings suggest that HIF-1 alpha pathway as a "master switch" may be used as a therapeutic target in the cholinergic treatment of glaucoma.

  4. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    PubMed

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  5. Immunity to the alpha(1,3)galactosyl epitope provides protection in mice challenged with colon cancer cells expressing alpha(1,3)galactosyl-transferase: a novel suicide gene for cancer gene therapy.

    PubMed

    Unfer, Robert C; Hellrung, Daniel; Link, Charles J

    2003-03-01

    Human immunity to alpha(1,3)Galactosyl epitopes (alpha Gal) may provide the means for a successful cancer gene therapy that uses the immune system to identify and to destroy tumor cells expressing the suicide gene alpha(1,3)Galactosyltransferase (alpha GT). Innate antibody specific for cell surface alpha Gal constitutes a high percentage of circulating IgG and IgM immunoglobulins in humans and is the basis for complement-mediated hyperacute xenograft rejection and antibody-dependent cell-mediated cytotoxicity. In humans, the gene for alpha GT is mutated, and cells do not express the alpha Gal moiety. We hypothesized that human tumor cells induced to express the alpha Gal epitope would be killed by the hosts' innate immunity. Previous in vitro work by our group has demonstrated complement-mediated lysis of alpha Gal-transduced human tumor cells in culture by human serum. To induce antibodies to alpha Gal in this in vivo study, alpha GT knockout mice were used to determine whether immunization with alpha Gal could provide protection from challenge with alpha Gal-expressing murine MC38 colon cancer cells. Knockout mice were immunized either a single time, or twice, with rabbit RBC. Antibody titers to alpha Gal measured by indirect ELISA were significantly higher in mice immunized twice and approached the titers observed in human serum. Anti-alpha Gal antibodies were predominantly of the IgG1 and IgG3 subtype. Immunized knockout mice were challenged i.p. with varying doses of alpha Gal(+) MC38 colon carcinoma cells. Nonimmunized control groups consisting of alpha GT knockout mice, and wild-type C57BL/6 mice were challenged as well with MC38 cells. Immunized mice survived and exhibited slower tumor development in comparison to nonimmunized knockout and control mice. This study demonstrates, in vivo, the protective benefit of an immune response to the alpha Gal epitope. Our results provide a basis to pursue additional development of this cancer gene therapy strategy.

  6. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging.

    PubMed

    Wenz, Tina; Rossi, Susana G; Rotundo, Richard L; Spiegelman, Bruce M; Moraes, Carlos T

    2009-12-01

    Aging is a major risk factor for metabolic disease and loss of skeletal muscle mass and strength, a condition known as sarcopenia. Both conditions present a major health burden to the elderly population. Here, we analyzed the effect of mildly increased PGC-1alpha expression in skeletal muscle during aging. We found that transgenic MCK-PGC-1alpha animals had preserved mitochondrial function, neuromuscular junctions, and muscle integrity during aging. Increased PGC-1alpha levels in skeletal muscle prevented muscle wasting by reducing apoptosis, autophagy, and proteasome degradation. The preservation of muscle integrity and function in MCK-PGC-1alpha animals resulted in significantly improved whole-body health; both the loss of bone mineral density and the increase of systemic chronic inflammation, observed during normal aging, were prevented. Importantly, MCK-PGC-1alpha animals also showed improved metabolic responses as evident by increased insulin sensitivity and insulin signaling in aged mice. Our results highlight the importance of intact muscle function and metabolism for whole-body homeostasis and indicate that modulation of PGC-1alpha levels in skeletal muscle presents an avenue for the prevention and treatment of a group of age-related disorders.

  7. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT

    PubMed Central

    Machuca, Catalina; Mendoza-Milla, Criselda; Córdova, Emilio; Mejía, Salvador; Covarrubias, Luis; Ventura, José; Zentella, Alejandro

    2006-01-01

    Background The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Results Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. Conclusion NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1. PMID:16504042

  8. In vitro protective effects of two extracts from bergamot peels on human endothelial cells exposed to tumor necrosis factor-alpha (TNF-alpha).

    PubMed

    Trombetta, Domenico; Cimino, Francesco; Cristani, Mariateresa; Mandalari, Giuseppina; Saija, Antonella; Ginestra, Giovanna; Speciale, Antonio; Chirafisi, Joselita; Bisignano, Giuseppe; Waldron, Keith; Narbad, Arjan; Faulds, Craig B

    2010-07-28

    Bergamot ( Citrus bergamia Risso) is a less commercialized Citrus fruit, mainly used for its essential oil extracted from the peel. Bergamot peel (BP) represents about 60% of the processed fruits and is regarded as primary waste. However, it contains good amounts of useful compounds, such as pectins and flavonoids. Many of the bioactivities of Citrus flavonoids appear to impact vascular endothelial cells. Herein, we report the protective effect of two flavonoid-rich extracts from BP (endowed with radical-scavenging properties and lacking genotoxic activity) against alterations in cell modifications induced by the pleiotropic inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) on human umbilical vein endothelial cells (HUVECs), as demonstrated by monitoring intracellular levels of malondialdehyde/4-hydroxynonenal, reduced and oxidized glutathione and superoxide dismutase activity, and the activation status of nuclear factor-kappaB (NF-kappaB). Thus, BP appears to be a potential source of natural antioxidant/anti-inflammatory phytocomplexes to be employed as ingredients of nutraceutical products or functional foods.

  9. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle.

    PubMed

    Russell, Aaron P; Feilchenfeldt, Jonas; Schreiber, Sylvia; Praz, Manu; Crettenand, Antoinette; Gobelet, Charles; Meier, Christoph A; Bell, David R; Kralli, Anastasia; Giacobino, Jean-Paul; Dériaz, Olivier

    2003-12-01

    The peroxisome proliferator-activated receptor (PPAR)-gamma coactivator-1 (PGC-1) can induce mitochondria biogenesis and has been implicated in the development of oxidative type I muscle fibers. The PPAR isoforms alpha, beta/delta, and gamma control the transcription of genes involved in fatty acid and glucose metabolism. As endurance training increases skeletal muscle mitochondria and type I fiber content and fatty acid oxidative capacity, our aim was to determine whether these increases could be mediated by possible effects on PGC-1 or PPAR-alpha, -beta/delta, and -gamma. Seven healthy men performed 6 weeks of endurance training and the expression levels of PGC-1 and PPAR-alpha, -beta/delta, and -gamma mRNA as well as the fiber type distribution of the PGC-1 and PPAR-alpha proteins were measured in biopsies from their vastus lateralis muscle. PGC-1 and PPAR-alpha mRNA expression increased by 2.7- and 2.2-fold (P < 0.01), respectively, after endurance training. PGC-1 expression was 2.2- and 6-fold greater in the type IIa than in the type I and IIx fibers, respectively. It increased by 2.8-fold in the type IIa fibers and by 1.5-fold in both the type I and IIx fibers after endurance training (P < 0.015). PPAR-alpha was 1.9-fold greater in type I than in the II fibers and increased by 3.0-fold and 1.5-fold in these respective fibers after endurance training (P < 0.001). The increases in PGC-1 and PPAR-alpha levels reported in this study may play an important role in the changes in muscle mitochondria content, oxidative phenotype, and sensitivity to insulin known to be induced by endurance training.

  10. The folic acid analogue methotrexate protects frog embryo cell membranes against damage by the potato glycoalkaloid alpha-chaconine.

    PubMed

    McWilliams, M L; Blankemeyer, J T; Friedman, M

    2000-10-01

    As part of an effort to improve the safety of plant foods, a need exists to more clearly delineate the mechanisms of toxicities of glycoalkaloids, which may be present in Solanum plant species such as potatoes, tomatoes and eggplants. Alpha-chaconine is a major glycoalkaloid present in potatoes. To assess the possible influence of structure of pteridine derivatives on toxicity of potato glycoalkaloids, a previous study that demonstrated the protective effects of folic acid against the Solanum glycoalkaloid alpha-chaconine-induced toxicity on Xenopus laevis frog embryo cell membranes was extended to two folate analogues--a synthetic compound widely used as a therapeutic agent methotrexate, and naturally occurring L-monapterin. Adverse effects on embryos were evaluated by observing changes in membrane potentials with an electrochromic dye, di-4-ANEPPS, as a fluorescent probe for the integrity of the membranes. Methotrexate decreased alpha-chaconine-induced polarization, as did folic acid. This decrease may result from an alteration of membrane conformations that prevents the binding of the glycoalkaloid to the membrane receptor sites, and/or from effects on folic acid metabolism. In contrast, L-monapterin did not significantly reduce the alpha-chaconine-induced toxicity. The possible significance of these results to food safety is discussed.

  11. Protective effects of glucose-6-phosphate and NADP against alpha-chaconine-induced developmental toxicity in Xenopus embryos.

    PubMed

    Rayburn, J R; Bantle, J A; Qualls, C W; Friedman, M

    1995-12-01

    In previous studies a metabolic activation system (MAS) composed of Aroclor 1254-induced rat liver microsomes led to an apparent reduction of potato glycoalkaloid developmental toxicity in the frog embryo teratogenesis assay-Xenopus (FETAX). The reasons for this reduction were investigated in this study. The effect of the exogenous MAS on glycoalkaloid developmental toxicity was examined in two experiments in which a concentration series of alpha-chaconine was tested with a MAS with and without a reduced nicotinamide adenine dinucleotide (NADPH) generator system consisting of NADPH, oxidized nicotinamide adenine dinucleotide (NADP), glucose-6-phosphate (G6P) and glucose-6-phosphate dehydrogenase. The NADPH generator system and each of its individual components were tested at a single high concentration of alpha-chaconine to evaluate their potential effects on toxicity. The findings indicated that the protective effect of the MAS was not the result of detoxification by microsomal enzyme systems, but was caused by two components of the NADPH generator system, namely NADP and G6P. G6P was more protective of alpha-chaconine-induced toxicity than NADP at the concentrations tested. Thus, FETAX with a MAS must be performed with appropriate controls that take into account the possible interactions with individual components of the system.

  12. Protective effect of exercise and alpha tocopherol on atherosclerosis promotion in hypercholesterolemic domestic rabbits

    NASA Astrophysics Data System (ADS)

    Shekh, Mudhir S.; Mahmud, Almas M. R.

    2017-09-01

    This study was designed to determine effects of exercise training (Moderate and severe) and alpha tocopherol on lipid profiles and organ weights in hypercholesterolemic domestic rabbits. Hypercholesterolemia (HC) and atherosclerotic lesions were induced by feeding the male rabbits the standard chow supplemented with 1% cholesterol (atherogenic diet) for 36 days. Experimental rabbits were divided into seven groups: normal (T1), HC control (T2), HC plus alpha tocopherol (0.5mg /animal/day) (T3), HC plus moderate exercise 40 minutes/day (0.5km/day) 5 days/week (T4), HC plus severe exercise 40 minutes/day (1km/day) 5 days/week (T5), HC plus alpha tocopherol plus moderate exercise (T6) and HC plus alpha tocopherol plus severe exercise (T7). After the treatment period of 36th day, blood samples were collected and total cholesterol (TC), Triglyceride (TG), Very low-density lipoprotein (VLDL)-cholesterol, High-density lipoproteins (HDL)-cholesterol, Low-density lipoprotein (LDL)-cholesterol, serum glucose, body and organ weights were assayed and compared with hypercholesterolemic control. Combination of moderate exercise with alpha tocopherol produced significant reduction (P<0.01) in TG and high significant decrement (P<0.001), in VLDL-cholesterol, TC and LDL-cholesterol compared with hypercholesterolemic rabbits. Serum TC, LDL and VLDL (P<0.001) and TG (P<0.01) significantly increased when compared with normal rabbits diet, while, HDL decreased (P<0.05) significantly. Severe exercise group showed no significant change in all lipid profiles. However, the decrement in the above parameters was comparable with hypercholesterolemic rabbits in combination of severe exercise with alpha tocopherol. The results suggest that the combination of moderate exercise with alpha tocopherol can be exploited for prevention of atherosclerosis in hypercholesterolemic rabbits.

  13. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1{alpha}

    SciTech Connect

    Qin, Weiping; Pan, Jiangping; Wu, Yong; Bauman, William A.; Cardozo, Christopher

    2010-12-17

    muscle. Regulation of FOXO1, PGC-1{alpha} and p38 MAPK by testosterone may represent a novel mechanism by which this agent protects against dexamethasone-induced muscle atrophy.

  14. Protective role of ascorbic acid and alpha-tocopherol on arsenic-induced microsomal dysfunctions.

    PubMed

    Ramanathan, K; Shila, S; Kumaran, S; Panneerselvam, C

    2003-03-01

    Arsenic, a naturally occurring element, is present in food, soil, air and water. All human populations are exposed to arsenic and its compounds through occupational or environmental processes. Since arsenic compounds have been shown to exert their toxicity chiefly by generating reactive oxygen species, we have evaluated the effect of ascorbic acid and alpha-tocopherol on oxidative damage, antioxidant status and on xenobiotic metabolizing systems in arsenic-exposed rat liver and kidney microsomes. Arsenic exposure increases oxidative damage to lipids and proteins and decreases the levels of antioxidants and the activities of xenobiotic metabolizing enzymes. Coadministration of ascorbic acid and alpha-tocopherol to arsenic-exposed rats resulted in a reduction in the levels of lipid peroxidation, protein carbonyls and hydrogen peroxide and an elevation in the levels of reduced glutathione, ascorbic acid and alpha-tocopherol. Ascorbic acid and alpha-tocopherol treatment decreases the activity of haem oxygenase, whereas it increases the levels/ activity of cytochrome P450, cytochrome b5 and NADPH-cytochrome P450 reductase in arsenic-intoxicated rats. The results of this study provide evidence that ascorbic acid and alpha-tocopherol supplementation can improve the arsenic-induced altered microsomal functions in liver and kidney.

  15. Thiolated Recombinant Human Tumor Necrosis Factor-Alpha Protects against Plasmodium berghei K173-Induced Experimental Cerebral Malaria in Mice

    PubMed Central

    Postma, Nancy S.; Hermsen, Rob C.; Crommelin, Daan J. A.; Eling, Wijnand M. C.; Zuidema, Jan

    1999-01-01

    The introduction of reactive thiol groups in recombinant human tumor necrosis factor (TNF) alpha (rhTNF-α) by the reagent succinimidyl-S-acetylthioacetate resulted in the formation of a chemically stabilized rhTNF-α trimer (rhTNFα-AT; as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis). rhTNFα-AT showed a substantially enhanced protective efficacy against the development of experimental murine cerebral malaria (ECM) after intravenous injection compared to the protective efficacy of nonmodified rhTNF-α. Administration of thiolated rhTNF-α with protected thiol groups (rhTNFα-ATA; no stabilized trimers in vitro) exhibited the same protective efficacy against ECM, while in vitro bioactivity was reduced. Parasitemia was significantly suppressed in rhTNF-treated mice that were protected against ECM but not in treated mice that developed ECM. Protection against ECM was not related to increased concentrations in plasma of soluble TNF receptor 1 and 2 directly after injection or at the moment of development of ECM in nontreated mice. The results indicate that thiolation of rhTNF-α leads to the formation of stable trimers with increased potential in vivo. PMID:10223910

  16. PPARalpha activation potentiates AhR-induced CYP1A1 expression.

    PubMed

    Fallone, Frédérique; Villard, Pierre-Henri; Decome, Laetitia; Sérée, Eric; Méo, Michel de; Chacon, Christine; Durand, Alain; Barra, Yves; Lacarelle, Bruno

    2005-12-15

    CYP1A1 is an extrahepatic enzyme largely involved in the bioactivation of various procarcinogens such as polycyclic aromatic hydrocarbons (PAHs) and arylamines. CYP1A1 expression is mainly regulated by AhR. Our laboratory has recently shown a new CYP1A1 regulation pathway involving PPARalpha. The aim of this study was to evaluate, in a Caco-2 cell line, the effect of a coexposure to 3-methylcholanthrene (3MC, AhR ligand) and WY-14643 (WY, PPARalpha ligand) on CYP1A1 expression (enzymatic activity, mRNA level and promoter activity). An additive effect on CYP1A1 expression was shown in cells coexposed with 3MC (0.1 or 1 microM) and a low WY concentration (30 microM) whereas a potentiating effect was observed after coexposure with 3MC (0.1 or 1 microM) and a high WY concentration (200 microM). Furthermore, 200 microM WY, alone or with 3MC, was able to increase the AhR protein level (two-fold). In conclusion, coexposure with 3MC and the PPARalpha agonist WY leads to an additive or potentiating effect on CYP1A1 inducibility, depending on the WY concentration. Furthermore, at high concentration (200 microM), WY induced AhR expression, which could explain the potentiating effect on CYP1A1 inducibility observed after addition of an AhR ligand (3MC). This phenomenon should be taken into account for risk assessment involving CYP1A1 induction.

  17. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  18. Ectopic expression of DNA encoding IFN-alpha 1 in the cornea protects mice from herpes simplex virus type 1-induced encephalitis.

    PubMed

    Noisakran, S; Campbell, I L; Carr, D J

    1999-04-01

    A novel approach to combat acute herpes simplex virus type 1 (HSV-1) infection has recently been developed by administration with a plasmid DNA construct encoding cytokine genes. Cytokines, especially type I IFNs (IFN-alpha and IFN-beta) play an important role in controlling acute HSV-1 infection. The purpose of the present study was to investigate the potential efficacy of ectopically expressed IFN-alpha 1 against ocular HSV-1 infection following in situ transfection of mouse cornea with a naked IFN-alpha 1-containing plasmid DNA. Topical administration of the IFN-alpha 1 plasmid DNA exerted protection against ocular HSV-1 challenge in a time- and dose-dependent manner and antagonized HSV-1 reactivation. In addition, IFN-alpha 1-transfected eyes expressed a fivefold increase in MHC class I mRNA over vector-treated controls. The protective efficacy of the IFN-alpha 1 transgene antagonized viral replication, as evidenced by the reduction of the viral gene transcripts (infected cell polypeptide 27, thymidine kinase, and viral protein 16) and viral load in eyes and trigeminal ganglia during acute infection. The administration of neutralizing Ab to IFN-alpha beta antagonized the protective effect of the IFN-alpha 1 transgene in mice. Collectively, these findings demonstrate the potential of using naked plasmid DNA transfection in the eye to achieve ectopic gene expression of therapeutically active agents.

  19. The role of PPAR alpha in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection-Results of in ovo gene silencing.

    PubMed

    Zhao, Meng; Jiang, Qixiao; Geng, Min; Zhu, Li; Xia, Yunqiu; Khanal, Aashish; Wang, Chunbo

    2017-09-14

    Perfluorooctanoic acid (PFOA) is a persistent organic pollutant. This study established an in ovo peroxisome proliferator-activated receptor alpha (PPAR alpha) silencing model in chicken embryo heart, and investigated the role of PPAR alpha in PFOA induced developmental cardiotoxicity. The in ovo silencing was achieved by introducing lentivirus expressing PPAR alpha siRNA into ED2 chicken embryo via microinjection (0.05ul/g egg weight). Transfection efficacy was confirmed by fluorescent microscopy and western blotting. To assess the developmental cardiotoxicity, cardiac function (heart rate) and morphology (right ventricular wall thickness) were measured in D1 hatchling chickens. 2mg/kg (egg weight) PFOA exposure at ED0 induced significant elevation of heart rate and thinning of right ventricular wall thickness in D1 hatchling chickens. PPAR alpha silencing did not prevent PFOA-induced elevation of heart rate; however, it did significantly increase the right ventricular wall thickness as compared to PFOA exposed animals. Meanwhile, PPAR alpha silencing did not abolish the protective effects exerted by exposure to 100mg/kg (egg weight) l-carnitine. In conclusion, PFOA-induced heart rate elevation is likely PPAR alpha independent, while the right ventricular wall thinning seems to be PPAR alpha dependent. The protective effects of l-carnitine do not require PPAR alpha. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Influence of DMBA-induced mammary cancer on the liver CPT I, mit HMG-CoA synthase and PPARalpha mRNA expression in rats fed a low or high corn oil diet.

    PubMed

    Moral, Raquel; Solanas, Montserrat; Manzanares, Eva Mónica; Haro, Diego; Escrich, Eduard

    2004-08-01

    Hepatic mitochondrial outer membrane carnitine palmitoyltransferase I (CPT I) and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase) enzymes play a key role in regulation of fatty acid oxidation and in ketogenic pathways, respectively. Their expression are regulated by fatty acids mainly by the peroxisome proliferator-activated receptor alpha (PPARalpha). To investigate possible mechanisms through which cancer alters the lipid metabolism, we analyzed by Northern blot, the mRNA relative abundance of these proteins in liver from healthy and DMBA-induced mammary tumor-bearing rats fed a low or high corn oil diet. Serum levels of lipids, body weight and mass were also determined. Whereas mRNA steady-state levels of CPT I and mit HMG-CoA synthase were unaffected by the presence of the extra-hepatic tumor, the cancer state seemed to modify the regulation of the expression of these genes by high fat diet. We hypothesize that putative changes in PPARalpha mRNA levels could have contributed to such alterations. These results, together with changes in serum lipid profiles, body weight and mass, indicate fat mobilization and non-enhanced oxidation rates despite a high-fat feeding. This effect of the cancer state could be related to tumor aggressiveness and suggest a preferential redirection of long-chain fatty acids into energetic and specific pathways of the cancer cells.

  1. Successive Intramuscular Boosting with IFN-Alpha Protects Mycobacterium bovis BCG-Vaccinated Mice against M. lepraemurium Infection

    PubMed Central

    Guerrero, G. G.; Rangel-Moreno, J.; Islas-Trujillo, S.; Rojas-Espinosa, Ó.

    2015-01-01

    Leprosy caused by Mycobacterium leprae primarily affects the skin and peripheral nerves. As a human infectious disease, it is still a significant health and economic burden on developing countries. Although multidrug therapy is reducing the number of active cases to approximately 0.5 million, the number of cases per year is not declining. Therefore, alternative host-directed strategies should be addressed to improve treatment efficacy and outcome. In this work, using murine leprosy as a model, a very similar granulomatous skin lesion to human leprosy, we have found that successive IFN-alpha boosting protects BCG-vaccinated mice against M. lepraemurium infection. No difference in the seric isotype and all IgG subclasses measured, neither in the TH1 nor in the TH2 type cytokine production, was seen. However, an enhanced iNOS/NO production in BCG-vaccinated/i.m. IFN-alpha boosted mice was observed. The data provided in this study suggest a promising use for IFN-alpha boosting as a new prophylactic alternative to be explored in human leprosy by targeting host innate cell response. PMID:26484351

  2. Successive Intramuscular Boosting with IFN-Alpha Protects Mycobacterium bovis BCG-Vaccinated Mice against M. lepraemurium Infection.

    PubMed

    Guerrero, G G; Rangel-Moreno, J; Islas-Trujillo, S; Rojas-Espinosa, Ó

    2015-01-01

    Leprosy caused by Mycobacterium leprae primarily affects the skin and peripheral nerves. As a human infectious disease, it is still a significant health and economic burden on developing countries. Although multidrug therapy is reducing the number of active cases to approximately 0.5 million, the number of cases per year is not declining. Therefore, alternative host-directed strategies should be addressed to improve treatment efficacy and outcome. In this work, using murine leprosy as a model, a very similar granulomatous skin lesion to human leprosy, we have found that successive IFN-alpha boosting protects BCG-vaccinated mice against M. lepraemurium infection. No difference in the seric isotype and all IgG subclasses measured, neither in the TH1 nor in the TH2 type cytokine production, was seen. However, an enhanced iNOS/NO production in BCG-vaccinated/i.m. IFN-alpha boosted mice was observed. The data provided in this study suggest a promising use for IFN-alpha boosting as a new prophylactic alternative to be explored in human leprosy by targeting host innate cell response.

  3. Small heat shock proteins protect against {alpha}-synuclein-induced toxicity and aggregation

    SciTech Connect

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J. . E-mail: touteiro@partners.org

    2006-12-22

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). {alpha}-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and {alpha}B-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are {approx}2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by {approx}80% in a culture model while {alpha}B-crystallin reduces toxicity by {approx}20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.

  4. [Protection effect of amentoflavone in Selaginella tamariscina against TNF-alpha-induced vascular injury of endothelial cells].

    PubMed

    Zheng, Xiao-ke; Liu, Cai-xia; Zhai, Ying-ying; Li, Ling-ling; Wang, Xiao-lan; Feng, Wei-sheng

    2013-09-01

    This study is to observe the protection effect of amentoflavone (AMT) in Selaginella tamariscina against TNF-alpha-induced vascular inflammation injury of endothelial cells. On the basis of TNF-alpha induced human umbilical vein endothelial cell, observe the influence of AMT on endothelial active factor, the contents of SOD and MDA, the protein expression of vascular endothelial adhesion molecules and inflammatory factor; study the effect of its common related signal pathways such as NF-kappaB; research the effect of AMT against TNF-a induced human umbilical vein endothelial cell injury by means of MTT, ELISA, Western blotting and the cell immunofluorescence. The results showed that AMT could increase the content of NO and decrease the levels of VCAM-1, E-selectin, IL-6, IL-8 and ET-1; enhance the activity of SOD, reduce the content of MDA; downregulate the protein expressions of VCAM-1, E-selectin, NF-kappaBp65 and up-regulate IkappaBalpha, attenuate the NF-kappaBp65 transfer to cell nucleus. AMT has the effect of protect vascular endothelial and maybe via the signal pathway of NF-kappaB to down-regulate the inflammation factor and oxidative damage factor of downstream.

  5. Protection by alpha G-rutin, a water-soluble antioxidant flavonoid, against renal damage in mice treated with ferric nitrilotriacetate.

    PubMed

    Shimoi, K; Shen, B; Toyokuni, S; Mochizuki, R; Furugori, M; Kinae, N

    1997-05-01

    The protective effect of alpha G-Rutin against ferric nitrilotriacetate (Fe-NTA)-induced renal damage was studied in male ICR mice. Fe-NTA induces renal lipid peroxidation, leading to a high incidence of renal cell carcinoma in rodents. Administration of alpha G-Rutin (50 mumol as rutin/kg) by gastric intubation 30 min after i.p. injection of Fe-NTA (7 mg Fe/kg) most effectively suppressed renal lipid peroxidation. Repeated i.p. injection of Fe-NTA (2 mg Fe/kg/day for the first 3 days and 3 mg Fe /kg/day for 12 days, 5 days a week) causes subacute nephrotoxicity as revealed by induction of karyomegalic cells in renal proximal tubules. A protective effect was observed in mice given alpha G-Rutin 30 min after each Fe-NTA treatment. To elucidate the mechanism of protection by alpha G-Rutin, the pharmacokinetics and hydroxyl radical-scavenging effect of alpha G-Rutin were investigated by HPLC analysis and by electron spin resonance (ESR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), respectively. When mice were given alpha G-Rutin (50 mumol as rutin/kg) by gastric intubation, rapid absorption into the circulation was observed. The plasma concentration of alpha G-Rutin reached the highest level 30 min after oral administration and then decreased to the control level within 60 min, alpha G-Rutin inhibited the formation of DMPO-OH in a concentration-dependent manner. Further, chelating activity of alpha G-Rutin to ferric ions was shown by spectrophotometric analysis. These results suggest that absorbed alpha G-Rutin works as an antioxidant in vivo either by scavenging reactive oxygen species or by chelating ferric ions and this serves to prevent oxidative renal damage in mice treated with Fe-NTA.

  6. Enhanced immunogenicity of multiple-epitopes of foot-and-mouth disease virus fused with porcine interferon alpha in mice and protective efficacy in guinea pigs and swine.

    PubMed

    Du, Yijun; Li, Yufeng; He, Hairong; Qi, Jing; Jiang, Wenming; Wang, Xinglong; Tang, Bo; Cao, Jun; Wang, Xianwei; Jiang, Ping

    2008-04-01

    Foot-and-mouth disease (FMD) is a highly contagious and economically devastating vesicular disease of cloven-hoofed animals. In this study, three amino acid residues 21-60, 141-160 and 200-213 from VP1 protein of FMDV were selected as multiple-epitopes (VPe), and a recombinant adenovirus expressing the multiple-epitopes fused with porcine interferon alpha (rAd-pIFN alpha-VPe) was constructed. Six groups of female BALB/c mice (18 mice per group) were inoculated subcutaneously (s.c.) twice at 2-week intervals with the recombinant adenoviruses and the immune responses were examined. Following this the protective efficacy of rAd-pIFN alpha-VPe was examined in guinea pigs and swine. The results showed that both FMDV-specific humoral and cell-mediated immune responses could be induced by rAd-VPe and increased when rAd-pIFN alpha is included in this regime in mice model. Moreover, the levels of the immune responses in the group inoculated with rAd-pIFN alpha-VPe were significantly higher than the group inoculated with rAd-VPe plus rAd-pIFN alpha. All guinea pigs and swine vaccinated with rAd-pIFN alpha-VPe were completely protected from viral challenge. It demonstrated that recombinant adenovirus rAd-pIFN alpha-VPe might be an attractive candidate vaccine for preventing FMDV infection.

  7. Expression of a peroxisome proliferator-activated receptor gene (xPPARalpha) from Xenopus laevis in tobacco (Nicotiana tabacum) plants.

    PubMed

    Nila, Alejandro G; Sandalio, Luisa M; López, Mercedes G; Gómez, Manuel; del Rio, Luis A; Gómez-Lim, Miguel A

    2006-08-01

    In this work, we have genetically transformed tobacco (Nicotiana tabacum) plants with the peroxisome proliferator-activated receptor cDNA (xPPARalpha) from Xenopus laevis, which is a transcriptional factor involved in the peroxisomal proliferation and induction of fatty acid beta-oxidation in animal cells. Several transgenic lines were generated and one representative line (T) from the R2 generation was selected for further studies. Analysis of free fatty acids revealed that unsaturated fatty acids such as C16:2 and C16:3 were deficient in line T, whereas saturated fatty acids like C16:0, C18:0, and C20:0 were more abundant than in non-transformed plants. Acyl-CoA oxidase (ACOX) activity was assayed as a marker enzyme of beta-oxidation in crude leaf extracts and it was found that in line T there was a threefold increase in enzyme activity. We also found that the peroxisome population was increased and that catalase (CAT) activity was induced by clofibrate, a known activator of xPPARalpha protein, in leaves from line T. Taken together, these findings suggest that xPPARalpha is functional in plants and that its expression in tobacco leads to changes in general lipid metabolism and peroxisomal proliferation as reported in animal cells. Furthermore, it indicates that there is an endogenous ligand in tobacco cells able to activate xPPARalpha.

  8. Reversal of high dietary fructose-induced PPARalpha suppression by oral administration of lipoxygenase/cyclooxygenase inhibitors.

    PubMed

    Kelley, Glen L; Azhar, Salman

    2005-08-09

    High fructose feeding causes diet-induced alterations of lipid metabolism and decreased insulin sensitivity, hallmark of which is a rapid and profound hypertriglyceridemia. One of the mechanisms that contribute to serum hypertriglyceridemia in this model is suppression of hepatic PPARalpha. HMG-CoA inhibitors, which reduce serum triglycerides in these animals, also elevate/restore hepatic PPARalpha. Previously we demonstrated that two known lipoxygenase/cyclooxygenase inhibitors reversed diet-induced hypertriglyceridemia in this model and that reversal of certain inflammatory markers in the liver correlated with the metabolic benefit. In this paper we extended these studies by examining the impact of these compounds on expression of PPARalpha, both at the level of transcription and expression. Our data show that diet-induced suppression of hepaic PPARalpha is reversed upon treatment with lipoxygenase/cyclooxygenase compounds. We then tested one of these compounds, BW-755c, over a range of doses from 10 mg/kg to 100 mg/kg to establish a dose-response relationship with the reduction of serum hypertriglyceridemia in this model. These experiments support the concept of using anti-inflammatory medications as one method to correct metabolic dysfunction.

  9. HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells.

    PubMed

    Zourlidou, Alexandra; Payne Smith, Martin D; Latchman, David S

    2004-03-01

    alpha-Synuclein is a neuronally expressed protein which is mutated in familial Parkinson's disease. We have previously shown that disease-associated mutants of alpha-synuclein cause enhanced neuronal cell death in response to a variety of stimuli, whereas wild-type alpha-synuclein has a protective effect against some stimuli, whilst enhancing the death response to others. We demonstrate, for the first time, that over-expression of the heat shock protein HSP27 has a potent protective anti-apoptotic effect against the damaging effects of wild-type and particularly of mutant alpha-synuclein. In contrast, HSP70 has some protective effect against the damaging effect of the wild-type protein, but has no effect against the mutant proteins, whilst HSP56 has no protective effect in this system. Our results indicate that disease-associated mutants of alpha-synuclein enhance its death-inducing properties and lead to increased apoptosis, which can be mitigated by either the use of specific caspase inhibitors or HSP27 over-expression. This potent protective effect of HSP27 against the mutant and wild-type proteins may be of potential therapeutic importance.

  10. Phospholipid interactions protect the milk allergen alpha-lactalbumin from proteolysis during in vitro digestion.

    PubMed

    Moreno, F Javier; Mackie, Alan R; Mills, E N Clare

    2005-12-14

    Interactions with food components may alter the resistance of food proteins to digestion, a property thought to play an important role in determining allergenic properties. The kinetics of breakdown of the bovine milk allergen alpha-lactalbumin during in vitro gastrointestinal digestion was found to be altered by interactions with physiologically relevant levels of phosphatidylcholine (PC), a surfactant that is abundant both in milk and is actively secreted by the stomach. Breakdown during gastric digestion was slowed in the presence of PC and accompanied by small alterations in the profile of resulting peptides, with little effect being observed during subsequent duodenal digestion. alpha-Lactalbumin was found to unfold at gastric (acid) pH, giving a CD spectrum similar to that obtained for the partially folded state it is known to adopt at pH values below its isoelectric point. Fluorescence polarization studies performed at low pH indicated that this partially unfolded form of the protein was able to penetrate into the PC vesicles. These interactions are probably responsible for the slowing of gastric digestion by reducing the accessibility of the protein to pepsin. These findings show that interactions with other food components, such as lipids, may alter the rate of breakdown of food proteins in the gastrointestinal tract. It underlines the importance of the food matrix in affecting patterns of food allergen digestion and hence presentation to the immune system and that in vitro digestion systems used for assessing digestibility of allergens must take account of surfactants.

  11. Protective effects of bacterial osmoprotectant ectoine on bovine erythrocytes subjected to staphylococcal alpha-haemolysin.

    PubMed

    Bownik, Adam; Stępniewska, Zofia

    2015-06-01

    Ectoine (ECT) is a bacterial compatible solute with documented protective action however no data are available on its effects on various cells against bacterial toxins. Therefore, we determined the in vitro influence of ECT on bovine erythrocytes subjected to staphylococcal α-haemolysin (HlyA). The cells exposed to HlyA alone showed a distinct haemolysis and reduced glutathione (GSH)/oxidised glutathione (GSSG) level, however the toxic effects were attenuated in the combinations of HlyA + ECT suggesting ECT-induced protection of erythrocytes from HlyA.

  12. Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast

    PubMed Central

    Liu, Xianpeng; Lee, Yong Joo; Liou, Liang-Chun; Ren, Qun; Zhang, Zhaojie; Wang, Shaoxiao; Witt, Stephan N.

    2011-01-01

    Hydroxyurea (HU) inhibits ribonucleotide reductase (RNR), which catalyzes the rate-limiting synthesis of deoxyribonucleotides for DNA replication. HU is used to treat HIV, sickle-cell anemia and some cancers. We found that, compared with vector control cells, low levels of alpha-synuclein (α-syn) protect S. cerevisiae cells from the growth inhibition and reactive oxygen species (ROS) accumulation induced by HU. Analysis of this effect using different α-syn mutants revealed that the α-syn protein functions in the nucleus and not the cytoplasm to modulate S-phase checkpoint responses: α-syn up-regulates histone acetylation and RNR levels, maintains helicase minichromosome maintenance protein complexes (Mcm2–7) on chromatin and inhibits HU-induced ROS accumulation. Strikingly, when residues 2–10 or 96–140 are deleted, this protective function of α-syn in the nucleus is abolished. Understanding the mechanism by which α-syn protects against HU could expand our knowledge of the normal function of this neuronal protein. PMID:21642386

  13. Alpha-lipoic acid protects against cisplatin-induced ototoxicity via the regulation of MAPKs and proinflammatory cytokines.

    PubMed

    Kim, Jeongho; Cho, Hyun-Ju; Sagong, Borum; Kim, Se-Jin; Lee, Jae-Tae; So, Hong-Seob; Lee, In-Kyu; Kim, Un-Kyung; Lee, Kyu-Yup; Choo, Yon-Sik

    2014-06-27

    Cisplatin is an effective antineoplastic drug that is widely used to treat various cancers; however, it causes side effects such as ototoxicity via the induction of apoptosis of hair cells in the cochlea. Alpha-lipoic acid (ALA) has been reported to exert a protective effect against both antibiotic-induced and cisplatin-induced hearing loss. Therefore, this study was conducted to (1) elucidate the mechanism of the protective effects of ALA against cisplatin-induced ototoxicity using in vitro and ex vivo culture systems of HEI-OC1 auditory cells and rat cochlear explants and (2) to gain additional insight into the apoptotic mechanism of cisplatin-induced ototoxicity. ALA pretreatment significantly reduced apoptotic cell death of the inner and outer hair cells in cisplatin-treated organ of Corti explants and attenuated ototoxicity via marked inhibition of the increase in the expression of IL-1β and IL-6, the phosphorylation of ERK and p38, the degradation of IκBα, the increase in intracellular levels of ROS, and the activation of caspase-3 in cisplatin-treated HEI-OC1 cells. This study represents the first histological evaluation of the organ of Corti following treatment with ALA, and these results indicate that the protective effects of ALA against cisplatin-induced ototoxicity are mediated via the regulation of MAPKs and proinflammatory cytokines. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism

    PubMed Central

    REN, Chao; TONG, Ya-lin; LI, Jun-cong; LU, Zhong-qiu; YAO, Yong-ming

    2017-01-01

    Critical illnesses and injuries are recognized as major threats to human health, and they are usually accompanied by uncontrolled inflammation and dysfunction of immune response. The alpha 7 nicotinic acetylcholine receptor (α7nAchR), which is a primary receptor of cholinergic anti-inflammatory pathway (CAP), exhibits great benefits for critical ill conditions. It is composed of 5 identical α7 subunits that form a central pore with high permeability for calcium. This putative structure is closely associated with its functional states. Activated α7nAChR exhibits extensive anti-inflammatory and immune modulatory reactions, including lowered pro-inflammatory cytokines levels, decreased expressions of chemokines as well as adhesion molecules, and altered differentiation and activation of immune cells, which are important in maintaining immune homeostasis. Well understanding of the effects and mechanisms of α7nAChR will be of great value in exploring effective targets for treating critical diseases. PMID:28123345

  15. A novel dual peroxisome proliferator-activated receptors alpha and gamma agonist with beneficial effects on insulin resistance and lipid metabolism.

    PubMed

    Xu, Cheng; Wang, Li-Li; Liu, Hong-Ying; Ruan, Cheng-Mai; Zhou, Xing-Bo; Cao, Ying-Lin; Li, Song

    2006-06-01

    Peroxisome proliferator-activated receptors (PPARs) alpha and gamma are key regulators of lipid homeostasis and insulin resistance. In this study we show that a novel compound, 3-{4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl}- 2-[2-(2-nitro-phenoxy)-acetyl amino]-propionic acid (O325H), is an agonist with dual effect on PPARalpha/gamma by using dual-luciferase reporter gene assay. By activating PPARalpha and PPARgamma simultaneously, O325H promotes pre-adipocyte differentiation and up-regulates the expression of glucose and lipid metabolic target genes. In diabetic mice, administration of O325H at 10 mg/kg decreases the blood lipid and glucose levels. Therefore, O325H has dual action on PPARalpha and PPARgamma and is a promising agent for the amelioration of lipid metabolic disorders and diabetes associated with insulin resistance.

  16. Both heterozygous and homozygous alpha+ thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya.

    PubMed

    Williams, Thomas N; Wambua, Sammy; Uyoga, Sophie; Macharia, Alex; Mwacharo, Jedidah K; Newton, Charles R J C; Maitland, Kathryn

    2005-07-01

    Although the alpha+ thalassemias almost certainly confer protection against death from malaria, this has not been formally documented. We have conducted a study involving 655 case patients with rigorously defined severe malaria and 648 controls, frequency matched on area of residence and ethnic group. The prevalence of both heterozygous and homozygous alpha+ thalassemia was reduced in both case patients with severe malaria (adjusted odds ratios [ORs], 0.73 and 0.57; 95% confidence intervals [95% CIs], 0.57-0.94 and 0.40-0.81; P = .013 and P = .002, respectively, compared with controls) and among the subgroup of children who died after admission with severe malaria (OR, 0.60 and 0.37; 95% CI, 0.37-1.00 and 0.16-0.87; P = .05 and P = .02, respectively, compared with surviving case patients). The lowest ORs were seen for the forms of malaria associated with the highest mortality-coma and severe anemia complicated by deep, acidotic breathing. Our study supports the conclusion that both heterozygotes and homozygotes enjoy a selective advantage against death from Plasmodium falciparum malaria.

  17. Induction of apoptosis and cell cycle arrest by polyvinylpyrrolidone K-30 and protective effect of alpha-tocopherol.

    PubMed

    Wang, Yu-Bao; Lou, Yang; Luo, Zhao-Feng; Zhang, Dong-Fang; Wang, Yu-Zhen

    2003-09-05

    Polyvinylpyrrolidone is a macromolecular polymer with widespread use in industry as well as in medicine for various purposes. Its effect on cells cultured in vitro, however, has not been fully investigated. To elucidate this issue, we studied the influence of PVP K-30 on cultured HeLa cells. PVP K-30 treatment produced a dose- and time-dependent toxicity to HeLa cells. Cells exposed to PVP K-30 exhibited several morphological features of apoptosis. Gel electrophoresis of DNA from PVP K-30-treated cells showed typical apoptotic ladder. And flow cytometric analysis demonstrated that PVP K-30 induced cell cycle arrest at G2/M phase and the subsequent appearance of sub-G1 population. In addition, it was shown that procaspase-3 was activated in response to PVP K-30 treatment. We also found that alpha-tocopherol efficiently protected HeLa cells from PVP K-30 cytotoxicity. This is the first demonstration that PVP K-30 could induce apoptosis in HeLa cells and cell cycle arrest at G2/M phase, and that PVP K-30 toxicity could be attenuated by alpha-tocopherol.

  18. PPARalpha-dependent induction of the energy homeostasis-regulating nuclear receptor NR1i3 (CAR) in rat hepatocytes: potential role in starvation adaptation.

    PubMed

    Wieneke, Nadine; Hirsch-Ernst, Karen I; Kuna, Manuela; Kersten, Sander; Püschel, Gerhard P

    2007-12-11

    A tight hormonal control of energy homeostasis is of pivotal relevance for animals. Recent evidence suggests an involvement of the nuclear receptor NR1i3 (CAR). Fasting induces CAR by largely unknown mechanisms and CAR-deficient mice are defective in fasting adaptation. In rat hepatocytes CAR was induced by WY14643, a PPARalpha-agonist. A DR1 motif in the CAR promoter was necessary and sufficient for this control. The PPARalpha-dependent increase in CAR potentiated the phenobarbital-induced transcription of the prototypical CAR-dependent gene CYP2B1. Since free fatty acids are natural ligands for PPARalpha, a fasting-induced increase in free fatty acids might induce CAR. In accordance with this hypothesis, CAR induction by fasting was abrogated in PPARalpha-deficient mice.

  19. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor Alpha Selective

    SciTech Connect

    Li, J.; Kennedy, L; Shi, Y; Tao, S; Ye, X; Chen, S; Wang, Y; Hernandez, A; Wang, W; et al.

    2010-01-01

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and {approx}410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

  20. Immune protective effect of human alpha-1-antitrypsin gene during β cell transplantation in diabetic mice.

    PubMed

    Yang, Lu; Liao, Yu-Ting; Yang, Xiao-Fei; Reng, Li-Wei; Qi, Hui; Li, Fu-Rong

    2015-05-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease in which β cells are destroyed. Islet transplantation is the most promising therapeutic treatment for T1D patients. However, allograft rejection and autoimmune reaction have been recognized as primary causes of graft loss after transplantation. Alpha-1-antitrypsin (AAT) is an important serine protease inhibitor in serum. AAT is characterized by anti-inflammation, anti-apoptosis, and induction-specific immunological tolerance. In this study, we successfully established NIT-hAAT cell lines, which are murine islet β cell lines with stable expression of human AAT (hAAT) gene. These NIT-hAAT cells were transplanted under the left kidney capsule of BALB/c diabetic mice. Interestingly, the sustained expression of hAAT in vivo can block the inflammatory cell infiltration and reduce the production of proinflammatory cytokines to effectively prevent nonspecific inflammation. Results showed that hAAT can inhibit the proliferation of lymphocytes, shift the balance between Th17 and Treg, and suppress the maturation of dendritic cells. Therefore, hAAT can serve as a beneficial immunomodulator that limits immune rejection to prolong islet allograft survival and achieve long-term successful transplant outcomes.

  1. beta-Naphthoflavone protects from peritonitis by reducing TNF-alpha-induced endothelial cell activation.

    PubMed

    Hsu, Sheng-Yao; Liou, Je-Wen; Cheng, Tsung-Lin; Peng, Shih-Yi; Lin, Chi-Chen; Chu, Yuan-Yuan; Luo, Wei-Cheng; Huang, Zheng-Kai; Jiang, Shinn-Jong

    2015-12-01

    β-Naphthoflavone (β-NF), a ligand of the aryl hydrocarbon receptor, has been shown to possess anti-oxidative properties. We investigated the anti-oxidative and anti-inflammatory potential of β-NF in human microvascular endothelial cells treated with tumor necrosis factor-alpha (TNF-α). Pretreatment with β-NF significantly inhibited TNF-α-induced intracellular reactive oxygen species, translocation of p67(phox), and TNF-α-induced monocyte binding and transmigration. In addition, β-NF significantly inhibited TNF-α-induced ICAM-1 and VCAM-1 expression. The mRNA expression levels of the inflammatory cytokines TNF-α and IL-6 were reduced by β-NF, as was the infiltration of white blood cells, in a peritonitis model. The inhibition of adhesion molecules was associated with suppressed nuclear translocation of NF-κB p65 and Akt, and suppressed phosphorylation of ERK1/2 and p38. The translocation of Egr-1, a downstream transcription factor involved in the MEK-ERK signaling pathway, was suppressed by β-NF treatment. Our findings show that β-NF inhibits TNF-α-induced NF-kB and ERK1/2 activation and ROS generation, thereby suppressing the expression of adhesion molecules. This results in reduced adhesion and transmigration of leukocytes in vitro and prevents the infiltration of leukocytes in a peritonitis model. Our findings also suggest that β-NF might prevent TNF-α-induced inflammation.

  2. Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway.

    PubMed

    Ogata, Takehiro; Miyauchi, Takashi; Sakai, Satoshi; Takanashi, Masakatsu; Irukayama-Tomobe, Yoko; Yamaguchi, Iwao

    2004-04-21

    We sought to clarify that a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activator inhibits myocardial fibrosis and its resultant diastolic dysfunction in hypertensive heart disease, as well as to investigate whether inflammatory mediators through the nuclear factor (NF)-kappa-B pathway are involved in the effects. Patients with hypertensive heart disease often have diastolic heart failure without systolic dysfunction. Meanwhile, it has been well established in atherosclerosis that PPAR-alpha activation negatively regulates early inflammation. In hypertensive hearts, however, it is still unclear whether PPAR-alpha activation inhibits inflammation and fibrosis. Twenty-one rats were randomly separated into the following three groups: deoxycorticosterone acetate (DOCA)-salt hypertensive rats treated with a PPAR-alpha activator, fenofibrate (80 mg/kg/day for 5 weeks); DOCA-salt rats treated with vehicle only; and uni-nephrectomized rats as normotensive controls. Fenofibrate significantly inhibited the elevation of left ventricular end-diastolic pressure and the reduction of the magnitude of the negative maximum rate of left ventricular pressure rise and decline, corrected by left ventricular pressure (-dP/dt(max)/P), which are indicators of diastolic dysfunction. Next, fenofibrate prevented myocardial fibrosis and reduced the hydroxyproline content and procollagen I and III messenger ribonucleic acid expression. Finally, inflammatory gene expression associated with NF-kappa-B (interleukin-6, cyclooxygenase-2, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1), which is upregulated in DOCA-salt rats, was significantly suppressed by fenofibrate. Activation of NF-kappa-B and expression of I-kappa-B-alpha in DOCA-salt rats were normalized by fenofibrate. A PPAR-alpha activator reduced myocardial fibrosis and prevented the development of diastolic dysfunction in DOCA-salt rats. The effects of a PPAR-alpha activator may be mediated

  3. DNA Protection against Oxidative Damage Using the Hydroalcoholic Extract of Garcinia mangostana and Alpha-Mangostin.

    PubMed

    Carvalho-Silva, Ronaldo; Pereira, Alanna Cibelle Fernandes; Dos Santos Alves, Rúbens Prince; Guecheva, Temenouga N; Henriques, João A P; Brendel, Martin; Pungartnik, Cristina; Rios-Santos, Fabrício

    2016-01-01

    Garcinia mangostana, popularly known as "mangosteen fruit," originates from Southeast Asia and came to Brazil about 80 years ago where it mainly grows in the states of Pará and Bahia. Although mangosteen or its extracts have been used for ages in Asian folk medicine, data on its potential genotoxicity is missing. We, therefore, evaluated genotoxicity/mutagenicity of hydroethanolic mangosteen extract [HEGM, 10 to 640 μg/mL] in established test assays (Comet assay, micronucleus test, and Salmonella/microsome test). In the Comet assay, HEGM-exposed human leukocytes showed no DNA damage. No significant HEGM-induced mutation in TA98 and TA100 strains of Salmonella typhimurium (with or without metabolic activation) was observed and HEGM-exposed human lymphocytes had no increase of micronuclei. However, HEGM suggested exposure concentration-dependent antigenotoxic potential in leukocytes and antioxidant potential in the yeast Saccharomyces cerevisiae. HEGM preloading effectively protected against H2O2-induced DNA damage in leukocytes (Comet assay). Preloading of yeast with HEGM for up to 4 h significantly protected the cells from lethality of chronic H2O2-exposure, as expressed in better survival. Absence of genotoxicity and demonstration of an antigenotoxic and antioxidant potential suggest that HEGM or some substances contained in it may hold promise for pharmaceutical or nutraceutical application.

  4. Alpha-Lipoic Acid Supplementation Protects Enzymes from Damage by Nitrosative and Oxidative Stress

    PubMed Central

    Hiller, Sylvia; DeKroon, Robert; Hamlett, Eric D.; Xu, Longquan; Osorio, Cristina; Robinette, Jennifer; Winnik, Witold; Simington, Stephen; Maeda, Nobuyo; Alzate, Oscar; Yi, Xianwen

    2017-01-01

    Background S-nitrosylation of mitochondrial enzymes involved in energy transfer under nitrosative stress may result in ATP deficiency. We investigated whether α-lipoic acid, a powerful antioxidant, could alleviate nitrosative stress by regulating S-nitrosylation, which could result in retaining the mitochondrial enzyme activity. Methods In this study, we have identified the S-nitrosylated forms of subunit 1 of dihydrolipoyllysine succinyltransferase (complex III), and subunit 2 of the α-ketoglutarate dehydrogenase complex by implementing a fluorescence-based differential quantitative proteomics method. Results We found that the activities of these two mitochondrial enzymes were partially but reversibly inhibited by S-nitrosylation in cultured endothelial cells, and that their activities were partially restored by supplementation of α-lipoic acid. We show that protein S-nitrosylation affects the activity of mitochondrial enzymes that are central to energy supply, and that α-lipoic acid protects mitochondrial enzymes by altering S-nitrosylation levels. Conclusions Inhibiting protein S-nitrosylation with α-lipoic acid seems to be a protective mechanism against nitrosative stress. General significance Identification and characterization of these new protein targets should contribute to expanding the therapeutic power of α-lipoic acid and to a better understanding of the underlying antioxidant mechanisms. PMID:26344063

  5. DNA Protection against Oxidative Damage Using the Hydroalcoholic Extract of Garcinia mangostana and Alpha-Mangostin

    PubMed Central

    Carvalho-Silva, Ronaldo; Pereira, Alanna Cibelle Fernandes; dos Santos Alves, Rúbens Prince; Guecheva, Temenouga N.; Henriques, João A. P.; Brendel, Martin; Rios-Santos, Fabrício

    2016-01-01

    Garcinia mangostana, popularly known as “mangosteen fruit,” originates from Southeast Asia and came to Brazil about 80 years ago where it mainly grows in the states of Pará and Bahia. Although mangosteen or its extracts have been used for ages in Asian folk medicine, data on its potential genotoxicity is missing. We, therefore, evaluated genotoxicity/mutagenicity of hydroethanolic mangosteen extract [HEGM, 10 to 640 μg/mL] in established test assays (Comet assay, micronucleus test, and Salmonella/microsome test). In the Comet assay, HEGM-exposed human leukocytes showed no DNA damage. No significant HEGM-induced mutation in TA98 and TA100 strains of Salmonella typhimurium (with or without metabolic activation) was observed and HEGM-exposed human lymphocytes had no increase of micronuclei. However, HEGM suggested exposure concentration-dependent antigenotoxic potential in leukocytes and antioxidant potential in the yeast Saccharomyces cerevisiae. HEGM preloading effectively protected against H2O2-induced DNA damage in leukocytes (Comet assay). Preloading of yeast with HEGM for up to 4 h significantly protected the cells from lethality of chronic H2O2-exposure, as expressed in better survival. Absence of genotoxicity and demonstration of an antigenotoxic and antioxidant potential suggest that HEGM or some substances contained in it may hold promise for pharmaceutical or nutraceutical application. PMID:27042187

  6. Alpha-synuclein (SNCA) polymorphisms exert protective effects on memory after mild traumatic brain injury.

    PubMed

    Shee, Kevin; Lucas, Alexandra; Flashman, Laura A; Nho, Kwangsik; Tsongalis, Gregory J; McDonald, Brenna C; Saykin, Andrew J; McAllister, Thomas W; Rhodes, C Harker

    2016-09-06

    Problems with attention and short-term learning and memory are commonly reported after mild traumatic brain injury (mTBI). Due to the known relationships between α-synuclein (SNCA), dopaminergic transmission, and neurologic deficits, we hypothesized that SNCA polymorphisms might be associated with cognitive outcome after mTBI. A cohort of 91 mTBI patients one month after injury and 86 healthy controls completed a series of cognitive tests assessing baseline intellectual function, attentional function, and memory, and was genotyped at 13 common single nucleotide polymorphisms (SNPs) in the SNCA gene. Significant differences in two memory measures (p=0.001 and 0.002), but not baseline intellectual function or attentional function tasks, were found between the mTBI group and controls. A highly significant protective association between memory performance and SNCA promoter SNP rs1372525 was observed in the mTBI patients (p=0.006 and 0.029 for the long and short delay conditions of the California Verbal Learning Tests, respectively), where the presence of at least one copy of the A (minor) allele was protective after mTBI. These results may help elucidate the pathophysiology of cognitive alterations after mTBI, and thus warrant further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. The Protective Effect of Dietary Arthrospira (Spirulina) maxima Against Mutagenicity Induced by Benzo[alpha]pyrene in Mice

    PubMed Central

    Garduño-Siciliano, Leticia; Martínez-Galero, Elizdath; Mojica-Villegas, Angélica; Pages, Nicole; Gutiérrez-Salmeán, Gabriela

    2014-01-01

    Abstract Benzo[alpha]pyrene (B[α]P) was used to test the possible antimutagenic effects of Arthrospira (Spirulina) maxima (SP) on male and female mice. SP was orally administered at 0, 200, 400, or 800 mg/kg of body weight to animals of both sexes for 2 weeks before starting the B[α]P (intraperitoneal injection) at 125 mg/kg of body weight for 5 consecutive days. For the male dominant lethal test, each male was caged with two untreated females per week for 3 weeks. For the female dominant lethal test, each female was caged for 1 week with one untreated male. All the females were evaluated 13–15 days after mating for incidence of pregnancy, total corpora lutea, total implants and pre- and postimplant losses. SP protected from B[α]P-induced pre- and postimplant losses in the male dominant lethal test, and from B[α]P-induced postimplantation losses in treated females. Moreover, SP treatment significantly reduced the detrimental effect of B[α]P on the quality of mouse semen. Our results illustrate the protective effects of SP in relation to B[α]P-induced genetic damage to germ cells. We conclude that SP, owing mainly to the presence of phycocyanin, could be of potential clinical interest in cancer treatment or prevention of relapse. PMID:24787733

  8. Protective Efficacy of Alpha-lipoic Acid against AflatoxinB1-induced Oxidative Damage in the Liver

    PubMed Central

    Li, Y.; Ma, Q. G.; Zhao, L. H.; Guo, Y. Q.; Duan, G. X.; Zhang, J. Y.; Ji, C.

    2014-01-01

    Alpha-lipoic acid (α-LA) is not only involved in energy metabolism, but is also a powerful antioxidant that can protect against hepatic oxidative stress induced by some drugs, toxins, or under various physiological and pathophysiological conditions. Here, we investigated the effect of α-LA against liver oxidative damage in broilers exposed to aflatoxin B1 (AFB1). Birds were randomly divided into four groups and assigned different diets: basal diet, 300 mg/kg α-LA supplementation in basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1, for 3 weeks. The results revealed that the addition of 300 mg/kg α-LA protected against the liver function damage of broilers induced by chronic low dose of AFB1 as estimated by a significant (p<0.05) change in levels of plasma total protein, albumin, alkaline phosphatase and the activities of liver glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase. The histopathological analysis also showed that liver tissues were injured in the AFB1 diet, but this effect was alleviated by the addition of 300 mg/kg α-LA. Additionally, AFB1 induced a profound elevation of oxidative stress in birds, as indicated by an increase in malondialdehyde level, a decrease in glutathione peroxidase activity and a depletion of the glutathione content in the liver. All of these negative effects were inhibited by treatment with α-LA. Our results suggest that the inhibition of AFB1-induced excess production of lipid peroxides and the maintenance of intracellular antioxidant status may play important roles in the protective effects of α-LA against AFB1-induced oxidative damage in the liver. PMID:25050030

  9. Passive immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta protects from LPS enhancing glomerular injury in nephrotoxic nephritis in rats.

    PubMed Central

    Karkar, A M; Koshino, Y; Cashman, S J; Dash, A C; Bonnefoy, J; Meager, A; Rees, A J

    1992-01-01

    Glomerular injury caused by injection of heterologous anti-glomerular basement membrane antibodies (anti-GBM Ab) is increased in rats pretreated with small doses of bacterial lipopolysaccharide (LPS). We have investigated the involvement of tumour necrosis factor-alpha (TNF-alpha), IL-1 alpha and IL-1 beta in this phenomenon by passive immunization against these cytokines. Anti-TNF-alpha or anti-IL-1 beta antibodies given 1.5 h before the induction of nephritis significantly decreased injury in this model, whether assessed by the magnitude of albuminuria, the prevalence of glomerular capillary thrombi or the intensity of glomerular neutrophil infiltrate. Albuminuria in anti-GBM Ab alone was 11 +/- 3, LPS/anti-GBM Ab 87 +/- 22, and anti-TNF-alpha antibodies/LPS/anti-GBM Ab 21 +/- 6 mg/24 h (mean +/- s.e.) P < 0.05. Passive immunization with antibodies to IL-1 beta had a similar effect (anti-GBM Ab, 0.6 +/- 0.1, LPS/anti-GBM Ab, 92 +/- 19, anti-IL-1 beta antibodies/LPS/anti-GBM Ab 39 +/- 8 mg/24 h, P < 0.05). The prevalence of glomerular capillary thrombi was also reduced significantly by these treatments; from 22 +/- 5% to 4 +/- 1% in the case of anti-TNF-alpha antibodies and 28 +/- 5% to 13 +/- 4% with anti-IL-1 beta antibodies. Similarly, the glomerular neutrophil infiltrate was also reduced by these treatments; from 42 +/- 3 to 25 +/- 1 in the case of anti-TNF-alpha and 47 +/- 2 to 30 +/- 1 with anti-IL-1 beta antibodies. In contrast, passive immunization against IL-1 alpha had no effect on either albumin excretion (4 +/- 3, 83 +/- 22 and 77 +/- 24 mg/24 h), glomerular capillary thrombi (2 +/- 1; 19 +/- 5 and 16 +/- 3) or glomerular neutrophil infiltrate (22 +/- 3; 47 +/- 5 and 48 +/- 5 from the three groups respectively). These results demonstrate that enhanced antibody mediated injury in the kidney is modulated by TNF-alpha and IL-1 beta but not by IL-1 alpha. PMID:1385027

  10. Myeloid derived hypoxia inducible factor 1-alpha is required for protection against pulmonary Aspergillus fumigatus infection.

    PubMed

    Shepardson, Kelly M; Jhingran, Anupam; Caffrey, Alayna; Obar, Joshua J; Suratt, Benjamin T; Berwin, Brent L; Hohl, Tobias M; Cramer, Robert A

    2014-09-01

    Hypoxia inducible factor 1α (HIF1α) is the mammalian transcriptional factor that controls metabolism, survival, and innate immunity in response to inflammation and low oxygen. Previous work established that generation of hypoxic microenvironments occurs within the lung during infection with the human fungal pathogen Aspergillus fumigatus. Here we demonstrate that A. fumigatus stabilizes HIF1α protein early after pulmonary challenge that is inhibited by treatment of mice with the steroid triamcinolone. Utilizing myeloid deficient HIF1α mice, we observed that HIF1α is required for survival and fungal clearance early following pulmonary challenge with A. fumigatus. Unlike previously reported research with bacterial pathogens, HIF1α deficient neutrophils and macrophages were surprisingly not defective in fungal conidial killing. The increase in susceptibility of the myeloid deficient HIF1α mice to A. fumigatus was in part due to decreased early production of the chemokine CXCL1 (KC) and increased neutrophil apoptosis at the site of infection, resulting in decreased neutrophil numbers in the lung. Addition of recombinant CXCL1 restored neutrophil survival and numbers, murine survival, and fungal clearance. These results suggest that there are unique HIF1α mediated mechanisms employed by the host for protection and defense against fungal pathogen growth and invasion in the lung. Additionally, this work supports the strategy of exploring HIF1α as a therapeutic target in specific immunosuppressed populations with fungal infections.

  11. Toll-like receptor 2- and 6-mediated stimulation by macrophage-activating lipopeptide 2 induces lipopolysaccharide (LPS) cross tolerance in mice, which results in protection from tumor necrosis factor alpha but in only partial protection from lethal LPS doses.

    PubMed

    Deiters, Ursula; Gumenscheimer, Marina; Galanos, Chris; Mühlradt, Peter F

    2003-08-01

    Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-alpha) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cytokine release was studied in mice pretreated with intraperitoneal injections of MALP-2. No biologically active TNF-alpha could be detected in the serum of MALP-2-treated animals when challenged with LPS 24 or 72 h later, whereas suppression of LPS-dependent interleukin (IL)-6 lasted for only 24 h. Protection from lethal TNF-alpha shock was studied in galactosamine-treated mice. Dose dependently, MALP-2 prevented death from lethal TNF-alpha doses in TLR4(-/-) but not in TLR2(-/-) mice, with protection lasting from 5 to 24 h. To assay protection from LPS, mice were pretreated with MALP-2 doses of up to 10 micro g. Five and 24 h later, the animals were simultaneously sensitized and challenged by intravenous coinjection of galactosamine and a lethal dose of 50 ng of LPS. There was only limited protection (four of seven mice survived) when mice were challenged 5 h after MALP-2 pretreatment, and no protection when mice were challenged at later times. The high effectiveness of MALP-2 in suppressing TNF-alpha, the known ways of biological inactivation, and low pyrogenicity make MALP-2 a potential candidate for clinical use.

  12. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice.

    PubMed

    Xue, Baojian; Pamidimukkala, Jaya; Lubahn, Dennis B; Hay, Meredith

    2007-04-01

    It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.

  13. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers

    PubMed Central

    Váradi, Judit; Harazin, András; Fenyvesi, Ferenc; Réti-Nagy, Katalin; Gogolák, Péter; Vámosi, György; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Vasvári, Gábor; Róka, Eszter; Haines, David; Deli, Mária A.; Vecsernyés, Miklós

    2017-01-01

    Alpha-melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB) was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines. PMID:28103316

  14. The Protective Effects of Alpha-Lipoic Acid and Coenzyme Q10 Combination on Ovarian Ischemia-Reperfusion Injury: An Experimental Study

    PubMed Central

    Bozkurt, Mehmet Fatih; Koken, Tulay; Dogan, Nurhan; Pektaş, Mine Kanat; Baskin Embleton, Didem

    2016-01-01

    Objective. This study aims to evaluate whether alpha-lipoic acid and/or coenzyme Q10 can protect the prepubertal ovarian tissue from ischemia-reperfusion injury in an experimental rat model of ovarian torsion. Materials and Methods. Forty-two female preadolescent Wistar-Albino rats were divided into 6 equal groups randomly. The sham group had laparotomy without torsion; the other groups had torsion/detorsion procedure. After undergoing torsion, group 2 received saline, group 3 received olive oil, group 4 received alpha-lipoic acid, group 5 received coenzyme Q10, and group 6 received both alpha-lipoic acid and coenzyme Q10 orally. The oxidant-antioxidant statuses of these groups were compared using biochemical measurement of oxidized/reduced glutathione, glutathione peroxidase and malondialdehyde, pathological evaluation of damage and apoptosis within the ovarian tissue, and immunohistochemical assessment of nitric oxide synthase. Results. The left ovaries of the alpha-lipoic acid + coenzyme Q10 group had significantly lower apoptosis scores and significantly higher nitric oxide synthase content than the left ovaries of the control groups. The alpha-lipoic acid + coenzyme Q10 group had significantly higher glutathione peroxidase levels and serum malondialdehyde concentrations than the sham group. Conclusions. The combination of alpha-lipoic acid and coenzyme Q10 has beneficial effects on oxidative stress induced by ischemia-reperfusion injury related to ovarian torsion. PMID:27597986

  15. The Protective Effects of Alpha-Lipoic Acid and Coenzyme Q10 Combination on Ovarian Ischemia-Reperfusion Injury: An Experimental Study.

    PubMed

    Tuncer, Ahmet Ali; Bozkurt, Mehmet Fatih; Koken, Tulay; Dogan, Nurhan; Pektaş, Mine Kanat; Baskin Embleton, Didem

    2016-01-01

    Objective. This study aims to evaluate whether alpha-lipoic acid and/or coenzyme Q10 can protect the prepubertal ovarian tissue from ischemia-reperfusion injury in an experimental rat model of ovarian torsion. Materials and Methods. Forty-two female preadolescent Wistar-Albino rats were divided into 6 equal groups randomly. The sham group had laparotomy without torsion; the other groups had torsion/detorsion procedure. After undergoing torsion, group 2 received saline, group 3 received olive oil, group 4 received alpha-lipoic acid, group 5 received coenzyme Q10, and group 6 received both alpha-lipoic acid and coenzyme Q10 orally. The oxidant-antioxidant statuses of these groups were compared using biochemical measurement of oxidized/reduced glutathione, glutathione peroxidase and malondialdehyde, pathological evaluation of damage and apoptosis within the ovarian tissue, and immunohistochemical assessment of nitric oxide synthase. Results. The left ovaries of the alpha-lipoic acid + coenzyme Q10 group had significantly lower apoptosis scores and significantly higher nitric oxide synthase content than the left ovaries of the control groups. The alpha-lipoic acid + coenzyme Q10 group had significantly higher glutathione peroxidase levels and serum malondialdehyde concentrations than the sham group. Conclusions. The combination of alpha-lipoic acid and coenzyme Q10 has beneficial effects on oxidative stress induced by ischemia-reperfusion injury related to ovarian torsion.

  16. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    SciTech Connect

    Xing, Weiyi; Zhang, Ping; Song, Lei; Wang, Xin; Hu, Yuan

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.

  17. A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus.

    PubMed

    Martín-Acebes, Miguel A; Blázquez, Ana-Belén; Cañas-Arranz, Rodrigo; Vázquez-Calvo, Ángela; Merino-Ramos, Teresa; Escribano-Romero, Estela; Sobrino, Francisco; Saiz, Juan-Carlos

    2016-04-19

    Usutu virus (USUV) is a mosquito-borne flavivirus whose circulation had been confined to Africa since it was first detected in 1959. However, in the last decade USUV has emerged in Europe causing episodes of avian mortality and sporadic severe neuroinvasive infections in humans. Remarkably, adult laboratory mice exhibit limited susceptibility to USUV infection, which has impaired the analysis of the immune responses, thus complicating the evaluation of virus-host interactions and of vaccine candidates against this pathogen. In this work, we showed that mice deficient in the alpha/beta interferon receptor (IFNAR (-/-) mice) were highly susceptible to USUV infection and provided a lethal challenge model for vaccine testing. To validate this infection model, a plasmid DNA vaccine candidate encoding the precursor of membrane (prM) and envelope (E) proteins of USUV was engineered. Transfection of cultured cells with this plasmid resulted in expression of USUV antigens and the assembly and secretion of small virus-like particles also known as recombinant subviral particles (RSPs). A single intramuscular immunization with this plasmid was sufficient to elicit a significant level of protection against challenge with USUV in IFNAR (-/-) mice. The characterization of the humoral response induced revealed that DNA vaccination primed anti-USUV antibodies, including neutralizing antibodies. Overall, these results probe the suitability of IFNAR (-/-) mice as an amenable small animal model for the study of USUV host virus interactions and vaccine testing, as well as the feasibility of DNA-based vaccine strategies for the control of this pathogen.

  18. Mono(2-ethylhexyl)phthalate and mono-n-butyl phthalate activation of peroxisome proliferator activated-receptors alpha and gamma in breast.

    PubMed

    Venkata, Nagaraj Gopisetty; Robinson, Jodie A; Cabot, Peter J; Davis, Barbara; Monteith, Greg R; Roberts-Thomson, Sarah J

    2006-06-01

    The phthalates di(2-ethylhexyl)phthalate (DEHP) and di-n-butyl phthalate (DBP) are environmental contaminants with significant human exposures. Both compounds are known reproductive toxins in rodents and DEHP also induces rodent hepatocarcinogenesis in a process believed to be mediated via the peroxisome proliferator-activated receptor alpha (PPARalpha). DEHP and DBP are metabolised to their respective monoesters, mono-(2-ethylhexyl)phthalate (MEHP) and mono-n-butyl phthalate (MBP), which are the active metabolites. MEHP also activates another member of the PPAR subfamily, PPARgamma. The effects of PPARalpha and PPARgamma activation in human breast cells appears to be opposing; PPARalpha activators in breast cells cause an increase in proliferation, while PPARgamma activation in breast cells is associated with differentiation and an inhibition of cell proliferation. Further to this the activation of the PPARs is cell and ligand specific, suggesting the importance of examining the effect of MEHP and MBP on the activation of PPARalpha, PPARbeta and PPARgamma in human breast. We used the common model of human breast cancer MCF-7 and examined the ability of MEHP and MBP to activate human PPARs in this system. The ability of MBP and MEHP to block PPAR responses was also assessed. We found that both human PPARalpha and PPARgamma were activated by MEHP whereas MEHP could not activate PPARbeta. MBP was unable to activate any PPAR isoforms in this breast model, despite being a weak peroxisome proliferator in liver, although MBP was an antagonist for both PPARgamma and PPARbeta. Our results suggest that the toxicological consequences of MEHP in the breast could be complex given the opposing effects of PPARalpha and PPARgamma in human breast cells.

  19. Estrogen Receptor Alpha Expression in Podocytes Mediates Protection against Apoptosis In-Vitro and In-Vivo

    PubMed Central

    Kummer, Sebastian; Jeruschke, Stefanie; Wegerich, Lara Vanessa; Peters, Andrea; Lehmann, Petra; Seibt, Annette; Mueller, Friederike; Koleganova, Nadezda; Halbenz, Elisabeth; Schmitt, Claus Peter; Bettendorf, Markus; Mayatepek, Ertan; Gross-Weissmann, Marie-Luise; Oh, Jun

    2011-01-01

    Context/Objective Epidemiological studies have demonstrated that women have a significantly better prognosis in chronic renal diseases compared to men. This suggests critical influences of gender hormones on glomerular structure and function. We examined potential direct protective effects of estradiol on podocytes. Methods Expression of estrogen receptor alpha (ERα) was examined in podocytes in vitro and in vivo. Receptor localization was shown using Western blot of separated nuclear and cytoplasmatic protein fractions. Podocytes were treated with Puromycin aminonucleoside (PAN, apoptosis induction), estradiol, or both in combination. Apoptotic cells were detected with Hoechst nuclear staining and Annexin-FITC flow cytometry. To visualize mitochondrial membrane potential depolarization as an indicator for apoptosis, cells were stained with tetramethyl rhodamine methylester (TMRM). Estradiol-induced phosphorylation of ERK1/2 and p38 MAPK was examined by Western blot. Glomeruli of ERα knock-out mice and wild-type controls were analysed by histomorphometry and immunohistochemistry. Results ERα was consistently expressed in human and murine podocytes. Estradiol stimulated ERα protein expression, reduced PAN-induced apoptosis in vitro by 26.5±24.6% or 56.6±5.9% (flow cytometry or Hoechst-staining, respectively; both p<0.05), and restored PAN-induced mitochondrial membrane potential depolarization. Estradiol enhanced ERK1/2 phosphorylation. In ERα knockout mice, podocyte number was reduced compared to controls (female/male: 80/86 vs. 132/135 podocytes per glomerulus, p<0.05). Podocyte volume was enhanced in ERα knockout mice (female/male: 429/371 µm3 vs. 264/223 µm3 in controls, p<0.05). Tgfβ1 and collagen type IV expression were increased in knockout mice, indicating glomerular damage. Conclusions Podocytes express ERα, whose activation leads to a significant protection against experimentally induced apoptosis. Possible underlying mechanisms include

  20. Protection against peroxynitrite dependent tyrosine nitration and alpha 1-antiproteinase inactivation by some anti-inflammatory drugs and by the antibiotic tetracycline.

    PubMed

    Whiteman, M; Kaur, H; Halliwell, B

    1996-06-01

    To examine in vitro the ability of several drugs to protect against deleterious effects of peroxynitrite, a cytotoxic agent formed by reaction of nitric oxide with superoxide radical, that may be generated in the rheumatoid joint and could cause joint damage. The ability of several drugs to protect against such possible toxic actions of peroxynitrite as inactivation of alpha 1-antiproteinase and nitration of tyrosine was evaluated. Most non-steroidal anti-inflammatory drugs were moderately (indomethacin, diclofenac, naproxen, tolmetin) or only weakly (sulindac, ibuprofen, aurothioglucose, flurbiprofen, sulphasalazine, salicylate, penicillamine disulphide) effective in preventing tyrosine nitration and alpha 1-antiproteinase inactivation by peroxynitrite, but 5-aminosalicylate and penicillamine were much more effective, as was the antibiotic tetracycline (but not ampicillin). Phenylbutazone and flufenamic acid protected effectively against tyrosine nitration, but could not be tested in the alpha 1-antiproteinase system. The analgesic paracetamol was highly protective in both assay systems. Many drugs used in the treatment of rheumatoid arthritis are unlikely to act by scavenging peroxynitrite. The feasibility of peroxynitrite scavenging as a mechanism of penicillamine, 5-aminosalicylate, and paracetamol action in vivo is discussed.

  1. Anti-inflammatory actions of perfluorooctanoic acid and peroxisome proliferator-activated receptors (PPAR) alpha and gamma in experimental acute pancreatitis.

    PubMed

    Griesbacher, Thomas; Pommer, Veronika; Schuligoi, Rufina; Tiran, Beate; Peskar, Bernhard A

    2008-02-01

    Perfluorooctanoic acid (PFOA) and agonists of peroxisome proliferator-activated receptors (PPAR) alpha and gamma were investigated for potential anti-inflammatory effects in cerulein-induced acute pancreatitis in rats. PFOA significantly reduced both leukocyte accumulation and prostanoid synthesis. The PPAR-alpha agonist clofibrate had no effect on leukocyte activation but significantly inhibited prostanoid synthesis whereas the PPAR-gamma agonist rosiglitazone significantly reduced leukocyte activation but did not affect synthesis of prostaglandins in the pancreas. Neither PFOA, nor clofibrate or rosiglitazone had an effect on the formation of the inflammatory edema or elevated levels of lipase activity in the blood serum. In summary, PFOA attenuates the accumulation of activated leukocytes and reduces the synthesis of prostanoids in the pancreas during cerulein-induced acute pancreatitis. An activation of PPAR-alpha causes inhibition of prostanoid synthesis while activation of PPAR-gamma inhibits leukocyte activation.

  2. Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis

    PubMed Central

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis

    2006-01-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-α). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-α was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-α antibodies; and (iii) the addition of exogenous TNF-α induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-α-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-α-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  3. Lens and cornea lesions of rats fed corn syrup and the protective effects of alpha lipoic acid.

    PubMed

    Gunes, Alime; Ozmen, Ozlem; Saygın, Mustafa; Ascı, Halil; Tok, Levent; Tok, Ozlem; Dıncoglu, Dılnur

    2016-03-01

    To examine the pathological findings that occurred in the lens and cornea and biochemical findings in the lens of rats fed with corn syrup and the protective effects of alpha lipoic acid (ALA). Twenty-four rats were randomly divided into three groups. Group I served as the control group. Group II was used as the study group; the rats were treated with 30% corn sugar solution for 10 weeks. Group III was the treatment group. Corn syrup was given by the oral route to the rats during the study, and ALA (100 mg/kg) was added to the treatment 4 weeks after the study began. At the end of the experiment, central corneal thickness (CCT) was measured in all rats with an ultrasonic pachymeter. Then the right eyes of the rats were enucleated for histopathological examination of the cornea and lens. The left lenses were homogenized for biochemical analyses. The lenses of the rats treated with corn syrup revealed severe damage; many lens fibers appeared swollen and ruptured with large vacuoles near the lens epithelium. In addition, malondialdehyde (MDA) levels, a parameter of oxidative stress, increased but not significantly in Group II; however. ALA treatment decreased MDA levels significantly. Antioxidant enzyme and catalase (CAT) activities were significantly decreased in Group II, and ALA treatment increased these activities; however, the increase was not significant. Changes were observed in the cornea such as epithelial alterations, subepithelial vacuolizations, collagen fibers loss in the stromal layer, interruptions in the subepithelial basement membrane and central corneal thickening. Corn syrup can cause severe damage in rat lenses and corneas. However, ALA ameliorates the effect of corn syrup-related lesions on the cornea and lens.

  4. Panaxynol protects cortical neurons from ischemia-like injury by up-regulation of HIF-1alpha expression and inhibition of apoptotic cascade.

    PubMed

    Yang, Zhi-Hui; Sun, Ke; Yan, Zhong-Hong; Suo, Wen-Hao; Fu, Guo-Hui; Lu, Yang

    2010-01-05

    Apoptosis is one of the major characteristics of delayed neuronal degeneration in neuronal injury following cerebral ischemia. Hypoxia-induced apoptosis may be co-regulated by HIF-1alpha as well as many other factors. In recent years, numerous studies concerning panaxynol (PNN) have been reported. However, whether PNN can show anti-hypoxia properties is still unknown. In this study, the protective effects of PNN on OGD-induced neuronal apoptosis and potential mechanisms were investigated. Pretreatment of the cells with PNN for 24h following exposure to OGD resulted in a significant elevation of cell survival determined by MTT assay, LDH assay, Hoechst staining and flow cytometric assessment. In addition to enhancing the expression of HIF-1alpha, PNN also normalized the caspase-3 expression/activation and increased the Bcl-2/Bax ratio. In our study, the increased level of HIF-1alpha with decreased cellular apoptosis suggested an important role for HIF-1alpha in hypoxic neurons. These results indicated that the neuroprotective effects of PNN on hypoxic neurons were at least partly due to up-regulation of HIF-1alpha and raised the possibility that PNN might reduce neurodegenerative disorders and ischemic brain diseases.

  5. Alpha-phenyl-N-tert-butyl nitrone (PBN) derivatives: synthesis and protective action against microvascular damages induced by ischemia/reperfusion.

    PubMed

    Kim, Sothea; de A Vilela, Guilherme V M; Bouajila, Jalloul; Dias, Ayres G; Cyrino, Fatima Z G A; Bouskela, Eliete; Costa, Paulo R R; Nepveu, Françoise

    2007-05-15

    Nitrones 4-7, structurally related to PBN (1), were prepared by reaction of the corresponding aromatic aldehydes with N-tert-butyl hydroxylamine. The protective effects of these nitrones against microvascular damages in ischemia/reperfusion in the 'hamster cheek pouch' assay were studied and 1, as well as 4a, 4b, and 7 (derived from piperonal, O-benzyl vanillin, and furfural, respectively), showed to be more active than shark cartilage or alpha-tocopherol. No correlation was found between the protective effect of these nitrones and their logP (partition coefficient) or their capacity to trap (*)OH and (*)CH(3) radicals.

  6. Activation of peroxisome proliferator-activated receptor-alpha and -gamma in auricular tissue from heart failure patients.

    PubMed

    Gómez-Garre, Dulcenombre; Herraíz, Marta; González-Rubio, Ma Luisa; Bernal, Rosa; Aragoncillo, Paloma; Carbonell, Amparo; Rufilanchas, Juan José; Fernández-Cruz, Arturo

    2006-03-01

    Peroxisome proliferator-activated receptors (PPARs), key transcriptional regulators of lipid and energy metabolism in cardiomyocytes, have recently been proposed to modulate cardiovascular pathophysiological responses in experimental models. However, there is little information about the functional activity of PPARs in human heart failure. To investigate PPAR-alpha and -gamma expression and activity, and the association with ET-1 production and fibrosis, in cardiac biopsies from patients with end-stage heart failure due to ischemic cardiomyopathy (ICM) in comparison and from non-failing donor hearts. All samples were obtained during cardiac transplantation. Morphological analysis (by Masson trichrome and image analysis) did not detect fibrosis in the left atrium from non-failing donors (NFLA) or from ICM patients (FLA). However, left ventricles from failing hearts (FLV) contained a greater number of fibrotic areas (NFLA: 3.21+/-1.15, FLA: 1.63+/-0.83, FLV: 14.5+/-3.45%; n = 9, P<0.05). By RT-PCR, preproET-1 expression was similar in the non-failing and failing atrium but was significantly higher in the ventricles from failing hearts (NFLA: 1.00+/-0.06, FLA: 1.08+/-0.11, FLV: 1.74+/-0.19; n = 9, P<0.05). PPAR-alpha and PPAP-gamma mRNA (by RT-PCR) and protein (by Western blot) levels were higher in the ventricles from failing hearts compared with the atrium from failing and non-failing hearts. Electrophoretic mobility shift assays showed that PPAR-alpha and PPAP-gamma were not activated in the ventricles (NFLA: 1.00+/-0.11, FLA: 1.89+/-0.24, FLV: 0.95+/-0.07; n = 9, P<0.05). These data suggest that PPAR-alpha and PPAP-gamma are selectively activated in the atria from ICM patients and might be functionally important in the maintenance of atrial morphology.

  7. Beyond lipids, pharmacological PPARalpha activation has important effects on amino acid metabolism as studied in the rat.

    PubMed

    Sheikh, Kashif; Camejo, Germán; Lanne, Boel; Halvarsson, Torbjörn; Landergren, Marie Rydén; Oakes, Nicholas D

    2007-04-01

    PPARalpha agonists have been characterized largely in terms of their effects on lipids and glucose metabolism, whereas little has been reported about effects on amino acid metabolism. We studied responses to the PPARalpha agonist WY 14,643 (30 micromol x kg(-1) x day(-1) for 4 wk) in rats fed a saturated fat diet. Plasma and urine were analyzed with proton NMR. Plasma amino acids were measured using HPLC, and hepatic gene expression was assessed with DNA arrays. The high-fat diet elevated plasma levels of insulin and triglycerides (TG), and WY 14,643 treatment ameliorated this insulin resistance and dyslipidemia, lowering plasma insulin and TG levels. In addition, treatment decreased body weight gain, without altering cumulative food intake, and increased liver mass. WY 14,643 increased plasma levels of 12 of 22 amino acids, including glucogenic and some ketogenic amino acids, whereas arginine was significantly decreased. There was no alteration in branched-chain amino acid levels. Compared with the fat-fed control animals, WY 14,643-treated animals had raised plasma urea and ammonia levels as well as raised urine levels of N-methylnicotinamide and dimethylglycine. WY 14,643 induced changes in a number of key genes involved in amino acid metabolism in addition to expected effects on hepatic genes involved in lipid catabolism and ketone body formation. In conclusion, the present results suggest that, in rodents, effects of pharmacological PPARalpha activation extend beyond control of lipid metabolism to include important effects on whole body amino acid mobilization and hepatic amino acid metabolism.

  8. The PPAR alpha-humanized mouse: a model to investigate species differences in liver toxicity mediated by PPAR alpha.

    PubMed

    Yang, Qian; Nagano, Tomokazu; Shah, Yatrik; Cheung, Connie; Ito, Shinji; Gonzalez, Frank J

    2008-01-01

    To determine the impact of the species difference between rodents and humans in response to peroxisome proliferators (PPs) mediated by peroxisome proliferator-activated receptor (PPAR)alpha, PPAR alpha-humanized transgenic mice were generated using a P1 phage artificial chromosome (PAC) genomic clone bred onto a ppar alpha-null mouse background, designated hPPAR alpha PAC. In hPPAR alpha PAC mice, the human PPAR alpha gene is expressed in tissues with high fatty acid catabolism and induced upon fasting, similar to mouse PPAR alpha in wild-type (Wt) mice. Upon treatment with the PP fenofibrate, hPPAR alpha PAC mice exhibited responses similar to Wt mice, including peroxisome proliferation, lowering of serum triglycerides, and induction of PPAR alpha target genes encoding enzymes involved in fatty acid metabolism in liver, kidney, and heart, suggesting that human PPAR alpha (hPPAR alpha) functions in the same manner as mouse PPAR alpha in regulating fatty acid metabolism and lowering serum triglycerides. However, in contrast to Wt mice, treatment of hPPAR alpha PAC mice with fenofibrate did not cause significant hepatomegaly and hepatocyte proliferation, thus indicating that the mechanisms by which PPAR alpha affects lipid metabolism are distinct from the hepatocyte proliferation response, the latter of which is only induced by mouse PPAR alpha. In addition, a differential regulation of several genes, including the oncogenic let-7C miRNA by PPs, was observed between Wt and hPPAR alpha PAC mice that may contribute to the inherent difference between mouse and human PPAR alpha in activation of hepatocellular proliferation. The hPPAR alpha PAC mouse model provides an in vivo platform to investigate the species difference mediated by PPAR alpha and an ideal model for human risk assessment PPs exposure.

  9. Increased levels of inositol hexakisphosphate (InsP6) protect HEK293 cells from tumor necrosis factor (alpha)- and Fas-induced apoptosis.

    PubMed

    Verbsky, John; Majerus, Philip W

    2005-08-12

    The overexpression of inositol 1,3,4-trisphosphate 5/6-kinase has recently been shown to protect HEK293 cells from tumor necrosis factor alpha (TNF(alpha))-induced apoptosis. This overexpression leads to an increase in the levels of both inositol 1,3,4,5,6-pentakisphosphate (InsP5) and inositol 1,2,3,4,5,6-hexakisphosphate (InsP6). Cells that overexpress InsP5 2-kinase have increased levels of InsP6 and are also protected from TNFalpha-induced apoptosis; furthermore, cells that express an RNA interference construct to the 2-kinase are deficient in InsP6 and are sensitized to TNFalpha-induced apoptosis. Therefore the protective effect of 5/6-kinase on TNFalpha-mediated apoptosis is due to an increase of InsP6 or to a metabolite derived from InsP6. Furthermore, we find that the InsP6 also protects from Fas-mediated apoptosis. No effect was seen in the endocytic rate of transferrin receptor, caspase 8 activity, or TNF receptor number at the cell surface. Cells that overexpress 2-kinase do show an increase in the amount of receptor-interacting protein (RIP), while cells with reduced InsP6 levels show relatively less RIP, providing a possible mechanism for the effect on apoptosis.

  10. Clostridium perfringens alpha-toxin and NetB toxin antibodies and their possible role in protection against necrotic enteritis and gangrenous dermatitis in broiler chickens.

    PubMed

    Lee, K W; Lillehoj, H S; Park, M S; Jang, S I; Ritter, G D; Hong, Y H; Jeong, W; Jeoung, H Y; An, D J; Lillehoj, E P

    2012-03-01

    Necrotic enteritis (NE) and gangrenous dermatitis (GD) are important infectious diseases of poultry. Although NE and GD share a common pathogen, Clostridium perfringens, they differ in other important aspects such as clinical signs, pathologic symptoms, and age of onset. The primary virulence factors of C perfringens are its four major toxins (alpha, beta, epsilon, iota) and the newly described NE B-like (NetB) toxin. While neutralizing antibodies against some C perfingens toxins are associated with protection against infection in mammals, the serologic responses of NE- and GD-afflicted birds to these toxins have not been evaluated. Therefore, we measured serum antibody levels to C perfringens alpha-toxin and NetB toxin in commercial birds from field outbreaks of NE and GD using recombinant toxin-based enzyme-linked immunosorbent assay (ELISA). Initially, we used this ELISA system to detect antibody titers against C perfringens alpha-toxin and NetB toxin that were increased in birds experimentally coinfected with Eimeria maxima and C perfringens compared with uninfected controls. Next, we applied this ELISA to field serum samples from flock-mated birds with or without clinical signs of NE or GD. The results showed that the levels of antibodies against both toxins were significantly higher in apparently healthy chickens compared to birds with clinical signs of NE or GD, suggesting that these antitoxin antibodies may play a role in protection against NE and GD.

  11. Peroxisome proliferator-activated receptor alpha L162V polymorphism in nonalcoholic steatohepatitis and genotype 1 hepatitis C virus-related liver steatosis.

    PubMed

    Verdi, Hasibe; Koytak, Elif Sare; Onder, Oğuz; Ergül, Ayça Arslan; Cinar, Kubilay; Idilman, Ramazan; Erden, Esra; Bozdayi, Abdurrahman Mithat; Yurdaydin, Cihan; Uzunalimoglu, Ozden; Bozkaya, Hakan

    2005-11-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) plays important roles in lipid metabolism. A recently discovered L162V polymorphism of the PPARalpha gene is associated with enhanced transcriptional activity. In this study, the frequency of L162V was investigated in nonalcoholic steatohepatitis (NASH) and genotype 1 hepatitis C virus (HCV)-related liver steatosis. Seventy-two NASH and 141 HCV-infected patients (54 with steatosis, 87 without steatosis) and 119 healthy controls were included. L162V polymorphism of the PPARalpha gene was analyzed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). PCR and RFLP analysis of the related gene segment was successful in 93%, 96%, and 100% of NASH and HCV-infected patients and controls, respectively. The frequency of the L162V polymorphism was similar in the NASH and HCV-infected patients and controls (5.9%, 3.6%, and 2.5%, respectively). No difference in the frequency of this polymorphism was observed in HCV-infected patients with or without significant liver steatosis. L162V was not associated with obesity, type 2 diabetes mellitus, hypercholesterolemia, or hypertriglyceridemia. Neither NASH nor genotype 1 HCV-related liver steatosis seems to be associated with the PPARalpha L162V polymorphism. This polymorphism may have no association with the presence of type 2 diabetes mellitus, obesity, or various blood lipid alterations in NASH and HCV-infected patients.

  12. Atorvastatin treatment induced peroxisome proliferator-activated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats.

    PubMed

    Roglans, Núria; Sanguino, Elena; Peris, Cristina; Alegret, Marta; Vázquez, Manuel; Adzet, Tomás; Díaz, Cristina; Hernández, Gonzalo; Laguna, Juan C; Sánchez, Rosa M

    2002-07-01

    We aimed to investigate the effect of atorvastatin (5 and 30 mg/kg/day for 2 weeks) on hepatic lipid metabolism in a well established model of dietary hypertriglyceridemia, the fructose-fed rat. Fructose feeding (10% fructose in drinking water for 2 weeks) induced hepatic lipogenesis and reduced peroxisome proliferator-activated receptor alpha (PPARalpha) expression and fatty acid oxidation. As a result, plasma and liver triglyceride and plasma apolipoprotein B (apoB) levels were increased. Atorvastatin, 5 and 30 mg/kg during 2 weeks, markedly reduced plasma triglyceride, but decreased apoB levels only at the highest dose tested (50%). Triglyceride biosynthetic enzymes and microsomal triglyceride transfer protein were unchanged, whereas liver PPARalpha, acyl-CoA oxidase, and carnitine palmitoyltransferase I mRNA levels (1.9-, 1.25-, and 3.4-fold, respectively) and hepatic fatty acid beta-oxidation activity (1.25-fold) were increased by atorvastatin at 30 mg/kg. Furthermore, hepatic triglyceride content (45%) and plasma nonesterified fatty acids (NEFAs) (49%) were reduced. These results show for the first time that liver triglyceride increase in fructose-fed rats is linked to decreased expression of PPARalpha, which is prevented by atorvastatin treatment. The increase in PPARalpha expression caused by atorvastatin was associated with reduced liver triglyceride and plasma NEFA levels.

  13. Peroxisome proliferator-activated receptor-alpha and -gamma mRNA levels are reduced in chronic hepatitis C with steatosis and genotype 3 infection.

    PubMed

    de Gottardi, A; Pazienza, V; Pugnale, P; Bruttin, F; Rubbia-Brandt, L; Juge-Aubry, C E; Meier, C A; Hadengue, A; Negro, F

    2006-01-01

    Steatosis in chronic hepatitis C is associated with inflammation and accelerated fibrogenesis. To assess the contribution of peroxisome proliferator-activated receptor-alpha and -gamma to the pathogenesis of hepatitis C virus associated steatosis is unknown. We measured peroxisome proliferator-activated receptor (PPAR)-alpha and -gamma mRNA by quantitative polymerase chain reaction in liver biopsies of 35 genotype 1 and 22 genotype 3 infected patients and in Huh7 cells expressing hepatitis C virus 1b or 3a core protein. PPAR-alpha mRNA was significantly reduced in livers of patients with genotype 3 compared with genotype 1. Steatosis was associated to a decreased expression of PPAR-alpha in genotype 1, but not in genotype 3. PPAR-gamma expression was significantly lower in genotype 3 compared with genotype 1 and steatosis was associated to decreased levels of PPAR-gamma, but only in genotype 1. There was no significant relationship between PPARs mRNA levels and liver activity or fibrosis. Expression of the hepatitis C virus 3a core protein was associated with an increase in triglyceride accumulation and with a significant reduction of PPAR-gamma mRNA compared with hepatitis C virus 1b. The presence of steatosis and hepatitis C virus genotype 3 are both associated with a significant down-regulation of PPARs. These receptors, and also additional factors, seem to play a role in the pathogenesis of hepatitis C virus-associated steatosis.

  14. Palmitoylation of ketogenic enzyme HMGCS2 enhances its interaction with PPARalpha and transcription at the Hmgcs2 PPRE.

    PubMed

    Kostiuk, Morris A; Keller, Bernd O; Berthiaume, Luc G

    2010-06-01

    Excessive liver production of ketone bodies is one of many metabolic complications that can arise from diabetes, and in severe untreated cases, it can result in ketoacidosis, coma, and death. Mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting enzyme in ketogenesis, has been shown to interact with PPARalpha and act as a coactivator to up-regulate transcription from the PPRE of its own gene. Although protein palmitoylation is typically a cytosolic process that promotes membrane association, we recently identified 21 palmitoylated proteins in rat liver mitochondria, including HMGCS2. Herein, our data support a mechanism whereby palmitate is first added onto HMGCS2 active site Cys166 and then transacylated to Cys305. Palmitoylation promotes the HMGCS2/PPARalpha interaction, resulting in transcriptional activation from the Hmgcs2 PPRE. These results, together with the fact that 8 of the 21 palmitoylated mitochondrial proteins that we previously identified have nuclear receptor interacting motifs, demonstrate a novel--and perhaps ubiquitous--role for palmitoylation as a modulator of transcription.

  15. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    SciTech Connect

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  16. Local expression of tumor necrosis factor alpha and interleukin-2 correlates with protection against corneal scarring after ocular challenge of vaccinated mice with herpes simplex virus type 1.

    PubMed Central

    Ghiasi, H; Wechsler, S L; Kaiwar, R; Nesburn, A B; Hofman, F M

    1995-01-01

    To correlate specific local immune responses with protection from corneal scarring, we examined immune cell infiltrates in the cornea after ocular challenge of vaccinated mice with herpes simplex virus type 1 (HSV-1). This is the first report to examine corneal infiltrates following ocular challenge of a vaccinated mouse rather than following infection of a naive mouse. Mice were vaccinated systemically with vaccines that following ocular challenge with HSV-1 resulted in (i) complete protection against corneal disease (KOS, an avirulent strain of HSV-1); (ii) partial protection, resulting in moderate corneal disease (baculovirus-expressed HSV-1 glycoprotein E [gE]); and (iii) no protection, resulting in severe corneal disease (mock vaccine). Infiltration into the cornea of CD4+ T cells, CD8+ T cells, macrophages, and cells containing various lymphokines was monitored on days 0, 1, 3, 7, and 10 postchallenge by immunocytochemistry of corneal sections. Prior to ocular challenge, no eye disease or corneal infiltrates were detected in any mice. KOS-vaccinated mice developed high HSV-1 neutralizing antibody titers (> 1:640) in serum. After ocular challenge, they were completely protected against death, developed no corneal disease, and had no detectable virus in their tear films at any time examined. In response to the ocular challenge, these mice developed high local levels of infiltrating CD4+ T cells and cells containing interleukin-2 (IL-2), IL-4, IL-6, or tumor necrosis factor alpha (TNF-alpha). In contrast, only low levels of infiltrating CD8+ T cells were found, and gamma interferon (IFN-gamma)-containing cells were not present until day 10. gE-vaccinated mice developed neutralizing antibody titers in serum almost as high as those of the KOS-vaccinated mice (> 1:320). After ocular challenge, they were also completely protected against death. However, the gE-vaccinated mice developed low levels of corneal disease and virus was detected in one-third of their eyes

  17. A novel homogeneous immunoassay for anthrax detection based on the AlphaLISA method: detection of B. anthracis spores and protective antigen (PA) in complex samples.

    PubMed

    Mechaly, Adva; Cohen, Noam; Weiss, Shay; Zahavy, Eran

    2013-05-01

    Amplified Luminescent Proximity Homogeneous Assay (AlphaLISA) technology is an energy-transfer-based assay, utilizing singlet oxygen as an energy donor to a fluorescent acceptor. The long singlet oxygen migration distance allows the energy transfer mechanism to go up to ~200 nm, facilitating flexible and sensitive homogeneous immunoassays. While soluble protein detection using AlphaLISA was previously described, the detection of particles such as bacteria and viruses was not reported. In this work, we show for the first time the implementation of the AlphaLISA technology for the detection of a particulate antigen, i.e., Bacillus anthracis spores. Here, we show that an efficient particle immunoassay requires a high acceptor-to-donor ratio (>4:1). The results suggested that the high acceptor/donor ratio is required to avoid donor aggregation ("islands") on the spore surface, hence facilitating donor/acceptor interaction. The developed assay enabled the detection of 10(6) spores/mL spiked in PBS. We also demonstrate the development of a highly sensitive AlphaLISA assay for the detection of the main toxin component of anthrax, protective antigen (PA). The assay enabled the detection of 10 and 100 pg/mL PA in buffer and spiked naïve rabbit sera, respectively, and was successfully implemented in sera of anthrax-infected rabbits. To summarize, this study demonstrates that AlphaLISA enables detection of anthrax spores and toxin, utilizing short homogeneous assays. Moreover, it is shown for the first time that this technology facilitates the detection of particulate entities and might be suitable for the detection of other bacteria or viruses.

  18. Endogenous glucocorticoids protect against TNF-alpha-induced increases in anxiety-like behavior in virally infected mice

    PubMed Central

    Silverman, MN; Macdougall, MG; Hu, F; Pace, TWW; Raison, CL; Miller, AH

    2012-01-01

    Endogenous glucocorticoids restrain proinflammatory cytokine responses to immune challenges such as viral infection. In addition, proinflammatory cytokines induce behavioral alterations including changes in locomotor/exploratory activity. Accordingly, we examined proinflammatory cytokines and open-field behavior in virally infected mice rendered glucocorticoid deficient by adrenalectomy (ADX). Mice were infected with murine cytomegalovirus (MCMV), and open-field behavior (36 h post-infection) and plasma concentrations of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 (42 h post-infection) were assessed. Compared to sham-ADX-MCMV-infected animals, ADX-MCMV-infected mice exhibited significant reductions in total distance moved, number of center entries, and time spent in center. These behavioral alterations were accompanied by significantly higher plasma concentrations of TNF-alpha and IL-6, both of which were correlated with degree of behavioral change. To examine the role of TNF-alpha in these behavioral alterations, open-field behavior was compared in wild-type (WT) and TNF-R1-knockout (KO), ADX-MCMV-infected mice. TNF-R1-KO mice exhibited significantly attenuated decreases in number of rearings, number of center entries and time spent in center, but not distance moved, which correlated with plasma IL-6. Given the potential role of brain cytokines in these findings, mRNA expression of TNF-alpha, IL-1 and IL-6 was assessed in various brain regions. Although MCMV induced increases in proinflammatory cytokine mRNA throughout the brain (especially in ADX animals), no remarkable differences were found between WT and TNF-R1-KO mice. These results demonstrate that endogenous glucocorticoids restrain proinflammatory cytokine responses to viral infection and their impact on locomotor/exploratory activity. Moreover, TNF-alpha appears to mediate cytokine-induced changes in open-field behaviors, especially those believed to reflect anxiety. PMID:17389906

  19. Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, exerts anticonvulsive properties.

    PubMed

    Porta, Natacha; Vallée, Louis; Lecointe, Cécile; Bouchaert, Emmanuel; Staels, Bart; Bordet, Régis; Auvin, Stéphane

    2009-04-01

    The underlying mechanisms of the ketogenic diet (KD) remain unknown. Involvement of peroxisome proliferator-activated receptor-alpha (PPARalpha) has been suggested. The aim of this study was to assess the anticonvulsant properties of fenofibrate, a PPARalpha agonist. Wistar rats were fed at libitum during 14 days by regular diet, KD, regular diet containing 0.2% fenofibrate (F), or KD containing 0.2% fenofibrate (KD + F). Pentylenetetrazol (PTZ) threshold and latencies to the onset of status epilepticus induced by lithium-pilocarpine were used to assess diet treatments with anticonvulsive effects. Myoclonic and generalized seizure PTZ thresholds were increased in F- and KD-treated animals in comparison to control. No difference was observed between KD + F group and the others groups (control, F, KD). Latencies to the onset of status epilepticus were increased in F and KD groups compared to control. Fenofibrate exerts anticonvulsive properties comparable to KD in adult rats using PTZ and lithium-pilocarpine models. The underlying mechanisms such as PPARalpha activation and others should be investigated. These findings may provide insights into future directions to simplify KD protocols.

  20. Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist.

    PubMed

    Stone, Trevor W; Behan, Wilhelmina M H

    2007-04-01

    Quinolinic acid is an agonist at glutamate receptors sensitive to N-methyl-D-aspartate (NMDA). It has been implicated in neural dysfunction associated with infections, trauma, and ischemia, although its neurotoxic potency is relatively low. This study was designed to examine the effects of a combination of quinolinic acid and the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Compounds were administered to the hippocampus of anesthetized male rats, animals being allowed to recover for 7 days before histological analysis of the hippocampus for neuronal damage estimated by counting of intact, healthy neurons. A low dose of quinolinic acid or IL-1beta produced no damage by itself, but the two together induced a significant loss of pyramidal neurons in the hippocampus. Higher doses produced almost total loss of pyramidal cells. Intrahippocampal TNF-alpha produced no effect alone but significantly reduced the neuronal loss produced by quinolinic acid. The adenosine A(2A) receptor antagonist ZM241385 reduced neuronal loss produced by the combinations of quinolinic acid and IL-1beta. The results suggest that simultaneous quinolinic acid and IL-1beta, both being induced by cerebral infection or injury, are synergistic in the production of neuronal damage and could together contribute substantially to traumatic, infective, or ischemic cerebral damage. Antagonism of adenosine A(2A) receptors protects neurons against the combination of quinolinic acid and IL-1beta.

  1. Alpha particles as radiopharmaceuticals in the treatment of bone metastases: mechanism of action of radium-223 chloride (Alpharadin) and radiation protection.

    PubMed

    Cheetham, Philippa J; Petrylak, Daniel P

    2012-04-01

    Approximately 85% to 90% of men with castration-resistant prostate cancer (CRPC) have radiological evidence of bone metastases. To date, however, therapies to manage bone metastases have been primarily palliative. Among CRPC patients with bone metastases, there is a significant unmet need for active antitumor treatment options that are highly efficacious and have a favorable safety profile. This article will present current information about alpha-pharmaceuticals, a new class of targeted cancer therapy for the treatment of patients with CRPC and bone metastases. It will review preclinical and clinical studies of the experimental radiopharmaceutical radium-223 chloride (Alpharadin), a first-in-class, highly targeted and well-tolerated alpha-pharmaceutical under development to improve survival in patients with bone metastases from advanced prostate cancer. Alpharadin kills cancer cells via alpha radiation from the decay of radium-223, a calcium mimetic that naturally self-targets to bone metastases. The mechanism of action of Alpharadin and specifics of administration, radiation protection, and patient management will be discussed.

  2. Sustained formation of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts in mouse liver by peroxisome proliferators is dependent upon peroxisome proliferator-activated receptor-alpha, but not NADPH oxidase.

    PubMed

    Woods, Courtney G; Burns, Amanda M; Maki, Akira; Bradford, Blair U; Cunningham, Michael L; Connor, Henry D; Kadiiska, Maria B; Mason, Ronald P; Peters, Jeffrey M; Rusyn, Ivan

    2007-02-01

    Reactive oxygen species are thought to be crucial for peroxisome proliferator-induced liver carcinogenesis. Free radicals have been shown to mediate the production of mitogenic cytokines by Kupffer cells and cause DNA damage in rodent liver. Previous in vivo experiments demonstrated that acute administration of the peroxisome proliferator di(2-ethylhexyl) phthalate (DEHP) led to an increase in production of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts in liver, an event that was dependent on Kupffer cell NADPH oxidase, but not peroxisome proliferator-activated receptor (PPAR)alpha. Here, we hypothesized that continuous treatment with peroxisome proliferators will cause a sustained formation in POBN radical adducts in liver. Mice were fed diets containing either 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (WY-14,643, 0.05% w/w) or DEHP (0.6% w/w) for up to 3 weeks. Liver-derived radical production was assessed in bile samples by measuring POBN radical adducts using electron spin resonance. Our data indicate that WY-14,643 causes a sustained increase in POBN radical adducts in mouse liver and that this effect is greater than that of DEHP. To understand the molecular source of these radical species, NADPH oxidase-deficient (p47phox-null) and PPARalpha-null mice were examined after treatment with WY-14,643. No increase in radicals was observed in PPARalpha-null mice that were treated with WY-14,643 for 3 weeks, while the response in p47phox-nulls was similar to that of wild-type mice. These results show that PPARalpha, not NADPH oxidase, is critical for a sustained increase in POBN radical production caused by peroxisome proliferators in rodent liver. Therefore, peroxisome proliferator-induced POBN radical production in Kupffer cells may be limited to an acute response to these compounds in mouse liver.

  3. Increased reactive oxygen species production down-regulates peroxisome proliferator-activated alpha pathway in C2C12 skeletal muscle cells.

    PubMed

    Cabrero, Agatha; Alegret, Marta; Sanchez, Rosa M; Adzet, Tomas; Laguna, Juan C; Carrera, Manuel Vazquez

    2002-03-22

    Generation of reactive oxygen species may contribute to the pathogenesis of diseases involving intracellular lipid accumulation. To explore the mechanisms leading to these pathologies we tested the effects of etomoxir, an inhibitor of carnitine palmitoyltransferase I which contains a fatty acid-derived structure, in C2C12 skeletal muscle cells. Etomoxir treatment for 24 h resulted in a down-regulation of peroxisome proliferator-activated receptor alpha (PPARalpha) mRNA expression, achieving an 87% reduction at 80 microm etomoxir. The mRNA levels of most of the PPARalpha target genes studied were reduced at 100 microm etomoxir. By using several inhibitors of de novo ceramide synthesis and C(2)-ceramide we showed that they were not involved in the effects of etomoxir. Interestingly, the addition of triacsin C, a potent inhibitor of acyl-CoA synthetase, to etomoxir-treated C2C12 skeletal muscle cells did not prevent the down-regulation in PPARalpha mRNA levels, suggesting that the active form of the drug, etomoxir-CoA, was not involved. Given that saturated fatty acids may generate reactive oxygen species (ROS), we determined whether the addition of etomoxir resulted in ROS generation. Etomoxir increased ROS production and the activity of the well known redox transcription factor NF-kappaB. In the presence of the pyrrolidine dithiocarbamate, a potent antioxidant and inhibitor of NF-kappaB activity, etomoxir did not down-regulate PPARalpha mRNA in C2C12 skeletal muscle cells. These results indicate that ROS generation and NF-kappaB activation are responsible for the down-regulation of PPARalpha and may provide a new mechanism by which intracellular lipid accumulation occurs in skeletal muscle cells.

  4. Role of Antibodies in Protection Elicited by Active Vaccination with Genetically Inactivated Alpha Hemolysin in a Mouse Model of Staphylococcus aureus Skin and Soft Tissue Infections

    PubMed Central

    Mocca, Christopher P.; Brady, Rebecca A.

    2014-01-01

    Due to the emergence of highly virulent community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections, S. aureus has become a major threat to public health. A majority of CA-MRSA skin and soft tissue infections in the United States are caused by S. aureus USA300 strains that are known to produce high levels of alpha hemolysin (Hla). Therefore, vaccines that contain inactivated forms of this toxin are currently being developed. In this study, we sought to determine the immune mechanisms of protection for this antigen using a vaccine composed of a genetically inactivated form of Hla (HlaH35L). Using a murine model of skin and soft tissue infections (SSTI), we found that BALB/c mice were protected by vaccination with HlaH35L; however, Jh mice, which are deficient in mature B lymphocytes and lack IgM and IgG in their serum, were not protected. Passive immunization with anti-HlaH35L antibodies conferred protection against bacterial colonization. Moreover, we found a positive correlation between the total antibody concentration induced by active vaccination and reduced bacterial levels. Animals that developed detectable neutralizing antibody titers after active vaccination were significantly protected from infection. These data demonstrate that antibodies to Hla represent the major mechanism of protection afforded by active vaccination with inactivated Hla in this murine model of SSTI, and in this disease model, antibody levels correlate with protection. These results provide important information for the future development and evaluation of S. aureus vaccines. PMID:24574539

  5. Protective effect of alpha-tocopherol isomer from vitamin E against the H2O2 induced toxicity on dental pulp cells.

    PubMed

    da Silveira Vargas, Fernanda; Soares, Diana Gabriela; Ribeiro, Ana Paula Dias; Hebling, Josimeri; De Souza Costa, Carlos Alberto

    2014-01-01

    The aim of this study was to evaluate the protective effects of different concentrations of vitamin E alpha-tocopherol (α-T) isomer against the toxicity of hydrogen peroxide (H2O2) on dental pulp cells. The cells (MDPC-23) were seeded in 96-well plates for 72 hours, followed by treatment with 1, 3, 5, or 10 mM α-T for 60 minutes. They were then exposed or not to H2O2 for 30 minutes. In positive and negative control groups, the cells were exposed to culture medium with or without H2O2 (0.018%), respectively. Cell viability was evaluated by MTT assay (Kruskal-Wallis and Mann-Whitney tests; α = 5%). Significant reduction of cell viability (58.5%) was observed in positive control compared with the negative control. Cells pretreated with α-T at 1, 3, 5, and 10 mM concentrations and exposed to H2O2 had their viability decreased by 43%, 32%, 25%, and 27.5%, respectively. These values were significantly lower than those observed in the positive control, thereby showing a protective effect of α-T against the H2O2 toxicity. Overall, the vitamin E α-T isomer protected the immortalized MDPC-23 pulp cells against the toxic effects of H2O2. The most effective cell protection was provided by 5 and 10 mM concentrations of α-T.

  6. Novel N omega-xanthenyl-protecting groups for asparagine and glutamine, and applications to N alpha-9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis.

    PubMed

    Han, Y; Solé, N A; Tejbrant, J; Barany, G

    1996-01-01

    The N alpha-9-fluorenylmethyloxycarbonyl (Fmoc), N omega-9H-xanthen-9-yl (Xan), N omega-2-methoxy-9H-xanthen-9-yl (2-Moxan) or N omega-3-methoxy-9H-xanthen-9-yl (3-Moxan) derivatives of asparagine and glutamine were prepared conveniently by acid-catalyzed reactions of appropriate xanthydrols with Fmoc-Asn-OH and Fmoc-Gln-OH. The Xan and 2-Moxan protected derivatives have been used in Fmoc solid-phase syntheses of several challenging peptides: a modified Riniker's peptide to probe tryptophanalkylation side reactions, Briand's peptide to assess deblocking, at the N-terminus and Marshall's ACP (65-74) to test difficult couplings. Removal of the Asn and Gln side-chain protection occurred concomitantly with release of peptide from the support, under the conditions for acidolytic cleavage of the tris(alkoxy)benzylamide (PAL) anchoring linkage by use of trifluoroacetic acid/scavenger mixtures. For each of the model peptides, the products obtained by the new protection schemes were purer than those obtained with N omega-2,4,6-trimethoxybenzyl (Tmob) or N omega-triphenylmethyl (Trt) protection for Asn and Gln.

  7. Immunization with recombinant bivalent chimera r-Cpae confers protection against alpha toxin and enterotoxin of Clostridium perfringens type A in murine model.

    PubMed

    Shreya, Das; Uppalapati, Siva R; Kingston, Joseph J; Sripathy, Murali H; Batra, Harsh V

    2015-05-01

    Clostridium perfringens type A, an anaerobic pathogen is the most potent cause of soft tissue infections like gas gangrene and enteric diseases like food poisoning and enteritis. The disease manifestations are mediated via two important exotoxins, viz. myonecrotic alpha toxin (αC) and enterotoxin (CPE). In the present study, we synthesized a bivalent chimeric protein r-Cpae comprising C-terminal binding regions of αC and CPE using structural vaccinology rationale and assessed its protective efficacy against both alpha toxin (αC) and enterotoxin (CPE) respectively, in murine model. Active immunization of mice with r-Cpae generated high circulating serum IgG (systemic), significantly increased intestinal mucosal s-IgA antibody titres and resulted in substantial protection to the immunized animals (100% and 75% survival) with reduced tissue morbidity when administered with 5×LD(100) doses of αC (intramuscular) and CPE (intra-gastric gavage) respectively. Mouse RBCs and Caco-2 cells incubated with a mixture of anti-r-Cpae antibodies and αC and CPE respectively, illustrated significantly higher protection against the respective toxins. Passive immunization of mice with a similar mixture resulted in 91-100% survival at the end of the 15 days observation period while mice immunized with a concoction of sham sera and respective toxins died within 2-3 days. This work demonstrates the efficacy of the rationally designed r-Cpae chimeric protein as a potential sub unit vaccine candidate against αC and CPE of C. perfringens type A toxemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Chronic stimulation of alpha-2A-adrenoceptors with guanfacine protects rodent prefrontal cortex dendritic spines and cognition from the effects of chronic stress

    PubMed Central

    Hains, Avis Brennan; Yabe, Yoko; Arnsten, Amy F.T.

    2015-01-01

    The prefrontal cortex (PFC) provides top-down regulation of behavior, cognition, and emotion, including spatial working memory. However, these PFC abilities are greatly impaired by exposure to acute or chronic stress. Chronic stress exposure in rats induces atrophy of PFC dendrites and spines that correlates with working memory impairment. As similar PFC grey matter loss appears to occur in mental illness, the mechanisms underlying these changes need to be better understood. Acute stress exposure impairs PFC cognition by activating feedforward cAMP-calcium- K+ channel signaling, which weakens synaptic inputs and reduces PFC neuronal firing. Spine loss with chronic stress has been shown to involve calcium-protein kinase C signaling, but it is not known if inhibiting cAMP signaling would similarly prevent the atrophy induced by repeated stress. The current study examined whether inhibiting cAMP signaling through alpha-2A-adrenoceptor stimulation with chronic guanfacine treatment would protect PFC spines and working memory performance during chronic stress exposure. Guanfacine was selected due to 1) its established effects on cAMP signaling at post-synaptic alpha-2A receptors on spines in PFC, and 2) its increasing clinical use for the treatment of pediatric stress disorders. Daily guanfacine treatment compared to vehicle control was found to prevent dendritic spine loss in layer II/III pyramidal neurons of prelimbic PFC in rats exposed to chronic restraint stress. Guanfacine also protected working memory performance; cognitive performance correlated with dendritic spine density. These findings suggest that chronic guanfacine use may have clinical utility by protecting PFC gray matter from the detrimental effects of stress. PMID:25664335

  9. Structural Basis for Iloprost as a Dual Peroxisome Proliferator-activated Receptor [alpha/delta] Agonist

    SciTech Connect

    Jin, Lihua; Lin, Shengchen; Rong, Hui; Zheng, Songyang; Jin, Shikan; Wang, Rui; Li, Yong

    2012-03-15

    Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural and functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.

  10. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor [alpha] Selective Agonist 2-((3-((2-(4-Chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic Acid (BMS-687453)

    SciTech Connect

    Li, Jun; Kennedy, Lawrence J.; Shi, Yan; Tao, Shiwei; Ye, Xiang-Yang; Chen, Stephanie Y.; Wang, Ying; Hernndez, Andrs S.; Wang, Wei; Devasthale, Pratik V.; Chen, Sean; Lai, Zhi; Zhang, Hao; Wu, Shung; Smirk, Rebecca A.; Bolton, Scott A.; Ryono, Denis E.; Zhang, Huiping; Lim, Ngiap-Kie; Chen, Bang-Chi; Locke, Kenneth T.; O’Malley, Kevin M.; Zhang, Litao; Srivastava, Rai Ajit; Miao, Bowman; Meyers, Daniel S.; Monshizadegan, Hossain; Search, Debra; Grimm, Denise; Zhang, Rongan; Harrity, Thomas; Kunselman, Lori K.; Cap, Michael; Kadiyala, Pathanjali; Hosagrahara, Vinayak; Zhang, Lisa; Xu, Carrie; Li, Yi-Xin; Muckelbauer, Jodi K.; Chang, Chiehying; An, Yongmi; Krystek, Stanley R.; Blanar, Michael A.; Zahler, Robert; Mukherjee, Ranjan; Cheng, Peter T.W.; Tino, Joseph A.

    2010-04-12

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

  11. Multicomponent Synthesis of a N-Protected Alpha-Amino Ester: Ethyl 2-((4-Methoxyphenyl)Amino)-3-Phenylpropanoate

    ERIC Educational Resources Information Center

    Le Gall, Erwan; Pignon, Antoine

    2012-01-01

    This laboratory experiment describes the preparation of a N-protected phenylalanine ethyl ester by a zinc-mediated Mannich-like multicomponent reaction between benzyl bromide, "p"-anisidine, and ethyl glyoxylate. The one-step reaction involves the in situ metallation of benzyl bromide into a benzylzinc reagent and its addition onto imine (Barbier…

  12. Multicomponent Synthesis of a N-Protected Alpha-Amino Ester: Ethyl 2-((4-Methoxyphenyl)Amino)-3-Phenylpropanoate

    ERIC Educational Resources Information Center

    Le Gall, Erwan; Pignon, Antoine

    2012-01-01

    This laboratory experiment describes the preparation of a N-protected phenylalanine ethyl ester by a zinc-mediated Mannich-like multicomponent reaction between benzyl bromide, "p"-anisidine, and ethyl glyoxylate. The one-step reaction involves the in situ metallation of benzyl bromide into a benzylzinc reagent and its addition onto imine (Barbier…

  13. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death.

    PubMed

    Christopher, Karen L; Pedler, Michelle G; Shieh, Biehuoy; Ammar, David A; Petrash, J Mark; Mueller, Niklaus H

    2014-02-01

    In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Discovery of a peroxisome proliferator activated receptor gamma (PPARgamma) modulator with balanced PPARalpha activity for the treatment of type 2 diabetes and dyslipidemia.

    PubMed

    Liu, Weiguo; Liu, Kun; Wood, Harold B; McCann, Margaret E; Doebber, Thomas W; Chang, Ching H; Akiyama, Taro E; Einstein, Monica; Berger, Joel P; Meinke, Peter T

    2009-07-23

    A series of 3-acylindole-1-benzylcarboxylic acids were designed and synthesized while searching for a PPARgamma modulator with additional moderate intrinsic PPARalpha agonistic activity. 2-[3-[[3-(4-Chlorobenzoyl)-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl]methyl]phenoxy]-(2R)-butanoic acid (12d) was identified as such an agent which demonstrated potent efficacy in lowering both glucose and lipids in multiple animal models with significantly attenuated side effects such as fluid retention and heart weight gain associated with PPARgamma full agonists. The moderate PPARalpha activity of 12d not only contributed to the agent's ability to manage lipid profiles but also appears to have potentiated its PPARgamma efficacy in lowering glucose levels in preclinical diabetic animal models.

  15. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells.

    PubMed

    Höllerhage, Matthias; Moebius, Claudia; Melms, Johannes; Chiu, Wei-Hua; Goebel, Joachim N; Chakroun, Tasnim; Koeglsperger, Thomas; Oertel, Wolfgang H; Rösler, Thomas W; Bickle, Marc; Höglinger, Günter U

    2017-09-13

    α-synuclein-induced neurotoxicity is a core pathogenic event in neurodegenerative synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. There is currently no disease-modifying therapy available for these diseases. We screened 1,600 FDA-approved drugs for their efficacy to protect LUHMES cells from degeneration induced by wild-type α-synuclein and identified dipyridamole, a non-selective phosphodiesterase inhibitor, as top hit. Systematic analysis of other phosphodiesterase inhibitors identified a specific phosphodiesterase 1 inhibitor as most potent to rescue from α-synuclein toxicity. Protection was mediated by an increase of cGMP and associated with the reduction of a specific α-synuclein oligomeric species. RNA interference experiments confirmed PDE1A and to a smaller extent PDE1C as molecular targets accounting for the protective efficacy. PDE1 inhibition also rescued dopaminergic neurons from wild-type α-synuclein induced degeneration in the substantia nigra of mice. In conclusion, this work identifies inhibition of PDE1A in particular as promising target for neuroprotective treatment of synucleinopathies.

  16. A novel peroxisome proliferator-activated receptor alpha/gamma dual agonist demonstrates favorable effects on lipid homeostasis.

    PubMed

    Guo, Qiu; Sahoo, Soumya P; Wang, Pei-Ran; Milot, Denise P; Ippolito, Marc C; Wu, Margaret S; Baffic, Joanne; Biswas, Chhabi; Hernandez, Melba; Lam, My-Hanh; Sharma, Neelam; Han, Wei; Kelly, Linda J; MacNaul, Karen L; Zhou, Gaochao; Desai, Ranjit; Heck, James V; Doebber, Thomas W; Berger, Joel P; Moller, David E; Sparrow, Carl P; Chao, Yu-Sheng; Wright, Samuel D

    2004-04-01

    Patients with type 2 diabetes mellitus exhibit hyperglycemia and dyslipidemia as well as a markedly increased incidence of atherosclerotic cardiovascular disease. Here we report the characterization of a novel arylthiazolidinedione capable of lowering both glucose and lipid levels in animal models. This compound, designated TZD18, is a potent agonist with dual human peroxisome proliferator-activated receptor (PPAR)-alpha/gamma activities. In keeping with its PPARgamma activity, TZD18 caused complete normalization of the elevated glucose in db/db mice and Zucker diabetic fatty rats. TZD18 lowered both cholesterol and triglycerides in hamsters and dogs. TZD18 inhibited cholesterol biosynthesis at steps before mevalonate and reduced hepatic levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Moreover, TZD18 significantly suppressed gene expression of fatty acid synthesis and induced expression of genes for fatty acid degradation and triglyceride clearance. Studies on 17 additional PPARalpha or PPARalpha/gamma agonists showed that lipid lowering in hamsters correlated with the magnitude of hepatic gene expression changes. Importantly, the presence of PPARgamma agonism did not affect the relationship between hepatic gene expression and lipid lowering. Taken together, these data suggest that PPARalpha/gamma agonists, such as TZD18, affect lipid homeostasis, leading to an antiatherogenic plasma lipid profile. Agents with these properties may provide favorable means for treatment of type 2 diabetes and dyslipidemia and the prevention of atherosclerotic cardiovascular disease.

  17. The protective effect of alpha lipoic acid on Schwann cells exposed to constant or intermittent high glucose.

    PubMed

    Sun, Lian-Qing; Chen, Ying-Ying; Wang, Xuan; Li, Xiao-Jin; Xue, Bing; Qu, Ling; Zhang, Ting-Ting; Mu, Yi-Ming; Lu, Ju-Ming

    2012-10-01

    Diabetic peripheral neuropathy (DPN) is one of the most common and costly microvascular complications of diabetes, and no effective therapy exists. Previous studies have demonstrated that oxidative stress may be the unifying factor for the damaging effect of hyperglycemia. The aim of this study was to examine the impact of treatment with Alpha lipoic acid (ALA) on the intermittent high glucose (IHG) or high glucose (HG)-induced oxidative stress-induced mitochondrial pathway activation and Schwann cells (SCs) apoptosis in vitro. Our results suggested that IHG and HG induced SCs apoptosis in both caspase-dependent and caspase-independent pathways related to oxidative stress. More importantly, the cytotoxic effect of IHG was significantly more potent than that of HG. Treatment with ALA inhibited the IHG and HG-induced oxidative stress and apoptosis in SCs. Furthermore, treatment with ALA down-regulated the Bax expression and the release of cytochrome c and AIF translocation, but up-regulated the Bcl-2 expression in SCs. Treatment with ALA attenuated the activation of caspase-3 and caspase-9 and minimized the cleavage of PARP in SCs. These findings suggest that variability in glycemic control could be more deleterious than a constant HG and ALA antagonized the IHG-induced oxidative stress, activation of mitochondrial pathway and apoptosis in SCs.

  18. Interaction of a near-{alpha} type titanium alloy with NiCrAlY protective coating at high temperatures

    SciTech Connect

    Liu, H.; Hao, S.; Wang, X.; Feng, Z.

    1998-10-13

    MCrAlY coatings possess the properties of not only excellent oxidation and hot corrosion resistance but also sufficient toughness. This is why they have been commercially used on superalloys for several decades. Nevertheless, investigations revealed that there might be violent interactions between this kind of coating and titanium based alloys at high temperatures. This chemical incompatibility may promote the growth of brittle phases along the substrate/coating interface and thus deteriorates the mechanical properties. An effective barrier layer was desired to be sandwiched between the MCrAlY coating and Ti substrate to weaken the interdiffusion and chemical reactions. Ti60 is a near {alpha} type alloy intended to be used at 600 C. The interaction between this alloy and a NiCrAlY coating has never been investigated. Actually, in addition to the service at high temperature, another high temperature process, i.e., the post heat treatment in vacuum, is generally needed for the MCrAlY coating to eliminate possible defects within the received PVD coatings. Hence, the investigation on the interfacial stability of a Ti60/MCrAlY system at high temperatures is of importance in both theoretical and practical meanings. This paper is aimed at observing the interfacial reactions of this system at various temperatures in excess of 600 C. The obtained data may be useful in further work on optimizing the post treatment parameters and developing new coating systems with barrier interlayer.

  19. Alpha thalassemia protects sickle cell anemia patients from macro-albuminuria through its effects on red blood cell rheological properties.

    PubMed

    Lamarre, Yann; Romana, Marc; Lemonne, Nathalie; Hardy-Dessources, Marie-Dominique; Tarer, Vanessa; Mougenel, Danielle; Waltz, Xavier; Tressières, Benoît; Lalanne-Mistrih, Marie-Laure; Etienne-Julan, Maryse; Connes, Philippe

    2014-01-01

    While chronic hemolysis has been suspected to be involved in the development of glomerulopathy in patients with sickle cell anemia (SCA), no study focused on the implications of blood rheology. Ninety-six adults with SCA at steady state were included in the present cross-sectional study. Three categories were defined: normo-albuminuria (NORMO, n = 41), micro-albuminuria (MICRO, n = 23) and macro-albuminuria (MACRO, n = 32). Blood was sampled to measure hematological and hemorheological parameters, and genomic DNA extraction was performed to detect the presence of α-thalassemia. The prevalence of α-thalassemia was lower in the MACRO group compared with the two other groups. Anemia was more severe in the MACRO compared with the NORMO group leading the former group to exhibit decreased blood viscosity. Red blood cell deformability was lower and red blood cell aggregates strength was greater in the MACRO compared to the two other groups, and this was directly attributed to the lower frequency of α-thalassemia in the former group. Our results show the protective role of α-thalassemia against the development of sickle cell glomerulopathy, and strongly suggest that this protection is mediated through the decrease of anemia, the increase of RBC deformability and the lowering of the RBC aggregates strength.

  20. Interleukin 1 alpha stimulates hemopoiesis but not tumor cell proliferation and protects mice from lethal total body irradiation

    SciTech Connect

    Constine, L.S.; Harwell, S.; Keng, P.; Lee, F.; Rubin, P.; Siemann, D. )

    1991-03-01

    Interleukin 1 alpha (IL-1) is a polypeptide/glycoprotein growth factor with multiple functions including the modulation of hematopoietic cell proliferation and differentiation. In vivo studies were performed with C57BL/6J mice injected with 0, 0.2, or 2.0 micrograms of IL-1 24 hr before or after lethal total body irradiation (TBI) (9.5 Gy). More mice in the groups administered IL-1 before TBI survived (90% of the 2.0 micrograms group) than those treated 2 or 24 hr after TBI, which was still slightly superior to the uninjected group, which all died within 15 days (p = .0001). Proliferation of bone marrow granulocyte/macrophage colonies following split dose TBI was also greatest for mouse groups treated with IL-1 prior to TBI. These experiments support data from other investigators that IL-1 stimulation of BM is related to IL-1 timing with respect to TBI. Stimulation of hemopoiesis was also assessed in terms of changes in peripheral blood and BM cell numbers and cell cycle kinetics using an electronic particle counter and flow cytometric techniques. Mice injected with 2 micrograms of IL-1 showed an initial decline (at 3-6 hr) and then a selective proliferation (24-48 hr) of early and more committed progenitor cells to 125% and 200% of control values, respectively. Peripheral blood counts rose accordingly. Cells in S and G2/M phases increased over 10 hr and then declined in number. It thus appeared that some synchronization of cell cycling occurred, which might place cells in a more radioresistant phase of the cell cycle. The glutathione (GSH) content and synthesis in BM cells were measured by isocratic paired-ion high performance liquid chromatography and 35S-labelled cysteine incorporation into the GSH tripeptide. An increase in cellular GSH content and synthesis was demonstrated following IL-1 which lasted 24 hr.

  1. Multiple protective mechanisms of alpha-lipoic acid in oxidation, apoptosis and inflammation against hydrogen peroxide induced toxicity in human lymphocytes.

    PubMed

    Rahimifard, Mahban; Navaei-Nigjeh, Mona; Baeeri, Maryam; Maqbool, Faheem; Abdollahi, Mohammad

    2015-05-01

    The naturally antioxidant and coenzyme, alpha-lipoic acid (α-LA), has gained considerable attention regarding different functions and therapeutically effective in treating oxidative stress-associated diseases in the human body. This study was designed to examine the protective effect of α-LA against H2O2-induced oxidative stress and apoptosis in human lymphoid cells. Human peripheral blood lymphocytes were preincubated with α-LA and then exposed to H2O2. After that, the viability of the cells, rate of apoptosis, oxidative stress biomarkers such as reactive oxygen species (ROS) and level of lipid peroxidation (LPO), and also tumor necrosis factor-α (TNF-α) were studied. Pretreatment of lymphocytes with α-LA, dramatically enhanced viability of the cells and decreased apoptosis. Investigation of caspases gives a clear picture of the mechanism by which α-LA decreases ROS and causes a reduction in apoptosis through caspase-9-dependent mitochondrial pathway. Furthermore, α-LA dose dependently decreased oxidative stress by a reduction in level of LPO, and the dose of 1000 µM indicates a significant decrease (p < 0.01) in TNF-α level. Collectively, the present data show that α-LA is an ideal compound which has profound protective effects on oxidation, inflammation, and apoptosis. As a result, α-LA may indicate a new way toward the development of antioxidant therapy.

  2. Synthesis of various 3-substituted 1,2,4-oxadiazole-containing chiral beta 3- and alpha-amino acids from Fmoc-protected aspartic acid.

    PubMed

    Hamzé, Abdallah; Hernandez, Jean-François; Fulcrand, Pierre; Martinez, Jean

    2003-09-19

    Various 3-substituted chiral 1,2,4-oxadiazole-containing Fmoc-beta(3)- and -alpha-amino acids were synthesized from Fmoc-(l or d)-Asp(OtBu)-OH and Fmoc-l-Asp-OtBu, respectively, in three steps (i.e., condensation of an aspartyl derivative with differentially substituted amidoximes, formation of the 1,2,4-oxadiazole, and cleavage of the tert-butyl ester). These compounds represent new series of nonnatural amino acids, which could be used in combinatorial synthesis. A simple protocol has been developed to generate the 1,2,4-oxadiazole ring. Indeed, common methods resulted in cleavage of the Fmoc group or required long reaction times. We found that sodium acetate in refluxing ethanol/water (86 degrees C) was a convenient and efficient catalyst to promote conversion of Fmoc-amino acyl amidoximes to 1,2,4-oxadiazoles, and this procedure proved to be compatible with Fmoc protection. It is shown that these compounds can be prepared without significant loss of enantiomerical purity. Furthermore, the alkaline conditions used to cleave the Fmoc protecting group from these compounds did not induce epimerization of their chiral center.

  3. Protective effect of ebselen on cytotoxicity induced by cholestane-3 beta, 5 alpha, 6 beta-triol in ECV-304 cells.

    PubMed

    Wu, Qingzhi; Huang, Kaixun

    2006-03-01

    The protective effect of ebselen, with documented glutathione peroxidase-like activity and antioxidative and anti-inflammatory properties, on the cytotoxicity induced by oxysterol was investigated in ECV-304 cells with cholestane-3beta, 5alpha, 6beta-triol (3-triol), one of the most toxic oxysterols. 3-triol exhibited significant cytotoxicity to ECV-304 cells in dose- and time-dependent manners. Pre-incubations with ebselen at different concentrations for 4 h effectively inhibited the decreases of the cell viability and the intracellular thiols level induced by 3-triol; suppressed the 3-triol-caused increases of the GPx and NOS activities, the LDH leakage and MDA formation. The inhibition of ebselen to the generation of intracellular ROS induced by 3-triol was monitored by luminol-, lucigenin-derived chemiluminescence and DCFH-DA-derived fluorescence assays. Our results suggest that ebselen inhibited 3-triol-induced enhancement of intracellular ROS level and the cytotoxicity of 3-triol is contributed to, for the most part, an enhanced formation of intracellular O2.-; nevertheless, the mitochondria were not the main source of intercellular O2.- contributed to the cytotoxicity of 3-triol. Ebselen lost its high protection against 3-triol-induced injuries in the presence of GSH probably due to the formation of the ebselen-GSH adduct. In conclusion, our investigations provide new utility for ebselen as a prospective antiatherosclerotic in both clinical and non-clinical situations.

  4. The Protective Effect of Alpha-Lipoic Acid in Lipopolysaccharide-Induced Acute Lung Injury Is Mediated by Heme Oxygenase-1

    PubMed Central

    Lin, Yu-Chieh; Lai, Yuan-Shu; Chou, Tz-Chong

    2013-01-01

    Alpha-lipoic acid (ALA), occurring naturally in human food, is known to possess antioxidative and anti-inflammatory activities. Induction of heme oxygenase-1 (HO-1) has been reported to exhibit a therapeutic effect in several inflammatory diseases. The aim of study was to test the hypothesis that the protection of ALA against lipopolysaccharide-(LPS-) induced acute lung injury (ALI) is mediated by HO-1. Pre- or posttreatment with ALA significantly inhibited LPS-induced histological alterations of ALI, lung tissue edema, and production of proinflammatory cytokine, cytokine inducible neutrophil chemoattractant-3, and nitrite/nitrate in bronchoalveolar lavage fluid. In addition, the inflammatory responses including elevation of superoxide formation, myeloperoxidase activity, polymorphonuclear neutrophils infiltration, nitrotyrosine, inducible nitric oxide synthase expression and nuclear factor-kappa B (NF-κB) activation in lung tissues of LPS-instilled rats were also markedly reduced by ALA. Interestingly, treatment with ALA significantly increased nuclear factor-erythroid 2-related factor 2 (Nrf2) activation and HO-1 expression in lungs of ALI. However, blocking HO-1 activity by tin protoporphyrin IX (SnPP), an HO-1 inhibitor, markedly abolished these beneficial effects of ALA in LPS-induced ALI. These results suggest that the protection mechanism of ALA may be through HO-1 induction and in turn suppressing NF-κB-mediated inflammatory responses. PMID:23573137

  5. Discovery of Azetidinone Acids as Conformationally-Constrained Dual PPARalpha/gamma Agonists

    SciTech Connect

    Wang, W.; Devasthale, P; Farrelly, D; Gu, L; Harrity, T; Cap, M; Chu, C; Kunselman, L; Morgan, N; et. al.

    2008-01-01

    A novel class of azetidinone acid-derived dual PPAR{alpha}/{gamma} agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARa and PPAR? receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.

  6. Effect of TNF{alpha} on activities of different promoters of human apolipoprotein A-I gene

    SciTech Connect

    Orlov, Sergey V.; Mogilenko, Denis A.; Shavva, Vladimir S.; Dizhe, Ella B.; Ignatovich, Irina A.; Perevozchikov, Andrej P.

    2010-07-23

    Research highlights: {yields} TNF{alpha} stimulates the distal alternative promoter of human apoA-I gene. {yields} TNF{alpha} acts by weakening of promoter competition within apoA-I gene (promoter switching). {yields} MEK1/2 and nuclear receptors PPAR{alpha} and LXRs take part in apoA-I promoter switching. -- Abstract: Human apolipoprotein A-I (ApoA-I) is a major structural and functional protein component of high-density lipoproteins. The expression of the apolipoprotein A-I gene (apoA-I) in hepatocytes is repressed by pro-inflammatory cytokines such as IL-1{beta} and TNF{alpha}. Recently, two novel additional (alternative) promoters for human apoA-I gene have been identified. Nothing is known about the role of alternative promoters in TNF{alpha}-mediated downregulation of apoA-I gene. In this article we report for the first time about the different effects of TNF{alpha} on two alternative promoters of human apoA-I gene. Stimulation of HepG2 cells by TNF{alpha} leads to activation of the distal alternative apoA-I promoter and downregulation of the proximal alternative and the canonical apoA-I promoters. This effect is mediated by weakening of the promoter competition within human apoA-I 5'-regulatory region (apoA-I promoter switching) in the cells treated by TNF{alpha}. The MEK1/2-ERK1/2 cascade and nuclear receptors PPAR{alpha} and LXRs are important for TNF{alpha}-mediated apoA-I promoter switching.

  7. Protective effect of alpha-lipoic acid, aerobic or resistance exercise from colitis in second hand smoke exposed young rats.

    PubMed

    Özbeyli, Dilek; Berberoglu, Ayşe Cansu; Özen, Anıl; Erkan, Oktay; Başar, Yunus; Şen, Tunahan; Akakın, Dilek; Yüksel, Meral; Kasımay Çakır, Özgür

    2017-01-01

    The role of second hand smoke (SHS) exposure on ulcerative colitis is not known. Our aim was to examine the effects of α-lipoic acid (ALA), chronic aerobic (AE) or resistance exercise (RE) on SHS exposed rats with colitis. Sprague-Dawley male rats (150-200 g, n=54) were selected for colitis induction. Among the colitis groups, one group was exposed to SHS (6 d/wk, 4 cigarettes/d) and the other was not. The SHS group was divided into subgroups as follows: sedentary; AE (swimming; 3 d/wk); and RE (climbing with weight; 3 d/wk). After 5 weeks, colitis was induced by intrarectal acetic acid. All groups had subgroups that were given subcutaneously ALA (50 mg/kg per day) or vehicle for 3 days. Following decapitation, colon tissues were sampled to examine malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, luminol and lucigenin chemiluminenscence, macroscopic scoring and histologic examination. ANOVA and Student's t-test were used for statistical analysis. The increased macroscopic and microscopic scores, MPO, MDA, luminol and lucigenin measurements in colitis and SHS-colitis groups were decreased via ALA (P<.05-.001). AE declined macroscopic and microscopic scores, MDA, lucigenin compared to colitis and SHS-colitis groups (P<.01-.001). RE reduced microscopic score, MPO, MDA, luminol, lucigenin (P<.05-.001) that were increased with colitis. Decreased GSH levels (P<.01) in the SHS-colitis group approached to control levels when given ALA. According to our results SHS and colitis induction increased inflammatory damage. SHS did not worsen it more than colitis. Our results suggest that ALA, AE or RE might be protective for SHS exposed ulcerative colitis conditions. © 2016 John Wiley & Sons Australia, Ltd.

  8. Identification of the human ApoAV gene as a novel ROR{alpha} target gene

    SciTech Connect

    Lind, Ulrika; Nilsson, Tina; McPheat, Jane; Stroemstedt, Per-Erik; Bamberg, Krister; Balendran, Clare; Kang, Daiwu . E-mail: Daiwu.Kang@astrazeneca.com

    2005-04-29

    Retinoic acid receptor-related orphan receptor-{alpha} (ROR{alpha}) (NR1F1) is an orphan nuclear receptor with a potential role in metabolism. Previous studies have shown that ROR{alpha} regulates transcription of the murine Apolipoprotein AI gene and human Apolipoprotein CIII genes. In the present study, we present evidence that ROR{alpha} also induces transcription of the human Apolipoprotein AV gene, a recently identified apolipoprotein associated with triglyceride levels. Adenovirus-mediated overexpression of ROR{alpha} increased the endogenous expression of ApoAV in HepG2 cells and ROR{alpha} also enhanced the activity of an ApoAV promoter construct in transiently transfected HepG2 cells. Deletion and mutation studies identified three AGGTCA motifs in the ApoAV promoter that mediate ROR{alpha} transactivation, one of which overlaps with a previously identified binding site for PPAR{alpha}. Together, these results suggest a novel mechanism whereby ROR{alpha} modulates lipid metabolism and implies ROR{alpha} as a potential target for the treatment of dyslipidemia and atherosclerosis.

  9. Agonists of peroxisome proliferators-activated receptors (PPAR) alpha, beta/delta or gamma reduce transforming growth factor (TGF)-beta-induced proteoglycans' production in chondrocytes.

    PubMed

    Poleni, P E; Bianchi, A; Etienne, S; Koufany, M; Sebillaud, S; Netter, P; Terlain, B; Jouzeau, J Y

    2007-05-01

    To investigate the potency of selective agonists of peroxisome proliferators-activated receptors' (PPAR) isotypes (alpha, beta/delta or gamma) to modulate the stimulating effect of transforming growth factor-beta1 (TGF-beta1) on proteoglycans' (PGs) synthesis in chondrocytes. Rat chondrocytes embedded in alginate beads and cultured under low serum conditions were exposed to TGF-beta1 (10 ng/ml), alone or in combination with the following agonists: Wy14643 for PPARalpha, GW501516 for PPARbeta/delta, rosiglitazone (ROSI) for PPARgamma, in the presence or absence of PPAR antagonists (GW6471 for PPARalpha, GW9662 for PPARgamma). PGs' synthesis was evaluated by radiolabelled sulphate incorporation and glycosaminoglycans' (GAGs) content by Alcian blue staining of beads and colorimetric 1.9 dimethyl-methylene blue assay after beads' solubilization. Phosphorylation of Extracellular Signal-related Kinase1/2 (ERK1/2), Smad2/3 and p38-MAPK was assessed by Western Blot and production of prostaglandin E2 (PGE2) by Enzyme immuno-assay (EIA). Levels of mRNA for PPAR target genes [acyl-CoA oxidase (ACO) for PPARalpha; mitochondrial carnitin palmitoyl transferase-1 (CPT-1) for PPARbeta/delta and adiponectin for PPARgamma], aggrecan, TGF-beta1 and genes controlling GAGs' side chains' synthesis were quantified by real time polymerase chain reaction and normalized over RP29 housekeeping gene. ACO was selectively up-regulated by 100 microM of Wy14643, CPT-1 by 100 nM of GW501516 and adiponectin by 10 microM of ROSI without cell toxicity. TGF-beta1 increased PGs' synthesis by four-fold, GAGs' content and deposition by 3.5-fold and six-fold, respectively, while inducing aggrecan expression around 10-fold without modifying mRNA levels of GAGs' controlling enzymes. PPAR agonists inhibited the stimulating effect of TGF-beta1 by 24-44% on PGs' synthesis and over 75% on aggrecan, GAGs' content and deposition with the following rank order of potency: ROSI>GW501516> or =Wy14643. TGF-beta1

  10. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection

    PubMed Central

    Xu, Jintao; Eastman, Alison J.; Flaczyk, Adam; Neal, Lori M.; Zhao, Guolei; Carolan, Jacob; Malachowski, Antoni N.; Stolberg, Valerie R.; Yosri, Mohammed; Chensue, Stephen W.; Curtis, Jeffrey L.; Osterholzer, John J.

    2016-01-01

    ABSTRACT Anti-tumor necrosis factor alpha (anti-TNF-α) therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans. We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4+ T cells in the lung-associated lymph nodes (LALN) of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC) in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance. PMID:27406560

  11. Prevention of AMI Induced Ventricular Remodeling: Inhibitory Effects of Heart-Protecting Musk Pill on IL-6 and TNF-Alpha

    PubMed Central

    Chen, Zhiliang; Hoppe, Ralph

    2017-01-01

    Heart-Protecting Musk Pill (HMP) is a Traditional Chinese Medicine (TCM) that has been used for the prevention and treatment of coronary heart disease in clinic. The current study investigated the effect of HMP on the concentrations of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) and observed the relationship between level changes of inflammatory cytokines and ventricular remodeling in rats with acute myocardial infarction (AMI). Animal models of AMI were made by coronary artery ligation in Sprague-Dawley (SD) rats. AMI rats showed increased levels of IL-6 and TNF-α. Treatment with HMP decreases IL-6 and TNF-α concentrations in rats with AMI. Histopathological and transmission electron microscopic findings were also essentially in agreement with biochemical findings. The results of our study revealed that inflammatory cytokines IL-6 and TNF-α induce cardiac remodeling in rats after AMI; HMP improves cardiac function and ameliorates ventricular remodeling by downregulating the expression of IL-6 and TNF-α and further suppressing the ultrastructural changes of myocardial cells. PMID:28373886

  12. Enzymic degradation of plasma arginine using arginine deiminase inhibits nitric oxide production and protects mice from the lethal effects of tumour necrosis factor alpha and endotoxin.

    PubMed Central

    Thomas, J Brandon; Holtsberg, Frederick W; Ensor, C Mark; Bomalaski, John S; Clark, Mike A

    2002-01-01

    Septic shock is mediated in part by nitric oxide (NO) and tumour necrosis factor alpha (TNFalpha). NO is synthesized primarily from extracellular arginine. We tested the ability of an arginine-degrading enzyme to inhibit NO production in mice and to protect mice from the hypotension and lethality that occur after the administration of TNFalpha or endotoxin. Treatment of BALB/c mice with arginine deiminase (ADI) formulated with succinimidyl succinimide polyethylene glycol of M(r) 20000 (ADI-SS PEG(20000)) eliminated all measurable plasma arginine (from normal levels of approximately 155 microM arginine to 2 microM). In addition, ADI-SS PEG(20000) also inhibited the production of NO, as quantified by plasma nitrate+nitrite. Treatment of mice with TNFalpha or endotoxin resulted in a dose-dependent increase in NO production and lethality. Pretreatment of mice with ADI-SS PEG(20000) resulted in increased resistance to the lethal effects of TNFalpha and endotoxin. These observations are consistent with NO production resulting, to some extent, from the metabolism of extracellular arginine. The toxic effects of TNFalpha and endotoxin may be partially inhibited by enzymic degradation of plasma arginine by ADI-SS PEG(20000). Interestingly, pretreatment with ADI-SS PEG(20000) did not inhibit the anti-tumour activity of TNFalpha in vitro or in vivo. This treatment may allow greater amounts of TNFalpha, as well as other cytokines, to be administered while abrogating side effects such as hypotension and death. PMID:11964159

  13. Alpha-ketoglutarate and N-acetyl cysteine protect PC12 cells from cyanide-induced cytotoxicity and altered energy metabolism.

    PubMed

    Satpute, R M; Hariharakrishnan, J; Bhattacharya, R

    2008-01-01

    Cyanide is a rapidly acting neurotoxin that inhibits cellular respiration and energy metabolism leading to histotoxic hypoxia. This results in the dissipation of mitochondrial membrane potential (MMP) accompanied by decreased cellular ATP content which in turn is responsible for increased levels of intracellular calcium ions ([Ca(2+)](i)) and total lactic acid content of the cells. Rat pheochromocytoma (PC12) cells possess much of the biochemical machinery associated with synaptic neurons. In the present study, we evaluated the cytoprotective effects of alpha-ketoglutarate (A-KG) and N-acetylcysteine (NAC) against cyanide-induced cytotoxicity and altered energy metabolism in PC12 cells. Cyanide-antagonism by A-KG is attributed to cyanohydrin formation whereas NAC is known for its antioxidant properties. Data on leakage of intracellular lactate dehydrogenase and mitochondrial function (MTT assay) revealed that simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM) significantly prevented the cytotoxicity of cyanide. Also, cellular ATP content was found to improve, followed by restoration of MMP, intracellular calcium [Ca(2+)](i) and lactic acid levels. Treatment with A-KG and NAC also attenuated the levels of peroxides generated by cyanide. The study indicates that combined administration of A-KG and NAC protected the cyanide-challenged PC12 cells by resolving the altered energy metabolism. The results have implications in the development of new treatment regimen for cyanide poisoning.

  14. The protective role of DL-alpha-lipoic acid in the oxidative vulnerability triggered by Abeta-amyloid vaccination in mice.

    PubMed

    Jesudason, E Philip; Masilamoni, J Gunasingh; Jesudoss, K Samuel; Jayakumar, R

    2005-02-01

    Recent reports indicate that beta-amyloid peptide (Abeta) vaccine based therapy for Alzheimer's disease (AD) may be on the horizon. There are however, concerns about the safety of this approach. Immunization with Abeta has several disadvantages, because it crosses the blood brain barrier and cause inflammation and neurotoxicity. The present work is aimed to study the protective effective of alpha-lipoic acid (LA) in the oxidative vulnerability of beta-amyloid in plasma, liver, spleen and brain, when Abeta fibrils are given intraperitoneally in inflammation induced mice. Result shows that reactive oxygen species (ROS) in the astrocytes of inflammation induced mice along with Abeta (IA) has shown 2.5-fold increase when compared with LA treated mice. The increased level of lipid peroxidase (LPO) (p < 0.05) and decreased antioxidant status (p < 0.05) were observed in the plasma, liver, spleen and brain of LA induced mice when compared with LA treated mice. Data shows that there were no significant changes observed between the control and LA treated mice. Our biochemical and histological results highlight that significant oxidative vulnerability was observed in IA treated mice, which was prevented by LA therapy. Our findings suggest that the antioxidant effect of LA when induced with Abeta may serve as a potent therapeutic tool for inflammatory AD models.

  15. Bone and muscle protective potential of the prostate-sparing synthetic androgen 7alpha-methyl-19-nortestosterone: evidence from the aged orchidectomized male rat model.

    PubMed

    Venken, Katrien; Boonen, Steven; Van Herck, Erik; Vandenput, Liesbeth; Kumar, Narender; Sitruk-Ware, Regine; Sundaram, Kalyan; Bouillon, Roger; Vanderschueren, Dirk

    2005-04-01

    This study reports the preclinical evaluation of the bone and muscle protective potential of the synthetic androgen 7alpha-methyl-19-nortestosterone (MENTtrade mark), as assessed in the aged orchidectomized rat model. Aged (13-month-old) orchidectomized Wistar rats were treated with different doses of MENT (4, 12 or 36 microg/day) subcutaneously for 16 weeks via mini-osmotic pumps. Analysis of the effects of androgen deficiency versus MENT replacement was performed using quantitative computed tomography (pQCT), dual energy X-ray absorptiometry (DEXA) and biochemical markers of bone turnover. At the end of the study period, prostate weight in orchidectomized rats treated with low- (4 microg/day) or mid-dose (12 mug/day) MENT remained significantly lower compared to the sham-operated animals (-47% and -25%, respectively). High-dose MENT (36 microg/day), on the other hand, induced prostate hypertrophy (+21% versus sham). Low-, mid- and high-dose MENT were found to be effective in suppressing the acceleration of bone remodeling following orchidectomy, as assessed by osteocalcin and deoxypyridinoline. In addition, low-, mid- and high-dose were able to prevent the orchidectomy-induced bone loss, as evaluated by DEXA at the femur and total-body and by pQCT at the femur. Compared to sham-operated animals, the low- and mid-dose MENT groups showed no decline in lean body mass and no muscle atrophy (as measured by m. quadriceps weight) at 16 weeks, whereas high-dose MENT was associated with a significant decline in lean body mass (-8.5% versus sham) and quadriceps weight (-10.6%). We conclude that, in the aged orchidectomized rat model, low- and mid-doses of the synthetic androgen MENT have bone and muscle protective effects and do not induce prostate hypertrophy. The bone protective action of high-dose MENT, however, occurs at the expense of muscle wasting and prostate hypertrophy. Our findings support the need for human studies to explore the potential of MENT as an option

  16. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-{alpha}-mediated transcription of fatty acid metabolic genes

    SciTech Connect

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-01-15

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-{alpha} plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-{alpha} activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-{alpha} mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-{alpha}-mediated FA metabolic gene transcription.

  17. Giardia muris infection in mice is associated with a protective interleukin 17A response and induction of peroxisome proliferator-activated receptor alpha.

    PubMed

    Dreesen, Leentje; De Bosscher, Karolien; Grit, Grietje; Staels, Bart; Lubberts, Erik; Bauge, Eric; Geldhof, Peter

    2014-08-01

    The protozoan parasite Giardia duodenalis (Giardia lamblia) is one of the most commonly found intestinal pathogens in mammals, including humans. In the current study, a Giardia muris-mouse model was used to analyze cytokine transcription patterns and histological changes in intestinal tissue at different time points during infection in C57BL/6 mice. Since earlier work revealed the upregulation of peroxisome proliferator-activated receptors (PPARs) in Giardia-infected calves, a second aim was to investigate the potential activation of PPARs in the intestines of infected mice. The most important observation in all mice was a strong upregulation of il17a starting around 1 week postinfection. The significance of interleukin 17A (IL-17A) in orchestrating a protective immune response was further demonstrated in an infection trial or experiment using IL-17 receptor A (IL-17RA) knockout (KO) mice: whereas in wild-type (WT) mice, cyst secretion dropped significantly after 3 weeks of infection, the IL-17RA KO mice were unable to clear the infection. Analysis of the intestinal response further indicated peroxisome proliferator-activated receptor alpha (PPARα) induction soon after the initial contact with the parasite, as characterized by the transcriptional upregulation of ppara itself and several downstream target genes such as pltp and cpt1. Overall, PPARα did not seem to have any influence on the immune response against G. muris, since PPARα KO animals expressed il-17a and could clear the infection similar to WT controls. In conclusion, this study shows for the first time the importance of IL-17 production in the clearance of a G. muris infection together with an early induction of PPARα. The effect of the latter, however, is still unclear.

  18. Systemic administration of an anti-tumor necrosis factor-alpha monoclonal antibody protects against endotoxin-induced uveitis in rats

    PubMed Central

    Ge, Qingman; Wang, Shaocheng; Zheng, Yuezhong

    2016-01-01

    Objective: This study was to evaluate the effect of systemic injection of an anti-tumor necrosis factor alpha (TNF-α) monoclonal antibody (mAb) on endotoxin-induced uveitis (EIU). Materials and Methods: Fifty-six male Wistar rats (6–8 weeks old) were randomly divided into three groups: EIU, anti-TNF-α mAb + EIU, and control. EIU was induced by injecting Escherichia coli O55:B5 lipopolysaccharide (LPS) into the hind footpad of the rats (150 μg/rat). The anti-TNF-α mAb (1 μg/kg) was administrated 30 min before LPS injection through one-time intravenous injection. The onset time and peak time of EIU were recorded. The serum and aqueous humor (AH) TNF-α, interleukin (IL)-6, and IL-10 levels were measured by ELISA at 4, 24, and 72 h post-LPS injection. Clinical manifestations of EIU and eye histopathology were scored. Results: Compared with the EIU rats, anti-TNF-α mAb + EIU rats showed significantly delayed onset of uveitis (t = 7.41, P < 0.001), lower clinical scores and histopathological grades (t = 3.18/2.22, P < 0.001), reduced levels of TNF-α (F = 15.06/59.43, P < 0.001) and IL-6 (F = 99.63/14.92, P < 0.001), and increased levels of IL-10 (F = 24.94/8.99, P < 0.001) in the serum and AH. AH TNF-α, serum IL-6, and AH IL-6 levels are positively correlated, whereas serum IL-10 levels were negatively correlated with EIU activity. Conclusion: Antagonizing TNF-α by system injection of the anti-TNF-α mAb protects against EIU in rats. Blocking TNF-α signaling could be a useful strategy for managing uveitis. PMID:28112125

  19. Identification of highly connected hub genes in the protective response program of human macrophages and microglia activated by alpha B-crystallin.

    PubMed

    Holtman, Inge R; Bsibsi, Malika; Gerritsen, Wouter H; Boddeke, Hendrikus W G M; Eggen, Bart J L; van der Valk, Paul; Kipp, Markus; van Noort, Johannes M; Amor, Sandra

    2017-03-01

    The glial stress protein alpha B-crystallin (HSPB5) is an endogenous agonist for Toll-like receptor 2 in CD14(+) cells. Following systemic administration, HSPB5 acts as a potent inhibitor of neuroinflammation in animal models and reduces lesion development in multiple sclerosis patients. Here, we show that systemically administered HSPB5 rapidly crosses the blood-brain barrier, implicating microglia as additional targets for HSPB5 along with peripheral monocytes and macrophages. To compare key players in the HSPB5-induced protective response of human macrophages and microglia, we applied weighted gene co-expression network analysis on transcript expression data obtained 1 and 4 h after activation. This approach identified networks of genes that are co-expressed in all datasets, thus reducing the complexity of the nonsynchronous waves of transcripts that appear after activation by HSPB5. In both cell types, HSPB5 activates a network of highly connected genes that appear to be functionally equivalent and consistent with the therapeutic effects of HSPB5 in vivo, since both networks include factors that suppress apoptosis, the production of proinflammatory factors, and the development of adaptive immunity. Yet, hub genes at the core of the network in either cell type were strikingly different. They prominently feature the well-known tolerance-promoting programmed-death ligand 1 as a key player in the macrophage response to HSPB5, and the immune-regulatory enzyme cyclooxygenase-2 (COX-2) in that of microglia. This latter finding indicates that despite its reputation as a potential target for nonsteroidal anti-inflammatory drugs, microglial COX-2 plays a central role in the therapeutic effects of HSPB5 during neuroinflammation. GLIA 2017;65:460-473. © 2017 Wiley Periodicals, Inc.

  20. Enriching M. sternomandibularis with alpha-tocopherol by dietary means does not protect against the lipid oxidation caused by high-pressure processing.

    PubMed

    Tume, R K; Sikes, A L; Smith, S B

    2010-01-01

    We hypothesized that elevating the concentration of alpha-tocopherol in beef muscle tissue by dietary means would increase lipid stability following high-pressure processing. Beef M. sternomandibularis was obtained from cattle that had medium (4.92 microg/g) and high (7.30 microg/g) concentrations of alpha-tocopherol. Post-rigor, paired muscles samples were subjected to pressures of 0.1 (atmospheric), 200 or 800 MPa for 20 min at approximately 60 degrees C. Following high-pressure processing, measurements were made immediately (d 0) or on samples stored in the dark for 6 d at 4 degrees C (d 6). Intramuscular lipid was similar for each group (4.02% vs. 4.26%, respectively; P=0.78), but lipid from the medium alpha-tocopherol muscle was more saturated and less monounsaturated than muscle from the high alpha-tocopherol group. High-pressure processing at 800 MPa and 60 degrees C did not reduce the amount of alpha-tocopherol but significantly reduced the concentration of linoleic acid (18:2n-6) in muscle from both production groups of cattle. Thiobarbituric acid reactive substances increased linearly with treatment pressure only in d 6 samples (day x pressure interaction P=0.0001) and were higher overall (P=0.02) in the high alpha-tocopherol muscle than in the medium alpha-tocopherol muscle. At d 6, lipid peroxides were decreased (P=0.007) by high-pressure treatment and were higher (P<0.0001) in the high alpha-tocopherol group than in the medium alpha-tocopherol group. Therefore, muscle from the high alpha-tocopherol cattle in this study had a greater accumulation of lipid peroxides by d 6, making the muscle from those cattle more susceptible to oxidation.

  1. [Role of sodium cromoglycate in brain protection and its effects on tumor necrosis factor-alpha and interleukin-1beta after global cerebral ischemia-reperfusion injury in gerbils].

    PubMed

    Shen, Ning; Gan, Xiao-Liang; Pang, Hu-Yu; He, Zi-Qing

    2009-03-01

    To investigate the role of sodium cromoglycate in brain protection and its effects on brain tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) expressions after global cerebral ischemia-reperfusion (IR) injury in gerbils. Twenty-four healthy male gerbils were randomized into 3 equal groups, namely the sham-operated group with isolation of the bilateral carotid arteries but without occlusion, IR injury model group with bilateral carotid artery occlusion, and sodium cromoglycate treatment group with bilateral carotid artery occlusion and sodium cromoglycate administration at 25 mg/kg via the lingual vein as soon as the reperfusion start with another dose 1 h later. The animals were then sacrificed and the thalamus were removed, fixed in 10% formaldehyde and sliced for observation under light microscope with HE staining. The rest brain tissues were prepared into homogenate to determine the content of TNF-alpha and IL-1beta. The right hemispheres of the gerbils were measured for wet weight and dry weight to calculate the water content in the brain. The water content in the brain of the gerbils in the model group was the highest among the groups, and that in sodium cromoglycate treatment group was significantly less than that of the model group (P<0.05). Microscopic examination showed the most severe brain tissue damage in the model group with also the highest TNF-alpha and IL-1beta levels in the brain. The brain TNF-alpha and IL-1beta levels in sodium cromoglycate group were significantly decreased as compared with those in the model group (P<0.05). Sodium cromoglycate can alleviate brain IR injury possibly by lowering the TNF-alpha and IL-1beta levels in the brain tissues.

  2. An unusual vitamin E constituent (alpha-tocomonoenol) provides enhanced antioxidant protection in marine organisms adapted to cold-water environments.

    PubMed

    Yamamoto, Y; Fujisawa, A; Hara, A; Dunlap, W C

    2001-11-06

    A new vitamin E constituent having an unusual methylene unsaturation at the isoprenoid-chain terminus of alpha-tocopherol (alpha-Toc) was isolated from chum salmon eggs and was found to have identical antioxidant activity as does alpha-Toc in methanol or liposomal suspension at 37 degrees C. Here we report that this marine-derived tocopherol (MDT) is broadly distributed with alpha-Toc in the tissue of marine fish, and that the MDT composition of total vitamin E is greater in the flesh of cold-water salmon (12-20%) than in that of tropical fish (< or =2.5%). Vitamin E analysis of cultured masu salmon maintained on a MDT-deplete diet showed substantially less MDT content than native masu salmon, suggesting a trophic origin of MDT. This contention is supported by the finding of MDT in marine plankton from the cold waters of Hokkaido. We found that MDT inhibited peroxidation of cholesterol-containing phosphatidylcholine liposomes to a greater extent than did alpha-Toc at 0 degrees C. Furthermore, the ratios of the rate constants for MDT and alpha-Toc to scavenge peroxyl radicals increased with decreasing rates of radical flux in liposomes and fish oil at 0 degrees C, indicating that the enhanced activity of MDT at low temperature is attributed to its greater rate of diffusion in viscous lipids. These results suggest that MDT production, or its trophic accumulation, may reduce lipid peroxidation in marine organisms functionally adapted to cold-water environments.

  3. A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types.

    PubMed

    Huber, Bettina; Schellenbacher, Christina; Jindra, Christoph; Fink, Dieter; Shafti-Keramat, Saeed; Kirnbauer, Reinhard

    2015-01-01

    Persistent infection with oncogenic human papillomaviruses (HPV) types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr) mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC), a subset of cervical cancer (CxC). Although the incidence of cervical squamous cell carcinoma (SCC) has dramatically decreased following introduction of Papanicolaou (PAP) screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent) HPV vaccines comprise virus-like particles (VLP) of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7) includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18) targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1) of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1). Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent vaccine

  4. Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors PParalpha and CAR, the constitutive androstane receptor, in mouse liver.

    PubMed

    Sarkar, Joy; Qi, Chao; Guo, Dongsheng; Ahmed, Mohamed R; Jia, Yuzhi; Usuda, Nobuteru; Viswakarma, Navin; Rao, M Sambasiva; Reddy, Janardan K

    2007-01-01

    Disruption of the genes encoding for the transcription coactivators, peroxisome proliferator-activated receptor (PPAR)-interacting protein (PRIP/ASC-2/RAP250/TRBP/NRC) and PPAR-binding protein (PBP/TRAP220/DRIP205/MED1), results in embryonic lethality by affecting placental and multiorgan development. Targeted deletion of coactivator PBP gene in liver parenchymal cells (PBP(LIV-/-)) results in the near abrogation of the induction of PPARalpha and CAR (constitutive androstane receptor)-regulated genes in liver. Here, we show that targeted deletion of coactivator PRIP gene in liver (PRIP(LIV-/-)) does not affect the induction of PPARalpha-regulated pleiotropic responses, including hepatomegaly, hepatic peroxisome proliferation, and induction of mRNAs of genes involved in fatty acid oxidation system, indicating that PRIP is not essential for PPARalpha-mediated transcriptional activity. We also provide additional data to show that liver-specific deletion of PRIP gene does not interfere with the induction of genes regulated by nuclear receptor CAR. Furthermore, disruption of PRIP gene in liver did not alter zoxazolamine-induced paralysis, and acetaminophen-induced hepatotoxicity. Studies with adenovirally driven EGFP-CAR expression in liver demonstrated that, unlike PBP, the absence of PRIP does not prevent phenobarbital-mediated nuclear translocation/retention of the receptor CAR in liver in vivo and cultured hepatocytes in vitro. These results show that PRIP deficiency in liver does not interfere with the function of nuclear receptors PPARalpha and CAR. The dependence of PPARalpha- and CAR-regulated gene transcription on coactivator PBP but not on PRIP attests to the existence of coactivator selectivity in nuclear receptor function.

  5. Peroxisome proliferator-activated receptor alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes.

    PubMed

    Reynders, Veerle; Loitsch, Stefan; Steinhauer, Constanze; Wagner, Thomas; Steinhilber, Dieter; Bargon, Joachim

    2006-07-30

    PPARs exhibit anti-inflammatory capacities and are potential modulators of the inflammatory response. We hypothesized that their expression and/or function may be altered in cystic fibrosis (CF), a disorder characterized by an excessive host inflammatory response. PPARalpha, beta and gamma mRNA levels were measured in peripheral blood cells of CF patients and healthy subjects via RT-PCR. PPARalpha protein expression and subcellular localization was determined via western blot and immunofluorescence, respectively. The activity of PPARalpha was analyzed by gel shift assay. In lymphocytes, the expression of PPARalpha mRNA, but not of PPARbeta, was reduced (-37%; p < 0.002) in CF patients compared with healthy persons and was therefore further analyzed. A similar reduction of PPARalpha was observed at protein level (-26%; p < 0.05). The transcription factor was mainly expressed in the cytosol of lymphocytes, with low expression in the nucleus. Moreover, DNA binding activity of the transcription factor was 36% less in lymphocytes of patients (p < 0.01). For PPARalpha and PPARbeta mRNA expression in monocytes and neutrophils, no significant differences were observed between CF patients and healthy persons. In all cells, PPARgamma mRNA levels were below the detection limit. Lymphocytes are important regulators of the inflammatory response by releasing cytokines and antibodies. The diminished lymphocytic expression and activity of PPARalpha may therefore contribute to the inflammatory processes that are observed in CF.

  6. [Protective effect of glycogen synthase kinase 3β inhibition via peroxisome proliferator-activated receptor alpha activation in mice with acute liver failure].

    PubMed

    Shi, H B; Shi, H L; Zhang, X Y; Chen, D X; Duan, Z P; Ren, F

    2017-03-20

    Objective: To investigate the role of the glycogen synthase kinase 3β (GSK3β) and the peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway in acute liver failure and related mechanisms in a mouse model of acute liver failure induced by D-galactosamine/lipopolysaccharide (D-GalN/LPS). Methods: C57BL/6 mice were given intraperitoneal injection of D-GalN/LPS to establish a mouse model of acute liver failure. SB216763 was used to inhibit the activity of GSK3β and PPARα siRNA was used to inhibit the expression of PPARα. Western blotting was used to measure the expression of PPARα protein. The changes in liver pathology were observed to evaluate liver injury, and the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured to assess liver function. Quantitative real-time PCR was used to measure the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-12p40 (IL-12p40), and PPARα. A one-way analysis of variance was used for comparison of means between multiple groups; the least significant difference test was used for data with homogeneity of variance, and the Games-Howell method was used for data with heterogeneity of variance. Results: In the mice with liver failure induced by D-GalN/LPS, GSK3β inhibition promoted the mRNA and protein expression of PPARα (F = 13.18 and 301.36, P = 0.00 and 0.00). In the mice with acute liver failure induced by D-GalN/LPS, GSK3β inhibition alleviated liver bleeding, inflammation, and necrosis and reduced the serum levels of ALT (F = 25.16, P = 0.000) and AST (F = 12.96, P = 0.001), as well as the mRNA expression of TNF-α (F = 32.17, P = 0.00), IL-1β (F = 11.57, P = 0.005), and IL-12p40 (F = 14.17, P = 0.015) in liver tissue. The inhibition of PPARα expression reversed the liver-protecting effect of GSK3β inhibition, which manifested as aggravation in liver bleeding, inflammation, and necrosis, increases in the serum levels

  7. Discovery of an oxybenzylglycine based peroxisome proliferator activated receptor alpha selective agonist 2-((3-((2-(4-chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic acid (BMS-687453).

    PubMed

    Li, Jun; Kennedy, Lawrence J; Shi, Yan; Tao, Shiwei; Ye, Xiang-Yang; Chen, Stephanie Y; Wang, Ying; Hernández, Andrés S; Wang, Wei; Devasthale, Pratik V; Chen, Sean; Lai, Zhi; Zhang, Hao; Wu, Shung; Smirk, Rebecca A; Bolton, Scott A; Ryono, Denis E; Zhang, Huiping; Lim, Ngiap-Kie; Chen, Bang-Chi; Locke, Kenneth T; O'Malley, Kevin M; Zhang, Litao; Srivastava, Rai Ajit; Miao, Bowman; Meyers, Daniel S; Monshizadegan, Hossain; Search, Debra; Grimm, Denise; Zhang, Rongan; Harrity, Thomas; Kunselman, Lori K; Cap, Michael; Kadiyala, Pathanjali; Hosagrahara, Vinayak; Zhang, Lisa; Xu, Carrie; Li, Yi-Xin; Muckelbauer, Jodi K; Chang, Chiehying; An, Yongmi; Krystek, Stanley R; Blanar, Michael A; Zahler, Robert; Mukherjee, Ranjan; Cheng, Peter T W; Tino, Joseph A

    2010-04-08

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

  8. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    USDA-ARS?s Scientific Manuscript database

    Central memory T cells (Tcm’s) and polyfunctional CD4 T responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by ...

  9. 2,3-Dihydro-1-benzofuran-5-ols as analogues of alpha-tocopherol that inhibit in vitro and ex vivo lipid autoxidation and protect mice against central nervous system trauma.

    PubMed

    Grisar, J M; Bolkenius, F N; Petty, M A; Verne, J

    1995-02-03

    A series of alpha-tocopherol analogues was synthesized with potential therapeutic value for such pathological conditions as stroke and trauma. A set of criteria such as the inhibition of in vitro lipid peroxidation, superoxyl radical scavenging, and brain penetration, as measured by ex vivo inhibition of lipid peroxidation, was applied to select the most effective compound. 2,3-Dihydro-2,2,4,6,7-pentamethyl-3-[(4-methylpiperazino)methyl]-1 - benzofuran-5-ol dihydrochloride (22) was selected because of its superior antioxidant properties and better brain penetration. This compound also protected mice against the effects of head injury. The criteria thus turned out to be useful for the characterization of a neuroprotective analogue of alpha-tocopherol.

  10. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    PubMed

    Gupta, Sanjeev; Deepti, Ayswaria; Deegan, Shane; Lisbona, Fernanda; Hetz, Claudio; Samali, Afshin

    2010-07-06

    Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  11. Increased 4-hydroxynonenal protein adducts in male GSTA4–4/PPAR-alpha double knockout mice enhance injury during early stages of alcoholic liver disease

    USDA-ARS?s Scientific Manuscript database

    To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male wild type 129/SvJ mice, and glutathione S-transferase A4-4 null (GSTA4-/-) mice for 40 d. GSTA4-/- mice were also crossed with peroxisome proliferator-activated ...

  12. Constituents from Terminalia species increase PPAR-Alpha and PPAR-Gamma levels and stimulate glucose uptake without enhancing adipocyte differentiation

    USDA-ARS?s Scientific Manuscript database

    The fruits of Terminalia bellerica Roxb.(Combretaceae) and T. chebula Retz. (Combretaceae) are important components of triphala, a popular Ayurvedic formulation, for treating diabetes in Indian traditional medicine. The aim of this study was to evaluate the effects of the constituents of T. belleric...

  13. Developmental Toxicity of Perfluorononanoic Acid in the Wild-Type and PPAR-alpha Knock-out Mouse After Gestational Exposure

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a perfluoroalkyl acid detected in the environment and in tissues of humans and wildlife, and its concentration in human serum has increased in the past few years. PFNA negatively affects development and survival of CD1 mice and activates peroxisom...

  14. Developmental Toxicity of Perfluorononanoic Acid in the Wild-Type and PPAR-alpha Knock-out Mouse After Gestational Exposure

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a perfluoroalkyl acid detected in the environment and in tissues of humans and wildlife, and its concentration in human serum has increased in the past few years. PFNA negatively affects development and survival of CD1 mice and activates peroxisom...

  15. Synthesis and evaluation of novel [alpha]-heteroaryl-phenylpropanoic acid derivatives as PPAR[alpha/gamma] dual agonists

    SciTech Connect

    Casimiro-Garcia, Agustin; Bigge, Christopher F.; Davis, Jo Ann; Padalino, Teresa; Pulaski, James; Ohren, Jeffrey F.; McConnell, Patrick; Kane, Christopher D.; Royer, Lori J.; Stevens, Kimberly A.; Auerbach, Bruce; Collard, Wendy; McGregor, Christine; Song, Kun; Pfizer

    2010-09-27

    The synthesis of a new series of phenylpropanoic acid derivatives incorporating an heteroaryl group at the {alpha}-position and their evaluation for binding and activation of PPAR{alpha} and PPAR{gamma} are presented in this report. Among the new compounds, (S)-3-{l_brace}4-[3-(5-methyl-2-phenyl-oxazol-4-yl)-propyl]-phenyl{r_brace}-2-1,2,3-triazol-2-yl-propionic acid (17j), was identified as a potent human PPAR{alpha}/{gamma} dual agonist (EC{sub 50} = 0.013 and 0.061 {micro}M, respectively) with demonstrated oral bioavailability in rat and dog. 17j was shown to decrease insulin levels, plasma glucose, and triglycerides in the ZDF female rat model. In the human apolipoprotein A-1/CETP transgenic mouse model 17j produced increases in hApoA1 and HDL-C and decreases in plasma triglycerides. The increased potency for binding and activation of both PPAR subtypes observed with 17j when compared to previous analogs in this series was explained based on results derived from crystallographic and modeling studies.

  16. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states.

    PubMed

    Badman, Michael K; Pissios, Pavlos; Kennedy, Adam R; Koukos, George; Flier, Jeffrey S; Maratos-Flier, Eleftheria

    2007-06-01

    Mice fed a high-fat, low-carbohydrate ketogenic diet (KD) exhibit marked changes in hepatic metabolism and energy homeostasis. Here, we identify liver-derived fibroblast growth factor 21 (FGF21) as an endocrine regulator of the ketotic state. Hepatic expression and circulating levels of FGF21 are induced by both KD and fasting, are rapidly suppressed by refeeding, and are in large part downstream of PPARalpha. Importantly, adenoviral knockdown of hepatic FGF21 in KD-fed mice causes fatty liver, lipemia, and reduced serum ketones, due at least in part to altered expression of key genes governing lipid and ketone metabolism. Hence, induction of FGF21 in liver is required for the normal activation of hepatic lipid oxidation, triglyceride clearance, and ketogenesis induced by KD. These findings identify hepatic FGF21 as a critical regulator of lipid homeostasis and identify a physiological role for this hepatic hormone.

  17. Berberine inhibits cytosolic phospholipase A2 and protects against LPS-induced lung injury and lethality independent of the alpha2-adrenergic receptor in mice.

    PubMed

    Zhang, Hao-qing; Wang, Hua-dong; Lu, Da-xiang; Qi, Ren-bin; Wang, Yan-ping; Yan, Yu-xia; Fu, Yong-mei

    2008-05-01

    Acute lung injury is still a significant clinical problem having a high mortality rate despite significant advances in antimicrobial therapy and supportive care made in the past few years. Our previous study demonstrated that berberine (Ber) remarkably decreased mortality and attenuated the lung injury in mice challenged with LPS, but the mechanism behind this remains unclear. Here, we report that pretreatment with Ber significantly reduced pulmonary edema, neutrophil infiltration, and histopathological alterations; inhibited protein expression and phosphorylation of cytosolic phospholipase A2; and decreased thromboxane A2 release induced by LPS. Yohimbine, an alpha2-adrenergic receptor antagonist, did not antagonize these actions of Ber. Furthermore, pretreatment with Ber decreased TNF-alpha production and mortality in mice challenged with LPS, which were enhanced by yohimbine, and Ber combined with yohimbine also improved survival rate in mice subjected to cecal ligation and puncture. Taken together, these observations indicate that Ber attenuates LPS-induced lung injury by inhibiting TNF-alpha production and cytosolic phospholipase A2 expression and activation in an alpha2-adrenoceptor-independent manner. Berberine combined with yohimbine might provide an effective therapeutic approach to acute lung injury during sepsis.

  18. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs

    PubMed Central

    Park, Jong-Hyeon; Lee, Kwang-Nyeong; Kim, Se-Kyung; You, Su-Hwa; Kim, Taeseong; Tark, Dongseob; Lee, Hyang-Sim; Seo, Min-Goo; Kim, Byounghan

    2015-01-01

    ABSTRACT Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. IMPORTANCE The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against

  19. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs.

    PubMed

    Kim, Su-Mi; Park, Jong-Hyeon; Lee, Kwang-Nyeong; Kim, Se-Kyung; You, Su-Hwa; Kim, Taeseong; Tark, Dongseob; Lee, Hyang-Sim; Seo, Min-Goo; Kim, Byounghan

    2015-08-01

    Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against FMDV, although the

  20. Variable protection against experimental broiler necrotic enteritis after immunization with the C-terminal fragment of Clostridium perfringens alpha-toxin and a non-toxic NetB variant

    PubMed Central

    Fernandes da Costa, Sérgio P.; Mot, Dorien; Geeraerts, Sofie; Bokori-Brown, Monika; Van Immerseel, Filip; Titball, Richard W.

    2016-01-01

    ABSTRACT Necrotic enteritis toxin B (NetB) is a pore-forming toxin produced by Clostridium perfringens and has been shown to play a key role in avian necrotic enteritis, a disease causing significant costs to the poultry production industry worldwide. The aim of this work was to determine whether immunization with a non-toxic variant of NetB (NetB W262A) and the C-terminal fragment of C. perfringens alpha-toxin (CPA247–370) would provide protection against experimental necrotic enteritis. Immunized birds with either antigen or a combination of antigens developed serum antibody levels against NetB and CPA. When CPA247–370 and NetB W262A were used in combination as immunogens, an increased protection was observed after oral challenge by individual dosing, but not after in-feed-challenge. PMID:26743457

  1. Alpha Blockers

    MedlinePlus

    ... conditions such as high blood pressure and benign prostatic hyperplasia. Find out more about this class of medication. ... these conditions: High blood pressure Enlarged prostate (benign prostatic hyperplasia) Though alpha blockers are commonly used to treat ...

  2. Alpha Thalassemia

    MedlinePlus

    ... an apparently normal individual has a child with hemoglobin H disease or alpha thalassemia minor. It can ... gene on one chromosome 25% 25% 25% 25% hemoglobin H disease there is a 25% chance with ...

  3. Aleglitazar, a new, potent, and balanced dual PPARalpha/gamma agonist for the treatment of type II diabetes.

    PubMed

    Bénardeau, Agnes; Benz, Jörg; Binggeli, Alfred; Blum, Denise; Boehringer, Markus; Grether, Uwe; Hilpert, Hans; Kuhn, Bernd; Märki, Hans Peter; Meyer, Markus; Püntener, Kurt; Raab, Susanne; Ruf, Armin; Schlatter, Daniel; Mohr, Peter

    2009-05-01

    Design, synthesis, and SAR of novel alpha-alkoxy-beta-arylpropionic acids as potent and balanced PPARalphagamma coagonists are described. One representative thereof, Aleglitazar ((S)-2Aa), was chosen for clinical development. Its X-ray structure in complex with both receptors as well as its high efficacy in animal models of T2D and dyslipidemia are also presented.

  4. 21 CFR 866.5080 - Alpha-1-antichymotrypsin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... immunochemical techniques alpha-1-antichymotrypsin (a protein) in serum, other body fluids, and tissues. Alpha-1-antichymotrypsin helps protect tissues against proteolytic (protein-splitting) enzymes released during...

  5. 40 CFR 721.10300 - Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-.alpha.-phenyl-, ethyl ester. 721.10300 Section 721.10300 Protection of Environment ENVIRONMENTAL....-phenyl-, ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester (PMN...

  6. 40 CFR 721.10300 - Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-.alpha.-phenyl-, ethyl ester. 721.10300 Section 721.10300 Protection of Environment ENVIRONMENTAL....-phenyl-, ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester (PMN...

  7. 40 CFR 721.10300 - Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-.alpha.-phenyl-, ethyl ester. 721.10300 Section 721.10300 Protection of Environment ENVIRONMENTAL....-phenyl-, ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester (PMN...

  8. Alpha fetoprotein

    MedlinePlus

    ... the liver Liver cancer Malignant teratoma Recovery from hepatitis Problems during pregnancy Alternative Names Fetal alpha globulin; AFP Images Blood ... JL, et al, eds. Obstetrics: Normal and Problem Pregnancies . 6th ed. Philadelphia, PA: Elsevier Saunders; 2012:chap 11. Read More ... cancer - hepatocellular carcinoma Malignant teratoma of the ...

  9. Protective effect of alpha-melanocyte-stimulating hormone (α-MSH) on the recovery of ischemia/reperfusion (I/R)-induced retinal damage in a rat model.

    PubMed

    Varga, Balazs; Gesztelyi, Rudolf; Bombicz, Mariann; Haines, David; Szabo, Adrienn Monika; Kemeny-Beke, Adam; Antal, Miklos; Vecsernyes, Miklos; Juhasz, Bela; Tosaki, Arpad

    2013-07-01

    The present study demonstrates capacity of α-MSH to augment recovery from ischemia/reperfusion (I/R)-induced retinal damage in vivo and correlation of its protective effects with expression of heme oxygenase-1 (HO-1). Used techniques include ocular ischemia and reperfusion, electroretinography, histology, electron microscopy, and molecular-biological techniques. The results demonstrate the α-MSH-mediated inhibition of I/R-induced functional deterioration of the retina. Outcomes suggest that the protective effects of α-MSH occur mainly through HO-1-dependent pathways but HO-1-independent mechanisms may also contribute to protection. The observation that post-ischemic treatment with α-MSH exhibits therapeutic efficacy in the same range as pre-ischemic treatment, is a novel result. This outcome suggests a highly conserved protective role for α-MSH as a major stress response mechanism--and offers the possibility for development of novel therapeutic strategies utilizing this hormone, in particular in treatment of conditions resulting from I/R injury, such as deterioration of retinal microcirculation. The merit of the study lies in the fact that I/R injury contribute significantly to the severity of retinopathies. However, currently there are no evidence-based treatments for retinal I/R injury available for clinical use. Our finding suggests that α-MSH may have a very wide range of uses in the prevention of I/R-mediated pathologies.

  10. Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice.

    PubMed

    Magliano, D'Angelo Carlo; Bargut, Thereza Cristina Lonzetti; de Carvalho, Simone Nunes; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto; Souza-Mello, Vanessa

    2013-01-01

    The aim of the present study was to evaluate whether activation of peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma by Bezafibrate (BZ) could attenuate hepatic and white adipose tissue (WAT) abnormalities in male offspring from diet-induced obese dams. C57BL/6 female mice were fed a standard chow (SC; 10% lipids) diet or a high-fat (HF; 49% lipids) diet for 8 weeks before mating and during gestation and lactation periods. Male offspring received SC diet at weaning and were subdivided into four groups: SC, SC/BZ, HF and HF/BZ. Treatment with BZ (100 mg/Kg diet) started at 12 weeks of age and was maintained for three weeks. The HF diet resulted in an overweight phenotype and an increase in oral glucose intolerance and fasting glucose of dams. The HF offspring showed increased body mass, higher levels of plasmatic and hepatic triglycerides, higher levels of pro-inflammatory and lower levels of anti-inflammatory adipokines, impairment of glucose metabolism, abnormal fat pad mass distribution, higher number of larger adipocytes, hepatic steatosis, higher expression of lipogenic proteins concomitant to decreased expression of PPARalpha and carnitine palmitoyltransferase I (CPT-1) in liver, and diminished expression of PPARgamma and adiponectin in WAT. Treatment with BZ ameliorated the hepatic and WAT abnormalities generated by diet-induced maternal obesity, with improvements observed in the structural, biochemical and molecular characteristics of the animals' livers and epididymal fat. Diet-induced maternal obesity lead to alterations in metabolism, hepatic lipotoxicity and adverse liver and WAT remodeling in the offspring. Targeting PPAR with Bezafibrate has beneficial effects reducing the alterations, mainly through reduction of WAT inflammatory state through PPARgamma activation and enhanced hepatic beta-oxidation due to increased PPARalpha/PPARgamma ratio in liver.

  11. Testing the Effects of DL-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus).

    PubMed

    Archer, C Ruth; Hempenstall, Sarah; Royle, Nick J; Selman, Colin; Willis, Sheridan; Rapkin, James; Blount, Jon D; Hunt, John

    2015-12-04

    The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus) four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform DL-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with DL-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus.

  12. Testing the Effects of dl-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus)

    PubMed Central

    Archer, C. Ruth; Hempenstall, Sarah; Royle, Nick J.; Selman, Colin; Willis, Sheridan; Rapkin, James; Blount, Jon D.; Hunt, John

    2015-01-01

    The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus) four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform dl-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with dl-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus. PMID:26783958

  13. Interferon Beta and Interferon Alpha 2a Differentially Protect Head and Neck Cancer Cells from Vesicular Stomatitis Virus-Induced Oncolysis.

    PubMed

    Westcott, Marlena M; Liu, Jingfang; Rajani, Karishma; D'Agostino, Ralph; Lyles, Douglas S; Porosnicu, Mercedes

    2015-08-01

    Oncolytic viruses (OV) preferentially kill cancer cells due in part to defects in their antiviral responses upon exposure to type I interferons (IFNs). However, IFN responsiveness of some tumor cells confers resistance to OV treatment. The human type I IFNs include one IFN-β and multiple IFN-α subtypes that share the same receptor but are capable of differentially inducing biological responses. The role of individual IFN subtypes in promoting tumor cell resistance to OV is addressed here. Two human IFNs which have been produced for clinical use, IFN-α2a and IFN-β, were compared for activity in protecting human head and neck squamous cell carcinoma (HNSCC) lines from oncolysis by vesicular stomatitis virus (VSV). Susceptibility of HNSCC lines to killing by VSV varied. VSV infection induced increased production of IFN-β in resistant HNSCC cells. When added exogenously, IFN-β was significantly more effective at protecting HNSCC cells from VSV oncolysis than was IFN-α2a. In contrast, normal keratinocytes and endothelial cells were protected equivalently by both IFN subtypes. Differential responsiveness of tumor cells to IFN-α and -β was further supported by the finding that autocrine IFN-β but not IFN-α promoted survival of HNSCC cells during persistent VSV infection. Therefore, IFN-α and -β differentially affect VSV oncolysis, justifying the evaluation and comparison of IFN subtypes for use in combination with VSV therapy. Pairing VSV with IFN-α2a may enhance selectivity of oncolytic VSV therapy for HNSCC by inhibiting VSV replication in normal cells without a corresponding inhibition in cancer cells. There has been a great deal of progress in the development of oncolytic viruses. However, a major problem is that individual cancers vary in their sensitivity to oncolytic viruses. In many cases this is due to differences in their production and response to interferons (IFNs). The experiments described here compared the responses of head and neck squamous

  14. Vaccination with recombinant adenoviruses expressing Ebola virus glycoprotein elicits protection in the interferon alpha/beta receptor knock-out mouse.

    PubMed

    O'Brien, Lyn M; Stokes, Margaret G; Lonsdale, Stephen G; Maslowski, David R; Smither, Sophie J; Lever, Mark S; Laws, Thomas R; Perkins, Stuart D

    2014-03-01

    The resistance of adult immunocompetent mice to infection with ebolaviruses has led to the development of alternative small animal models that utilise immunodeficient mice, for example the interferon α/β receptor knock-out mouse (IFNR(-/-)). IFNR(-/-) mice have been shown to be susceptible to infection with ebolaviruses by multiple routes but it is not known if this murine model is suitable for testing therapeutics that rely on the generation of an immune response for efficacy. We have tested recombinant adenovirus vectors for their ability to protect IFNR(-/-) mice from challenge with Ebola virus and have analysed the humoral response generated after immunisation. The recombinant vaccines elicited good levels of protection in the knock-out mouse and the antibody response in IFNR(-/-) mice was similar to that observed in vaccinated wild-type mice. These results indicate that the IFNR(-/-) mouse is a relevant small animal model for studying ebolavirus-specific therapeutics.

  15. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats.

    PubMed

    Diep, Quy N; Benkirane, Karim; Amiri, Farhad; Cohn, Jeffrey S; Endemann, Dierk; Schiffrin, Ernesto L

    2004-02-01

    Peroxisome proliferator-activated receptor (PPAR)alpha is highly expressed in the heart. PPAR alpha may play a role in cardiac hypertrophy, but effects on cardiac function, inflammation, and fibrosis are unknown. We tested the hypothesis that the PPAR alpha activator fenofibrate prevents myocardial inflammation and fibrosis in angiotensin (Ang) II-infused rats. Sprague Dawley rats received Ang II (120 ng/kg/min subcutaneously), fenofibrate (100 mg/kg/d p.o.), or Ang II + fenofibrate. After 7 d, systolic blood pressure (mmHg) was elevated (P < 0.01) in Ang II-infused rats (173 +/- 4) vs. controls (115 +/- 2) and reduced by fenofibrate (137 +/- 5). Electrophoretic mobility shift assay demonstrated that Ang II upregulated cardiac nuclear factor kappa B activity by 50%. Ang II significantly increased cardiac expression of vascular-cell adhesion molecule-1, platelet endothelial cell adhesion molecule, and intercellular adhesion molecule-1. Increases in expression of these inflammatory mediators were normalized by fenofibrate. Ang II-induced expression of transforming growth factor-beta 1, collagen deposition, and macrophage infiltration were partially prevented by fenofibrate. The PPAR alpha activator fenofibrate prevented development of hypertension, and improved myocardial inflammation and collagen deposition in Ang II-infused rats. The hypolipidemic drug fenofibrate may be useful in prevention and treatment of myocardial disease associated with hypertension and hyperlipidemia.

  16. Protective effects of alpha phenyl-tert-butyl nitrone and ascorbic acid in human adipose derived mesenchymal stem cells from differently aged donors

    PubMed Central

    Hohaus, Christian; Jörg Meisel, Hans; Krystel, llona; Stolzing, Alexandra

    2017-01-01

    Adipose-derived mesenchymal stem cells (ADSCs) are multipotent stem cells that promote therapeutic effects and are frequently used in autologous applications. Little is known about how ADSCs respond to genotoxic stress and whether or not donor age affects DNA damage and repair. In this study, we used the comet assay to assess DNA damage and repair in human ADSCs derived from young (20-40 years), middle-aged (41-60 years), and older (61+ years) donors following treatment with H2O2 or UV light. Tail lengths in H2O2-treated ADSCs were substantially higher than the tail lengths in UV-treated ADSCs. After 30 minutes of treatment with H2O2, ADSCs preconditioned with alpha phenyl-tert-butyl nitrone (PBN) or ascorbic acid (AA) showed a significant reduction in % tail DNA. The majority of ADSCs treated with PBN or AA displayed low olive tail movements at various timepoints. In general and indicative of DNA repair, % tail length and % tail DNA peaked at 30 minutes and then decreased to near-control levels at the 2 hour and 4 hour timepoints. Differently aged ADSCs displayed comparable levels of DNA damage in the majority of these experiments, suggesting that the age of the donor does not affect the DNA damage response in cultured ADSCs. PMID:27638293

  17. Susceptibility effects of GABA receptor subunit alpha-2 (GABRA2) variants and parental monitoring on externalizing behavior trajectories: Risk and protection conveyed by the minor allele

    PubMed Central

    Trucco, Elisa M.; Villafuerte, Sandra; Heitzeg, Mary M.; Burmeister, Margit; Zucker, Robert A.

    2015-01-01

    Understanding factors increasing susceptibility to social contexts and predicting psychopathology can help identify targets for prevention. Persistently high externalizing behavior in adolescence is predictive of psychopathology in adulthood. Parental monitoring predicts low externalizing behavior, yet youth likely vary in the degree to which they are affected by parents. Genetic variants of GABA receptor subunit alpha-2 (GABRA2) may increase susceptibility to parental monitoring, thus impacting externalizing trajectories. We had several objectives: (a) to determine whether GABRA2 (rs279827, rs279826, rs279858) moderates the relationship between a component of parental monitoring, parental knowledge, and externalizing trajectories; (b) to test the form of this interaction to assess whether GABRA2 variants reflect risk (diathesis-stress) or susceptibility (differential susceptibility) factors; and (c) to clarify GABRA2 associations on the development of problem behavior. This prospective study (N = 504) identified three externalizing trajectory classes (i.e., low, decreasing, and high) across adolescence. A GABRA2 × Parental Monitoring effect on class membership was observed, such that A-carriers were largely unaffected by parental monitoring, whereas class membership for those with the GG genotype was affected by parental monitoring. Findings support differential susceptibility in GABRA2. PMID:25797587

  18. Peroxisome proliferator activated receptor-γ agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: Effects on mitochondrial functions and differentiation.

    PubMed

    De Nuccio, C; Bernardo, A; Cruciani, C; De Simone, R; Visentin, S; Minghetti, L

    2015-09-01

    The activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ) is known to exert anti-inflammatory and neuroprotective effects and PPAR-γ agonists are considered potential therapeutic agents in brain diseases including those affecting myelin. In demyelinating diseases such as multiple sclerosis (MS), inflammation is one of the causes of myelin and axonal damage. Oligodendrocyte (OL) differentiation is highly dependent on mitochondria, which are major targets of inflammatory insult. Here we show that PPAR-γ agonists protect OL progenitors against the maturational arrest induced by the inflammatory cytokine TNF-α by affecting mitochondrial functions. We demonstrate that the inhibition of OL differentiation by TNF-α is associated with i) increased mitochondrial superoxide production; ii) decreased mitochondrial membrane potential (mMP); and iii) decreased ADP-induced Ca(2+) oscillations, which we previously showed to be dependent on efficient mitochondria. The TNF-α effects were comparable to those of the mitochondrial toxin rotenone, further suggesting that TNF-α damage is mediated by mitochondrial function impairment. PPAR-γ agonists protected OL progenitors against the inhibitory activities of both TNF-α and rotenone on mMP, mitochondrial ROS production, Ca(2+) oscillations and OL differentiation. Finally, the PPAR-γ agonist pioglitazone increased the expression of PGC-1α (a mitochondrial biogenesis master regulator), UCP2 (a mitochondrial protein known to reduce ROS production), and cytochrome oxidase subunit COX1. These findings confirm the central role of mitochondria in OL differentiation and point to mitochondria as major targets of PPAR-γ agonist protection against TNF-α damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Protective effect of alpha glucosyl hesperidin (G-hesperidin) on chronic vanadium induced testicular toxicity and sperm nuclear DNA damage in male Sprague Dawley rats.

    PubMed

    Vijaya Bharathi, B; Jaya Prakash, G; Krishna, K M; Ravi Krishna, C H; Sivanarayana, T; Madan, K; Rama Raju, G A; Annapurna, A

    2015-06-01

    The study was conducted to evaluate the vanadium-induced testicular toxicity and its effect on sperm parameters, sperm nuclear DNA damage and histological alterations in Sprague Dawley rats and to assess the protective effect of G-hesperidin against this damage. Treatment of rats with vanadium at a dose of 1 mg kg bw(-1) for 90 days resulted in significant reduction in serum testosterone levels, sperm count and motility. Further, a parallel increase in abnormal sperm morphology and adverse histopathological changes in testis was also associated with vanadium administration when compared to normal control. Moreover, sperm chromatin dispersion assay revealed that vanadium induces sperm nuclear DNA fragmentation. A marked increase in testicular malondialdehyde levels and decreased activity of antioxidant enzymes such as superoxide dismutase and catalase indicates vanadium-induced oxidative stress. Co-administration of G-hesperidin at a dose of 25 and 50 mg kg bw(-1) significantly attenuated the sperm parameters and histological changes by restoring the antioxidant levels in rat testis. These results suggested that vanadium exposure caused reduced bioavailability of androgens to the tissue and increased free radical formation, thereby causing structural and functional changes in spermatozoa. G-hesperidin exhibited antioxidant effect by protecting the rat testis against vanadium-induced oxidative damage, further ensures antioxidant potential of bioflavonoids. © 2014 Blackwell Verlag GmbH.

  20. Protective effect of photodegradation product of nifedipine against tumor necrosis factor alpha-induced oxidative stress in human glomerular endothelial cells.

    PubMed

    Fukuhara, Yayoi; Tsuchiya, Koichiro; Horinouchi, Yuya; Tajima, Soichiro; Kihira, Yoshitaka; Hamano, Shuichi; Kawazoe, Kazuyoshi; Ikeda, Yasumasa; Ishizawa, Keisuke; Tomita, Shuhei; Tamaki, Toshiaki

    2011-02-01

    Recently, increasing evidence suggests that the antihypertensive drug nifedipine acts as a protective agent for endothelial cells, and that the activity is unrelated to its calcium channel blocking. Nitrosonifedipine (NO-NIF) is metabolically and photochemically produced from nifedipine, and NO-NIF has been recognized as a contaminant of nifedipine because it has no antihypertensive effect. Treatment of tumor necrosis factor-α (TNF-α) suppressed the cell viability and facilitated the expression of Inter-Cellular Adhesion Molecule 1(ICAM-1) in human glomerular endothelial cells (HGECs) though, pretreatment of NO-NIF significantly recovered the TNF-α-induced cell damage to the same extent as Trolox-C did, and suppressed the ICAM-1 expression in a concentration dependent manner. In addition, NO-NIF inhibited the cell toxicity induced by cumene hydroperoxide, which hampers the integrity of cell membrane through oxidative stress, as effective as Trolox-c. These data suggest that NO-NIF is a candidate for a new class of antioxidative drug that protect cells against oxidative stress in glomerular endothelial cells.

  1. Peroxisome proliferator-activated receptor alpha protects renal tubular cells from gentamicin-induced apoptosis via upregulating Na(+)/H(+) exchanger NHE1.

    PubMed

    Chen, Cheng-Hsien; Chen, Tso-Hsiao; Wu, Mei-Yi; Chen, Jia-Rung; Tsai, Hwei-Fang; Hong, Li-Yu; Zheng, Cai-Mei; Chiu, I-Jen; Lin, Yuh-Feng; Hsu, Yung-Ho

    2015-11-23

    Peroxisome proliferator-activated receptor alpha (PPARα) is a transcription factor which has been reported to inhibit gentamicin-induced apoptosis in renal tubular cells. However, the antiapoptotic mechanism of PPARα is still unknown. In this study, we found that PPARα overexpression induced Na(+)/H(+) exchanger NHE1 expression in the rat renal tubular cells NRK-52E. Beraprost, a PPARα ligand, also increased NHE1 expression in the renal tubules in normal mice, but not in PPARα knockout mice. Chromatin immunoprecipitation assays revealed that two PPARα binding elements were located in the rat NHE1 promoter region. Na(+)/H(+) exchanger activity also increased in the PPARα-overexpressed cells. Flow cytometry showed that the PPARα-overexpressed cells were resistant to apoptosis-induced shrinkage. Cariporide, a selective NHE1 inhibitor, inhibited the antiapoptotic effect of PPARα in the gentamicin-treated cells. The interaction between NHE1 and ezrin/radixin/moesin (ERM) and between ERM and phosphatidylinositol 4,5-bisphosphate in the PPARα-overexpressed cells was more than in the control cells. ERM siRNA transfection inhibited the PPARα-induced antiapoptotic effect. PPARα overexpression also increased the phosphoinositide 3-kinase (PI3K) expression, which is dependent on NHE1 activity. Increased PI3K further increased the phosphorylation of the pro-survival kinase Akt in the PPARα-overexpressed cells. Wortmannin, a PI3K inhibitor, inhibited PPARα-induced Akt activity and the antiapoptotic effect. We conclude that PPARα induces NHE1 expression, and then recruits ERM to promote PI3K/Akt-mediated cell survival in renal tubular cells. The application of PPARα activation reduces the nephrotoxicity of gentamicin and may expand the clinical use of gentamicin.

  2. Alpha(+)-thalassaemia and malarial anaemia.

    PubMed

    Danquah, Ina; Mockenhaupt, Frank P

    2008-11-01

    The mechanisms by which alpha(+)-thalassaemia protects against severe malaria, and severe malarial anaemia in particular, are poorly understood. A recent report proposes that the increased count of microcytic and hypochromic erythrocytes in alpha(+)-thalassaemia reduces the haemoglobin decline during acute malaria and, thus, reduces the risk of anaemia. This mechanism might add to further alpha(+)-thalassaemic attributes that are involved in the attenuation of anaemia caused by both acute and chronic Plasmodium infections.

  3. The specificity of thiourea, dimethylthiourea and dimethyl sulphoxide as scavengers of hydroxyl radicals. Their protection of alpha 1-antiproteinase against inactivation by hypochlorous acid.

    PubMed Central

    Wasil, M; Halliwell, B; Grootveld, M; Moorhouse, C P; Hutchison, D C; Baum, H

    1987-01-01

    Thiourea and dimethylthiourea are powerful scavengers of hydroxyl radicals (.OH), and dimethylthiourea has been used to test the involvement of .OH in several animal models of human disease. It is shown that both thiourea and dimethylthiourea are scavengers of HOCl, a powerful oxidant produced by neutrophil myeloperoxidase. Hence the ability of dimethylthiourea to protect against neutrophil-mediated tissue damage cannot be used as evidence for a role of .OH in causing such damage. Dimethyl sulphoxide also reacts with HOCl, but at a rate that is probably too low to be biologically significant at dimethyl sulphoxide concentrations up to 10 mM. Neither mannitol nor desferrioxamine, at the concentrations normally used in radical-generating systems, appears to react with HOCl. PMID:2821995

  4. Inhibition of tumor necrosis factor-alpha and cyclooxigenase-2 by Isatin: a molecular mechanism of protection against TNBS-induced colitis in rats.

    PubMed

    Socca, Eduardo Augusto Rabelo; Luiz-Ferreira, Anderson; de Faria, Felipe Meira; de Almeida, Ana Cristina; Dunder, Ricardo José; Manzo, Luis Paulo; Brito, Alba Regina Monteiro Souza

    2014-02-25

    Isatin, an indole alkaloid has been shown to have anti-microbial, anti-tumor and anti-inflammatory effects. Due to its findings, we evaluated whether this alkaloid would have any effect on TNBS-induced colitis. Animals (male Unib:WH rats, aged 8 weeks old) were induced colitis through a rectal administration of 2,4,6-trinitrobenzene sulphonic acid using a catheter inserted 8 cm into the rectum of the animals. The rats were divided into two major groups: non-colitic and colitic. The colitic group was sub-divided into 6 groups (10 animals per group): colitic non-treated, Isatin 3; 6; 12.5; 18.75 and 25 mg/kg. Our main results showed that the oral treatment with Isatin 6 and 25 mg/kg were capable of avoiding the increase in TNF-α, COX-2 and PGE₂ levels when compared to the colitic non-treated group. Interestingly, the same doses (6 and 25 mg/kg) were also capable of preventing the decrease in IL-10 levels comparing with the colitic non-treated group. The levels of MPO, (an indirect indicator of neutrophil presence), were also maintained lower than those of the colitic non-treated group. Isatin also prevented the decrease of SOD activity and increase of GSH-Px and GSH-Rd activity as well as the depletion of GSH levels. In conclusion, both pre-treatments (6 and 25 mg/kg) were capable of protecting the gut mucosa against the injury caused by TNBS, through the combination of antioxidant and anti-inflammatory properties, which, together, showed a protective activity of the indole alkaloid Isatin.

  5. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors.

    PubMed

    Posokhova, E N; Khoshchenko, O M; Chasovskikh, M I; Pivovarova, E N; Dushkin, M I

    2008-03-01

    The effects of peroxisome proliferator activated receptors alpha and gamma (PPAR-alpha and PPAR-gamma) and retinoid X receptor (RXR) agonists upon synthesis and accumulation of lipids in murine C57Bl macrophages during inflammation induced by injection of zymosan and Escherichia coli lipopolysaccharide (LPS) have been studied. It is significant that intraperitoneal injection of zymosan (50 mg/kg) or LPS (0.1 mg/kg) in mice led to a dramatic increase of [14C]oleate incorporation into cholesteryl esters and triglycerides and [14C]acetate incorporation into cholesterol and fatty acids in peritoneal macrophages. Lipid synthesis reached its maximum rate 18-24 h after injection and was decreased 5-7 days later to control level after LPS injection or was still heightened after zymosan injection. In macrophages obtained in acute phase of inflammation (24 h), degradation of 125I-labeled native low density lipoprotein (NLDL) was 4-fold increased and degradation of 125I-labeled acetylated LDL (AcLDL) was 2-3-fold decreased. Addition of NLDL (50 microg/ml) or AcLDL (25 microg/ml) into the incubation medium of activated macrophages induced 9-14- and 1.25-fold increase of cholesteryl ester synthesis, respectively, compared with control. Addition of NLDL and AcLDL into the incubation medium completely inhibited cholesterol synthesis in control macrophages but had only slightly effect on cholesterol synthesis in activated macrophages. Injection of RXR, PPAR-alpha, or PPAR-gamma agonists--9-cis-retinoic acid (5 mg/kg), bezafibrate (10 mg/kg), or rosiglitazone (10 mg/kg), respectively--30 min before zymosan or LPS injection led to significant decrease of lipid synthesis. Ten hour preincubation of activated in vivo macrophages with the abovementioned agonists (5 microM) decreased cholesteryl ester synthesis induced by NLDL and AcLDL addition into the cell cultivation medium. The data suggest that RXR, PPAR-alpha, or PPAR-gamma agonists inhibited lipid synthesis and induction of

  6. Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter methylation are altered in peripartal dairy cows fed rumen-protected methionine.

    PubMed

    Osorio, J S; Jacometo, C B; Zhou, Z; Luchini, D; Cardoso, F C; Loor, J J

    2016-01-01

    The availability of Met in metabolizable protein (MP) of a wide range of diets for dairy cows is low. During late pregnancy and early lactation, in particular, suboptimal Met in MP limits its use for mammary and liver metabolism and also for the synthesis of S-adenosylmethionine, which is essential for many biological processes, including DNA methylation. The latter is an epigenetic modification involved in the regulation of gene expression, hence, tissue function. Thirty-nine Holstein cows were fed throughout the peripartal period (-21 d to 30 d in milk) a basal control (CON) diet (n=14) with no Met supplementation, CON plus MetaSmart (MS; Adisseo NA, Alpharetta, GA; n=12), or CON plus Smartamine M (SM; Adisseo NA; n=13). The total mixed ration dry matter for the close-up and lactation diets was measured weekly, then the Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 (MS) or 0.07% (SM) on a dry matter basis. Liver tissue was collected on -10, 7, and 21 d for global DNA and peroxisome proliferator-activated receptor alpha (PPARα) promoter region-specific methylation. Several PPARα target and putative target genes associated with carnitine synthesis and uptake, fatty acid metabolism, hepatokines, and carbohydrate metabolism were also studied. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrast CON versus SM + MS. Global hepatic DNA methylation on d 21 postpartum was lower in Met-supplemented cows than CON. However, of 2 primers used encompassing 4 to 12 CpG sites in the promoter region of bovine PPARA, greater methylation occurred in the region encompassing -1,538 to -1,418 from the transcription start site in cows supplemented with Met. Overall expression of PPARA was greater in Met-supplemented cows than CON. Concomitantly, PPARA-target genes, such as ANGPTL4, FGF21, and PCK1, were also upregulated overall by Met supplementation. The upregulation of PPAR

  7. Prevention of diet-induced obesity by safflower oil: insights at the levels of PPARalpha, orexin, and ghrelin gene expression of adipocytes in mice.

    PubMed

    Zhang, Zhong; Li, Qiang; Liu, Fengchen; Sun, Yuqian; Zhang, Jinchao

    2010-03-15

    The aim of this study was to investigate the prevention of diet-induced obesity by a high safflower oil diet and adipocytic gene expression in mice. Forty 3-week-old C57BL/6 mice were randomly divided into three groups: control group (CON, 5% lard + 5% safflower oil), high lard group (LAR, 45% lard + 5% safflower oil), and high safflower oil group (SAF, 45% safflower oil + 5% lard). After 10 weeks, 10 mice of the LAR group were switched to high safflower oil diet (LAR-SAF). Ten weeks later, glucose tolerance tests were performed by intraperitoneal injection of glucose. Circulating levels of lipid and insulin were measured and white adipose tissues were taken for gene chip and reverse transcriptase-polymerase chain reaction analysis. The LAR group showed higher body weight, adiposity index, insulin, and lipids than the CON group (P<0.05). The body weight in the LAR-SAF group decreased after dietary reversal. The plasma biochemical profiles decreased in the LAR-SAF and SAF groups (P<0.05) compared with those of the LAR group. The blood glucose level of the LAR-SAF group was reduced during intraperitoneal glucose tolerance test compared with that of the LAR group. The LAR-SAF group had lower levels of Orexin and Ghrelin gene expression, whereas the level of PPARalpha gene expression was significantly enhanced compared with that of the LAR group. So, the SAF diet can alter adipocytic adiposity-related gene expression and result in effective amelioration of diet-induced obesity.

  8. Ex vivo model exhibits protective effects of sesamin against destruction of cartilage induced with a combination of tumor necrosis factor-alpha and oncostatin M.

    PubMed

    Khansai, Manatsanan; Boonmaleerat, Kanchanit; Pothacharoen, Peraphan; Phitak, Thanyaluck; Kongtawelert, Prachya

    2016-07-11

    Rheumatoid arthritis (RA) is an autoimmune disease associated with chronic inflammatory arthritis. TNF-α and OSM are pro-inflammatory cytokines that play a key role in RA progression. Thus, reducing the effects of both cytokines is practical in order to relieve the progression of the disease. This current study is interested in sesamin, an active compound in sesame seeds. Sesamin has been shown to be a chondroprotective agent in osteoarthritis models. Here, we have evaluated a porcine cartilage explant as a cartilage degradation model related to RA induced by TNF-α and/or OSM in order to investigate the effects of sesamin on TNF-α and OSM in the cartilage degradation model. A porcine cartilage explant was induced with a combination of TNF-α and OSM (test group) or IL-1β and OSM (control group) followed by a co-treatment of sesamin over a long-term period (35 days). After which, the tested explants were analyzed for indications of both the remaining and the degradation aspects using glycosaminoglycan and collagen as an indicator. The combination of TNF-α and OSM promoted cartilage degradation more than either TNF-α or OSM alone and was comparable with the combination of IL-1β and OSM. Sesamin could be offering protection against cartilage degradation by reducing GAGs and collagen turnover in the generated model. Sesamin might be a promising agent as an alternative treatment for RA patients. Furthermore, the generated model revealed itself to be an impressive test model for the analysis of phytochemical substances against the cartilage degradation model for RA. The model could be used to test for the prevention of cartilage degradation in other biological agents induced with TNF-α and OSM as well.

  9. Alpha-lipoic acid and N-acetylcysteine protects intensive swimming exercise-mediated germ-cell depletion, pro-oxidant generation, and alteration of steroidogenesis in rat testis.

    PubMed

    Jana, Kuladip; Dutta, Ananya; Chakraborty, Pratip; Manna, Indranil; Firdaus, Syed Benazir; Bandyopadhyay, Debasish; Chattopadhyay, Ratna; Chakravarty, Baidyanath

    2014-09-01

    Prolonged and strenuous exercise has been proposed as a possible source of male-factor infertility. Forced intensive swimming has also been identified as one source of a dysfunctional male reproduction system. The present study evaluated the possible protective role of α-lipoic acid and N-acetylcysteine (NAC) on intensive swimming-induced germ-cell depletion in adult male rats. Forced exhaustive swimming of 1 hr/day, 6 days/week for 8 consecutive weeks resulted in a significant (P < 0.05) reduction in epididymal sperm; testicular androgenic enzyme activities; and plasma and intra-testicular testosterone; and produced different types of germ cells in the seminiferous epithelium cycle. Conversely, plasma corticosterone levels and sperm-head abnormalities increased. Western-blot analysis showed a considerable decrease in testicular StAR protein expression whereas reverse-transcriptase PCR analysis showed no significant change in cytochrome P450scc (Cyp11a1) gene expression. Significant (P < 0.05) elevation in testicular reactive oxygen species (ROS), lipid peroxidation, protein carbonyl content versus reduction in glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione S-transferase, and caspase-3 activities along with a depletion in the glutathione pool, mitochondrial membrane potential (▵ψm ), and intracellular ATP generation. A considerable level of DNA damage in testicular spermatogenic cells were also noted following forced extensive swimming. Alpha-lipoic acid and NAC supplementation prevented the swimming-induced testicular spermatogenic and steroidogenic disorders by lowering ROS generation. We therefore conclude that intensive forced swimming causes germ-cell depletion through the generation of ROS and depletion of steroidogenesis in the testis, which can be protected by the co-administration of α-lipoic acid and NAC.

  10. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  11. Double di oxygenation by mouse 8S-lipoxygenase: Specific formation of a potent peroxisome proliferator-activated receptor {alpha} agonist

    SciTech Connect

    Jisaka, Mitsuo . E-mail: jisaka@life.shimane-u.ac.jp; Iwanaga, Chitose; Takahashi, Nobuyuki; Goto, Tsuyoshi; Kawada, Teruo; Yamamoto, Tatsuyuki; Ikeda, Izumi; Nishimura, Kohji; Nagaya, Tsutomu; Fushiki, Tohru; Yokota, Kazushige

    2005-12-09

    Mouse 8S-lipoxygenase (8-LOX) metabolizes arachidonic acid (AA) specifically to 8S-hydroperoxyeicosatetraenoic acid (8S-HPETE), which will be readily reduced under physiological circumstances to 8S-hydroxyeicosatetraenoic acid (8S-HETE), a natural agonist of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}). Here, we investigated whether 8-LOX could further oxygenate AA and whether the products could activate PPARs. The purified recombinant 8-LOX converted AA exclusively to 8S-HPETE and then to (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicosatetraenoic acid (8S,15S-diHPETE). The k {sub cat}/K {sub m} values for 8S-HPETE and AA were 3.3 x 10{sup 3} and 2.7 x 10{sup 4} M{sup -1} s{sup -1}, respectively. 8-LOX also dioxygenated 8S-HETE and 15S-H(P)ETE specifically to the corresponding 8S,15S-disubstituted derivatives. By contrast, 15-LOX-2, a human homologue of 8-LOX, produced 8S,15S-diH(P)ETE from 8S-H(P)ETE but not from AA nor 15S-H(P)ETE. 8S,15S-diHETE activated PPAR{alpha} more strongly than 8S-HETE did. The present results suggest that 8S,15S-diH(P)ETE as well as 8S-H(P)ETE would contribute to the physiological function of 8-LOX and also that 8-LOX can function as a potential 15-LOX.

  12. Murine atopic dermatitis responds to peroxisome proliferator-activated receptors alpha and beta/delta (but not gamma) and liver X receptor activators.

    PubMed

    Hatano, Yutaka; Man, Mao-Qiang; Uchida, Yoshikazu; Crumrine, Debra; Mauro, Theodora M; Feingold, Kenneth R; Elias, Peter M; Holleran, Walter M

    2010-01-01

    Atopic dermatitis (AD) is a chronic inflammatory dermatosis now increasingly linked to mutations that alter the structure and function of the stratum corneum. Activators of peroxisome proliferator-activated receptors (PPARs) alpha, beta/delta, and gamma and liver X receptor (LXR) regulate epidermal protein and lipid production, leading to superior barrier function. Additionally, some of these activators exhibit potent antihyperplastic and anti-inflammatory activity in irritant contact dermatitis and acute allergic contact dermatitis murine models. We evaluated the efficacy of PPAR/LXR activation in a hapten (oxazolone [Ox])-induced AD-like model (Ox-AD) in hairless mice. Ox-AD was established with 10 Ox challenges (every other day) on the flank. After the establishment of Ox-AD, twice-daily topical application with individual PPAR/LXR activators was then performed for 4 days, with continued Ox challenges every other day. The efficacy of topical PPAR/LXR activators to reduce parameters of Ox-AD was assessed physiologically, morphologically, and immunologically. Certain topical activators of PPARalpha, PPARbeta/delta, and LXR, but not activators of PPARgamma, reversed the clinical dermatosis, significantly improved barrier function, and increased stratum corneum hydration in Ox-AD mice. In addition, the same activators, but again not PPARgamma, largely reversed the immunologic abnormalities in Ox-AD mice, including the increased T(H)2 markers, such as tissue eosinophil/mast cell density, serum thymus and activation-related chemokine levels, the density of chemoattractant receptor-homologous molecule expressed on T(H)2-positive lymphocytes (but not serum IgE levels), and reduced IL-1alpha and TNF-alpha activation, despite ongoing hapten challenges. These results suggest that topical applications of certain activators/ligands of PPARalpha, PPARbeta/delta, and LXR could be useful for the treatment of AD in human subjects. Copyright 2010 American Academy of Allergy

  13. Nondeletional alpha-thalassemia: first description of alpha Hph alpha and alpha Nco alpha mutations in a Spanish population.

    PubMed

    Ayala, S; Colomer, D; Aymerich, M; Pujades, A; Vives-Corrons, J L

    1996-07-01

    Several different deletions underlie the molecular basis of alpha-thalassemia. The most common alpha-thalassemia determinant in Spain is the rightward deletion (-alpha 3.7). To our knowledge, however, no cases of alpha-thalassemia due to nondeletional mutations have so far been described in this particular Mediterranean area. Here, we report the existence of nondeletional forms of alpha-thalassemia in ten Spanish families. The alpha 2-globin gene was characterized in ten unrelated patients and their relatives only when the presence of deletional alpha-thalassemia was ruled out. The alpha 2-globin gene analysis was performed using the polymerase chain reaction (PCR) followed by restriction enzyme analysis or by allelespecific priming. This allowed the identification of a 5-base pair (bp) deletion at the donor site of IVS I (alpha Hph alpha) in 9 cases and the alpha 2 initiation codon mutation (alpha Nco alpha) in one case. Although these alpha 2-globin gene mutations are found in other mediterranean areas, our results demonstrate their presence in the Spanish population and suggest that the alpha Hph alpha/alpha alpha genotype is probably the most common nondeletional form of alpha-thalassemia in Spain.

  14. Contribution of alpha3(IV)alpha4(IV)alpha5(IV) Collagen IV to the Mechanical Properties of the Glomerular Basement Membrane

    NASA Astrophysics Data System (ADS)

    Gyoneva, Lazarina

    The glomerular basement membrane (GBM) is a vital part of the blood-urine filtration barrier in the kidneys. In healthy GBMs, the main tension-resisting component is alpha3(IV)alpha4(IV)alpha5(IV) type IV collagen, but in some diseases it is replaced by other collagen IV isoforms. As a result, the GBM becomes leaky and disorganized, ultimately resulting in kidney failure. Our goal is to understanding the biomechanical aspects of the alpha3(IV)alpha4(IV)alpha5(IV) chains and how their absence could be responsible for (1) the initial injury to the GBM and (2) progression to kidney failure. A combination of experiments and computational models were designed for that purpose. A model basement membrane was used to compare experimentally the distensibility of tissues with the alpha3(IV)alpha4(IV)alpha5(IV) chains present and missing. The experiments showed basement membranes containing alpha3(IV)alpha4(IV)alpha5(IV) chains were less distensible. It has been postulated that the higher level of lateral cross-linking (supercoiling) in the alpha3(IV)alpha4(IV)alpha5(IV) networks contributes additional strength/stability to basement membranes. In a computational model of supercoiled networks, we found that supercoiling greatly increased the stiffness of collagen IV networks but only minimally decreased the permeability, which is well suited for the needs of the GBM. It is also known that the alpha3(IV)alpha4(IV)alpha5(IV) networks are more protected from enzymatic degradation, and we explored their significance in GBM remodeling. Our simulations showed that the more protected network was needed to prevent the system from entering a dangerous feedback cycle due to autoregulation mechanisms in the kidneys. Overall, the work adds to the evidence of biomechanical differences between the alpha3(IV)alpha4(IV)alpha5(IV) networks and other collagen IV networks, points to supercoiling as the main source of biomechanical differences, discusses the suitability of alpha3(IV)alpha4(IV)alpha

  15. 40 CFR 721.10721 - Poly(oxy-1,2-ethanediyl), .alpha.,.alpha.′-[(1-methylethylidene)di-4,1-phenylene]bis[.omega.-[[6...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), .alpha.,.alpha.â²- bis oxy]-. 721.10721 Section 721.10721 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances...

  16. Ab initio alpha-alpha scattering

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  17. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-03

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  18. alpha-Hexachlorocyclohexane (alpha-HCH)

    Integrated Risk Information System (IRIS)

    alpha - Hexachlorocyclohexane ( alpha - HCH ) ; CASRN 319 - 84 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Ass

  19. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor {alpha}/retinoid X receptor

    SciTech Connect

    Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.; Akita, Geoffrey Y.; Cheng, Seng H.; Gregory, Richard J.; Jiang Canwen

    2007-12-21

    In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferase I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.

  20. Alpha-1 antitrypsin test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003715.htm Alpha-1 antitrypsin blood test To use the sharing features on this page, please enable JavaScript. Alpha-1 antitrypsin is a laboratory test to measure ...

  1. The Alpha Centauri System.

    ERIC Educational Resources Information Center

    Soderblom, David R.

    1987-01-01

    Describes the Alpha Centauri star system, which is the closest star system to the sun. Discusses the difficulties associated with measurements involving Alpha Centauri, along with some of the recent advances in stellar seismology. Raises questions about the possibilities of planets around Alpha Centauri. (TW)

  2. The Alpha Antihydrogen Experiment

    NASA Astrophysics Data System (ADS)

    Madsen, N.; Andresen, G.; Bertsche, W.; Boston, A.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Chartier, M.; Fajans, J.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-03-01

    ALPHA is a new experiment at the CERN Antiproton Decelerator (AD). The short term goal of ALPHA is trapping of cold antihydrogen, with the long term goal of conducting precise spectroscopic comparisons of hydrogen and antihydrogen. Here we present the current status of ALPHA and the physics considerations and results leading to its design as well as recent progress towards trapping.

  3. The Alpha Centauri System.

    ERIC Educational Resources Information Center

    Soderblom, David R.

    1987-01-01

    Describes the Alpha Centauri star system, which is the closest star system to the sun. Discusses the difficulties associated with measurements involving Alpha Centauri, along with some of the recent advances in stellar seismology. Raises questions about the possibilities of planets around Alpha Centauri. (TW)

  4. Antiviral activity of bacteria-derived human alpha interferons against encephalomyocarditis virus infection of mice.

    PubMed

    Weck, P K; Rinderknecht, E; Estell, D A; Stebbing, N

    1982-02-01

    Bacteria-derived human leukocyte interferon (IFN) subtypes, IFN-alpha A, -alpha B, and -alpha D, and two hybrid IFNs, IFN-alpha AD and -alpha DA, were examined for both in vitro and in vivo antiviral activity. Two of these materials in highly purified form (IFN-alpha D and -alpha D) protect mice against lethal doses of encephalomyocarditis virus infection. A single dose of 1 microgram of protein of IFN-alpha D 3 h before infection conferred protection in both BDF1 and CD-1 mice against encephalomyocarditis virus infection, and multiple treatments with IFN-alpha D or IFN-alpha AD extend the mean survival time of infected mice. On a weight basis, IFN-alpha AD was approximately 100-fold more effective than IFN-alpha D. There is a direct correlation between the antiviral activity of the various human IFN species in L-929 cells and in mice for both single and multiple treatments before infection, but none of the cloned human IFN subtypes were effective when administered 24 h after infection. Mixtures of the two parental materials, IFN-alpha A and -alpha D, were not as protective as the hybrid molecule IFN-alpha AD, suggesting that IFNs with unique and altered species specificity can be produced by recombinant DNA methods.

  5. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARalpha and T- and B-cell targeting

    EPA Science Inventory

    T-cell-dependent antibody responses (TDAR) are suppressed in female C57BL/6N mice exposed to ≥3.75 mg/kg of perfluorooctanoic acid (PFOA) for 15 days. To determine if suppression of humoral immunity by PFOA is peroxisome proliferator activated receptor alpha (PPARa)-dependent and...

  6. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARalpha and T- and B-cell targeting

    EPA Science Inventory

    T-cell-dependent antibody responses (TDAR) are suppressed in female C57BL/6N mice exposed to ≥3.75 mg/kg of perfluorooctanoic acid (PFOA) for 15 days. To determine if suppression of humoral immunity by PFOA is peroxisome proliferator activated receptor alpha (PPARa)-dependent and...

  7. Characterization of the alpha-gamma and alpha-beta complex: evidence for an in vivo functional role of alpha-crystallin as a molecular chaperone

    NASA Technical Reports Server (NTRS)

    Boyle, D.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Previous studies have demonstrated that in vitro, alpha-crystallin can protect other lens proteins against extensive denaturation and aggregation. The mechanism of this protection involves preferential binding of the partially denatured protein to a central region of the native alpha-crystallin complex. To test whether a similar phenomenon might occur in vivo, a high molecular weight aggregate (HMWA) fraction was isolated from the aged bovine lens. Negative staining of this preparation revealed the presence of particles of 13-14 nm diameter, characteristic of alpha-crystallin. Immunolocalization of the same particles using antiserum specific for gamma- and beta-crystallins demonstrated preferential binding of these crystallins to the central region of the alpha-crystallin complex. Together, these results provide evidence that in the intact lens, the alpha-crystallins are functionally important molecular chaperones.

  8. Persistent induction of HIF-1alpha and -2alpha in cardiomyocytes and stromal cells of ischemic myocardium.

    PubMed

    Jürgensen, Jan Steffen; Rosenberger, Christian; Wiesener, Michael S; Warnecke, Christina; Hörstrup, Jan H; Gräfe, Michael; Philipp, Sebastian; Griethe, Wanja; Maxwell, Patrick H; Frei, Ulrich; Bachmann, Sebastian; Willenbrock, Roland; Eckardt, Kai-Uwe

    2004-09-01

    Hypoxia-inducible factor (HIF)-1alpha and -2alpha are key regulators of the transcriptional response to hypoxia and pivotal in mediating the consequences of many disease states. In the present work, we define their temporo-spatial accumulation after myocardial infarction and systemic hypoxia. Rats were exposed to hypoxia or underwent coronary artery ligation. Immunohistochemistry was used for detection of HIF-1alpha and -2alpha proteins and target genes, and mRNA levels were determined by RNase protection. Marked nuclear accumulation of HIF-1alpha and -2alpha occurred after both systemic hypoxia and coronary ligation in cardiomyocytes as well as interstitial and endothelial cells (EC) without pronounced changes in HIF mRNA levels. While systemic hypoxia led to widespread induction of HIF, expression after coronary occlusion occurred primarily at the border of infarcted tissue. This expression persisted for 4 wk, included infiltrating macrophages, and colocalized with target gene expression. Subsets of cells simultaneously expressed both HIF-alpha subunits, but EC more frequently induced HIF-2alpha. A progressive increase of HIF-2alpha but not HIF-1alpha occurred in areas remote from the infarct, including the interventricular septum. Cardiomyocytes and cardiac stromal cells exhibit a marked potential for a prolonged transcriptional response to ischemia mediated by HIF. The induction of HIF-1alpha and -2alpha appears to be complementary rather than solely redundant.

  9. Identification of a novel selective peroxisome proliferator-activated receptor alpha agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674), that produces marked changes in serum lipids and apolipoprotein A-1 expression.

    PubMed

    Singh, Jai Pal; Kauffman, Raymond; Bensch, William; Wang, Guoming; McClelland, Pam; Bean, James; Montrose, Chahrzad; Mantlo, Nathan; Wagle, Asavari

    2005-09-01

    Low high-density lipoprotein-cholesterol (HDL-c) is an important risk factor of coronary artery disease (CAD). Optimum therapy for raising HDL-c is still not available. Identification of novel HDL-raising agents would produce a major impact on CAD. In this study, we have identified a potent (IC50 approximately 24 nM) and selective peroxisome proliferator-activated receptor alpha (PPARalpha) agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674). In human apolipoprotein A-1 (apoA-1) transgenic mice, LY518674 produced a dose-dependent increase in serum HDL-c, resulting in 208 +/- 15% elevation at optimum dose. A new synthesis of apoA-1 contributed to the increase in HDL-c. LY518674 increased apoA-1 mRNA levels in liver. Moreover, liver slices from animals treated with LY518674 secreted 3- to 6-fold more apoA-1 than control liver slices. In cultured hepatocytes, LY518674 produced 50% higher apoA-1 secretion, which was associated with increase in radiolabeled methionine incorporation in apoA-1. Thus, LY518674 is a potent and selective PPARalpha agonist that produced a much greater increase in serum HDL-c than the known fibrate drugs. The increase in HDL-c was associated with de novo synthesis of apoA-1.

  10. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol.

    PubMed

    Serbinova, E; Kagan, V; Han, D; Packer, L

    1991-01-01

    d-Alpha-tocopherol (2R,4'R,8'R-Alpha-tocopherol) and d-alpha-tocotrienol are two vitamin E constituents having the same aromatic chromanol "head" but differing in their hydrocarbon "tail": tocopherol with a saturated and toctrienol with an unsaturated isoprenoid chain. d-Alpha-tocopherol has the highest vitamin E activity, while d-alpha-tocotrienol manifests only about 30% of this activity. Since vitamin E is considered to be physiologically the most important lipid-soluble chain-breaking antioxidant of membranes, we studied alpha-tocotrienol as compared to alpha-tocopherol under conditions which are important for their antioxidant function. d-Alpha-tocotrienol possesses 40-60 times higher antioxidant activity against (Fe2+ + ascorbate)- and (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomal membranes and 6.5 times better protection of cytochrome P-450 against oxidative damage than d-alpha-tocopherol. To clarify the mechanisms responsible for the much higher antioxidant potency of d-alpha-tocotrienol compared to d-alpha-tocopherol, ESR studies were performed of recycling efficiency of the chromanols from their chromanoxyl radicals. 1H-NMR measurements of lipid molecular mobility in liposomes containing chromanols, and fluorescence measurements which reveal the uniformity of distribution (clusterizations) of chromanols in the lipid bilayer. From the results, we concluded that this higher antioxidant potency of d-alpha-tocotrienol is due to the combined effects of three properties exhibited by d-alpha-tocotrienol as compared to d-alpha-tocopherol: (i) its higher recycling efficiency from chromanoxyl radicals, (ii) its more uniform distribution in membrane bilayer, and (iii) its stronger disordering of membrane lipids which makes interaction of chromanols with lipid radicals more efficient. The data presented show that there is a considerable discrepancy between the relative in vitro antioxidant activity of d-alpha-tocopherol and d-alpha

  11. Interpreting EEG alpha activity.

    PubMed

    Bazanova, O M; Vernon, D

    2014-07-01

    Exploring EEG alpha oscillations has generated considerable interest, in particular with regards to the role they play in cognitive, psychomotor, psycho-emotional and physiological aspects of human life. However, there is no clearly agreed upon definition of what constitutes 'alpha activity' or which of the many indices should be used to characterize it. To address these issues this review attempts to delineate EEG alpha-activity, its physical, molecular and morphological nature, and examine the following indices: (1) the individual alpha peak frequency; (2) activation magnitude, as measured by alpha amplitude suppression across the individual alpha bandwidth in response to eyes opening, and (3) alpha "auto-rhythmicity" indices: which include intra-spindle amplitude variability, spindle length and steepness. Throughout, the article offers a number of suggestions regarding the mechanism(s) of alpha activity related to inter and intra-individual variability. In addition, it provides some insights into the various psychophysiological indices of alpha activity and highlights their role in optimal functioning and behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils.

    PubMed

    González-Mañán, Daniel; Tapia, Gladys; Gormaz, Juan Guillermo; D'Espessailles, Amanda; Espinosa, Alejandra; Masson, Lilia; Varela, Patricia; Valenzuela, Alfonso; Valenzuela, Rodrigo

    2012-07-01

    High dietary intake of n-6 fatty acids in relation to n-3 fatty acids may generate health disorders, such as cardiovascular and other chronic diseases. Fish consumption rich in n-3 fatty acids is low in Latin America, it being necessary to seek other alternatives to provide α-linolenic acid (ALA), precursor of n-3 LCPUFA (EPA and DHA). Two innovative oils were assayed, chia (Salvia hispanica) and rosa mosqueta (Rosa rubiginosa). This study evaluated hepatic bioconversion of ALA to EPA and DHA, expression of PPAR-α, acyl-Coenzyme A oxidase 1 (ACOX1) and carnitine acyltransferase I (CAT-I), and accumulation of EPA and DHA in plasma and adipose tissue in Sprague-Dawley rats. Three experimental groups were fed 21 days: sunflower oil (SFO, control); chia oil (CO); rosa mosqueta oil (RMO). Fatty acid composition of total lipids and phospholipids from plasma, hepatic and adipose tissue was assessed by gas-liquid chromatography and TLC. Expression of PPAR-α (RT-PCR) and ACOX1 and CAT-I (Western blot). CO and RMO increased plasma, hepatic and adipose tissue levels of ALA, EPA and DHA and decreased n-6:n-3 ratio compared to SFO (p < 0.05, One-way ANOVA and Newman-Keuls test). CO increased levels of ALA and EPA compared to RMO (p < 0.05). No significant differences were observed for DHA levels. CO also increased the expression of PPAR-α, ACOX1 and CAT-I. Only CAT-I levels were increased by RO. CO and RMO may be a nutritional alternative to provide ALA for its bioconversion to EPA and DHA, and to increase the expression of PPAR-α, ACOX1 and CAT-I, especially CO-oil.

  13. Lipopolysaccharide-induced cytokine cascade and lethality in LT alpha/TNF alpha-deficient mice.

    PubMed Central

    Amiot, F.; Fitting, C.; Tracey, K. J.; Cavaillon, J. M.; Dautry, F.

    1997-01-01

    BACKGROUND: Tumor necrosis factor alpha (TNF-alpha) is often considered the main proinflammatory cytokine induced by lipopolysaccharide (LPS) and consequently the critical mediator of the lethality associated with septic shock. MATERIALS AND METHODS: We used mice carrying a deletion of both the lymphotoxin alpha (LT-alpha) and TNF-alpha genes to assess the role of TNF in the cytokine cascade and lethality induced by LPS. RESULTS: Initial production of IL-1 alpha, IL-1 beta, IL-6, and IL-10 is comparable in wild-type and mutant mice. However, at later times, expression of IL-1 alpha, IL-1 beta, and IL-10 is prolonged, whereas that of IL-6 decreases in mutant mice. Expression of IFN-gamma is almost completely abrogated in mutants, which is in agreement with a more significant alteration of the late phase of the cytokine cascade. We measured similar LD50 (600 micrograms) for the intravenous injection of LPS in mice of the three genotypes (+/+, +/-, -/-), demonstrating that the absence of TNF does not confer long-term protection from lethality. However, death occurred much more slowly in mutant mice, who were protected more efficiently from death by CNI 1493, an inhibitor of proinflammatory cytokine production, than were wild-type mice. DISCUSSION: Thus, while TNF-alpha is not required for the induction of these cytokines by LPS, it modulates the kinetics of their expression. The lethality studies simultaneously confirm a role for TNF as a mediator of early lethality and establish that, in the absence of these cytokines, other mediators take over, resulting in the absence of long-term protection from LPS toxicity. Images FIG. 1 FIG. 2 PMID:9440119

  14. Association between peroxisome proliferator-activated receptor-alpha, delta, and gamma polymorphisms and risk of coronary heart disease

    PubMed Central

    Qian, Yufeng; Li, Peiwei; Zhang, Jinjie; Shi, Yu; Chen, Kun; Yang, Jun; Wu, Yihua; Ye, Xianhua

    2016-01-01

    Abstract Objectives: Risk of coronary heart disease (CHD) has been suggested to be associated with polymorphisms of peroxisome proliferator-activated receptors (PPARs), while the results were controversial. We aimed to systematically assess the association between PPAR polymorphisms and CHD risk. Methods: A case–control study with 446 subjects was conducted to evaluate the association between CHD risk and C161T polymorphism, which was of our special interest as this polymorphism showed different effects on risks of CHD and acute coronary syndrome (ACS). Meta-analyses were conducted to assess all PPAR polymorphisms. Either a fixed- or a random-effects model was adopted to estimate overall odds ratios (ORs). Results: In the case–control study, T allele carriers of C161T polymorphism were not significantly associated with CHD risk (Odds ratio (OR) = 0.74, 95% confidence interval (CI) 0.47–1.15, P = 0.19), while T allele carriers showed higher risk of ACS (OR = 1.63, 95% CI 1.00–2.65, P = 0.048). The meta-analysis indicated that compared with CC homozygous, T allele carriers had lower CHD risk (OR = 0.69, 95% CI 0.59–0.82, P < 0.001) but higher ACS risk (OR = 1.43, 95% CI 1.09–1.87, P = 0.010). Three other polymorphisms were also found to be significantly associated with CHD risk under dominant model: PPAR-alpha intron 7G/C polymorphism (CC+GC vs GG, OR 1.42, 95% CI 1.13–1.78, P = 0.003), L162V polymorphism (VV+LV vs LL, OR 0.74, 95% CI 0.56–0.97, P = 0.031), and PPAR-delta +294T/C polymorphism (CC+TC vs TT, OR 1.51, 95% CI 1.12–2.05, P = 0.007). Conclusions: The results suggested that PPAR-alpha intron 7G/C and L162V, PPAR-delta +294T/C and PPAR-gamma C161T polymorphisms could affect CHD susceptibility, and C161T polymorphism might have different effects on CHD and ACS. PMID:27512842

  15. Phosphorylation of peroxisome proliferator-activated receptor alpha in rat Fao cells and stimulation by ciprofibrate.

    PubMed

    Passilly, P; Schohn, H; Jannin, B; Cherkaoui Malki, M; Boscoboinik, D; Dauça, M; Latruffe, N

    1999-09-15

    The basic mechanism(s) by which peroxisome proliferators activate peroxisome proliferator-activated receptors (PPARs) is (are) not yet fully understood. Given the diversity of peroxisome proliferators, several hypotheses of activation have been proposed. Among them is the notion that peroxisome proliferators could activate PPARs by changing their phosphorylation status. In fact, it is well known that several members of the nuclear hormone receptor superfamily are regulated by phosphorylation. In this report, we show that the rat Fao hepatic-derived cell line, known to respond to peroxisome proliferators, exhibited a high content of PPARalpha. Alkaline phosphatase treatment of Fao cell lysate as well as immunoprecipitation of PPARalpha from cells prelabeled with [32P] orthophosphate clearly showed that PPARalpha is indeed a phosphoprotein in vivo. Moreover, treatment of rat Fao cells with ciprofibrate, a peroxisome proliferator, increased the phosphorylation level of the PPARalpha. In addition, treatment of Fao cells with phosphatase inhibitors (okadaic acid and sodium orthovanadate) decreased the activity of ciprofibrate-induced peroxisomal acyl-coenzyme A oxidase, an enzyme encoded by a PPARalpha target gene. Our results suggest that the gene expression controlled by peroxisome proliferators could be mediated in part by a modulation of the PPARalpha effect via a modification of the phosphorylation level of this receptor.

  16. Y-12 Alpha Calutron

    SciTech Connect

    2011-09-23

    The Alpha Calutron video shows the world's only Alpha Calutron magnets located in Building 9731 at the Y-12 National Security Complex, the first building completed on the site early in 1943. The calutrons were used to separate the first isotopes other than uranium.

  17. ALPHA CONTAMINATION MONITORING

    DTIC Science & Technology

    This project was conducted to determine the alpha hazard existing in the vicinity of the missile launch pad following the destruction of a missile ...were used for plutonium particle collection. Because all warhead-carrying missiles were properly launched after Project 2.3 was approved, no alpha contamination data was obtained.

  18. Event counting alpha detector

    DOEpatents

    Bolton, Richard D.; MacArthur, Duncan W.

    1996-01-01

    An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.

  19. Event counting alpha detector

    DOEpatents

    Bolton, R.D.; MacArthur, D.W.

    1996-08-27

    An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

  20. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  1. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  2. Alpha-particle diagnostics

    SciTech Connect

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  3. Chaperone-like activities of {alpha}-synuclein: {alpha}-Synuclein assists enzyme activities of esterases

    SciTech Connect

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo . E-mail: ywryu@ajou.ac.kr; Doohun Kim, T. . E-mail: doohunkim@ajou.ac.kr

    2006-08-11

    {alpha}-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of {alpha}-synuclein has not yet been known. Here we have shown that {alpha}-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of {alpha}-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with {alpha}-synuclein. Our results indicate that {alpha}-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo.

  4. Reexamination of the {alpha}-{alpha}''fishbone'' potential

    SciTech Connect

    Day, J. P.; McEwen, J. E.; Elhanafy, M.; Smith, E.; Woodhouse, R.; Papp, Z.

    2011-09-15

    The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the {alpha}-{alpha} fishbone potential by simultaneously fitting to two-{alpha} resonance energies, experimental phase shifts, and three-{alpha} binding energies. We found that, essentially, a simple Gaussian can provide a good description of two-{alpha} and three-{alpha} experimental data without invoking three-body potentials.

  5. Alpha-tocopherol inhibits pore formation in oxidized bilayers

    NASA Astrophysics Data System (ADS)

    Boonnoy, Phansiri; Karttunen, Mikko; Wong-ekkabut, Jirasak

    In biological membranes, alpha-tocopherols ({\\alpha}-toc; vitamin E) protect polyunsaturated lipids from free radicals. Although the interactions of {\\alpha}-toc with non-oxidized lipid bilayers have been studied, their on oxidized bilayers remain unknown. In this study, atomistic molecular dynamics (MD) simulations of oxidized lipid bilayers were performed with varying concentrations of {\\alpha}-toc. Bilayers with 1-palmitoyl-2-lauroyl-sn-glycero-3-phosphocholine (PLPC) lipids and its aldehyde derivatives at 1:1 ratio were studied. Our simulations show that oxidized lipids self-assemble into aggregates with a water pore rapidly developing across the lipid bilayer. The free energy of transporting an {\\alpha}-toc molecule in a lipid bilayer suggests that {\\alpha}-tocs can passively adsorb into the bilayer. When {\\alpha}-toc molecules were present at low concentrations in bilayers containing oxidized lipids, the formation of water pores was slowed down. At high {\\alpha}-toc concentra-tions, no pores were observed. Based on the simulations, we propose that the mechanism of how {\\alpha}-toc inhibits pore formation in bilayers with oxidized lipids is the follow-ing: {\\alpha}-tocs trap the polar groups of the oxidized lipids at the membrane-water interface resulting in a decreased probability for the oxidized lipids to reach contact with the two leaflets and initiate pore formation. This demon-strates that {\\alpha}-toc molecules not only protect the bilayer from oxidation but also help to stabilize the bilayer after lipid peroxidation occurs. These results will help in de-signing more efficient molecules to protect membranes from oxidative stress.

  6. Neuroprotection by Alpha 2-Adrenergic Agonists in Cerebral Ischemia

    PubMed Central

    Zhang, Yonghua; Kimelberg, Harold K.

    2005-01-01

    Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury. PMID:18369397

  7. Aldehyde oxidase 1 is highly abundant in hepatic steatosis and is downregulated by adiponectin and fenofibric acid in hepatocytes in vitro

    SciTech Connect

    Neumeier, Markus; Weigert, Johanna; Schaeffler, Andreas; Weiss, Thomas S.; Schmidl, Christian; Buettner, Roland; Bollheimer, Cornelius; Aslanidis, Charalampos; Schoelmerich, Juergen; Buechler, Christa . E-mail: christa.buechler@klinik.uni-regensburg.de

    2006-11-24

    Adiponectin protects the liver from steatosis caused by obesity or alcohol and therefore the influence of adiponectin on human hepatocytes was analyzed. GeneChip experiments indicated that recombinant adiponectin downregulates aldehyde oxidase 1 (AOX1) expression and this was confirmed by real-time RT-PCR and immunoblot. AOX1 is a xenobiotic metabolizing protein and produces reactive oxygen species (ROS), that promote cell damage and fibrogenesis. Adiponectin and fenofibric acid activate peroxisome proliferator-activated receptor-{alpha} (PPAR-{alpha}) and both suppress AOX1 protein and this is blocked by the PPAR-{alpha} antagonist RU486. Obesity is associated with low adiponectin, reduced hepatic PPAR-{alpha} activity and fatty liver, and AOX1 was found induced in the liver of rats on a high-fat diet when compared to controls. Free fatty acids and leptin, that are elevated in obesity, failed to upregulate AOX1 in vitro. The current data indicate that adiponectin reduces AOX1 by activating PPAR-{alpha} whereas fatty liver disease is associated with elevated hepatic AOX1. High AOX1 may be associated with higher ROS well described to induce fibrogenesis in liver tissue but may also influence drug metabolism and activity.

  8. Alpha and beta thalassemia.

    PubMed

    Muncie, Herbert L; Campbell, James

    2009-08-15

    The thalassemias are a group of inherited hematologic disorders caused by defects in the synthesis of one or more of the hemoglobin chains. Alpha thalassemia is caused by reduced or absent synthesis of alpha globin chains, and beta thalassemia is caused by reduced or absent synthesis of beta globin chains. Imbalances of globin chains cause hemolysis and impair erythropoiesis. Silent carriers of alpha thalassemia and persons with alpha or beta thalassemia trait are asymptomatic and require no treatment. Alpha thalassemia intermedia, or hemoglobin H disease, causes hemolytic anemia. Alpha thalassemia major with hemoglobin Bart's usually results in fatal hydrops fetalis. Beta thalassemia major causes hemolytic anemia, poor growth, and skeletal abnormalities during infancy. Affected children will require regular lifelong blood transfusions. Beta thalassemia intermedia is less severe than beta thalassemia major and may require episodic blood transfusions. Transfusion-dependent patients will develop iron overload and require chelation therapy to remove the excess iron. Bone marrow transplants can be curative for some children with beta thalassemia major. Persons with thalassemia should be referred for preconception genetic counseling, and persons with alpha thalassemia trait should consider chorionic villus sampling to diagnose infants with hemoglobin Bart's, which increases the risk of toxemia and postpartum bleeding. Persons with the thalassemia trait have a normal life expectancy. Persons with beta thalassemia major often die from cardiac complications of iron overload by 30 years of age.

  9. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  10. Isotope alpha irradiators for radiobiological research

    NASA Technical Reports Server (NTRS)

    Drasher, V.; Dudryashov, Y. I.; Meshcheryakova, O. M.; Marennyy, A. M.

    1974-01-01

    Radiation absorption is considered for the case where the isotopic alpha source, in the form of a flat disk, and the axially located biological object, also in the form of a flat disk, are separated by a layer of gas. Frequently the biological object is covered by a polymer film with minimal thickness for protection against radioactive contaminants. The energy of the alpha particle is calculated at the place where the absorbed dose is determined, taking into account loss of energy in air, film and tissue. The level of energy is determined by the specific loss in energy of the alpha particle arriving from the point source to a point at the biological subject.

  11. Peroxisome proliferator-activated receptors and retinoid X receptor-alpha in term human gestational tissues: tissue specific and labour-associated changes.

    PubMed

    Holdsworth-Carson, S J; Permezel, M; Riley, C; Rice, G E; Lappas, M

    2009-02-01

    Peroxisome proliferator-activated receptors (PPARs) and their transcriptional partner retinoid X receptor (RXR) are involved in transcriptionally regulating the events that contribute to the control of parturition in humans. Definitive data, however, are lacking with respect to PPAR and RXR expression and activation during term labour in human gestational tissues. The aim of this study, therefore, was to identify tissue and labour-associated changes of PPAR isoforms (alpha, delta and gamma) and RXRalpha in placenta, amnion and choriodecidua. Gestational tissues from term non-labouring women were used for immunohistochemistry localisation and confirmation studies of PPAR isoforms (alpha, delta and gamma) and RXRalpha. Human gestational tissues were then collected from term women not-in-labour (NIL) (elective Caesarean section), in-labour (IL) (emergency Caesarean section) and post-labour (PL) (normal vaginal delivery). Quantitative RT-PCR (qRT-PCR) and Western blotting were employed to study mRNA and protein expression profiles respectively. Significantly higher mRNA expression was observed in placental tissues taken from women in labour (PPARdelta, PPARgamma and RXRalpha). Elevated PPARdelta and RXRalpha mRNA expression in fetal membranes was also associated with being in labour. In contrast, PPARgamma mRNA in the amnion was decreased with term PL compared to NIL. In placenta, PPARalpha, PPARdelta and PPARgamma protein expression was significantly increased in the IL group compared to the NIL or PL group. There was no significant difference in PPAR or RXRalpha protein expression in both amnion and choriodecidua between the three labour groups. PPAR (alpha and gamma) transcription factor DNA binding activity was found to decline IL compared to NIL and PL in the placenta. PPARdelta DNA binding activity also decreased in the choriodecidua IL compared to PL. In amnion, PPARalpha DNA binding activity was found to be higher IL compared to NIL. In conclusion, term human

  12. Alpha One Foundation

    MedlinePlus

    Languages French (Francais) German (Deutsch) Italian (Italiano) Spanish (Español) Portuguese (Portugues) Swedish (Svenska) Donate One Time Monthly Keep In Touch | About Us | Contact Us | What is the Alpha-1 ...

  13. alpha2-Adrenoreceptor antagonists.

    PubMed

    Mayer, P; Imbert, T

    2001-06-01

    A review of the literature relating to the therapeutic potential of alpha2-adrenoceptor antagonists published between 1990 and 2000 is presented. Although extensively studied since the early 1970s in a wide spectrum of therapeutic applications, the distinction of alpha2-adrenoceptor subtypes and some emerging evidence concerning new applications in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, obesity and schizophrenia, have refreshed an interest in this class of agents.

  14. Coaching the alpha male.

    PubMed

    Ludeman, Kate; Erlandson, Eddie

    2004-05-01

    Highly intelligent, confident, and successful, alpha males represent about 70% of all senior executives. Natural leaders, they willingly take on levels of responsibility most rational people would find overwhelming. But many of their quintessential strengths can also make alphas difficult to work with. Their self-confidence can appear domineering. Their high expectations can make them excessively critical. Their unemotional style can keep them from inspiring their teams. That's why alphas need coaching to broaden their interpersonal tool kits while preserving their strengths. Drawing from their experience coaching more than 1,000 senior executives, the authors outline an approach tailored specifically for the alpha. Coaches get the alpha's attention by inundating him with data from 360-degree feedback presented in ways he will find compelling--both hard-boiled metrics and vivid verbatim comments from colleagues about his strengths and weaknesses. A 360-degree assessment is a wake-up call for most alphas, providing undeniable proof that their behavior doesn't work nearly as well as they think it does. That paves the way for a genuine commitment to change. In order to change, the alpha must venture into unfamiliar--and often uncomfortable--psychological territory. He must admit vulnerability, accept accountability not just for his own work for others', connect with his underlying emotions, learn to motivate through a balance of criticism and validation, and become aware of unproductive behavior patterns. The goal of executive coaching is not simply to treat the alpha as an individual problem but to improve the entire team dynamic. Initial success creates an incentive to persevere, and the virtuous cycle reverberates throughout the entire organization.

  15. Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development.

    PubMed

    Abbott, Barbara D

    2009-06-01

    The peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily and there are three primary subtypes, PPARalpha, beta, and gamma. These receptors regulate important physiological processes that impact lipid homeostasis, inflammation, adipogenesis, reproduction, wound healing, and carcinogenesis. These nuclear receptors have important roles in reproduction and development and their expression may influence the responses of an embryo exposed to PPAR agonists. PPARs are relevant to the study of the biological effects of the perfluorinated alkyl acids as these compounds, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), activate PPARalpha. Exposure of the rodent to PFOA or PFOS during gestation results in neonatal deaths, developmental delay and growth deficits. Studies in PPARalpha knockout mice demonstrate that the developmental effects of PFOA, but not PFOS, depend on expression of PPARalpha. This review provides an overview of PPARalpha, beta, and gamma protein and mRNA expression during mouse, rat, and human development. The review presents the results from many published studies and the information is organized by organ system and collated to show patterns of expression at comparable developmental stages for human, mouse, and rat. The features of the PPAR nuclear receptor family are introduced and what is known or inferred about their roles in development is discussed relative to insights from genetically modified mice and studies in the adult.

  16. [alpha-Neurotoxins and alpha-conotoxins--nicotinic cholinoreceptor blockers].

    PubMed

    Utkin, Iu N; Kasheverov, I E; Tsetlin, V I

    1999-11-01

    The review is devoted to the competitive blockers of different nicotinic acetylcholine receptors, alpha-neurotoxins from snake venoms, and alpha-conotoxins from marine snails of the Conidae family. The relationship between the structure and function of these toxins is discussed. Recent data on the mechanism of alpha-neurotoxin and alpha-conotoxin interaction with the nicotinic acetylcholine receptor are presented.

  17. Alpha Particle Diagnostic

    SciTech Connect

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  18. Nonalcoholic steatohepatitis (NASH) in ob/ob mice treated with yo jyo hen shi ko (YHK): effects on peroxisome proliferator-activated receptors (PPARs) and microsomal triglyceride transfer protein (MTP).

    PubMed

    Stefano, José Tadeu; de Oliveira, Claudia Pinto Marques Souza; Corrêa-Giannella, Maria Lúcia; de Lima, Vicência Mara Rodrigues; de Sá, Sandra Valéria; de Oliveira, Ellen Pierre; de Mello, Evandro Sobroza; Giannella-Neto, Daniel; Alves, Venâncio Avancini Ferreira; Carrilho, Flair José

    2007-12-01

    YHK has antioxidant properties, has a hypoglycemic effect, and may reduce plasma lipid levels. In this study, we examined the hepatic expression of PPAR-alpha and -gamma and MTP in ob/ob mice receiving or not receiving YHK. Ob/ob mice were assigned to receive oral YHK (20 mg/kg/day) fed solution (methionine/choline-deficient [MCD] diet+YHK group) or vehicle (MCD group) by gavage for 4 weeks. Liver fragments were collected for histologic examination and mRNA isolation. PPAR-alpha and -gamma and MTP gene expression was examined by RT-qPCR. YHK treatment was associated with NASH prevention, weight loss, and reduction of visceral fat and of serum concentrations of aminotransferases in comparison to the MCD group. YHK promoted an increment in PPAR-alpha and MTP and a decrement in PPAR-gamma mRNA contents. These findings suggest that modulation of PPAR-alpha and -gamma and MTP RNA expression may be implicated in the protective effect of YHK in experimental NASH, limiting hepatocyte lipid accumulation.

  19. Peroxisome proliferator-activated receptor-alpha and receptor-gamma activators prevent cardiac fibrosis in mineralocorticoid-dependent hypertension.

    PubMed

    Iglarz, Marc; Touyz, Rhian M; Viel, Emilie C; Paradis, Pierre; Amiri, Farhad; Diep, Quy N; Schiffrin, Ernesto L

    2003-10-01

    Peroxisome proliferator-activated receptor (PPAR) activation may prevent cardiac hypertrophy and inhibit production of endothelin-1 (ET-1), a hypertrophic agent. The aim of this in vivo study was to investigate the effects of PPAR activators on cardiac remodeling in DOCA-salt rats, a model overexpressing ET-1. Unilaterally nephrectomized 16-week-old Sprague-Dawley rats (Uni-Nx) were randomly divided into 4 groups: control rats, DOCA-salt, DOCA-salt+rosiglitazone (PPAR-gamma activator, 5 mg/kg per day), and DOCA-salt+fenofibrate (PPAR-alpha activator, 100 mg/kg per day). After 3 weeks of treatment, mean arterial blood pressure was significantly increased in DOCA-salt by 36 mm Hg. Mean arterial blood pressure was normalized by coadministration of rosiglitazone but not by fenofibrate. Both PPAR activators prevented cardiac fibrosis and abrogated the increase in prepro-ET-1 mRNA content in the left ventricle of DOCA-salt rats. Coadministration of rosiglitazone or fenofibrate failed to prevent thickening of left ventricle (LV) walls as measured by echocardiography and the increase in atrial natriuretic peptide mRNA levels. However, rosiglitazone and fenofibrate prevented the decrease in LV internal diameter and thus concentric remodeling of the LV found in DOCA-salt rats. Taken together, these data indicate a modulatory role of PPAR activators on cardiac remodeling in mineralocorticoid-induced hypertension, in part associated with decreased ET-1 production.

  20. Radiation Protection

    MedlinePlus

    ... EPA United States Environmental Protection Agency Search Search Radiation Protection Share Facebook Twitter Google+ Pinterest Contact Us Radiation Protection Document Library View and download EPA radiation ...

  1. Alpha irradiation modeling

    SciTech Connect

    Keeton, S C; Mount, M E

    1999-03-26

    With the end of the Cold War and the associated limitations imposed on the nuclear weapons stockpile by strategic arms treaties, much has changed in the stockpile stewardship program. Weapons that were originally designed for stockpile lives on the order of 15 to 20 years are now being evaluated for much longer periods: in some cases as much as 60 years. As such, issues that were once considered to be of no consequence are being reexamined. Among these is the extent of the radiation dose received by secondary organics over time that results from the intrinsic alpha source of the weapon components. This report describes the results of work performed to estimate the alpha radiation deposition in the organic components of an LLNL system at specific points in its stockpile life. Included are discussions of the development of the intrinsic time- and energy-dependent alpha source term per unit mass, estimation of the effective source and absorber material thicknesses, development of a simplified model for the total intrinsic alpha source term and energy deposition in the absorber, and the alpha radiation deposition in the organic components of a selected LLNL weapon.

  2. Reduced fat mass in rats fed a high oleic acid-rich safflower oil diet is associated with changes in expression of hepatic PPARalpha and adipose SREBP-1c-regulated genes.

    PubMed

    Hsu, Shan-Ching; Huang, Ching-Jang

    2006-07-01

    PPARs and sterol regulatory element-binding protein-1c (SREPB-1c) are fatty acid-regulated transcription factors that control lipid metabolism at the level of gene expression. This study compared a high oleic acid-rich safflower oil (ORSO) diet and a high-butter diet for their effect on adipose mass and expressions of genes regulated by PPAR and SREPB-1c in rats. Four groups of Wistar rats were fed 30S (30% ORSO), 5S (5% ORSO), 30B (29% butter + 1% ORSO), or 5B (4% butter plus 1% ORSO) diets for 15 wk. Compared with the 30B group, the 30S group had less retroperitoneal white adipose tissue (RWAT) mass and lower mRNA expressions of lipoprotein lipase, adipocyte fatty acid-binding protein, fatty acid synthase, acetyl CoA carboxylase, and SREBP-1c in the RWAT, higher mRNA expressions of acyl CoA oxidase, carnitine palmitoyl-transferase 1A, fatty acid binding protein, and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in the liver (P < 0.05). The 18:2(n-6) and 20:4(n-6) contents in the liver and RWAT of the 30S group were >2 fold those of the 30B group (P < 0.05). These results suggested that the smaller RWAT mass in rats fed the high-ORSO diet might be related to the higher tissue 18:2(n-6) and 20:4(n-6). This in turn could upregulate the expressions of fatty acid catabolic genes through the activation of PPARalpha in the liver and downregulate the expressions of lipid storage and lipogenic gene through the suppression of SREBP-1c in the RWAT.

  3. 40 CFR 721.10580 - Poly[oxy (methyl - 1,2 - ethanediyl)], alpha, alpha′ - [1,4 - cyclohexanediylbis(methylene)] bis...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly , alpha, alphaâ² - bis [omega... Significant New Uses for Specific Chemical Substances § 721.10580 Poly , alpha, alpha′ - bis [omega - (2... substance identified as poly , alpha, alpha′ - bis [omega - (2 - aminomethylethoxy) - (PMN P-10-452; CAS...

  4. 40 CFR 721.10580 - Poly[oxy(methyl-1,2- ethanediyl)], alpha, alpha′-[1,4- cyclohexanediylbis(methylene)] bis [omega...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly , alpha, alphaâ²- bis [omega-(2... Specific Chemical Substances § 721.10580 Poly , alpha, alpha′- bis [omega-(2-aminomethylethoxy)-. (a... poly , alpha, alpha′- bis [omega-(2- aminomethylethoxy)- (PMN P-10-452; CAS No. 1220986-58-2)...

  5. ALPHA MIS: Reference manual

    SciTech Connect

    Lovin, J.K.; Haese, R.L.; Heatherly, R.D.; Hughes, S.E.; Ishee, J.S.; Pratt, S.M.; Smith, D.W.

    1992-02-01

    ALPHA is a powerful and versatile management information system (MIS) initiated and sponsored and by the Finance and Business Management Division of Oak Ridge National Laboratory, who maintain and develop it in concert with the Business Systems Division for its Information Center. A general-purpose MIS, ALPHA allows users to access System 1022 and System 1032 databases to obtain and manage information. From a personal computer or a data terminal, Energy Systems employees can use ALPHA to control their own report reprocessing. Using four general commands (Database, Select, Sort, and Report) they can (1) choose a mainframe database, (2) define subsets within it, (3) sequentially order a subset by one or more variables, and (4) generate a report with their own or a canned format.

  6. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  7. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  8. Scalable encryption using alpha rooting

    NASA Astrophysics Data System (ADS)

    Wharton, Eric J.; Panetta, Karen A.; Agaian, Sos S.

    2008-04-01

    Full and partial encryption methods are important for subscription based content providers, such as internet and cable TV pay channels. Providers need to be able to protect their products while at the same time being able to provide demonstrations to attract new customers without giving away the full value of the content. If an algorithm were introduced which could provide any level of full or partial encryption in a fast and cost effective manner, the applications to real-time commercial implementation would be numerous. In this paper, we present a novel application of alpha rooting, using it to achieve fast and straightforward scalable encryption with a single algorithm. We further present use of the measure of enhancement, the Logarithmic AME, to select optimal parameters for the partial encryption. When parameters are selected using the measure, the output image achieves a balance between protecting the important data in the image while still containing a good overall representation of the image. We will show results for this encryption method on a number of images, using histograms to evaluate the effectiveness of the encryption.

  9. Peroxisome proliferator-activated receptor (PPAR) gene profiling uncovers insulin-like growth factor-1 as a PPARalpha target gene in cardioprotection.

    PubMed

    el Azzouzi, Hamid; Leptidis, Stefanos; Bourajjaj, Meriem; Armand, Anne-Sophie; van der Nagel, Roel; van Bilsen, Marc; Da Costa Martins, Paula A; De Windt, Leon J

    2011-04-22

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-activated transcription factors and consist of the three isoforms, PPARα, PPARβ/δ, and PPARγ. Considerable evidence indicates the importance of PPARs in cardiovascular lipid homeostasis and diabetes, yet the isoform-dependent cardiac target genes remain unknown. Here, we constructed murine ventricular clones allowing stable expression of siRNAs to achieve specifically knockdown for each of the PPAR isoforms. By combining gene profiling and computational peroxisome proliferator response element analysis following PPAR isoform activation in normal versus PPAR isoform-deficient cardiomyocyte-like cells, we have, for the first time, determined PPAR isoform-specific endogenous target genes in the heart. Electromobility shift and chromatin immunoprecipitation assays demonstrated the existence of an evolutionary conserved peroxisome proliferator response element consensus-binding site in an insulin-like growth factor-1 (igf-1) enhancer. In line, Wy-14643-mediated PPARα activation in the wild-type mouse heart resulted in up-regulation of igf-1 transcript abundance and provided protection against cardiomyocyte apoptosis following ischemia/reperfusion or biomechanical stress. Taken together, these data confirm igf-1 as an in vivo target of PPARα and the involvement of a PPARα/IGF-1 signaling pathway in the protection of cardiomyocytes under ischemic and hemodynamic loading conditions.

  10. Association between peroxisome proliferator-activated receptor-alpha, delta, and gamma polymorphisms and risk of coronary heart disease: A case-control study and meta-analysis.

    PubMed

    Qian, Yufeng; Li, Peiwei; Zhang, Jinjie; Shi, Yu; Chen, Kun; Yang, Jun; Wu, Yihua; Ye, Xianhua

    2016-08-01

    Risk of coronary heart disease (CHD) has been suggested to be associated with polymorphisms of peroxisome proliferator-activated receptors (PPARs), while the results were controversial. We aimed to systematically assess the association between PPAR polymorphisms and CHD risk. A case-control study with 446 subjects was conducted to evaluate the association between CHD risk and C161T polymorphism, which was of our special interest as this polymorphism showed different effects on risks of CHD and acute coronary syndrome (ACS). Meta-analyses were conducted to assess all PPAR polymorphisms. Either a fixed- or a random-effects model was adopted to estimate overall odds ratios (ORs). In the case-control study, T allele carriers of C161T polymorphism were not significantly associated with CHD risk (Odds ratio (OR) = 0.74, 95% confidence interval (CI) 0.47-1.15, P = 0.19), while T allele carriers showed higher risk of ACS (OR = 1.63, 95% CI 1.00-2.65, P = 0.048). The meta-analysis indicated that compared with CC homozygous, T allele carriers had lower CHD risk (OR = 0.69, 95% CI 0.59-0.82, P < 0.001) but higher ACS risk (OR = 1.43, 95% CI 1.09-1.87, P = 0.010). Three other polymorphisms were also found to be significantly associated with CHD risk under dominant model: PPAR-alpha intron 7G/C polymorphism (CC+GC vs GG, OR 1.42, 95% CI 1.13-1.78, P = 0.003), L162V polymorphism (VV+LV vs LL, OR 0.74, 95% CI 0.56-0.97, P = 0.031), and PPAR-delta +294T/C polymorphism (CC+TC vs TT, OR 1.51, 95% CI 1.12-2.05, P = 0.007). The results suggested that PPAR-alpha intron 7G/C and L162V, PPAR-delta +294T/C and PPAR-gamma C161T polymorphisms could affect CHD susceptibility, and C161T polymorphism might have different effects on CHD and ACS.

  11. Protection against septic shock and suppression of tumor necrosis factor alpha and nitric oxide production on macrophages and microglia by a standard aqueous extract of Mangifera indica L. (VIMANG). Role of mangiferin isolated from the extract.

    PubMed

    Garrido, Gabino; Delgado, René; Lemus, Yeny; Rodríguez, Janet; García, Dagmar; Núñez-Sellés, Alberto J

    2004-08-01

    The present study illustrates the effects of a standard aqueous extract, used in Cuba under the brand name of VIMANG, from the stem bark of Mangifera indica L. on the production of tumor necrosis factor alpha (TNFalpha) and nitric oxide (NO) in in vivo and in vitro experiments. In vivo was determined by the action of the extract and its purified glucosylxanthone (mangiferin) on TNFalpha in a murine model of endotoxic shock using Balb/c mice pre-treated with lipopolysaccharide (LPS) 0.125 mg kg(-1), i.p. In vitro, M. indica extract and mangiferin were tested on TNFalpha and NO production in activated macrophages (RAW264.7 cell line) and microglia (N9 cell line) stimulated with LPS (10ng ml(-1)) and interferon gamma (IFNgamma, 2U ml(-1)). M. indica extract reduced dose-dependently TNFalpha production in the serum (ED50 = 64.5 mg kg(-1)) and the TNFalpha mRNA expression in the lungs and livers of mice. Mangiferin also inhibited systemic TNFalpha at 20 mg kg(-1). In RAW264.7, the extract inhibited TNFalpha (IC50 = 94.1 microg ml(-1)) and NO (IC50 = 64.4 microg ml(-1)). In microglia the inhibitions of the extract were IC50 = 76.0 microg ml(-1) (TNFalpha) and 84.0 microg ml(-1) (NO). These findings suggest that the anti-inflammatory response observed during treatment with M. indica extract must be related with inhibition of TNFalpha and NO production. Mangiferin, a main component in the extract, is involved in these effects. The TNFalpha and NO inhibitions by M. indica extract and mangiferin on endotoxic shock and microglia are reported here for the first time.

  12. From Alpha to Omega

    ERIC Educational Resources Information Center

    Czaja, Paul Clement

    2006-01-01

    The Alpha point of the authors' life as a Montessori educator began in 1959, when he was a graduate student studying philosophy at Fordham University in the Bronx, New York. While studying the works of the great American philosopher William James, the author came across the writings of Maria Montessori and immediately became captivated by her…

  13. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  14. Alpha Antihydrogen Experiment

    NASA Astrophysics Data System (ADS)

    Fujiwara, M. C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Cesar, C. L.; Fajans, J.; Friesen, T.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.

    2011-12-01

    ALPHA is an experiment at CERN, whose ultimate goal is to perform a precise test of CPT symmetry with trapped antihydrogen atoms. After reviewing the motivations, we discuss our recent progress toward the initial goal of stable trapping of antihydrogen, with some emphasis on particle detection techniques.

  15. From Alpha to Omega

    ERIC Educational Resources Information Center

    Czaja, Paul Clement

    2006-01-01

    The Alpha point of the authors' life as a Montessori educator began in 1959, when he was a graduate student studying philosophy at Fordham University in the Bronx, New York. While studying the works of the great American philosopher William James, the author came across the writings of Maria Montessori and immediately became captivated by her…

  16. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  17. Radial-velocity variations in Alpha Ori, Alpha Sco, and Alpha Her

    SciTech Connect

    Smith, M.A.; Patten, B.M.; Goldberg, L. Computer Sciences Corp., Seabrook, MD Iowa State Univ., Ames )

    1989-12-01

    Radial-velocity observations of Alpha Ori, Alpha Sco A, and Alpha Her A are used to study radial-velocity periodicities in M supergiants. The data refer to several metallic lines in the H-alpha region and to H-alpha itself. It is shown that Alpha Ori and Alpha Sco A have cycle lengths of about 1 yr and semiamplitudes of 2 km/s. It is suggested that many semiregular red supergiant varibles such as Alpha Ori may be heading toward chaos. All three stars show short-term stochastic flucutations with an amplitude of 1-2 km/s. It is found that the long-term variability of H-alpha velocities may be a consequence of intermittent failed ejections. 58 refs.

  18. Pre-clinical immunogenicity of human papillomavirus alpha-7 and alpha-9 major capsid proteins

    PubMed Central

    Bissett, Sara L.; Mattiuzzo, Giada; Draper, Eve; Godi, Anna; Wilkinson, Dianna E.; Minor, Philip; Page, Mark; Beddows, Simon

    2014-01-01

    Human papillomavirus (HPV) vaccines confer protection against the oncogenic genotypes HPV16 and HPV18 through the generation of type-specific neutralizing antibodies raised against the constituent virus-like particles (VLP) based upon the major capsid proteins (L1) of these genotypes. The vaccines also confer a degree of cross-protection against some genetically related types from the Alpha-9 (HPV16-like: HPV31, HPV33, HPV35, HPV52, HPV58) and Alpha-7 (HPV18-like: HPV39, HPV45, HPV59, HPV68) species groups. The mechanism of cross-protection is unclear but may involve antibodies capable of recognizing shared inter-genotype epitopes. The relationship(s) between the genetic and antigenic diversity of the L1 protein, particularly for non-vaccine genotypes, is poorly understood. We carried out a comprehensive evaluation of the immunogenicity of L1 VLP derived from genotypes within the Alpha-7 and Alpha-9 species groups in New Zealand White rabbits and used L1L2 pseudoviruses as the target antigens in neutralization assays. The majority antibody response against L1 VLP was type-specific, as expected, but several instances of robust cross-neutralization were nevertheless observed including between HPV33 and HPV58 within the Alpha-9 species and between HPV39, HPV59 and HPV68 in the Alpha-7 species. Immunization with an experimental tetravalent preparation comprising VLP based upon HPV16, HPV18, HPV39 and HPV58 was capable of generating neutralizing antibodies against all the Alpha-7 and Alpha-9 genotypes. Competition of HPV31 and HPV33 cross-neutralizing antibodies in the tetravalent sera confirmed that these antibodies originated from HPV16 and HPV58 VLP, respectively, and suggested that they represent minority specificities within the antibody repertoire generated by the immunizing antigen. These data improve our understanding of the antigenic diversity of the L1 protein per se and may inform the rational design of a next generation vaccine formulation based upon

  19. 40 CFR 721.10121 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly , .alpha.-methyl-.omega.-(4... Specific Chemical Substances § 721.10121 Poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched. (a... poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched (PMN P-05-766; CAS No. 858944-25-9)...

  20. 40 CFR 721.10121 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Poly , .alpha.-methyl-.omega.-(4... Specific Chemical Substances § 721.10121 Poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched. (a... poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched (PMN P-05-766; CAS No. 858944-25-9)...

  1. 40 CFR 721.10121 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Poly , .alpha.-methyl-.omega.-(4... Specific Chemical Substances § 721.10121 Poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched. (a... poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched (PMN P-05-766; CAS No. 858944-25-9)...

  2. 40 CFR 721.10121 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly , .alpha.-methyl-.omega.-(4... Specific Chemical Substances § 721.10121 Poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched. (a... poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched (PMN P-05-766; CAS No. 858944-25-9)...

  3. 40 CFR 721.10121 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched (PMN P-05-766; CAS No. 858944-25-9) is... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Poly , .alpha.-methyl-.omega.-(4... Specific Chemical Substances § 721.10121 Poly , .alpha.-methyl-.omega.-(4-nonylphenoxy)-, branched. (a...

  4. Mesenchymal stromal cells expressing ErbB-2/neu elicit protective antibreast tumor immunity in vivo, which is paradoxically suppressed by IFN-gamma and tumor necrosis factor-alpha priming.

    PubMed

    Romieu-Mourez, Raphaëlle; François, Moïra; Abate, Amanda; Boivin, Marie-Noëlle; Birman, Elena; Bailey, Dana; Bramson, Jonathan L; Forner, Kathy; Young, Yoon-Kow; Medin, Jeffrey A; Galipeau, Jacques

    2010-10-15

    It is unknown whether mesenchymal stromal cells (MSC) can regulate immune responses targeting tumor autoantigens of low immunogenicity. We tested here whether immunization with MSC could break immune tolerance towards the ErbB-2/HER-2/neu tumor antigen and the effects of priming with IFN-γ and tumor necrosis factor-α (TNF-α) on this process. BALB/c- and C57BL/6-derived MSC were lentivirally transduced to express a kinase-inactive rat neu mutant (MSC/Neu). Immunization of BALB/c mice with nontreated or IFN-γ-primed allogeneic or syngeneic MSC/Neu induced similar levels of anti-neu antibody titers; however, only syngeneic MSC/Neu induced protective neu-specific CD8(+) T cell responses. Compared to immunization with nontreated or IFN-γ-primed syngeneic MSC/Neu, the number of circulating neu-specific CD8(+) T cells and titers of anti-neu antibodies were observed to be decreased after immunizations with IFN-γ- plus TNF-α-primed MSC/Neu. In addition, syngeneic MSC/Neu seemed more efficient than IFN-γ-primed MSC/Neu at inducing a protective therapeutic antitumor immune response resulting in the regression of transplanted neu-expressing mammary tumor cells. In vitro antigen-presenting cell assays performed with paraformaldehyde-fixed or live MSC showed that priming with IFN-γ plus TNF-α, compared to priming with IFN-γ alone, increased antigen presentation as well as the production of immunosuppressive factors. These data suggest that whereas MSC could effectively serve as antigen-presenting cells to induce immune responses aimed at tumor autoantigens, these functions are critically regulated by IFN-γ and TNF-α.

  5. Lack of TNF-alpha receptor type 2 protects motor neurons in a cellular model of amyotrophic lateral sclerosis and in mutant SOD1 mice but does not affect disease progression.

    PubMed

    Tortarolo, Massimo; Vallarola, Antonio; Lidonnici, Dario; Battaglia, Elisa; Gensano, Francesco; Spaltro, Gabriella; Fiordaliso, Fabio; Corbelli, Alessandro; Garetto, Stefano; Martini, Elisa; Pasetto, Laura; Kallikourdis, Marinos; Bonetto, Valentina; Bendotti, Caterina

    2015-10-01

    Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies.

  6. [A peptide (a magnesium salt of N-acetyl (alpha, beta)-aspartyl-glutamic acid). Demonstration of the protection against local cellular destruction induced by in situ complement activation].

    PubMed

    Chevance, L G; Etiévant, M

    1986-01-01

    A peptide of simple chemical structure has demonstrated its efficiency in preventing the large cellular destruction that locally activated complement produced on the ciliary epithelium of the respiratory tract. Previously (1980), it was demonstrated by the authors that these cellular destructions after sensitization of the epithelium was due to the local activation of the complement (alternate pathway) by immune complexes with secretory IgA. The cellular protection afforded by Naaga was demonstrated by the persistance of a normal ciliary beating when the sensitized mucosa is in contact with the antigen; by electron microscopic studies both in transmission and scanning E.M. contrasting with the complete cellular destructions of the epithelium which appear obvious. The protection appear complete when Naaga (56 mM) is present in the testing solution (or instillated before the test). By in vitro human complement studies; study of the cytolytic sequence inhibition for the classical pathway 1,5.10(-3) M of Naaga produces a 50% inhibition of 1 H50 hemolytic unit. For the alternate pathway, the same inhibition is observed with 1,75.10(-3) M of Naaga; by two-dimensions immuno-electrophoresis: a dilution of 1/2 of C3 in Naaga reduced to 1/10 of its normal value the C3b profile; the "Rockets" technique demonstrated that the same 1/2 dilution of Naaga in complement prevents the clivage of factor B and that this peptide acts by inhibition of the alternate C3 convertase formation (see illustrations). If we consider the subject of this study i.e. the upper respiratory tract mucosa and knowing the physiopathological importance of the muco ciliary complex in preventing dust, microbs and other particulate foreign materiel to penetrate the epithelium, the therapeutic importance of such a simple non toxic and unharmful chemical compound must be stressed.

  7. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors.

    PubMed

    Corton, J Christopher; Apte, Udayan; Anderson, Steven P; Limaye, Pallavi; Yoon, Lawrence; Latendresse, John; Dunn, Corrie; Everitt, Jeffrey I; Voss, Kenneth A; Swanson, Cynthia; Kimbrough, Carie; Wong, Jean S; Gill, Sarjeet S; Chandraratna, Roshantha A S; Kwak, Mi-Kyoung; Kensler, Thomas W; Stulnig, Thomas M; Steffensen, Knut R; Gustafsson, Jan-Ake; Mehendale, Harihara M

    2004-10-29

    The obesity epidemic in industrialized countries is associated with increases in cardiovascular disease (CVD) and certain types of cancer. In animal models, caloric restriction (CR) suppresses these diseases as well as chemical-induced tissue damage. These beneficial effects of CR overlap with those altered by agonists of nuclear receptors (NR) under control of the fasting-responsive transcriptional co-activator, peroxisome proliferator-activated co-activator 1alpha (PGC-1alpha). In a screen for compounds that mimic CR effects in the liver, we found statistically significant overlaps between the CR transcript profile in wild-type mice and the profiles altered by agonists of lipid-activated NR, including peroxisome proliferator-activated receptor alpha (PPARalpha), liver X receptor, and their obligate heterodimer partner, retinoid X receptor. The overlapping genes included those involved in CVD (lipid metabolism and inflammation) and cancer (cell fate). Based on this overlap, we hypothesized that some effects of CR are mediated by PPARalpha. As determined by transcript profiling, 19% of all gene expression changes in wild-type mice were dependent on PPARalpha, including Cyp4a10 and Cyp4a14, involved in fatty acid omega-oxidation, acute phase response genes, and epidermal growth factor receptor but not increases in PGC-1alpha. CR protected the livers of wild-type mice from damage induced by thioacetamide, a liver toxicant and hepatocarcinogen. CR protection was lost in PPARalpha-null mice due to inadequate tissue repair. These results demonstrate that PPARalpha mediates some of the effects of CR and indicate that a pharmacological approach to mimicking many of the beneficial effects of CR may be possible.

  8. Summary of Alpha Particle Transport

    SciTech Connect

    Medley, S.S.; White, R.B.; Zweben, S.J.

    1998-08-19

    This paper summarizes the talks on alpha particle transport which were presented at the 5th International Atomic Energy Agency's Technical Committee Meeting on "Alpha Particles in Fusion Research" held at the Joint European Torus, England in September 1997.

  9. alpha-DNA II. Synthesis of unnatural alpha-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases.

    PubMed Central

    Morvan, F; Rayner, B; Imbach, J L; Thenet, S; Bertrand, J R; Paoletti, J; Malvy, C; Paoletti, C

    1987-01-01

    This paper describes for the first time the synthesis of alpha-oligonucleotides containing the four usual bases. Two unnatural hexadeoxyribonucleotides: alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)], consisting only of alpha-anomeric nucleotide units, were obtained by an improved phosphotriester method, in solution. Starting material was the four base-protected alpha-deoxyribonucleosides 3a-d. Pyrimidine alpha-deoxynucleosides 3a and 3b were prepared by self-anomerization reactions followed by selective deprotection of sugar hydroxyles, while the two purine alpha-deoxynucleosides 3c and 3d were prepared by glycosylation reactions. In the case of guanine alpha-nucleoside derivative a supplementary base-protecting group: N,N-diphenylcarbamoyl was introduced on O6-position in order to avoid side-reactions during oligonucleotide assembling. The hexadeoxynucleotide alpha-[d(CpApTpGpCpG)] was tested as substrate of selected endo- and exonucleases. In conditions where the natural corresponding beta-hexamer was completely degradated by nuclease S1 and calf spleen phosphodiesterase, the alpha-oligonucleotide remained almost intact. PMID:3575096

  10. HB Hillingdon [alpha46(CE4)Phe-->Val (alpha1 Or alpha2)]: a new alpha chain hemoglobin variant.

    PubMed

    Babb, Anna; Solaiman, Susannah; Green, Brian N; Mantio, Debbie; Patel, Ketan

    2009-01-01

    Routine antenatal hemoglobinopathy screening detected a new alpha chain variant that eluted with Hb A(2) on cation exchange high performance liquid chromatography (HPLC) in a lady of Sri Lankan origin who had normal hematological indices. The mutation was identified by electrospray ionization mass spectrometry (ESI-MS) as alpha46(CE4)Phe-->Val, inferring that the variant was due to a single base change at codon 46 (TTC>GTC) of the alpha1- or alpha2-globin genes.

  11. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2α) pathway protect ovarian cancer cells from metformin-induced apoptosis.

    PubMed

    Moon, Hee-Sun; Kim, Boyun; Gwak, HyeRan; Suh, Dong Hoon; Song, Yong Sang

    2016-04-01

    Metformin, an oral biguanide for the treatment of type II diabetes, has been shown to have anticancer effects in ovarian cancer. Energy starvation induced by metformin causes endoplasmic reticulum stress-mediated unfolded protein response (UPR) and autophagy. UPR and autophagy act as a survival or death mechanism in cells. In this study, we observed that metformin-induced apoptosis was relieved by autophagy and the PERK/eIF2α pathway in ovarian cancer cells, but not in peripheral blood mononuclear cells (PBMC) or 'normal' ovarian surface epithelial cells (OSE). Increased PARP cleavage and increased LC3B-II with ATG5-ATG12 complex suggested the induction of apoptosis and autophagy, respectively, in metformin-treated ovarian cancer cells. Accumulation of acidic vacuoles in the cytoplasm and downregulation of p62 further supported late-stage autophagy. Interestingly, metformin induced interdependent activation between autophagy and the UPR, especially the PERK/eIF2α pathway. Inhibition of autophagy-induced PERK inhibition, and vice versa, were demonstrated using small molecular inhibitors (PERK inhibitor I, GSK2606414; autophagy inhibitor, 3-MA, and BafA1). Moreover, autophagy and PERK activation protected ovarian cancer cells against metformin-induced apoptosis. Metformin treatment in the presence of inhibitors of PERK and autophagy, however, had no cytotoxic effects on OSE or PBMC. In conclusion, these results suggest that inhibition of autophagy and PERK can enhance the selective anticancer effects of metformin on ovarian cancer cells. © 2015 Wiley Periodicals, Inc.

  12. The ALPHA Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Viertel, G. M.; Capell, M.

    1998-12-01

    The ALPHA Magnetic Spectrometer (AMS) will be the first large magnetic spectrometer in space. It is scheduled to be installed on the future International Space Station ALPHA (ISSA) in the year 2002 to perform measurements of the charged particle composition to answer fundamental questions in particle physics and astrophysics. Before installation on ISSA, AMS will fly on the shuttle DISCOVERY for a period of 10 days starting in May 1998. This will enable AMS to perform a test of the apparatus and first measurements. The AMS detector has five major components: A permanent NdFeB magnet, six planes of Silicon double-sided microstrip detectors, a plastic scintillator time of flight hodoscope, a plastic scintillator anticoincidence counter and an Aerogel Cherenkov threshold counter. In addition, there are electronics, support infrastructure and interfaces.

  13. Simultaneous quantification of GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in human and rat serum.

    PubMed

    Porcu, Patrizia; O'Buckley, Todd K; Alward, Sarah E; Marx, Christine E; Shampine, Lawrence J; Girdler, Susan S; Morrow, A Leslie

    2009-01-01

    The 3alpha,5alpha- and 3alpha,5beta-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Despite substantial information on the progesterone derivative (3alpha,5alpha)-3-hydroxypregnan-20-one (3alpha,5alpha-THP, allopregnanolone), the physiological significance of the other endogenous GABAergic neuroactive steroids has remained elusive. Here, we describe the validation of a method using gas chromatography-mass spectrometry to simultaneously identify serum levels of the eight 3alpha,5alpha- and 3alpha,5beta-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone. The method shows specificity, sensitivity and enhanced throughput compared to other methods already available for neuroactive steroid quantification. Administration of pregnenolone to rats and progesterone to women produced selective effects on the 3alpha,5alpha- and 3alpha,5beta-reduced neuroactive steroids, indicating differential regulation of their biosynthetic pathways. Pregnenolone administration increased serum levels of 3alpha,5alpha-THP (+1488%, p<0.001), (3alpha,5alpha)-3,21-dihydroxypregnan-20-one (3alpha,5alpha-THDOC, +205%, p<0.01), (3alpha,5alpha)-3-hydroxyandrostan-17-one (3alpha,5alpha-A, +216%, p<0.001), (3alpha,5alpha,17beta)-androstane-3,17-diol (3alpha,5alpha-A-diol, +190%, p<0.01). (3alpha,5beta)-3-hydroxypregnan-20-one (3alpha,5beta-THP) and (3alpha,5beta)-3-hydroxyandrostan-17-one (3alpha,5beta-A) were not altered, while (3alpha,5beta)-3,21-dihydroxypregnan-20-one (3alpha,5beta-THDOC) and (3alpha,5beta,17beta)-androstane-3,17-diol (3alpha,5beta-A-diol) were increased from undetectable levels to 271+/-100 and 2.4+/-0.9 pg+/-SEM, respectively (5/8 rats). Progesterone administration increased serum levels of 3alpha,5alpha-THP (+1806%, p<0.0001), 3alpha,5beta-THP (+575%, p<0.001), 3alpha,5alpha

  14. Antihydrogen studies in ALPHA

    NASA Astrophysics Data System (ADS)

    Madsen, N.; ALPHA Collaboration

    2016-11-01

    The ALPHA experiment studies antihydrogen as a means to investigate the symmetry of matter and antimatter. Spectroscopic studies of the anti-atom hold the promise of the most precise direct comparisons of matter and antimatter possible. ALPHA was the first to trap antihydrogen in a magnetic trap, allowing the first ever detection of atomic transitions in an anti-atom. More recently, through stochastic heating, we have also been able to put a new limit on the charge neutrality of antihydrogen. ALPHA is currently preparing to perform the first laser-spectroscopy of antihydrogen, hoping to excite the 2s state using a two-photon transition from the 1s state. We discuss the recent results as well as the key developments that led to these successes and discuss how we are preparing to perform the first laser-spectroscopy. We will also discuss plans to use our novel technique for gravitational tests on antihydrogen for a direct measurement of the sign of the gravitational force on antihydrogen.

  15. A facile and effective synthesis of alpha-(1-->6)-linked mannose di-, tri-, tetra-, hexa-, octa-, and dodecasaccharides, and beta-(1-->6)-linked glucose di-, tri-, tetra-, hexa-, and octasaccharides using sugar trichloroacetimidates as the donors and unprotected or partially protected glycosides as the acceptors.

    PubMed

    Zhu, Y; Kong, F

    2001-05-08

    Reaction of 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl trichloroimidate with allyl alpha-D-mannopyranoside in the presence of TMSOTf selectively gave allyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranoside through an orthoester intermediate. Benzoylation of 3, followed by deallylation, and then trichloroimidation afforded the disaccharide donor 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroimidate, while benzoylation of 3 followed by selective removal of acetyl groups yielded the disaccharide acceptor allyl alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside. Coupling of 5 with 6 gave the tetrasaccharide allyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside, which were converted into the tetrasaccharide donor 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroimdate and the tetrasaccharide acceptor allyl alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside, respectively, by the same strategies as used for conversion of 3 into 5 and 6. Condensation of 5 with 13 gave the hexasaccharide 14, while condensation of 12 with 13 gave the octasaccharide 17. Dodecasaccharide 21 was obtained by the coupling of 12 with the octasaccharide acceptor 20. Similar strategies were used for the syntheses of beta-(1-->6)-linked glucose di-, tri-, tetra-, hexa-, and octamers. Deprotection of the oligosaccharides in ammonia-saturated methanol yielded the free alpha-(1-->6)-linked mannosyl and beta-(1-->6)-linked glucosyl oligomers.

  16. Conformational restriction through C alpha i <--> C alpha i cyclization: Ac12c, the largest cycloaliphatic C alpha,alpha- disubstituted glycine known.

    PubMed

    Saviano, M; Iacovino, R; Menchise, V; Benedetti, E; Bonora, G M; Gatos, M; Graci, L; Formaggio, F; Crisma, M; Toniolo, C

    2000-02-01

    Two complete series of N-protected, monodispersed oligopeptide esters to the pentamer level from 1-aminocyclododecane-1-carboxylic acid (Ac(12)c), an alpha-amino acid conformationally constrained through C(alpha)(i) <--> C(alpha)(i) cyclization, and either L-Ala or Aib residues, along with the N-protected Ac(12)c homopeptide alkylamide series from monomer to trimer, have been synthesized by solution methods and fully characterized. The solution-preferred conformations of these peptides have been assessed by Fourier transform ir absorption and (1)H-nmr techniques. Moreover, the molecular structures of one derivative (Z-Ac(12)c-OH) and three peptides [the tripeptide ester Z-L-Ala-Ac(12)c-L-Ala-OMe, the tripeptide alkylamide Z-(Ac(12)c)(3)-NHiPr, and the tetrapeptide ester Z-(Aib)(2)-Ac(12)c-Aib-OtBu (Aib, alpha-aminoisobutyric acid)] have been determined in the crystal state by x-ray diffraction. The results obtained point to the conclusion that beta-bends and 3(10)-helices are preferentially adopted by peptides based on Ac(12)c, the largest cycloaliphatic C-disubstituted glycine known. A comparison with the structural tendencies extracted from published works on peptides from Aib, the prototype of C-disubstituted glycines, and the other extensively studied members of the class of 1-aminocycloalkane-1-carboxylic acids (Ac(n) c, with n = 3-9), is made and the implications for the use of the Ac(12)c residue in the Ac(n) c scan approach of conformationally restricted analogues of bioactive peptides are briefly discussed.

  17. Augmentation therapy of alpha-1 antitrypsin deficiency associated emphysema.

    PubMed

    Traclet, J; Delaval, P; Terrioux, P; Mornex, J-F

    2015-04-01

    Alpha-1 antitrypsin, secreted by the liver, inhibits neutrophil elastase. Its deficiency favours the development of emphysema. Restoring a "protective" serum level in deficient patients should make it possible to inhibit the development of emphysema. Human plasma-derived alpha-1 antitrypsin is a blood-derived drug sold in France under the name Alfalastin(®). The recommended posology is an I.V. administration of 60 mg/kg once a week. Human plasma-derived alpha-1 antitrypsin restores anti-elastase protection in the lower lung and prevents experimental emphysema induced by the elastasis of human neutrophils in hamster. The low number of patients with alpha-1 antitrypsin deficiency is one of the difficulties to perform sufficiently powerful randomised studies. However, randomised studies have reported the efficacy of human plasma-derived alpha-1 antitrypsin perfusions on mortality, FEV1 decline and the frequency of exacerbations. Randomised control trials have demonstrated the efficacy of human plasma-derived alpha-1 antitrypsin perfusions on the loss of lung density assessed by CT scan. Augmentation therapy is simple in its conception and implementation, but it is expensive. However, there are currently no other solutions. Copyright © 2014 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  18. N-carbamoyl-alpha-amino acids rather than free alpha-amino acids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides.

    PubMed

    Taillades, J; Beuzelin, I; Garrel, L; Tabacik, V; Bied, C; Commeyras, A

    1998-02-01

    Our previous kinetic and thermodynamic studies upon the reactional system HCHO/HCN/NH3 in aqueous solutions are completed. In the assumed prebiotic conditions of the primitive earth ([HCHO] and [HCN] near 1 g L-1, T = 25 degrees C, pH = 8, [NH3] very low), this system leads to 99.9% of alpha-hydroxyacetonitrile and 0.1% of alpha-aminoacetonitrile (precursor of the alpha-amino acid). The classical base-catalyzed hydration of nitriles, slow and not selective, can not modify significantly this proportion. On the contrary, we found two specific and efficient reactions of alpha-aminonitriles which shift the initial equilibrium in favor of the alpha-aminonitrile pathway. The first reaction catalyzed by formaldehyde generates alpha-aminoamides, precursors of alpha-aminoacids. The second reaction catalyzed by carbon dioxide affords hydantoins, precursors of N-carbamoyl-alpha-aminoacids. In the primitive hydrosphere, where the concentration in carbon dioxide was estimated to be higher than that of formaldehyde, the formation of hydantoins was consequently more efficient. The rates of hydrolysis of the alpha-aminoacetamide and of the hydantoin at pH 8 being very similar, the synthesis of the N-carbamoyl-alpha-amino acid seems then to be the fatal issue of the HCHO/HCN/NH3 system that nature used to perform its evolution. These N-protected alpha-amino acids offer new perspectives in prebiotic chemistry, in particular for the emergence of peptides on the prebiotic earth.

  19. Alpha-tocopherol (vitamin E) regulates vascular smooth muscle cell proliferation and protein kinase C activity.

    PubMed

    Boscoboinik, D; Szewczyk, A; Azzi, A

    1991-04-01

    Alpha-Tocopherol (vitamin E) protects against free radical damage, which has been implicated in aging, cancer initiation, and atherosclerosis. We have found that physiological concentrations of alpha-tocopherol specifically inhibited aorta smooth muscle cell (VSMC, line A7r5) proliferation and protein kinase C (PKC) activity. Other water and lipid soluble antioxidants were inactive. alpha-Tocopherol inhibition of PKC and of VSMC proliferation may represent a physiological mechanism, relevant to the onset of diseased states such as atherosclerosis.

  20. Mitochondrial and sarcoplasmic protein changes in hearts from copper-deficient rats: up-regulation of PGC-1alpha transcript and protein as a cause for mitochondrial biogenesis in copper deficiency.

    PubMed

    Medeiros, Denis M; Jiang, Yu; Klaahsen, Darcey; Lin, Dingbo

    2009-10-01

    Changes in mitochondrial and sarcoplasmic proteins using proteinomics and Western blotting in hearts from copper-deficient rats were explored in this study. Also, key enzymes that are involved in cardiac energy metabolism via glycolysis and fatty acid oxidation and related transcription factors were determined. Rats were fed one of two diets: a copper-adequate diet containing 6 mg Cu/kg diet or a diet with less than 1 mg Cu/kg diet for 5 weeks. Copper deficiency was confirmed by low liver copper levels, decreased hematocrit levels and cardiac hypertrophy. Proteinomic data revealed that of the more than 50 proteins identified from the mitochondrial fraction of heart tissue, six were significantly down-regulated and nine were up-regulated. The proteins that were decreased were beta enolase 3, carbonic anhydrase 2, aldose reductase 1, glutathione peroxidase, muscle creatine kinase and mitochondrial aconitase 2. The proteins that were up-regulated were isocitrate dehydrogenase, dihydrolipoamide dehydrogenase, transferrin, subunit d of ATP synthase, transthyretin, preproapolipoprotein A-1, GRP 75, alpha-B crystalline and heat shock protein alpha. Follow-up Western blots on rate-limiting enzymes in glycolysis (phosphofructose kinase), fatty acid oxidation (medium chain acyl dehydrogenase, peroxisome proliferator-actvator receptor-alpha or PPARalpha) and gluconeogenesis (phosphoenolpyruvate carboxykinase) did not reveal changes in metabolic enzymes. However, a significant increase in peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha protein, as well as the transcript, which increased 2.5-fold, was observed. It would appear that increased mitochondrial biogenesis known to occur in copper deficiency hearts is caused by an increased expression in the master regulator of mitochondrial biogenesis, PGC-1alpha.

  1. Further Developments in Beta-Gamma to Alpha Ratios.

    PubMed

    Smith, David L

    2017-04-01

    An emphasis on alpha-emitting nuclides at nuclear power plants has produced methods for assessing the relative hazard of alpha versus other species. From the relative hazards, or ratios, decisions on the level of effort for worker protection and monitoring are made. The Electric Power Research Institute (EPRI) has issued technical guidance on relative alpha hazard and action level beta-gamma to alpha ratios. This paper shows the development of the ratio concept from first principles and brings hard-to-detect species into consideration. Outcomes from the exercise of computational forms of the ratios are compared to the EPRI results and the differences are noted. Some discussion of the implications and advantages of the developed forms then follows.

  2. Comparison of alpha-1-antitrypsin levels and antineutrophil elastase capacity of blood and lung in a patient with the alpha-1-antitrypsin phenotype null-null before and during alpha-1-antitrypsin augmentation therapy.

    PubMed

    Wewers, M D; Casolaro, M A; Crystal, R G

    1987-03-01

    The null-null phenotype of alpha 1-antitrypsin (alpha 1AT), a phenotype characterized by no detectable alpha 1AT in serum, presents a rare opportunity to examine the contribution of alpha 1AT to the antineutrophil elastase protection of the lower respiratory tract. The subject, a 35-yr-old lifetime non-smoker with moderate emphysema, has been characterized as having alpha 1AT serum levels of zero resulting from the homozygous inheritance of alpha 1AT genes that do not express detectable alpha 1AT mRNA transcripts. Evaluation of the antineutrophil elastase capacity of the null-null serum showed it was less than 5% of normal, whereas that of the epithelial lining fluid (ELF) of the lower respiratory tract was 13% of normal. However, after 60 mg/kg of intravenously administered alpha 1AT augmentation therapy once weekly for 4 wk, the serum alpha 1AT levels peaked at greater than 300 mg/dl, trough levels just prior to the next infusion were 81 +/- 2 mg/dl, and the average serum level integrated for the month of infusions was 138 mg/dl. Consistent with this serum rise in alpha 1AT, the serum antineutrophil elastase capacity increased in parallel(r = 0.98). Importantly, evaluation of the ELF 2 and 6 days after infusion demonstrated increases of alpha 1AT levels (range, 1.4 to 2.1 microM) and antineutrophil elastase capacity (range, 1.6 to 2.5 microM), values within the lower range of normal. Furthermore, the lung ELF alpha 1AT levels rose in direct proportion to the serum alpha 1AT levels, and the ELF antineutrophil elastase capacity rose in direct proportion to the ELF alpha 1AT levels.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. MFTF-. cap alpha. + T shield design

    SciTech Connect

    Gohar, Y.

    1985-01-01

    MFTF-..cap alpha..+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m/sup 2/ neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost.

  4. Mass loss in Alpha Cygni - Synthetic H-Alpha profiles

    NASA Technical Reports Server (NTRS)

    Kunasz, P. B.; Morrison, N. D.

    1982-01-01

    Alpha Cygni (A2 Ia) is the brightest and best-studied A type supergiant. The star's position in the H-R diagram makes the determination of its mass loss rate extremely important. The present investigation is concerned with a semiempirical modeling of the H-alpha profile in Alpha Cyg in connection with the objective of estimating the mass loss rate and further constraining the physical state of the stellar wind. The synthetic H-alpha profiles considered are compared with the observed profiles in Alpha Cyg. It is concluded that a spherically symmetric, steady-state model, with the network of hydrogen transitions treated in detail, can fit the deeper observed profiles but not the shallower ones. The obtained results indicate that, within the context of the turbulent models, the mass loss rate of Alpha Cyg is (1.7 + or - 0.4) x 10 to the -7th solar mass per year.

  5. Effects of prenatal malnutrition on GABAA receptor alpha1, alpha3 and beta2 mRNA levels.

    PubMed

    Steiger, Janine L; Alexander, Mark J; Galler, Janina R; Farb, David H; Russek, Shelley J

    2003-09-15

    Exposure of pregnant rats to protein malnutrition throughout pregnancy alters the developing hippocampus, leading to increased inhibition and selective changes in hippocampal-mediated behaviors. Given that GABA mediates most inhibitory neurotransmission, we asked whether selective changes in the levels of GABA receptor subunit mRNAs might result. Quantitative RNase protection profiling of 12 GABAA and GABAB receptor subunit mRNAs show that alpha1 and beta2 decrease in the adult (P90) hippocampal formation of prenatally malnourished rats, while the levels of alpha3 are increased. Moreover, the distribution of alpha1, alpha3 and beta2 mRNAs remains unchanged in CA1 and CA3 hippocampal subfields relative to dentate gyrus. The data suggest that prenatal malnutrition produces global changes of certain GABAA, but not GABAB, receptor mRNAs in the hippocampal formation.

  6. A retinoid X receptor (RXR)-selective retinoid reveals that RXR-alpha is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands.

    PubMed

    Crowe, David L; Chandraratna, Roshantha A S

    2004-01-01

    Certain lipids have been shown to be ligands for a subgroup of the nuclear hormone receptor superfamily known as the peroxisome proliferator-activated receptors (PPARs). Ligands for these transcription factors have been used in experimental cancer therapies. PPARs heterodimerize and bind DNA with retinoid X receptors (RXRs), which have homology to other members of the nuclear receptor superfamily. Retinoids have been found to be effective in treating many types of cancer. However, many breast cancers become resistant to the chemotherapeutic effects of these drugs. Recently, RXR-selective ligands were discovered that inhibited proliferation of all-trans retinoic acid resistant breast cancer cells in vitro and caused regression of the disease in animal models. There are few published studies on the efficacy of combined therapy using PPAR and RXR ligands for breast cancer prevention or treatment. We determined the effects of selective PPAR and RXR ligands on established human breast cancer cell lines in vitro. PPAR-alpha and PPAR-gamma ligands induced apoptotic and antiproliferative responses in human breast cancer cell lines, respectively, which were associated with specific changes in gene expression. These responses were potentiated by the RXR-selective ligand AGN194204. Interestingly, RXR-alpha-overexpressing retinoic acid resistant breast cancer cell lines were more sensitive to the effects of the RXR-selective compound. RXR-selective retinoids can potentiate the antiproliferative and apoptotic responses of breast cancer cell lines to PPAR ligands.

  7. An efficient preparation of N-methyl-alpha-amino acids from N-nosyl-alpha-amino acid phenacyl esters.

    PubMed

    Leggio, Antonella; Belsito, Emilia Lucia; De Marco, Rosaria; Liguori, Angelo; Perri, Francesca; Viscomi, Maria Caterina

    2010-03-05

    In this paper we describe a simple and efficient solution-phase synthesis of N-methyl-N-nosyl-alpha-amino acids and N-Fmoc-N-methyl-alpha-amino acids. This represents a very important application in peptide synthesis to obtain N-methylated peptides in both solution and solid phase. The developed methodology involves the use of N-nosyl-alpha-amino acids with the carboxyl function protected as a phenacyl ester and the methylating reagent diazomethane. An important aspect of this synthetic strategy is the possibility to selectively deprotect the carboxyl function or alternatively both amino and carboxyl moieties by using the same reagent with a different molar excess and under mild conditions. Furthermore, the adopted procedure keeps unchanged the acid-sensitive side chain protecting groups used in Fmoc-based synthetic strategies.

  8. Cloning of alpha-beta fusion gene from Clostridium perfringens and its expression.

    PubMed

    Bai, Jia-Ning; Zhang, Yan; Zhao, Bao-Hua

    2006-02-28

    To study the cloning of alpha-beta fusion gene from Clostridium perfringens and the immunogenicity of alpha-beta fusion expression. Cloning was accomplished after PCR amplification from strains NCTC64609 and C58-1 of the protective antigen genes of alpha-toxin and beta-toxin. The fragment of the gene was cloned using plasmid pZCPAB. This fragment coded for the gene with the stable expression of alpha-beta fusion gene binding. In order to verify the exact location of the alpha-beta fusion gene, domain plasmids were constructed. The two genes were fused into expression vector pBV221. The expressed alpha-beta fusion protein was identified by ELISA, SDS-PAGE, Western blotting and neutralization assay. The protective alpha-toxin gene (cpa906) and the beta-toxin gene (cpb930) were obtained. The recombinant plasmid pZCPAB carrying alpha-beta fusion gene was constructed and transformed into BL21(DE3). The recombinant strain BL21(DE3)(pZCPAB) was obtained. After the recombinant strain BL21(DE3)(pZCPAB) was induced by 42 degC, its expressed product was about 22.14% of total cellular protein at SDS-PAGE and thin-layer gel scanning analysis. Neutralization assay indicated that the antibody induced by immunization with alpha-beta fusion protein could neutralize the toxicity of alpha-toxin and beta-toxin. The obtained alpha-toxin and beta-toxin genes are correct. The recombinant strain BL21(DE3)(pZCPAB) could produce alpha-beta fusion protein. This protein can be used for immunization and is immunogenic. The antibody induced by immunization with alpha-beta fusion protein could neutralize the toxicity of alpha-toxin and beta-toxin.

  9. Background canceling surface alpha detector

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1996-06-11

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.

  10. Background canceling surface alpha detector

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1996-01-01

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.

  11. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  12. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  13. Are alpha-gliadins glycosylated?

    PubMed

    Turner, J B; Garner, G V; Gordon, D B; Brookes, S J; Smith, C A

    2002-02-01

    Alpha-gliadins isolated by carboxymethylcellulose chromatography contain noncovalently bound glucose probably due to contaminating proteoglycans and to material shed from the column. Traces of carbohydrate remain strongly bound to alpha-gliadins even after harsh denaturation, but our results indicate alpha-gliadins are not glycoproteins. Suggestions that gliadins are glycoproteins are probably due to contamination with this glucose and the presence of these proteoglycans.

  14. Drosophila melanogaster importin alpha1 and alpha<