Sample records for alpha rhythm

  1. Alpha-band rhythm suppression during memory recall reflecting memory performance.

    PubMed

    Yokosawa, Koichi; Kimura, Keisuke; Chitose, Ryota; Momiki, Takuya; Kuriki, Shinya

    2016-08-01

    Alpha-band rhythm is thought to be involved in memory processes, similarly to other spontaneous brain rhythms. Ten right-handed healthy volunteers participated in our proposed sequential short-term memory task that provides a serial position effect in accuracy rate. We recorded alpha-band rhythms by magnetoencephalography during performance of the task and observed that the amplitude of the rhythm was suppressed dramatically in the memory recall period. The suppressed region was estimated to be in the occipital lobe, suggesting that alpha-band rhythm is suppressed by activation of the occipital attentional network. Additionally, the alpha-band suppression reflected accuracy rate, that is, the amplitude was suppressed more when recalling items with higher accuracy rate. The sensors with a significant correlation between alpha-band amplitude and accuracy rate were located widely from the frontal to occipital regions mainly in the right hemisphere. The results suggests that alpha-band rhythm is involved in memory recall and can be index of memory performance.

  2. The dark side of the alpha rhythm: fMRI evidence for induced alpha modulation during complete darkness.

    PubMed

    Ben-Simon, Eti; Podlipsky, Ilana; Okon-Singer, Hadas; Gruberger, Michal; Cvetkovic, Dean; Intrator, Nathan; Hendler, Talma

    2013-03-01

    The unique role of the EEG alpha rhythm in different states of cortical activity is still debated. The main theories regarding alpha function posit either sensory processing or attention allocation as the main processes governing its modulation. Closing and opening eyes, a well-known manipulation of the alpha rhythm, could be regarded as attention allocation from inward to outward focus though during light is also accompanied by visual change. To disentangle the effects of attention allocation and sensory visual input on alpha modulation, 14 healthy subjects were asked to open and close their eyes during conditions of light and of complete darkness while simultaneous recordings of EEG and fMRI were acquired. Thus, during complete darkness the eyes-open condition is not related to visual input but only to attention allocation, allowing direct examination of its role in alpha modulation. A data-driven ridge regression classifier was applied to the EEG data in order to ascertain the contribution of the alpha rhythm to eyes-open/eyes-closed inference in both lighting conditions. Classifier results revealed significant alpha contribution during both light and dark conditions, suggesting that alpha rhythm modulation is closely linked to the change in the direction of attention regardless of the presence of visual sensory input. Furthermore, fMRI activation maps derived from an alpha modulation time-course during the complete darkness condition exhibited a right frontal cortical network associated with attention allocation. These findings support the importance of top-down processes such as attention allocation to alpha rhythm modulation, possibly as a prerequisite to its known bottom-up processing of sensory input. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    PubMed Central

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  4. EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer's.

    PubMed

    Kanda, Paulo A M; Oliveira, Eliezyer F; Fraga, Francisco J

    2017-01-01

    Eyes-closed-awake electroencephalogram (EEG) is a useful tool in the diagnosis of Alzheimer's. However, there is eyes-closed-awake EEG with dominant or rare alpha rhythm. In this paper, we show that random selection of EEG epochs disregarding the alpha rhythm will lead to bias concerning EEG-based Alzheimer's Disease diagnosis. We compared EEG epochs with more than 30% and with less than 30% alpha rhythm of mild Alzheimer's Disease patients and healthy elderly. We classified epochs as dominant alpha scenario and rare alpha scenario according to alpha rhythm (8-13 Hz) percentage in O1, O2 and Oz channels. Accordingly, we divided the probands into four groups: 17 dominant alpha scenario controls, 15 mild Alzheimer's patients with dominant alpha scenario epochs, 12 rare alpha scenario healthy elderly and 15 mild Alzheimer's Disease patients with rare alpha scenario epochs. We looked for group differences using one-way ANOVA tests followed by post-hoc multiple comparisons (p < 0.05) over normalized energy values (%) on the other four well-known frequency bands (delta, theta, beta and gamma) using two different electrode configurations (parieto-occipital and central). After carrying out post-hoc multiple comparisons, for both electrode configurations we found significant differences between mild Alzheimer's patients and healthy elderly on beta- and theta-energy (%) only for the rare alpha scenario. No differences were found for the dominant alpha scenario in any of the five frequency bands. This is the first study of Alzheimer's awake-EEG reporting the influence of alpha rhythm on epoch selection, where our results revealed that, contrarily to what was most likely expected, less synchronized EEG epochs (rare alpha scenario) better discriminated mild Alzheimer's than those presenting abundant alpha (dominant alpha scenario). In addition, we find out that epoch selection is a very sensitive issue in qEEG research. Consequently, for Alzheimer's studies dealing with resting state EEG, we propose that epoch selection strategies should always be cautiously designed and thoroughly explained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. The study of evolution and depression of the alpha-rhythm in the human brain EEG by means of wavelet-based methods

    NASA Astrophysics Data System (ADS)

    Runnova, A. E.; Zhuravlev, M. O.; Khramova, M. V.; Pysarchik, A. N.

    2017-04-01

    We study the appearance, development and depression of the alpha-rhythm in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. The new method based on continuous wavelet transform allows to estimate the energy contribution of various components, including the alpha rhythm, in the general dynamics of the electrical activity of the projections of various areas of the brain. The decision-making process by observe ambiguous images is characterized by specific oscillatory alfa-rhytm patterns in the multi-channel EEG data. We have shown the repeatability of detected principles of the alpha-rhythm evolution in a data of group of 12 healthy male volunteers.

  6. Type-I interferon receptor expression: its circadian rhythm and downregulation after interferon-alpha administration in peripheral blood cells from renal cancer patients.

    PubMed

    Shiba, Masahiro; Nonomura, Norio; Nakai, Yasutomo; Nakayama, Masashi; Takayama, Hitoshi; Inoue, Hitoshi; Tsujimura, Akira; Nishimura, Kazuo; Okuyama, Akihiko

    2009-04-01

    To investigate the regulation of interferon-alpha (IFN-alpha) receptor expression in metastatic renal cell carcinoma (RCC) after IFN-alpha administration. Blood sampling was carried out in eight patients with metastatic RCC and six healthy volunteers. Flow-cytometric analysis using a monoclonal antibody against the active subunit of the type-I IFN-alpha receptor (IFNAR2) was carried out to examine the circadian rhythm of IFNAR2 expression in peripheral blood mononuclear cells (PBMC) as well as its downregulation after IFN-alpha administration. According to its circadian rhythm IFNAR2 in PBMC had a peak expression at night. Once IFN-alpha is administered, IFNAR2 levels in PBMC showed downregulation within 48 h and recovered within another 48 h. Our findings might support the establishment of an optimal schedule for IFN-alpha administration.

  7. OCCIPITAL SOURCES OF RESTING STATE ALPHA RHYTHMS ARE RELATED TO LOCAL GRAY MATTER DENSITY IN SUBJECTS WITH AMNESIC MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

    PubMed Central

    Claudio, Babiloni; Claudio, Del Percio; Marina, Boccardi; Roberta, Lizio; Susanna, Lopez; Filippo, Carducci; Nicola, Marzano; Andrea, Soricelli; Raffaele, Ferri; Ivano, Triggiani Antonio; Annapaola, Prestia; Serenella, Salinari; Rasser Paul, E; Erol, Basar; Francesco, Famà; Flavio, Nobili; Görsev, Yener; Durusu, Emek-Savaş Derya; Gesualdo, Loreto; Ciro, Mundi; Thompson Paul, M; Rossini Paolo, M.; Frisoni Giovanni, B

    2014-01-01

    Occipital sources of resting state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Here we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging (MRI). Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density (GMD), estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8–10.5 Hz) and alpha 2 (10.5–13 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic tomography (LORETA). Results showed a positive correlation between occipital GMD and amplitude of occipital alpha 1 sources in Nold, MCI and AD subjects as a whole group (r=0.3, p=0.000004, N=235). Furthermore, there was a positive correlation between amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Evaluation (MMSE) score across all subjects (r=0.38, p=0.000001, N=235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the Receiver Operating Characteristic (ROC) curve: 0.81). These results suggest that the amplitude of occipital sources of resting state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathological aging. PMID:25442118

  8. Dynamics of Sensorimotor Oscillations in a Motor Task

    NASA Astrophysics Data System (ADS)

    Pfurtscheller, Gert; Neuper, Christa

    Many BCI systems rely on imagined movement. The brain activity associated with real or imagined movement produces reliable changes in the EEG. Therefore, many people can use BCI systems by imagining movements to convey information. The EEG has many regular rhythms. The most famous are the occipital alpha rhythm and the central mu and beta rhythms. People can desynchronize the alpha rhythm (that is, produce weaker alpha activity) by being alert, and can increase alpha activity by closing their eyes and relaxing. Sensory processing or motor behavior leads to EEG desynchronization or blocking of central beta and mu rhythms, as originally reported by Berger [1], Jasper and Andrew [2] and Jasper and Penfield [3]. This desynchronization reflects a decrease of oscillatory activity related to an internally or externally-paced event and is known as Event-Related Desynchronization (ERD, [4]). The opposite, namely the increase of rhythmic activity, was termed Event-Related Synchronization (ERS, [5]). ERD and ERS are characterized by fairly localized topography and frequency specificity [6]. Both phenomena can be studied through topographiuthc maps, time courses, and time-frequency representations (ERD maps, [7]).

  9. No changes in parieto-occipital alpha during neural phase locking to visual quasi-periodic theta-, alpha-, and beta-band stimulation.

    PubMed

    Keitel, Christian; Benwell, Christopher S Y; Thut, Gregor; Gross, Joachim

    2018-05-08

    Recent studies have probed the role of the parieto-occipital alpha rhythm (8 - 12 Hz) in human visual perception through attempts to drive its neural generators. To that end, paradigms have used high-intensity strictly-periodic visual stimulation that created strong predictions about future stimulus occurrences and repeatedly demonstrated perceptual consequences in line with an entrainment of parieto-occipital alpha. Our study, in turn, examined the case of alpha entrainment by non-predictive low-intensity quasi-periodic visual stimulation within theta- (4 - 7 Hz), alpha- (8 - 13 Hz) and beta (14 - 20 Hz) frequency bands, i.e. a class of stimuli that resemble the temporal characteristics of naturally occurring visual input more closely. We have previously reported substantial neural phase-locking in EEG recording during all three stimulation conditions. Here, we studied to what extent this phase-locking reflected an entrainment of intrinsic alpha rhythms in the same dataset. Specifically, we tested whether quasi-periodic visual stimulation affected several properties of parieto-occipital alpha generators. Speaking against an entrainment of intrinsic alpha rhythms by non-predictive low-intensity quasi-periodic visual stimulation, we found none of these properties to show differences between stimulation frequency bands. In particular, alpha band generators did not show increased sensitivity to alpha band stimulation and Bayesian inference corroborated evidence against an influence of stimulation frequency. Our results set boundary conditions for when and how to expect effects of entrainment of alpha generators and suggest that the parieto-occipital alpha rhythm may be more inert to external influences than previously thought. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Portable wireless neurofeedback system of EEG alpha rhythm enhances memory.

    PubMed

    Wei, Ting-Ying; Chang, Da-Wei; Liu, You-De; Liu, Chen-Wei; Young, Chung-Ping; Liang, Sheng-Fu; Shaw, Fu-Zen

    2017-11-13

    Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.

  11. Independent Causal Contributions of Alpha- and Beta-Band Oscillations during Movement Selection.

    PubMed

    Brinkman, Loek; Stolk, Arjen; Marshall, Tom R; Esterer, Sophie; Sharp, Poppy; Dijkerman, H Chris; de Lange, Floris P; Toni, Ivan

    2016-08-17

    To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8-12 Hz) and beta (15-25 Hz) frequency range. However, it is unclear whether and how these rhythms contribute independently to motor behavior. Building on a recent dissociation of the sensorimotor alpha- and beta-band rhythms, we test the hypothesis that the beta-band rhythm governs the disinhibition of task-relevant neuronal populations, whereas the alpha-band rhythm suppresses neurons that may interfere with task performance. Cortical alpha- and beta-band rhythms were manipulated with transcranial alternating current stimulation (tACS) while human participants selected how to grasp an object. Stimulation was applied at either 10 or 20 Hz and was imposed on the sensorimotor cortex contralaterally or ipsilaterally to the grasping hand. In line with task-induced changes in endogenous spectral power, the effect of the tACS intervention depended on the frequency and site of stimulation. Whereas tACS stimulation generally increased movement selection times, 10 Hz stimulation led to relatively faster selection times when applied to the hemisphere ipsilateral to the grasping hand, compared with other stimulation conditions. These effects occurred selectively when multiple movements were considered. These observations functionally differentiate the causal contribution of alpha- and beta-band oscillations to movement selection. The findings suggest that sensorimotor beta-band rhythms disinhibit task-relevant populations, whereas alpha-band rhythms inhibit neuronal populations that could interfere with movement selection. This study shows dissociable effects of 10 Hz and 20 Hz tACS on the duration of movement selection. These observations have two elements of general relevance. First, the finding that alpha- and beta-band oscillations contribute independently to movement selection provides insight in how oscillations orchestrate motor behavior, which is key to understand movement selection deficits in neurodegenerative disorders. Second, the findings highlight the potential of 10 Hz stimulation as a neurophysiologically grounded intervention to enhance human performance. In particular, this intervention can potentially be exploited to boost rehabilitation after neural damage by targeting the unaffected hemisphere. Copyright © 2016 Brinkman et al.

  12. PPAR{alpha} is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Hidenori; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8502; Oishi, Katsutaka

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPAR{alpha} ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate alsomore » advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erb{alpha} was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPAR{alpha} is involved in circadian clock control independently of the SCN and that PPAR{alpha} could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.« less

  13. Involuntary orienting of attention to a sound desynchronizes the occipital alpha rhythm and improves visual perception.

    PubMed

    Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A

    2017-04-15

    Directing attention voluntarily to the location of a visual target results in an amplitude reduction (desynchronization) of the occipital alpha rhythm (8-14Hz), which is predictive of improved perceptual processing of the target. Here we investigated whether modulations of the occipital alpha rhythm triggered by the involuntary orienting of attention to a salient but spatially non-predictive sound would similarly influence perception of a subsequent visual target. Target discrimination was more accurate when a sound preceded the target at the same location (validly cued trials) than when the sound was on the side opposite to the target (invalidly cued trials). This behavioral effect was accompanied by a sound-induced desynchronization of the alpha rhythm over the lateral occipital scalp. The magnitude of alpha desynchronization over the hemisphere contralateral to the sound predicted correct discriminations of validly cued targets but not of invalidly cued targets. These results support the conclusion that cue-induced alpha desynchronization over the occipital cortex is a manifestation of a general priming mechanism that improves visual processing and that this mechanism can be activated either by the voluntary or involuntary orienting of attention. Further, the observed pattern of alpha modulations preceding correct and incorrect discriminations of valid and invalid targets suggests that involuntary orienting to the non-predictive sound has a rapid and purely facilitatory influence on processing targets on the cued side, with no inhibitory influence on targets on the opposite side. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Motivation effect on power changes in the brain biopotentials in the figurative and verbal creativity tasks].

    PubMed

    Razumnikova, O M; Vol'f, N V; Tarasova, I V

    2007-01-01

    Effect of extrinsic motivation stimulating the most original problem solving during verbal and figurative divergent thinking was studied by EEG mapping. The righthanded university students (27 males and 26 females) participated in the experiments. An instruction "to create the most original solution" as compared to condition with an instruction "to create any solution" induced an increase in the baseline power of the alpha 1 and alpha 2 rhythms most pronounced in the posterior cortex. Task-related desynchronization of the alpha rhythms was higher but the beta-2 synchronization was lower after the former than after the latter instruction. Differences in the asymmetry of the alpha 1 and alpha 2 rhythms in the parietal and temporal regions of hemispheres suggested the right hemisphere dominance in intrinsic alertness and evoked activation related to divergent thinking. The findings were common and gender-independent in both figurative and verbal tasks suggesting a generalized influence of extrinsic motivation on creative activity.

  15. Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction.

    PubMed

    Cheron, G; Leroy, A; De Saedeleer, C; Bengoetxea, A; Lipshits, M; Cebolla, A; Servais, L; Dan, B; Berthoz, A; McIntyre, J

    2006-11-22

    Electroencephalographic oscillations at 10 Hz (alpha and mu rhythms) are the most prominent rhythms observed in awake, relaxed (eye-closed) subjects. These oscillations may be considered as a marker of cortical inactivity or an index of the active inhibition of the sensory information. Different cortical sources may participate in the 10-Hz oscillation and appear to be modulated by the sensory context and functional demands. In microgravity, the marked reduction in multimodal graviceptive inputs to cortical networks participating in the representation of space could be expected to affect the 10-Hz activity. The effect of microgravity on this basic oscillation has heretofore not been studied quantitatively. Because the alpha rhythm has a functional role in the regulation of network properties of the visual areas, we hypothesised that the absence of gravity would affect its strength. Here, we report the results of an experiment conducted over the course of 3 space flights, in which we quantified the power of the 10-Hz activity in relation to the arrest reaction (i.e., in 2 distinct physiological states: eyes open and eyes closed). We observed that the power of the spontaneous 10-Hz oscillation recorded in the eyes-closed state in the parieto-occipital (alpha rhythm) and sensorimotor areas (mu rhythm) increased in the absence of gravity. The suppression coefficient during the arrest reaction and the related spectral perturbations produced by eye-opening/closure state transition also increased in on orbit. These results are discussed in terms of current theories on the source and the importance of the alpha rhythm for cognitive function.

  16. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, N.G.; Wise, P.M.

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silasticmore » capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.« less

  17. Amplitude modulation of alpha-band rhythm caused by mimic collision: MEG study.

    PubMed

    Yokosawa, Koichi; Watanabe, Tatsuya; Kikuzawa, Daichi; Aoyama, Gakuto; Takahashi, Makoto; Kuriki, Shinya

    2013-01-01

    Detection of a collision risk and avoiding the collision are important for survival. We have been investigating neural responses when humans anticipate a collision or intend to take evasive action by applying collision-simulating images in a predictable manner. Collision-simulating images and control images were presented in random order to 9 healthy male volunteers. A cue signal was also given visually two seconds before each stimulus to enable each participant to anticipate the upcoming stimulus. Magnetoencephalograms (MEG) were recorded with a 76-ch helmet system. The amplitude of alpha band (8-13 Hz) rhythm when anticipating the upcoming collision-simulating image was significantly smaller than that when anticipating control images even just after the cue signal. This result demonstrates that anticipating a negative (dangerous) event induced event-related desynchronization (ERD) of alpha band activity, probably caused by attention. The results suggest the feasibility of detecting endogenous brain activities by monitoring alpha band rhythm and its possible applications to engineering systems, such as an automatic collision evasion system for automobiles.

  18. Alpha-band rhythm modulation under the condition of subliminal face presentation: MEG study.

    PubMed

    Sakuraba, Satoshi; Kobayashi, Hana; Sakai, Shinya; Yokosawa, Koichi

    2013-01-01

    The human brain has two streams to process visual information: a dorsal stream and a ventral stream. Negative potential N170 or its magnetic counterpart M170 is known as the face-specific signal originating from the ventral stream. It is possible to present a visual image unconsciously by using continuous flash suppression (CFS), which is a visual masking technique adopting binocular rivalry. In this work, magnetoencephalograms were recorded during presentation of the three invisible images: face images, which are processed by the ventral stream; tool images, which could be processed by the dorsal stream, and a blank image. Alpha-band activities detected by sensors that are sensitive to M170 were compared. The alpha-band rhythm was suppressed more during presentation of face images than during presentation of the blank image (p=.028). The suppression remained for about 1 s after ending presentations. However, no significant difference was observed between tool and other images. These results suggest that alpha-band rhythm can be modulated also by unconscious visual images.

  19. Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms

    PubMed Central

    Babiloni, Claudio; Del Percio, Claudio; Iacoboni, Marco; Infarinato, Francesco; Lizio, Roberta; Marzano, Nicola; Crespi, Gianluca; Dassù, Federica; Pirritano, Mirella; Gallamini, Michele; Eusebi, Fabrizio

    2008-01-01

    It is not known whether frontal cerebral rhythms of the two hemispheres are implicated in fine motor control and balance. To address this issue, electroencephalographic (EEG) and stabilometric recordings were simultaneously performed in 12 right-handed expert golfers. The subjects were asked to stand upright on a stabilometric force platform placed at a golf green simulator while playing about 100 golf putts. Balance during the putts was indexed by body sway area. Cortical activity was indexed by the power reduction in spatially enhanced alpha (8–12 Hz) and beta (13–30 Hz) rhythms during movement, referred to as the pre-movement period. It was found that the body sway area displayed similar values in the successful and unsuccessful putts. In contrast, the high-frequency alpha power (about 10–12 Hz) was smaller in amplitude in the successful than in the unsuccessful putts over the frontal midline and the arm and hand region of the right primary sensorimotor area; the stronger the reduction of the alpha power, the smaller the error of the unsuccessful putts (i.e. distance from the hole). These results indicate that high-frequency alpha rhythms over associative, premotor and non-dominant primary sensorimotor areas subserve motor control and are predictive of the golfer's performance. PMID:17947315

  20. Neurofeedback training of EEG alpha rhythm enhances episodic and working memory.

    PubMed

    Hsueh, Jen-Jui; Chen, Tzu-Shan; Chen, Jia-Jin; Shaw, Fu-Zen

    2016-07-01

    Neurofeedback training (NFT) of the alpha rhythm has been used for several decades but is still controversial in regards to its trainability and effects on working memory. Alpha rhythm of the frontoparietal region are associated with either the intelligence or memory of healthy subjects and are also related to pathological states. In this study, alpha NFT effects on memory performances were explored. Fifty healthy participants were recruited and randomly assigned into a group receiving a 8-12-Hz amplitude (Alpha) or a group receiving a random 4-Hz amplitude from the range of 7 to 20 Hz (Ctrl). Three NFT sessions per week were conducted for 4 weeks. Working memory was assessed by both a backward digit span task and an operation span task, and episodic memory was assessed using a word pair task. Four questionnaires were used to assess anxiety, depression, insomnia, and cognitive function. The Ctrl group had no change in alpha amplitude and duration. In contrast, the Alpha group showed a progressive significant increase in the alpha amplitude and total alpha duration of the frontoparietal region. Accuracies of both working and episodic memories were significantly improved in a large proportion of participants of the Alpha group, particularly for those with remarkable alpha-amplitude increases. Scores of four questionnaires fell in a normal range before and after NFT. The current study provided supporting evidence for alpha trainability within a small session number compared with that of therapy. The findings suggested the enhancement of working and episodic memory through alpha NFT. Hum Brain Mapp 37:2662-2675, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. On the Physiological Modulation and Potential Mechanisms Underlying Parieto-Occipital Alpha Oscillations

    PubMed Central

    Lozano-Soldevilla, Diego

    2018-01-01

    The parieto-occipital alpha (8–13 Hz) rhythm is by far the strongest spectral fingerprint in the human brain. Almost 90 years later, its physiological origin is still far from clear. In this Research Topic I review human pharmacological studies using electroencephalography (EEG) and magnetoencephalography (MEG) that investigated the physiological mechanisms behind posterior alpha. Based on results from classical and recent experimental studies, I find a wide spectrum of drugs that modulate parieto-occipital alpha power. Alpha frequency is rarely affected, but this might be due to the range of drug dosages employed. Animal and human pharmacological findings suggest that both GABA enhancers and NMDA blockers systematically decrease posterior alpha power. Surprisingly, most of the theoretical frameworks do not seem to embrace these empirical findings and the debate on the functional role of alpha oscillations has been polarized between the inhibition vs. active poles hypotheses. Here, I speculate that the functional role of alpha might depend on physiological excitation as much as on physiological inhibition. This is supported by animal and human pharmacological work showing that GABAergic, glutamatergic, cholinergic, and serotonergic receptors in the thalamus and the cortex play a key role in the regulation of alpha power and frequency. This myriad of physiological modulations fit with the view that the alpha rhythm is a complex rhythm with multiple sources supported by both thalamo-cortical and cortico-cortical loops. Finally, I briefly discuss how future research combining experimental measurements derived from theoretical predictions based of biophysically realistic computational models will be crucial to the reconciliation of these disparate findings. PMID:29670518

  2. Circadian rhythm of acute phase proteins under the influence of bright/dim light during the daytime.

    PubMed

    Kanikowska, Dominika; Hyun, Ki-Ja; Tokura, Hiromi; Azama, Takashi; Nishimura, Shinya

    2005-01-01

    We investigated the influence of two different light intensities, dim (100 lx) and bright (5000 lx), during the daytime on the circadian rhythms of selected acute phase proteins of C-reactive protein (CRP), alpha1-acid glycoprotein (AGP), alpha1-antichymotrypsin (ACT), transfferin (TF), alpha2-macroglobulin (alpha2-m), haptoglobin (HP), and ceruloplasmin (CP). Serum samples were collected from 7 healthy volunteers at 4 h intervals during two separate single 24 h spans during which they were exposed to the respective light intensity conditions. A circadian rhythm was detected only in ACT concentration in the bright light condition. The concentration of ACT, a positive acute phase protein (APP), increased (significantly significant differences in the ACT concentration were detected at 14:00 and 22:00 h) and AGP showed a tendency to be higher under the daytime bright compared to dim light conditions. There were no significant differences between the time point means under daytime dim and bright light conditions for alpha2-M, AGP, Tf, Cp, or Hp. The findings suggest that some, but not all, APP may be influenced by the environmental light intensity.

  3. [Clinical and electroencephalographic characteristic of noopept in patients with mild cognitive impairment of posttraumatic and vascular origin].

    PubMed

    Bochkarev, V K; Teleshova, E S; Siuniakov, S A; Davydova, D V; Neznamov, G G

    2008-01-01

    An effect of a new nootropic drug noopept on the dynamics of main EEG rhythms and narrow-band spectral EEG characteristics in patients with cerebral asthenic and cognitive disturbances caused by traumas or vascular brain diseases has been studied. Noopept caused the EEG changes characteristic of the action of nootropics: the increase of alpha- and beta-rhythms power and reduction of delta-rhythms power. The reaction of alpha-rhythm was provided mostly by the dynamics of its low and medium frequencies (6,7-10,2 Hz), the changes of beta-rhythm were augmented in frontal and attenuated in occipital areas. The analysis of frequency and spatial structure of EEG changes reveals that noopept exerts a nonspecific activation and anxyolytic effect. The differences in EEG changes depending on the brain pathology were found. The EEG indices of nootropic effect of the drug were most obvious in cerebral vascular diseases. The EEG changes in posttraumatic brain lesion were less typical.

  4. Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms.

    PubMed

    Vecchio, Fabrizio; Babiloni, Claudio; Ferreri, Florinda; Curcio, Giuseppe; Fini, Rita; Del Percio, Claudio; Rossini, Paolo Maria

    2007-03-01

    We tested the working hypothesis that electromagnetic fields from mobile phones (EMFs) affect interhemispheric synchronization of cerebral rhythms, an important physiological feature of information transfer into the brain. Ten subjects underwent two electroencephalographic (EEG) recordings, separated by 1 week, following a crossover double-blind paradigm in which they were exposed to a mobile phone signal (global system for mobile communications; GSM). The mobile phone was held on the left side of the subject head by a modified helmet, and orientated in the normal position for use over the ear. The microphone was orientated towards the corner of the mouth, and the antenna was near the head in the parietotemporal area. In addition, we positioned another similar phone (but without battery) on the right side of the helmet, to balance the weight and to prevent the subject localizing the side of GSM stimulation (and consequently lateralizing attention). In one session the exposure was real (GSM) while in the other it was Sham; both sessions lasted 45 min. Functional interhemispheric connectivity was modelled using the analysis of EEG spectral coherence between frontal, central and parietal electrode pairs. Individual EEG rhythms of interest were delta (about 2-4 Hz), theta (about 4-6 Hz), alpha 1 (about 6-8 Hz), alpha 2 (about 8-10 Hz) and alpha 3 (about 10-12 Hz). Results showed that, compared to Sham stimulation, GSM stimulation modulated the interhemispheric frontal and temporal coherence at alpha 2 and alpha 3 bands. The present results suggest that prolonged mobile phone emission affects not only the cortical activity but also the spread of neural synchronization conveyed by interhemispherical functional coupling of EEG rhythms.

  5. Alpha Rhythms in Audition: Cognitive and Clinical Perspectives

    PubMed Central

    Weisz, Nathan; Hartmann, Thomas; Müller, Nadia; Lorenz, Isabel; Obleser, Jonas

    2011-01-01

    Like the visual and the sensorimotor systems, the auditory system exhibits pronounced alpha-like resting oscillatory activity. Due to the relatively small spatial extent of auditory cortical areas, this rhythmic activity is less obvious and frequently masked by non-auditory alpha-generators when recording non-invasively using magnetoencephalography (MEG) or electroencephalography (EEG). Following stimulation with sounds, marked desynchronizations can be observed between 6 and 12 Hz, which can be localized to the auditory cortex. However knowledge about the functional relevance of the auditory alpha rhythm has remained scarce so far. Results from the visual and sensorimotor system have fuelled the hypothesis of alpha activity reflecting a state of functional inhibition. The current article pursues several intentions: (1) Firstly we review and present own evidence (MEG, EEG, sEEG) for the existence of an auditory alpha-like rhythm independent of visual or motor generators, something that is occasionally met with skepticism. (2) In a second part we will discuss tinnitus and how this audiological symptom may relate to reduced background alpha. The clinical part will give an introduction into a method which aims to modulate neurophysiological activity hypothesized to underlie this distressing disorder. Using neurofeedback, one is able to directly target relevant oscillatory activity. Preliminary data point to a high potential of this approach for treating tinnitus. (3) Finally, in a cognitive neuroscientific part we will show that auditory alpha is modulated by anticipation/expectations with and without auditory stimulation. We will also introduce ideas and initial evidence that alpha oscillations are involved in the most complex capability of the auditory system, namely speech perception. The evidence presented in this article corroborates findings from other modalities, indicating that alpha-like activity functionally has an universal inhibitory role across sensory modalities. PMID:21687444

  6. Effect of Sudarshan Kriya (meditation) on gamma, alpha, and theta rhythm during working memory task.

    PubMed

    Chandra, Sushil; Sharma, Greeshma; Mittal, Alok Prakash; Jha, Devendra

    2016-01-01

    The present study focuses on analyzing the effects of Sudarshan Kriya yoga (SKY) on brain signals during a working memory (WM) task. To envision the significant effects of SKY on WM capacity (WMC), we chose a control group for contriving a cogent comparison that could be corroborated using statistical tests. A total of 25 subjects were taken in the study, of which 10 were allotted to a control group and 15 to an experimental group. Electroencephalograph was taken during a WM task, which was an automated operation span test before and after SKY with 90 days intervals. No SKY was given to the control group. t-test and one-way ANOVA were applied. SKY promoted the efficient use of energy and power spectral density (PSD) for different brain rhythms in the desired locations as depicted by the gamma (F8 channel), alpha, and theta 2 (F7 and FC5) bands. It was found that gamma PSD reduced for both phases of memory in the experimental group. Alpha energy increased during the retrieval phase in the experimental group after SKY. Theta 1 rhythm was not affected by SKY, but theta 2 had shown left hemispheric activation. Theta rhythm was associated with memory consolidation. SKY had shown minimized energy losses while performing the task. SKY can improve WMC by changing the brain rhythms such that energy is utilized efficiently in performing the task.

  7. Cortical theta wanes for language.

    PubMed

    Hermes, Dora; Miller, Kai J; Vansteensel, Mariska J; Edwards, Erik; Ferrier, Cyrille H; Bleichner, Martin G; van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F

    2014-01-15

    The role of low frequency oscillations in language areas is not yet understood. Using ECoG in six human subjects, we studied whether different language regions show prominent power changes in a specific rhythm, in similar manner as the alpha rhythm shows the most prominent power changes in visual areas. Broca's area and temporal language areas were localized in individual subjects using fMRI. In these areas, the theta rhythm showed the most pronounced power changes and theta power decreased significantly during verb generation. To better understand the role of this language-related theta decrease, we then studied the interaction between low frequencies and local neuronal activity reflected in high frequencies. Amplitude-amplitude correlations showed that theta power correlated negatively with high frequency activity, specifically across verb generation trials. Phase-amplitude coupling showed that during control trials, high frequency power was coupled to theta phase, but this coupling decreased significantly during verb generation trials. These results suggest a dynamic interaction between the neuronal mechanisms underlying the theta rhythm and local neuronal activity in language areas. As visual areas show a pronounced alpha rhythm that may reflect pulsed inhibition, language regions show a pronounced theta rhythm with highly similar features. © 2013.

  8. Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback

    PubMed Central

    Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Kluetsch, Rosemarie; Densmore, Maria; Calhoun, Vince D.; Lanius, Ruth A.

    2016-01-01

    Neurofeedback (NFB) involves a brain-computer interface that allows users to learn to voluntarily control their cortical oscillations, reflected in the electroencephalogram (EEG). Although NFB is being pioneered as a noninvasive tool for treating brain disorders, there is insufficient evidence on the mechanism of its impact on brain function. Furthermore, the dominant rhythm of the human brain is the alpha oscillation (8–12 Hz), yet its behavioral significance remains multifaceted and largely correlative. In this study with 34 healthy participants, we examined whether during the performance of an attentional task, the functional connectivity of distinct fMRI networks would be plastically altered after a 30-min session of voluntary reduction of alpha rhythm (n=17) versus a sham-feedback condition (n=17). We reveal that compared to sham-feedback, NFB induced an increase of connectivity within the salience network (dorsal anterior cingulate focus), which was detectable 30 minutes after termination of training. This increase in connectivity was negatively correlated with changes in 'on-task' mind-wandering as well as resting state alpha rhythm. Crucially, there was a causal dependence between alpha rhythm modulations during NFB and at subsequent resting state, not exhibited by the sham group. Our findings provide neurobehavioral evidence for a temporally direct, plastic impact of NFB on a key cognitive control network of the brain, suggesting a promising basis for its use to treat cognitive disorders under physiological conditions. PMID:23022326

  9. Short-term kinesthetic training for sensorimotor rhythms: effects in experts and amateurs.

    PubMed

    Zapała, Dariusz; Zabielska-Mendyk, Emilia; Cudo, Andrzej; Krzysztofiak, Agnieszka; Augustynowicz, Paweł; Francuz, Piotr

    2015-01-01

    The authors' aim was to examine whether short-term kinesthetic training affects the level of sensorimotor rhythm (SMR) in different frequency band: alpha (8-12 Hz), lower beta (12.5-16 Hz) and beta (16.5-20 Hz) during the execution of a motor imagery task of closing and opening the right and the left hand by experts (jugglers, practicing similar exercises on an everyday basis) and amateurs (individuals not practicing any sports). It was found that the performance of short kinesthetic training increases the power of alpha rhythm when executing imagery tasks only in the group of amateurs. Therefore, kinesthetic training may be successfully used as a method increasing the vividness of motor imagery, for example, in tasks involving the control of brain-computer interfaces based on SMR.

  10. Dynamic correlations between heart and brain rhythm during Autogenic meditation

    PubMed Central

    Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan

    2013-01-01

    This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion. PMID:23914165

  11. Dynamic correlations between heart and brain rhythm during Autogenic meditation.

    PubMed

    Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan

    2013-01-01

    This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion.

  12. Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults

    PubMed Central

    Ponomareva, Natalya; Andreeva, Tatiana; Protasova, Maria; Shagam, Lev; Malina, Daria; Goltsov, Andrei; Fokin, Vitaly; Mitrofanov, Andrei; Rogaev, Evgeny

    2013-01-01

    Polymorphism in the genomic region harboring the CLU gene (rs11136000) has been associated with the risk for Alzheimer’s disease (AD). CLU C allele is assumed to confer risk for AD and the allele T may have a protective effect. We investigated the influence of the AD-associated CLU genotype on a common neurophysiological trait of brain activity (resting-state alpha-rhythm activity) in non-demented adults and elucidated whether this influence is modified over the course of aging. We examined quantitative electroencephalography (EEG) in a cohort of non-demented individuals (age range 20–80) divided into young (age range 20–50) and old (age range 51–80) cohorts and stratified by CLU polymorphism. To rule out the effect of the apolipoprotein E (ApoE) genotype on EEG characteristics, only subjects without the ApoE ε4 allele were included in the study. The homozygous presence of the AD risk variant CLU CC in non-demented subjects was associated with an increase of alpha3 absolute power. Moreover, the influence of CLU genotype on alpha3 was found to be higher in the subjects older than 50 years of age. The study also showed age-dependent alterations of alpha topographic distribution that occur independently of the CLU genotype. The increase of upper alpha power has been associated with hippocampal atrophy in patients with mild cognitive impairment (Moretti etal., 2012a). In our study, the CLU CC-dependent increase in upper alpha rhythm, particularly enhanced in elderly non-demented individuals, may imply that the genotype is related to preclinical dysregulation of hippocampal neurophysiology in aging and that this factor may contribute to the pathogenesis of AD. PMID:24379779

  13. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form.

    PubMed

    Martínez-Rodrigo, Arturo; Fernández-Sotos, Alicia; Latorre, José Miguel; Moncho-Bogani, José; Fernández-Caballero, Antonio

    2017-01-01

    This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form.

  14. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form

    PubMed Central

    Martínez-Rodrigo, Arturo; Fernández-Sotos, Alicia; Latorre, José Miguel; Moncho-Bogani, José; Fernández-Caballero, Antonio

    2017-01-01

    This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG) by using a brain–computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form. PMID:28496406

  15. Role of olfactory reactions, nociception, and immunoendocrine shifts in addictive disorders.

    PubMed

    Masterova, Elena; Nevidimova, Tatiana; Savochkina, Dariya; Nikitina, Valentina; Lobacheva, Olga; Vetlugina, Tamara; Bokhan, Nikolay

    2017-09-01

    Addictive pathology is associated with nervous, immune, and endocrine shifts. Meanwhile, the nature of intersystemic relationship lying beneath addictive disorders remains unclear. The purpose of the study was to identify neuroimmunoendocrine markers of addictive disorders in male subjects defining the nature of their interaction. The study enrolled 69 subjects aged 18-43 years: 59 males and 10 females divided into those with addictive disorders (n = 39) and conditionally healthy subjects (n = 30). EEG testing with olfactory stimulation, olfactometric, and pressure algometric examinations was carried out. Multiplex technique was applied to determine mitogen-induced production of cytokines IL-10, IL-1, IL-1RA, IL-2, IFN-gamma, TNF-alpha. ELISA method was applied to measure serum cortisol and testosterone levels. Olfactory responses to isopropanol with open eyes in addicted patients manifested as increase in alpha-rhythm and beta1-rhythm, with closed eyes presentation of this odorant was accompanied by increase of theta-rhythm in opioid-addicted patients. Male subjects with addictive disorders showed reduced alpha-rhythm in terms of olfactory stimulation with modified emotional evaluation of the odorant, deficient mitogen-induced production of IFN-gamma, and reduced pain sensitivity. Male subjects with opioid addiction had reduced beta1-rhythm in terms of olfactory stimulation, mitogen-induced production of IFN-gamma, and elevated testosterone level. The findings obtained verify potential involvement of nociception, olfaction, and cytokine production in addiction pathogenesis evidencing their various roles depending on the range of psychoactive substances (PAS) and pathology progression. The data obtained may provide background for unification of reward circuit and inhibitory control concepts in regulation of addictive behavior. (Am J Addict 2017;26:640-648). © 2017 American Academy of Addiction Psychiatry.

  16. Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals

    NASA Astrophysics Data System (ADS)

    Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha

    2016-02-01

    Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.

  17. Critical validation studies of neurofeedback.

    PubMed

    Gruzelier, John; Egner, Tobias

    2005-01-01

    The field of neurofeedback training has proceeded largely without validation. In this article the authors review studies directed at validating sensory motor rhythm, beta and alpha-theta protocols for improving attention, memory, and music performance in healthy participants. Importantly, benefits were demonstrable with cognitive and neurophysiologic measures that were predicted on the basis of regression models of learning to enhance sensory motor rhythm and beta activity. The first evidence of operant control over the alpha-theta ratio is provided, together with remarkable improvements in artistic aspects of music performance equivalent to two class grades in conservatory students. These are initial steps in providing a much needed scientific basis to neurofeedback.

  18. Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.

    PubMed

    Gulbinaite, Rasa; van Viegen, Tara; Wieling, Martijn; Cohen, Michael X; VanRullen, Rufin

    2017-10-18

    Rhythmic visual stimulation ("flicker") is primarily used to "tag" processing of low-level visual and high-level cognitive phenomena. However, preliminary evidence suggests that flicker may also entrain endogenous brain oscillations, thereby modulating cognitive processes supported by those brain rhythms. Here we tested the interaction between 10 Hz flicker and endogenous alpha-band (∼10 Hz) oscillations during a selective visuospatial attention task. We recorded EEG from human participants (both genders) while they performed a modified Eriksen flanker task in which distractors and targets flickered within (10 Hz) or outside (7.5 or 15 Hz) the alpha band. By using a combination of EEG source separation, time-frequency, and single-trial linear mixed-effects modeling, we demonstrate that 10 Hz flicker interfered with stimulus processing more on incongruent than congruent trials (high vs low selective attention demands). Crucially, the effect of 10 Hz flicker on task performance was predicted by the distance between 10 Hz and individual alpha peak frequency (estimated during the task). Finally, the flicker effect on task performance was more strongly predicted by EEG flicker responses during stimulus processing than during preparation for the upcoming stimulus, suggesting that 10 Hz flicker interfered more with reactive than proactive selective attention. These findings are consistent with our hypothesis that visual flicker entrained endogenous alpha-band networks, which in turn impaired task performance. Our findings also provide novel evidence for frequency-dependent exogenous modulation of cognition that is determined by the correspondence between the exogenous flicker frequency and the endogenous brain rhythms. SIGNIFICANCE STATEMENT Here we provide novel evidence that the interaction between exogenous rhythmic visual stimulation and endogenous brain rhythms can have frequency-specific behavioral effects. We show that alpha-band (10 Hz) flicker impairs stimulus processing in a selective attention task when the stimulus flicker rate matches individual alpha peak frequency. The effect of sensory flicker on task performance was stronger when selective attention demands were high, and was stronger during stimulus processing and response selection compared with the prestimulus anticipatory period. These findings provide novel evidence that frequency-specific sensory flicker affects online attentional processing, and also demonstrate that the correspondence between exogenous and endogenous rhythms is an overlooked prerequisite when testing for frequency-specific cognitive effects of flicker. Copyright © 2017 the authors 0270-6474/17/3710173-12$15.00/0.

  19. The effect of alpha rhythm sleep on EEG activity and individuals' attention.

    PubMed

    Kim, Seon Chill; Lee, Myoung Hee; Jang, Chel; Kwon, Jung Won; Park, Joo Wan

    2013-12-01

    [Purpose] This study examined whether the alpha rhythm sleep alters the EEG activity and response time in the attention and concentration tasks. [Subjects and Methods] The participants were 30 healthy university students, who were randomly and equally divided into two groups, the experimental and control groups. They were treated using the Happy-sleep device or a sham device, respectively. All participants had a one-week training period. Before and after training sessions, a behavioral task test was performed and EEG alpha waves were measured to confirm the effectiveness of training on cognitive function. [Results] In terms of the behavioral task test, reaction time (RT) variations in the experimental group were significantly larger than in the control group for the attention item. Changes in the EEG alpha power in the experimental group were also significantly larger than those of the control group. [Conclusions] These findings suggest that sleep induced using the Happy-sleep device modestly enhances the ability to pay attention and focus during academic learning.

  20. Unconsciousness, automatisms, and myoclonic jerks with diffuse rhythmic 9-Hz discharges.

    PubMed

    Nadel, A; Waddell, G; Volow, M; Escueta, A V

    1975-09-01

    A 25-year-old man presented with seizures characterized by unconsciousness, automatic behavior, and myoclonic jerks lasting 0.5 to 8 sec. Videotape analysis of 300 simultaneously recorded electroencephalographic and clinical attacks revealed 8- to 9-Hz 150 to 200 muV sharp waves beginning in both medial temporal areas during eyelid flutters. When discharges spread diffusely on both sides and lasted 2 to 3 sec, 20 degrees forward flexion of the head, unconsciousness, pupil dilation, and staring became evident. Asymmetrical myoclonic jerks invariably appeared. When paroxysms were greater than 3 sec, automatisms and tonic posturing occurred. The electroencephalographic and clinical seizures appeared during the awake and relaxed states, i.e., with normal alpha rhythm. They were suppressed during physical and mental activities and during sleep, i.e., in the absence of alpha rhythm. Our studies suggest that these seizures associated with diffuse electroencephalographic alpha-like activities are subcortical in origin and should be tested in their responsivity to alpha suppressants and inducers.

  1. [Spatial organization of bioelectrical brain activity in epilepsy and amenorrhea of central genesis].

    PubMed

    Avakian, G N; Oleĭnikova, O M; Nerobkova, L N; Dovletkhanova, E R; Mitrofanov, A A; Gusev, E I

    2002-01-01

    The study aimed at modification of co-herent analysis (CA), as a mathematical method for EEG data processing for objective evaluation of bioelectric brain activity spatial organization in women with epilepsy and secondary amenorrhea of central genesis. One hundred sixty one women (30 with epilepsy, 116 with amenorrhea and 115 controls aged 15 to 41 years) have been examined. Characteristic changes of cortico-cortical inter- and intra-hemisphere relations for patients with catamenial (CTM) and noncatamenial (NCTM) epilepsy in different menstrual cycle terms were found. The most distinct changes were detected in theta-activity analysis. In the beginning of menstrual cycle, the patients with CTM epilepsy exhibited higher CA indices in theta-rhythm range in all right hemisphere pairs studied. On the contrary, patients with NCTM epilepsy exhibited lower CA indices mainly in the right brain hemisphere. alpha-rhythm spatial organization analysis in the same patients showed similar correlations, but they were better expressed in alpha-rhythm generation zone: in the beginning of menstrual cycle CA indices were high in patients with CTM epilepsy and low in those with NCTM epilepsy. Comparing to controls, patients with secondary amenorrhea of central genesis showed most distinct changes in theta-activity towards the CA indices increase in the majority of the leads. In patients with epilepsy and amenorrhea, CA indices of right brain hemisphere and intra-central temporal lead pairs were lower than in patients with amenorrhea without epilepsy by both alpha- and theta-rhythms.

  2. Increased Alpha-Rhythm Dynamic Range Promotes Recovery from Visuospatial Neglect: A Neurofeedback Study

    PubMed Central

    Michela, Abele; Bellman, Anne; Vuadens, Philippe; Saj, Arnaud; Vuilleumier, Patrik

    2017-01-01

    Despite recent attempts to use electroencephalogram (EEG) neurofeedback (NFB) as a tool for rehabilitation of motor stroke, its potential for improving neurological impairments of attention—such as visuospatial neglect—remains underexplored. It is also unclear to what extent changes in cortical oscillations contribute to the pathophysiology of neglect, or its recovery. Utilizing EEG-NFB, we sought to causally manipulate alpha oscillations in 5 right-hemisphere stroke patients in order to explore their role in visuospatial neglect. Patients trained to reduce alpha oscillations from their right posterior parietal cortex (rPPC) for 20 minutes daily, over 6 days. Patients demonstrated successful NFB learning between training sessions, denoted by improved regulation of alpha oscillations from rPPC. We observed a significant negative correlation between visuospatial search deficits (i.e., cancellation test) and reestablishment of spontaneous alpha-rhythm dynamic range (i.e., its amplitude variability). Our findings support the use of NFB as a tool for investigating neuroplastic recovery after stroke and suggest reinstatement of intact parietal alpha oscillations as a promising target for reversing attentional deficits. Specifically, we demonstrate for the first time the feasibility of EEG-NFB in neglect patients and provide evidence that targeting alpha amplitude variability might constitute a valuable marker for clinical symptoms and self-regulation. PMID:28529806

  3. Effect of Pilates Training on Alpha Rhythm

    PubMed Central

    Bian, Zhijie; Sun, Hongmin; Lu, Chengbiao; Yao, Li; Chen, Shengyong; Li, Xiaoli

    2013-01-01

    In this study, the effect of Pilates training on the brain function was investigated through five case studies. Alpha rhythm changes during the Pilates training over the different regions and the whole brain were mainly analyzed, including power spectral density and global synchronization index (GSI). It was found that the neural network of the brain was more active, and the synchronization strength reduced in the frontal and temporal regions due to the Pilates training. These results supported that the Pilates training is very beneficial for improving brain function or intelligence. These findings maybe give us some line evidence to suggest that the Pilates training is very helpful for the intervention of brain degenerative diseases and cogitative dysfunction rehabilitation. PMID:23861723

  4. Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy

    NASA Astrophysics Data System (ADS)

    Pyrzowski, Jan; Siemiński, Mariusz; Sarnowska, Anna; Jedrzejczak, Joanna; Nyka, Walenty M.

    2015-11-01

    The contemporary use of interictal scalp electroencephalography (EEG) in the context of focal epilepsy workup relies on the visual identification of interictal epileptiform discharges. The high-specificity performance of this marker comes, however, at a cost of only moderate sensitivity. Zero-crossing interval analysis is an alternative to Fourier analysis for the assessment of the rhythmic component of EEG signals. We applied this method to standard EEG recordings of 78 patients divided into 4 subgroups: temporal lobe epilepsy (TLE), frontal lobe epilepsy (FLE), psychogenic nonepileptic seizures (PNES) and nonepileptic patients with headache. Interval-analysis based markers were capable of effectively discriminating patients with epilepsy from those in control subgroups (AUC~0.8) with diagnostic sensitivity potentially exceeding that of visual analysis. The identified putative epilepsy-specific markers were sensitive to the properties of the alpha rhythm and displayed weak or non-significant dependences on the number of antiepileptic drugs (AEDs) taken by the patients. Significant AED-related effects were concentrated in the theta interval range and an associated marker allowed for identification of patients on AED polytherapy (AUC~0.9). Interval analysis may thus, in perspective, increase the diagnostic yield of interictal scalp EEG. Our findings point to the possible existence of alpha rhythm abnormalities in patients with epilepsy.

  5. The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models

    PubMed Central

    Sigala, Rodrigo; Haufe, Sebastian; Roy, Dipanjan; Dinse, Hubert R.; Ritter, Petra

    2014-01-01

    During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz) not only reflect an “idle” state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by “The Virtual Brain” project. PMID:24772077

  6. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans.

    PubMed

    Schreckenberger, Mathias; Lange-Asschenfeldt, Christian; Lange-Asschenfeld, Christian; Lochmann, Matthias; Mann, Klaus; Siessmeier, Thomas; Buchholz, Hans-Georg; Bartenstein, Peter; Gründer, Gerhard

    2004-06-01

    Purpose of this study was to investigate the functional relationship between electroencephalographic (EEG) alpha power and cerebral glucose metabolism before and after pharmacological alpha suppression by lorazepam. Ten healthy male volunteers were examined undergoing two F18-fluorodeoxyglucose (18-FDG) positron emission tomography (PET) scans with simultaneous EEG recording: 1x placebo, 1x lorazepam. EEG power spectra were computed by means of Fourier analysis. The PET data were analyzed using SPM99, and the correlations between metabolism and alpha power were calculated for both conditions. The comparison lorazepam versus placebo revealed reduced glucose metabolism of the bilateral thalamus and adjacent subthalamic areas, the occipital cortex and temporo-insular areas (P < 0.001). EEG alpha power was reduced in all derivations (P < 0.001). Under placebo, there was a positive correlation between alpha power and metabolism of the bilateral thalamus and the occipital and adjacent parietal cortex (P < 0.001). Under lorazepam, the thalamic and parietal correlations were maintained, whereas the occipital correlation was no longer detectable (P < 0.001). The correlation analysis of the difference lorazepam-placebo showed the alpha power exclusively correlated with the thalamic activity (P < 0.0001). These results support the hypothesis of a close functional relationship between thalamic activity and alpha rhythm in humans mediated by corticothalamic loops which are independent of sensory afferences. The study paradigm could be a promising approach for the investigation of cortico-thalamo-cortical feedback loops in neuropsychiatric diseases.

  7. Alpha-Band Brain Oscillations Shape the Processing of Perceptible as well as Imperceptible Somatosensory Stimuli during Selective Attention.

    PubMed

    Forschack, Norman; Nierhaus, Till; Müller, Matthias M; Villringer, Arno

    2017-07-19

    Attention filters and weights sensory information according to behavioral demands. Stimulus-related neural responses are increased for the attended stimulus. Does alpha-band activity mediate this effect and is it restricted to conscious sensory events (suprathreshold), or does it also extend to unconscious stimuli (subthreshold)? To address these questions, we recorded EEG in healthy male and female volunteers undergoing subthreshold and suprathreshold somatosensory electrical stimulation to the left or right index finger. The task was to detect stimulation at the randomly alternated cued index finger. Under attention, amplitudes of somatosensory evoked potentials increased 50-60 ms after stimulation (P1) for both suprathreshold and subthreshold events. Prestimulus amplitude of peri-Rolandic alpha, that is mu, showed an inverse relationship to P1 amplitude during attention compared to when the finger was unattended. Interestingly, intermediate and high amplitudes of mu rhythm were associated with the highest P1 amplitudes during attention and smallest P1 during lack of attention, that is, these levels of alpha rhythm seemed to optimally support the behavioral goal ("detect" stimuli at the cued finger while ignoring the other finger). Our results show that attention enhances neural processing for both suprathreshold and subthreshold stimuli and they highlight a rather complex interaction between attention, Rolandic alpha activity, and their effects on stimulus processing. SIGNIFICANCE STATEMENT Attention is crucial in prioritizing processing of relevant perceptible (suprathreshold) stimuli: it filters and weights sensory input. The present study investigates the controversially discussed question whether this attention effect extends to imperceptible (subthreshold) stimuli as well. We found noninvasive EEG signatures for attentional modulation of neural events following perceptible and imperceptible somatosensory stimulation in human participants. Specifically, stimulus processing for both kinds of stimulation, subthreshold and suprathreshold, is enhanced by attention. Interestingly, Rolandic alpha rhythm strength and its influence on stimulus processing are strikingly altered by attention most likely to optimally achieve the behavioral goal. Copyright © 2017 the authors 0270-6474/17/376983-12$15.00/0.

  8. Rate control and quality assurance during rhythmic force tracking.

    PubMed

    Huang, Cheng-Ya; Su, Jyong-Huei; Hwang, Ing-Shiou

    2014-02-01

    Movement characteristics can be coded in the single neurons or in the summed activity of neural populations. However, whether neural oscillations are conditional to the frequency demand and task quality of rhythmic force regulation is still unclear. This study was undertaken to investigate EEG dynamics and behavior correlates during force-tracking at different target rates. Fourteen healthy volunteers conducted load-varying isometric abduction of the index finger by coupling the force output to sinusoidal targets at 0.5 Hz, 1.0 Hz, and 2.0 Hz. Our results showed that frequency demand significantly affected EEG delta oscillation (1-4 Hz) in the C3, CP3, CPz, and CP4 electrodes, with the greatest delta power and lowest delta peak around 1.5 Hz for slower tracking at 0.5 Hz. Those who had superior tracking congruency also manifested enhanced alpha oscillation (8-12 Hz). Alpha rhythms of the skilled performers during slow tracking spread through the whole target cycle, except for the phase of direction changes. However, the alpha rhythms centered at the mid phase of a target cycle with increasing target rate. In conclusion, our findings clearly suggest two advanced roles of cortical oscillation in rhythmic force regulation. Rate-dependent delta oscillation involves a paradigm shift in force control under different time scales. Phasic organization of alpha rhythms during rhythmic force tracking is related to behavioral success underlying the selective use of bimodal controls (feedback and feedforward processes) and the timing of attentional focus on the target's peak velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Super Power for Effortless and Efficient Digest of Language for Expression with Alpha Rhythms in Nature [SPEED LEARN].

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Project "SPEED LEARN," a study which compared learning rates in beginning French and other behavior characteristics between adolescents with alpha training and comparable students without such training, was conducted with 62 rural subjects randomly divided into experimental and control groups. Both groups participated in an 8-week…

  10. Neural Correlates of Phrase Quadrature Perception in Harmonic Rhythm: An EEG Study Using a Brain-Computer Interface.

    PubMed

    Fernández-Soto, Alicia; Martínez-Rodrigo, Arturo; Moncho-Bogani, José; Latorre, José Miguel; Fernández-Caballero, Antonio

    2018-06-01

    For the sake of establishing the neural correlates of phrase quadrature perception in harmonic rhythm, a musical experiment has been designed to induce music-evoked stimuli related to one important aspect of harmonic rhythm, namely the phrase quadrature. Brain activity is translated to action through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. The results of processing the acquired signals are in line with previous studies that use different musical parameters to induce emotions. Indeed, our experiment shows statistical differences in theta and alpha bands between the fulfillment and break of phrase quadrature, an important cue of harmonic rhythm, in two classical sonatas.

  11. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.

    PubMed

    Ibrahim, George M; Wong, Simeon M; Anderson, Ryan A; Singh-Cadieux, Gabrielle; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Okanishi, Tohru; Valiante, Taufik A; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2014-01-01

    Pathological high frequency oscillations (pHFOs) have been proposed to be robust markers of epileptic cortex. Oscillatory activity below this frequency range has been shown to be modulated by phase of lower frequency oscillations. Here, we tested the hypothesis that dynamic cross-frequency interactions involving pHFOs are concentrated within the epileptogenic cortex. Intracranial electroencephalographic recordings from 17 children with medically-intractable epilepsy secondary to focal cortical dysplasia were obtained. A time-resolved analysis was performed to determine topographic concentrations and dynamic changes in cross-frequency amplitude-to-phase coupling (CFC). CFC between pHFOs and the phase of theta and alpha rhythms was found to be significantly elevated in the seizure-onset zone compared to non-epileptic regions (p<0.01). Data simulations showed that elevated CFC could not be attributed to the presence of sharp transients or other signal properties. The phase of low frequency oscillations at which pHFO amplitudes were maximal was inconsistent at seizure initiation, yet consistently at the trough of the low frequency rhythm at seizure termination. Amplitudes of pHFOs were most significantly modulated by the phase of alpha-band oscillations (p<0.01). These results suggest that increased CFC between pHFO amplitude and alpha phase may constitute a marker of epileptogenic brain areas and may be relevant for understanding seizure dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The EEG as an index of neuromodulator balance in memory and mental illness.

    PubMed

    Vakalopoulos, Costa

    2014-01-01

    There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep.

  13. The Effects of Sweet, Bitter, Salty and Sour Stimuli on Alpha Rhythm. A Meg Study.

    PubMed

    Kotini, Athanasia; Anninos, Photios; Gemousakakis, Triandafillos; Adamopoulos, Adam

    2016-09-01

    the possible diff erences in processing gustatory stimuli in healthy subjects was investigated by magnetoencephalography (meg). meg recordings were evaluated for 10 healthy volunteers (3 men within the age range 20-46 years, 7 women within the age range 10-28 years), with four diff erent gustatory stimuli: sweet, bi" er, sour and salty. Fast fourier transform was performed on meg epochs recorded for the above conditions and the eff ect of each kind of stimuli on alpha rhythm was examined. A significant higher percent of alpha power was found irrespective of hemispheric side in all gustatory states located mainly at the occipital, le$ and right parietal lobes. One female volunteer experienced no statistically signifi cance when comparing normal with salty and sour taste respectively. Two female volunteers exhibited no statistically signifi cance when comparing their normal with their salty taste. One male volunteer experienced no statistically signifi cance when comparing the normalbitter and normal-salty states correspondingly. All the other subjects showed statistically signifi cant changes in alpha power for the 4 gustatory stimuli. The pattern of activation caused by the four stimuli indicated elevated gustatory processing mechanisms. This cortical activation might have applicability in modulation of brain status.

  14. Impact of dronabinol on quantitative electroencephalogram (qEEG) measures of sleep in obstructive sleep apnea syndrome.

    PubMed

    Farabi, Sarah S; Prasad, Bharati; Quinn, Lauretta; Carley, David W

    2014-01-15

    To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG.

  15. [The bioelectric activity of the brain in dyscirculatory encephalopathy and arterial hypertension developed in the Chernobyl nuclear disaster liquidators].

    PubMed

    Podsonnaia, I V; Efremushkin, G G; Zhelobetskaia, E D

    2012-01-01

    The long-term effects of the ionizing radiation on the bioelectric brain activity in the Chernobyl nuclear disaster liquidators with discirculatory encephalopathy and arterial hypertension were studied. We examined 195 male patients, aged from 30 to 65 years, with the clinical presentations of discirculatory encephalopathy, using electroencephalography: 105 patients were liquidators of the Chernobyl nuclear disaster (the main group) and 90 patients had no radiation anamnesis (the comparison group). It has been found that the development of discirculatory encephalopathy in liquidators of the Chernobyl nuclear disaster is mainly associated with the dysfunction of diencephalic and cortical structures. The specificity of the neurofunctional brain abnormalities in liquidators with discirculatory encephalopathy is characterized by the predominance of the low-amplitude and low-frequency alpha-activity or by the lack of alpha-rhythm and by its substitution for the high-frequency beta-rhythm with the presence of theta- and delta-activity and by the more significant flatness of the alpha-rhythm zonation. The presence of the radiation factor in the past history is correlated with the failure of the bioelectric brain activity in the alpha band (r=0.42) that increases risk of abnormal changes by a factor of 10 (p<0.001). The liquidators with arterial hypertension are characterized by the more frequent occurrence of the asymmetry of the recorded bioelectric potentials between the similar hemispheric areas, by the more significant difference in the external stimulus response of the brain (functional tests). The results indicate the more complicated and diffuse lesion of the brain in the liquidators of the Chernobyl nuclear disaster in the post-radiation period during the development of discirculatory encephalopathy and arterial hypertension.

  16. Alpha, delta and theta rhythms in a neural net model. Comparison with MEG data.

    PubMed

    Kotini, A; Anninos, P

    2016-01-07

    The aim of this study is to provide information regarding the comparison of a neural model to MEG measurements. Our study population consisted of 10 epileptic patients and 10 normal subjects. The epileptic patients had high MEG amplitudes characterized with θ (4-7 Hz) or δ (2-3 Hz) rhythms and absence of α-rhythm (8-13 Hz). The statistical analysis of such activities corresponded to Poisson distribution. Conversely, the MEG from normal subjects had low amplitudes, higher frequencies and presence of α-rhythm (8-13 Hz). Such activities were not synchronized and their distributions were Gauss. These findings were in agreement with our theoretical neural model. The comparison of the neural network with MEG data provides information about the status of brain function in epileptic and normal states. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The 10 Hz Frequency: A Fulcrum For Transitional Brain States.

    PubMed

    Garcia-Rill, E; D'Onofrio, S; Luster, B; Mahaffey, S; Urbano, F J; Phillips, C

    A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest ( mu rhythm), in the superior and middle temporal lobe ( tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are "replaced" by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness.

  18. The 10 Hz Frequency: A Fulcrum For Transitional Brain States

    PubMed Central

    Garcia-Rill, E.; D’Onofrio, S.; Luster, B.; Mahaffey, S.; Urbano, F. J.; Phillips, C.

    2016-01-01

    A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest (mu rhythm), in the superior and middle temporal lobe (tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are “replaced” by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness. PMID:27547831

  19. Salient, Irrelevant Sounds Reflexively Induce Alpha Rhythm Desynchronization in Parallel with Slow Potential Shifts in Visual Cortex.

    PubMed

    Störmer, Viola; Feng, Wenfeng; Martinez, Antigona; McDonald, John; Hillyard, Steven

    2016-03-01

    Recent findings suggest that a salient, irrelevant sound attracts attention to its location involuntarily and facilitates processing of a colocalized visual event [McDonald, J. J., Störmer, V. S., Martinez, A., Feng, W. F., & Hillyard, S. A. Salient sounds activate human visual cortex automatically. Journal of Neuroscience, 33, 9194-9201, 2013]. Associated with this cross-modal facilitation is a sound-evoked slow potential over the contralateral visual cortex termed the auditory-evoked contralateral occipital positivity (ACOP). Here, we further tested the hypothesis that a salient sound captures visual attention involuntarily by examining sound-evoked modulations of the occipital alpha rhythm, which has been strongly associated with visual attention. In two purely auditory experiments, lateralized irrelevant sounds triggered a bilateral desynchronization of occipital alpha-band activity (10-14 Hz) that was more pronounced in the hemisphere contralateral to the sound's location. The timing of the contralateral alpha-band desynchronization overlapped with that of the ACOP (∼240-400 msec), and both measures of neural activity were estimated to arise from neural generators in the ventral-occipital cortex. The magnitude of the lateralized alpha desynchronization was correlated with ACOP amplitude on a trial-by-trial basis and between participants, suggesting that they arise from or are dependent on a common neural mechanism. These results support the hypothesis that the sound-induced alpha desynchronization and ACOP both reflect the involuntary cross-modal orienting of spatial attention to the sound's location.

  20. Alpha EEG Frontal Asymmetries during Audiovisual Perception in Cochlear Implant Users. A Study with Bilateral and Unilateral Young Users.

    PubMed

    Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Giannantonio, S; Colosimo, A; Babiloni, F; Vecchiato, G

    2015-01-01

    The aim of the present study is to investigate the variations of the electroencephalographic (EEG) alpha rhythm in order to measure the appreciation of bilateral and unilateral young cochlear implant users during the observation of a musical cartoon. The cartoon has been modified for the generation of three experimental conditions: one with the original audio, another one with a distorted sound and, finally, a mute version. The EEG data have been recorded during the observation of the cartoons in the three experimental conditions. The frontal alpha EEG imbalance has been calculated as a measure of motivation and pleasantness to be compared across experimental populations and conditions. The EEG frontal imbalance of the alpha rhythm showed significant variations during the perception of the different cartoons. In particular, the pattern of activation of normal-hearing children is very similar to the one elicited by the bilateral implanted patients. On the other hand, results related to the unilateral subjects do not present significant variations of the imbalance index across the three cartoons. The presented results suggest that the unilateral patients could not appreciate the difference in the audio format as well as bilaterally implanted and normal hearing subjects. The frontal alpha EEG imbalance is a useful tool to detect the differences in the appreciation of audiovisual stimuli in cochlear implant patients.

  1. Towards multilevel mental stress assessment using SVM with ECOC: an EEG approach.

    PubMed

    Al-Shargie, Fares; Tang, Tong Boon; Badruddin, Nasreen; Kiguchi, Masashi

    2018-01-01

    Mental stress has been identified as one of the major contributing factors that leads to various diseases such as heart attack, depression, and stroke. To avoid this, stress quantification is important for clinical intervention and disease prevention. This study aims to investigate the feasibility of exploiting electroencephalography (EEG) signals to discriminate between different stress levels. We propose a new assessment protocol whereby the stress level is represented by the complexity of mental arithmetic (MA) task for example, at three levels of difficulty, and the stressors are time pressure and negative feedback. Using 18-male subjects, the experimental results showed that there were significant differences in EEG response between the control and stress conditions at different levels of MA task with p values < 0.001. Furthermore, we found a significant reduction in alpha rhythm power from one stress level to another level, p values < 0.05. In comparison, results from self-reporting questionnaire NASA-TLX approach showed no significant differences between stress levels. In addition, we developed a discriminant analysis method based on multiclass support vector machine (SVM) with error-correcting output code (ECOC). Different stress levels were detected with an average classification accuracy of 94.79%. The lateral index (LI) results further showed dominant right prefrontal cortex (PFC) to mental stress (reduced alpha rhythm). The study demonstrated the feasibility of using EEG in classifying multilevel mental stress and reported alpha rhythm power at right prefrontal cortex as a suitable index.

  2. Long-range synchronization and local desynchronization of alpha oscillations during visual short-term memory retention in children.

    PubMed

    Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Cheung, Teresa; Moiseev, Alexander; Weinberg, Hal; Liotti, Mario; Weeks, Daniel; Grunau, Ruth E

    2010-04-01

    Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.

  3. EEG correlates of the alcohol-induced organic brain syndrome in man.

    PubMed

    Zilm, D H; Huszar, L; Carlen, P L; Kaplan, H L; Wilkinson, D A

    1980-05-01

    Fourteen chronic alcoholics were studied within 1 to 3 weeks of beginning abstinence for a duration of 6 to 10 weeks. Patients were drug-free during the study. Electroencephalograms were recorded on admission, and twice at 2- to 3-week intervals. Neurologic examinations were performed during the same week as EEGs, and patients received a psychologic examination and CT scan within 3 weeks. Two groups could be identified. One group had high neurologic impairment scores, low alpha production, high 20 to 30 Hz power, impaired gait, and mental performance, while the other had low scores, normal alpha rhythm, and reduced degree of mental dysfunction. The impaired group showed marked improvement in neurologic scores, alpha rhythm, and 20 to 30 Hz power within 4 to 6 weeks, in contrast to no change for the unimpaired group. There was no evidence that age, duration of drinking, time from last drink, or cortical atrophy were involved in predisposing alcoholics to demonstrate the observed changes. It is submitted that spontaneous recovery in brain function of neurologically impaired alcoholics accompanies abstinence from chronic alcohol consumption.

  4. Resting state brain dynamics and its transients: a combined TMS-EEG study.

    PubMed

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-08-04

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.

  5. Differences in the perceived music pleasantness between monolateral cochlear implanted and normal hearing children assessed by EEG.

    PubMed

    Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Graziani, I; Cherubino, P; Astolfi, L; Marsella, P; Colosimo, A; Babiloni, Fabio

    2013-01-01

    The perception of the music in cochlear implanted (CI) patients is an important aspect of their quality of life. In fact, the pleasantness of the music perception by such CI patients can be analyzed through a particular analysis of EEG rhythms. Studies on healthy subjects show that exists a particular frontal asymmetry of the EEG alpha rhythm which can be correlated with pleasantness of the perceived stimuli (approach-withdrawal theory). In particular, here we describe differences between EEG activities estimated in the alpha frequency band for a monolateral CI group of children and a normal hearing one during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns related to the normal hearing group refers to a higher pleasantness perception when compared to the cerebral activity of the monolateral CI patients. In fact, the present results support the statement that a monolateral CI group could perceive the music in a less pleasant way when compared to normal hearing children.

  6. An adaptive singular spectrum analysis method for extracting brain rhythms of electroencephalography

    PubMed Central

    Hu, Hai; Guo, Shengxin; Liu, Ran

    2017-01-01

    Artifacts removal and rhythms extraction from electroencephalography (EEG) signals are important for portable and wearable EEG recording devices. Incorporating a novel grouping rule, we proposed an adaptive singular spectrum analysis (SSA) method for artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the grouping rule determines adaptively the first one or two SSA reconstructed components as artifacts and removes them. The remaining reconstructed components are then grouped based on their peak frequencies in the Fourier transform to extract the desired rhythms. The grouping rule thus enables SSA to be adaptive to EEG signals containing different levels of artifacts and rhythms. The simulated EEG data based on the Markov Process Amplitude (MPA) EEG model and the experimental EEG data in the eyes-open and eyes-closed states were used to verify the adaptive SSA method. Results showed a better performance in artifacts removal and rhythms extraction, compared with the wavelet decomposition (WDec) and another two recently reported SSA methods. Features of the extracted alpha rhythms using adaptive SSA were calculated to distinguish between the eyes-open and eyes-closed states. Results showed a higher accuracy (95.8%) than those of the WDec method (79.2%) and the infinite impulse response (IIR) filtering method (83.3%). PMID:28674650

  7. The role of alpha oscillations for illusory perception

    PubMed Central

    Lange, Joachim; Keil, Julian; Schnitzler, Alfons; van Dijk, Hanneke; Weisz, Nathan

    2014-01-01

    Alpha oscillations are a prominent electrophysiological signal measured across a wide range of species and cortical and subcortical sites. Alpha oscillations have been viewed for a long time as an “idling” rhythm, purely reflecting inactive sites. Despite earlier evidence from neurophysiology, awareness that alpha oscillations can substantially influence perception and behavior has grown only recently in cognitive neuroscience. Evidence for an active role of alpha for perception comes mainly from several visual, near-threshold experiments. In the current review, we extend this view by summarizing studies showing how alpha-defined brain states relate to illusory perception, i.e. cases of perceptual reports that are not “objectively” verifiable by distinct stimuli or stimulus features. These studies demonstrate that ongoing or prestimulus alpha oscillations substantially influence the perception of auditory, visual or multisensory illusions. PMID:24931795

  8. Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks

    PubMed Central

    Vaudano, Anna Elisabetta; Ruggieri, Andrea; Avanzini, Pietro; Gessaroli, Giuliana; Cantalupo, Gaetano; Coppola, Antonietta; Sisodiya, Sanjay M.

    2017-01-01

    Abstract See Hamandi (doi:10.1093/awx049) for a scientific commentary on this article. Photosensitivity is a condition in which lights induce epileptiform activities. This abnormal electroencephalographic response has been associated with hyperexcitability of the visuo-motor system. Here, we evaluate if intrinsic dysfunction of this network is present in brain activity at rest, independently of any stimulus and of any paroxysmal electroencephalographic activity. To address this issue, we investigated the haemodynamic correlates of the spontaneous alpha rhythm, which is considered the hallmark of the brain resting state, in photosensitive patients and in people without photosensitivity. Second, we evaluated the whole-brain functional connectivity of the visual thalamic nuclei in the various populations of subjects under investigation. Forty-four patients with epilepsy and 16 healthy control subjects underwent an electroencephalography-correlated functional magnetic resonance imaging study, during an eyes-closed condition. The following patient groups were included: (i) genetic generalized epilepsy with photosensitivity, 16 subjects (mean age 25 ± 10 years); (ii) genetic generalized epilepsy without photosensitivity, 13 patients (mean age 25 ± 11 years); (iii) focal epilepsy, 15 patients (mean age 25 ± 9 years). For each subject, the posterior alpha power variations were convolved with the standard haemodynamic response function and used as a regressor. Within- and between-groups second level analyses were performed. Whole brain functional connectivity was evaluated for two thalamic regions of interest, based on the haemodynamic findings, which included the posterior thalamus (pulvinar) and the medio-dorsal thalamic nuclei. Genetic generalized epilepsy with photosensitivity demonstrated significantly greater mean alpha-power with respect to controls and other epilepsy groups. In photosensitive epilepsy, alpha-related blood oxygen level-dependent signal changes demonstrated lower decreases relative to all other groups in the occipital, sensory-motor, anterior cingulate and supplementary motor cortices. Coherently, the same brain regions demonstrated abnormal connectivity with the visual thalamus only in epilepsy patients with photosensitivity. As predicted, our findings indicate that the cortical-subcortical network generating the alpha oscillation at rest is different in people with epilepsy and visual sensitivity. This difference consists of a decreased alpha-related inhibition of the visual cortex and sensory-motor networks at rest. These findings represent the substrate of the clinical manifestations (i.e. myoclonus) of the photoparoxysmal response. Moreover, our results provide the first evidence of the existence of a functional link between the circuits that trigger the visual sensitivity phenomenon and those that generate the posterior alpha rhythm. PMID:28334965

  9. Emergence of Alpha and Gamma Like Rhythms in a Large Scale Simulation of Interacting Neurons

    NASA Astrophysics Data System (ADS)

    Gaebler, Philipp; Miller, Bruce

    2007-10-01

    In the normal brain, at first glance the electrical activity appears very random. However, certain frequencies emerge during specific stages of sleep or between quiet wake states. This raises the question of whether current mathematical and computational models of interacting neurons can display similar behavior. A recent model developed by Eugene Izhikevich appears to succeed. However, early dynamical simulations used to detect these patterns were possibly compromised by an over-simplified initial condition and evolution algorithm. Utilizing the same model, but a more robust algorithm, here we present our initial results, showing that these patterns persist under a wide range of initial conditions. We employ spectral analysis of the firing patterns of a system of interacting excitatory and inhibitory neurons to demonstrate a bimodal spectrum centered on two frequencies in the range characteristic of alpha and gamma rhythms in the human brain.

  10. Alpha Power Modulates Perception Independently of Endogenous Factors.

    PubMed

    Brüers, Sasskia; VanRullen, Rufin

    2018-01-01

    Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and perception is not a mere consequence of fluctuations in endogenous factors.

  11. Changes in EEG spectral power on perception of neutral and emotional words in patients with schizophrenia, their relatives, and healthy subjects from the general population.

    PubMed

    Alfimova, M V; Uvarova, L G

    2008-06-01

    EEG correlates of impairments in the processing of emotiogenic information which might reflect a genetic predisposition to schizophrenia were sought by studying the dynamics of EEG rhythm powers on presentation of neutral and emotional words in 36 patients with schizophrenia, 50 of their unaffected first-degree relatives, and 47 healthy subjects without any inherited predisposition to psychoses. In controls, passive hearing of neutral words produced minimal changes in cortical rhythms, predominantly in the form of increases in the power levels of slow and fast waves, while perception of emotional words was accompanied by generalized reductions in the power of the alpha and beta(1) rhythms and regionally specific suppression of theta and beta(2) activity. Patients and their relatives demonstrated reductions in power of alpha and beta(1) activity, with an increase in delta power on hearing both groups of words. Thus, differences in responses to neutral and emotional words in patients and their relatives were weaker, because of increased reactions to neutral words. These results may identify EEG reflections of pathology of involuntary attention, which is familial and, evidently, inherited in nature. No reduction in reactions to emotiogenic stimuli was seen in patients' families.

  12. Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm.

    PubMed

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy

    2018-02-01

    Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.

  13. Impact of Dronabinol on Quantitative Electroencephalogram (qEEG) Measures of Sleep in Obstructive Sleep Apnea Syndrome

    PubMed Central

    Farabi, Sarah S.; Prasad, Bharati; Quinn, Lauretta; Carley, David W.

    2014-01-01

    Study Objectives: To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). Methods: EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Results: Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. Conclusions: This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG. Citation: Farabi SS; Prasad B; Quinn L; Carley DW. Impact of dronabinol on quantitative electroencephalogram (qEEG) measures of sleep in obstructive sleep apnea syndrome. J Clin Sleep Med 2014;10(1):49-56. PMID:24426820

  14. Anticipation of somatosensory and motor events increases centro-parietal functional coupling: an EEG coherence study.

    PubMed

    Babiloni, Claudio; Brancucci, Alfredo; Vecchio, Fabrizio; Arendt-Nielsen, Lars; Chen, Andrew C N; Rossini, Paolo M

    2006-05-01

    Does functional coupling of centro-parietal EEG rhythms selectively increase during the anticipation of sensorimotor events composed by somatosensory stimulation and visuomotor task? EEG data were recorded in (1) 'simultaneous' condition in which the subjects waited for somatosensory stimulation at left hand concomitant with a Go (or NoGo) visual stimulus triggering (50%) right hand movements and in (2) 'sequential' condition where the somatosensory stimulation was followed (+1.5 s) by a visuomotor Go/NoGo task. Centro-parietal functional coupling was modeled by spectral coherence. Spectral coherence was computed from Laplacian-transformed EEG data at delta-theta (2-7 Hz), alpha (8-14 Hz), beta 1 (15-21 Hz), beta 2 (22-33 Hz), and gamma (34-45 Hz) rhythms. Before 'simultaneous' sensorimotor events, centro-parietal coherence regions increased in both hemispheres and at all rhythms. In the 'sequential' condition, right centro-parietal coherence increased before somatosensory event (left hand), whereas left centro-parietal coherence increased before subsequent Go/NoGo event (right hand). Anticipation of somatosensory and visuomotor events enhances contralateral centro-parietal coupling of slow and fast EEG rhythms. Predictable somatosensory and visuomotor events are anticipated not only by synchronization of cortical pyramidal neurons generating EEG power in parietal and primary sensorimotor cortical areas (Babiloni C, Brancucci A, Capotosto P, Arendt-Nielsen L, Chen ACN, Rossini PM. Expectancy of pain is influenced by motor preparation: a high-resolution EEG study of cortical alpha rhythms. Behav. Neurosci. 2005a;119(2):503-511; Babiloni C, Brancucci A, Pizzella V, Romani G.L, Tecchio F, Torquati K, Zappasodi F, Arendt-Nielsen L, Chen ACN, Rossini PM. Contingent negative variation in the parasylvian cortex increases during expectancy of painful sensorimotor events: a magnetoencephalographic study. Behav. Neurosci. 2005b;119(2):491-502) but also by functional coordination of these areas.

  15. Neocortical dynamics due to axon propagation delays in cortico-cortical fibers: EEG traveling and standing waves with implications for top-down influences on local networks and white matter disease

    PubMed Central

    Nunez, Paul L.; Srinivasan, Ramesh

    2013-01-01

    The brain is treated as a nested hierarchical complex system with substantial interactions across spatial scales. Local networks are pictured as embedded within global fields of synaptic action and action potentials. Global fields may act top-down on multiple networks, acting to bind remote networks. Because of scale-dependent properties, experimental electrophysiology requires both local and global models that match observational scales. Multiple local alpha rhythms are embedded in a global alpha rhythm. Global models are outlined in which cm-scale dynamic behaviors result largely from propagation delays in cortico-cortical axons and cortical background excitation level, controlled by neuromodulators on long time scales. The idealized global models ignore the bottom-up influences of local networks on global fields so as to employ relatively simple mathematics. The resulting models are transparently related to several EEG and steady state visually evoked potentials correlated with cognitive states, including estimates of neocortical coherence structure, traveling waves, and standing waves. The global models suggest that global oscillatory behavior of self-sustained (limit-cycle) modes lower than about 20 Hz may easily occur in neocortical/white matter systems provided: Background cortical excitability is sufficiently high; the strength of long cortico-cortical axon systems is sufficiently high; and the bottom-up influence of local networks on the global dynamic field is sufficiently weak. The global models provide "entry points" to more detailed studies of global top-down influences, including binding of weakly connected networks, modulation of gamma oscillations by theta or alpha rhythms, and the effects of white matter deficits. PMID:24505628

  16. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.

    PubMed

    Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M

    2012-08-24

    The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.

  17. The Effects of Fluency Enhancing Conditions on Sensorimotor Control of Speech in Typically Fluent Speakers: An EEG Mu Rhythm Study

    PubMed Central

    Kittilstved, Tiffani; Reilly, Kevin J.; Harkrider, Ashley W.; Casenhiser, Devin; Thornton, David; Jenson, David E.; Hedinger, Tricia; Bowers, Andrew L.; Saltuklaroglu, Tim

    2018-01-01

    Objective: To determine whether changes in sensorimotor control resulting from speaking conditions that induce fluency in people who stutter (PWS) can be measured using electroencephalographic (EEG) mu rhythms in neurotypical speakers. Methods: Non-stuttering (NS) adults spoke in one control condition (solo speaking) and four experimental conditions (choral speech, delayed auditory feedback (DAF), prolonged speech and pseudostuttering). Independent component analysis (ICA) was used to identify sensorimotor μ components from EEG recordings. Time-frequency analyses measured μ-alpha (8–13 Hz) and μ-beta (15–25 Hz) event-related synchronization (ERS) and desynchronization (ERD) during each speech condition. Results: 19/24 participants contributed μ components. Relative to the control condition, the choral and DAF conditions elicited increases in μ-alpha ERD in the right hemisphere. In the pseudostuttering condition, increases in μ-beta ERD were observed in the left hemisphere. No differences were present between the prolonged speech and control conditions. Conclusions: Differences observed in the experimental conditions are thought to reflect sensorimotor control changes. Increases in right hemisphere μ-alpha ERD likely reflect increased reliance on auditory information, including auditory feedback, during the choral and DAF conditions. In the left hemisphere, increases in μ-beta ERD during pseudostuttering may have resulted from the different movement characteristics of this task compared with the solo speaking task. Relationships to findings in stuttering are discussed. Significance: Changes in sensorimotor control related feedforward and feedback control in fluency-enhancing speech manipulations can be measured using time-frequency decompositions of EEG μ rhythms in neurotypical speakers. This quiet, non-invasive, and temporally sensitive technique may be applied to learn more about normal sensorimotor control and fluency enhancement in PWS. PMID:29670516

  18. Behavioral preference in sequential decision-making and its association with anxiety.

    PubMed

    Zhang, Dandan; Gu, Ruolei

    2018-06-01

    In daily life, people often make consecutive decisions before the ultimate goal is reached (i.e., sequential decision-making). However, this kind of decision-making has been largely overlooked in the literature. The current study investigated whether behavioral preference would change during sequential decisions, and the neural processes underlying the potential changes. For this purpose, we revised the classic balloon analogue risk task and recorded the electroencephalograph (EEG) signals associated with each step of decision-making. Independent component analysis performed on EEG data revealed that four EEG components elicited by periodic feedback in the current step predicted participants' decisions (gamble vs. no gamble) in the next step. In order of time sequence, these components were: bilateral occipital alpha rhythm, bilateral frontal theta rhythm, middle frontal theta rhythm, and bilateral sensorimotor mu rhythm. According to the information flows between these EEG oscillations, we proposed a brain model that describes the temporal dynamics of sequential decision-making. Finally, we found that the tendency to gamble (as well as the power intensity of bilateral frontal theta rhythms) was sensitive to the individual level of trait anxiety in certain steps, which may help understand the role of emotion in decision-making. © 2018 Wiley Periodicals, Inc.

  19. Age differentially influences estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) gene expression in specific regions of the rat brain.

    PubMed

    Wilson, Melinda E; Rosewell, Katherine L; Kashon, Michael L; Shughrue, Paul J; Merchenthaler, Istvan; Wise, Phyllis M

    2002-03-31

    Estradiol's ability to influence neurochemical events that are critical to female reproductive cyclicity and behavior decreases with age. We tested the hypothesis that decreases in estrogen receptor-alpha (ERalpha) and/or ERbeta mRNA explain the brain's declining responsiveness to estradiol. We assessed ERalpha and ERbeta mRNA levels in intact and ovariectomized estradiol-treated rats. ERbeta mRNA was detected in several brain regions and decreased by middle-age in the cerebral cortex and supraoptic nucleus of estradiol-treated rats. ERbeta mRNA levels exhibited a diurnal rhythm in the suprachiasmatic nucleus of young and middle-aged rats and this rhythm was blunted in old rats. We examined ERalpha mRNA in the periventricular preoptic, medial preoptic, ventromedial and arcuate nuclei, and it was decreased only in the periventricular preoptic nucleus of the old rats. In summary, the expression of ERalpha and ERbeta mRNAs is differentially modulated in the aging brain and changes are region specific.

  20. ROS signaling pathways and biological rhythms: perspectives in crustaceans.

    PubMed

    Fanjul-Moles, Maria Luisa

    2013-01-01

    This work reviews concepts regarding the endogenous circadian clock and the relationship between oxidative stress (OS), light and entrainment in different organisms including crustaceans, particularly crayfish. In the first section, the molecular control of circadian rhythms in invertebrates, particularly in Drosophila, is reviewed, and this model is contrasted with recent reports on the circadian genes and proteins in crayfish. Second, the redox mechanisms and signaling pathways that participate in the entrainment of the circadian clock in different organisms are reviewed. Finally, the light signals and transduction pathways involved in the entrainment of the circadian clock, specifically in relation to cryptochromes (CRYs) and their dual role in the circadian clock of different animal groups and their possible relationship to the circadian clock and redox mechanisms in crustaceans is discussed. The relationship between metabolism, ROS signals and transcription factors, such as HIF-1 alpha in crayfish, as well as the possibility that HIF-1 alpha participates in the regulation of circadian control genes (ccgs) in crustaceans is discussed.

  1. Attention Drives Synchronization of Alpha and Beta Rhythms between Right Inferior Frontal and Primary Sensory Neocortex

    PubMed Central

    Sacchet, Matthew D.; LaPlante, Roan A.; Wan, Qian; Pritchett, Dominique L.; Lee, Adrian K.C.; Hämäläinen, Matti; Moore, Christopher I.; Kerr, Catherine E.

    2015-01-01

    The right inferior frontal cortex (rIFC) is specifically associated with attentional control via the inhibition of behaviorally irrelevant stimuli and motor responses. Similarly, recent evidence has shown that alpha (7–14 Hz) and beta (15–29 Hz) oscillations in primary sensory neocortical areas are enhanced in the representation of non-attended stimuli, leading to the hypothesis that allocation of these rhythms plays an active role in optimal inattention. Here, we tested the hypothesis that selective synchronization between rIFC and primary sensory neocortex occurs in these frequency bands during inattention. We used magnetoencephalography to investigate phase synchrony between primary somatosensory (SI) and rIFC regions during a cued-attention tactile detection task that required suppression of response to uncertain distractor stimuli. Attentional modulation of synchrony between SI and rIFC was found in both the alpha and beta frequency bands. This synchrony manifested as an increase in the alpha-band early after cue between non-attended SI representations and rIFC, and as a subsequent increase in beta-band synchrony closer to stimulus processing. Differences in phase synchrony were not found in several proximal control regions. These results are the first to reveal distinct interactions between primary sensory cortex and rIFC in humans and suggest that synchrony between rIFC and primary sensory representations plays a role in the inhibition of irrelevant sensory stimuli and motor responses. PMID:25653364

  2. Individual neurophysiological profile in external effects investigation

    NASA Astrophysics Data System (ADS)

    Schastlivtseva, Daria; Tatiana Kotrovskaya, D..

    Cortex biopotentials are the significant elements in human psychophysiological individuality. Considered that cortical biopotentials are diverse and individually stable, therefore there is the existence of certain dependence between the basic properties of higher nervous activity and cerebral bioelectric activity. The main purpose of the study was to reveal the individual neurophysiological profile and CNS initial functional state manifestation in human electroencephalogram (EEG) under effect of inert gases (argon, xenon, helium), hypoxia, pressure changes (0.02 and 0.2 MPa). We obtained 5-minute eyes closed background EEG on 19 scalp positions using Ag/AgCl electrodes mounted in an electrode cap. All EEG signals were re-referenced to average earlobes; Fast Furies Transformation analysis was used to calculate the relative power spectrum of delta-, theta-, alpha- and beta frequency band in artifact-free EEG. The study involved 26 healthy men who provided written informed consent, aged 20 to 35 years. Data obtained depend as individual EEG type and initial central nervous functional state as intensity, duration and mix of factors. Pronounced alpha rhythm in the raw EEG correlated with their adaptive capacity under studied factor exposure. Representation change and zonal distribution perversion of EEG alpha rhythm were accompanied by emotional instability, increased anxiety and difficulty adapting subjects. High power factor or combination factor with psychological and emotional or physical exertion minimizes individual EEG pattern.

  3. Effect of immobilization on the EEG of the baboon. Comparison with telemetry results from unrestricted animals

    NASA Technical Reports Server (NTRS)

    Bert, J.; Collomb, H.

    1980-01-01

    The EEG of the baboon was studied under two very different sets of conditions: 37 were totally immobolized while 12 were studied in their free movements with 4 channel telemetry. For the immobilzed, 3 stages were described: (1) activation, record desynchronized; (2) rest with 13-15 cm/sec rhythm, like the human alpha rhythm stage but with eyes open or closed; (3)relaxation with a decrease in 13-15 rhythm and the appearance of 5-7 cm/sec theta waves, eyelids closed, animal apparently sleeping. For the free animals the rest stage appeared when the animal's attention was not directed anywhere and there was no relaxation stage. It is concluded that the EEG pattern of the immobilized animal that was described as the "relaxation" stage really represents a special functional state which one must distinguish clearly from the physiological stages of sleep.

  4. Neuroelectrical imaging investigation of cortical activity during listening to music in prelingually deaf children with cochlear implants.

    PubMed

    Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Maglione, Anton Giulio; Colosimo, Alfredo; Babiloni, Fabio

    2014-05-01

    To date, no objective measure of the pleasantness of music perception by children with cochlear implants has been reported. The EEG alpha asymmetries of pre-frontal cortex activation are known to relate to emotional/affective engagement in a perceived stimulus. More specifically, according to the "withdrawal/approach" model, an unbalanced de-synchronization of the alpha activity in the left prefrontal cortex has been associated with a positive affective state/approach toward a stimulus, and an unbalanced de-synchronization of the same activity in the right prefrontal cortex with a negative affective state/withdrawal from a stimulus. In the present study, High-Resolution EEG with Source Reconstruction was used to compare the music-induced alpha asymmetries of the prefrontal cortex in a group of prelingually deaf implanted children and in a control group of normal-hearing children. Six normal-hearing and six age-matched deaf children using a unilateral cochlear implants underwent High-Resolution EEG recordings as they were listening to a musical cartoon. Musical stimuli were delivered in three versions: Normal, Distort (reverse audio flow) and Mute. The EEG alpha rhythm asymmetry was analyzed: Power Spectral Density was calculated for each Region of Interest, together with a right-left imbalance index. A map of cortical activation was then reconstructed on a realistic cortical model. Asymmetries of EEG alpha rhythm in the prefrontal cortices were observed in both groups. In the normal-hearing children, the asymmetries were consistent with the withdrawal/approach model, whereas in cochlear implant users they were not. Moreover, in implanted children a different pattern of alpha asymmetries in extrafrontal cortical areas was noticed as compared to normal-hearing subjects. The peculiar pattern of alpha asymmetries in implanted children's prefrontal cortex in response to musical stimuli suggests an inability by these subjects to discriminate normal from dissonant music and to appreciate the pleasantness of normal music. High-Resolution EEG may prove to be a promising tool for objectively measuring prefrontal cortex alpha asymmetries in child cochlear implant users. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Sex Role Learning: A Test of the Selective Attention Hypothesis.

    ERIC Educational Resources Information Center

    Bryan, Janice Westlund; Luria, Zella

    This paper reports three studies designed to determine whether children show selective attention and/or differential memory to slide pictures of same-sex vs. opposite-sex models and activities. Attention was measured using a feedback EEG procedure, which measured the presence or absence of alpha rhythms in the subjects' brains during presentation…

  6. [Individual Types Reactivity of EEG Oscillations in Effective Heart Rhythm Biofeedback Parameters in Adolescents and Young People in the North].

    PubMed

    Krivonogova, E V; Poskotinova, L V; Demin, D B

    2015-01-01

    A single session of heart rate variability (HRV) biofeedback in apparently healthy young people and adolescents aged 14-17 years in order to increase vagal effects on heart rhythm and also electroencephalograms were carried out. Different variants of EEG spectral power during the successful HRV biofeedback session were identified. In the case of I variant of EEG activity the increase of power spectrum of alpha-, betal-, theta-components takes place in all parts of the brain. In the case of II variant of EEG activity the reduction of power spectrum of alpha-, betal-, theta-activity in all parts of the brain was observed. I and II variants of EEG activity cause more intensive regime of cortical-subcortical interactions. During the III variant of EEG activity the successful biofeedback is accompanied by increase of alpha activity in the central, front and anteriofrontal brain parts and so indicates the formation of thalamocortical relations of neural network in order to optimize the vegetal regulation of heart function. There was an increase in alpha- and beta1-activity in the parietal, central, frontal and temporal brain parts during the IV variant of EEG activity and so that it provides the relief of neural networks communication for information processing. As a result of V variance of EEG activity there was the increase of power spectrum of theta activity in the central and frontal parts of both cerebral hemispheres, so it was associated with the cortical-hippocampal interactions to achieve a successful biofeedback.

  7. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals.

    PubMed

    Lee, Seung Min; Kim, Jeong Hun; Byeon, Hang Jin; Choi, Yoon Young; Park, Kwang Suk; Lee, Sang-Hoon

    2013-06-01

    Long-term electroencephalogram (EEG) monitoring broadens EEG applications to various areas, but it requires cap-free recording of EEG signals. Our objective here is to develop a capacitive, small-sized, adhesive and biocompatible electrode for the cap-free and long-term EEG monitoring. We have developed an electrode made of polydimethylsiloxane (PDMS) and adhesive PDMS for EEG monitoring. This electrode can be attached to a hairy scalp and be completely hidden by the hair. We tested its electrical and mechanical (adhesive) properties by measuring voltage gain to frequency and adhesive force using 30 repeat cycles of the attachment and detachment test. Electrode performance on EEG was evaluated by alpha rhythm detection and measuring steady state visually evoked potential and N100 auditory evoked potential. We observed the successful recording of alpha rhythm and evoked signals to diverse stimuli with high signal quality. The biocompatibility of the electrode was verified and a survey found that the electrode was comfortable and convenient to wear. These results indicate that the proposed EEG electrode is suitable and convenient for long term EEG monitoring.

  8. Alpha oscillations and their impairment in affective and post-traumatic stress disorders.

    PubMed

    Eidelman-Rothman, Moranne; Levy, Jonathan; Feldman, Ruth

    2016-09-01

    Affective and anxiety disorders are debilitating conditions characterized by impairments in cognitive and social functioning. Elucidating their neural underpinnings may assist in improving diagnosis and developing targeted interventions. Neural oscillations are fundamental for brain functioning. Specifically, oscillations in the alpha frequency range (alpha rhythms) are prevalent in the awake, conscious brain and play an important role in supporting perceptual, cognitive, and social processes. We review studies utilizing various alpha power measurements to assess abnormalities in brain functioning in affective and anxiety disorders as well as obsessive compulsive and post-traumatic stress disorders. Despite some inconsistencies, studies demonstrate associations between aberrant alpha patterns and these disorders both in response to specific cognitive and emotional tasks and during a resting state. We conclude by discussing methodological considerations and future directions, and underscore the need for much further research on the role of alpha functionality in social contexts. As social dysfunction accompanies most psychiatric conditions, research on alpha's involvement in social processes may provide a unique window into the neural mechanisms underlying these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dipole sources of the human alpha rhythm.

    PubMed

    Rodin, E A; Rodin, M J

    1995-01-01

    Dipole sources were investigated in 22 normal subjects with a variety of strategies available through the BESA program. When all the data were summed one regional source, located near the midline in the basal portions of the occipital lobe, explained 92% of the variance. Two regional sources, initially constrained for symmetry but subsequently freed from constraint placed them also in the occipital regions near the midline and reduced the residual variance to 4%. Pooled data obscure, however, the marked individual differences especially in regard to lateralization. In the individual case the major source was also always in one occipital area but its location, especially the degree of separation from the midline depended upon alpha distribution and the strategy used in the workup of the data. The orientation of the major components of the regional sources was usually in the posterior-anterior direction, fairly parallel to the midline and while the other one pointed to the upper convexity. Because of the considerable variability of the alpha rhythm in given subjects and even within the same individual a model which requires symmetry constraints is not optimal for all instances, even when constraints are lifted thereafter. The study demonstrated the feasibility of distinguishing predominantly mesial sources from those which are bihemipheric with more lateral origins but several different models may have to be used to reach the most realistic conclusions.

  10. The coordination dynamics of social neuromarkers.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2015-01-01

    Social behavior is a complex integrative function that entails many aspects of the brain's sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called "neuromarkers" of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction.

  11. The coordination dynamics of social neuromarkers

    PubMed Central

    Tognoli, Emmanuelle; Kelso, J. A. Scott

    2015-01-01

    Social behavior is a complex integrative function that entails many aspects of the brain’s sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called “neuromarkers” of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction. PMID:26557067

  12. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period

    PubMed Central

    2012-01-01

    Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. PMID:22920159

  13. Neuroimaging Study of Alpha and Beta EEG Biofeedback Effects on Neural Networks.

    PubMed

    Shtark, Mark B; Kozlova, Lyudmila I; Bezmaternykh, Dmitriy D; Mel'nikov, Mikhail Ye; Savelov, Andrey A; Sokhadze, Estate M

    2018-06-01

    Neural networks interaction was studied in healthy men (20-35 years old) who underwent 20 sessions of EEG biofeedback training outside the MRI scanner, with concurrent fMRI-EEG scans at the beginning, middle, and end of the course. The study recruited 35 subjects for EEG biofeedback, but only 18 of them were considered as "successful" in self-regulation of target EEG bands during the whole course of training. Results of fMRI analysis during EEG biofeedback are reported only for these "successful" trainees. The experimental group (N = 23 total, N = 13 "successful") upregulated the power of alpha rhythm, while the control group (N = 12 total, N = 5 "successful") beta rhythm, with the protocol instructions being as for alpha training in both. The acquisition of the stable skills of alpha self-regulation was followed by the weakening of the irrelevant links between the cerebellum and visuospatial network (VSN), as well as between the VSN, the right executive control network (RECN), and the cuneus. It was also found formation of a stable complex based on the interaction of the precuneus, the cuneus, the VSN, and the high level visuospatial network (HVN), along with the strengthening of the interaction of the anterior salience network (ASN) with the precuneus. In the control group, beta enhancement training was accompanied by weakening of interaction between the precuneus and the default mode network, and a decrease in connectivity between the cuneus and the primary visual network (PVN). The differences between the alpha training group and the control group increased successively during training. Alpha training was characterized by a less pronounced interaction of the network formed by the PVN and the HVN, as well as by an increased interaction of the cerebellum with the precuneus and the RECN. The study demonstrated the differences in the structure and interaction of neural networks involved into alpha and beta generating systems forming and functioning, which should be taken into account during planning neurofeedback interventions. Possibility of using fMRI-guided biofeedback organized according to the described neural networks interaction may advance more accurate targeting specific symptoms during neurotherapy.

  14. Shifts in Gamma Phase–Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks

    PubMed Central

    Voytek, Bradley; Canolty, Ryan T.; Shestyuk, Avgusta; Crone, Nathan E.; Parvizi, Josef; Knight, Robert T.

    2010-01-01

    The phase of ongoing theta (4–8 Hz) and alpha (8–12 Hz) electrophysiological oscillations is coupled to high gamma (80–150 Hz) amplitude, which suggests that low-frequency oscillations modulate local cortical activity. While this phase–amplitude coupling (PAC) has been demonstrated in a variety of tasks and cortical regions, it has not been shown whether task demands differentially affect the regional distribution of the preferred low-frequency coupling to high gamma. To address this issue we investigated multiple-rhythm theta/alpha to high gamma PAC in two subjects with implanted subdural electrocorticographic grids. We show that high gamma amplitude couples to the theta and alpha troughs and demonstrate that, during visual tasks, alpha/high gamma coupling preferentially increases in visual cortical regions. These results suggest that low-frequency phase to high-frequency amplitude coupling is modulated by behavioral task and may reflect a mechanism for selection between communicating neuronal networks. PMID:21060716

  15. Hepatic Leukemia Factor Promotes Resistance To Cell Death: Implications For Therapeutics and Chronotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional programmore » encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation.« less

  16. EEG resolutions in detecting and decoding finger movements from spectral analysis

    PubMed Central

    Xiao, Ran; Ding, Lei

    2015-01-01

    Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720

  17. Aging reduces experience-induced sensorimotor plasticity. A magnetoencephalographic study.

    PubMed

    Mary, Alison; Bourguignon, Mathieu; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe

    2015-01-01

    Modulation of the mu-alpha and mu-beta spontaneous rhythms reflects plastic neural changes within the primary sensorimotor cortex (SM1). Using magnetoencephalography (MEG), we investigated how aging modifies experience-induced plasticity after learning a motor sequence, looking at post- vs. pre-learning changes in the modulation of mu rhythms during the execution of simple hand movements. Fifteen young (18-30 years) and fourteen older (65-75 years) right-handed healthy participants performed auditory-cued key presses using all four left fingers simultaneously (Simple Movement task - SMT) during two separate sessions. Following both SMT sessions, they repeatedly practiced a 5-elements sequential finger-tapping task (FTT). Mu power calculated during SMT was averaged across 18 gradiometers covering the right sensorimotor region and compared before vs. after sequence learning in the alpha (9/10/11Hz) and the beta (18/20/22Hz) bands separately. Source power maps in the mu-alpha and mu-beta bands were localized using Dynamic Statistical Parametric Mapping (dSPM). The FTT sequence was performed faster at retest than at the end of the learning session, indicating an offline boost in performance. Analyses conducted on SMT sessions revealed enhanced rebound after learning in the right SM1, 3000-3500ms after the initiation of movement, in young as compared to older participants. Source reconstruction indicated that mu-beta is located in the precentral gyrus (motor processes) and mu-alpha is located in the postcentral gyrus (somatosensory processes) in both groups. The enhanced post-movement rebound in young subjects potentially reflects post-training plastic changes in SM1. Age-related decreases in post-training modulatory effects suggest reduced experience-dependent plasticity in the aging brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Correlation of EEG with neuropsychological status in children with epilepsy.

    PubMed

    Hsu, David A; Rayer, Katherine; Jackson, Daren C; Stafstrom, Carl E; Hsu, Murielle; Ferrazzano, Peter A; Dabbs, Kevin; Worrell, Gregory A; Jones, Jana E; Hermann, Bruce P

    2016-02-01

    To determine correlations of the EEG frequency spectrum with neuropsychological status in children with idiopathic epilepsy. Forty-six children ages 8-18 years old with idiopathic epilepsy were retrospectively identified and analyzed for correlations between EEG spectra and neuropsychological status using multivariate linear regression. In addition, the theta/beta ratio, which has been suggested as a clinically useful EEG marker of attention-deficit hyperactivity disorder (ADHD), and an EEG spike count were calculated for each subject. Neuropsychological status was highly correlated with posterior alpha (8-15 Hz) EEG activity in a complex way, with both positive and negative correlations at lower and higher alpha frequency sub-bands for each cognitive task in a pattern that depends on the specific cognitive task. In addition, the theta/beta ratio was a specific but insensitive indicator of ADHD status in children with epilepsy; most children both with and without epilepsy have normal theta/beta ratios. The spike count showed no correlations with neuropsychological status. (1) The alpha rhythm may have at least two sub-bands which serve different purposes. (2) The theta/beta ratio is not a sensitive indicator of ADHD status in children with epilepsy. (3) The EEG frequency spectrum correlates more robustly with neuropsychological status than spike count analysis in children with idiopathic epilepsy. (1) The role of posterior alpha rhythms in cognition is complex and can be overlooked if EEG spectral resolution is too coarse or if neuropsychological status is assessed too narrowly. (2) ADHD in children with idiopathic epilepsy may involve different mechanisms from those in children without epilepsy. (3) Reliable correlations with neuropsychological status require longer EEG samples when using spike count analysis than when using frequency spectra. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24-hour rest-activity patterns in patients with metastatic colorectal cancer.

    PubMed

    Rich, Tyvin; Innominato, Pasquale F; Boerner, Julie; Mormont, M Christine; Iacobelli, Stefano; Baron, Benoit; Jasmin, Claude; Lévi, Francis

    2005-03-01

    Incapacitating symptom burden in cancer patients contributes to poor quality of life (QOL) and can influence treatment outcomes because of poor tolerance to therapy. In this study, the role of circulating cytokines in the production symptoms in cancer patients is evaluated. Eighty patients with metastatic colorectal cancer with either normal (group I, n = 40) or dampened (group II, n = 40) 24-hour rest/activity patterns measured by actigraphy were identified. Actigraphy patterns were correlated with QOL indices, serum cortisol obtained at 8:00 a.m. and 4:00 p.m. and with serum levels of transforming growth factor-alpha, tumor necrosis factor-alpha, and interleukin 6 (IL-6) obtained at 8:00 a.m. and analyzed in duplicate by ELISA. Cytokine levels and survival were also correlated. Group II patients had significantly higher pre treatment levels of all three cytokines, displayed significantly poorer emotional and social functioning, had higher fatigue, more appetite loss, and poorer performance status compared with group I patients. Transforming growth factor-alpha (TGF-alpha) and IL-6 were significantly increased in the patients with WHO performance status >1 and in those with appetite loss. Fatigue was significantly associated with elevated TGF-alpha only. IL-6 was increased in those patients with extensive liver involvement and multiple organ replacement, and it was significantly correlated with dampened cortisol rhythm. In a multivariate analysis, IL-6 was correlated with poor treatment outcome. Significant correlations were found between serum levels of TGF-alpha and IL-6, circadian patterns in wrist activity and serum cortisol and tumor-related symptoms in patients with metastatic colorectal cancer. These data support the hypothesis that some cancer patient's symptoms of fatigue, poor QOL, and treatment outcome are related to tumor or host generated cytokines and could reflect cytokine effects on the circadian timing system. This interplay between cytokine signaling pathways, the hypothalamic-pituitary-adrenal axis, the autonomic nervous system, and efferent pathways of the suprachiasmatic nucleus that control circadian physiology, opens the way to new rational interventions for symptom management in cancer patients.

  20. The Utility of EEG Band Power Analysis in the Study of Infancy and Early Childhood

    PubMed Central

    Saby, Joni N.; Marshall, Peter J.

    2012-01-01

    Research employing electroencephalographic (EEG) techniques with infants and young children has flourished in recent years due to increased interest in understanding the neural processes involved in early social and cognitive development. This review focuses on the functional characteristics of the alpha, theta, and gamma frequency bands in the developing EEG. Examples of how analyses of EEG band power have been applied to specific lines of developmental research are also discussed. These examples include recent work on the infant mu rhythm and action processing, frontal alpha asymmetry and approach-withdrawal tendencies, and EEG power measures in the study of early psychosocial adversity. PMID:22545661

  1. PPARalpha is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders.

    PubMed

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio

    2007-06-08

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARalpha ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbalpha was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARalpha is involved in circadian clock control independently of the SCN and that PPARalpha could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.

  2. EEG Mu (µ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults.

    PubMed

    Saltuklaroglu, Tim; Harkrider, Ashley W; Thornton, David; Jenson, David; Kittilstved, Tiffani

    2017-06-01

    Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed from passive listening in noise and accurate (same/different) discrimination of tones or syllables in quiet and noisy backgrounds. Independent component analysis identified left and/or right μ rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-frequency differences were associated with noisy conditions only. PWS showed increased μ-β desynchronization when listening to noise and early in discrimination events, suggesting evidence of heightened motor activity that might be related to forward modeling deficits. PWS also showed reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to stuttering. More specifically, they can reveal stuttering-related sensorimotor processing differences in listening and auditory discrimination that also may be influenced by basal ganglia deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription.

    PubMed

    Cavadini, Gionata; Petrzilka, Saskia; Kohler, Philipp; Jud, Corinne; Tobler, Irene; Birchler, Thomas; Fontana, Adriano

    2007-07-31

    Production of TNF-alpha and IL-1 in infectious and autoimmune diseases is associated with fever, fatigue, and sleep disturbances, which are collectively referred to as sickness behavior syndrome. In mice TNF-alpha and IL-1 increase nonrapid eye movement sleep. Because clock genes regulate the circadian rhythm and thereby locomotor activity and may alter sleep architecture we assessed the influence of TNF-alpha on the circadian timing system. TNF-alpha is shown here to suppress the expression of the PAR bZip clock-controlled genes Dbp, Tef, and Hlf and of the period genes Per1, Per2, and Per3 in fibroblasts in vitro and in vivo in the liver of mice infused with the cytokine. The effect of TNF-alpha on clock genes is shared by IL-1beta, but not by IFN-alpha, and IL-6. Furthermore, TNF-alpha interferes with the expression of Dbp in the suprachiasmatic nucleus and causes prolonged rest periods in the dark when mice show spontaneous locomotor activity. Using clock reporter genes TNF-alpha is found here to inhibit CLOCK-BMAL1-induced activation of E-box regulatory elements-dependent clock gene promoters. We suggest that the increase of TNF-alpha and IL-1beta, as seen in infectious and autoimmune diseases, impairs clock gene functions and causes fatigue.

  4. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment.

    PubMed

    Breska, Assaf; Deouell, Leon Y

    2017-02-01

    Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction.

  5. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment

    PubMed Central

    Deouell, Leon Y.

    2017-01-01

    Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction. PMID:28187128

  6. Design and validation of a three-instrument toolkit for the assessment of competence in electrocardiogram rhythm recognition.

    PubMed

    Hernández-Padilla, José M; Granero-Molina, José; Márquez-Hernández, Verónica V; Suthers, Fiona; López-Entrambasaguas, Olga M; Fernández-Sola, Cayetano

    2017-06-01

    Rapid and accurate interpretation of cardiac arrhythmias by nurses has been linked with safe practice and positive patient outcomes. Although training in electrocardiogram rhythm recognition is part of most undergraduate nursing programmes, research continues to suggest that nurses and nursing students lack competence in recognising cardiac rhythms. In order to promote patient safety, nursing educators must develop valid and reliable assessment tools that allow the rigorous assessment of this competence before nursing students are allowed to practise without supervision. The aim of this study was to develop and psychometrically evaluate a toolkit to holistically assess competence in electrocardiogram rhythm recognition. Following a convenience sampling technique, 293 nursing students from a nursing faculty in a Spanish university were recruited for the study. The following three instruments were developed and psychometrically tested: an electrocardiogram knowledge assessment tool (ECG-KAT), an electrocardiogram skills assessment tool (ECG-SAT) and an electrocardiogram self-efficacy assessment tool (ECG-SES). Reliability and validity (content, criterion and construct) of these tools were meticulously examined. A high Cronbach's alpha coefficient demonstrated the excellent reliability of the instruments (ECG-KAT=0.89; ECG-SAT=0.93; ECG-SES=0.98). An excellent context validity index (scales' average content validity index>0.94) and very good criterion validity were evidenced for all the tools. Regarding construct validity, principal component analysis revealed that all items comprising the instruments contributed to measure knowledge, skills or self-efficacy in electrocardiogram rhythm recognition. Moreover, known-groups analysis showed the tools' ability to detect expected differences in competence between groups with different training experiences. The three-instrument toolkit developed showed excellent psychometric properties for measuring competence in electrocardiogram rhythm recognition.

  7. Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans.

    PubMed Central

    Dijk, D J; Shanahan, T L; Duffy, J F; Ronda, J M; Czeisler, C A

    1997-01-01

    1. The circadian pacemaker regulates the timing, structure and consolidation of human sleep. The extent to which this pacemaker affects electroencephalographic (EEG) activity during sleep remains unclear. 2. To investigate this, a total of 1.22 million power spectra were computed from EEGs recorded in seven men (total, 146 sleep episodes; 9 h 20 min each) who participated in a one-month-long protocol in which the sleep-wake cycle was desynchronized from the rhythm of plasma melatonin, which is driven by the circadian pacemaker. 3. In rapid eye movement (REM) sleep a small circadian variation in EEG activity was observed. The nadir of the circadian rhythm of alpha activity (8.25-10.5 Hz) coincided with the end of the interval during which plasma melatonin values were high, i.e. close to the crest of the REM sleep rhythm. 4. In non-REM sleep, variation in EEG activity between 0.25 and 11.5 Hz was primarily dependent on prior sleep time and only slightly affected by circadian phase, such that the lowest values coincided with the phase of melatonin secretion. 5. In the frequency range of sleep spindles, high-amplitude circadian rhythms with opposite phase positions relative to the melatonin rhythm were observed. Low-frequency sleep spindle activity (12.25-13.0 Hz) reached its crest and high-frequency sleep spindle activity (14.25-15.5 Hz) reached its nadir when sleep coincided with the phase of melatonin secretion. 6. These data indicate that the circadian pacemaker induces changes in EEG activity during REM and non-REM sleep. The changes in non-REM sleep EEG spectra are dissimilar from the spectral changes induced by sleep deprivation and exhibit a close temporal association with the melatonin rhythm and the endogenous circadian phase of sleep consolidation. PMID:9457658

  8. Bristle-sensors—low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications

    NASA Astrophysics Data System (ADS)

    Grozea, Cristian; Voinescu, Catalin D.; Fazli, Siamac

    2011-04-01

    In this paper, we present a new, low-cost dry electrode for EEG that is made of flexible metal-coated polymer bristles. We examine various standard EEG paradigms, such as capturing occipital alpha rhythms, testing for event-related potentials in an auditory oddball paradigm and performing a sensory motor rhythm-based event-related (de-) synchronization paradigm to validate the performance of the novel electrodes in terms of signal quality. Our findings suggest that the dry electrodes that we developed result in high-quality EEG recordings and are thus suitable for a wide range of EEG studies and BCI applications. Furthermore, due to the flexibility of the novel electrodes, greater comfort is achieved in some subjects, this being essential for long-term use.

  9. Affection of Fundamental Brain Activity By Using Sounds For Patients With Prosodic Disorders: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Imai, Emiko; Katagiri, Yoshitada; Seki, Keiko; Kawamata, Toshio

    2011-06-01

    We present a neural model of the production of modulated speech streams in the brain, referred to as prosody, which indicates the limbic structure essential for producing prosody both linguistically and emotionally. This model suggests that activating the fundamental brain including monoamine neurons at the basal ganglia will potentially contribute to helping patients with prosodic disorders coming from functional defects of the fundamental brain to overcome their speech problem. To establish effective clinical treatment for such prosodic disorders, we examine how sounds affect the fundamental activity by using electroencephalographic measurements. Throughout examinations with various melodious sounds, we found that some melodies with lilting rhythms successfully give rise to the fast alpha rhythms at the electroencephalogram which reflect the fundamental brain activity without any negative feelings.

  10. Aging affects the balance of neural entrainment and top-down neural modulation in the listening brain

    PubMed Central

    Henry, Molly J.; Herrmann, Björn; Kunke, Dunja; Obleser, Jonas

    2017-01-01

    Healthy aging is accompanied by listening difficulties, including decreased speech comprehension, that stem from an ill-understood combination of sensory and cognitive changes. Here, we use electroencephalography to demonstrate that auditory neural oscillations of older adults entrain less firmly and less flexibly to speech-paced (∼3 Hz) rhythms than younger adults’ during attentive listening. These neural entrainment effects are distinct in magnitude and origin from the neural response to sound per se. Non-entrained parieto-occipital alpha (8–12 Hz) oscillations are enhanced in young adults, but suppressed in older participants, during attentive listening. Entrained neural phase and task-induced alpha amplitude exert opposite, complementary effects on listening performance: higher alpha amplitude is associated with reduced entrainment-driven behavioural performance modulation. Thus, alpha amplitude as a task-driven, neuro-modulatory signal can counteract the behavioural corollaries of neural entrainment. Balancing these two neural strategies may present new paths for intervention in age-related listening difficulties. PMID:28654081

  11. [Features of fractal dynamics EEG of alpha-rhythm in patients with neurotic and neurosis-like disorders].

    PubMed

    Shul'ts, E V; Baburin, I N; Karavaeva, T A; Karvasarskiĭ, B D; Slezin, V B

    2011-01-01

    Fifty-five patients with neurotic and neurosis-like disorders and 20 healthy controls, aged 17-64 years, have been examined. The basic research method was electroencephalography (EEG) with the fractal analysis of alpha power fluctuations. In patients, the changes in the fractal structure were of the same direction: the decrease of fractal indexes of low-frequency fluctuations and the increase of fractal indexes of mid-frequency fluctuations. Patients with neurosis-like disorders, in comparison to those with neurotic disorders, were characterized by more expressed (quantitative) changes in fractal structures of more extended character. It suggests the presence of deeper pathological changes in patients with neurosis-like disorders.

  12. Brain-computer interface for alertness estimation and improving

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina

    2018-02-01

    Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.

  13. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms.

    PubMed

    Jochumsen, Mads; Rovsing, Cecilie; Rovsing, Helene; Niazi, Imran Khan; Dremstrup, Kim; Kamavuako, Ernest Nlandu

    2017-01-01

    Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP) as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48 ± 0.05 (grasp types), 0.41 ± 0.07 (kinetic profiles, motor execution), and 0.39 ± 0.08 (kinetic profiles, motor imagination). Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.

  14. Facilitation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor transmission in the suprachiasmatic nucleus by aniracetam enhances photic responses of the biological clock in rodents.

    PubMed

    Moriya, Takahiro; Ikeda, Masayuki; Teshima, Koji; Hara, Reiko; Kuriyama, Koji; Yoshioka, Tohru; Allen, Charles N; Shibata, Shigenobu

    2003-05-01

    This study was designed to test whether the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-facilitating drug, aniracetam, could potentiate photic responses of the biological clock in the suprachiasmatic nucleus (SCN) of rodents. Using the whole-cell patch technique, we first demonstrated that AMPA currents elicited by either local AMPA application or optic chiasm stimulation were augmented by aniracetam in the neurons of the SCN. The AMPA application-elicited increase of intracellular Ca2+ concentration in SCN slices was also enhanced by aniracetam treatment. The systemic injection of aniracetam dose-dependently (10-100 mg/kg) potentiated the phase delay in behavioral rhythm induced by brief light exposure of low intensity (3 lux) but not high intensity (10 or 60 lux) during early subjective night. Under the blockade of NMDA receptors by (+) MK801, aniracetam failed to potentiate a light (3 lux)-induced phase delay in behavioral rhythm. Aniracetam increased the photic induction of c-Fos protein in the SCN that was elicited by low intensity light exposure (3 lux). These results suggest that AMPA receptor-mediated responses facilitated by aniracetam can explain enhanced photic responses of the biological clock in the SCN of rodents.

  15. Aesthetic preference recognition of 3D shapes using EEG.

    PubMed

    Chew, Lin Hou; Teo, Jason; Mountstephens, James

    2016-04-01

    Recognition and identification of aesthetic preference is indispensable in industrial design. Humans tend to pursue products with aesthetic values and make buying decisions based on their aesthetic preferences. The existence of neuromarketing is to understand consumer responses toward marketing stimuli by using imaging techniques and recognition of physiological parameters. Numerous studies have been done to understand the relationship between human, art and aesthetics. In this paper, we present a novel preference-based measurement of user aesthetics using electroencephalogram (EEG) signals for virtual 3D shapes with motion. The 3D shapes are designed to appear like bracelets, which is generated by using the Gielis superformula. EEG signals were collected by using a medical grade device, the B-Alert X10 from advance brain monitoring, with a sampling frequency of 256 Hz and resolution of 16 bits. The signals obtained when viewing 3D bracelet shapes were decomposed into alpha, beta, theta, gamma and delta rhythm by using time-frequency analysis, then classified into two classes, namely like and dislike by using support vector machines and K-nearest neighbors (KNN) classifiers respectively. Classification accuracy of up to 80 % was obtained by using KNN with the alpha, theta and delta rhythms as the features extracted from frontal channels, Fz, F3 and F4 to classify two classes, like and dislike.

  16. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory

    PubMed Central

    Bastos, André M.; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K.

    2018-01-01

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50–250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4–22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. PMID:29339471

  17. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.

    PubMed

    Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K

    2018-01-30

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.

  18. A natural basis for efficient brain-actuated control

    NASA Technical Reports Server (NTRS)

    Makeig, S.; Enghoff, S.; Jung, T. P.; Sejnowski, T. J.

    2000-01-01

    The prospect of noninvasive brain-actuated control of computerized screen displays or locomotive devices is of interest to many and of crucial importance to a few 'locked-in' subjects who experience near total motor paralysis while retaining sensory and mental faculties. Currently several groups are attempting to achieve brain-actuated control of screen displays using operant conditioning of particular features of the spontaneous scalp electroencephalogram (EEG) including central mu-rhythms (9-12 Hz). A new EEG decomposition technique, independent component analysis (ICA), appears to be a foundation for new research in the design of systems for detection and operant control of endogenous EEG rhythms to achieve flexible EEG-based communication. ICA separates multichannel EEG data into spatially static and temporally independent components including separate components accounting for posterior alpha rhythms and central mu activities. We demonstrate using data from a visual selective attention task that ICA-derived mu-components can show much stronger spectral reactivity to motor events than activity measures for single scalp channels. ICA decompositions of spontaneous EEG would thus appear to form a natural basis for operant conditioning to achieve efficient and multidimensional brain-actuated control in motor-limited and locked-in subjects.

  19. Effects of square-wave and simulated natural light-dark cycles on hamster circadian rhythms

    NASA Technical Reports Server (NTRS)

    Tang, I. H.; Murakami, D. M.; Fuller, C. A.

    1999-01-01

    Circadian rhythms of activity (Act) and body temperature (Tb) were recorded from male Syrian hamsters under square-wave (LDSq) and simulated natural (LDSN, with dawn and dusk transitions) light-dark cycles. Light intensity and data sampling were under the synchronized control of a laboratory computer. Changes in reactive and predictive onsets and offsets for the circadian rhythms of Act and Tb were examined in both lighting conditions. The reactive Act onset occurred 1.1 h earlier (P < 0.01) in LDSN than in LDSq and had a longer alpha-period (1.7 h; P < 0.05). The reactive Tb onset was 0.7 h earlier (P < 0.01) in LDSN. In LDSN, the predictive Act onset advanced by 0.3 h (P < 0.05), whereas the Tb predictive onset remained the same as in LDSq. The phase angle difference between Act and Tb predictive onsets decreased by 0.9 h (P < 0.05) in LDSN, but the offsets of both measures remained unchanged. In this study, animals exhibited different circadian entrainment characteristics under LDSq and LDSN, suggesting that gradual and abrupt transitions between light and dark may provide different temporal cues.

  20. Test-retest reliability of resting-state magnetoencephalography power in sensor and source space.

    PubMed

    Martín-Buro, María Carmen; Garcés, Pilar; Maestú, Fernando

    2016-01-01

    Several studies have reported changes in spontaneous brain rhythms that could be used as clinical biomarkers or in the evaluation of neuropsychological and drug treatments in longitudinal studies using magnetoencephalography (MEG). There is an increasing necessity to use these measures in early diagnosis and pathology progression; however, there is a lack of studies addressing how reliable they are. Here, we provide the first test-retest reliability estimate of MEG power in resting-state at sensor and source space. In this study, we recorded 3 sessions of resting-state MEG activity from 24 healthy subjects with an interval of a week between each session. Power values were estimated at sensor and source space with beamforming for classical frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20 Hz), high beta (20-30 Hz), and gamma (30-45 Hz). Then, test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). We also evaluated the relation between source power and the within-subject variability. In general, ICC of theta, alpha, and low beta power was fairly high (ICC > 0.6) while in delta and gamma power was lower. In source space, fronto-posterior alpha, frontal beta, and medial temporal theta showed the most reliable profiles. Signal-to-noise ratio could be partially responsible for reliability as low signal intensity resulted in high within-subject variability, but also the inherent nature of some brain rhythms in resting-state might be driving these reliability patterns. In conclusion, our results described the reliability of MEG power estimates in each frequency band, which could be considered in disease characterization or clinical trials. © 2015 Wiley Periodicals, Inc.

  1. Abnormal cortical sources of resting state electroencephalographic rhythms in single treatment-naïve HIV individuals: A statistical z-score index.

    PubMed

    Babiloni, Claudio; Pennica, Alfredo; Del Percio, Claudio; Noce, Giuseppe; Cordone, Susanna; Muratori, Chiara; Ferracuti, Stefano; Donato, Nicole; Di Campli, Francesco; Gianserra, Laura; Teti, Elisabetta; Aceti, Antonio; Soricelli, Andrea; Viscione, Magdalena; Limatola, Cristina; Andreoni, Massimo; Onorati, Paolo

    2016-03-01

    This study tested a simple statistical procedure to recognize single treatment-naïve HIV individuals having abnormal cortical sources of resting state delta (<4 Hz) and alpha (8-13 Hz) electroencephalographic (EEG) rhythms with reference to a control group of sex-, age-, and education-matched healthy individuals. Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values were expected to show worse cognitive status. Resting state eyes-closed EEG data were recorded in 82 treatment-naïve HIV (39.8 ys.±1.2 standard error mean, SE) and 59 age-matched cognitively healthy subjects (39 ys.±2.2 SE). Low-resolution brain electromagnetic tomography (LORETA) estimated delta and alpha sources in frontal, central, temporal, parietal, and occipital cortical regions. Ratio of the activity of parietal delta and high-frequency alpha sources (EEG marker) showed the maximum difference between the healthy and the treatment-naïve HIV group. Z-score of the EEG marker was statistically abnormal in 47.6% of treatment-naïve HIV individuals with reference to the healthy group (p<0.05). Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values exhibited lower mini mental state evaluation (MMSE) score, higher CD4 count, and lower viral load (p<0.05). This statistical procedure permitted for the first time to identify single treatment-naïve HIV individuals having abnormal EEG activity. This procedure might enrich the detection and monitoring of effects of HIV on brain function in single treatment-naïve HIV individuals. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. [Electrophysiological correlates of efficacy of nootropic drugs in the treatment of consequences of traumatic brain injury in adolescents].

    PubMed

    Iznak, E V; Iznak, A F; Pankratova, E A; Zavadenko, N N; Guzilova, L S; Guzilova, Iu I

    2010-01-01

    To assess objectively a dynamics of brain functional state, EEG spectral power and peak latency of the P300 component of cognitive auditory evoked potentials have been analyzed in adolescents during the course of nootropic therapy of residual asthenic consequences of traumatic brain injury (ICD-10 F07.2). The study included 76 adolescents, aged 12-18 years, who have undergone severe closed head trauma with brain commotion 1/2--5 years ago. Patients have been divided into 3 groups treated during one month with cerebrolysin, piracetam or magne-B6, respectively. After the end of the nootropic therapy, 77% of patients treated with cerebrolysin as well as 50% of patients treated with piracetam and magne-B6 have demonstrated the positive dynamics of their brain functional state that manifested itself in the appearance of occipital EEG alpha rhythm or in the increase of its spectral power; in the normalization of alpha rhythm frequency; in the decrease in the spectral power of slow wave (theta and delta) EEG activity, in the amount (up to the disappearance) of paroxysmal EEG activity, in the EEG response to hyperventilation and in the shortening of the P300 peak latency. Such positive changes of neurophysiological parameters have been associated with the improvement of clinical conditions of patients and correlated significantly with the dynamics of psychometric scores of attention and memory.

  3. Detection of nonlinear interactions of EEG alpha waves in the brain by a new coherence measure and its application to epilepsy and anti-epileptic drug therapy.

    PubMed

    Sherman, David; Zhang, Ning; Garg, Shikha; Thakor, Nitish V; Mirski, Marek A; White, Mirinda Anderson; Hinich, Melvin J

    2011-04-01

    EEG and field potential rhythms established in the cortex and thalamus may accommodate the propagation of seizures. This article describes the interaction between thalamus and cortex during pentylenetetrazol (PTZ) seizures in rats with and without prior treatment with ethosuximide (ESM), a well-known antiepileptic drug (AED) that raises the threshold for seizures, was given before PTZ. The AED was given before PTZ convulsant administration. We track this thalamo-cortical association with a novel measure we have called the cross-bicoherence gain, or BISCOH. This quantity allows us to measure the spectral coherence in a purely higher order spectralmethodology. BISCOH is able to track the formation of nonlinearities at specific frequencies in the recorded EEG. BISCOH showed a strong increase in low alpha wave harmonic generationat 10 and 12.5 Hz after ESM treatment (p < 0.02 and p < 0.007, respectively). Conventional coherence failed to show distinctive and significant changes in thalamo-cortical coupling after ESM treatment at those frequencies and instead showed changes at 5 Hz. This rise in cortical rhythms is evidence of harmonic generation or new frequency formation in the thalamo-cortical system withAED therapy. BISCOH could become a powerful tool in unraveling changes in coherence due to neuroelectric modulation resulting from drug treatment or electrical stimulation.

  4. Visual perception affected by motivation and alertness controlled by a noninvasive brain-computer interface.

    PubMed

    Maksimenko, Vladimir A; Runnova, Anastasia E; Zhuravlev, Maksim O; Makarov, Vladimir V; Nedayvozov, Vladimir; Grubov, Vadim V; Pchelintceva, Svetlana V; Hramov, Alexander E; Pisarchik, Alexander N

    2017-01-01

    The influence of motivation and alertness on brain activity associated with visual perception was studied experimentally using the Necker cube, which ambiguity was controlled by the contrast of its ribs. The wavelet analysis of recorded multichannel electroencephalograms (EEG) allowed us to distinguish two different scenarios while the brain processed the ambiguous stimulus. The first scenario is characterized by a particular destruction of alpha rhythm (8-12 Hz) with a simultaneous increase in beta-wave activity (20-30 Hz), whereas in the second scenario, the beta rhythm is not well pronounced while the alpha-wave energy remains unchanged. The experiments were carried out with a group of financially motivated subjects and another group of unpaid volunteers. It was found that the first scenario occurred mainly in the motivated group. This can be explained by the increased alertness of the motivated subjects. The prevalence of the first scenario was also observed in a group of subjects to whom images with higher ambiguity were presented. We believe that the revealed scenarios can occur not only during the perception of bistable images, but also in other perceptual tasks requiring decision making. The obtained results may have important applications for monitoring and controlling human alertness in situations which need substantial attention. On the base of the obtained results we built a brain-computer interface to estimate and control the degree of alertness in real time.

  5. Wrist activity in a woman: daily, weekly, menstrual, lunar, annual cycles?

    PubMed

    Binkley, S

    1992-09-01

    Wrist activity was monitored continuously for one year in a woman who went about her normal life. The year of data were analyzed for changes and rhythms--daily, weekly, menstrual, lunar, annual. For each day, average motions/5 minutes, activity onset, activity offset, alpha (duration of activity), and acrophase were measured. Periodograms and average daily wave forms were calculated. Well-defined, entrained, daily rest-activity cycles were observed throughout the year with periods close to 24 hours. There was weekend delay (0.7 hours) in onset, weekend decrease in alpha (1.0 hours), and weekend advance of acrophase (0.4 hours). Motions/5 minutes decreased 9%, onsets were 0.3 hours later, and alphas were 0.4 hours shorter on menstrual cycle days 8 through 18 which should have encompassed the time of ovulation. Lunar phase had no effect. Annual changes in onset (1.1 hours), offset (1.2 hours), and acrophase (1.1 hours) were attributed to the 1-hour change between standard and daylight savings time.

  6. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas

    PubMed Central

    Michalareas, Georgios; Vezoli, Julien; van Pelt, Stan; Schoffelen, Jan-Mathijs; Kennedy, Henry; Fries, Pascal

    2016-01-01

    Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. PMID:26777277

  7. Reorganization of the brain and heart rhythm during autogenic meditation

    PubMed Central

    Kim, Dae-Keun; Rhee, Jyoo-Hi; Kang, Seung Wan

    2014-01-01

    The underlying changes in heart coherence that are associated with reported EEG changes in response to meditation have been explored. We measured EEG and heart rate variability (HRV) before and during autogenic meditation. Fourteen subjects participated in the study. Heart coherence scores were significantly increased during meditation compared to the baseline. We found near significant decrease in high beta absolute power, increase in alpha relative power and significant increases in lower (alpha) and higher (above beta) band coherence during 3~min epochs of heart coherent meditation compared to 3~min epochs of heart non-coherence at baseline. The coherence and relative power increase in alpha band and absolute power decrease in high beta band could reflect relaxation state during the heart coherent meditation. The coherence increase in the higher (above beta) band could reflect cortico-cortical local integration and thereby affect cognitive reorganization, simultaneously with relaxation. Further research is still needed for a confirmation of heart coherence as a simple window for the meditative state. PMID:24454283

  8. Reorganization of the brain and heart rhythm during autogenic meditation.

    PubMed

    Kim, Dae-Keun; Rhee, Jyoo-Hi; Kang, Seung Wan

    2014-01-13

    The underlying changes in heart coherence that are associated with reported EEG changes in response to meditation have been explored. We measured EEG and heart rate variability (HRV) before and during autogenic meditation. Fourteen subjects participated in the study. Heart coherence scores were significantly increased during meditation compared to the baseline. We found near significant decrease in high beta absolute power, increase in alpha relative power and significant increases in lower (alpha) and higher (above beta) band coherence during 3~min epochs of heart coherent meditation compared to 3~min epochs of heart non-coherence at baseline. The coherence and relative power increase in alpha band and absolute power decrease in high beta band could reflect relaxation state during the heart coherent meditation. The coherence increase in the higher (above beta) band could reflect cortico-cortical local integration and thereby affect cognitive reorganization, simultaneously with relaxation. Further research is still needed for a confirmation of heart coherence as a simple window for the meditative state.

  9. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction

    PubMed Central

    Lecarpentier, Yves; Claes, Victor; Duthoit, Guillaume; Hébert, Jean-Louis

    2014-01-01

    Circadian clock mechanisms are far-from-equilibrium dissipative structures. Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta, and gamma) play a key role in metabolic regulatory processes, particularly in heart muscle. Links between circadian rhythms (CRs) and PPARs have been established. Mammalian CRs involve at least two critical transcription factors, CLOCK and BMAL1 (Gekakis et al., 1998; Hogenesch et al., 1998). PPAR gamma plays a major role in both glucose and lipid metabolisms and presents circadian properties which coordinate the interplay between metabolism and CRs. PPAR gamma is a major component of the vascular clock. Vascular PPAR gamma is a peripheral regulator of cardiovascular rhythms controlling circadian variations in blood pressure and heart rate through BMAL1. We focused our review on diseases with abnormalities of CRs and with primary or secondary cardiac dysfunction. Moreover, these diseases presented changes in the Wnt/beta-catenin pathway and PPARs, according to two opposed profiles. Profile 1 was defined as follows: inactivation of the Wnt/beta-catenin pathway with increased expression of PPAR gamma. Profile 2 was defined as follows: activation of the Wnt/beta-catenin pathway with decreased expression of PPAR gamma. A typical profile 1 disease is arrhythmogenic right ventricular cardiomyopathy, a genetic cardiac disease which presents mutations of the desmosomal proteins and is mainly characterized by fatty acid accumulation in adult cardiomyocytes mainly in the right ventricle. The link between PPAR gamma dysfunction and desmosomal genetic mutations occurs via inactivation of the Wnt/beta-catenin pathway presenting oscillatory properties. A typical profile 2 disease is type 2 diabetes, with activation of the Wnt/beta-catenin pathway and decreased expression of PPAR gamma. CRs abnormalities are present in numerous pathologies such as cardiovascular diseases, sympathetic/parasympathetic dysfunction, hypertension, diabetes, neurodegenerative diseases, cancer which are often closely inter-related. PMID:25414671

  10. Intermittency in electric brain activity in the perception of ambiguous images

    NASA Astrophysics Data System (ADS)

    Kurovskaya, Maria K.; Runnova, Anastasiya E.; Zhuravlev, Maxim O.; Grubov, Vadim V.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Pisarchik, Alexander N.

    2017-04-01

    Present paper is devoted to the study of intermittency during the perception of bistable Necker cube image being a good example of an ambiguous object, with simultaneous measurement of EEG. Distributions of time interval lengths corresponding to the left-oriented and right-oriented cube perception have been obtain. EEG data have been analyzed using continuous wavelet transform and it was shown that the destruction of alpha rhythm with accompanying generation of high frequency oscillations can serve as a marker of Necker cube recognition process.

  11. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional programmore » encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.« less

  12. Measurement of the Perception of Control during Continuous Movement using Electroencephalography

    PubMed Central

    Wen, Wen; Yamashita, Atsushi; Asama, Hajime

    2017-01-01

    “Sense of control” refers to the subjective feeling of control over external events. Numerous neuropsychological studies have investigated the neural basis of the sense of control during action performance; however, most previous studies have focused on responses to a single discrete action outcome rather than real-time processing of action-outcome sequences. In the present study, we aimed to identify whether certain patterns of brain activation are associated with the perceived control during continuous movement. We recorded electroencephalography (EEG) signals while participants continuously moved a right-handed mouse in an attempt to control multiple visual stimuli. When participants perceived a sense of control over the stimuli, we observed a positive potential approximately 550 ms after the onset of movement, while no similar potential was observed when participants reported a lack of control. The appearance of this potential was consistent with the time window of awareness of control in a behavioral test using the same task, and likely reflected the explicit allocation of attention to control. Moreover, we found that the alpha-mu rhythm, which is linked to sensorimotor processing, was significantly suppressed after participants came to a conclusion regarding the level of control, regardless of whether control or lack of control was perceived. In summary, our results suggest that the late positive potential after the onset of the movement and the suppression of alpha-mu rhythm can be used as markers of the perception of control during continuous action performance and feedback monitoring. PMID:28798677

  13. Visual perception affected by motivation and alertness controlled by a noninvasive brain-computer interface

    PubMed Central

    Zhuravlev, Maksim O.; Makarov, Vladimir V.; Nedayvozov, Vladimir; Grubov, Vadim V.; Pchelintceva, Svetlana V.; Hramov, Alexander E.

    2017-01-01

    The influence of motivation and alertness on brain activity associated with visual perception was studied experimentally using the Necker cube, which ambiguity was controlled by the contrast of its ribs. The wavelet analysis of recorded multichannel electroencephalograms (EEG) allowed us to distinguish two different scenarios while the brain processed the ambiguous stimulus. The first scenario is characterized by a particular destruction of alpha rhythm (8–12 Hz) with a simultaneous increase in beta-wave activity (20–30 Hz), whereas in the second scenario, the beta rhythm is not well pronounced while the alpha-wave energy remains unchanged. The experiments were carried out with a group of financially motivated subjects and another group of unpaid volunteers. It was found that the first scenario occurred mainly in the motivated group. This can be explained by the increased alertness of the motivated subjects. The prevalence of the first scenario was also observed in a group of subjects to whom images with higher ambiguity were presented. We believe that the revealed scenarios can occur not only during the perception of bistable images, but also in other perceptual tasks requiring decision making. The obtained results may have important applications for monitoring and controlling human alertness in situations which need substantial attention. On the base of the obtained results we built a brain-computer interface to estimate and control the degree of alertness in real time. PMID:29267295

  14. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics

    NASA Technical Reports Server (NTRS)

    Iyengar, N.; Peng, C. K.; Morin, R.; Goldberger, A. L.; Lipsitz, L. A.

    1996-01-01

    We postulated that aging is associated with disruption in the fractallike long-range correlations that characterize healthy sinus rhythm cardiac interval dynamics. Ten young (21-34 yr) and 10 elderly (68-81 yr) rigorously screened healthy subjects underwent 120 min of continuous supine resting electrocardiographic recording. We analyzed the interbeat interval time series using standard time and frequency domain statistics and using a fractal measure, detrended fluctuation analysis, to quantify long-range correlation properties. In healthy young subjects, interbeat intervals demonstrated fractal scaling, with scaling exponents (alpha) from the fluctuation analysis close to a value of 1.0. In the group of healthy elderly subjects, the interbeat interval time series had two scaling regions. Over the short range, interbeat interval fluctuations resembled a random walk process (Brownian noise, alpha = 1.5), whereas over the longer range they resembled white noise (alpha = 0.5). Short (alpha s)- and long-range (alpha 1) scaling exponents were significantly different in the elderly subjects compared with young (alpha s = 1.12 +/- 0.19 vs. 0.90 +/- 0.14, respectively, P = 0.009; alpha 1 = 0.75 +/- 0.17 vs. 0.99 +/- 0.10, respectively, P = 0.002). The crossover behavior from one scaling region to another could be modeled as a first-order autoregressive process, which closely fit the data from four elderly subjects. This implies that a single characteristic time scale may be dominating heartbeat control in these subjects. The age-related loss of fractal organization in heartbeat dynamics may reflect the degradation of integrated physiological regulatory systems and may impair an individual's ability to adapt to stress.

  15. Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal.

    PubMed

    Xu, Shanzhi; Hu, Hai; Ji, Linhong; Wang, Peng

    2018-02-26

    The recorded electroencephalography (EEG) signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (RC) and the change rate in the trace of the Toeplitz matrix, it is demonstrated that the embedding dimension is related to the frequency bandwidth of each reconstructed component, in consistence with the component mixing in the singular value decomposition step. A method for selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based on the Markov Process Amplitude (MPA) EEG Model. Real EEG signal is also collected from the experimental subjects under both eyes-open and eyes-closed conditions. The experimental results show that based on the embedding dimension selection method, the alpha rhythm can be extracted from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between the eyes-open and eyes-closed states.

  16. A reduction in hippocampal GABAA receptor alpha5 subunits disrupts the memory for location of objects in mice.

    PubMed

    Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F

    2010-07-01

    The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.

  17. Effects of 2G and 3G mobile phones on human alpha rhythms: Resting EEG in adolescents, young adults, and the elderly.

    PubMed

    Croft, R J; Leung, S; McKenzie, R J; Loughran, S P; Iskra, S; Hamblin, D L; Cooper, N R

    2010-09-01

    The present study was conducted to determine whether adolescents and/or the elderly are more sensitive to mobile phone (MP)-related bioeffects than young adults, and to determine this for both 2nd generation (2G) GSM, and 3rd generation (3G) W-CDMA exposures. To test this, resting alpha activity (8-12 Hz band of the electroencephalogram) was assessed because numerous studies have now reported it to be enhanced by MP exposure. Forty-one 13-15 year olds, forty-two 19-40 year olds, and twenty 55-70 year olds were tested using a double-blind crossover design, where each participant received Sham, 2G and 3G exposures, separated by at least 4 days. Alpha activity, during exposure relative to baseline, was recorded and compared between conditions. Consistent with previous research, the young adults' alpha was greater in the 2G compared to Sham condition, however, no effect was seen in the adolescent or the elderly groups, and no effect of 3G exposures was found in any group. The results provide further support for an effect of 2G exposures on resting alpha activity in young adults, but fail to support a similar enhancement in adolescents or the elderly, or in any age group as a function of 3G exposure. 2010 Wiley-Liss, Inc.

  18. Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands

    PubMed Central

    van Albada, S. J.; Robinson, P. A.

    2013-01-01

    The degree to which electroencephalographic spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification. PMID:23483663

  19. The Encephalophone: A Novel Musical Biofeedback Device using Conscious Control of Electroencephalogram (EEG).

    PubMed

    Deuel, Thomas A; Pampin, Juan; Sundstrom, Jacob; Darvas, Felix

    2017-01-01

    A novel musical instrument and biofeedback device was created using electroencephalogram (EEG) posterior dominant rhythm (PDR) or mu rhythm to control a synthesized piano, which we call the Encephalophone. Alpha-frequency (8-12 Hz) signal power from PDR in the visual cortex or from mu rhythm in the motor cortex was used to create a power scale which was then converted into a musical scale, which could be manipulated by the individual in real time. Subjects could then generate different notes of the scale by activation (event-related synchronization) or de-activation (event-related desynchronization) of the PDR or mu rhythms in visual or motor cortex, respectively. Fifteen novice normal subjects were tested in their ability to hit target notes presented within a 5-min trial period. All 15 subjects were able to perform more accurately (average of 27.4 hits, 67.1% accuracy for visual cortex/PDR signaling; average of 20.6 hits, 57.1% accuracy for mu signaling) than a random note generation (19.03% accuracy). Moreover, PDR control was significantly more accurate than mu control. This shows that novice healthy individuals can control music with better accuracy than random, with no prior training on the device, and that PDR control is more accurate than mu control for these novices. Individuals with more years of musical training showed a moderate positive correlation with more PDR accuracy, but not mu accuracy. The Encephalophone may have potential applications both as a novel musical instrument without requiring movement, as well as a potential therapeutic biofeedback device for patients suffering from motor deficits (e.g., amyotrophic lateral sclerosis (ALS), brainstem stroke, traumatic amputation).

  20. The Encephalophone: A Novel Musical Biofeedback Device using Conscious Control of Electroencephalogram (EEG)

    PubMed Central

    Deuel, Thomas A.; Pampin, Juan; Sundstrom, Jacob; Darvas, Felix

    2017-01-01

    A novel musical instrument and biofeedback device was created using electroencephalogram (EEG) posterior dominant rhythm (PDR) or mu rhythm to control a synthesized piano, which we call the Encephalophone. Alpha-frequency (8–12 Hz) signal power from PDR in the visual cortex or from mu rhythm in the motor cortex was used to create a power scale which was then converted into a musical scale, which could be manipulated by the individual in real time. Subjects could then generate different notes of the scale by activation (event-related synchronization) or de-activation (event-related desynchronization) of the PDR or mu rhythms in visual or motor cortex, respectively. Fifteen novice normal subjects were tested in their ability to hit target notes presented within a 5-min trial period. All 15 subjects were able to perform more accurately (average of 27.4 hits, 67.1% accuracy for visual cortex/PDR signaling; average of 20.6 hits, 57.1% accuracy for mu signaling) than a random note generation (19.03% accuracy). Moreover, PDR control was significantly more accurate than mu control. This shows that novice healthy individuals can control music with better accuracy than random, with no prior training on the device, and that PDR control is more accurate than mu control for these novices. Individuals with more years of musical training showed a moderate positive correlation with more PDR accuracy, but not mu accuracy. The Encephalophone may have potential applications both as a novel musical instrument without requiring movement, as well as a potential therapeutic biofeedback device for patients suffering from motor deficits (e.g., amyotrophic lateral sclerosis (ALS), brainstem stroke, traumatic amputation). PMID:28491030

  1. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    2002-01-01

    The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.

  2. Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kosuke; Oogane, Mikihiko; Kanno, Akitake; Imada, Masahiro; Jono, Junichi; Terauchi, Takashi; Okuno, Tetsuo; Aritomi, Yuuji; Morikawa, Masahiro; Tsuchida, Masaaki; Nakasato, Nobukazu; Ando, Yasuo

    2018-02-01

    Magnetocardiography (MCG) and magnetoencephalography (MEG) signals were detected at room temperature using tunnel magneto-resistance (TMR) sensors. TMR sensors developed with low-noise amplifier circuits detected the MCG R wave without averaging, and the QRS complex was clearly observed with averaging at a high signal-to-noise ratio. Spatial mapping of the MCG was also achieved. Averaging of MEG signals triggered by electroencephalography (EEG) clearly observed the phase inversion of the alpha rhythm with a correlation coefficient as high as 0.7 between EEG and MEG.

  3. Endogenous Circadian Regulation of Pro-inflammatory Cytokines and Chemokines in the Presence of Bacterial Lipopolysaccharide in Humans

    PubMed Central

    Rahman, Shadab A.; Castanon-Cervantes, Oscar; Scheer, Frank A.J.L.; Shea, Steven A.; Czeisler, Charles A.; Davidson, Alec J.; Lockley, Steven W.

    2015-01-01

    Various aspects of immune response exhibit 24-hour variations suggesting that infection susceptibility and treatment efficacy may vary by time of day. Whether these 24-hour variations are endogenous or evoked by changes in environmental or behavioral conditions is not known. We assessed the endogenous circadian control and environmental and behavioral influences on ex-vivo lipopolysaccharide stimulation of whole blood in thirteen healthy participants under 48 hours of baseline conditions with standard sleep-wake schedules and 40–50 hours of constant environmental and behavioral (constant routine; CR) conditions. Significant 24-hour rhythms were observed under baseline conditions in Monocyte Chemotactic Protein, Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin 8 but not Tumor Necrosis Factor alpha whereas significant 24-hour rhythms were observed in all four immune factors under CR conditions. The rhythm amplitudes, expressed as a percentage of mean, were comparable between immune factors and across conditions. In contrast, the acrophase time (time of the fitted peak) was different between immune factors, and included daytime and nighttime peaks and changes across behavioral conditions. These results suggest that the endogenous circadian system underpins the temporal organization of immune responses in humans with additional effects of external environmental and behavioral cycles. These findings have implications for understanding the adverse effects of recurrent circadian disruption and sleep curtailment on immune function. PMID:25452149

  4. Plastic modulation of PTSD resting-state networks by EEG neurofeedback

    PubMed Central

    Kluetsch, Rosemarie C.; Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Calhoun, Vince D.; Schmahl, Christian; Jetly, Rakesh; Lanius, Ruth A.

    2015-01-01

    Objective Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8–12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with PTSD. Method 21 individuals with PTSD related to childhood abuse underwent 30 minutes of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Results Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase (‘rebound’) in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Conclusion Our study represents a first step in elucidating the potential neurobehavioral mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG ‘rebound’ after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. PMID:24266644

  5. Temporal dynamics of sensorimotor integration in speech perception and production: independent component analysis of EEG data

    PubMed Central

    Jenson, David; Bowers, Andrew L.; Harkrider, Ashley W.; Thornton, David; Cuellar, Megan; Saltuklaroglu, Tim

    2014-01-01

    Activity in anterior sensorimotor regions is found in speech production and some perception tasks. Yet, how sensorimotor integration supports these functions is unclear due to a lack of data examining the timing of activity from these regions. Beta (~20 Hz) and alpha (~10 Hz) spectral power within the EEG μ rhythm are considered indices of motor and somatosensory activity, respectively. In the current study, perception conditions required discrimination (same/different) of syllables pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required covert and overt syllable productions and overt word production. Independent component analysis was performed on EEG data obtained during these conditions to (1) identify clusters of μ components common to all conditions and (2) examine real-time event-related spectral perturbations (ERSP) within alpha and beta bands. 17 and 15 out of 20 participants produced left and right μ-components, respectively, localized to precentral gyri. Discrimination conditions were characterized by significant (pFDR < 0.05) early alpha event-related synchronization (ERS) prior to and during stimulus presentation and later alpha event-related desynchronization (ERD) following stimulus offset. Beta ERD began early and gained strength across time. Differences were found between quiet and noisy discrimination conditions. Both overt syllable and word productions yielded similar alpha/beta ERD that began prior to production and was strongest during muscle activity. Findings during covert production were weaker than during overt production. One explanation for these findings is that μ-beta ERD indexes early predictive coding (e.g., internal modeling) and/or overt and covert attentional/motor processes. μ-alpha ERS may index inhibitory input to the premotor cortex from sensory regions prior to and during discrimination, while μ-alpha ERD may index sensory feedback during speech rehearsal and production. PMID:25071633

  6. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    PubMed

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (<12Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Diurnal Salivary Alpha-amylase Dynamics among Dementia Family Caregivers

    PubMed Central

    Liu, Yin; Granger, Douglas A.; Kim, Kyungmin; Klein, Laura C.; Almeida, David M.; Zarit, Steven H.

    2016-01-01

    Objective The study examined diurnal regulation of salivary alpha-amylase (sAA) in association with daily stressors, adult day services (ADS) use, and other caregiving characteristics. Methods A sample of 165 family caregivers of individuals with dementia (IWD) completed an 8-day diary study. Caregivers provided 5 saliva samples across the 8 days. On some days, caregivers provided all or most of the care. On other days, their relative attended ADS for part of the day. A 3-level unconditional linear spline model was fit to describe the typical sAA diurnal rhythms. Predictors were then added to the unconditional model to test the hypotheses on ADS use and daily stressors. Results Daily ADS use did not have an effect on diurnal sAA regulation. However, controlling for daily ADS use, greater ADS use over the 8 days was associated with a more prominent rise between 30 minutes after wake-up and before lunch, and a more prominent decline between before lunch and late afternoon. Fewer ADS days were associated with a more flattened sAA diurnal rhythm. Additionally, greater daily care-related stressor exposures had a within-person association with lower sAA levels in the late afternoon. Care-related stressor exposures had significant within- and between-person associations with sAA diurnal slopes. Furthermore, daily positive experiences had a significant between-person association with sAA diurnal slopes. Conclusions Caring for a disabled family member may heighten the vulnerability to potential physiological conditions. Respite from care stressors from ADS use may have some biobehavioral benefits on sAA regulations. PMID:27786517

  8. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging

    PubMed Central

    Caplan, Jeremy B.; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A.

    2015-01-01

    Rhythmic brain activity at low frequencies (<12 Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; [10], [65]) avoids these problems by using the signal’s own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18–25 years) and older (60–74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1–4 Hz), at which rhythms are sporadic (but topographies were more similar in the 8–12 Hz alpha band). There was little theta-band activity meeting the BOSC method’s criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In sum, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. PMID:25769279

  9. Diurnal salivary alpha-amylase dynamics among dementia family caregivers.

    PubMed

    Liu, Yin; Granger, Douglas A; Kim, Kyungmin; Klein, Laura C; Almeida, David M; Zarit, Steven H

    2017-02-01

    The study examined diurnal regulation of salivary alpha-amylase (sAA) in association with daily stressors, adult day services (ADS) use, and other caregiving characteristics. A sample of 165 family caregivers of individuals with dementia (IWD) completed an 8-day diary study. Caregivers provided 5 saliva samples across the 8 days. On some days, caregivers provided all or most of the care. On other days, their relative attended ADS for part of the day. A 3-level unconditional linear spline model was fit to describe the typical sAA diurnal rhythms. Predictors were then added to the unconditional model to test the hypotheses on ADS use and daily stressors. Daily ADS use did not have an effect on diurnal sAA regulation. However, controlling for daily ADS use, greater ADS use over the 8 days was associated with a more prominent rise between 30 min after wake-up and before lunch, and a more prominent decline between before lunch and late afternoon. Fewer ADS days were associated with a more flattened sAA diurnal rhythm. Additionally, greater daily care-related stressor exposures had a within-person association with lower sAA levels in the late afternoon. Care-related stressor exposures had significant within- and between-person associations with sAA diurnal slopes. Furthermore, daily positive experiences had a significant between-person association with sAA diurnal slopes. Caring for a disabled family member may heighten the vulnerability to potential physiological conditions. Respite from care stressors from ADS use may have some biobehavioral benefits on sAA regulations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Altered long-range alpha-band synchronization during visual short-term memory retention in children born very preterm.

    PubMed

    Doesburg, Sam M; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Poskitt, Kenneth J; Moiseev, Alexander; Whitfield, Michael F; Synnes, Anne; Grunau, Ruth E

    2011-02-01

    Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Effects of neurofeedback training on the brain wave of adults with forward head posture.

    PubMed

    Oh, Hyun-Ju; Song, Gui-Bin

    2016-10-01

    [Purpose] The purpose of the present study was to examine the effects of neurofeedback training on electroencephalogram changes in the cervical spine in adults with forward head posture through x-ray. [Subjects and Methods] The subjects of the study were 40 college students with forward head posture, randomly divided into a neurofeedback training group (NFTG, n=20) and a control group (CG, n=20). The neurofeedback training group performed six sessions of pottery and archery games, each for two minutes, three times per week for four weeks, while using the neurofeedback system. [Results] There were significant effects within and between groups in terms of the Delta wave, the Theta wave, the Alpha wave, the Beta wave, or the sensory motor rhythm. Especially, the Delta wave, Beta wave, and the sensory motor rhythm were showed significant effects between the groups. [Conclusion] It is thought that neurofeedback training, a training approach to self-regulate brain waves, enhances concentration and relaxation without stress, as well as an increase in attention, memory, and verbal cognitive performance. Therefore an effective intervention method to improve neck pain and daily activities.

  12. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex

    PubMed Central

    van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.

    2014-01-01

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811

  13. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Khalsa, S. B.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    1999-01-01

    The aim of this study was to quantify the associations between slow eye movements (SEMs), eye blink rate, waking electroencephalogram (EEG) power density, neurobehavioral performance, and the circadian rhythm of plasma melatonin in a cohort of 10 healthy men during up to 32 h of sustained wakefulness. The time course of neurobehavioral performance was characterized by fairly stable levels throughout the first 16 h of wakefulness followed by deterioration during the phase of melatonin secretion. This deterioration was closely associated with an increase in SEMs. Frontal low-frequency EEG activity (1-7 Hz) exhibited a prominent increase with time awake and little circadian modulation. EEG alpha activity exhibited circadian modulation. The dynamics of SEMs and EEG activity were phase locked to changes in neurobehavioral performance and lagged the plasma melatonin rhythm. The data indicate that frontal areas of the brain are more susceptible to sleep loss than occipital areas. Frontal EEG activity and ocular parameters may be used to monitor and predict changes in neurobehavioral performance associated with sleep loss and circadian misalignment.

  14. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.

    PubMed

    van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R

    2014-10-07

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.

  15. Recurrent ventricular arrhythmias complicating myocardial infarction in the presence of phaeochromocytoma.

    PubMed Central

    McNeill, A J; Adgey, A A; Wilson, C

    1992-01-01

    After an acute myocardial infarction a 49 year old man developed late recurrent severe ventricular arrhythmias coincident with transient hypertensive episodes. A phaeochromocytoma was diagnosed on the basis of the urinary concentration of catecholamines and computerised tomography of the adrenal glands. After stabilisation of his cardiac rhythm and blood pressure with alpha and beta adrenergic blockade and anti-arrhythmic treatment the right adrenal gland, which contained the tumour, was successfully resected. The diagnosis of a phaeochromocytoma should be considered when recurrent ventricular arrhythmias are associated with intermittent hypertension after myocardial infarction. PMID:1739535

  16. Intermittent behavior in the brain neuronal network in the perception of ambiguous images

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Kurovskaya, Maria K.; Runnova, Anastasiya E.; Zhuravlev, Maxim O.; Grubov, Vadim V.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Pisarchik, Alexander N.

    2017-03-01

    Characteristics of intermittency during the perception of ambiguous images have been studied in the case the Necker cube image has been used as a bistable object for demonstration in the experiments, with EEG being simultaneously measured. Distributions of time interval lengths corresponding to the left-oriented and right-oriented Necker cube perception have been obtain. EEG data have been analyzed using continuous wavelet transform which was shown that the destruction of alpha rhythm with accompanying generation of high frequency oscillations can serve as a electroencephalographical marker of Necker cube recognition process in human brain.

  17. Neural dynamics during repetitive visual stimulation

    NASA Astrophysics Data System (ADS)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline after approx. 500 ms. During the steady-state response, we observed alpha band desynchronization over occipital sites and after 500 ms also over frontal sites, while neighboring areas synchronized. The power in beta band over occipital sites increased during the stimulation period, possibly caused by increase in power at sub-harmonic frequencies of stimulation. Gamma power was also enhanced by the stimulation. Significance. These findings have direct implications on the use of RVS and SSVEPs for neural process investigation through steady-state topography, controlled entrainment of brain oscillations and BCIs. A deep understanding of SSVEP propagation in time and space and the link with ongoing brain rhythms is crucial for optimizing the typical SSVEP applications for studying, assisting, or augmenting human cognitive and sensorimotor function.

  18. Exploring potential social influences on brain potentials during anticipation of tactile stimulation.

    PubMed

    Shen, Guannan; Saby, Joni N; Drew, Ashley R; Marshall, Peter J

    2017-03-15

    This study explored interpersonal influences on electrophysiological responses during the anticipation of tactile stimulation. It is well-known that broad, negative-going potentials are present in the event-related potential (ERP) between a forewarning cue and a tactile stimulus. It has also been shown that the alpha-range mu rhythm shows a lateralized desynchronization over central electrode sites during anticipation of tactile stimulation of the hand. The current study used a tactile discrimination task in which a visual cue signaled that an upcoming stimulus would either be delivered 1500ms later to the participant's hand, to a task partner's hand, or to neither person. For the condition in which participants anticipated the tactile stimulation to their own hand, a negative potential (contingent negative variation, CNV) was observed in the ERP at central sites in the 1000ms prior to the tactile stimulus. Significant mu rhythm desynchronization was also present in the same time window. The magnitudes of the ERPs and of the mu desynchronization were greater in the contralateral than in the ipsilateral hemisphere prior to right hand stimulation. Similar ERP and EEG changes were not present when the visual cue indicated that stimulation would be delivered to the task partner or to neither person. The absence of social influences during anticipation of tactile stimulation, and the relationship between the two brain signatures of anticipatory attention (CNV and mu rhythm) are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Source analysis of alpha rhythm reactivity using LORETA imaging with 64-channel EEG and individual MRI.

    PubMed

    Cuspineda, E R; Machado, C; Virues, T; Martínez-Montes, E; Ojeda, A; Valdés, P A; Bosch, J; Valdes, L

    2009-07-01

    Conventional EEG and quantitative EEG visual stimuli (close-open eyes) reactivity analysis have shown their usefulness in clinical practice; however studies at the level of EEG generators are limited. The focus of the study was visual reactivity of cortical resources in healthy subjects and in a stroke patient. The 64 channel EEG and T1 magnetic resonance imaging (MRI) studies were obtained from 32 healthy subjects and a middle cerebral artery stroke patient. Low Resolution Electromagnetic Tomography (LORETA) was used to estimate EEG sources for both close eyes (CE) vs. open eyes (OE) conditions using individual MRI. The t-test was performed between source spectra of the two conditions. Thresholds for statistically significant t values were estimated by the local false discovery rate (lfdr) method. The Z transform was used to quantify the differences in cortical reactivity between the patient and healthy subjects. Closed-open eyes alpha reactivity sources were found mainly in posterior regions (occipito-parietal zones), extended in some cases to anterior and thalamic regions. Significant cortical reactivity sources were found in frequencies different from alpha (lower t-values). Significant changes at EEG reactivity sources were evident in the damaged brain hemisphere. Reactivity changes were also found in the "healthy" hemisphere when compared with the normal population. In conclusion, our study of brain sources of EEG alpha reactivity provides information that is not evident in the usual topographic analysis.

  20. Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback.

    PubMed

    Kluetsch, R C; Ros, T; Théberge, J; Frewen, P A; Calhoun, V D; Schmahl, C; Jetly, R; Lanius, R A

    2014-08-01

    Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8-12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with post-traumatic stress disorder (PTSD). Twenty-one individuals with PTSD related to childhood abuse underwent 30 min of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase ('rebound') in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Our study represents a first step in elucidating the potential neurobehavioural mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG 'rebound' after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing

    PubMed Central

    Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C.

    2012-01-01

    The distinction between convergent and divergent cognitive processes given by Guilford (1956) had a strong influence on the empirical research on creative thinking. Neuroscientific studies typically find higher event-related synchronization in the EEG alpha rhythm for individuals engaged in creative ideation tasks compared to intelligence-related tasks. This study examined, whether these neurophysiological effects can also be found when both cognitive processing modes (convergent vs. divergent) are assessed by means of the same task employing a simple variation of instruction. A sample of 55 participants performed the alternate uses task as well as a more basic word association task while EEG was recorded. On a trial-by-trial basis, participants were either instructed to find a most common solution (convergent condition) or a most uncommon solution (divergent condition). The answers given in the divergent condition were in both tasks significantly more original than those in the convergent condition. Moreover, divergent processing was found to involve higher task-related EEG alpha power than convergent processing in both the alternate uses task and the word association task. EEG alpha synchronization can hence explicitly be associated with divergent cognitive processing rather than with general task characteristics of creative ideation tasks. Further results point to a differential involvement of frontal and parietal cortical areas by individuals of lower versus higher trait creativity. PMID:22390860

  2. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation.

    PubMed

    Sale, Patrizio; Infarinato, Francesco; Del Percio, Claudio; Lizio, Roberta; Babiloni, Claudio; Foti, Calogero; Franceschini, Marco

    2015-12-01

    Stroke is the leading cause of permanent disability in developed countries; its effects may include sensory, motor, and cognitive impairment as well as a reduced ability to perform self-care and participate in social and community activities. A number of studies have shown that the use of robotic systems in upper limb motor rehabilitation programs provides safe and intensive treatment to patients with motor impairments because of a neurological injury. Furthermore, robot-aided therapy was shown to be well accepted and tolerated by all patients; however, it is not known whether a specific robot-aided rehabilitation can induce beneficial cortical plasticity in stroke patients. Here, we present a procedure to study neural underpinning of robot-aided upper limb rehabilitation in stroke patients. Neurophysiological recordings use the following: (a) 10-20 system electroencephalographic (EEG) electrode montage; (b) bipolar vertical and horizontal electrooculographies; and (c) bipolar electromyography from the operating upper limb. Behavior monitoring includes the following: (a) clinical data and (b) kinematic and dynamic of the operant upper limb movements. Experimental conditions include the following: (a) resting state eyes closed and eyes open, and (b) robotic rehabilitation task (maximum 80 s each block to reach 4-min EEG data; interblock pause of 1 min). The data collection is performed before and after a program of 30 daily rehabilitation sessions. EEG markers include the following: (a) EEG power density in the eyes-closed condition; (b) reactivity of EEG power density to eyes opening; and (c) reactivity of EEG power density to robotic rehabilitation task. The above procedure was tested on a subacute patient (29 poststroke days) and on a chronic patient (21 poststroke months). After the rehabilitation program, we observed (a) improved clinical condition; (b) improved performance during the robotic task; (c) reduced delta rhythms (1-4 Hz) and increased alpha rhythms (8-12 Hz) during the resting state eyes-closed condition; (d) increased alpha desynchronization to eyes opening; and (e) decreased alpha desynchronization during the robotic rehabilitation task. We conclude that the present procedure is suitable for evaluation of the neural underpinning of robot-aided upper limb rehabilitation.

  3. Reduced mind wandering in experienced meditators and associated EEG correlates.

    PubMed

    Brandmeyer, Tracy; Delorme, Arnaud

    2016-11-04

    One outstanding question in the contemplative science literature relates to the direct impact of meditation experience on the monitoring of internal states and its respective correspondence with neural activity. In particular, to what extent does meditation influence the awareness, duration and frequency of the tendency of the mind to wander. To assess the relation between mind wandering and meditation, we tested 2 groups of meditators, one with a moderate level of experience (non-expert) and those who are well advanced in their practice (expert). We designed a novel paradigm using self-reports of internal mental states based on an experiential sampling probe paradigm presented during ~1 h of seated concentration meditation to gain insight into the dynamic measures of electroencephalography (EEG) during absorption in meditation as compared to reported mind wandering episodes. Our results show that expert meditation practitioners report a greater depth and frequency of sustained meditation, whereas non-expert practitioners report a greater depth and frequency of mind wandering episodes. This is one of the first direct behavioral indices of meditation expertise and its associated impact on the reduced frequency of mind wandering, with corresponding EEG activations showing increased frontal midline theta and somatosensory alpha rhythms during meditation as compared to mind wandering in expert practitioners. Frontal midline theta and somatosensory alpha rhythms are often observed during executive functioning, cognitive control and the active monitoring of sensory information. Our study thus provides additional new evidence to support the hypothesis that the maintenance of both internal and external orientations of attention may be maintained by similar neural mechanisms and that these mechanisms may be modulated by meditation training.

  4. Immediate effects of Alpha/theta and Sensory-Motor Rhythm feedback on music performance.

    PubMed

    Gruzelier, J H; Hirst, L; Holmes, P; Leach, J

    2014-07-01

    This is one of a series of investigations comparing two EEG-neurofeedback protocols - Alpha/theta (A/T) and Sensory-Motor Rhythm (SMR) - for performance enhancement in the Arts, here with the focus on music. The original report (Egner and Gruzelier, 2003) established a beneficial outcome for elite conservatoire musicians following A/T training in two investigations. Subsequently this A/T advantage was replicated for both advanced instrumental and novice singing abilities, including improvisation, while SMR training benefited novice performance only (Gruzelier, Holmes et al., 2014). Here we report a replication of the latter study in university instrumentalists who as before were novice singers with one design change - post-training performances were conducted within the tenth final session instead of on a subsequent occasion. As before expert judges rated the domains of Creativity/Musicality, Communication/Presentation and Technique. The proximity to training of the music performances within the last session likely compromised gains from A/T learning, but perhaps reinforced the impact of SMR training efficacy. In support of validation there was evidence of strong within- and across-session A/T learning and positive linear trends for across-session SMR/theta and SMR/beta-2 ratio learning. In support of mediation learning correlated with music performance. The A/T outcome was markedly discrepant from previous studies and should dispel any impression that the hypnogogic state itself is transferred to the performance context. The effects of SMR ratio training are consistent with an impact on lower-order abilities required in novice performance such as sustained attention and memory, and benefiting all three domains of music assessment. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects on subjective and objective alertness and sleep in response to evening light exposure in older subjects

    PubMed Central

    Münch, M; Scheuermaier, KD; Zhang, R; Dunne, SP; Guzik, AM; Silva, EJ; Ronda, JM; Duffy, JF

    2011-01-01

    Evening bright light exposure is reported to ameliorate daytime sleepiness and age-related sleep complaints, and also delays the timing of circadian rhythms. We tested whether evening light exposure given to older adults with sleep-wake complaints would delay the timing of their circadian rhythms with respect to their sleep timing, thereby reducing evening sleepiness and improving subsequent sleep quality. We examined the impact of evening light exposure from two different light sources on subjective alertness, EEG activity during wakefulness, and sleep stages. Ten healthy older adults with sleep complaints (mean age=63.3 yrs; 6F) participated in a 13-day study. After three baseline days, circadian phase was assessed. On the evening of days 5–8 the subjects were exposed for 2 h to either polychromatic blue-enriched white light or standard white fluorescent light, and on the following day circadian phase was re-assessed. Subjects were allowed to leave the laboratory during all but the two days when the circadian phase assessment took place. Evening assessments of subjective alertness, and wake and sleep EEG data were analyzed. Subjective alertness and wake EEG activity in the alpha range (9.75–11.25 Hz) were significantly higher during light exposures when compared to the pre-light exposure evening (p<0.05). The light exposures produced circadian phase shifts and significantly prolonged latency to rapid eye-movement (REM) sleep for both light groups (p<0.05). The increase in wake EEG alpha activity during the light exposures was negatively correlated with REM sleep duration (p<0.05). Evening light exposure could benefit older adults with early evening sleepiness, without negatively impacting the subsequent sleep episode. PMID:21664380

  6. Long-Lasting Cortical Reorganization as the Result of Motor Imagery of Throwing a Ball in a Virtual Tennis Court

    PubMed Central

    Cebolla, Ana M.; Petieau, Mathieu; Cevallos, Carlos; Leroy, Axelle; Dan, Bernard; Cheron, Guy

    2015-01-01

    In order to characterize the neural signature of a motor imagery (MI) task, the present study investigates for the first time the oscillation characteristics including both of the time-frequency measurements, event related spectral perturbation and intertrial coherence (ITC) underlying the variations in the temporal measurements (event related potentials, ERP) directly related to a MI task. We hypothesize that significant variations in both of the time-frequency measurements underlie the specific changes in the ERP directly related to MI. For the MI task, we chose a simple everyday task (throwing a tennis ball), that does not require any particular motor expertise, set within the controlled virtual reality scenario of a tennis court. When compared to the rest condition a consistent, long-lasting negative fronto-central ERP wave was accompanied by significant changes in both time frequency measurements suggesting long-lasting cortical activity reorganization. The ERP wave was characterized by two peaks at about 300 ms (N300) and 1000 ms (N1000). The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas. The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally. During the transition from N300 to N1000, a contralateral alpha (mu) as well as post-central and parieto-theta rhythms occurred. The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here. PMID:26648903

  7. Possible biophysical mechanism of the effect of the solar activity on the human central nervous system

    NASA Astrophysics Data System (ADS)

    Mikhailova, G. A.; Mikhailov, Y. M.

    Numerous studies, beginning with Tchizhevsky's works, demonstrated the undeniable effect of the solar activity on the human body. A possible geophysical mechanism of the effect of the solar activity on the human body was proposed by Vladimirsky. In this mechanism solar disturbances (powerful chromospheres flares) cause "magnetosphere and plasmasphere disturbances on the Earth (sudden magnetic storms), which are accompanied by a change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. In its turn, this brings about shifts in the phisiological indices of the human body". In this model, the human body is regarded as a self-oscillating system affected by external geophysical factors. We also adhere to the main principles of this model but refine the part of this model that describes the change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. Unlike Vladimirsky model, we regard the human is not as a self-oscillating system but as one of two coupled oscillating system with discrete resonance frequencies in the human-habitat ensemble. Solar processes and their induced changes in one of the two coupled oscillating systems, specifically, the habitat play the role of an external force. Such an approach is based on the fact that the brain rhythms have the following definite frequencies: the alpha rhythm, 8-13 Hz; the beta rhythm, 14-30 Hz; the gamma rhythm, above 30 Hz; the delta rhythm, 1.5-3 Hz; and the theta rhythm, 4-7 Hz. On the other hand, the natural electromagnetic field on the Earth's surface in the extremely low frequency band also has a quite distinct resonance distribution. There are so-called Schuman resonances of the cavity formed by the Earth's surface and the lower boundary of the ionosphere (the D and E layers) at f1=10.6; f2=18.3; f3=25.9; f4=33.5; f5=41.1 Hz. These resonance frequencies are variable and most sensitive to variations of the parameters of the lower ionosphere. Solar flares cause magnetic and ionosphere storms, which lead up to additional ionisation in the D and E layers and lowering of the upper boundary of cavity. That decreases the resonance frequencies of the cavity. Thus, the state of the human habitat proves to be dependent on the solar activity through variations of the parameters of the lower ionosphere, which govern variations of the Schuman resonances. These variations we suppose to measure on "Kompass-2" and "Vulcan" satellites.

  8. Blue light aids in coping with the post-lunch dip: an EEG study.

    PubMed

    Baek, Hongchae; Min, Byoung-Kyong

    2015-01-01

    The 'post-lunch dip' is a commonly experienced period of drowsiness in the afternoon hours. If this inevitable period can be disrupted by an environmental cue, the result will be enhanced workplace performance. Because blue light is known to be a critical cue for entraining biological rhythms, we investigated whether blue light illumination can be a practical strategy for coping with the post-lunch dip. Twenty healthy participants underwent a continuous performance test, during which the electroencephalogram (EEG) was recorded under four different illumination conditions: dark ( < 0.3 lx), 33% blue-enriched light, 66% blue-enriched light and white polychromatic light. As a result, exposure to blue-enriched light during the post-lunch dip period significantly reduced the EEG alpha activity, and increased task performance. Since desynchronisation of alpha activity reflects enhancement of vigilance, our findings imply that blue light might disrupt the post-lunch dip. Subsequent exploration of illumination parameters will be beneficial for possible chronobiological and ergonomic applications.

  9. Cross-modal orienting of visual attention.

    PubMed

    Hillyard, Steven A; Störmer, Viola S; Feng, Wenfeng; Martinez, Antigona; McDonald, John J

    2016-03-01

    This article reviews a series of experiments that combined behavioral and electrophysiological recording techniques to explore the hypothesis that salient sounds attract attention automatically and facilitate the processing of visual stimuli at the sound's location. This cross-modal capture of visual attention was found to occur even when the attracting sound was irrelevant to the ongoing task and was non-predictive of subsequent events. A slow positive component in the event-related potential (ERP) that was localized to the visual cortex was found to be closely coupled with the orienting of visual attention to a sound's location. This neural sign of visual cortex activation was predictive of enhanced perceptual processing and was paralleled by a desynchronization (blocking) of the ongoing occipital alpha rhythm. Further research is needed to determine the nature of the relationship between the slow positive ERP evoked by the sound and the alpha desynchronization and to understand how these electrophysiological processes contribute to improved visual-perceptual processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Replication of elite music performance enhancement following alpha/theta neurofeedback and application to novice performance and improvisation with SMR benefits.

    PubMed

    Gruzelier, J H; Holmes, P; Hirst, L; Bulpin, K; Rahman, S; van Run, C; Leach, J

    2014-01-01

    Alpha/theta (A/T) and sensory-motor rhythm (SMR) neurofeedback were compared in university instrumentalists who were novice singers with regard to prepared and improvised instrumental and vocal performance in three music domains: creativity/musicality, technique and communication/presentation. Only A/T training enhanced advanced playing seen in all three domains by expert assessors and validated by correlations with learning indices, strongest with Creativity/Musicality as shown by Egner and Gruzelier (2003). Here A/T gains extended to novice performance - prepared vocal, improvised vocal and instrumental - and were recognised by a lay audience who judged the prepared folk songs. SMR learning correlated positively with Technical Competence and Communication in novice performance, in keeping with SMR neurofeedback's known impact on lower-order processes such as attention, working memory and psychomotor skills. The importance of validation through learning indices was emphasised in the interpretation of neurofeedback outcome. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Oscillatory rhythm of reward: anticipation and processing of rewards in children with and without autism.

    PubMed

    Stavropoulos, Katherine Kuhl-Meltzoff; Carver, Leslie J

    2018-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, and multiple theories have emerged concerning core social deficits. While the social motivation hypothesis proposes that deficits in the social reward system cause individuals with ASD to engage less in social interaction, the overly intense world hypothesis (sensory over-responsivity) proposes that individuals with ASD find stimuli to be too intense and may have hypersensitivity to social interaction, leading them to avoid these interactions. EEG was recorded during reward anticipation and reward processing. Reward anticipation was measured using alpha asymmetry, and post-feedback theta was utilized to measure reward processing. Additionally, we calculated post-feedback alpha suppression to measure attention and salience. Participants were 6- to 8-year-olds with ( N  = 20) and without ( N  = 23) ASD. Children with ASD showed more left-dominant alpha suppression when anticipating rewards accompanied by nonsocial stimuli compared to social stimuli. During reward processing, children with ASD had less theta activity than typically developing (TD) children. Alpha activity after feedback showed the opposite pattern: children with ASD had greater alpha suppression than TD children. Significant correlations were observed between behavioral measures of autism severity and EEG activity in both the reward anticipation and reward processing time periods. The findings provide evidence that children with ASD have greater approach motivation prior to nonsocial (compared to social) stimuli. Results after feedback suggest that children with ASD evidence less robust activity thought to reflect evaluation and processing of rewards (e.g., theta) compared to TD children. However, children with ASD evidence greater alpha suppression after feedback compared to TD children. We hypothesize that post-feedback alpha suppression reflects general cognitive engagement-which suggests that children with ASD may experience feedback as overly intense. Taken together, these results suggest that aspects of both the social motivation hypothesis and the overly intense world hypothesis may be occurring simultaneously.

  12. Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations.

    PubMed

    de Munck, J C; Gonçalves, S I; Mammoliti, R; Heethaar, R M; Lopes da Silva, F H

    2009-08-01

    In EEG/fMRI correlation studies it is common to consider the fMRI BOLD as filtered version of the EEG alpha power. Here the question is addressed whether other EEG frequency components may affect the correlation between alpha and BOLD. This was done comparing the statistical parametric maps (SPMs) of three different filter models wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. EEG and fMRI were co-registered in a 30 min resting state condition in 15 healthy young subjects. Power variations in the delta, theta, alpha, beta and gamma bands were extracted from the EEG and used as regressors in a general linear model. Statistical parametric maps (SPMs) were computed using three different filter models, wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. Results show that the SPMs of different EEG frequency bands, when significant, are very similar to that of the alpha rhythm. This is true in particular for the beta band, despite the fact that the alpha harmonics were discarded. It is shown that inclusion of EEG frequency bands as confounder in the fMRI-alpha correlation model has a large effect on the resulting SPM, in particular when for each frequency band the HRF is extracted from the data. We conclude that power fluctuations of different EEG frequency bands are mutually highly correlated, and that a multi frequency model is required to extract the SPM of the frequency of interest from EEG/fMRI data. When no constraints are put on the shapes of the HRFs of the nuisance frequencies, the correlation model looses so much statistical power that no correlations can be detected.

  13. Spatially uniform and nonuniform analyses of electroencephalographic dynamics,with application to the topography of the alpha rhythm

    NASA Astrophysics Data System (ADS)

    O'Connor, S. C.; Robinson, P. A.

    2004-07-01

    Corticothalamic dynamics are investigated using a model in which spatial nonuniformities are incorporated via the coupling of spatial eigenmodes. Comparison of spectra generated using the nonuniform analysis with those generated using a uniform one demonstrates that, for most frequencies, local activity is only weakly dependent on activity elsewhere in the cortex; however, dispersion of low-wave-number activity ensures that distant dynamics influence local dynamics at low frequencies (below approximately 2Hz ), and at the alpha frequency (approximately 10Hz ), where propagating signals are inherently weakly damped, and wavelengths are large. When certain model parameters have similar spatial profiles, as is expected from physiology, the low-frequency discrepancies tend to cancel, and the uniform analysis with local parameter values is an adequate approximation to the full nonuniform one across the whole spectrum, at least for large-scale nonuniformities. After comparing the uniform and nonuniform analyses, we consider one possible application of the nonuniform analysis: studying the phenomenon of occipital alpha dominance, whereby the alpha frequency and power are greater at the back of the head (occipitally) than at the front. In order to infer realistic nonuniformities in the model parameters, the uniform version of the model is first fitted to data recorded from 98 normal subjects in a waking, eyes-closed state. This yields a set of parameters at each of five electrode sites along the midline. The inferred parameter nonuniformities are consistent with anatomical and physiological constraints. Introducing these spatial profiles into the full nonuniform model then quantitatively reproduces observed site-dependent variations in the alpha power and frequency. The results confirm that the frequency shift is mainly due to a decrease in the corticothalamic propagation delay, but indicate that the delay nonuniformity cannot account for the observed occipital increase in alpha power; the occipital alpha dominance is due to decreased cortical gains and increased thalamic gains in occipital regions compared to frontal ones.

  14. [The complex approach to the rehabilitation of post-stroke patients with movement disorders in the early rehabilitation period].

    PubMed

    Khabirov, F A; Khaĭbullin, T I; Grigor'eva, O V

    2011-01-01

    We studied 110 patients, aged 34-71 years, in the early rehabilitation period after stroke who were admitted to a rehabilitation neurologic department of Kazan. The rehabilitation approach was based on the combination of several methods: kinesitherapy, transcranial magnetic stimulation and cerebrolysin treatment. This complex reanimation allowed to achieve the marked functional restoration of movement abilities in many cases that was correlated with the normalization of brain bioelectric activity (the increase of alpha-rhythm spectral power, the decrease of slow-wave EEG components). The combined use of these three methods was more effective than a combination of any two of them.

  15. [Possibilities of transcranial magnetic therapy and color and rhythm therapy in rehabilitation of ischemic stroke].

    PubMed

    Sholomov, I I; Cherevashchenko, L A; Suprunov, O V; Raĭgorondskiĭ, Iu M

    2009-01-01

    One hundred and sixteen post-stroke patients were studied in the early rehabilitation period. All patients were divided into 4 groups: 3 main and 1 control groups. Three main groups (87 patients) received transcranial magnetic therapy (TMT) and/or color and rhythm therapy (CRT) along with traditional treatment and the control group (29 patients) received only basic therapy. TMT was conducted using bitemporal technique, running regime with modulation frequency 1-10 Hz. In CRT, the alternating stimulation of the right and left eye with green and/or blue color with a period of 2-4 s and duration of luminescence 1s was applied. Each of 3 main groups received 2 treatment sessions with an interval of 1,5 month (1st - TMT, 2nd - CRT, 3rd - TMT + CRT). After the treatment, the marked positive changes were seen in all main groups, in particular in group 3. The improvement of neurologic symptoms on the B. Lindmark scale was higher by 9,5% in group 3 compared to the control one, on the Barthel index - by 8,8%, on MMSE and A. Luria and Schulte test - by 5,4 and 14,3%, respectively. Rheographic and encephalographic study revealed the significant improvement of hemodynamics and alpha-rhythm differentiation, decrease of patients with dysrhythmia by 14,6% in group 3 as compared to the control group. The best results were seen in the combination of TMT and CRT, TMT exerted a higher effect on the hemodynamics and CRT - on the psychoemotional state. Both therapies were well tolerated and had no side-effects.

  16. Electrophysiological activity is associated with vulnerability of Internet addiction in non-clinical population.

    PubMed

    Wang, Grace Y; Griskova-Bulanova, Inga

    2018-09-01

    This study investigated the electrophysiological activity associated with vulnerability of problematic Internet use in non-clinical population. The resting EEG spectrum of alpha (8-13 Hz) rhythm was measured in 22 healthy subjects who have used the Internet for recreational purpose. The vulnerability of Internet addiction was assessed using Young's Internet Addiction Test (IAT) and Assessment for Computer and Internet Addiction-Screener (AICA-S) respectively. Depression and impulsivity were also measured with Beck Depression Inventory (BDI) and Barratt Impulsiveness Scale 11(BIS-11) respectively. The IAT was positively correlated with alpha power obtained during eyes closed (EC, r = 0.50, p = 0.02) but not during eyes open (EO). This was further supported by a negative correlation (r = -0.48, p = 0.02) between IAT scores and alpha desynchronization (EO-EC). These relationships remained significant following correction for multiple comparisons. Furthermore, The BDI score showed positive correlation with alpha asymmetry at mid-lateral (r = 0.54, p = 0.01) and mid-frontal (r = 0.46, p = 0.03) regions during EC, and at mid-frontal (r = 0.53, p = 0.01) region during EO. The current findings suggest that there are associations between neural activity and the vulnerability of problematic Internet use. Understanding of the neurobiological mechanisms underlying problematic Internet use would contribute to improved early intervention and treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Diurnal patterns of salivary alpha-amylase and cortisol secretion in female adolescent tennis players after 16 weeks of training.

    PubMed

    Filaire, Edith; Ferreira, Jose Pedro; Oliveira, Miguel; Massart, Alain

    2013-07-01

    We examined the effects of 16 weeks of training on diurnal pattern of salivary alpha-amylase (sAA), cortisol, and the ratio of sAA over cortisol (AOC) in 12 national adolescent female tennis players. Stress and recovery were also evaluated using the Recovery-Stress-Questionnaire for Athletes-RESTQ-Sport. Data were collected after a 2-week rest (January, W0), and 4 months after W0 (W16). Subjects collected five saliva samples throughout a day. While all participants displayed the previously shown decrease after awakening in adolescents at W0, they showed a rise in the alpha-amylase awakening response and a higher alpha-amylase activity output (p<0.01) at W16 compared to W0. For the daily rhythm of cortisol we found subjects having a low overall output of salivary cortisol (p<0.01) and a blunted response to awakening at W16. Furthermore, an increase in the ratio AOC at W16, and a negative correlation between this ratio and Sport-specific recovery score. Our findings offer support for the hypothesis that increase of training load during the study period induced asymmetry activation between the two stress systems, in relation to psychological alterations and performance decrease. These results provide encouragement to continue exploring the impact of training program using a psychobiological approach among young athletes in order to prevent fatigue and preserve the health of these athletes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Is there "neural efficiency" during the processing of visuo-spatial information in male humans? An EEG study.

    PubMed

    Capotosto, Paolo; Perrucci, M Gianni; Brunetti, Marcella; Del Gratta, Cosimo; Doppelmayr, Michael; Grabner, Roland H; Klimesch, Wolfgang; Neubauer, Aljoscha; Neuper, Christa; Pfurtscheller, Gert; Romani, Gian Luca; Babiloni, Claudio

    2009-12-28

    More intelligent persons (high IQ) typically present a higher cortical activity during tasks requiring the encoding of visuo-spatial information, namely higher alpha (about 10 Hz) event-related desynchronization (ERD; Doppelmayr et al., 2005). The opposite is true ("neural efficiency") during the retrieval of the encoded information, as revealed by both lower alpha ERD and/or lower theta (about 5 Hz) event-related synchronization (ERS; Grabner et al., 2004). To reconcile these contrasting results, here we evaluated the working hypothesis that more intelligent male subjects are characterized by a high cortical activity during the encoding phase. This deep encoding would explain the relatively low cortical activity for the retrieval of the encoded information. To test this hypothesis, electroencephalographic (EEG) data were recorded in 22 healthy young male volunteers during visuo-spatial information processing (encoding) and short-term retrieval of the encoded information. Cortical activity was indexed by theta ERS and alpha ERD. It was found that the higher the subjects' total IQ, the stronger the frontal theta ERS during the encoding task. Furthermore, the higher the subjects' total IQ, the lower the frontal high-frequency alpha ERD (about 10-12 Hz) during the retrieval task. This was not true for parietal counterpart of these EEG rhythms. These results reconcile previous contrasting evidence confirming that more intelligent persons do not ever show event-related cortical responses compatible with "neural efficiency" hypothesis. Rather, their cortical activity would depend on flexible and task-adapting features of frontal activation.

  19. “Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness”

    PubMed Central

    Cebolla, A. M.; Petieau, M.; Dan, B.; Balazs, L.; McIntyre, J.; Cheron, G.

    2016-01-01

    Human brain adaptation in weightlessness follows the necessity to reshape the dynamic integration of the neural information acquired in the new environment. This basic aspect was here studied by the electroencephalogram (EEG) dynamics where oscillatory modulations were measured during a visuo-attentional state preceding a visuo-motor docking task. Astronauts in microgravity conducted the experiment in free-floating aboard the International Space Station, before the space flight and afterwards. We observed stronger power decrease (~ERD: event related desynchronization) of the ~10 Hz oscillation from the occipital-parietal (alpha ERD) to the central areas (mu ERD). Inverse source modelling of the stronger alpha ERD revealed a shift from the posterior cingulate cortex (BA31, from the default mode network) on Earth to the precentral cortex (BA4, primary motor cortex) in weightlessness. We also observed significant contribution of the vestibular network (BA40, BA32, and BA39) and cerebellum (lobule V, VI). We suggest that due to the high demands for the continuous readjustment of an appropriate body posture in free-floating, this visuo-attentional state required more contribution from the motor cortex. The cerebellum and the vestibular network involvement in weightlessness might support the correction signals processing necessary for postural stabilization, and the increased demand to integrate incongruent vestibular information. PMID:27883068

  20. Effects of neurofeedback training on the brain wave of adults with forward head posture

    PubMed Central

    Oh, Hyun-Ju; Song, Gui-Bin

    2016-01-01

    [Purpose] The purpose of the present study was to examine the effects of neurofeedback training on electroencephalogram changes in the cervical spine in adults with forward head posture through x-ray. [Subjects and Methods] The subjects of the study were 40 college students with forward head posture, randomly divided into a neurofeedback training group (NFTG, n=20) and a control group (CG, n=20). The neurofeedback training group performed six sessions of pottery and archery games, each for two minutes, three times per week for four weeks, while using the neurofeedback system. [Results] There were significant effects within and between groups in terms of the Delta wave, the Theta wave, the Alpha wave, the Beta wave, or the sensory motor rhythm. Especially, the Delta wave, Beta wave, and the sensory motor rhythm were showed significant effects between the groups. [Conclusion] It is thought that neurofeedback training, a training approach to self-regulate brain waves, enhances concentration and relaxation without stress, as well as an increase in attention, memory, and verbal cognitive performance. Therefore an effective intervention method to improve neck pain and daily activities. PMID:27821966

  1. A Novel Signal Modeling Approach for Classification of Seizure and Seizure-Free EEG Signals.

    PubMed

    Gupta, Anubha; Singh, Pushpendra; Karlekar, Mandar

    2018-05-01

    This paper presents a signal modeling-based new methodology of automatic seizure detection in EEG signals. The proposed method consists of three stages. First, a multirate filterbank structure is proposed that is constructed using the basis vectors of discrete cosine transform. The proposed filterbank decomposes EEG signals into its respective brain rhythms: delta, theta, alpha, beta, and gamma. Second, these brain rhythms are statistically modeled with the class of self-similar Gaussian random processes, namely, fractional Brownian motion and fractional Gaussian noises. The statistics of these processes are modeled using a single parameter called the Hurst exponent. In the last stage, the value of Hurst exponent and autoregressive moving average parameters are used as features to design a binary support vector machine classifier to classify pre-ictal, inter-ictal (epileptic with seizure free interval), and ictal (seizure) EEG segments. The performance of the classifier is assessed via extensive analysis on two widely used data set and is observed to provide good accuracy on both the data set. Thus, this paper proposes a novel signal model for EEG data that best captures the attributes of these signals and hence, allows to boost the classification accuracy of seizure and seizure-free epochs.

  2. Slower EEG alpha generation, synchronization and "flow"-possible biomarkers of cognitive impairment and neuropathology of minor stroke.

    PubMed

    Petrovic, Jelena; Milosevic, Vuk; Zivkovic, Miroslava; Stojanov, Dragan; Milojkovic, Olga; Kalauzi, Aleksandar; Saponjic, Jasna

    2017-01-01

    We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal-Wallis ANOVA with a post-hoc Mann-Whitney U two-tailed test, and Spearman's correlation. We demonstrated transient cognitive impairment alongside a slower alpha frequency ( α AVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered "alpha flow", indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3-F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric "alpha flow" within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric "alpha flow" represented a permanent consequence of the "hidden" stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. Our study indicates slower EEG alpha generation, synchronization and "flow" as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.

  3. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  4. Pain and the alpha-sleep anomaly: a mechanism of sleep disruption in facioscapulohumeral muscular dystrophy.

    PubMed

    Della Marca, Giacomo; Frusciante, Roberto; Vollono, Catello; Iannaccone, Elisabetta; Dittoni, Serena; Losurdo, Anna; Testani, Elisa; Gnoni, Valentina; Colicchio, Salvatore; Di Blasi, Chiara; Erra, Carmen; Mazza, Salvatore; Ricci, Enzo

    2013-04-01

    To measure the presence of the alpha-sleep anomaly in facioscapulohumeral muscular dystrophy (FSHD) and to evaluate the association between the sleep electroencephalogram (EEG) pattern and the presence of musculoskeletal pain. Cross-sectional study. Sleep laboratory. Fifty-five consecutive adult FSHD patients, 26 women and 29 men, age 49.6 ± 15.1 years (range 18-76). Questionnaires and polysomnography. Patients were asked to indicate if in the 3 months before the sleep study they presented persisting or recurring musculoskeletal pain. Patients who reported pain were asked to fill in the Italian version of the Brief Pain Inventory and the McGill Pain questionnaire, and a 101-point visual analog scale (VAS) for pain intensity. Polysomnographic recordings were performed. EEG was analyzed by means of Fast Fourier Transform. Four power spectra bands (δ 0-4 Hz, θ 4-8 Hz, α 8-14 Hz, β 14-32 Hz) were computed. Sleep macrostructure parameters and alpha/delta EEG power ratio during non rapid eye movement (NREM) sleep were compared between patients with and without pain. Forty-two patients in our sample reported chronic pain. VAS mean score was 55.2 ± 23.8 (range 10-100), pain rating index score was 13.8 ± 10.2, and present pain intensity was 2.5 ± 0.8. The statistical analysis documented an increased occurrence of the alpha and beta rhythms during NREM sleep in FSHD patients with pain. Significant correlations were observed between the alpha/delta power ratio during NREM sleep and pain measures. Chronic musculoskeletal pain is frequent in FSHD patients, and it represents a major mechanism of sleep disruption. Wiley Periodicals, Inc.

  5. Alpha reactivity to first names differs in subjects with high and low dream recall frequency

    PubMed Central

    Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie

    2013-01-01

    Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG). We acquired EEG from 21 channels in 36 healthy subjects while they were presented with a passive auditory oddball paradigm (frequent standard tones, rare deviant tones and very rare first names) during wakefulness and sleep (intensity, 50 dB above the subject's hearing level). Subjects were selected as High-recallers (HR, DRF = 4.42 ± 0.25 SEM, dream recalls per week) and Low-recallers (LR, DRF = 0.25 ± 0.02) using a questionnaire and an interview on sleep and dream habits. Despite the disturbing setup, the subjects' quality of sleep was generally preserved. First names induced a more sustained decrease in alpha activity in HR than in LR at Pz (1000–1200 ms) during wakefulness, but no group difference was found in REM sleep. The current dominant hypothesis proposes that alpha rhythms would be involved in the active inhibition of the brain regions not involved in the ongoing brain operation. According to this hypothesis, a more sustained alpha decrease in HR would reflect a longer release of inhibition, suggesting a deeper processing of complex sounds than in LR during wakefulness. A possibility to explain the absence of group difference during sleep is that increase in alpha power in HR may have resulted in awakenings. Our results support this hypothesis since HR experienced more intra sleep wakefulness than LR (30 ± 4 vs. 14 ± 4 min). As a whole our results support the hypothesis of neurophysiological trait differences in high and low-recallers. PMID:23966960

  6. Automated electroencephalography system and electroencephalographic correlates of space motion sickness, part 3

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1977-01-01

    Computer quantification methods were used to analyze the Skylab electroencephalographic data obtained during the course of the M133 series of experiments. This undertaking was prompted by initial observations made during visual analysis of the tape-recorded sleep records where there appeared to be an increase of the alpha-rhythm frequency during some inflight recording sessions, as compared to preflight baseline observations. A number of potential etiological factors are identified and their various possible influences discussed. The presence of the zero-g state is thought to be an important factor, possibly influencing EEG through alteration of vestibular function and/or by producing fluid shifts secondary to loss of hydrostatic pressure.

  7. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping

    PubMed Central

    Cameron, Daniel J.; Bentley, Jocelyn; Grahn, Jessica A.

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant’s ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion. PMID:26029122

  8. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping.

    PubMed

    Cameron, Daniel J; Bentley, Jocelyn; Grahn, Jessica A

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant's ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.

  9. Working memory training using EEG neurofeedback in normal young adults.

    PubMed

    Xiong, Shi; Cheng, Chen; Wu, Xia; Guo, Xiaojuan; Yao, Li; Zhang, Jiacai

    2014-01-01

    Recent studies have shown that working memory (WM) performance can be improved by intensive and adaptive computerized training. Here, we explored the WM training effect using Electroencephalography (EEG) neurofeedback (NF) in normal young adults. In the first study, we identified the EEG features related to WM in normal young adults. The receiver operating characteristic (ROC) curve showed that the power ratio of the theta-to-alpha rhythms in the anterior-parietal region, accurately classified a high percentage of the EEG trials recorded during WM and fixation control (FC) tasks. Based on these results, a second study aimed to assess the training effects of the theta-to-alpha ratio and tested the hypothesis that up-regulating the power ratio can improve working memory behavior. Our results demonstrated that these normal young adults succeeded in improving their WM performance with EEG NF, and the pre- and post-test evaluations also indicated that WM performance increase in experimental group was significantly greater than control groups. In summary, our findings provided preliminarily evidence that WM performance can be improved through learned regulation of the EEG power ratio using EEG NF.

  10. Ramadan fasting in Saudi Arabia is associated with altered expression of CLOCK, DUSP and IL-1alpha genes, as well as changes in cardiometabolic risk factors.

    PubMed

    Ajabnoor, Ghada M A; Bahijri, Suhad; Shaik, Noor Ahmad; Borai, Anwar; Alamoudi, Aliaa A; Al-Aama, Jumana Y; Chrousos, George P

    2017-01-01

    During the fasting month of Ramadan, practicing Saudis develop severe disturbances in sleeping and feeding patterns. Concomitantly, cortisol circadian rhythm is abolished, diurnal cortisol levels are elevated and circulating levels of several adipokines are altered favouring insulin resistance. To examine changes in the expression of CLOCK and glucocorticoid-controlled genes, such as DUSP1 and IL-1α in Saudi adults before and during Ramadan, and to investigate possible associations with selected cardiometabolic risk factors. Healthy young volunteers (5 females, 18 males; mean age +SEM = 23.2 +1.2 years) were evaluated before Ramadan and two weeks into it. Blood samples were collected at 9 am (±1 hour) and twelve hours later for determination of serum lipid profile, high sensitivity CRP (hsCRP), and adiponectin. The expression of CLOCK, DUSP1 and IL-1α was evaluated in circulating leukocytes. Mean levels of GGT and morning adiponectin decreased, while those of LDL-c/ HDL-c and atherogenic index (AI) increased significantly in Ramadan compared to Shabaan. There was no significant difference between morning and evening adiponectin during Ramadan, while the diurnal rhythm of hsCRP was lost. CLOCK gene expression mean was significantly higher in morning than in evening during Shabaan. Mean morning and evening DUSP1 mRNA levels showed significant increase during Ramadan compared to Shabaan, however, its diurnal rhythm was maintained. Morning IL-1α mRNA expression remained significantly higher than in the evening during Ramadan, but was markedly decreased compared to Shabaan. Ramadan fasting in Saudi Arabia is associated with improvements in some cardiometabolic risk factors, such as circulating GGT and hsCRP and leukocyte expression of IL-1α mRNA, suggesting that intermittent fasting might have a beneficial component. These benefits may be offset by the previously reported dysregulation in the circadian rhythm, excess glucocorticoid levels and action, and insulin resistance, explaining increased prevalence of cardiometabolic disorders and type 2 diabetes mellitus.

  11. Neural dynamics associated with semantic and episodic memory for faces: evidence from multiple frequency bands.

    PubMed

    Zion-Golumbic, Elana; Kutas, Marta; Bentin, Shlomo

    2010-02-01

    Prior semantic knowledge facilitates episodic recognition memory for faces. To examine the neural manifestation of the interplay between semantic and episodic memory, we investigated neuroelectric dynamics during the creation (study) and the retrieval (test) of episodic memories for famous and nonfamous faces. Episodic memory effects were evident in several EEG frequency bands: theta (4-8 Hz), alpha (9-13 Hz), and gamma (40-100 Hz). Activity in these bands was differentially modulated by preexisting semantic knowledge and by episodic memory, implicating their different functional roles in memory. More specifically, theta activity and alpha suppression were larger for old compared to new faces at test regardless of fame, but were both larger for famous faces during study. This pattern of selective semantic effects suggests that the theta and alpha responses, which are primarily associated with episodic memory, reflect utilization of semantic information only when it is beneficial for task performance. In contrast, gamma activity decreased between the first (study) and second (test) presentation of a face, but overall was larger for famous than nonfamous faces. Hence, the gamma rhythm seems to be primarily related to activation of preexisting neural representations that may contribute to the formation of new episodic traces. Taken together, these data provide new insights into the complex interaction between semantic and episodic memory for faces and the neural dynamics associated with mnemonic processes.

  12. Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy.

    PubMed

    Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2015-08-01

    In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.

  13. Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2015-08-01

    In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.

  14. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways.

    PubMed

    Derous, Davina; Mitchell, Sharon E; Green, Cara L; Chen, Luonan; Han, Jing-Dong J; Wang, Yingchun; Promislow, Daniel E L; Lusseau, David; Speakman, John R; Douglas, Alex

    2016-04-01

    Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.

  15. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways

    PubMed Central

    Green, Cara L.; Chen, Luonan; Han, Jing‐Dong J.; Wang, Yingchun; Promislow, Daniel E.L.; Lusseau, David; Speakman, John R.; Douglas, Alex

    2016-01-01

    Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti‐ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin‐like growth factor 1 (IGF‐1), insulin, and tumor necrosis factor alpha (TNF‐α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF‐α, leptin and IGF‐1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes. PMID:26945906

  16. Oscillatory neural representations in the sensory thalamus predict neuropathic pain relief by deep brain stimulation.

    PubMed

    Huang, Yongzhi; Green, Alexander L; Hyam, Jonathan; Fitzgerald, James; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    Understanding the function of sensory thalamic neural activity is essential for developing and improving interventions for neuropathic pain. However, there is a lack of investigation of the relationship between sensory thalamic oscillations and pain relief in patients with neuropathic pain. This study aims to identify the oscillatory neural characteristics correlated with pain relief induced by deep brain stimulation (DBS), and develop a quantitative model to predict pain relief by integrating characteristic measures of the neural oscillations. Measures of sensory thalamic local field potentials (LFPs) in thirteen patients with neuropathic pain were screened in three dimensional feature space according to the rhythm, balancing, and coupling neural behaviours, and correlated with pain relief. An integrated approach based on principal component analysis (PCA) and multiple regression analysis is proposed to integrate the multiple measures and provide a predictive model. This study reveals distinct thalamic rhythms of theta, alpha, high beta and high gamma oscillations correlating with pain relief. The balancing and coupling measures between these neural oscillations were also significantly correlated with pain relief. The study enriches the series research on the function of thalamic neural oscillations in neuropathic pain and relief, and provides a quantitative approach for predicting pain relief by DBS using thalamic neural oscillations. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. G-autonomy of EEG recordings of psychotic patients undergoing the primitive expression form of dance therapy

    NASA Astrophysics Data System (ADS)

    Ventouras, E.-C.; Lardi, I.; Dimitriou, S.; Margariti, A.; Chondraki, P.; Kalatzis, I.; Economou, N.-T.; Tsekou, H.; Paparrigopoulos, T.; Ktonas, P. Y.

    2015-09-01

    Primitive expression (PE) is a form of dance therapy (DT) that involves an interaction of ethologically and socially based forms which are supplied for re-enactment. Brain connectivity has been measured in electroencephalographic (EEG) data of patients with schizophrenia undergoing PE DT, using the correlation coefficient and mutual information. These parameters do not measure the existence or absence of directionality in the connectivity. The present study investigates the use of the G-autonomy measure of EEG electrode voltages of the same group of schizophrenic patients. G-autonomy is a measure of the “autonomy” of a system. It indicates the degree by which prediction of the system's future evolution is enhanced by taking into account its own past states, in comparison to predictions based on past states of a set of external variables. In the present research, “own” past states refer to voltage values in the time series recorded at a specific electrode and “external” variables refer to the voltage values recorded at other electrodes. Indication is provided for an acute effect of early-stage PE DT expressed by the augmentation of G-autonomy in the delta rhythm and an acute effect of late- stage PE DT expressed by the reduction of G-autonomy in the theta and alpha rhythms.

  18. Toward an Attention-Based Diagnostic Tool for Patients With Locked-in Syndrome.

    PubMed

    Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Soddu, Andrea; Laureys, Steven; Noirhomme, Quentin

    2018-03-01

    Electroencephalography (EEG) has been proposed as a supplemental tool for reducing clinical misdiagnosis in severely brain-injured populations helping to distinguish conscious from unconscious patients. We studied the use of spectral entropy as a measure of focal attention in order to develop a motor-independent, portable, and objective diagnostic tool for patients with locked-in syndrome (LIS), answering the issues of accuracy and training requirement. Data from 20 healthy volunteers, 6 LIS patients, and 10 patients with a vegetative state/unresponsive wakefulness syndrome (VS/UWS) were included. Spectral entropy was computed during a gaze-independent 2-class (attention vs rest) paradigm, and compared with EEG rhythms (delta, theta, alpha, and beta) classification. Spectral entropy classification during the attention-rest paradigm showed 93% and 91% accuracy in healthy volunteers and LIS patients respectively. VS/UWS patients were at chance level. EEG rhythms classification reached a lower accuracy than spectral entropy. Resting-state EEG spectral entropy could not distinguish individual VS/UWS patients from LIS patients. The present study provides evidence that an EEG-based measure of attention could detect command-following in patients with severe motor disabilities. The entropy system could detect a response to command in all healthy subjects and LIS patients, while none of the VS/UWS patients showed a response to command using this system.

  19. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation

    PubMed Central

    2017-01-01

    The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh) and norepinephrine (NE) and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations) that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed. PMID:29073146

  20. Timing of host feeding drives rhythms in parasite replication

    PubMed Central

    Cumnock, Katherine; Schneider, David; Subudhi, Amit; Savill, Nicholas J.

    2018-01-01

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience. PMID:29481559

  1. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    PubMed

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats.

    PubMed

    Su, Yan; Foppen, Ewout; Mansur Machado, Frederico Sander; Fliers, Eric; Kalsbeek, Andries

    2018-02-15

    Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily rhythm in feeding activity affects plasma TG concentrations. In the present study, we measured plasma TG concentrations and TG secretion rates in rats at 6 Zeitgeber times to investigate whether plasma TG concentrations and TG secretion show a daily rhythm. We found that plasma TG concentrations and TG secretion show a significant day/night rhythm. Next, we removed the daily rhythm in feeding behavior by introducing a 6-meals-a-day (6M) feeding schedule to investigate whether the daily rhythm in feeding behavior is necessary to maintain the daily rhythm in TG secretion. We found that the day/night rhythm in TG secretion was abolished under 6M feeding conditions. Hepatic apolipoprotein B (ApoB) and microsomal TG transfer protein (Mttp), which are both involved in TG secretion, also lost their daily rhythmicity under 6M feeding conditions. Together, these results indicate that: (1) the daily rhythm in TG secretion contributes to the formation of a day/night rhythm in plasma TG levels and (2) a daily feeding rhythm is essential for maintaining the daily rhythm in TG secretion.

  3. Serial binary interval ratios improve rhythm reproduction.

    PubMed

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  4. Serial binary interval ratios improve rhythm reproduction

    PubMed Central

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception. PMID:23964258

  5. Use of rhythm in acquisition of a computer-generated tracking task.

    PubMed

    Fulop, A C; Kirby, R H; Coates, G D

    1992-08-01

    This research assessed whether rhythm aids acquisition of motor skills by providing cues for the timing of those skills. Rhythms were presented to participants visually or visually with auditory cues. It was hypothesized that the auditory cues would facilitate recognition and learning of the rhythms. The three timing principles of rhythms were also explored. It was hypothesized that rhythms that satisfied all three timing principles would be more beneficial in learning a skill than rhythms that did not satisfy the principles. Three groups learned three different rhythms by practicing a tracking task. After training, participants attempted to reproduce the tracks from memory. Results suggest that rhythms do help in learning motor skills but different sets of timing principles explain perception of rhythm in different modalities.

  6. Evidence for Multiple Rhythmic Skills

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  7. Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus

    PubMed Central

    Enoki, Ryosuke; Oda, Yoshiaki; Mieda, Michihiro; Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2017-01-01

    The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca2+ rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca2+ rhythms phase-lead the voltage rhythms in AVP neurons but Ca2+ and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca2+ rhythms produce coherent voltage rhythms. PMID:28270612

  8. Biochronometry; Proceedings of the Symposium, Friday Harbor, Wash., September 4-6, 1969.

    NASA Technical Reports Server (NTRS)

    Menaker, M.

    1971-01-01

    Topics discussed include circadian activity rhythms in birds and man, variation of circadian rhythms in monkeys, resetting of circadian eclosion rhythm in fruitflies, the effectiveness of mathematical models of circadian rhythms, the influence of ac electric fields on circadian rhythms in man, the relation between changes in the metabolic rate and circadian periodicity of the resistance of pocket mice to ionizing radiation, the relation between circadian organization and the photoperiodic time measurement in moths, the circadian rhythm of optic nerve potentials in the isolated eye of the sea hare, phasing of circadian temperature rhythms in the pocket mouse by specific spectral regions, the phase-shifting effect of light on circadian rhymicity in the fruifly, hormonal control of circadian rhythms in the fruitfly, metabolically controlled temperature compensation in the circadian rhythm of algae, and circadian rhythms in the chloroplasts of algae. Individual items are abstracted in this issue.

  9. Mental stress assessment using simultaneous measurement of EEG and fNIRS

    PubMed Central

    Al-Shargie, Fares; Kiguchi, Masashi; Badruddin, Nasreen; Dass, Sarat C.; Hani, Ahmad Fadzil Mohammad; Tang, Tong Boon

    2016-01-01

    Previous studies reported mental stress as one of the major contributing factors leading to various diseases such as heart attack, depression and stroke. An accurate stress assessment method may thus be of importance to clinical intervention and disease prevention. We propose a joint independent component analysis (jICA) based approach to fuse simultaneous measurement of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) on the prefrontal cortex (PFC) as a means of stress assessment. For the purpose of this study, stress was induced by using an established mental arithmetic task under time pressure with negative feedback. The induction of mental stress was confirmed by salivary alpha amylase test. Experiment results showed that the proposed fusion of EEG and fNIRS measurements improves the classification accuracy of mental stress by +3.4% compared to EEG alone and +11% compared to fNIRS alone. Similar improvements were also observed in sensitivity and specificity of proposed approach over unimodal EEG/fNIRS. Our study suggests that combination of EEG (frontal alpha rhythm) and fNIRS (concentration change of oxygenated hemoglobin) could be a potential means to assess mental stress objectively. PMID:27867700

  10. Small-worldness characteristics and its gender relation in specific hemispheric networks.

    PubMed

    Miraglia, F; Vecchio, F; Bramanti, P; Rossini, P M

    2015-12-03

    Aim of this study was to verify whether the topological organization of human brain functional networks is different for males and females in resting state EEGs. Undirected and weighted brain networks were computed by eLORETA lagged linear connectivity in 130 subjects (59 males and 71 females) within each hemisphere and in four resting state networks (Attentional Network (AN), Frontal Network (FN), Sensorimotor Network (SN), Default Mode Network (DMN)). We found that small-world (SW) architecture in the left hemisphere Frontal network presented differences in both delta and alpha band, in particular lower values in delta and higher in alpha 2 in males respect to females while in the right hemisphere differences were found in lower values of SW in males respect to females in gamma Attentional, delta Sensorimotor and delta and gamma DMNs. Gender small-worldness differences in some of resting state networks indicated that there are specific brain differences in the EEG rhythms when the brain is in the resting-state condition. These specific regions could be considered related to the functions of behavior and cognition and should be taken into account both for research on healthy and brain diseased subjects. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Rowe, D. L.

    2002-04-01

    Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

  12. Brain-computer interface based on detection of movement intention as a means of brain wave modulation enhancement

    NASA Astrophysics Data System (ADS)

    Pulido Castro, Sergio D.; López López, Juan M.

    2017-11-01

    Movement intention (MI) is the mental state in which it is desired to make an action that implies movement. There are certain signals that are directly related with MI; mainly obtained in the primary motor cortex. These signals can be used in a brain-computer interface (BCI). BCIs have a wide variety of applications for the general population, classified in two groups: optimization of conventional neuromuscular performances and enhancement of conventional neuromuscular performances beyond normal capacities. The main goal of this project is to analyze if neural rhythm modulation enhancement could be achieved by practicing, through a BCI based on MI detection, which was designed in a previous study. A six-session experiment was made with eight healthy subjects. Each session was composed by two stages: a training stage and a testing stage, which allowed control of a videogame. The scores in the game were recorded and analyzed. Changes in alpha and beta bands were also analyzed in order to observe if attention could in fact be enhanced. The obtained results were partially satisfactory, as most subjects showed a clear improvement in performance at some point in the trials. As well, the alpha to beta wave ratio of all the tasks was analyzed to observe if there are changes as the experiment progresses. The results are promising, and a different protocol must be implemented to assess the impact of the BCI on the attention span, which can be analyzed with the alpha and beta waves.

  13. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm.

    PubMed

    Tranquilli, A L; Turi, A; Giannubilo, S R; Garbati, E

    2004-03-01

    We assessed the correlation between the rhythm of melatonin concentration and circadian blood pressure patterns in normal and hypertensive pregnancy. Ambulatory 24-h blood pressure and blood samples every 4 h were monitored in 16 primigravidae who had shown an abnormal circadian blood pressure pattern (eight pre-eclamptic and eight normotensive) in pregnancy and 6-12 months after pregnancy. The circadian rhythm was analyzed by chronobiological measures. Eight normotensive women with maintained blood pressure rhythm served as controls. During pregnancy, melatonin concentration was significantly higher in pre-eclamptic than in normotensive women (pre-eclampsia, 29.4 +/- 1.9 pg/ml, normotensin, altered rhythm, 15.6 +/- 2.1; controls, 22.7 +/- 1.8; p < 0.001). This difference faded after pregnancy, owing to the fall observed in pre-eclampsia (11.8 +/- 3.2 pg/ml, 9.8 +/- 2.1, and 11.1 +/- 2.0, respectively; NS). The rhythm of melatonin concentration was lost in all pregnant women with loss of blood pressure rhythm. After pregnancy, normotensive women showed a reappearance of both melatonin and blood pressure rhythm, whereas pre-eclamptic women showed a reappearance of blood pressure but not melatonin rhythm. The loss of blood pressure rhythm in pregnancy is consistent with the loss of melatonin concentration rhythm. In pre-eclamptic women, the normalization of blood pressure rhythm, while melatonin rhythm remained altered, suggests a temporal or causal priority of circadian concentration of melatonin in the determination of blood pressure trend.

  14. Routine versus aggressive upstream rhythm control for prevention of early atrial fibrillation in heart failure: background, aims and design of the RACE 3 study.

    PubMed

    Alings, M; Smit, M D; Moes, M L; Crijns, H J G M; Tijssen, J G P; Brügemann, J; Hillege, H L; Lane, D A; Lip, G Y H; Smeets, J R L M; Tieleman, R G; Tukkie, R; Willems, F F; Vermond, R A; Van Veldhuisen, D J; Van Gelder, I C

    2013-07-01

    Rhythm control for atrial fibrillation (AF) is cumbersome because of its progressive nature caused by structural remodelling. Upstream therapy refers to therapeutic interventions aiming to modify the atrial substrate, leading to prevention of AF. The Routine versus Aggressive upstream rhythm Control for prevention of Early AF in heart failure (RACE 3) study hypothesises that aggressive upstream rhythm control increases persistence of sinus rhythm compared with conventional rhythm control in patients with early AF and mild-to-moderate early systolic or diastolic heart failure undergoing electrical cardioversion. RACE 3 is a prospective, randomised, open, multinational, multicenter trial. Upstream rhythm control consists of angiotensin converting enzyme inhibitors and/or angiotensin receptor blockers, mineralocorticoid receptor antagonists, statins, cardiac rehabilitation therapy, and intensive counselling on dietary restrictions, exercise maintenance, and drug adherence. Conventional rhythm control consists of routine rhythm control therapy without cardiac rehabilitation therapy and intensive counselling. In both arms, every effort is made to keep patients in the rhythm control strategy, and ion channel antiarrhythmic drugs or pulmonary vein ablation may be instituted if AF relapses. Total inclusion will be 250 patients. If upstream therapy proves to be effective in improving maintenance of sinus rhythm, it could become a new approach to rhythm control supporting conventional pharmacological and non-pharmacological rhythm control.

  15. State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters.

    PubMed

    Feurra, Matteo; Pasqualetti, Patrizio; Bianco, Giovanni; Santarnecchi, Emiliano; Rossi, Alessandro; Rossi, Simone

    2013-10-30

    Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.

  16. Electrophysiological CNS-processes related to associative learning in humans.

    PubMed

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. [Systems analysis of colour music corrective effect].

    PubMed

    Gumeniuk, V A; Batova, N Ia; Mel'nikova, T S; Glazachev, O S; Golubeva, N K; Klimina, N V; Hubner, P

    1998-01-01

    In the context of P. K. Anokhin's theory of functional systems, the corrective effects of various combinations of medical therapeutical resonance music (MTRM) and dynamic colour exposure were analyzed. As compared to rehabilitative music programmes, MRTM was shown to have a more pronounced relaxing effect as manifested both in the optimization of emotion and in the activity of autonomic regulation of cardiovascular functions. On combined MRTM and dynamic colour flow exposures, the relaxing effect is most marked. In the examinees, the personality and situation anxieties diminish, mood improves, cardiovascular parameters become normal, the rate of metabolic processes and muscular rigidity reduce, the spectral power of alpha-rhythm increases, these occurring predominantly in the anterior region of the brain. The findings suggest the high efficiency of the chosen way of normalizing the functional status of man.

  18. The use of Matlab for colour fuzzy representation of multichannel EEG short time spectra.

    PubMed

    Bigan, C; Strungaru, R

    1998-01-01

    During the last years, a lot of EEG research efforts was directed to intelligent methods for automatic analysis of data from multichannel EEG recordings. However, all the applications reported were focused on specific single tasks like detection of one specific "event" in the EEG signal: spikes, sleep spindles, epileptic seizures, K complexes, alpha or other rhythms or even artefacts. The aim of this paper is to present a complex system being able to perform a representation of the dynamic changes in frequency components of each EEG channel. This representation uses colours as a powerful means to show the only one frequency range chosen from the shortest epoch of signal able to be processed with the conventional "Short Time Fast Fourier Transform" (S.T.F.F.T.) method.

  19. A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG).

    PubMed

    Ma, Rui; Kim, Dae-Hyeong; McCormick, Martin; Coleman, Todd; Rogers, John

    2010-01-01

    This paper reports a class of stretchable electrode array capable of intimate, conformal integration onto the curvilinear surfaces of skin on the human body. The designs employ conventional metallic conductors but in optimized mechanical layouts, on soft, thin elastomeric substrates. These devices exhibit an ability to record spontaneous EEG activity even without conductive electrolyte gels, with recorded alpha rhythm responses that are 40% stronger than those collected using conventional tin electrodes and gels under otherwise similar conditions. The same type of device can also measure high quality ECG and EMG signals. The results suggest broad utility for skin-mounted measurements of electrical activity in the body, with advantages in signal levels, wearability and modes of integration compared to alternatives.

  20. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators

    PubMed Central

    Malloy, Jaclyn N.; Paulose, Jiffin K.; Li, Ye

    2012-01-01

    Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system. PMID:22723262

  1. Circadian Rhythms in Diet-Induced Obesity.

    PubMed

    Engin, Atilla

    2017-01-01

    The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.

  2. The potential of transcranial magnetotherapy in color and rhythm therapy in the rehabilitation of ischemic stroke.

    PubMed

    Sholomov, I I; Cherevashchenko, L A; Suprunov, O V; Raigorodskii, Yu M

    2010-10-01

    A total of 116 patients with ischemic stroke were studied during the early recovery period. The patients were divided into four groups - three experimental groups and one control group. Of these, 87 patients in the first three groups received transcranial magneto- and/or color and rhythm therapy (TcMT, CRT) along with traditional treatment, while the 29 patients of the control group received basal treatment only. TcMT was performed using a bitemporal method, with a running field regime with a modulation frequency of 1-10 Hz. CRT consisted of an alternating scheme of stimulation of the left and right eyes with green and/or blue light with a period of 2-4 sec and an on time of 1 sec. Each of the three experimental groups (group 1 received TcMT, group 2 received CRT, and group 3 received TcMT + CRT) received two courses of treatment separated by 1.5 months. After treatment, all experimental groups, particularly group 3, showed more marked improvements than the control group. Regression of neurological symptomatology on the Lindmark scale in group 3 was 9.5% greater than that in controls; improvements in impairments to activity and self-care ability on the Barthel scale were greater by 8.8%; memory and intellectual changes were also seen on the MMSE and the Luriya and Schulte tests. Rheography and electroencephalography demonstrated significant improvements in hemodynamics and alpha-rhythm differentiation and a 14.6% reduction in the proportion of patients with dysrhythmia in group 3 compared with the control group. The best result on all measures were obtained in patients given the combination of TcMT and CRT; TcMT had the greater influence on hemodynamics, while CRT had the greater effect on psychoemotional status. Both treatments were well tolerated and produced no side effects.

  3. Differential short-term memorisation for vocal and instrumental rhythms.

    PubMed

    Klyn, Niall A M; Will, Udo; Cheong, Yong-Jeon; Allen, Erin T

    2016-07-01

    This study explores differential processing of vocal and instrumental rhythms in short-term memory with three decision (same/different judgments) and one reproduction experiment. In the first experiment, memory performance declined for delayed versus immediate recall, with accuracy for the two rhythms being affected differently: Musicians performed better than non-musicians on clapstick but not on vocal rhythms, and musicians were better on vocal rhythms in the same than in the different condition. Results for the second experiment showed that concurrent sub-vocal articulation and finger-tapping differentially affected the two rhythms and same/different decisions, but produced no evidence for articulatory loop involvement in delayed decision tasks. In a third experiment, which tested rhythm reproduction, concurrent sub-vocal articulation decreased memory performance, with a stronger deleterious effect on the reproduction of vocal than of clapstick rhythms. This suggests that the articulatory loop may only be involved in delayed reproduction not in decision tasks. The fourth experiment tested whether differences between filled and empty rhythms (continuous vs. discontinuous sounds) can explain the different memorisation of vocal and clapstick rhythms. Though significant differences were found for empty and filled instrumental rhythms, the differences between vocal and clapstick can only be explained by considering additional voice specific features.

  4. Disinhibition of the extracellular-signal-regulated kinase restores the amplification of circadian rhythms by lithium in cells from bipolar disorder patients.

    PubMed

    McCarthy, Michael J; Wei, Heather; Landgraf, Dominic; Le Roux, Melissa J; Welsh, David K

    2016-08-01

    Bipolar disorder (BD) is characterized by depression, mania, and circadian rhythm abnormalities. Lithium, a treatment for BD stabilizes mood and increases circadian rhythm amplitude. However, in fibroblasts grown from BD patients, lithium has weak effects on rhythm amplitude compared to healthy controls. To understand the mechanism by which lithium differentially affects rhythm amplitude in BD cells, we investigated the extracellular-signal-regulated kinase (ERK) and related signaling molecules linked to BD and circadian rhythms. In fibroblasts from BD patients, controls and mice, we assessed the contribution of the ERK pathway to lithium-induced circadian rhythm amplification. Protein analyses revealed low phospho-ERK1/2 (p-ERK) content in fibroblasts from BD patients vs. Pharmacological inhibition of ERK1/2 by PD98059 attenuated the rhythm amplification effect of lithium, while inhibition of two related kinases, c-Jun N-terminal kinase (JNK), and P38 did not. Knockdown of the transcription factors CREB and EGR-1, downstream effectors of ERK1/2, reduced baseline rhythm amplitude, but did not alter rhythm amplification by lithium. In contrast, ELK-1 knockdown amplified rhythms, an effect that was not increased further by the addition of lithium, suggesting this transcription factor may regulate the effect of lithium on amplitude. Augmentation of ERK1/2 signaling through DUSP6 knockdown sensitized NIH3T3 cells to rhythm amplification by lithium. In BD fibroblasts, DUSP6 knockdown reversed the BD rhythm phenotype, restoring the ability of lithium to increase amplitude in these cells. We conclude that the inability of lithium to regulate circadian rhythms in BD may reflect reduced ERK activity, and signaling through ELK-1. Published by Elsevier B.V.

  5. Another place, another timer: Marine species and the rhythms of life

    PubMed Central

    Tessmar-Raible, Kristin; Raible, Florian; Arboleda, Enrique

    2011-01-01

    The marine ecosystem is governed by a multitude of environmental cycles, all of which are linked to the periodical recurrence of the sun or the moon. In accordance with these cycles, marine species exhibit a variety of biological rhythms, ranging from circadian and circatidal rhythms to circalunar and seasonal rhythms. However, our current molecular understanding of biological rhythms and clocks is largely restricted to solar-controlled circadian and seasonal rhythms in land model species. Here, we discuss the first molecular data emerging for circalunar and circatidal rhythms and present selected species suitable for further molecular analyses. We argue that a re-focus on marine species will be crucial to understand the principles, interactions and evolution of rhythms that govern a broad range of eukaryotes, including ourselves. PMID:21254149

  6. The circatidal rhythm persists without the optic lobe in the mangrove cricket Apteronemobius asahinai.

    PubMed

    Takekata, Hiroki; Numata, Hideharu; Shiga, Sakiko

    2014-02-01

    Whether the circatidal rhythm is generated by a machinery common to the circadian clock is one of the important and interesting questions in chronobiology. The mangrove cricket Apteronemobius asahinai shows a circatidal rhythm generating active and inactive phases and a circadian rhythm modifying the circatidal rhythm by inhibiting activity during the subjective day simultaneously. In the previous study, RNA interference of the circadian clock gene period disrupted the circadian rhythm but not the circatidal rhythm, suggesting a difference in molecular mechanisms between the circatidal and circadian rhythms. In the present study, to compare the neural mechanisms of these 2 rhythms, we observed locomotor activity in the mangrove cricket after surgical removal of the optic lobe, which has been shown to be the locus of the circadian clock in other crickets. We also noted the pigment-dispersing factor immunoreactive neurons (PDF-IRNs) in the optic lobe, because PDF is a key output molecule in the circadian clock system in some insects. The results showed that the circadian modulation was disrupted after the removal of the optic lobes but that the circatidal rhythm was maintained with no remarkable changes in its free-running period. Even in crickets in which some PDF-immunoreactive somata remained after removal of the optic lobe, the circadian rhythm was completely disrupted. The remnants of PDF-IRNs were not correlated to the occurrence and free-running period of the circatidal rhythm. These results indicate that the principal circatidal clock is located in a region(s) different from the optic lobe, whereas the circadian clock is located in the optic lobe, as in other crickets, and PDF-IRNs are not important for circatidal rhythm. Therefore, it is suggested that the circatidal rhythm of A. asahinai is driven by a neural basis different from that driving the circadian rhythm.

  7. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. I. Localization of the pacemaker and the photoreceptor.

    PubMed

    Abe, Y; Ushirogawa, H; Tomioka, K

    1997-10-01

    Circadian locomotor rhythm and its underlying mechanism were investigated in the cricket, Gryllodes sigillatus. Adult male crickets showed a nocturnal locomotor rhythm peaking early in the dark phase of a light to dark cycle. This rhythm persisted under constant darkness (DD) with a free-running period averaging 23.1 +/- 0.3 hr. Although constant bright light made most animals arrhythmic, about 40% of the animals showed free-running rhythms with a period longer than 24 hr under constant dim light condition. On transfer to DD, all arrhythmic animals restored the locomotor rhythm. Bilateral optic nerve severance resulted in free-running of the rhythm even under light-dark cycles. The free-running period of the optic nerve severed animals was significantly longer than sham operated crickets in DD, suggesting that the compound eye plays some role in determining the free-running period. Removal of bilateral lamina-medulla portion of the optic lobe abolished the rhythm under DD. These results demonstrate that the photoreceptor for entrainment is the compound eye and the optic lobe is indispensable for persistence of the rhythm. However, 75% and 54% of the optic lobeless animals showed aberrant rhythms with a period very close to 24 hr under light and temperature cycles, respectively, suggesting that there are neural and/or humoral mechanisms for the aberrant rhythms outside of the optic lobe. Since ocelli removal did not affect the photoperiodically induced rhythm, it is likely that the photoreception for the rhythm is performed through an extraretinal photoreceptor.

  8. Light and maternal influence in the entrainment of activity circadian rhythm in infants 4-12 weeks of age.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2016-07-01

    The influence of light and maternal activity on early infant activity rhythm were studied in 43 healthy, maternal-infant pairs. Aims included description of infant and maternal circadian rhythm of environmental light, assessing relations among of activity and light circadian rhythm parameters, and exploring the influence of light on infant activity independent of maternal activity. Three-day light and activity records were obtained using actigraphy monitors at infant ages 4, 8, and 12 weeks. Circadian rhythm timing, amplitude, 24-hour fit, rhythm center, and regularity were determined using cosinor and nonparametric circadian rhythm analyses (NPCRA). All maternal and infant circadian parameters for light were highly correlated. When maternal activity was controlled, the partial correlations between infant activity and light rhythm timing, amplitude, 24-hour fit, and rhythm center demonstrated significant relation (r = .338 to .662) at infant age 12 weeks, suggesting entrainment. In contrast, when maternal light was controlled there was significant relation between maternal and infant activity rhythm (r = 0.470, 0.500, and 0.638 at 4, 8 and 12 weeks, respectively) suggesting the influence of maternal-infant interaction independent of photo entrainment of cycle timing over the first 12 weeks of life. Both light and maternal activity may offer avenues for shaping infant activity rhythm during early infancy.

  9. Comparison of synchronization of primate circadian rhythms by light and food

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1978-01-01

    It is a well-documented fact that cycles of light and dark (LD) are the major entraining agent or 'zeitgeber' for circadian rhythms and that cycles of eating and fasting (EF) are capable of synchronizing a few circadian rhythms in the squirrel monkey. In this paper, by contrasting how these rhythms are timed by LD and EF cycles, the differential coupling to the oscillating system within adult male squirrel monkeys is examined. The variables measured are the rhythms of drinking, colonic temperature, and urinary potassium and water excretion. Attention is given to a comparison of the reproducibility of the averaged waveforms of the rhythms, the stability of the timing of a phase reference point, and the rate of resynchronization of these rhythms following an abrupt 8-hr phase delay in the zeitgeber. It is shown that the colonic temperature rhythm is more tightly controlled by LD than EF cycles, and that the drinking and urinary rhythms are more tightly coupled to EF than LD cycles.

  10. The Validity and Reliability of Rhythm Measurements in Automatically Scoring the English Rhythm Proficiency of Chinese EFL Learners

    ERIC Educational Resources Information Center

    Chen, Jin; Lin, Jianghao; Li, Xinguang

    2015-01-01

    This article aims to find out the validity of rhythm measurements to capture the rhythmic features of Chinese English. Besides, the reliability of the valid rhythm measurements applied in automatically scoring the English rhythm proficiency of Chinese EFL learners is also explored. Thus, two experiments were carried out. First, thirty students of…

  11. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    PubMed Central

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  12. Music mnemonics aid Verbal Memory and Induce Learning – Related Brain Plasticity in Multiple Sclerosis

    PubMed Central

    Thaut, Michael H.; Peterson, David A.; McIntosh, Gerald C.; Hoemberg, Volker

    2014-01-01

    Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey’s auditory verbal learning test. We defined the “learning-related synchronization” (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances “deep encoding” during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS. PMID:24982626

  13. Musical rhythm spectra from Bach to Joplin obey a 1/f power law.

    PubMed

    Levitin, Daniel J; Chordia, Parag; Menon, Vinod

    2012-03-06

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/f(β) power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  14. From the Cover: Musical rhythm spectra from Bach to Joplin obey a 1/f power law

    NASA Astrophysics Data System (ADS)

    Levitin, Daniel J.; Chordia, Parag; Menon, Vinod

    2012-03-01

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  15. Bipolar electrode selection for a motor imagery based brain computer interface

    NASA Astrophysics Data System (ADS)

    Lou, Bin; Hong, Bo; Gao, Xiaorong; Gao, Shangkai

    2008-09-01

    A motor imagery based brain-computer interface (BCI) provides a non-muscular communication channel that enables people with paralysis to control external devices using their motor imagination. Reducing the number of electrodes is critical to improving the portability and practicability of the BCI system. A novel method is proposed to reduce the number of electrodes to a total of four by finding the optimal positions of two bipolar electrodes. Independent component analysis (ICA) is applied to find the source components of mu and alpha rhythms, and optimal electrodes are chosen by comparing the projection weights of sources on each channel. The results of eight subjects demonstrate the better classification performance of the optimal layout compared with traditional layouts, and the stability of this optimal layout over a one week interval was further verified.

  16. Information services for comparative analysis of biorhythm research

    NASA Technical Reports Server (NTRS)

    1972-01-01

    References and full text documents are presented in support of continuing research and research planning for the NASA behavioral physiology program. Areas covered include: (1) desynchronosis and performance; (2) effects of alcohol, common colds, drugs, and toxic hazards on performance; (3) effects of stress on rhythm of plasma steroids; (4) data processing of biological rhythms; (5) pharmacology and biological rhythms; (6) mechanisms of biological rhythms; and (7) development of biological rhythms.

  17. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives.

    PubMed

    Tordjman, Sylvie; Davlantis, Katherine S; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model.

  18. Temporal and Motor Representation of Rhythm in Fronto-Parietal Cortical Areas: An fMRI Study

    PubMed Central

    Konoike, Naho; Kotozaki, Yuka; Jeong, Hyeonjeong; Miyazaki, Atsuko; Sakaki, Kohei; Shinada, Takamitsu; Sugiura, Motoaki; Kawashima, Ryuta; Nakamura, Katsuki

    2015-01-01

    When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network. PMID:26076024

  19. Melatonin and circadian rhythms in autism: Case report.

    PubMed

    Zuculo, Gabriela Melloni; Gonçalves, Bruno S B; Brittes, Clay; Menna-Barreto, Luiz; Pinato, Luciana

    2017-01-01

    Among the most co-occurring conditions in autism spectrum disorders (ASD), there are sleep disorders which may exacerbate associated behavioral disorders and lead to intensification of existing autistic symptoms. Several studies investigating the use of melatonin in the treatment of sleep disorders in ASD have shown comparative efficiency in sleep with little or no side effects. Here we report a case of ASD with non-24-hour rhythm and the effect of melatonin in circadian parameters by actigraphy. Visual analysis of the first 10 days recorded and the periodogram suggest that this patient showed a non-24-hour rhythm. This ASD subject showed before melatonin administration an activity/rest rhythm lower than 24 hours. The results show that melatonin increased approximately 4.7 times the regularity of circadian activity rhythm and resting staying on average between 00:00 and 06:00 and showed positive effects in improving the quality of sleep and behavior. So, the actigraphy showed an ASD subject with a non-24-hour activity/rest rhythm which changed this rhythm to a 24-hour rhythm after melatonin administration. This result reinforces the prospect of therapy with melatonin for synchronization (increased regularity) of endogenous rhythms and improve sleep quality and hence behavior and indicates the actigraphy as a choice tool to characterize several parameters of the activity/rest rhythm of ASD individuals.

  20. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans

    PubMed Central

    Hattori, Yuko; Tomonaga, Masaki; Matsuzawa, Tetsuro

    2015-01-01

    Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum) and auditory rhythms (e.g., hearing music while walking). Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse), suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement. PMID:26132703

  1. Vitamin B12 treatment for sleep-wake rhythm disorders.

    PubMed

    Okawa, M; Mishima, K; Nanami, T; Shimizu, T; Iijima, S; Hishikawa, Y; Takahashi, K

    1990-02-01

    Vitamin B12 (VB12) was administered to two patients suffering for many years from different sleep-wake rhythm disorders. One patient was a 15-year-old blind girl suffering from a free-running sleep-wake rhythm (hypernychthemeral syndrome) with a period of about 25 h. In spite of repeated trials to entrain her sleep-wake cycle to the environmental 24-h rhythm, her free-running rhythm persisted for about 13 years. When she was 14 years old, administration of VB12 per os was started at the daily dose of 1.5 mg t.i.d. Shortly thereafter, her sleep-wake rhythm was entrained to the environmental 24-h rhythm, and her 24-h sleep-wake rhythm was maintained while she was on the medication. Within 2 months of the withholding of VB12, her free-running sleep-wake rhythm reappeared. The VB12 level in the serum was within the normal range both before and after treatment. The other patient was a 55-year-old man suffering from delayed sleep phase syndrome since 18 years of age. After administration of VB12 at the daily doses of 1.5 mg, his sleep-wake rhythm disorder was improved. The good therapeutic effect lasted for more than 6 months while he was on the medication.

  2. Autism as a Disorder of Biological and Behavioral Rhythms: Toward New Therapeutic Perspectives

    PubMed Central

    Tordjman, Sylvie; Davlantis, Katherine S.; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M.; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model. PMID:25756039

  3. Treatment Failure With Rhythm and Rate Control Strategies in Patients With Atrial Fibrillation and Congestive Heart Failure: An AF-CHF Substudy.

    PubMed

    Dyrda, Katia; Roy, Denis; Leduc, Hugues; Talajic, Mario; Stevenson, Lynne Warner; Guerra, Peter G; Andrade, Jason; Dubuc, Marc; Macle, Laurent; Thibault, Bernard; Rivard, Lena; Khairy, Paul

    2015-12-01

    Rate and rhythm control strategies for atrial fibrillation (AF) are not always effective or well tolerated in patients with congestive heart failure (CHF). We assessed reasons for treatment failure, associated characteristics, and effects on survival. A total of 1,376 patients enrolled in the AF-CHF trial were followed for 37  ±  19 months, 206 (15.0%) of whom failed initial therapy leading to crossover. Rhythm control was abandoned more frequently than rate control (21.0% vs. 9.1%, P < 0.0001). Crossovers from rhythm to rate control were driven by inefficacy, whereas worsening heart failure was the most common reason to crossover from rate to rhythm control. In multivariate analyses, failure of rhythm control was associated with female sex, higher serum creatinine, functional class III or IV symptoms, lack of digoxin, and oral anticoagulation. Factors independently associated with failure of rate control were paroxysmal (vs. persistent) AF, statin therapy, and presence of an implantable cardioverter-defibrillator. Crossovers were not associated with cardiovascular mortality (hazard ratio [HR] 1.11 from rhythm to rate control; 95% confidence interval [95% CI, 0.73-1.73]; P = 0.6069; HR 1.29 from rate to rhythm control; 95% CI, 0.73-2.25; P = 0.3793) or all-cause mortality (HR 1.16 from rhythm to rate control, 95% CI [0.79-1.72], P = 0.4444; HR 1.15 from rate to rhythm control, 95% [0.69, 1.91], P = 0.5873). Rhythm control is abandoned more frequently than rate control in patients with AF and CHF. The most common reasons for treatment failure are inefficacy for rhythm control and worsening heart failure for rate control. Changing strategies does not impact survival. © 2015 Wiley Periodicals, Inc.

  4. Maternal and infant activity: Analytic approaches for the study of circadian rhythm.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2015-11-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R(2), NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta(2)) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and circadian parameters in the study of maternal and infant activity rhythm. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. On-line telemetry: prospective assessment of accuracy in an all-volunteer emergency medical service system.

    PubMed

    Hollander, J E; Delagi, R; Sciammarella, J; Viccellio, P; Ortiz, J; Henry, M C

    1995-04-01

    To evaluate the need for on-line telemetry control in an all-volunteer, predominantly advanced emergency medical technician (A-EMT) ambulance system. Emergency medical service (EMS) advanced life support (ALS) providers were asked to transmit the ECG rhythms of monitored patients over a six-month period in 1993. The ECG rhythm interpretations of volunteer EMS personnel were compared with those of the on-line medical control physician. All discordant readings were reviewed by a panel of physicians to decide whether the misdiagnosis would have resulted in treatment aberrations had transmission been unavailable. Patients were monitored and rhythms were transmitted in 1,825 cases. 1,642 of 1,825 rhythms were correctly interpreted by the EMS providers (90%; 95% CI 89-91%). The accuracy of the EMS providers was dependent on the patient's rhythm (chi-square, p < 0.00001), the chief complaint (chi-square, p = 0.0001), and the provider's level of training (chi-square, p = 0.02). Correct ECG rhythm interpretations were more common when the out-of-hospital interpretation was sinus rhythm (95%), ventricular fibrillation (87%), paced rhythm (94%), or agonal rhythm (96%). The EMS providers were frequently incorrect when the out-of-hospital rhythm interpretation was atrial fibrillation/flutter (71%), supraventricular tachycardia (46%), ventricular tachycardia (59%), or atrioventricular block (50%). Of the 183 discordant cases, 124 (68%) involved missing a diagnosis of, or incorrectly diagnosing, atrial fibrillation/flutter. Review of the discordant readings identified 11 cases that could have resulted in treatment errors had the rhythms not been transmitted, one of which might have resulted in an adverse outcome. In this all-volunteer, predominantly A-EMT ALS system, patients with a field interpretation of a sinus rhythm do not require ECG rhythm transmission. Field interpretations of atrial fibrillation/flutter, supraventricular tachycardia, ventricular tachycardia, and atrioventricular blocks are frequently incorrect and should continue to be transmitted.

  6. Maternal and infant activity: Analytic approaches for the study of circadian rhythm

    PubMed Central

    Thomas, Karen A.; Burr, Robert L.; Spieker, Susan

    2015-01-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72 h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R2, NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta2) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and circadian parameters in the study of maternal and infant activity rhythm. PMID:26360916

  7. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions.

    PubMed

    Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E

    2016-08-24

    Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.

  8. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions

    PubMed Central

    Barnes, Jessica J.; Nobre, Anna Christina; Woolrich, Mark W.; Baker, Kate

    2016-01-01

    Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. SIGNIFICANCE STATEMENT Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called “phase amplitude coupling.” PMID:27559180

  9. Rhythm in language acquisition.

    PubMed

    Langus, Alan; Mehler, Jacques; Nespor, Marina

    2017-10-01

    Spoken language is governed by rhythm. Linguistic rhythm is hierarchical and the rhythmic hierarchy partially mimics the prosodic as well as the morpho-syntactic hierarchy of spoken language. It can thus provide learners with cues about the structure of the language they are acquiring. We identify three universal levels of linguistic rhythm - the segmental level, the level of the metrical feet and the phonological phrase level - and discuss why primary lexical stress is not rhythmic. We survey experimental evidence on rhythm perception in young infants and native speakers of various languages to determine the properties of linguistic rhythm that are present at birth, those that mature during the first year of life and those that are shaped by the linguistic environment of language learners. We conclude with a discussion of the major gaps in current knowledge on linguistic rhythm and highlight areas of interest for future research that are most likely to yield significant insights into the nature, the perception, and the usefulness of linguistic rhythm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Endogenous thermoregulatory rhythms of squirrel monkeys in thermoneutrality and cold

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine if the free-running circadian rhythm in body temperature (Tb) results from coordinated changes in HP and HL rhythms in thermoneutrality (27 degrees C) as well as mild cold (17 degrees C). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of Tb and activity. Feeding was also measured. Rhythms of HP, HL, and conductance were tightly coupled with the circadian Tb rhythm at both ambient temperatures (TA). At 17 degrees C, increased HP compensated for higher HL at all phases of the Tb rhythm, resulting in only minor changes to Tb. Parallel compensatory changes of HP and HL were seen at all rhythm phases at both TA. Similar time courses of Tb, HP, and HL in their respective rhythms and the relative stability of Tb during both active and rest periods suggest action of the circadian timing system on Tb set point.

  11. Circadian Rhythm in Bipolar Disorder: A review of the literature.

    PubMed

    Takaesu, Yoshikazu

    2018-06-05

    Sleep disturbances and circadian rhythm dysfunction have been widely demonstrated in patients with bipolar disorder (BD). Irregularity of the sleep-wake rhythm, eveningness chronotype, abnormality of melatonin secretion, vulnerability of clock genes, and the irregularity of social time cues have also been well-documented in BD. Circadian rhythm dysfunction is prominent in BD compared with that in major depressive disorders, implying that circadian rhythm dysfunction is a trait marker of BD. In the clinical course of BD, the circadian rhythm dysfunctions may act as predictors for the first onset of BD and the relapse of mood episodes. Treatments focusing on sleep disturbances and circadian rhythm dysfunction in combination with pharmacological, psychosocial, and chronobiological treatments are believed to be useful for relapse prevention. Further studies are therefore warranted to clarify the relationship between circadian rhythm dysfunction and the pathophysiology of BD to develop treatment strategies for achieving recovery in BD patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Neurofeedback training aimed to improve focused attention and alertness in children with ADHD: a study of relative power of EEG rhythms using custom-made software application.

    PubMed

    Hillard, Brent; El-Baz, Ayman S; Sears, Lonnie; Tasman, Allan; Sokhadze, Estate M

    2013-07-01

    Neurofeedback is a nonpharmacological treatment for attention-deficit hyperactivity disorder (ADHD). We propose that operant conditioning of electroencephalogram (EEG) in neurofeedback training aimed to mitigate inattention and low arousal in ADHD, will be accompanied by changes in EEG bands' relative power. Patients were 18 children diagnosed with ADHD. The neurofeedback protocol ("Focus/Alertness" by Peak Achievement Trainer) has a focused attention and alertness training mode. The neurofeedback protocol provides one for Focus and one for Alertness. This does not allow for collecting information regarding changes in specific EEG bands (delta, theta, alpha, low and high beta, and gamma) power within the 2 to 45 Hz range. Quantitative EEG analysis was completed on each of twelve 25-minute-long sessions using a custom-made MatLab application to determine the relative power of each of the aforementioned EEG bands throughout each session, and from the first session to the last session. Additional statistical analysis determined significant changes in relative power within sessions (from minute 1 to minute 25) and between sessions (from session 1 to session 12). Analysis was of relative power of theta, alpha, low and high beta, theta/alpha, theta/beta, and theta/low beta and theta/high beta ratios. Additional secondary measures of patients' post-neurofeedback outcomes were assessed, using an audiovisual selective attention test (IVA + Plus) and behavioral evaluation scores from the Aberrant Behavior Checklist. Analysis of data computed in the MatLab application, determined that theta/low beta and theta/alpha ratios decreased significantly from session 1 to session 12, and from minute 1 to minute 25 within sessions. The findings regarding EEG changes resulting from brain wave self-regulation training, along with behavioral evaluations, will help elucidate neural mechanisms of neurofeedback aimed to improve focused attention and alertness in ADHD.

  13. [Research advances in circadian rhythm of epileptic seizures].

    PubMed

    Yang, Wen-Qi; Li, Hong

    2017-01-01

    The time phase of epileptic seizures has attracted more and more attention. Epileptic seizures have their own circadian rhythm. The same type of epilepsy has different seizure frequencies in different time periods and states (such as sleeping/awakening state and natural day/night cycle). The circadian rhythm of epileptic seizures has complex molecular and endocrine mechanisms, and currently there are several hypotheses. Clarification of the circadian rhythm of epileptic seizures and prevention and administration according to such circadian rhythm can effectively control seizures and reduce the adverse effects of drugs. The research on the circadian rhythm of epileptic seizures provides a new idea for the treatment of epilepsy.

  14. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline

    PubMed Central

    Deibel, Scott H.; Zelinski, Erin L.; Keeley, Robin J.; Kovalchuk, Olga; McDonald, Robert J.

    2015-01-01

    Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline. PMID:26252151

  15. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech.

    PubMed

    Borrie, Stephanie A; Lansford, Kaitlin L; Barrett, Tyson S

    2017-03-01

    The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception (initial intelligibility) and learning (intelligibility improvement) of naturally dysrhythmic speech, dysarthria. Fifty young adults with typical hearing participated in 3 key tests, including a rhythm perception test, a receptive vocabulary test, and a speech perception and learning test, with standard pretest, familiarization, and posttest phases. Initial intelligibility scores were calculated as the proportion of correct pretest words, while intelligibility improvement scores were calculated by subtracting this proportion from the proportion of correct posttest words. Rhythm perception scores predicted intelligibility improvement scores but not initial intelligibility. On the other hand, receptive vocabulary scores predicted initial intelligibility scores but not intelligibility improvement. Expertise in rhythm perception appears to provide an advantage for processing dysrhythmic speech, but a familiarization experience is required for the advantage to be realized. Findings are discussed in relation to the role of rhythm in speech processing and shed light on processing models that consider the consequence of rhythm abnormalities in dysarthria.

  16. Perspectives on the rhythm-grammar link and its implications for typical and atypical language development.

    PubMed

    Gordon, Reyna L; Jacobs, Magdalene S; Schuele, C Melanie; McAuley, J Devin

    2015-03-01

    This paper reviews the mounting evidence for shared cognitive mechanisms and neural resources for rhythm and grammar. Evidence for a role of rhythm skills in language development and language comprehension is reviewed here in three lines of research: (1) behavioral and brain data from adults and children, showing that prosody and other aspects of timing of sentences influence online morpho-syntactic processing; (2) comorbidity of impaired rhythm with grammatical deficits in children with language impairment; and (3) our recent work showing a strong positive association between rhythm perception skills and expressive grammatical skills in young school-age children with typical development. Our preliminary follow-up study presented here revealed that musical rhythm perception predicted variance in 6-year-old children's production of complex syntax, as well as online reorganization of grammatical information (transformation); these data provide an additional perspective on the hierarchical relations potentially shared by rhythm and grammar. A theoretical framework for shared cognitive resources for the role of rhythm in perceiving and learning grammatical structure is elaborated on in light of potential implications for using rhythm-emphasized musical training to improve language skills in children. © 2015 New York Academy of Sciences.

  17. Individual variation in circadian rhythms of sleep, EEG, temperature, and activity among monkeys - Implications for regulatory mechanisms.

    NASA Technical Reports Server (NTRS)

    Crowley, T. J.; Halberg, F.; Kripke, D. F.; Pegram, G. V.

    1971-01-01

    Investigation of circadian rhythms in a number of variables related to sleep, EEG, temperature, and motor activity in rhesus monkeys on an LD 12:12 schedule. Circadian rhythms were found to appear in each of 15 variables investigated. Statistical procedures assessed the variables for evidence of common regulation in these aspects of their circadian rhythms: acrophase (timing), amplitude (extent of change), and level (24-hr mean value). Patterns appearing in the data suggested that the circadian rhythms of certain variables are regulated in common. The circadian modulation of activity in the beta and sigma frequency bands of the EEG was correlated with statistical significance in acrophase, level, and amplitude. The delta frequency band appeared to be under circadian rhythm regulation distinct from that of the other bands. The circadian rhythm of REM stage sleep was like that of beta activity in level and amplitude. The data indicate that REM stage may share some common regulation of circadian timing with both stage 3-4 sleep and with temperature. Generally, however, the circadian rhythm of temperature appeared to bear little relation to the circadian rhythms of motor activity, EEG, or sleep.

  18. Rhythm Pattern of Sole through Electrification of the Human Body When Walking

    NASA Astrophysics Data System (ADS)

    Takiguchi, Kiyoaki; Wada, Takayuki; Tohyama, Shigeki

    The rhythm of automatic cyclic movements such as walking is known to be generated by a rhythm generator called CPG in the spinal cord. The measurement of rhythm characteristics in walking is considered to be important for analyzing human bipedal walking and adaptive walking on irregular terrain. In particular, the soles that contact the terrain surface perform flexible movements similar to the movement of the fins of a lungfish, which is considered to be the predecessor of land animals. The sole movements are believed to be a basic movement acquired during prehistoric times. The detailed rhythm pattern of sole motion is considered to be important. We developed a method for measuring electrification without installing device on a subject's body and footwear for stabilizing the electrification of the human body. We measured the rhythm pattern of 20 subjects including 4 infants when walking by using this system and the corresponding equipment. Therefore, we confirmed the commonality of the correlative rhythm patterns of 20 subjects. Further, with regard to an individual subject, the reproducibility of a rhythm pattern with strong correlation coefficient > 0.93 ± 0.5 (mean ± SD) concerning rhythms of trials that are differently conducted on adult subjects could be confirmed.

  19. Ultradian activity rhythms in large groups of newly hatched chicks (Gallus gallus domesticus).

    PubMed

    Nielsen, B L; Erhard, H W; Friggens, N C; McLeod, J E

    2008-07-01

    A clutch of young chicks housed with a mother hen exhibit ultradian (within day) rhythms of activity corresponding to the brooding cycle of the hen. In the present study clear evidence was found of ultradian activity rhythms in newly hatched domestic chicks housed in groups larger than natural clutch size without a mother hen or any other obvious external time-keeper. No consistent synchrony was found between groups housed in different pens within the same room. The ultradian rhythms disappeared with time and little evidence of group rhythmicity remained by the third night. This disappearance over time suggests that the presence of a mother hen may be pivotal for the long-term maintenance of these rhythms. The ultradian rhythm of the chicks may also play an important role in the initiation of brooding cycles during the behavioural transition of the mother hen from incubation to brooding. Computer simulations of individual activity rhythms were found to reproduce the observations made on a group basis. This was achievable even when individual chick rhythms were modelled as independent of each other, thus no assumptions of social facilitation are necessary to obtain ultradian activity rhythms on a group level.

  20. 24-HOUR ACTIVITY RHYTHM AND SLEEP DISTURBANCES IN DEPRESSION AND ANXIETY: A POPULATION-BASED STUDY OF MIDDLE-AGED AND OLDER PERSONS.

    PubMed

    Luik, Annemarie I; Zuurbier, Lisette A; Direk, Neşe; Hofman, Albert; Van Someren, Eus J W; Tiemeier, Henning

    2015-09-01

    Disturbed circadian rhythms have been associated with depression and anxiety, but it is unclear if disturbances in the 24-hr activity rhythm and sleep are independently and specifically related to these disorders. In 1,714 middle-aged and elderly participants of the Rotterdam Study, we collected actigraphy recordings of at least 96 hr (138 ± 14 hr, mean ± standard deviation). Activity rhythms were quantified calculating the fragmentation of the rhythm, stability of the rhythm over days, and timing of the rhythm. Total sleep time, sleep onset latency, and wake after sleep onset were also estimated with actigraphy. Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression scale, persons with clinically relevant depressive symptoms were interviewed to diagnose DSM-IV-depressive disorder. Anxiety disorders were determined with the Munich version of the Composite International Diagnostic Interview. More fragmented rhythms were associated with clinically relevant depressive symptoms (odds ratio (OR): 1.27, 95% confidence interval (CI): 1.04;1.54) and anxiety disorders (OR: 1.39, 95% CI: 1.14;1.70) after covariate adjustment. Less stable rhythms, longer sleep onset latency, and more wake after sleep onset were related to clinically relevant depressive symptoms or anxiety disorders only if not adjusted for covariates and other activity rhythm and sleep indicators. Our study in middle-aged and elderly persons suggests that fragmentation of the 24-hr activity rhythm is associated with depression and anxiety. Moreover, this association also largely accounts for the effect of disturbed sleep on these psychiatric disorders. © 2015 Wiley Periodicals, Inc.

  1. Chronic stress induces brain region specific alterations of molecular rhythms in mice that correlate with depression-like behavior

    PubMed Central

    Logan, Ryan W.; Edgar, Nicole; Gillman, Andrea G.; Hoffman, Daniel; Zhu, Xiyu; McClung, Colleen A.

    2015-01-01

    Background Emerging evidence implicates circadian abnormalities as a component of the pathophysiology of major depressive disorder (MDD). The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates rhythms throughout the brain and body. On a cellular level, rhythms are generated by transcriptional, translational, and post-translational feedback loops of core circadian genes and proteins. In patients with MDD, recent evidence suggests reduced amplitude of molecular rhythms in extra-SCN brain regions. We investigated whether unpredictable chronic mild stress (UCMS), an animal model that induces a depression-like physiological and behavioral phenotype, induces circadian disruptions similar to those seen with MDD. Methods Activity and temperature rhythms were recorded in C57BL/6J mice before, during, and after exposure to UCMS, and brain tissue explants were collected from Period2 luciferase (Per2::luc) mice following UCMS to assess cellular rhythmicity. Results UCMS significantly decreased circadian amplitude of activity and body temperature in mice, similar to findings in MDD patients and these changes directly correlate with depression-related behavior. While amplitude of molecular rhythms in the SCN was decreased following UCMS, surprisingly, rhythms in the nucleus accumbens were amplified with no changes seen in the prefrontal cortex or amygdala. These molecular rhythm changes in the SCN and the nucleus accumbens (NAc) also directly correlated with mood-related behavior. Conclusions These studies find that circadian rhythm abnormalities directly correlate with depression-related behavior following UCMS and suggest a desynchronization of rhythms in the brain with an independent enhancement of rhythms in the NAc. PMID:25771506

  2. Does Melody Assist in the Reproduction of Novel Rhythm Patterns?

    ERIC Educational Resources Information Center

    Kinney, Daryl W.; Forsythe, Jere L.

    2013-01-01

    We examined music education majors' ability to reproduce rhythmic stimuli presented in melody and rhythm only conditions. Participants reproduced rhythms of two-measure music examples by immediately echo-performing through a method of their choosing (e.g., clapping, tapping, vocalizing). Forty examples were presented in melody and rhythm only…

  3. Society for Research on Biological Rhythms (1st) Held on May 11-14, 1988 in Charleston, South Carolina

    DTIC Science & Technology

    1988-08-10

    and applied research in all aspects of biological 8:00 a.m. to 1:00 p.m., May 12-14 and from 4:30 - 6 :30 rhythms , to disseminate important research...NUCLEUS (SCN) NEU- RONS IN VITRO WITHOUT ALTERING THE GLUCOSE Workshop 6 : UTILIZATION RHYTHM OR PHASE OF THE RHYTHM Involvement of Protein Synthesis in...Medical Science, Seta-Tsukinowa, Otsu- city, Shiga, Japan. Circadian Rhythms 74 RUNNING WHEEL AVAILABILITY ENTRAINS SLEEP- 65 PHASE RESPONSE CURVES AS

  4. Activity in the ferret: oestradiol effects and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Stockman, E. R.; Albers, H. E.; Baum, M. J.; Wurtman, R. J. (Principal Investigator)

    1985-01-01

    The present study was conducted to determine whether oestradiol increases activity in the European ferret (Mustela furo), whether this effect is sexually dimorphic, and whether a 24-h rhythm is present in the ferret's daily activity. The activity of male and female adult, postpubertally gonadectomized ferrets was monitored while they were maintained singly on a 13:11 light-dark cycle, before and after implantation with oestradiol-17 beta. Gonadectomized male and female ferrets exhibited equal levels of activity, and neither sex exhibited a significant change in activity following oestradiol implantation. None of the ferrets exhibited a strong circadian rhythm, although weak 24-h rhythms and shorter harmonic rhythms were present. Golden hamsters (Mesocricetus auratus), monitored in an identical manner, exhibited strong circadian rhythms. It was concluded that oestradiol administration may not cause an increase in activity in the ferret, and that this species lacks a strong circadian activity rhythm.

  5. Rhythms that Speed You Up

    ERIC Educational Resources Information Center

    Sanabria, Daniel; Capizzi, Mariagrazia; Correa, Angel

    2011-01-01

    This study investigates whether a rhythm can orient attention to specific moments enhancing people's reaction times (RT). We used a modified version of the temporal orienting paradigm in which an auditory isochronous rhythm was presented prior to an auditory single target. The rhythm could have a fast pace (450 ms Inter-Onset-Interval or IOI) or a…

  6. Monkey Lipsmacking Develops Like the Human Speech Rhythm

    ERIC Educational Resources Information Center

    Morrill, Ryan J.; Paukner, Annika; Ferrari, Pier F.; Ghazanfar, Asif A.

    2012-01-01

    Across all languages studied to date, audiovisual speech exhibits a consistent rhythmic structure. This rhythm is critical to speech perception. Some have suggested that the speech rhythm evolved "de novo" in humans. An alternative account--the one we explored here--is that the rhythm of speech evolved through the modification of rhythmic facial…

  7. The Effect of Pitch and Rhythm Difficulty on Vocal Sight-Reading Performance

    ERIC Educational Resources Information Center

    Henry, Michele L.

    2011-01-01

    Singing music at sight is a complex skill, requiring the singer to perform pitch and rhythm simultaneously. Previous research has identified difficulty levels for pitch and rhythm skills individually but not in combination. In this study, the author sought to determine the relationship between pitch and rhythm tasks occurring concurrently. High…

  8. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech

    ERIC Educational Resources Information Center

    Borrie, Stephanie A.; Lansford, Kaitlin L.; Barrett, Tyson S.

    2017-01-01

    Purpose: The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception…

  9. Entrainment to an auditory signal: Is attention involved?

    PubMed

    Kunert, Richard; Jongman, Suzanne R

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris.

    PubMed

    Balan, Ranjini; Suraishkumar, G K

    2014-01-01

    We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers.

  11. Atrial fibrillation and stroke: the evolving role of rhythm control.

    PubMed

    Patel, Taral K; Passman, Rod S

    2013-06-01

    Atrial fibrillation (AF) remains a major risk factor for stroke. Unfortunately, clinical trials have failed to demonstrate that a strategy of rhythm control--therapy to maintain normal sinus rhythm (NSR)--reduces stroke risk. The apparent lack of benefit of rhythm control likely reflects the difficulty in maintaining NSR using currently available therapies. However, there are signals from several trials that the presence of NSR is indeed beneficial and associated with better outcomes related to stroke and mortality. Most electrophysiologists feel that as rhythm control strategies continue to improve, the crucial link between rhythm control and stroke reduction will finally be demonstrated. Therefore, AF specialists tend to be aggressive in their attempts to maintain NSR, especially in patients who have symptomatic AF. A step-wise approach from antiarrhythmic drugs to catheter ablation to cardiac surgery is generally used. In select patients, catheter ablation or cardiac surgery may supersede antiarrhythmic drugs. The choice depends on the type of AF, concurrent heart disease, drug toxicity profiles, procedural risks, and patient preferences. Regardless of strategy, given the limited effectiveness of currently available rhythm control therapies, oral anticoagulation is still recommended for stroke prophylaxis in AF patients with other stroke risk factors. Major challenges in atrial fibrillation management include selecting patients most likely to benefit from rhythm control, choosing specific antiarrhythmic drugs or procedures to achieve rhythm control, long-term monitoring to gauge the efficacy of rhythm control, and determining which (if any) patients may safely discontinue anticoagulation if long-term NSR is achieved.

  12. Evaluation of regression-based 3-D shoulder rhythms.

    PubMed

    Xu, Xu; Dickerson, Clark R; Lin, Jia-Hua; McGorry, Raymond W

    2016-08-01

    The movements of the humerus, the clavicle, and the scapula are not completely independent. The coupled pattern of movement of these bones is called the shoulder rhythm. To date, multiple studies have focused on providing regression-based 3-D shoulder rhythms, in which the orientations of the clavicle and the scapula are estimated by the orientation of the humerus. In this study, six existing regression-based shoulder rhythms were evaluated by an independent dataset in terms of their predictability. The datasets include the measured orientations of the humerus, the clavicle, and the scapula of 14 participants over 118 different upper arm postures. The predicted orientations of the clavicle and the scapula were derived from applying those regression-based shoulder rhythms to the humerus orientation. The results indicated that none of those regression-based shoulder rhythms provides consistently more accurate results than the others. For all the joint angles and all the shoulder rhythms, the RMSE are all greater than 5°. Among those shoulder rhythms, the scapula lateral/medial rotation has the strongest correlation between the predicted and the measured angles, while the other thoracoclavicular and thoracoscapular bone orientation angles only showed a weak to moderate correlation. Since the regression-based shoulder rhythm has been adopted for shoulder biomechanical models to estimate shoulder muscle activities and structure loads, there needs to be further investigation on how the predicted error from the shoulder rhythm affects the output of the biomechanical model. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Maternal exercise, season and sex modify the daily fetal heart rate rhythm.

    PubMed

    Sletten, J; Cornelissen, G; Assmus, J; Kiserud, T; Albrechtsen, S; Kessler, J

    2018-05-13

    The knowledge on biological rhythms is rapidly expanding. We aimed to define the longitudinal development of the daily (24-hour) fetal heart rate rhythm in an unrestricted, out-of-hospital setting and to examine the effects of maternal physical activity, season and fetal sex. We recruited 48 women with low-risk singleton pregnancies. Using a portable monitor for continuous fetal electrocardiography, fetal heart rate recordings were obtained around gestational weeks 24, 28, 32 and 36. Daily rhythms in fetal heart rate and fetal heart rate variation were detected by cosinor analysis; developmental trends were calculated by population-mean cosinor and multilevel analysis. For the fetal heart rate and fetal heart rate variation, a significant daily rhythm was present in 122/123 (99.2%) and 116/121 (95.9%) of the individual recordings respectively. The rhythms were best described by combining cosine waves with periods of 24 and 8 hours. With increasing gestational age, the magnitude of the fetal heart rate rhythm increased, and the peak of the fetal heart rate variation rhythm shifted from a mean of 14:25 (24 weeks) to 20:52 (36 weeks). With advancing gestation, the rhythm-adjusted mean value of the fetal heart rate decreased linearly in females (P < .001) and nonlinearly in males (quadratic function, P = .001). At 32 and 36 weeks, interindividual rhythm diversity was found in male fetuses during higher maternal physical activity and during the summer season. The dynamic development of the daily fetal heart rate rhythm during the second half of pregnancy is modified by fetal sex, maternal physical activity and season. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. 24-h activity rhythm and sleep in depressed outpatients.

    PubMed

    Hori, Hiroaki; Koga, Norie; Hidese, Shinsuke; Nagashima, Anna; Kim, Yoshiharu; Higuchi, Teruhiko; Kunugi, Hiroshi

    2016-06-01

    Disturbances in sleep and circadian rest-activity rhythms are key features of depression. Actigraphy, a non-invasive method for monitoring motor activity, can be used to objectively assess circadian rest-activity rhythms and sleep patterns. While recent studies have measured sleep and daytime activity of depressed patients using wrist-worn actigraphy, the actigraphic 24-h rest-activity rhythm in depression has not been well documented. We aimed to examine actigraphically measured sleep and circadian rest-activity rhythms in depressed outpatients. Twenty patients with DSM-IV major depressive episode and 20 age- and sex-matched healthy controls participated in this study. Participants completed 7 consecutive days of all-day actigraphic activity monitoring while engaging in usual activities. For sleep parameters, total sleep time, wake after sleep onset, and sleep fragmentation index were determined. Circadian rhythms were estimated by fitting individual actigraphy data to a cosine curve of a 24-h activity rhythm using the cosinor method, which generated three circadian activity rhythm parameters, i.e., MESOR (rhythm-adjusted mean), amplitude, and acrophase. Subjective sleep was also assessed using a sleep diary and the Pittsburgh Sleep Quality Index. Patients showed significantly lower MESOR and more dampened amplitude along with significant sleep disturbances. Logistic regression analysis revealed that lower MESOR and more fragmented sleep emerged as the significant predictors of depression. Correlations between subjectively and actigraphically measured parameters demonstrated the validity of actigraphic measurements. These results indicate marked disturbances in sleep and circadian rest-activity rhythms of depression. By simultaneously measuring sleep and rest-activity rhythm parameters, actigraphy might serve as an objective diagnostic aid for depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dissociation of Per1 and Bmal1 circadian rhythms in the suprachiasmatic nucleus in parallel with behavioral outputs

    PubMed Central

    Ono, Daisuke; Honma, Sato; Nakajima, Yoshihiro; Kuroda, Shigeru; Enoki, Ryosuke; Honma, Ken-ichi

    2017-01-01

    The temporal order of physiology and behavior in mammals is primarily regulated by the circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Taking advantage of bioluminescence reporters, we monitored the circadian rhythms of the expression of clock genes Per1 and Bmal1 in the SCN of freely moving mice and found that the rate of phase shifts induced by a single light pulse was different in the two rhythms. The Per1-luc rhythm was phase-delayed instantaneously by the light presented at the subjective evening in parallel with the activity onset of behavioral rhythm, whereas the Bmal1-ELuc rhythm was phase-delayed gradually, similar to the activity offset. The dissociation was confirmed in cultured SCN slices of mice carrying both Per1-luc and Bmal1-ELuc reporters. The two rhythms in a single SCN slice showed significantly different periods in a long-term (3 wk) culture and were internally desynchronized. Regional specificity in the SCN was not detected for the period of Per1-luc and Bmal1-ELuc rhythms. Furthermore, neither is synchronized with circadian intracellular Ca2+ rhythms monitored by a calcium indicator, GCaMP6s, or with firing rhythms monitored on a multielectrode array dish, although the coupling between the circadian firing and Ca2+ rhythms persisted during culture. These findings indicate that the expressions of two key clock genes, Per1 and Bmal1, in the SCN are regulated in such a way that they may adopt different phases and free-running periods relative to each other and are respectively associated with the expression of activity onset and offset. PMID:28416676

  16. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.

    PubMed

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-03-15

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.

  17. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease

    PubMed Central

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-01-01

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms. PMID:16410285

  18. Rate versus rhythm control and outcomes in patients with atrial fibrillation and chronic kidney disease: data from the GUSTO-III Trial.

    PubMed

    Williams, Eric S; Thompson, Vivian P; Chiswell, Karen E; Alexander, John H; White, Harvey D; Ohman, E Magnus; Al-Khatib, Sana M

    2013-01-01

    Atrial fibrillation (AF) and chronic kidney disease (CKD) have both been shown to portend worse outcomes after acute myocardial infarction (MI); however, the benefit of a rhythm control strategy in patients with CKD post-MI is unclear. We prospectively studied 985 patients with new-onset AF post-MI in the GUSTO-III trial, of whom 413 (42%) had CKD (creatinine clearance < 60 mL/min). A rhythm control strategy, defined as the use of an antiarrhythmic medication and/or electrical cardioversion, was used in 346 (35%) of patients. A rhythm control strategy was used in 34% of patients with CKD and 36% of patients with no CKD. At hospital discharge, sinus rhythm was present in 487 (76%) of patients treated with a rate control strategy, vs. 276 (80%) in those treated with rhythm control (p = 0.20). CKD was associated with a lower odds of sinus rhythm at discharge (unadjusted OR 0.56, 95% CI 0.38-0.84, p < 0.001). However, in multivariable analyses, treatment with a rhythm control strategy was not associated with discharge rhythm (HR 1.068, 95% CI 0.69-1.66, p = 0.77), 30-day mortality (HR 0.78, 95% CI 0.54-1.12, p = 0.18) or mortality from day 30 to 1 year (HR 1.00, 95% CI 0.59-1.69, p = 0.99). CKD status did not significantly impact the relationship between rhythm control and outcomes. Treatment with a rhythm or rate control strategy does not signifi cantly impact short-term or long-term mortality in patients with post-MI AF, regardless of kidney disease status. Future studies to investigate the optimal management of AF in CKD patients are needed.

  19. Evidence for Time-of-Day Dependent Effect of Neurotoxic Dorsomedial Hypothalamic Lesions on Food Anticipatory Circadian Rhythms in Rats

    PubMed Central

    Landry, Glenn J.; Kent, Brianne A.; Patton, Danica F.; Jaholkowski, Mark; Marchant, Elliott G.; Mistlberger, Ralph E.

    2011-01-01

    The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats received intra-DMH microinjections of IBO and activity and body temperature (T b) rhythms were recorded by telemetry during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions exhibited a lower amplitude and mean level of light-dark entrained activity and T b rhythms. During the daytime feeding schedule, all rats exhibited food anticipatory activity and T b rhythms that persisted during 2 days without food in constant dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these cases was restored to levels characteristic of intact rats. These results confirm that rats can anticipate scheduled daytime or nighttime meals without the DMH. Improved anticipation at night suggests a modulatory role for the DMH in the expression of food anticipatory activity rhythms during the daily light period, when nocturnal rodents normally sleep. PMID:21912674

  20. Circadian Sleep-Wake Rhythm of Older Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Maaskant, Marijke; van de Wouw, Ellen; van Wijck, Ruud; Evenhuis, Heleen M.; Echteld, Michael A.

    2013-01-01

    The circadian sleep-wake rhythm changes with aging, resulting in a more fragmented sleep-wake pattern. In individuals with intellectual disabilities (ID), brain structures regulating the sleep-wake rhythm might be affected. The aims of this study were to compare the sleep-wake rhythm of older adults with ID to that of older adults in the general…

  1. Children's Aural and Kinesthetic Understanding of Rhythm: Developing an Instructional Model

    ERIC Educational Resources Information Center

    Foley, Adam D.

    2013-01-01

    The purpose of this study was to develop a deeper understanding of aural and kinesthetic rhythm skill development in elementary school-age children. In this study, I examined my curriculum model for rhythm understanding, which included creating and implementing assessments of movement skills in meter and rhythm. The research questions were: 1.…

  2. A Qualitative Investigation of Early Childhood Teachers' Experiences of Rhythm as Pedagogy

    ERIC Educational Resources Information Center

    Matthews, Douglas R; Ubbes, Valerie A; Freysinger, Valeria J

    2016-01-01

    Rhythm has been found to enhance not only biological functioning (e.g. balance, timing and coordination), but also to facilitate learning across sociocultural contexts. That is, rhythm may be a method of supporting child development and well-being. Hence, to the extent that children are not exposed to or engaged with rhythm, their development or…

  3. The Features and Training of English Stress and Rhythm

    ERIC Educational Resources Information Center

    Cai, Cui-yun

    2008-01-01

    In second language learning, to possess a perfect pronunciation, the importance of stress and rhythm should not be ignored. This articles explores the nature of sentence and word stress as well as rhythm, thus putting forward some feasible ways of training and acquiring a good English stress and rhythm in EFLT (English as Foreign Language…

  4. Melatonin, The Pineal Gland and Circadian Rhythms

    DTIC Science & Technology

    1992-04-30

    physiological rhythms including locomotion, sleep/wake, thermoregulation , car- diovascular function and many endocrine processes. Among the rhythms under SCN...control of a wide array of behavioral and physiological rhythms including locomotion, sleep/wake, thermoregulation , cardiovascular function and many... reptiles and birds, overt rhythmicity results from the integration of multiple circadian oscillators within the pineal gland, eyes and the presumed

  5. Prolonged dry apnoea: effects on brain activity and physiological functions in breath-hold divers and non-divers.

    PubMed

    Ratmanova, Patricia; Semenyuk, Roxana; Popov, Daniil; Kuznetsov, Sergey; Zelenkova, Irina; Napalkov, Dmitry; Vinogradova, Olga

    2016-07-01

    The aim of the study was to investigate the effects of voluntary breath-holding on brain activity and physiological functions. We hypothesised that prolonged apnoea would trigger cerebral hypoxia, resulting in a decrease of brain performance; and the apnoea's effects would be more pronounced in breath-hold divers. Trained breath-hold divers and non-divers performed maximal dry breath-holdings. Lung volume, alveolar partial pressures of O2 and CO2, attention and anxiety levels were estimated. Heart rate, blood pressure, arterial blood oxygenation, brain tissue oxygenation, EEG, and DC potential were monitored continuously during breath-holding. There were a few significant changes in electrical brain activity caused by prolonged apnoea. Brain tissue oxygenation index and DC potential were relatively stable up to the end of the apnoea in breath-hold divers and non-divers. We also did not observe any decrease of attention level or speed of processing immediately after breath-holding. Interestingly, trained breath-hold divers had some peculiarities in EEG activity at resting state (before any breath-holding): non-spindled, sharpened alpha rhythm; slowed-down alpha with the frequency nearer to the theta band; and untypical spatial pattern of alpha activity. Our findings contradicted the primary hypothesis. Apnoea up to 5 min does not lead to notable cerebral hypoxia or a decrease of brain performance in either breath-hold divers or non-divers. It seems to be the result of the compensatory mechanisms similar to the diving response aimed at centralising blood circulation and reducing peripheral O2 uptake. Adaptive changes during apnoea are much more prominent in trained breath-hold divers.

  6. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.

    PubMed

    Sato, Trey K; Panda, Satchidananda; Miraglia, Loren J; Reyes, Teresa M; Rudic, Radu D; McNamara, Peter; Naik, Kinnery A; FitzGerald, Garret A; Kay, Steve A; Hogenesch, John B

    2004-08-19

    The mammalian circadian clock plays an integral role in timing rhythmic physiology and behavior, such as locomotor activity, with anticipated daily environmental changes. The master oscillator resides within the suprachiasmatic nucleus (SCN), which can maintain circadian rhythms in the absence of synchronizing light input. Here, we describe a genomics-based approach to identify circadian activators of Bmal1, itself a key transcriptional activator that is necessary for core oscillator function. Using cell-based functional assays, as well as behavioral and molecular analyses, we identified Rora as an activator of Bmal1 transcription within the SCN. Rora is required for normal Bmal1 expression and consolidation of daily locomotor activity and is regulated by the core clock in the SCN. These results suggest that opposing activities of the orphan nuclear receptors Rora and Rev-erb alpha, which represses Bmal1 expression, are important in the maintenance of circadian clock function.

  7. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    PubMed

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  8. Combining Partial Directed Coherence and Graph Theory to Analyse Effective Brain Networks of Different Mental Tasks.

    PubMed

    Huang, Dengfeng; Ren, Aifeng; Shang, Jing; Lei, Qiao; Zhang, Yun; Yin, Zhongliang; Li, Jun; von Deneen, Karen M; Huang, Liyu

    2016-01-01

    The aim of this study is to qualify the network properties of the brain networks between two different mental tasks (play task or rest task) in a healthy population. EEG signals were recorded from 19 healthy subjects when performing different mental tasks. Partial directed coherence (PDC) analysis, based on Granger causality (GC), was used to assess the effective brain networks during the different mental tasks. Moreover, the network measures, including degree, degree distribution, local and global efficiency in delta, theta, alpha, and beta rhythms were calculated and analyzed. The local efficiency is higher in the beta frequency and lower in the theta frequency during play task whereas the global efficiency is higher in the theta frequency and lower in the beta frequency in the rest task. This study reveals the network measures during different mental states and efficiency measures may be used as characteristic quantities for improvement in attentional performance.

  9. Individual musical tempo preference correlates with EEG beta rhythm.

    PubMed

    Bauer, Anna-Katharina R; Kreutz, Gunter; Herrmann, Christoph S

    2015-04-01

    Every individual has a preferred musical tempo, which peaks slightly above 120 beats per minute and is subject to interindividual variation. The preferred tempo is believed to be associated with rhythmic body movements as well as motor cortex activity. However, a long-standing question is whether preferred tempo is determined biologically. To uncover the neural correlates of preferred tempo, we first determined an individual's preferred tempo using a multistep procedure. Subsequently, we correlated the preferred tempo with a general EEG timing parameter as well as perceptual and motor EEG correlates-namely, individual alpha frequency, auditory evoked gamma band response, and motor beta activity. Results showed a significant relation between preferred tempo and the frequency of motor beta activity. These findings suggest that individual tempo preferences result from neural activity in the motor cortex, explaining the interindividual variation. Copyright © 2014 Society for Psychophysiological Research.

  10. Internal Medicine Physicians’ Perceptions Regarding Rate versus Rhythm Control for Atrial Fibrillation

    PubMed Central

    McCabe, James M.; Johnson, Colleen J; Marcus, Gregory M

    2011-01-01

    Atrial fibrillation (AF) is often managed by general internal medicine physicians. Available data suggest that guidelines regarding AF management are often not followed, but the reasons for this remain unknown. We sought to assess the knowledge and beliefs of internists regarding strategies to treat AF. We conducted a national electronic survey of internal medicine physicians regarding their perceptions of optimal AF management, with an emphasis on the rationale for choosing a rhythm or rate control strategy. One hundred and forty-eight physicians from 36 different states responded (representing at least 19% of unique e-mails opened). Half of the respondents reported managing their AF patients independently without referral to a cardiologist. Seventy-three percent of participants believe a rhythm control strategy conveys a decreased stroke risk, 64% believe there is a mortality benefit to rhythm control, and 55% think that it would help avoid long term anticoagulation. Comparing those who prefer a rhythm control strategy to everyone else, those who favor rhythm control statistically significantly more often believe that rhythm control reduces the risk for stroke (96% versus 67%, p=0.009) and that rhythm control allows for the discontinuation of anticoagulation therapy (76% versus 49%, p=0.045). In conclusion, contrary to available data in clinical trials and recent guidelines regarding the rationale for choosing a rhythm control strategy in treating AF, the majority of study participants believe that rhythm control decreases stroke risk, decreases mortality, and allows for discontinuation of anticoagulation therapy. These prevalent misconceptions may substantially contribute to guideline non-adherence. PMID:19195516

  11. Dissipative structures and biological rhythms

    NASA Astrophysics Data System (ADS)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  12. Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice.

    PubMed

    Sheward, W John; Maywood, Elizabeth S; French, Karen L; Horn, Jacqueline M; Hastings, Michael H; Seckl, Jonathan R; Holmes, Megan C; Harmar, Anthony J

    2007-04-18

    The master clock driving mammalian circadian rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and entrained by daily light/dark cycles. SCN lesions abolish circadian rhythms of behavior and result in a loss of synchronized circadian rhythms of clock gene expression in peripheral organs (e.g., the liver) and of hormone secretion (e.g., corticosterone). We examined rhythms of behavior, hepatic clock gene expression, and corticosterone secretion in VPAC2 receptor-null (Vipr2-/-) mice, which lack a functional SCN clock. Unexpectedly, although Vipr2-/- mice lacked robust circadian rhythms of wheel-running activity and corticosterone secretion, hepatic clock gene expression was strongly rhythmic, but advanced in phase compared with that in wild-type mice. The timing of food availability is thought to be an important entrainment signal for circadian clocks outside the SCN. Vipr2-/- mice consumed food significantly earlier in the 24 h cycle than wild-type mice, consistent with the observed timing of peripheral rhythms of circadian gene expression. When restricted to feeding only during the daytime (RF), mice develop rhythms of activity and of corticosterone secretion in anticipation of feeding time, thought to be driven by a food-entrainable circadian oscillator, located outside the SCN. Under RF, mice of both genotypes developed food-anticipatory rhythms of activity and corticosterone secretion, and hepatic gene expression rhythms also became synchronized to the RF stimulus. Thus, food intake is an effective zeitgeber capable of coordinating circadian rhythms of behavior, peripheral clock gene expression, and hormone secretion, even in the absence of a functional SCN clock.

  13. A timetable of 24-hour patterns for human lymphocyte subpopulations.

    PubMed

    Mazzoccoli, G; Sothern, R B; De Cata, A; Giuliani, F; Fontana, A; Copetti, M; Pellegrini, F; Tarquini, R

    2011-01-01

    Specific lymphocyte cell surface molecules involved in antigen recognition and cell activation present different circadian patterns, with peaks and troughs reflecting a specific time-related compartment of immune cell function. In order to study the dynamics of variation in expression of cytotoxic lymphocyte cell surface molecules that trigger immune responses, several lymphocyte cell surface clusters of differentiation (CD) and antigen receptors, analyses were performed on blood samples collected every 4 h for 24 h from eleven clinically-healthy men. Assays for serum melatonin (peaking at night) and cortisol (peaking near awakening) confirmed 24-h synchronization of the subjects to the light-dark schedule. A significant (p≤0.05) circadian rhythm could be demonstrated for six of the 10 lymphocyte subpopulations, with midday peaks for CD8+dim (T cytotoxic cells, 11:15 h), gammadeltaTCR (gamma-delta T cell receptor-expressing cells, 11:33 h), CD8+ (T suppressor/cytotoxic cells, 12:08 h), and for CD16+ (natural killer cells, 12:59 h), and peaks during the night for CD4+ (T helper/inducer cells, 01:23 h) and CD3+ (total T cells, 02:58 h). A borderline significant rhythm (p = 0.056) was also observed for CD20+ (total B cells), with a peak late in the evening (23:06 h). Acrophases for 3 subsets, CD8+bright (T suppressor cells, 15:22 h), HLA-DR+ (B cells and activated T cells, 23:06 h) and CD25+ (activated T lymphocytes with expression of the alpha chain of IL2 receptor, 23:35 h), where a 24-h rhythm could not be definitively determined, nevertheless provide information on the location of their highest values and possible physiological significance. Thus, specific lymphocyte surface molecules present distinctly-timed profiles of nyctohemeral changes that indicate a temporal (i.e., circadian) organization of cellular immune function, which is most likely of physiological significance in triggering and regulating immune responses. Such a molecular cytotoxic timetable can potentially serve as a guide to sampling during experimental, diagnostic, therapeutic and/or other medical procedures.

  14. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat.

    PubMed

    Solomon, Irene C; Chon, Ki H; Rodriguez, Melissa N

    2003-01-01

    Recent investigations have examined the influence of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in vitro using transverse medullary slice and en bloc brain stem-spinal cord preparations obtained from neonatal (1-5 days postnatal) mice. Gap junction proteins, however, have been identified in both neurons and glia in brain stem regions implicated in respiratory control in both neonatal and adult rodents. Here, we used an in vitro arterially perfused rat preparation to examine the role of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents. We recorded rhythmic inspiratory motor activity from one or both phrenic nerves before and during pharmacological blockade (i.e., uncoupling) of brain stem gap junctions using carbenoxolone (100 microM), 18alpha-glycyrrhetinic acid (25-100 microM), 18beta-glycyrrhetinic acid (25-100 microM), octanol (200-300 microM), or heptanol (200 microM). During perfusion with a gap junction uncoupling agent, we observed an increase in the frequency of phrenic bursts (~95% above baseline frequency; P < 0.001) and a decrease in peak amplitude of integrated phrenic nerve discharge (P < 0.001). The increase in frequency of phrenic bursts resulted from a decrease in both T(I) (P < 0.01) and T(E) (P < 0.01). In addition, the pattern of phrenic nerve discharge shifted from an augmenting discharge pattern to a "bell-shaped" or square-wave discharge pattern in most experiments. Spectral analyses using a fast Fourier transform (FFT) algorithm revealed a reduction in the peak power of both the 40- to 50-Hz peak (corresponding to the MFO) and 90- to 110-Hz peak (corresponding to the HFO) although spurious higher frequency activity (> or =130 Hz) was observed, suggesting an overall loss or reduction in inspiratory-phase synchronization. Although additional experiments are required to identify the specific brain stem regions and cell types (i.e., neurons, glia) mediating the observed modulations in phrenic motor output, these findings suggest that gap junction communication modulates generation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents in vitro.

  15. Do changes in subjective sleep and biological rhythms predict worsening in postpartum depressive symptoms? A prospective study across the perinatal period.

    PubMed

    Krawczak, Elizabeth M; Minuzzi, Luciano; Hidalgo, Maria Paz; Frey, Benicio N

    2016-08-01

    Abnormalities of sleep and biological rhythms have been widely implicated in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD). However, less is known about the influence of biological rhythm disruptions across the perinatal period on postpartum depression (PPD). The objective of this study was to prospectively evaluate the relationship between subjective changes in both sleep and biological rhythms and worsening of depressive symptoms from pregnancy to the postpartum period in women with and without mood disorders. Eighty-three participants (38 euthymic women with a history of a mood disorder and 45 healthy controls) were studied. Participants completed subjective assessments of sleep (Pittsburgh Sleep Quality Index), biological rhythm disturbances (Biological Rhythms Interview of Assessment in Neuropsychiatry), and depressive symptoms (Edinburgh Postnatal Depression Scale) prospectively at two time points: third trimester of pregnancy and at 6-12 weeks postpartum. Multivariate regression analyses showed that changes in biological rhythms across the perinatal period predicted worsening of depressive symptoms in both groups. Moreover, women with a history of a mood disorder showed higher levels of sleep and biological rhythm disruption during both pregnancy and the postpartum period. These findings suggest that disruptions in biological rhythms during the perinatal period increase the risk for postpartum mood worsening in healthy pregnant as well as in pregnant women with a history of mood disorders.

  16. Perceiving Speech Rhythm in Music: Listeners Classify Instrumental Songs According to Language of Origin

    ERIC Educational Resources Information Center

    Hannon, Eric E.

    2009-01-01

    Recent evidence suggests that the musical rhythm of a particular culture may parallel the speech rhythm of that culture's language (Patel, A. D., & Daniele, J. R. (2003). "An empirical comparison of rhythm in language and music." "Cognition, 87," B35-B45). The present experiments aimed to determine whether listeners actually perceive such rhythmic…

  17. Heterogeneity induces rhythms of weakly coupled circadian neurons

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Liang, Xiaoming; Yang, Huijie; Rohling, Jos H. T.

    2016-02-01

    The main clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms in mammals. The SCN is composed of approximately twenty thousand heterogeneous self-oscillating neurons, that have intrinsic periods varying from 22 h to 28 h. They are coupled through neurotransmitters and neuropeptides to form a network and output a uniform periodic rhythm. Previous studies found that the heterogeneity of the neurons leads to attenuation of the circadian rhythm with strong cellular coupling. In the present study, we investigate the heterogeneity of the neurons and of the network in the condition of constant darkness. Interestingly, we found that the heterogeneity of weakly coupled neurons enables them to oscillate and strengthen the circadian rhythm. In addition, we found that the period of the SCN network increases with the increase of the degree of heterogeneity. As the network heterogeneity does not change the dynamics of the rhythm, our study shows that the heterogeneity of the neurons is vitally important for rhythm generation in weakly coupled systems, such as the SCN, and it provides a new method to strengthen the circadian rhythm, as well as an alternative explanation for differences in free running periods between species in the absence of the daily cycle.

  18. Chronotype and circadian rhythm in bipolar disorder: A systematic review.

    PubMed

    Melo, Matias C A; Abreu, Rafael L C; Linhares Neto, Vicente B; de Bruin, Pedro F C; de Bruin, Veralice M S

    2017-08-01

    Despite a complex relationship between mood, sleep and rhythm, the impact of circadian disruptions on bipolar disorder (BD) has not been clarified. The purpose of this systematic review was to define current evidence regarding chronotype and circadian rhythm patterns in BD patients. 42 studies were included, involving 3432 BD patients. Disruption of the biological rhythm was identified, even in drug-naïve BD patients and independently of mood status. Daily profiles of melatonin levels and cortisol indicated a delayed phase. Depression was more frequently associated with circadian alterations than euthymia. Few studies evaluated mania, demonstrating irregular rhythms. Evening type was more common in BD adults. Studies about the influence of chronotype on depressive symptoms showed conflicting results. Only one investigation observed the influences of chronotype in mania, revealing no significant association. Effects of psychoeducation and lithium on rhythm in BD patients were poorly studied, demonstrating no improvement of rhythm parameters. Studies about genetics are incipient. In conclusion, disruption in circadian rhythm and eveningness are common in BD. Prospective research evaluating the impact of circadian disruption on mood symptoms, metabolism, seasonality, the influence of age and the effects of mood stabilizers are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Recent advances in rhythm control for atrial fibrillation

    PubMed Central

    Bond, Richard; Olshansky, Brian; Kirchhof, Paulus

    2017-01-01

    Atrial fibrillation (AF) remains a difficult management problem. The restoration and maintenance of sinus rhythm—rhythm control therapy—can markedly improve symptoms and haemodynamics for patients who have paroxysmal or persistent AF, but some patients fare well with rate control alone. Sinus rhythm can be achieved with anti-arrhythmic drugs or electrical cardioversion, but the maintenance of sinus rhythm without recurrence is more challenging. Catheter ablation of the AF triggers is more effective than anti-arrhythmic drugs at maintaining sinus rhythm. Whilst pulmonary vein isolation is an effective strategy, other ablation targets are being evaluated to improve sinus rhythm maintenance, especially in patients with chronic forms of AF. Previously extensive ablation strategies have been used for patients with persistent AF, but a recent trial has shown that pulmonary vein isolation without additional ablation lesions is associated with outcomes similar to those of more extensive ablation. This has led to an increase in catheter-based technology to achieve durable pulmonary vein isolation. Furthermore, a combination of anti-arrhythmic drugs and catheter ablation seems useful to improve the effectiveness of rhythm control therapy. Two large ongoing trials evaluate whether a modern rhythm control therapy can improve prognosis in patients with AF. PMID:29043080

  20. Statistical methods for detecting and comparing periodic data and their application to the nycthemeral rhythm of bodily harm: A population based study

    PubMed Central

    2010-01-01

    Background Animals, including humans, exhibit a variety of biological rhythms. This article describes a method for the detection and simultaneous comparison of multiple nycthemeral rhythms. Methods A statistical method for detecting periodic patterns in time-related data via harmonic regression is described. The method is particularly capable of detecting nycthemeral rhythms in medical data. Additionally a method for simultaneously comparing two or more periodic patterns is described, which derives from the analysis of variance (ANOVA). This method statistically confirms or rejects equality of periodic patterns. Mathematical descriptions of the detecting method and the comparing method are displayed. Results Nycthemeral rhythms of incidents of bodily harm in Middle Franconia are analyzed in order to demonstrate both methods. Every day of the week showed a significant nycthemeral rhythm of bodily harm. These seven patterns of the week were compared to each other revealing only two different nycthemeral rhythms, one for Friday and Saturday and one for the other weekdays. PMID:21059197

  1. Seasonal and daily plasma corticosterone rhythms in American toads, Bufo americanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pancak, M.K.; Taylor, D.H.

    1983-06-01

    Concentrations of corticosterone were measured in the plasma of American toads, Bufo americanus, on a seasonal basis using a radioimmunoassay technique. Two populations of toads, maintained under different light conditions, were monitored to observe the effects of photoperiod on the seasonal rhythm of plasma corticosterone. Under a natural photoperiod toads demonstrated a rhythm consisting of a spring peak and a fall peak in corticosterone concentration. Toads maintained under a 12L:12D photoperiod all year round demonstrated a similar rhythm with peaks in the spring and fall. This suggests that an endogenous (circannual) rhythm of corticosterone may be playing an important rolemore » in the seasonal change of overt behavior and physiology of Bufo americanus. A daily rhythm of corticosterone was also detected in toads when blood samples were taken every 4 hr. When compared to a previously published circadian rhythm study of locomotor activity, the surge in corticosterone concentration for the day occurred at 1730 just prior to the peak in locomotor activity.« less

  2. Cross-modal perception of rhythm in music and dance by cochlear implant users.

    PubMed

    Vongpaisal, Tara; Monaghan, Melanie

    2014-05-01

    Two studies examined adult cochlear implant (CI) users' ability to match auditory rhythms occurring in music to visual rhythms occurring in dance (Cha Cha, Slow Swing, Tango and Jive). In Experiment 1, adults CI users (n = 10) and hearing controls matched a music excerpt to choreographed dance sequences presented as silent videos. In Experiment 2, participants matched a silent video of a dance sequence to music excerpts. CI users were successful in detecting timing congruencies across music and dance at well above-chance levels suggesting that they were able to process distinctive auditory and visual rhythm patterns that characterized each style. However, they were better able to detect cross-modal timing congruencies when the reference was an auditory rhythm than when the reference was a visual rhythm. Learning strategies that encourage cross-modal learning of musical rhythms may have applications in developing novel rehabilitative strategies to enhance music perception and appreciation outcomes of child implant users.

  3. Affective Disruption from Social Rhythm and Behavioral Approach System (BAS) Sensitivities: A Test of the Integration of the Social Zeitgeber and BAS Theories of Bipolar Disorder.

    PubMed

    Boland, Elaine M; Stange, Jonathan P; Labelle, Denise R; Shapero, Benjamin G; Weiss, Rachel B; Abramson, Lyn Y; Alloy, Lauren B

    2016-05-01

    The Behavioral Approach System (BAS)/Reward Hypersensitivity Theory and the Social Zeitgeber Theory are two biopsychosocial theories of bipolar spectrum disorders (BSD) that may work together to explain affective dysregulation. The present study examined whether BAS sensitivity is associated with affective symptoms via a) increased social rhythm disruption in response to BAS-relevant life events, or b) greater exposure to BAS events leading to social rhythm disruption and subsequent symptoms. Results indicated that high BAS individuals were more likely to experience social rhythm disruption following BAS-relevant events. Social rhythm disruption mediated the association between BAS-relevant events and symptoms (hypothesis a). High BAS individuals experienced significantly more BAS-relevant events, which predicted greater social rhythm disruption, which predicted greater levels of affective symptoms (hypothesis b). Individuals at risk for BSD may be sensitive to BAS-relevant stimuli, experience more BAS-relevant events, and experience affective dysregulation due to the interplay of the BAS and circadian rhythms.

  4. [Semi-automatic defibrillators does not always interpret heart rhythms correctly. Five patients were defibrillated despite non-shockable rhythms].

    PubMed

    Wangenheim, Burkard; Israelsson, Johan; Lindstaedt, Michael; Carlsson, Jörg

    2015-08-04

    Automated external defibrillators (AED) have become an important part of the »the chain of survival« in case of sudden cardiac arrest (SCA), where early defibrillation is lifesaving. The American Heart Association demands that AEDs have a specificity of >99 % to recognize normal sinus rhythm and >95 % for the other non-shockable rhythms. Reports on their performance in the field are scarce. We present five cases in which AED recommended shock for apparently non-shockable rhythms. This indicates the necessity to systematically reevaluate AED performance.

  5. Circadian rhythms in Macaca mulatta monkeys during Bion 11 flight

    NASA Technical Reports Server (NTRS)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.; Tumurova, E. G.; Fuller, C. A.

    2000-01-01

    Circadian rhythms of primate brain temperature, head and ankle skin temperature, motor activity, and heart rate were studied during spaceflight and on the ground. In space, the circadian rhythms of all the parameters were synchronized with diurnal Zeitgebers. However, in space the brain temperature rhythm showed a significantly more delayed phase angle, which may be ascribed to an increase of the endogenous circadian period.

  6. The parathyroid hormone circadian rhythm is truly endogenous--a general clinical research center study

    NASA Technical Reports Server (NTRS)

    el-Hajj Fuleihan, G.; Klerman, E. B.; Brown, E. N.; Choe, Y.; Brown, E. M.; Czeisler, C. A.

    1997-01-01

    While circulating levels of PTH follow a diurnal pattern, it has been unclear whether these changes are truly endogenous or are dictated by external factors that themselves follow a diurnal pattern, such as sleep-wake cycles, light-dark cycles, meals, or posture. We evaluated the diurnal rhythm of PTH in 11 normal healthy male volunteers in our Intensive Physiologic Monitoring Unit. The first 36 h spent under baseline conditions were followed by 28-40 h of constant routine conditions (CR; enforced wakefulness in the strict semirecumbent position, with the consumption of hourly snacks). During baseline conditions, PTH levels followed a bimodal diurnal rhythm with an average amplitude of 4.2 pg/mL. A primary peak (t1max) occurred at 0314 h, and the secondary peak (t2max) occurred at 1726 h, whereas the primary and secondary nadirs (t1min and t2min) took place, on the average, at 1041 and 2103 h, respectively. This rhythm was preserved under CR conditions, albeit with different characteristics, thus confirming its endogenous nature. The serum ionized calcium (Cai) demonstrated a rhythm in 3 of the 5 subjects studied that varied widely between individuals and did not have any apparent relation to PTH. Urinary calcium/creatinine (UCa/Cr), phosphate/Cr (UPO4/Cr), and sodium/Cr (UNa/Cr) ratios all followed a diurnal rhythm during the baseline day. These rhythms persisted during the CR, although with different characteristics for the first two parameters, whereas that of UNa/Cr was unchanged. In general, the temporal pattern for the UCa/Cr curve was a mirror image of the PTH curve, whereas the UPO4/Cr pattern moved in parallel with the PTH curve. In conclusion, PTH levels exhibit a diurnal rhythm that persists during a CR, thereby confirming that a large component of this rhythm is an endogenous circadian rhythm. The clinical relevance of this rhythm is reflected in the associated rhythms of biological markers of PTH effect at the kidney, namely UCa/Cr and UPO4/Cr.

  7. What can we learn about beat perception by comparing brain signals and stimulus envelopes?

    PubMed

    Henry, Molly J; Herrmann, Björn; Grahn, Jessica A

    2017-01-01

    Entrainment of neural oscillations on multiple time scales is important for the perception of speech. Musical rhythms, and in particular the perception of a regular beat in musical rhythms, is also likely to rely on entrainment of neural oscillations. One recently proposed approach to studying beat perception in the context of neural entrainment and resonance (the "frequency-tagging" approach) has received an enthusiastic response from the scientific community. A specific version of the approach involves comparing frequency-domain representations of acoustic rhythm stimuli to the frequency-domain representations of neural responses to those rhythms (measured by electroencephalography, EEG). The relative amplitudes at specific EEG frequencies are compared to the relative amplitudes at the same stimulus frequencies, and enhancements at beat-related frequencies in the EEG signal are interpreted as reflecting an internal representation of the beat. Here, we show that frequency-domain representations of rhythms are sensitive to the acoustic features of the tones making up the rhythms (tone duration, onset/offset ramp duration); in fact, relative amplitudes at beat-related frequencies can be completely reversed by manipulating tone acoustics. Crucially, we show that changes to these acoustic tone features, and in turn changes to the frequency-domain representations of rhythms, do not affect beat perception. Instead, beat perception depends on the pattern of onsets (i.e., whether a rhythm has a simple or complex metrical structure). Moreover, we show that beat perception can differ for rhythms that have numerically identical frequency-domain representations. Thus, frequency-domain representations of rhythms are dissociable from beat perception. For this reason, we suggest caution in interpreting direct comparisons of rhythms and brain signals in the frequency domain. Instead, we suggest that combining EEG measurements of neural signals with creative behavioral paradigms is of more benefit to our understanding of beat perception.

  8. Impact of treatment crossovers on clinical outcomes in the rate and rhythm control strategies for atrial fibrillation: Insights from the AFFIRM (Atrial Fibrillation Follow-up Investigation of Rhythm Management) trial.

    PubMed

    Maan, Abhishek; Zhang, Zheng; Qin, Ziling; Wang, Yanbing; Dudley, Samuel; Dabhadakar, Kaustubh; Refaat, Marwan; Mansour, Moussa; Ruskin, Jeremy N; Heist, E Kevin

    2017-07-01

    We investigated the rates and reasons for crossover to alternative treatment strategies and its impact on mortality in patients who were enrolled in the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) trial. Over a mean follow-up period of 3.5 years, 842 patients underwent crossover to the alternative treatment arms in AFFIRM. The rate of crossover from rhythm to rate control (594/2,033, 29.2%) was more frequent than the rate of crossover from rate to rhythm control (248/2,027, 12.2%, P < 0.0001). The leading reasons for crossover from rhythm to rate control were failure to achieve or maintain sinus rhythm (272/594, 45.8%) and intolerable adverse effects (122/594, 20.5%). In comparison, the major reasons for crossover from rate to rhythm control were failure to control atrial fibrillation symptoms (159/248, 64.1%) and intolerable adverse effects (9/248, 3.6%). This difference in crossover pattern was statistically significant (P < 0.0001). There was a significantly decreased risk of all-cause mortality (adjusted HR: 0.61, 95% CI: 0.48-0.78, P < 0.0001) and cardiac mortality (adjusted hazard ratio [HR]: 0.61, 95% confidence interval [CI]: 0.43-0.88, P = 0.008) in the subgroup of patients who crossed over from rhythm to rate control as compared to those who continued in rhythm control. There was a nonsignificant trend toward decreased all-cause (adjusted HR: 0.76, 95% CI: 0.53-1.10, P = 0.14) and cardiac mortality (adjusted HR: 0.70, 95% CI: 0.42-1.18, P = 0.18) in patients who crossed over from rate to rhythm control as compared to those who continued rate control. © 2017 Wiley Periodicals, Inc.

  9. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior

    PubMed Central

    Pendergast, Julie S.; Branecky, Katrina L.; Huang, Roya; Niswender, Kevin D.; Yamazaki, Shin

    2014-01-01

    Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits. PMID:24624109

  10. Circadian changes in salivary constituents and conductivity in women and men.

    PubMed

    Atwood, C S; James, I R; Keil, U; Roberts, N K; Hartmann, P E

    1991-01-01

    Circadian rhythms in salivary [glucose], [Na+], [K+] and conductivity were measured in 2 age groups of men (men A, 20-45 years and men B, 46-60 years) and 8 different states of fertility in women (normally menstruating, taking oral contraceptives, pregnant, lactational amenorrhea, lactational amenorrhea and taking oral contraceptives, lactating and menstruating, menopausal, and post-menopausal). Unstimulated whole saliva (2-3 ml) was collected every 3 h over a 48 h span. Analysis of Spearman Rank Correlations indicated significant circadian rhythms (significant positive coefficients) for all groups of [Na+] (mean = 0.577 +/- 0.040) and conductivity (mean = 0.410 +/- 0.050). There was no evidence of differences in prominence of rhythm across groups for [Na+] and conductivity. [K+] showed less evidence of rhythms and much greater variability between groups (mean correlation coefficient = 0.198 +/- 0.055). Rhythms in [glucose] (mean correlation coefficient = 0.409 +/- 0.051) were evident in all groups except men B (0.016), menopausal women (0.151) and post-menopausal women (0.310). Model analysis of the data showed no discernible rhythmic trend with age for either conductivity, [Na+] or [K+], where any differences were explainable by the group characteristics. The rhythm in [glucose] showed a significant weakening with age over all groups (F-ratio = 7.46**), and was different between men A and men B (F-ratio = 6.95**). It was concluded that circadian rhythms were present in whole unstimulated saliva for conductivity and [Na+] and that these rhythms were independent of reproductive state, whereas circadian rhythms in [K+] were dependent on reproductive state. Circadian rhythms for [glucose] were dependent on age. The loss of a rhythm in [glucose] with age indicates that glucose, Na+ and K+ are not linked in their entry into saliva. The influence of entry and reabsorption on the final concentrations of glucose, Na+ and K+ in saliva is discussed.

  11. Circadian rhythms in human performance and mood under constant conditions

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Berga, S. L.; Jarrett, D. B.; Begley, A. E.; Kupfer, D. J.

    1997-01-01

    This study explored the relationship between circadian performance rhythms and rhythms in rectal temperature, plasma cortisol, plasma melatonin, subjective alertness and well-being. Seventeen healthy young adults were studied under 36 h of 'unmasking' conditions (constant wakeful bedrest, temporal isolation, homogenized 'meals') during which rectal temperatures were measured every minute, and plasma cortisol and plasma melatonin measured every 20 min. Hourly subjective ratings of global vigour (alertness) and affect (well-being) were obtained followed by one of two performance batteries. On odd-numbered hours performance (speed and accuracy) of serial search, verbal reasoning and manual dexterity tasks was assessed. On even-numbered hours, performance (% hits, response speed) was measured at a 25-30 min visual vigilance task. Performance of all tasks (except search accuracy) showed a significant time of day variation usually with a nocturnal trough close to the trough in rectal temperature. Performance rhythms appeared not to reliably differ with working memory load. Within subjects, predominantly positive correlations emerged between good performance and higher temperatures and better subjective alertness; predominantly negative correlations between good performance and higher plasma levels of cortisol and melatonin. Temperature and cortisol rhythms correlated with slightly more performance measures (5/7) than did melatonin rhythms (4/7). Global vigour correlated about as well with performance (5/7) as did temperature, and considerably better than global affect (1/7). In conclusion: (1) between-task heterogeneity in circadian performance rhythms appeared to be absent when the sleep/wake cycle was suspended; (2) temperature (positively), cortisol and melatonin (negatively) appeared equally good as circadian correlates of performance, and (3) subjective alertness correlated with performance rhythms as well as (but not better than) body temperature, suggesting that performance rhythms were not directly mediated by rhythms in subjective alertness.

  12. Circadian adaptations to meal timing: neuroendocrine mechanisms

    PubMed Central

    Patton, Danica F.; Mistlberger, Ralph E.

    2013-01-01

    Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is directly entrained by daily light-dark (LD) cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs) that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this system. PMID:24133410

  13. Neural underpinnings of music: the polyrhythmic brain.

    PubMed

    Vuust, Peter; Gebauer, Line K; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has the remarkable ability to move our minds and bodies. Why do certain rhythms make us want to tap our feet, bop our heads or even get up and dance? And how does the brain process rhythmically complex rhythms during our experiences of music? In this chapter, we describe some common forms of rhythmic complexity in music and propose that the theory of predictive coding can explain how rhythm and rhythmic complexity are processed in the brain. We also consider how this theory may reveal why we feel so compelled by rhythmic tension in music. First, musical-theoretical and neuroscientific frameworks of rhythm are presented, in which rhythm perception is conceptualized as an interaction between what is heard ('rhythm') and the brain's anticipatory structuring of music ('the meter'). Second, three different examples of tension between rhythm and meter in music are described: syncopation, polyrhythm and groove. Third, we present the theory of predictive coding of music, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain's Bayesian minimization of the error between the input to the brain and the brain's prior expectations. Fourth, empirical studies of neural and behavioral effects of syncopation, polyrhythm and groove will be reported, and we propose how these studies can be seen as special cases of the predictive coding theory. Finally, we argue that musical rhythm exploits the brain's general principles of anticipation and propose that pleasure from musical rhythm may be a result of such anticipatory mechanisms.

  14. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression.

    PubMed

    Smith, Spenser S; Dole, Neha S; Franceschetti, Tiziana; Hrdlicka, Henry C; Delany, Anne M

    2016-10-07

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3'-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Adolescents at clinical-high risk for psychosis: Circadian rhythm disturbances predict worsened prognosis at 1-year follow-up.

    PubMed

    Lunsford-Avery, Jessica R; Gonçalves, Bruno da Silva Brandão; Brietzke, Elisa; Bressan, Rodrigo A; Gadelha, Ary; Auerbach, Randy P; Mittal, Vijay A

    2017-11-01

    Individuals with psychotic disorders experience disruptions to both the sleep and circadian components of the sleep/wake cycle. Recent evidence has supported a role of sleep disturbances in emerging psychosis. However, less is known about how circadian rhythm disruptions may relate to psychosis symptoms and prognosis for adolescents with clinical high-risk (CHR) syndromes. The present study examines circadian rest/activity rhythms in CHR and healthy control (HC) youth to clarify the relationships among circadian rhythm disturbance, psychosis symptoms, psychosocial functioning, and the longitudinal course of illness. Thirty-four CHR and 32 HC participants were administered a baseline evaluation, which included clinical interviews, 5days of actigraphy, and a sleep/activity diary. CHR (n=29) participants were re-administered clinical interviews at a 1-year follow-up assessment. Relative to HC, CHR youth exhibited more fragmented circadian rhythms and later onset of nocturnal rest. Circadian disturbances (fragmented rhythms, low daily activity) were associated with increased psychotic symptom severity among CHR participants at baseline. Circadian disruptions (lower daily activity, rhythms that were more fragmented and/or desynchronized with the light/dark cycle) also predicted severity of psychosis symptoms and psychosocial impairment at 1-year follow-up among CHR youth. Circadian rhythm disturbances may represent a potential vulnerability marker for emergence of psychosis, and thus, rest/activity rhythm stabilization has promise to inform early-identification and prevention/intervention strategies for CHR youth. Future studies with longer study designs are necessary to further examine circadian rhythms in the prodromal period and rates of conversion to psychosis among CHR teens. Copyright © 2017. Published by Elsevier B.V.

  16. Development of cortisol circadian rhythm in infancy.

    PubMed

    de Weerth, Carolina; Zijl, Robbert H; Buitelaar, Jan K

    2003-08-01

    Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not agree on the age of appearance of the circadian rhythm (varying between 2 weeks till the age of 9 months) nor on whether it is related to the appearance of the sleep-wake circadian rhythm. The object of the present study was to find evidence of the age of appearance of the diurnal rhythm of cortisol and to compare the results obtained by several different analysis methods on a new data set. Cortisol was determined in salival samples of 14 normally developing infants who were followed monthly between the ages of 2 and 5 months. The data were analyzed with several previously published analysis methods as well as with Multilevel Analysis (Hierarchical Linear Modeling). The previously published analysis methods each produced different results when applied to the current data set. Moreover, our results indicate striking differences between young infants in both age of appearance and stability of the diurnal cortisol rhythm. Also, a link was found between the appearance of the sleep-wake circadian rhythm and the cortisol circadian rhythm. An important intraindividual variability in cortisol levels was found even after correcting for the different variables that affect cortisol (i.e. time of sampling, feeding, etc.). Although the choice of analysis method influences the age of appearance obtained, our use of HLM shows that the infants' own variability in onset and stability of the cortisol circadian rhythm greatly contributes to the different results.

  17. Local tidal regime dictates plasticity of expression of locomotor activity rhythms of American horseshoe crabs, Limulus polyphemus

    PubMed Central

    Anderson, Rebecca L.; Watson, Winsor H.; Chabot, Christopher C.

    2017-01-01

    While horseshoe crabs Limulus polyphemus from regions with two daily tides express endogenous circatidal (~ 12.4 h) activity rhythms, much less is known about locomotor rhythm expression in horseshoe crabs from other tidal regimes. This study investigated whether horseshoe crabs (1) always express activity rhythms consistent with their natural tides, and (2) can alter activity rhythm expression in response to novel tide cycles. Activity rhythms of animals from environments with two daily tides (Gulf of Maine, 43°6′ N/70°52′ W, and Massachusetts, 41°32′ N/70°40′W), one dominant daily tide (Apalachee Bay, Florida, 29°58′ N/84°20′ W), and microtides (Indian River Lagoon, Florida, 28°5′ N/80°35′ W) were recorded in 2011–2013 during three artificial tide conditions: no tides, a 12.4 h tidal cycle, and a 24.8 h tidal cycle. Interestingly, L. polyphemus from the microtidal site (n = 7) appeared “plastic” in their responses; they were able to express both bimodal and unimodal rhythms in response to different tide cycles. In contrast, the other two populations exhibited more fixed responses: regardless of the tides they were exposed to, animals from areas with one dominant daily tide (n = 18) consistently expressed unimodal rhythms, while those from areas with two daily tides (n = 28) generally expressed bimodal rhythms. Rhythms expressed by L. polyphemus thus appear to be a function of endogenous clocks, the tidal cues to which animals are exposed, and tidal cues that animals experience throughout ontogeny. PMID:29051673

  18. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression*

    PubMed Central

    Smith, Spenser S.; Dole, Neha S.; Franceschetti, Tiziana; Hrdlicka, Henry C.; Delany, Anne M.

    2016-01-01

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3′-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling. PMID:27551048

  19. I got rhythm: Gershwin and birth control in the 1930s.

    PubMed

    Viterbo, Paula

    2004-03-01

    Gershwin's song 'I Got Rhythm' serves here as a backdrop representing the social context of the inter-war years. On center stage is a particular aspect of the history of birth control--the application of a new theory of ovulation to contraception. Starting in 1928, a series of experiments revealed a biochemical rhythm in the female reproductive cycle, which contradicted the widespread idea that ovulation and pregnancy could occur at any time. This discovery was applied to a new contraceptive method, the rhythm method, which enjoyed significant popularity during the 1930s, especially among Catholics. For a short period, women could join Ethel Merman in the refrain 'I got rhythm, I got my man, who could ask for anything more?' But the rhythm method has not lived to its promise, and the play goes on em leader

  20. Daily Fasting Blood Glucose Rhythm in Male Mice: A Role of the Circadian Clock in the Liver.

    PubMed

    Ando, Hitoshi; Ushijima, Kentaro; Shimba, Shigeki; Fujimura, Akio

    2016-02-01

    Fasting blood glucose (FBG) and hepatic glucose production are regulated according to a circadian rhythm. An early morning increase in FBG levels, which is pronounced among diabetic patients, is known as the dawn phenomenon. Although the intracellular circadian clock generates various molecular rhythms, whether the hepatic clock is involved in FBG rhythm remains unclear. To address this issue, we investigated the effects of phase shift and disruption of the hepatic clock on the FBG rhythm. In both C57BL/6J and diabetic ob/ob mice, FBG exhibited significant daily rhythms with a peak at the beginning of the dark phase. Light-phase restricted feeding altered the phase of FBG rhythm mildly in C57BL/6J mice and greatly in ob/ob mice, in concert with the phase shifts of mRNA expression rhythms of the clock and glucose production-related genes in the liver. Moreover, the rhythmicity of FBG and Glut2 expression was not detected in liver-specific Bmal1-deficient mice. Furthermore, treatment with octreotide suppressed the plasma growth hormone concentration but did not affect the hepatic mRNA expression of the clock genes or the rise in FBG during the latter half of the resting phase in C57BL/6J mice. These results suggest that the hepatic circadian clock plays a critical role in regulating the daily FBG rhythm, including the dawn phenomenon.

  1. Computer-based rhythm diagnosis and its possible influence on nonexpert electrocardiogram readers.

    PubMed

    Hakacova, Nina; Trägårdh-Johansson, Elin; Wagner, Galen S; Maynard, Charles; Pahlm, Olle

    2012-01-01

    Systems providing computer-based analysis of the resting electrocardiogram (ECG) seek to improve the quality of health care by providing accurate and timely automatic diagnosis of, for example, cardiac rhythm to clinicians. The accuracy of these diagnoses, however, remains questionable. We tested the hypothesis that (a) 2 independent automated ECG systems have better accuracy in rhythm diagnosis than nonexpert clinicians and (b) both systems provide correct diagnostic suggestions in a large percentage of cases where the diagnosis of nonexpert clinicians is incorrect. Five hundred ECGs were manually analyzed by 2 senior experts, 3 nonexpert clinicians, and automatically by 2 automated systems. The accuracy of the nonexpert rhythm statements was compared with the accuracy of each system statement. The proportion of rhythm statements when the clinician's diagnoses were incorrect and the systems instead provided correct diagnosis was assessed. A total of 420 sinus rhythms and 156 rhythm disturbances were recognized by expert reading. Significance of the difference in accuracy between nonexperts and systems was P = .45 for system A and P = .11 for system B. The percentage of correct automated diagnoses in cases when the clinician was incorrect was 28% ± 10% for system A and 25% ± 11% for system B (P = .09). The rhythm diagnoses of automated systems did not reach better average accuracy than those of nonexpert readings. The computer diagnosis of rhythm can be incorrect in cases where the clinicians fail in reaching the correct ECG diagnosis. Copyright © 2012. Published by Elsevier Inc.

  2. Visual Enhancement of Illusory Phenomenal Accents in Non-Isochronous Auditory Rhythms

    PubMed Central

    2016-01-01

    Musical rhythms encompass temporal patterns that often yield regular metrical accents (e.g., a beat). There have been mixed results regarding perception as a function of metrical saliency, namely, whether sensitivity to a deviant was greater in metrically stronger or weaker positions. Besides, effects of metrical position have not been examined in non-isochronous rhythms, or with respect to multisensory influences. This study was concerned with two main issues: (1) In non-isochronous auditory rhythms with clear metrical accents, how would sensitivity to a deviant be modulated by metrical positions? (2) Would the effects be enhanced by multisensory information? Participants listened to strongly metrical rhythms with or without watching a point-light figure dance to the rhythm in the same meter, and detected a slight loudness increment. Both conditions were presented with or without an auditory interference that served to impair auditory metrical perception. Sensitivity to a deviant was found greater in weak beat than in strong beat positions, consistent with the Predictive Coding hypothesis and the idea of metrically induced illusory phenomenal accents. The visual rhythm of dance hindered auditory detection, but more so when the latter was itself less impaired. This pattern suggested that the visual and auditory rhythms were perceptually integrated to reinforce metrical accentuation, yielding more illusory phenomenal accents and thus lower sensitivity to deviants, in a manner consistent with the principle of inverse effectiveness. Results were discussed in the predictive framework for multisensory rhythms involving observed movements and possible mediation of the motor system. PMID:27880850

  3. Bezafibrate, a peroxisome proliferator-activated receptors agonist, decreases body temperature and enhances electroencephalogram delta-oscillation during sleep in mice.

    PubMed

    Chikahisa, Sachiko; Tominaga, Kumiko; Kawai, Tomoko; Kitaoka, Kazuyoshi; Oishi, Katsutaka; Ishida, Norio; Rokutan, Kazuhito; Séi, Hiroyoshi

    2008-10-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor family. PPARs play a critical role in lipid and glucose metabolism. We examined whether chronic treatment with bezafibrate, a PPAR agonist, would alter sleep and body temperature (BT). Mice fed with a control diet were monitored for BT, electroencephalogram (EEG), and electromyogram for 48 h under light-dark conditions. After obtaining the baseline recording, the mice were provided with bezafibrate-supplemented food for 2 wk, after which the same recordings were performed. Two-week feeding of bezafibrate decreased BT, especially during the latter half of the dark period. BT rhythm and sleep/wake rhythm were phase advanced about 2-3 h by bezafibrate treatment. Bezafibrate treatment also increased the EEG delta-power in nonrapid eye movement sleep compared with the control diet attenuating its daily amplitude. Furthermore, bezafibrate-treated mice showed no rebound of EEG delta-power in nonrapid eye movement sleep after 6 h sleep deprivation, whereas values in control mice largely increased relative to baseline. DNA microarray, and real-time RT-PCR analysis showed that bezafibrate treatment increased levels of Neuropeptide Y mRNA in the hypothalamus at both Zeitgeber time (ZT) 10 and ZT22, and decreased proopiomelanocortin-alpha mRNA in the hypothalamus at ZT10. These findings demonstrate that PPARs participate in the control of both BT and sleep regulation, which accompanied changes in gene expression in the hypothalamus. Activation of PPARs may enhance deep sleep and improve resistance to sleep loss.

  4. From Biological Rhythms to Social Rhythms: Physiological Precursors of Mother-Infant Synchrony

    ERIC Educational Resources Information Center

    Feldman, Ruth

    2006-01-01

    Links between neonatal biological rhythms and the emergence of interaction rhythms were examined in 3 groups (N=71): high-risk preterms (HR; birth weight less than 1,000 g), low-risk preterms (LR; birth weight=1,700-1,850 g), and full-term (FT) infants. Once a week for premature infants and on the 2nd day for FT infants, sleep-wake cyclicity was…

  5. Acquisition of speech rhythm in first language.

    PubMed

    Polyanskaya, Leona; Ordin, Mikhail

    2015-09-01

    Analysis of English rhythm in speech produced by children and adults revealed that speech rhythm becomes increasingly more stress-timed as language acquisition progresses. Children reach the adult-like target by 11 to 12 years. The employed speech elicitation paradigm ensured that the sentences produced by adults and children at different ages were comparable in terms of lexical content, segmental composition, and phonotactic complexity. Detected differences between child and adult rhythm and between rhythm in child speech at various ages cannot be attributed to acquisition of phonotactic language features or vocabulary, and indicate the development of language-specific phonetic timing in the course of acquisition.

  6. Sense of rhythm does not differentiate professional hurdlers from non-athletes.

    PubMed

    Skowronek, Tomasz; Słomka, Kajetan; Juras, Grzegorz; Szade, Bartlomiej

    2013-08-01

    The importance of rhythm and specific endurance capabilities were examined in the technical skill and performance of hurdle runners. Additionally, interaction effects among rhythm, anaerobic fitness, and body constitution were analyzed. Seven 18-year-old members of the Polish Junior National Team in 110 m hurdles and 8 age-matched controls who were non-athletes participated. Movement coordination tests (rhythm and differentiation tests) and an anaerobic fitness test were performed. There were no statistically significant differences between the athletes and the control group on the coordination or rhythm test variables. No support was found for the hypothesis that a hurdler's timing ability influences performance.

  7. Neurospora circadian rhythms in space - A reexamination of the endogenous-exogenous question

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Ellman, D.; Wassmer, G.; Fuller, C. A.; Moore-Ede, M.

    1984-01-01

    To test the functioning of circadian rhythms removed from periodicities of the earth's 24-hour rotation, the conidiation rhythm of the fungus Neurospora crassa was monitored in constant darkness during spaceflight. The free-running period of the rhythm was the same in space as on the earth, but there was a marked reduction in the clarity of the rhythm, and apparent arrhythmicity in some tubes. At the current stage of analysis of the results there is insufficient evidence to determine whether the effect seen in space was related to removal from 24-hour periodicities and whether the circadian timekeeping mechanism, or merely its expression, was affected.

  8. 'In a dark place, we find ourselves': light intensity in critical care units.

    PubMed

    Durrington, Hannah J; Clark, Richard; Greer, Ruari; Martial, Franck P; Blaikley, John; Dark, Paul; Lucas, Robert J; Ray, David W

    2017-12-01

    Intensive care units provide specialised care for critically ill patients around the clock. However, intensive care unit patients have disrupted circadian rhythms. Furthermore, disrupted circadian rhythms are associated with worse outcome. As light is the most powerful 're-setter' of circadian rhythm, we measured light intensity on intensive care unit. Light intensity was low compared to daylight during the 'day'; frequent bright light interruptions occurred over 'night'. These findings are predicted to disrupt circadian rhythms and impair entrainment to external time. Bright lighting during daytime and black out masks at night might help maintain biological rhythms in critically ill patients and improve clinical outcomes.

  9. Biological Clocks. Testing Our Internal Timing.

    ERIC Educational Resources Information Center

    Jones, M. Gail

    1991-01-01

    Presented are seven investigations that examine circadian rhythms. Topics include attention span, body temperature, rhythms found in rodents and spiders, and possible genetic determination of circadian rhythms. Background information on plants and animals is given. (KR)

  10. Musical rhythm and reading development: does beat processing matter?

    PubMed

    Ozernov-Palchik, Ola; Patel, Aniruddh D

    2018-05-20

    There is mounting evidence for links between musical rhythm processing and reading-related cognitive skills, such as phonological awareness. This may be because music and speech are rhythmic: both involve processing complex sound sequences with systematic patterns of timing, accent, and grouping. Yet, there is a salient difference between musical and speech rhythm: musical rhythm is often beat-based (based on an underlying grid of equal time intervals), while speech rhythm is not. Thus, the role of beat-based processing in the reading-rhythm relationship is not clear. Is there is a distinct relation between beat-based processing mechanisms and reading-related language skills, or is the rhythm-reading link entirely due to shared mechanisms for processing nonbeat-based aspects of temporal structure? We discuss recent evidence for a distinct link between beat-based processing and early reading abilities in young children, and suggest experimental designs that would allow one to further methodically investigate this relationship. We propose that beat-based processing taps into a listener's ability to use rich contextual regularities to form predictions, a skill important for reading development. © 2018 New York Academy of Sciences.

  11. The Metronome of Symbiosis: Interactions Between Microbes and the Host Circadian Clock.

    PubMed

    Heath-Heckman, Elizabeth A C

    2016-11-01

    The entrainment of circadian rhythms, physiological cycles with a period of about 24 h, is regulated by a variety of mechanisms, including nonvisual photoreception. While circadian rhythms have been shown to be integral to many processes in multicellular organisms, including immune regulation, the effect of circadian rhythms on symbiosis, or host-microbe interactions, has only recently begun to be studied. This review summarizes recent work in the interactions of both pathogenic and mutualistic associations with host and symbiont circadian rhythms, focusing specifically on three mutualistic systems in which this phenomenon has been best studied. One important theme taken from these studies is the fact that mutualisms are profoundly affected by the circadian rhythms of the host, but that the microbial symbionts in these associations can, in turn, manipulate host rhythms. The interplay between circadian rhythms and symbiosis is a promising new field with effects that should be kept in mind when designing future studies across biology. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Phenotypic and Genetic Analysis of Clock, a New Circadian Rhythm Mutant in Drosophila Melanogaster

    PubMed Central

    Dushay, M. S.; Konopka, R. J.; Orr, D.; Greenacre, M. L.; Kyriacou, C. P.; Rosbash, M.; Hall, J. C.

    1990-01-01

    Clock is a semidominant X-linked mutation that results in shortening the period of Drosophila melanogaster's free-running locomotor activity rhythm from ca. 24.0 to ca. 22.5 hr. This mutation similarly shortened the phase response curve, determined by resetting activity rhythms with light pulses. Eclosion peaks for Clk cultures were separated by only 22.5 hr instead of the normal 24 hr. Clk was mapped close to, but separable from, another rhythm mutation--period(01)--by recombination. The estimated distance between these two mutations was short enough to suggest that Clk could be a per allele. If this is the case, the new mutant is unique in that it, unlike other per variants, is associated with essentially normal 1-min courtship song rhythms when Clk is expressed in males. Also, the new rhythm variant could not, in contrast to a short-period per mutation, have its effects on free-running activity rhythms uncovered by deletions. This result, and the lack of coverage of Clk's effects by duplications, suggest that it is not a simple hypomorphic or amorphic mutation. PMID:2116357

  13. Rostral dorsolateral pontine neurons with sympathetic nerve-related activity.

    PubMed

    Barman, S M; Gebber, G L; Kitchens, H

    1999-02-01

    Spike-triggered averaging, arterial pulse-triggered analysis, and coherence analysis were used to classify rostral dorsolateral pontine (RDLP) neurons into groups whose naturally occurring discharges were correlated to only the 10-Hz rhythm (n = 29), to only the cardiac-related rhythm (n = 15), and to both rhythms (n = 15) in inferior cardiac sympathetic nerve discharge (SND) of urethan-anesthetized cats. Most of the neurons with activity correlated to only the cardiac-related rhythm were located medial to the other two groups of neurons. The firing rates of most RDLP neurons with activity correlated to only the 10-Hz rhythm (9 of 12) or both rhythms (7 of 8) were decreased during baroreceptor reflex-induced inhibition of SND produced by aortic obstruction; thus, they are presumed to be sympathoexcitatory. The firing rates of four of seven RDLP neurons with activity correlated to only the cardiac-related rhythm increased during baroreceptor reflex activation; thus, they may be sympathoinhibitory. We conclude that the RDLP contains a functionally heterogeneous population of neurons with sympathetic nerve-related activity. These neurons could not be antidromically activated by stimulation of the thoracic spinal cord.

  14. Affective Disruption from Social Rhythm and Behavioral Approach System (BAS) Sensitivities: A Test of the Integration of the Social Zeitgeber and BAS Theories of Bipolar Disorder

    PubMed Central

    Boland, Elaine M.; Stange, Jonathan P.; Labelle, Denise R.; Shapero, Benjamin G.; Weiss, Rachel B.; Abramson, Lyn Y.; Alloy, Lauren B.

    2015-01-01

    The Behavioral Approach System (BAS)/Reward Hypersensitivity Theory and the Social Zeitgeber Theory are two biopsychosocial theories of bipolar spectrum disorders (BSD) that may work together to explain affective dysregulation. The present study examined whether BAS sensitivity is associated with affective symptoms via a) increased social rhythm disruption in response to BAS-relevant life events, or b) greater exposure to BAS events leading to social rhythm disruption and subsequent symptoms. Results indicated that high BAS individuals were more likely to experience social rhythm disruption following BAS-relevant events. Social rhythm disruption mediated the association between BAS-relevant events and symptoms (hypothesis a). High BAS individuals experienced significantly more BAS-relevant events, which predicted greater social rhythm disruption, which predicted greater levels of affective symptoms (hypothesis b). Individuals at risk for BSD may be sensitive to BAS-relevant stimuli, experience more BAS-relevant events, and experience affective dysregulation due to the interplay of the BAS and circadian rhythms. PMID:27429864

  15. Addressing the controversy of rate-versus-rhythm control in atrial fibrillation.

    PubMed

    Contractor, Tahmeed; Levin, Vadim; Desai, Ravi; Marchlinski, Francis E

    2013-09-01

    Atrial fibrillation is the most common sustained cardiac arrhythmia and significantly increases patient risk of stroke, cardiomyopathy, and mortality. Rate versus rhythm control as the "best" treatment strategy remains an issue of considerable, ongoing debate. A multitude of clinical trials have compared the 2 strategies and have not shown any benefit of one approach over the other. However, the trials were conducted in specific subgroups of patients and demonstrated low success rates with antiarrhythmic drug (AAD) therapy and a high incidence of adverse AAD effects. Sub-analyses of the trials have confirmed that successful rhythm control with sinus rhythm restoration is associated with a significant reduction in patient mortality. More recently, radiofrequency ablation (RFA) has emerged as a relatively effective procedure for maintaining sinus rhythm compared with use of AADs. Prospective randomized studies have shown good treatment results after the use of RFA, with acceptable risk. Given the limitation of pharmacologic rate versus rhythm control studies, and the promise of RFA, rhythm control should again be reconsidered as the "best" approach for managing many subgroups of patients with atrial fibrillation.

  16. Circadian rhythms and the effects of long-distance flights.

    DOT National Transportation Integrated Search

    1968-01-01

    Air travelers crossing four or more time zones experience significant desynchronization of certain daily biologic rhythms. Until rephasing of the rhythms occurs relative to the solar cycle at the destination, some subjective discomfort and disruption...

  17. In the darkness of the polar night, scallops keep on a steady rhythm

    NASA Astrophysics Data System (ADS)

    Tran, Damien; Sow, Mohamedou; Camus, Lionel; Ciret, Pierre; Berge, Jorgen; Massabuau, Jean-Charles

    2016-08-01

    Although the prevailing paradigm has held that the polar night is a period of biological quiescence, recent studies have detected noticeable activity levels in marine organisms. In this study, we investigated the circadian rhythm of the scallop Chlamys islandica by continuously recording the animal’s behaviour over 3 years in the Arctic (Svalbard). Our results showed that a circadian rhythm persists throughout the polar night and lasts for at least 4 months. Based on observations across three polar nights, we showed that the robustness and synchronicity of the rhythm depends on the angle of the sun below the horizon. The weakest rhythm occurred at the onset of the polar night during the nautical twilight. Surprisingly, the circadian behaviour began to recover during the darkest part of the polar night. Because active rhythms optimize the fitness of an organism, our study brings out that the scallops C. islandica remain active even during the polar night.

  18. Aging human circadian rhythms: conventional wisdom may not always be right

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    2005-01-01

    This review discusses the ways in which the circadian rhythms of older people are different from those of younger adults. After a brief discussion of clinical issues, the review describes the conventional wisdom regarding age-related changes in circadian rhythms. These can be summarized as four assertions regarding what happens to people as they get older: 1) the amplitude of their circadian rhythms reduces, 2) the phase of their circadian rhythms becomes earlier, 3) their natural free-running period (tau) shortens, and 4) their ability to tolerate abrupt phase shifts (e.g., from jet travel or night work) worsens. The review then discusses the empirical evidence for and against these assertions and discusses some alternative explanations. The conclusions are that although older people undoubtedly have earlier circadian phases than younger adults, and have more trouble coping with shift work and jet lag, evidence for the assertions about rhythm amplitude and tau are, at best, mixed.

  19. Daily rhythmicity of glycemia in four species of domestic animals under various feeding regimes.

    PubMed

    Piccione, Giuseppe; Fazio, Francesco; Caola, Giovanni; Refinetti, Roberto

    2008-08-01

    Daily rhythmicity of physiological processes has been described for numerous variables in numerous species. A major source of this rhythmicity is a circadian pacemaker located in the mammalian hypothalamus, but very little is known about how the pacemaker generates the multiplicity of bodily rhythms. Research on rats has shown that the rhythm of blood glucose concentration is not a mere consequence of the rhythm of food ingestion, but is rather generated directly by the pacemaker. In this study, we investigated the rhythm of blood glucose concentration in four different species of domestic animals under four different feeding regimes. Our results suggest that, as in rats, the rhythm of blood glucose concentration is not a mere consequence of the rhythm of food ingestion in sheep and cattle. In dogs and horses, however, the rhythmicity of blood glucose concentration seems to be contingent on the presence of a feeding regime.

  20. Renal electrolyte circadian rhythms - Independence from feeding and activity patterns

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Herd, J. A.

    1977-01-01

    Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.

  1. Interactions between thalamic and cortical rhythms during semantic memory recall in human

    NASA Astrophysics Data System (ADS)

    Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.

    2002-04-01

    Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.

  2. [Quantitative evaluation of inhibitory effects of epileptic spikes on theta rhythms in the network of hippocampal CA3 and entorhinal cortex in patients with temporal lobe epilepsy].

    PubMed

    Ge, Man-Ling; Guo, Jun-Dan; Chen, Sheng-Hua; Zhang, Ji-Chang; Fu, Xiao-Xuan; Chen, Yu-Min

    2017-02-25

    Epileptic spike is an indicator of hyper-excitability and hyper-synchrony in the neural networks. The inhibitory effects of spikes on theta rhythms (4-8 Hz) might be helpful to understand the mechanism of epileptic damage on the cognitive functions. To quantitatively evaluate the inhibitory effects of spikes on theta rhythms, intracerebral electroencephalogram (EEG) recordings with both sporadic spikes (SSs) and spike-free transient period between adjacent spikes were selected in 4 patients in the status of rapid eyes movement (REM) sleep with temporal lobe epilepsy (TLE) under the pre-surgical monitoring. The electrodes of hippocampal CA3 and entorhinal cortex (EC) were employed, since CA3 and EC built up one of key loops to investigate cognition and epilepsy. These SSs occurred only in CA3, only in EC, or in both CA3 and EC synchronously. Theta power was respectively estimated around SSs and during the spike-free transient period by Gabor wavelet transform and Hilbert transform. The intermittent extent was then estimated to represent for the loss of theta rhythms during the spike-free transient period. The following findings were obtained: (1) The prominent rhythms were in theta frequency band; (2) The spikes could transiently reduce theta power, and the inhibitory effect was severer around SSs in both CA3 and EC synchronously than that around either SSs only in EC or SSs only in CA3; (3) During the spike-free transient period, theta rhythms were interrupted with the intermittent theta rhythms left and theta power level continued dropping, implying the inhibitory effect was sustained. Additionally, the intermittent extent of theta rhythms was converged to the inhibitory extent around SSs; (4) The average theta power level during the spike-free transient period might not be in line with the inhibitory extent of theta rhythms around SSs. It was concluded that the SSs had negative effects on theta rhythms transiently and directly, the inhibitory effects aroused by SSs sustained during the spike-free transient period and were directly related to the intermittent extent. It was indicated that the loss of theta rhythms might qualify exactly the sustained inhibitory effects on theta rhythms aroused by spikes in EEG. The work provided an argumentation about the relationship between the transient negative impact of interictal spike and the loss of theta rhythms during spike-free activity for the first time, offered an intuitive methodology to estimate the inhibitory effect of spikes by EEG, and might be helpful to the analysis of EEG rhythms based on local field potentials (LFPs) in deep brain.

  3. Development of Mu Rhythm in Infants and Preschool Children

    PubMed Central

    Berchicci, M.; Zhang, T.; Romero, L.; Peters, A.; Annett, R.; Teuscher, U.; Bertollo, M.; Okada, Y.; Stephen, J.; Comani, S.

    2011-01-01

    Mu rhythm is an idling rhythm that originates in the sensorimotor cortex during rest. The frequency of mu rhythm, which is well established in adults, is 8–12 Hz, whereas the limited results available from children suggest a frequency as low as 5.4 Hz at 6 months of age, which gradually increases to the adult value. Understanding the normal development of mu rhythm has important theoretical and clinical implications since we still know very little about this signal in infants and how it develops with age. We measured mu rhythm over the left hemisphere using a pediatric magnetoencephalography (MEG) system in 25 infants (11–47 weeks), 18 preschool children (2–5 years) and 6 adults (20–39 years) for two 5-min sessions during two intermixed conditions: a rest condition in which the hands were at rest, and a prehension condition in which the subject squeezed a pipette with his/her right hand. In all participants, mu rhythm was present over the frontoparietal area during the rest condition, but was clearly suppressed during the prehension condition. Mu rhythm peak frequency, determined from the amplitude spectra, increased rapidly as a function of age from 2.75 Hz at 11 weeks to 8.25 Hz at 47 weeks (r2 = 0.83). It increased very slowly during the preschool period (3.1 ± 0.9 years; 8.5 ± 0.54 Hz). The frequency in these children was, however, lower than in adults (10.3 ± 1.2 Hz). Our results show a rapid maturation in spontaneous mu rhythm during the first year of life. PMID:21778699

  4. Circadian rhythm of urinary potassium excretion during treatment with an angiotensin receptor blocker.

    PubMed

    Ogiyama, Yoshiaki; Miura, Toshiyuki; Watanabe, Shuichi; Fuwa, Daisuke; Tomonari, Tatsuya; Ota, Keisuke; Kato, Yoko; Ichikawa, Tadashi; Shirasawa, Yuichi; Ito, Akinori; Yoshida, Atsuhiro; Fukuda, Michio; Kimura, Genjiro

    2014-12-01

    We have reported that the circadian rhythm of urinary potassium excretion (U(K)V) is determined by the rhythm of urinary sodium excretion (U(Na)V) in patients with chronic kidney disease (CKD). We also reported that treatment with an angiotensin receptor blocker (ARB) increased the U(Na)V during the daytime, and restored the non-dipper blood pressure (BP) rhythm into a dipper pattern. However, the circadian rhythm of U(K)V during ARB treatment has not been reported. Circadian rhythms of U(Na)V and U(K)V were examined in 44 patients with CKD undergoing treatment with ARB. Whole-day U(Na)V was not altered by ARB whereas whole-day U(K)V decreased. Even during the ARB treatment, the significant relationship persisted between the night/day ratios of U(Na)V and U(K)V (r=0.56, p<0.0001). Whole-day U(K)V/U(Na)V ratio (p=0.0007) and trans-tubular potassium concentration gradient (p=0.002) were attenuated but their night/day ratios remained unchanged. The change in the night/day U(K)V ratio correlated directly with the change in night/day U(Na)V ratio (F=20.4) rather than with the changes in aldosterone, BP or creatinine clearance. The circadian rhythm of U(K)V was determined by the rhythm of UNaV even during ARB treatment. Changes in the circadian U(K)V rhythm were not determined by aldosterone but by U(Na)V. © The Author(s) 2013.

  5. Forecasting models for sugi (Cryptomeria japonica D. Don) pollen count showing an alternate dispersal rhythm.

    PubMed

    Ito, Yukiko; Hattori, Reiko; Mase, Hiroki; Watanabe, Masako; Shiotani, Itaru

    2008-12-01

    Pollen information is indispensable for allergic individuals and clinicians. This study aimed to develop forecasting models for the total annual count of airborne pollen grains based on data monitored over the last 20 years at the Mie Chuo Medical Center, Tsu, Mie, Japan. Airborne pollen grains were collected using a Durham sampler. Total annual pollen count and pollen count from October to December (OD pollen count) of the previous year were transformed to logarithms. Regression analysis of the total pollen count was performed using variables such as the OD pollen count and the maximum temperature for mid-July of the previous year. Time series analysis revealed an alternate rhythm of the series of total pollen count. The alternate rhythm consisted of a cyclic alternation of an "on" year (high pollen count) and an "off" year (low pollen count). This rhythm was used as a dummy variable in regression equations. Of the three models involving the OD pollen count, a multiple regression equation that included the alternate rhythm variable and the interaction of this rhythm with OD pollen count showed a high coefficient of determination (0.844). Of the three models involving the maximum temperature for mid-July, those including the alternate rhythm variable and the interaction of this rhythm with maximum temperature had the highest coefficient of determination (0.925). An alternate pollen dispersal rhythm represented by a dummy variable in the multiple regression analysis plays a key role in improving forecasting models for the total annual sugi pollen count.

  6. Temporal coherence of phenological and climatic rhythmicity in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoqiu; Zhang, Weiqi; Ren, Shilong; Lang, Weiguang; Liang, Boyi; Liu, Guohua

    2017-10-01

    Using woody plant phenological data in the Beijing Botanical Garden from 1979 to 2013, we revealed three levels of phenology rhythms and examined their coherence with temperature rhythms. First, the sequential and correlative rhythm shows that occurrence dates of various phenological events obey a certain time sequence within a year and synchronously advance or postpone among years. The positive correlation between spring phenophase dates is much stronger than that between autumn phenophase dates and attenuates as the time interval between two spring phenophases increases. This phenological rhythm can be explained by positive correlation between above 0 °C mean temperatures corresponding to different phenophase dates. Second, the circannual rhythm indicates that recurrence interval of a phenophase in the same species in two adjacent years is about 365 days, which can be explained by the 365-day recurrence interval in the first and last dates of threshold temperatures. Moreover, an earlier phenophase date in the current year may lead to a later phenophase date in the next year through extending recurrence interval. Thus, the plant phenology sequential and correlative rhythm and circannual rhythm are interacted, which mirrors the interaction between seasonal variation and annual periodicity of temperature. Finally, the multi-year rhythm implies that phenophase dates display quasi-periodicity more than 1 year. The same 12-year periodicity in phenophase and threshold temperature dates confirmed temperature controls of the phenology multi-year rhythm. Our findings provide new perspectives for examining phenological response to climate change and developing comprehensive phenology models considering temporal coherence of phenological and climatic rhythmicity.

  7. Analysis of ultradian heat production and aortic core temperature rhythms in the rat.

    PubMed

    Gómez-Sierra, J M; Canela, E I; Esteve, M; Rafecas, I; Closa, D; Remesar, X; Alemany, M

    1993-01-01

    The rhythms of aortic core temperature and overall heat production in Wistar rats was analyzed by using long series of recordings of temperature obtained from implanted thermocouple probes and heat release values from a chamber calorimeter. There was a very high degree of repetitiveness in the presentation of actual heat rhythms, with high cross-correlation values ascertained wit paired periodograms. No differences were observed between heat production between male and female adult rats. The cross-correlation for temperature gave similar figures. The cross-correlation study between heat production and aortic core temperature in the same animals was significant and showed a displacement of about 30 minutes between heat release and aortic core temperature. The analysis of heat production showed a strong predominance of rhythms with periods of 24 hours (frequencies < 11.6 microHz) or more; other rhythms detected (of roughly the same relative importance) had periods of 8 or 2.2 hours (35 or 126 microHz, respectively). The analysis of aortic core temperature showed a smaller quantitative contribution of the 8 or 2.2 hours (35 or 126 microHz) rhythms, with other harmonic rhythms interspersed (5.1 and 4.0 hours, i.e. 54 and 69 microHz). The proportion of 'noise' or cycles lower than 30 minutes (< 550 microHz) was higher in internal temperature than in the actual release of heat. The results are in agreement with the existence of a basic period of about 130 minutes (126 microHz) of warming/cooling of the blood, with a number of other harmonic rhythms superimposed upon the basic circadian rhythm.

  8. Preliminary characterization of persisting circadian rhythms during space flight

    NASA Technical Reports Server (NTRS)

    Sultzman, F. M.

    1984-01-01

    In order to evaluate the function of the circadian timing system in space, the circadian rhythm of conidiation of the fungus Neurospora crassa was monitored in constant darkness on the STS 9 flight of the Space Shuttle Columbia. During the first 7 days of spaceflight many tubes showed a marked reduction in the apparent amplitude of the conidiation rhythm, and some cultures appeared arrhythmic. There was more variability in the growth rate and circadian rhythms of individual cultures in space than is usually seen on earth. The results of this experiment indicate that while the circadian rhythm of Neurospora conidiation can persist outside of the earth's environment, either the timekeeping process or its expression is altered in space.

  9. Rhythm in number: exploring the affective, social and mathematical dimensions of using TouchCounts

    NASA Astrophysics Data System (ADS)

    Sinclair, Nathalie; Chorney, Sean; Rodney, Sheree

    2016-03-01

    In this paper, we investigate the mathematical, social and affective nature of children's engagement with TouchCounts, a multitouch application for counting and doing arithmetic. In order to study these dimensions of engagement in a way that recognizes their fundamental intertwinement, we use rhythm as a primary unit of analysis. Drawing on over 8 hours of research sessions with children aged 6, 7 and 8 years old, we show how various rhythms emerged from their interactions and how these rhythms changed over time—moving from the particular to the more general. We also show how important rhythm is to children's carrying of activity, which relates to aspects of interest and motivation.

  10. Sleep and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    1991-01-01

    Three interacting processes are involved in the preservation of circadian rhythms: (1) endogenous rhythm generation mechanisms, (2) entrainment mechanisms to keep these rhythms 'on track', and (3) exogenous masking processes stemming from changes in environment and bahavior. These processes, particularly the latter two, can be dramatically affected in individuals of advanced age and in space travelers, with a consequent disruption in sleep and daytime functioning. This paper presents results of a phase-shift experiment investigating the age-related effects of the exogeneous component of circadian rhythms in various physiological and psychological functions by comparing these functions in middle aged and old subjects. Dramatic differences were found between the two age groups in measures of sleep, mood, activation, and performance efficiency.

  11. Sensorimotor rhythm neurofeedback as adjunct therapy for Parkinson's disease.

    PubMed

    Philippens, Ingrid H C H M; Wubben, Jacqueline A; Vanwersch, Raymond A P; Estevao, Dave L; Tass, Peter A

    2017-08-01

    Neurofeedback may enhance compensatory brain mechanisms. EEG-based sensorimotor rhythm neurofeedback training was suggested to be beneficial in Parkinson's disease. In a placebo-controlled study in parkinsonian nonhuman primates we here show that sensorimotor rhythm neurofeedback training reduces MPTP-induced parkinsonian symptoms and both ON and OFF scores during classical L-DOPA treatment. Our findings encourage further development of sensorimotor rhythm neurofeedback training as adjunct therapy for Parkinson's disease which might help reduce L-DOPA-induced side effects.

  12. Introducing Improvisational Skills Through Rhythm Tap: Whether Used in a Dance Class or in a Physical Education Dance Unit, These Simple Exercises Will Overcome Students' Inhibitions and Encourage Their Creative Abilities

    ERIC Educational Resources Information Center

    West, Colleen N.

    2005-01-01

    Rhythm tap is sweeping the nation as an outlet for self-expression. Also known as "jazz tap" or "percussive tap," this art form's dominant focus is musicality, improvisation, simple-to-complex rhythms, and new styles. It reaches beyond technique and serves as an outlet for self-expression, independence, and spontaneity. Rhythm tap incorporates an…

  13. Dopaminergic modulation of locomotor network activity in the neonatal mouse spinal cord

    PubMed Central

    Sharples, Simon A.; Humphreys, Jennifer M.; Jensen, A. Marley; Dhoopar, Sunny; Delaloye, Nicole; Clemens, Stefan

    2015-01-01

    Dopamine is now well established as a modulator of locomotor rhythms in a variety of developing and adult vertebrates. However, in mice, while all five dopamine receptor subtypes are present in the spinal cord, it is unclear which receptor subtypes modulate the rhythm. Dopamine receptors can be grouped into two families—the D1/5 receptor group and the D2/3/4 group, which have excitatory and inhibitory effects, respectively. Our data suggest that dopamine exerts contrasting dose-dependent modulatory effects via the two receptor families. Our data show that administration of dopamine at concentrations >35 μM slowed and increased the regularity of a locomotor rhythm evoked by bath application of 5-hydroxytryptamine (5-HT) and N-methyl-d(l)-aspartic acid (NMA). This effect was independent of the baseline frequency of the rhythm that was manipulated by altering the NMA concentration. We next examined the contribution of the D1- and D2-like receptor families on the rhythm. Our data suggest that the D1-like receptor contributes to enhancement of the stability of the rhythm. Overall, the D2-like family had a pronounced slowing effect on the rhythm; however, quinpirole, the D2-like agonist, also enhanced rhythm stability. These data indicate a receptor-dependent delegation of the modulatory effects of dopamine on the spinal locomotor pattern generator. PMID:25652925

  14. Neural Responses to Complex Auditory Rhythms: The Role of Attending

    PubMed Central

    Chapin, Heather L.; Zanto, Theodore; Jantzen, Kelly J.; Kelso, Scott J. A.; Steinberg, Fred; Large, Edward W.

    2010-01-01

    The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse-related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory cortex, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus. PMID:21833279

  15. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila.

    PubMed

    Gunawardhana, Kushan L; Hardin, Paul E

    2017-11-20

    In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLN v ) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The pathophysiology of monosymptomatic nocturnal enuresis with special emphasis on the circadian rhythm of renal physiology.

    PubMed

    Dossche, L; Walle, J Vande; Van Herzeele, C

    2016-06-01

    Nocturnal polyuria in monosymptomatic nocturnal enuresis (MNE) has so far mainly been attributed to a disturbed circadian rhythm of renal water handling. Low vasopressin levels overnight correlate with absent maximal concentrating activity, resulting in an increased nocturnal diuresis with low urinary osmolality. Therefore, treatment with desmopressin is a rational choice. Unfortunately, 20 to 60 % of children with monosymptomatic enuresis are desmopressin-resistant. There is increasing evidence that other disturbed circadian rhythms might play a role in nocturnal polyuria. This review focuses on renal aspects in the pathophysiology of nocturnal polyuria in MNE, with special emphasis on circadian rhythms. Articles related to renal circadian rhythms and enuresis were searched through the PubMed library with the goal of providing a concise review. Nocturnal polyuria can only partially be explained by blunted circadian rhythm of vasopressin secretion. Other alterations in the intrinsic renal circadian clock system also seem to be involved, especially in desmopressin-resistant enuresis. • Disturbance in the circadian rhythm of arginine vasopressin secretion is related to nocturnal polyuria in children with enuresis. • Desmopressin is recommended as a treatment for monosymptomatic nocturnal enuresis, working as a vasopressin analogue acting on V2 receptors in the collecting ducts of the kidney. What is New: • Other renal circadian rhythms might play a role in nocturnal polyuria, especially in desmopressin-resistant case.

  17. Environmental Progestins Progesterone and Drospirenone Alter the Circadian Rhythm Network in Zebrafish (Danio rerio).

    PubMed

    Zhao, Yanbin; Castiglioni, Sara; Fent, Karl

    2015-08-18

    Progestins alter hormone homeostasis and may result in reproductive effects in humans and animals. Thus far, studies in fish have focused on the hypothalamic-pituitary-gonadal (HPG)-axis and reproduction, but other effects have little been investigated. Here we report that progesterone (P4) and drospirenone (DRS) interfere with regulation of the circadian rhythm in fish. Breeding pairs of adult zebrafish were exposed to P4 and DRS at concentrations between 7 and 13 650 ng/L for 21 days. Transcriptional analysis revealed significant and dose-dependent alterations of the circadian rhythm network in the brain with little effects in the gonads. Significant alterations of many target transcripts occurred even at environmental relevant concentrations of 7 ng/L P4 and at 99 ng/L DRS. They were fully consistent with the well-described circadian rhythm negative/positive feedback loops. Transcriptional alterations of the circadian rhythm network were correlated with those in the HPG-Liver-axis. Fecundity was decreased at 742 (P4) and 2763 (DRS) ng/L. Dose-dependent alterations in the circadian rhythm network were also observed in F1 eleuthero-embryos. Our results suggest a potential target of environmental progestins, the circadian rhythm network, in addition to the adverse reproductive effects. Forthcoming studies should show whether the transcriptional alterations in circadian rhythm translate into physiological effects.

  18. Observed surface wind speed declining induced by urbanization in East China

    NASA Astrophysics Data System (ADS)

    Li, Zhengquan; Song, Lili; Ma, Hao; Xiao, Jingjing; Wang, Kuo; Chen, Lian

    2018-02-01

    Monthly wind data from 506 meteorological stations and ERA-Interim reanalysis during 1991-2015, are used to examine the surface wind trend over East China. Furthermore, combining the urbanization information derived from the DMSP/OLS nighttime light data during 1992-2013, the effects of urbanization on surface wind change are investigated by applying the observation minus reanalysis (OMR) method. The results show that the observed surface wind speed over East China is distinctly weakening with a rate of -0.16 m s-1 deca-1 during 1991-2015, while ERA-Interim wind speed does not have significant decreasing or increasing trend in the same period. The observed surface wind declining is mainly attributed to underlying surface changes of stations observational areas that were mostly induced by the urbanization in East China. Moreover, the wind declining intensity is closely related to the urbanization rhythms. The OMR annual surface wind speeds of Rhythm-VS, Rhythm-S, Rhythm-M, Rhythm-F and Rhythm-VF, have decreasing trends with the rates of -0.02 to -0.09, -0.16 to -0.26, -0.22 to -0.30, -0.26 to -0.36 and -0.33 to -0.51 m s-1 deca-1, respectively. The faster urbanization rhythm is, the stronger wind speed weakening presents. Additionally urban expansion is another factor resulted in the observed surface wind declining.

  19. The circadian rhythm of core temperature: effects of physical activity and aging.

    PubMed

    Weinert, Dietmar; Waterhouse, Jim

    2007-02-28

    The circadian rhythm of core temperature depends upon several interacting rhythms, of both endogenous and exogenous origin, but an understanding of the process requires these two components to be separated. Constant routines remove the exogenous (masking) component at source, but they are severely limited in their application. By contrast, several purification methods have successfully reduced the masking component of overt circadian rhythms measured in field circumstances. One important, but incidental, outcome from these methods is that they enable a quantitative estimate of masking effects to be obtained. It has been shown that these effects of activity upon the temperature rhythm show circadian rhythmicity, and more detailed investigations of this have aided our understanding of thermoregulation and the genesis of the circadian rhythm of core temperature itself. The observed circadian rhythm of body temperature varies with age; in comparison with adults, it is poorly developed in the neonate and deteriorates in the aged subject. Comparing masked and purified data enables the reasons for these differences--whether due to the body clock, the effector pathways or organs, or irregularities due to the individual's lifestyle--to begin to be understood. Such investigations stress the immaturity of the circadian rhythm in the human neonate and its deterioration in elderly compared with younger subjects, but they also indicate the robustness of the body clock itself into advanced age, at least in mice.

  20. Diurnal rhythms of the neuroendocrine system in professional riveters with different constitutional types.

    PubMed

    Gritsko, N; Shulga, V; Ivanova, L

    1995-01-01

    In our earlier investigations it have been shown that experimental vibration exposure causes different endocrine reactions in hypothalamo-pituitary-adrenocortical (HPA) and hypothalamo-pituitary-gonadal (HPG) systems in men of different constitutional types. The present study was carried out to determine diurnal rhythms of HPA and HPG systems in professional male riveters during a working day under industrial conditions. The state of HPA and HPG systems was evaluated according to the concentration of hormones cortisol (Cort.) and testosterone (T) in saliva. Mixed saliva was collected without stimulation at 7.00, 11.00, 15.00, 19.00 and 23.00 h. The concentration of hormones was determined by radio-immunoassay. Only healthy workers with a long working time under vibration exposure were chosen for participation in the investigation. The workers were divided into three groups of abdominal (A), muscular (M) and pectoral (P) somatotypes according to the antropometric signs (Bunaris classification, 1941). The results of investigating the HPA system have shown that usual diurnal rhythm of Cort, was observed in 60% of all cases. This rhythm is characterised by the maximum concentration of Cort, at 7.00 h with subsequent lowering during the day. In 10% of all cases we observed very low concentration of Cort, at 7.00 h and in 30% there was a significant increase of the level of Cort, at 15.00 and 19.00 h. Another change of diurnal rhythm was revealed in the HPG system. The diurnal rhythm of T completely corresponds to the rhythm of Cort. The accordance of T concentration to the diurnal rhythm we observed only in 27% of all cases. In 47% of all cases the increase of T took place at 15.00 and 19.00 h and in 20% the "monotonous" curve of T concentration without any changes of rhythm and with a low concentration at 7.00 h was observed. We also revealed different distribution of A, M and P somatotypes in connection with various diurnal rhythms of hormone curves. The result allows us to suppose that constitutional dependence of changes of diurnal rhythm of HPA and HPG systems probably underlines the adaptive processes to long time vibration exposure.

  1. The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives

    PubMed Central

    Todd, Neil P. M.; Lee, Christopher S.

    2015-01-01

    Some 20 years ago Todd and colleagues proposed that rhythm perception is mediated by the conjunction of a sensory representation of the auditory input and a motor representation of the body (Todd, 1994a, 1995), and that a sense of motion from sound is mediated by the vestibular system (Todd, 1992a, 1993b). These ideas were developed into a sensory-motor theory of rhythm and beat induction (Todd et al., 1999). A neurological substrate was proposed which might form the biological basis of the theory (Todd et al., 2002). The theory was implemented as a computational model and a number of experiments conducted to test it. In the following time there have been several key developments. One is the demonstration that the vestibular system is primal to rhythm perception, and in related work several experiments have provided further evidence that rhythm perception is body dependent. Another is independent advances in imaging, which have revealed the brain areas associated with both vestibular processing and rhythm perception. A third is the finding that vestibular receptors contribute to auditory evoked potentials (Todd et al., 2014a,b). These behavioral and neurobiological developments demand a theoretical overview which could provide a new synthesis over the domain of rhythm perception. In this paper we suggest four propositions as the basis for such a synthesis. (1) Rhythm perception is a form of vestibular perception; (2) Rhythm perception evokes both external and internal guidance of somatotopic representations; (3) A link from the limbic system to the internal guidance pathway mediates the “dance habit”; (4) The vestibular reward mechanism is innate. The new synthesis provides an explanation for a number of phenomena not often considered by rhythm researchers. We discuss these along with possible computational implementations and alternative models and propose a number of new directions for future research. PMID:26379522

  2. Development of salivary cortisol circadian rhythm in preterm infants.

    PubMed

    Ivars, Katrin; Nelson, Nina; Theodorsson, Annette; Theodorsson, Elvar; Ström, Jakob O; Mörelius, Evalotte

    2017-01-01

    To investigate at what age preterm infants develop a salivary cortisol circadian rhythm and identify whether it is dependent on gestational age and/or postnatal age. To evaluate whether salivary cortisol circadian rhythm development is related to behavioral regularity. To elucidate salivary cortisol levels in preterm infants during the first year of life. This prospective, longitudinal study included 51 preterm infants. 130 healthy full-term infants served as controls. Monthly salivary cortisol levels were obtained in the morning (07:30-09:30), at noon (10:00-12:00), and in the evening (19:30-21:30), beginning at gestational age week 28-32 and continuing until twelve months corrected age. Behavioral regularity was studied using the Baby Behavior Questionnaire. A salivary cortisol circadian rhythm was established by one month corrected age and persisted throughout the first year. The preterm infants showed a cortisol pattern increasingly more alike the full-term infants as the first year progressed. The preterm infants increase in behavioral regularity with age but no correlation was found between the development of salivary cortisol circadian rhythm and the development of behavior regularity. The time to establish salivary cortisol circadian rhythm differed between preterm and full-term infants according to postnatal age (p = 0.001) and was dependent on gestational age. Monthly salivary cortisol levels for preterm infants from birth until twelve months are presented. Additional findings were that topical corticosteroid medication was associated with higher concentrations of salivary cortisol (p = 0.02) and establishment of salivary cortisol circadian rhythm occurred later in infants treated with topical corticosteroid medication (p = 0.02). Salivary cortisol circadian rhythm is established by one month corrected age in preterm infants. Establishment of salivary cortisol circadian rhythm is related to gestational age rather than to postnatal age. Salivary cortisol circadian rhythm development is not related to behavioral regularity.

  3. The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives.

    PubMed

    Todd, Neil P M; Lee, Christopher S

    2015-01-01

    Some 20 years ago Todd and colleagues proposed that rhythm perception is mediated by the conjunction of a sensory representation of the auditory input and a motor representation of the body (Todd, 1994a, 1995), and that a sense of motion from sound is mediated by the vestibular system (Todd, 1992a, 1993b). These ideas were developed into a sensory-motor theory of rhythm and beat induction (Todd et al., 1999). A neurological substrate was proposed which might form the biological basis of the theory (Todd et al., 2002). The theory was implemented as a computational model and a number of experiments conducted to test it. In the following time there have been several key developments. One is the demonstration that the vestibular system is primal to rhythm perception, and in related work several experiments have provided further evidence that rhythm perception is body dependent. Another is independent advances in imaging, which have revealed the brain areas associated with both vestibular processing and rhythm perception. A third is the finding that vestibular receptors contribute to auditory evoked potentials (Todd et al., 2014a,b). These behavioral and neurobiological developments demand a theoretical overview which could provide a new synthesis over the domain of rhythm perception. In this paper we suggest four propositions as the basis for such a synthesis. (1) Rhythm perception is a form of vestibular perception; (2) Rhythm perception evokes both external and internal guidance of somatotopic representations; (3) A link from the limbic system to the internal guidance pathway mediates the "dance habit"; (4) The vestibular reward mechanism is innate. The new synthesis provides an explanation for a number of phenomena not often considered by rhythm researchers. We discuss these along with possible computational implementations and alternative models and propose a number of new directions for future research.

  4. Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reppert, S.M.; Perlow, M.J.; Ungerleider, L.G.

    The effects of lesions of the suprachiasmatic nucleus (SCN) on the circadian rhythms in melatonin and cortisol were examined in the rhesus monkey. The concentrations of the two hormones were monitored in cerebrospinal fluid (CSF) withdrawn from two sham-operated animals, two animals with complete bilateral SCN lesions, and two animals with partial SCN damage at 4 and 8 months after surgery. In the sham-operated animals, as in the intact animal, the daily melatonin rhythm was entrained to the daily light-dark cycle, was suppressed in constant light, and persisted in constant darkness. In contrast, neither animal with complete SCN ablation exhibitedmore » a daily pattern of CSF melatonin in diurnal lighting at 4 months after surgery nor were their melatonin levels at constant low values. Furthermore, CSF melatonin concentrations were not suppressed in either animal by constant light. Surprisingly, at 8 months after surgery, spectral analysis revealed a 24-hr component to the melatonin patterns for each animal with complete SCN ablation in both diurnal lighting and constant darkness. The two animals with partial SCN damage exhibited a daily melatonin rhythm in diurnal lighting, but constant light did not suppress CSF melatonin concentrations consistently. Daily rhythms persisted in both for a 6 1/2-d period of study in constant darkness. In contrast to the alterations in the melatonin rhythm after SCN damage, there was no apparent effect of either partial or complete SCN ablation on the daily CSF cortisol rhythm. These data indicate that, in the rhesus monkey, the SCN is important for the generation, photic entrainment, and photic suppression of the melatonin rhythm. However, circadian oscillators located outside of the SCN region may control the normal daily cortisol rhythm and perhaps the melatonin rhythm in the absence of the SCN.« less

  5. Speech-Like Rhythm in a Voiced and Voiceless Orangutan Call

    PubMed Central

    Lameira, Adriano R.; Hardus, Madeleine E.; Bartlett, Adrian M.; Shumaker, Robert W.; Wich, Serge A.; Menken, Steph B. J.

    2015-01-01

    The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∼5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis' validity; (i) Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii) speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii) speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined “clicks” and “faux-speech.” Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech antecedents within the primate lineage, and highlight potential articulatory homologies between great ape calls and human consonants and vowels. PMID:25569211

  6. Unexpected diversity in socially synchronized rhythms of shorebirds.

    PubMed

    Bulla, Martin; Valcu, Mihai; Dokter, Adriaan M; Dondua, Alexei G; Kosztolányi, András; Rutten, Anne L; Helm, Barbara; Sandercock, Brett K; Casler, Bruce; Ens, Bruno J; Spiegel, Caleb S; Hassell, Chris J; Küpper, Clemens; Minton, Clive; Burgas, Daniel; Lank, David B; Payer, David C; Loktionov, Egor Y; Nol, Erica; Kwon, Eunbi; Smith, Fletcher; Gates, H River; Vitnerová, Hana; Prüter, Hanna; Johnson, James A; St Clair, James J H; Lamarre, Jean-François; Rausch, Jennie; Reneerkens, Jeroen; Conklin, Jesse R; Burger, Joanna; Liebezeit, Joe; Bêty, Joël; Coleman, Jonathan T; Figuerola, Jordi; Hooijmeijer, Jos C E W; Alves, José A; Smith, Joseph A M; Weidinger, Karel; Koivula, Kari; Gosbell, Ken; Exo, Klaus-Michael; Niles, Larry; Koloski, Laura; McKinnon, Laura; Praus, Libor; Klaassen, Marcel; Giroux, Marie-Andrée; Sládeček, Martin; Boldenow, Megan L; Goldstein, Michael I; Šálek, Miroslav; Senner, Nathan; Rönkä, Nelli; Lecomte, Nicolas; Gilg, Olivier; Vincze, Orsolya; Johnson, Oscar W; Smith, Paul A; Woodard, Paul F; Tomkovich, Pavel S; Battley, Phil F; Bentzen, Rebecca; Lanctot, Richard B; Porter, Ron; Saalfeld, Sarah T; Freeman, Scott; Brown, Stephen C; Yezerinac, Stephen; Székely, Tamás; Montalvo, Tomás; Piersma, Theunis; Loverti, Vanessa; Pakanen, Veli-Matti; Tijsen, Wim; Kempenaers, Bart

    2016-12-01

    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.

  7. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers

    PubMed Central

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T.; Kim, Sang-Gyu

    2016-01-01

    Summary The rhythmic opening/closing and volatile emissions of flowers is known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach led to the identification of core circadian clock components in Arabidopsis thaliana, involvement of these clock components for floral rhythms remained untested likely due to weak diurnal rhythms in A. thaliana flowers.Here we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents, and move vertically through a 140° arc.We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission, and pedicel movement, but not flower closing.We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known as a core clock component. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. PMID:26439540

  8. Sleep, rhythms, and the endocrine brain: influence of sex and gonadal hormones.

    PubMed

    Mong, Jessica A; Baker, Fiona C; Mahoney, Megan M; Paul, Ketema N; Schwartz, Michael D; Semba, Kazue; Silver, Rae

    2011-11-09

    While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master "circadian clock" within the suprachiasmatic nucleus, modulate photic effects on activity in males point to novel mechanisms of circadian control. Work in aromatase-deficient mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a Mini-Symposium at the 2011 annual meeting of the Society for Neuroscience.

  9. Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones

    PubMed Central

    Mong, Jessica A.; Baker, Fiona C.; Mahoney, Megan M.; Paul, Ketema N.; Schwartz, Michael D.; Semba, Kazue; Silver, Rae

    2011-01-01

    While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master “circadian clock” within the suprachiasmatic nucleus (SCN), modulate photic effects on activity in males points to novel mechanisms of circadian control. Work in aromatase deficient (ArKO) mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a mini-symposium at the 2011 annual meeting of the Society for Neuroscience. PMID:22072663

  10. Relative Salience of Speech Rhythm and Speech Rate on Perceived Foreign Accent in a Second Language.

    PubMed

    Polyanskaya, Leona; Ordin, Mikhail; Busa, Maria Grazia

    2017-09-01

    We investigated the independent contribution of speech rate and speech rhythm to perceived foreign accent. To address this issue we used a resynthesis technique that allows neutralizing segmental and tonal idiosyncrasies between identical sentences produced by French learners of English at different proficiency levels and maintaining the idiosyncrasies pertaining to prosodic timing patterns. We created stimuli that (1) preserved the idiosyncrasies in speech rhythm while controlling for the differences in speech rate between the utterances; (2) preserved the idiosyncrasies in speech rate while controlling for the differences in speech rhythm between the utterances; and (3) preserved the idiosyncrasies both in speech rate and speech rhythm. All the stimuli were created in intoned (with imposed intonational contour) and flat (with monotonized, constant F0) conditions. The original and the resynthesized sentences were rated by native speakers of English for degree of foreign accent. We found that both speech rate and speech rhythm influence the degree of perceived foreign accent, but the effect of speech rhythm is larger than that of speech rate. We also found that intonation enhances the perception of fine differences in rhythmic patterns but reduces the perceptual salience of fine differences in speech rate.

  11. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

    PubMed Central

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-01-01

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders. PMID:28468274

  12. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    PubMed

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  13. A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior.

    PubMed

    Beer, Katharina; Steffan-Dewenter, Ingolf; Härtel, Stephan; Helfrich-Förster, Charlotte

    2016-08-01

    Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.

  14. Chronobiological studies of chicken IgY: monitoring of infradian, circadian and ultradian rhythms of IgY in blood and yolk of chickens.

    PubMed

    He, Jin-Xin; Thirumalai, Diraviyam; Schade, Rüdiger; Zhang, Xiao-Ying

    2014-08-15

    IgY is the functional equivalent of mammalian IgG found in birds, reptiles and amphibians. Many of its biological aspects have been explored with different approaches. In order to evaluate the rhythmicity of serum and yolk IgY, four chickens were examined and reared under the same conditions. To monitor biological oscillations of IgY in yolk and serum, the eggs and blood samples were collected over a 60 day period and the rhythm of yolk and serum IgY was determined by direct-ELISA. Results indicated that, there is a significant circaseptan rhythm in yolk IgY and circaquattran rhythm in serum IgY. The serum IgY concentration reached a peak in the morning, decreased to a minimum during the daytime and increased again at night revealing a significant circadian rhythm was superimposed by an ultradian rhythm. These data are suited to address the controversies concerning the IgY concentration in egg yolk and blood of laying hens. In addition, this study raised new questions, if the different rhythms in yolk and serum are concerned. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Metabolic heat production, heat loss and the circadian rhythm of body temperature in the rat.

    PubMed

    Refinetti, Roberto

    2003-05-01

    Metabolic heat production (calculated from oxygen consumption), dry heat loss (measured in a calorimeter) and body temperature (measured by telemetry) were recorded simultaneously at 6 min intervals over five consecutive days in rats maintained in constant darkness. Robust circadian rhythmicity (confirmed by chi square periodogram analysis) was observed in all three variables. The rhythm of heat production was phase-advanced by about half an hour in relation to the body temperature rhythm, whereas the rhythm of heat loss was phase-delayed by about half an hour. The balance of heat production and heat loss exhibited a daily oscillation 180 deg out of phase with the oscillation in body temperature. Computations indicated that the amount of heat associated with the generation of the body temperature rhythm (1.6 kJ) corresponds to less than 1 % of the total daily energy budget (172 kJ) in this species. Because of the small magnitude of the fraction of heat balance associated with the body temperature rhythm, it is likely that the daily oscillation in heat balance has a very slow effect on body temperature, thus accounting for the 180 deg phase difference between the rhythms of heat balance and body temperature.

  16. Resonance of about-weekly human heart rate rhythm with solar activity change.

    PubMed

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  17. Fluctuation of biological rhythm in finger tapping

    NASA Astrophysics Data System (ADS)

    Yoshinaga, H.; Miyazima, S.; Mitake, S.

    2000-06-01

    By analyzing biological rhythms obtained from finger tapping, we have investigated the differences of two biological rhythms between healthy and handicapped persons caused by Parkinson, brain infraction, car accident and so on. In this study, we have observed the motion of handedness of all subjects and obtained a slope a which characterizes a power-law relation between frequency and amplitude of finger-tapping rhythm. From our results, we have estimated that the slope a=0.06 is a rough criterion in order to distinguish healthy and handicapped persons.

  18. Correlation of the Hippocampal theta rhythm to changes in hypothalamic temperature

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Horowitz, J. M.; Hsieh, A. C. L.

    1974-01-01

    Warming and cooling the preoptic anterior hypothalamic area in awake, loosely restrained rabbits was found to evoke theta rhythm. This is consistent with previous studies indicating that theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Several studies have correlated theta rhythm with alertness. A neural pathway involving the hypothalamus, the hippocampus, the septal area, and the reticular formation is proposed. Thus, a role of this pathway may be to alert the animal to changes in its body temperature.

  19. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.

    PubMed

    Mondini, Valeria; Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral power results of both stimulations complement recent findings on the distant tDCS effects between functionally related areas.

  20. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm

    PubMed Central

    Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Background and objective Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Methods Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Results Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). Conclusion The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral power results of both stimulations complement recent findings on the distant tDCS effects between functionally related areas. PMID:29513682

  1. Effects of caffeine on circadian phase, amplitude and period evaluated in cells in vitro and peripheral organs in vivo in PER2::LUCIFERASE mice

    PubMed Central

    Narishige, Seira; Kuwahara, Mari; Shinozaki, Ayako; Okada, Satoshi; Ikeda, Yuko; Kamagata, Mayo; Tahara, Yu; Shibata, Shigenobu

    2014-01-01

    Background and Purpose Caffeine is one of the most commonly used psychoactive substances. Circadian rhythms consist of the main suprachiasmatic nucleus (SCN) clocks and peripheral clocks. Although caffeine lengthens circadian rhythms and modifies phase changes in SCN-operated rhythms, the effects on caffeine on the phase, period and amplitude of peripheral organ clocks are not known. In addition, the role of cAMP/Ca2+ signalling in effects of caffeine on rhythm has not been fully elucidated. Experimental Approach We examined whether chronic or transient application of caffeine affects circadian period/amplitude and phase by evaluating bioluminescence rhythm in PER2::LUCIFERASE knock-in mice. Circadian rhythms were monitored in vitro using fibroblasts and ex vivo and in vivo for monitoring of peripheral clocks. Key Results Chronic application of caffeine (0.1–10 mM) increased period and amplitude in vitro. Transient application of caffeine (10 mM) near the bottom of the decreasing phase of bioluminescence rhythm caused phase advance in vitro. Caffeine (0.1%) intake caused a phase delay under light–dark or constant dark conditions, suggesting a period-lengthening effect in vivo. Caffeine (20 mg·kg−1) at daytime or at late night-time caused phase advance or delay in bioluminescence rhythm in the liver and kidney respectively. The complicated roles of cAMP/Ca2+ signalling may be involved in the caffeine-induced increase of period and amplitude in vitro. Conclusions and Implications Caffeine affects circadian rhythm in mice by lengthening the period and causing a phase shift of peripheral clocks. These results suggest that caffeine intake with food/drink may help with food-induced resetting of peripheral circadian clocks. PMID:25160990

  2. Magnetophysiologic and echocardiographic comparison of blocked atrial bigeminy and 2:1 atrioventricular block in the fetus.

    PubMed

    Wiggins, Delonia L; Strasburger, Janette F; Gotteiner, Nina L; Cuneo, Bettina; Wakai, Ronald T

    2013-08-01

    Blocked atrial bigeminy (BAB) and second-degree atrioventricular block with 2:1 conduction block (2:1 AVB) both present as ventricular bradycardia and can be difficult to distinguish by echocardiography. Since the prognosis and clinical management of these rhythms are different, an accurate diagnosis is essential. To identify magnetic and mechanical heart rate and rhythm parameters that could reliably distinguish BAB from 2:1 AVB. A retrospective study of ten BAB and seven 2:1 AVB subjects was performed, using fMCG and pulsed Doppler ultrasound. Distinguishing BAB from 2:1 AVB by using fMCG was relatively straightforward because in BAB the ectopic P wave (P') occurred early, resulting in a bigeminal (short-long) atrial rhythm. The normalized coupling interval of the ectopic beat (PP' of the blocked beat to PP of the conducted beat) was 0.29 ± 0.03. In contrast, the echocardiographic assessment of inflow-outflow gave a normalized mechanical coupling interval (AA'/AA) near 0.5, which made it difficult to distinguish BAB from 2:1 AVB. Heart rate distinguished most subjects with BAB from those with 2:1 AVB (82 ± 5.7 beats/min vs 69 ± 4.2 beats/min), but was not a completely reliable indicator. In most subjects, BAB alternated with sinus rhythm or other rhythms, resulting in complex heart rate and rhythm patterns. Fetal BAB and 2:1 AV block can be difficult to distinguish using echocardiography because in many fetuses with BAB the mechanical rhythm does not accurately reflect the magnetic rhythm. fMCG provides a more reliable means of making a differential diagnosis. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  3. Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms.

    PubMed Central

    Mills, J N; Minors, D S; Waterhouse, J M

    1978-01-01

    1. Thirty-six subjects in an isolation unit were subjected to time shifts of 12 hr, or of 8 hr in either direction. 2. The rhythms of body temperature and excretion of eight urinary constituents were studied before and after the shift, both on a usual nychthemeral routine and during 24 hr when they remained under constant conditions, awake, engaged in light, mainly sedentary activity, and consuming identical food and fluid every hour. 3. The rhythms on nychthemeral routine were defined by fitting cosine curves. On constant routine the rhythm after the shift was cross-correlated with the original rhythm, either with variable delay (or advance) or with an additive mixture between this variably shifted rhythm and the unshifted or a fully shifted rhythm. The process yielding the highest correlation coefficient was accepted as the best descriptor of the nature of adaptation. 4. A combination of two rhythms was observed more often for urinary sodium, chloride and phosphate than for other variables. 5. Adaptation appeared to have proceeded further after westward than eastward shifts, and this difference was particularly noticeable for urinary potassium, sodium and chloride. 6. Partial adaptation usually involved a phase delay, even after an eastward shift when a cumulative delay of 16 hr would be needed to achieve full adaptation and re-entrainment. 7. Observations under nychthemeral conditions often gave a false idea of the degree of adaptation. In particular, after an eastward shift the phase of the rhythms appeared to shift in the appropriate direction when studied under nychthemeral conditions whereas the endogenous oscillator either showed no consistent behaviour or, in the control of urate excretion, a shift in the wrong direction. 8. The implications for people undergoing time shifts, in the course of shift work or transmeridional flights, are indicated. PMID:745108

  4. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue

    PubMed Central

    Welsh, David K.

    2016-01-01

    Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195

  5. Calcium Channel Genes Associated with Bipolar Disorder Modulate Lithium's Amplification of Circadian Rhythms

    PubMed Central

    McCarthy, Michael J.; LeRoux, Melissa; Wei, Heather; Beesley, Stephen; Kelsoe, John R.; Welsh, David K.

    2015-01-01

    Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca2+ changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2∷luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 hr in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca2+ less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. controls. We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms. PMID:26476274

  6. Weak circadian rhythm increases neutropenia risk among breast cancer patients undergoing adjuvant chemotherapy.

    PubMed

    Li, Wentao; Kwok, Carol Chi-Hei; Chan, Dominic Chun-Wan; Wang, Feng; Tse, Lap Ah

    2018-04-01

    Severe neutropenia is a common dose-limiting side effect of adjuvant breast cancer chemotherapy. We aimed to test the hypothesis that weak circadian rhythm is associated with an increased risk of neutropenia using a cohort study. We consecutively recruited 193 breast cancer patients who received adjuvant chemotherapy (5-fluorouracil, epirubicin, and cyclophosphamide followed by docetaxel; doxorubicin and cyclophosphamide; docetaxel and cyclophosphamide). Participants wore a wrist actigraph continuously for 168 h at the beginning of chemotherapy. Values of percent rhythm and double amplitude below medians represented weak circadian rhythm. Mesor measured the mean activity level and acrophase symboled the peak time of the rhythm. We used Cox proportional hazard regression model to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) of grade 4 neutropenia and febrile neutropenia in relation to actigraphy-derived parameters. Low levels of percent rhythm (HR:2.59, 95% CI 1.50-4.72), double amplitude (HR:2.70, 95% CI 1.51-4.85), and mesor (HR: 2.48, 95% CI 1.44-4.29) were positively associated with the risk of grade 4 neutropenia during chemotherapy. Low levels of percent rhythm (HR: 2.41, 95% CI 1.02-5.69) and double amplitude (HR:2.49, 95% CI 1.05-5.90) were also associated with increased risks of febrile neutropenia. The HRs for acrophase were not statistically significant. This study provides the first epidemiological evidence that increased risks of grade 4 neutropenia and febrile neutropenia are associated with weak circadian rhythm among adjuvant breast cancer patients. The results suggest that circadian rhythm might be one potential target for the prevention of chemotherapy-induced neutropenia among cancer patients.

  7. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. © FASEB.

  8. Effects of N-acetylcysteine and imipramine in a model of acute rhythm disruption in BALB/c mice.

    PubMed

    Pilz, Luísa K; Trojan, Yasmine; Quiles, Caroline L; Benvenutti, Radharani; Melo, Gabriela; Levandovski, Rosa; Hidalgo, Maria Paz L; Elisabetsky, Elaine

    2015-03-01

    Circadian rhythm disturbances are among the risk factors for depression, but specific animal models are lacking. This study aimed to characterize the effects of acute rhythm disruption in mice and investigate the effects of imipramine and N-acetylcysteine (NAC) on rhythm disruption-induced changes. Mice were exposed to 12:12-hour followed by 10:10-hour light:dark cycles (LD); under the latter, mice were treated with saline, imipramine or NAC. Rhythms of rest/activity and temperature were assessed with actigraphs and iButtons, respectively. Hole-board and social preference tests were performed at the beginning of the experiment and again at the 8th 10:10 LD, when plasma corticosterone and IL-6 levels were also assessed. Actograms showed that the 10:10 LD schedule prevents the entrainment of temperature and activity rhythms for at least 13 cycles. Subsequent light regimen change activity and temperature amplitudes showed similar patterns of decline followed by recovery attempts. During the 10:10 LD schedule, activity and temperature amplitudes were significantly decreased (paired t test), an effect exacerbated by imipramine (ANOVA/SNK). The 10:10 LD schedule increased anxiety (paired t test), an effect prevented by NAC (30 mg/kg). This study identified mild but significant behavioral changes at specific time points after light regimen change. We suggest that if repeated overtime, these subtle changes may contribute to lasting behavioral disturbancess relevant to anxiety and mood disorders. Data suggest that imipramine may contribute to sustained rhythm disturbances, while NAC appears to prevent rhythm disruption-induced anxiety. Associations between sleep/circadian disturbances and the recurrence of depressive episodes underscore the relevance of potential drug-induced maintenance of disturbed rhythms.

  9. Heart rate and outcome in heart failure with reduced ejection fraction: Differences between atrial fibrillation and sinus rhythm-A CIBIS II analysis.

    PubMed

    Mulder, Bart A; Damman, Kevin; Van Veldhuisen, Dirk J; Van Gelder, Isabelle C; Rienstra, Michiel

    2017-09-01

    Heart rate has been associated with prognosis in patients with heart failure with reduced ejection fraction (HFREF) and sinus rhythm; whether this also holds true in patients with atrial fibrillation (AF) is unknown. To evaluate cardiac rhythm and baseline heart rate and the influence of outcome in patients with HFREF enrolled in the Cardiac Insufficiency Bisoprolol Study II. In total, 2539 patients were stratified according to their baseline heart rhythm (AF or sinus rhythm) and into quartiles of heart rate (≤70 bpm, 71-78 bpm, 79-90 bpm, and >90 bpm). The primary outcome was all-cause mortality. Mean follow-up was 1.3 years. Mean age was 61 years, mean left ventricular ejection fraction was 28%, and 80% were male. A total of 521 (21%) patients had AF at baseline. The risk associated with all-cause mortality for each 5 bpm increase in heart rate in patients with sinus rhythm (hazard ratio [HR]: 1.06, 95% confidence interval [CI]: 1.01-1.11, P = 0.012) was significantly different from those with AF (HR: 1.00, 95% CI: 0.94-1.07, P = 0.90, P for interaction = 0.041). The risk associated with higher heart rate in sinus rhythm was primarily attributable to excess risk in the highest quartile (HR: 1.64, 95% CI: 1.18-2.30, P = 0.003). Allocation to bisoprolol did not modify the interaction between heart rate, rhythm and outcome. In HFREF patients with AF, a higher heart rate is not associated with increased event rates in contrast to HFREF patients with sinus rhythm. © 2017 Wiley Periodicals, Inc.

  10. Does the choice of definition for defibrillation and CPR success impact the predictability of ventricular fibrillation waveform analysis?

    PubMed

    Jin, Danian; Dai, Chenxi; Gong, Yushun; Lu, Yubao; Zhang, Lei; Quan, Weilun; Li, Yongqin

    2017-02-01

    Quantitative analysis of ventricular fibrillation (VF), such as amplitude spectral area (AMSA), predicts shock outcomes. However, there is no uniform definition of shock/cardiopulmonary resuscitation (CPR) success in out-of-hospital cardiac arrest (OHCA). The objective of this study is to investigate post-shock rhythm variations and the impact of shock/CPR success definition on the predictability of AMSA. A total of 554 shocks from 257 OHCA patients with VF as initial rhythm were analyzed. Post-shock rhythms were analyzed every 5s up to 120s and annotated as VF, asystole (AS) and organized rhythm (OR) at serial time intervals. Three shock/CPR success definitions were used to evaluate the predictability of AMSA: (1) termination of VF (ToVF); (2) return of organized electrical activity (ROEA); (3) return of potentially perfusing rhythm (RPPR). Rhythm changes occurred after 54.5% (N=302) of shocks and 85.8% (N=259) of them occurred within 60s after shock delivery. The observed post-shock rhythm changes were (1) from AS to VF (24.9%), (2) from OR to VF (16.1%), and (3) from AS to OR (12.1%). The area under the receiver operating characteristic curve (AUC) for AMSA as a predictor of shock/CPR success reached its maximum 60s post-shock. The AUC was 0.646 for ToVF, 0.782 for ROEA, and 0.835 for RPPR (p<0.001) respectively. Post-shock rhythm is unstable in the first minute after the shock. The predictability of AMSA varies depending on the definition of shock/CPR success and performs best with the return of potentially perfusing rhythm endpoint for OHCA. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Role of Chronobiology as a Transdisciplinary Field of Research: Its Applications in Treating Mood Disorders.

    PubMed

    Çalıyurt, Okan

    2017-12-01

    Chronobiology is a field that studies the effects of time on biological systems. Periodicity is of particular interest. The master biological clock in the suprachiasmatic nucleus controls daily rhythms of core body temperature, rest-activity cycle, physiological and behavioral functions, psychomotor functions and mood in humans. The clock genes are involved in the generation of the circadian rhythms and the biological clock is synchronized to solar day by direct photic inputs. Various circadian rhythm abnormalities have been demonstrated in mood disorders such as unipolar depression, bipolar depression and seasonal affective disorder. Hypotheses involving circadian rhythm abnormalities related to the etiology of mood disorders have been raised. The resulting circadian rhythm changes can be measured and evaluated that these techniques can be used to identify subtypes of mood disorders associated with circadian rhythm changes. The data obtained from chronobiological studies reveal methods that manipulate circadian rhythms. The effects of light and melatonin on circadian rhythms are determined by these studies. Chronobiological research has been applied to the psychiatric clinic and light therapy has been used as a chronotherapeutic in the treatment of mood disorders. On the other hand, chronotherapeutic approaches with effects on circadian rhythms such as sleep deprivation therapy have been used in the treatment of mood disorders too. As a good example of translational psychiatry, chronobiological studies have been projected in the psychiatry clinic. It may be possible, the data obtained from the basic sciences are used in the diagnosis of mood disorders and in the treatment of psychiatric disorders as chronotherapeutic techniques. Developments in the field of chronobiology and data obtained from chronotherapeutics may enable the development of evidence-based diagnosis and treatment in psychiatry.

  12. Biological dysrhythm in remitted bipolar I disorder.

    PubMed

    Iyer, Aishwarya; Palaniappan, Pradeep

    2017-12-01

    Recent treatment guidelines support treatment of biological rhythm abnormalities as a part of treatment of bipolar disorder, but still, literature examining various domains (Sleep, Activity, Social, and Eating) of biological rhythm and its clinical predictors are less. The main aim of our study is to compare various domains of biological rhythm among remitted bipolar I subjects and healthy controls. We also explored for any association between clinical variables and biological rhythm among bipolar subjects. 40 subjects with Bipolar I disorder and 40 healthy controls who met inclusion and exclusion criteria were recruited for the study. Diagnoses were ascertained by a qualified psychiatrist using MINI 5.0. Sociodemographic details, biological rhythm (BRIAN-Biological Rhythm Interview of assessment in Neuropsychiatry) and Sleep functioning (PSQI- Pittsburgh Sleep Quality Index) were assessed in all subjects. Mean age of the Bipolar subjects and controls were 41.25±11.84years and 38.25±11.25 years respectively. Bipolar subjects experienced more biological rhythm disturbance when compared to healthy controls (total BRIAN score being 34.25±9.36 vs 28.2±6.53) (p=0.002). Subsyndromal depressive symptoms (HDRS) had significant positive correlation with BRIAN global scores(r=0.368, p=0.02). Linear regression analysis showed that number of episodes which required hospitalization (β=0.601, t=3.106, P=0.004), PSQI (β=0.394, t=2.609, p=0.014), HDRS (β=0.376, t=2.34, t=0.036) explained 31% of variance in BRIAN scores in remitted bipolar subjects. Biological rhythm disturbances seem to persist even after clinical remission of bipolar illness. More studies to look into the impact of subsyndromal depressive symptoms on biological rhythm are needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Comparison of hormone and electrolyte circadian rhythms in male and female humans

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Winget, C. M.; Goodwin, A. E.; Reilly, T.

    1977-01-01

    Circadian rhythm characteristics in healthy male and female humans were studied at 4-hour intervals for urine volume, cortisol, 5-hydroxyindoleacetic acid (5-HIAA), Na, K, Na/K ratios in the urine, as well as plasma cortisol. While plasma and urinary cortisol rhythms were very similar in both sexes, the described rhythms in urine volume, electrolyte, and 5-HIAA excretion differ for the two sexes. The results suggest that sex differences exist in the circadian patterns of important hormone and metabolic functions and that the internal synchrony of circadian rhythms differs for the two sexes. The results seem to indicate that the rhythmical secretion of cortisol does not account for the pattern of Na and K excretion.

  14. Ultradian rhythm unmasked in the Pdf clock mutant of Drosophila.

    PubMed

    Seki, Yuuichi; Tanimura, Teiichi

    2014-09-01

    A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf 01) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.

  15. Alteration of circadian rhythm during epileptogenesis: implications for the suprachiasmatic nucleus circuits.

    PubMed

    Xiang, Yan; Li, Zhi-Xiao; Zhang, Ding-Yu; He, Zhi-Gang; Hu, Ji; Xiang, Hong-Bing

    2017-01-01

    It is important to realize that characterization of the circadian rhythm patterns of seizure occurrence can implicate in diagnosis and treatment of selected types of epilepsy. Evidence suggests a role for the suprachiasmatic nucleus (SCN) circuits in overall circadian rhythm and seizure susceptibility both in animals and humans. Thus, we conclude that SCN circuits may exert modifying effects on circadian rhythmicity and neuronal excitability during epileptogenesis. SCN circuits will be studied in our brain centre and collaborating centres to explore further the interaction between the circadian rhythm and epileptic seizures. More and thorough research is warranted to provide insight into epileptic seizures with circadian disruption comorbidities such as disorders of cardiovascular parameters and core body temperature circadian rhythms.

  16. Age, circadian rhythms, and sleep loss in flight crews

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Nguyen, DE; Rosekind, Mark R.; Connell, Linda J.

    1993-01-01

    Age-related changes in trip-induced sleep loss, personality, and the preduty temperature rhythm were analyzed in crews from various flight operations. Eveningness decreased with age. The minimum of the baseline temperature rhythm occurred earlier with age. The amplitude of the baseline temperature rhythm declined with age. Average daily percentage sleep loss during trips increased with age. Among crewmembers flying longhaul flight operations, subjects aged 50-60 averaged 3.5 times more sleep loss per day than subjects aged 20-30. These studies support previous findings that evening types and subjects with later peaking temperature rhythms adapt better to shift work and time zone changes. Age and circadian type may be important considerations for duty schedules and fatigue countermeasures.

  17. Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus

    PubMed Central

    2017-01-01

    Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders. PMID:29230328

  18. A Circadian Rhythm Regulating Hyphal Melanization in Cercospora Kikuchii

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythms, biochemical or developmental processes with a period length of approximately 24 hours, are thoroughly documented in plants and animals. However, virtually all of what is currently known about circadian rhythms in fungi is derived from the model fungus, Neurospora crassa, including...

  19. A novel animal model linking adiposity to altered circadian rhythms

    USDA-ARS?s Scientific Manuscript database

    Researchers have provided evidence for a link between obesity and altered circadian rhythms (e.g., shift work, disrupted sleep), but the mechanism for this association is still unknown. Adipocytes possess an intrinsic circadian clock, and circadian rhythms in adipocytokines and adipose tissue metab...

  20. Preliminary characterization of persisting circadian rhythms during space flight: Neurospora as a model system

    NASA Technical Reports Server (NTRS)

    Sulzman, F. W.

    1981-01-01

    The effects of the Spacelab environment on the circadian rhythms in microorganisms are investigated. Neurospora is chosen because of its well characterized circadian rhythm of growth. Growth rate, banding patterns, and circadian period and phase information are studied.

  1. Biological rhythms: the taste-time continuum.

    PubMed

    Krupp, Joshua J; Levine, Joel D

    2010-02-23

    The gustatory system allows the fly to assess food quality, eliciting either acceptance or avoidance behaviors. A new study demonstrates that circadian clocks in gustatory receptor neurons regulate rhythms in taste sensitivity, drive rhythms in appetitive behavior and influence feeding. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.

  3. Photosensitivity in the circadian hatching rhythm of the carotenoid-depleted silkworm, Bombyx mori.

    PubMed

    Sakamoto, K; Shimizu, I

    1994-01-01

    Silkworms (Bombyx mori) were reared on a carotenoid-deprived artificial diet, and the carotenoid-depleted eggs of the next generation were incubated so that we could observe the effect of the depletion on the circadian rhythm of hatching. The phototactic response curves of newly hatched larvae showed that the visual photosensitivity in ocelli of larvae from the carotenoid-depleted eggs was at least 4 log units lower than that of a carotenoid-rich control group. However, the phase-shift experiment revealed that carotenoid depletion did not reduce the photosensitivity in the hatching rhythm. When the hatching rhythm was generated by exposure to a single light pulse in constant darkness, the first peak in the rhythm of the carotenoid-depleted silkworms occurred significantly earlier than that of the carotenoid-rich group, but the following second peaks of both groups were found at the same time. These results suggest that for the silkworm, carotenoid is not involved in photoreception for the hatching rhythm, but is involved in the timing of hatching.

  4. Crosslinguistic application of English-centric rhythm descriptors in motor speech disorders.

    PubMed

    Liss, Julie M; Utianski, Rene; Lansford, Kaitlin

    2013-01-01

    Rhythmic disturbances are a hallmark of motor speech disorders, in which the motor control deficits interfere with the outward flow of speech and by extension speech understanding. As the functions of rhythm are language-specific, breakdowns in rhythm should have language-specific consequences for communication. The goals of this paper are to (i) provide a review of the cognitive-linguistic role of rhythm in speech perception in a general sense and crosslinguistically; (ii) present new results of lexical segmentation challenges posed by different types of dysarthria in American English, and (iii) offer a framework for crosslinguistic considerations for speech rhythm disturbances in the diagnosis and treatment of communication disorders associated with motor speech disorders. This review presents theoretical and empirical reasons for considering speech rhythm as a critical component of communication deficits in motor speech disorders, and addresses the need for crosslinguistic research to explore language-universal versus language-specific aspects of motor speech disorders. Copyright © 2013 S. Karger AG, Basel.

  5. Acquisition of speech rhythm in a second language by learners with rhythmically different native languages.

    PubMed

    Ordin, Mikhail; Polyanskaya, Leona

    2015-08-01

    The development of speech rhythm in second language (L2) acquisition was investigated. Speech rhythm was defined as durational variability that can be captured by the interval-based rhythm metrics. These metrics were used to examine the differences in durational variability between proficiency levels in L2 English spoken by French and German learners. The results reveal that durational variability increased as L2 acquisition progressed in both groups of learners. This indicates that speech rhythm in L2 English develops from more syllable-timed toward more stress-timed patterns irrespective of whether the native language of the learner is rhythmically similar to or different from the target language. Although both groups showed similar development of speech rhythm in L2 acquisition, there were also differences: German learners achieved a degree of durational variability typical of the target language, while French learners exhibited lower variability than native British speakers, even at an advanced proficiency level.

  6. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    PubMed

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Crosslinguistic Application of English-Centric Rhythm Descriptors in Motor Speech Disorders

    PubMed Central

    Liss, Julie M.; Utianski, Rene; Lansford, Kaitlin

    2014-01-01

    Background Rhythmic disturbances are a hallmark of motor speech disorders, in which the motor control deficits interfere with the outward flow of speech and by extension speech understanding. As the functions of rhythm are language-specific, breakdowns in rhythm should have language-specific consequences for communication. Objective The goals of this paper are to (i) provide a review of the cognitive- linguistic role of rhythm in speech perception in a general sense and crosslinguistically; (ii) present new results of lexical segmentation challenges posed by different types of dysarthria in American English, and (iii) offer a framework for crosslinguistic considerations for speech rhythm disturbances in the diagnosis and treatment of communication disorders associated with motor speech disorders. Summary This review presents theoretical and empirical reasons for considering speech rhythm as a critical component of communication deficits in motor speech disorders, and addresses the need for crosslinguistic research to explore language-universal versus language-specific aspects of motor speech disorders. PMID:24157596

  8. Are circadian rhythms new pathways to understand Autism Spectrum Disorder?

    PubMed

    Geoffray, M-M; Nicolas, A; Speranza, M; Georgieff, N

    2016-11-01

    Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Micturition patterns of an unrestrained chimpanzee under entrained and free running conditions.

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.; Mcnew, J. J.; Sabbot, I.; Adey, W. R.

    1972-01-01

    A young male chimpanzee was subjected to 30 days of isolation. Urine volumes and voiding times were recorded every hour beginning 14 days prior to isolation, ending 6 days after isolation, and approximately 2 months later for 10 days as a control. Observed during most periods of the experiment were (1) clear circadian micturition rhythms with the voiding peak occurring immediately after the subject awoke and (2) urine flow rhythms with the maximum volume voided in the morning hours. A 24-hour rhythm was seen when the subject was entrained to 12L:12D treatments and 24.8-hour rhythm when he was exposed to continuous light. A possible underlying 24-hour micturition rhythm was also seen during the continuous light period. Distorted rhythm curves indicating possible stress were obtained for the pre-isolation adaptation period and the initial period of isolation. As time passed, the curves were more like the controls, perhaps indicating a decrease in stress.

  10. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    PubMed

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  11. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    PubMed

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. [The influence of interfered circadian rhythm on pregnancy and neonatal rats].

    PubMed

    Chen, Wen-Jun; Sheng, Wen-Jie; Guo, Yin-Hua; Tan, Yong

    2015-10-25

    The aim of this study was to observe the influence of interfered circadian rhythm on pregnancy of rats and growth of neonatal rats, and to explore the relationship between the interfered circadian rhythm and the changes of melatonin and progesterone. Continuous light was used to inhibit melatonin secretion and therefore the interfered circadian rhythm animal model was obtained. The influence of interfered circadian rhythm on delivery of pregnant rats was observed. Serum was collected from rats during different stages of pregnancy to measure the concentrations of melatonin and progesterone. In order to observe the embryo resorption rate, half of pregnant rats were randomly selected to undergo a laparotomy, and the remainder was used to observe delivery and assess the growth of neonatal rats after delivery. The results showed that the interfered circadian rhythm induced adverse effects on pregnancy outcomes, including an increase of embryo resorption rate and a decrease in the number of live births; inhibited the secretion of melatonin along with decreased serum progesterone level; prolonged the stage of labor, but not the duration of pregnancy; and disturbed the fetal intrauterine growth and the growth of neonatal rats. The results suggest that interfered circadian rhythm condition made by continuous light could make adverse effects on both pregnant rats and neonatal rats. The results of our study may provide a way to modulate pregnant women's circadian rhythm and a possibility of application of melatonin on pregnant women.

  13. Timing Matters: Circadian Rhythm in Sepsis, Obstructive Lung Disease, Obstructive Sleep Apnea, and Cancer.

    PubMed

    Truong, Kimberly K; Lam, Michael T; Grandner, Michael A; Sassoon, Catherine S; Malhotra, Atul

    2016-07-01

    Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption.

  14. Mother-infant circadian rhythm: development of individual patterns and dyadic synchrony.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan; Lee, Jungeun; Chen, Jessica

    2014-12-01

    Mutual circadian rhythm is an early and essential component in the development of maternal-infant physiological synchrony. The aim of this to examine the longitudinal pattern of maternal-infant circadian rhythm and rhythm synchrony as measured by rhythm parameters. In-home dyadic actigraphy monitoring at infant age 4, 8, and 12 weeks. Forty-three healthy mother-infant pairs. Circadian parameters derived from cosinor and non-parametric analysis including mesor, magnitude, acrophase, L5 and M10 midpoints (midpoint of lowest 5 and highest 10h of activity), amplitude, interdaily stability (IS), and intradaily variability (IV). Mothers experienced early disruption of circadian rhythm, with re-establishment of rhythm over time. Significant time effects were noted in increasing maternal magnitude, amplitude, and IS and decreasing IV (p<.001). Infants demonstrated a developmental trajectory of circadian pattern with significant time effects for increasing mesor, magnitude, amplitude, L5, IS, and IV (p<.001). By 12 weeks, infant phase advancement was evidenced by mean acrophase and M10 midpoint occurring 60 and 43 min (respectively) earlier than at 4 weeks. While maternal acrophase remained consistent over time, infants became increasingly phase advanced relative to mother and mean infant acrophase at 12 weeks occurred 60 min before mother. Mother-infant synchrony was evidenced in increasing correspondence of acrophase at 12 weeks (r=0.704), L5 (r=0.453) and M10 (r=0.479) midpoints. Development of mother-infant synchrony reflects shared elements of circadian rhythm. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. A new chronobiological approach to discriminate between acute and chronic depression using peripheral temperature, rest-activity, and light exposure parameters

    PubMed Central

    2013-01-01

    Background Circadian theories for major depressive disorder have suggested that the rhythm of the circadian pacemaker is misaligned. Stable phase relationships between internal rhythms, such as temperature and rest/activity, and the external day-night cycle, are considered to be crucial for adapting to life in the external environmental. Therefore, the relationship and possible alterations among (i) light exposure, (ii) activity rhythm, and (iii) temperature rhythm could be important factors in clinical depression. This study aimed to investigate the rhythmic alterations in depression and evaluate the ability of chronobiological parameters to discriminate between healthy subjects and depressed patients. Methods Thirty female subjects, including healthy subjects, depressed patients in the first episode, and major recurrent depression patients. Symptoms were assessed using Hamilton Depression Scale, Beck Depression Inventory and Montgomery-Äsberg Scale. Motor activity, temperature, and light values were determined for 7 days by actigraph, and circadian rhythms were calculated. Results Depressed groups showed a lower amplitude in the circadian rhythm of activity and light exposure, but a higher amplitude in the rhythm of peripheral temperature. The correlation between temperature and activity values was different in the day and night among the control and depressed groups. For the same level of activity, depressed patients had lowest temperature values during the day. The amplitudes of temperature and activity were the highest discriminant parameters. Conclusions These results indicate that the study of rhythms is useful for diagnosis and therapy for depressive mood disorders. PMID:23510455

  16. Enhanced timing abilities in percussionists generalize to rhythms without a musical beat.

    PubMed

    Cameron, Daniel J; Grahn, Jessica A

    2014-01-01

    The ability to entrain movements to music is arguably universal, but it is unclear how specialized training may influence this. Previous research suggests that percussionists have superior temporal precision in perception and production tasks. Such superiority may be limited to temporal sequences that resemble real music or, alternatively, may generalize to musically implausible sequences. To test this, percussionists and nonpercussionists completed two tasks that used rhythmic sequences varying in musical plausibility. In the beat tapping task, participants tapped with the beat of a rhythmic sequence over 3 stages: finding the beat (as an initial sequence played), continuation of the beat (as a second sequence was introduced and played simultaneously), and switching to a second beat (the initial sequence finished, leaving only the second). The meters of the two sequences were either congruent or incongruent, as were their tempi (minimum inter-onset intervals). In the rhythm reproduction task, participants reproduced rhythms of four types, ranging from high to low musical plausibility: Metric simple rhythms induced a strong sense of the beat, metric complex rhythms induced a weaker sense of the beat, nonmetric rhythms had no beat, and jittered nonmetric rhythms also had no beat as well as low temporal predictability. For both tasks, percussionists performed more accurately than nonpercussionists. In addition, both groups were better with musically plausible than implausible conditions. Overall, the percussionists' superior abilities to entrain to, and reproduce, rhythms generalized to musically implausible sequences.

  17. Mother-Infant Circadian Rhythm: Development of Individual Patterns and Dyadic Synchrony

    PubMed Central

    Thomas, Karen A.; Burr, Robert L.; Spieker, Susan; Lee, Jungeun; Chen, Jessica

    2014-01-01

    Background Mutual circadian rhythm is an early and essential component in the development of maternal-infant physiological synchrony. Aims To examine the longitudinal pattern of maternal-infant circadian rhythm and rhythm synchrony as measured by rhythm parameters. Study Design In-home dyadic actigraphy monitoring at infant age 4, 8, and 12 weeks. Subjects Forty-three healthy mother-infant pairs. Outcome Measures Circadian parameters derived from cosinor and non-parametric analysis including mesor, magnitude, acrophase, L5 and M10 midpoints (midpoint of lowest 5 and highest 10 hours of activity), amplitude, interdaily stability (IS), and intradaily variability (IV). Results Mothers experienced early disruption of circadian rhythm, with re-establishment of rhythm over time. Significant time effects were noted in increasing maternal magnitude, amplitude, and IS and decreasing IV (p < .001). Infants demonstrated a developmental trajectory of circadian pattern with significant time effects for increasing mesor, magnitude, amplitude, L5, IS, and IV (p < .001). By 12 weeks, infant phase advancement was evidenced by mean acrophase and M10 midpoint occurring 60 and 43 minutes (respectively) earlier than at 4 weeks. While maternal acrophase remained consistent over time, infants became increasingly phase advanced relative to mother and mean infant acrophase at 12 weeks occurred 60 minutes before mother. Mother-infant synchrony was evidenced in increasing correspondence of acrophase at 12 weeks (r = 0.704), L5 (r = 0.453) and M10 (r = 0.479) midpoints. Conclusions Development of mother-infant synchrony reflects shared elements of circadian rhythm. PMID:25463836

  18. Interaction with Mass Media: The Importance of Rhythm and Tempo.

    ERIC Educational Resources Information Center

    Snow, Robert P.

    1987-01-01

    Stresses that understanding the impact of interaction with mass media requires conceptualizing media as an institutionalized social form. A critical feature of this process is the grammatical character of media interaction in the form of rhythm and tempo, because these rhythms and tempos become established in everyday routine. (SKC)

  19. The New Beat Spectrum

    ERIC Educational Resources Information Center

    Falter, H. Ellie

    2011-01-01

    How do teachers teach students to count rhythms? Teachers can choose from various techniques. Younger students may learn themed words (such as "pea," "carrot," or "avocado"), specific rhythm syllables (such as "ta" and "ti-ti"), or some other counting method to learn notation and internalize rhythms. As students grow musically, and especially when…

  20. Circadian Activity Rhythms, Time Urgency, and Achievement Concerns.

    ERIC Educational Resources Information Center

    Watts, Barbara L.

    Many physiological and psychological processes fluctuate throughout the day in fairly stable, rhythmic patterns. The relationship between individual differences in circadian activity rhythms and a sense of time urgency were explored as well as a number of achievement-related variables. Undergraduates (N=308), whose circadian activity rhythms were…

  1. Tests of the disrupted behavioral rhythms hypothesis for accelerated summer weight gain

    USDA-ARS?s Scientific Manuscript database

    The school-summer paradigm offers an opportunity to explore school-summer differences in children's behavioral rhythms and their association with seasonal changes in BMI. In the absence of the environmental demands and cues associated with the school year, children's behavioral rhythms (e.g., sleep...

  2. Executive Summary: European Heart Rhythm Association Consensus Document on the Management of Supraventricular Arrhythmias: Endorsed by Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardiaca y Electrofisiologia (SOLAECE).

    PubMed

    Katritsis, Demosthenes G; Boriani, Giuseppe; Cosio, Francisco G; Jais, Pierre; Hindricks, Gerhard; Josephson, Mark E; Keegan, Roberto; Knight, Bradley P; Kuck, Karl-Heinz; Lane, Deirdre A; Lip, Gregory Yh; Malmborg, Helena; Oral, Hakan; Pappone, Carlo; Themistoclakis, Sakis; Wood, Kathryn A; Young-Hoon, Kim; Lundqvist, Carina Blomström

    2016-01-01

    This paper is an executive summary of the full European Heart Rhythm Association (EHRA) consensus document on the management of supraventricular arrhythmias, published in Europace . It summarises developments in the field and provides recommendations for patient management, with particular emphasis on new advances since the previous European Society of Cardiology guidelines. The EHRA consensus document is available to read in full at http://europace.oxfordjournals.org.

  3. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.W.; Chess, E.K.; Anderson, L.E.

    Rats exposed for 3 weeks to uniform 60-Hz electric fields of 39 kV/m (effective field strength) failed to show normal pineal gland circadian rhythms in serotonin N-acetyl transferase activity and melatonin concentrations. The time required for recovery of the melatonin rhythm after cessation of field exposure was determined to be less than 3 days. The rapid recovery suggests that the overall metabolic competence of the pineal is not permanently compromised by electric-field exposure, and that the circadian rhythm effect may be neuronally mediated.

  4. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    NASA Astrophysics Data System (ADS)

    Kaper, Tasso J.; Kramer, Mark A.; Rotstein, Horacio G.

    2013-12-01

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.

  5. Analysis of Nonstationary Time Series for Biological Rhythms Research.

    PubMed

    Leise, Tanya L

    2017-06-01

    This article is part of a Journal of Biological Rhythms series exploring analysis and statistics topics relevant to researchers in biological rhythms and sleep research. The goal is to provide an overview of the most common issues that arise in the analysis and interpretation of data in these fields. In this article on time series analysis for biological rhythms, we describe some methods for assessing the rhythmic properties of time series, including tests of whether a time series is indeed rhythmic. Because biological rhythms can exhibit significant fluctuations in their period, phase, and amplitude, their analysis may require methods appropriate for nonstationary time series, such as wavelet transforms, which can measure how these rhythmic parameters change over time. We illustrate these methods using simulated and real time series.

  6. The daily rhythm of body temperature, heart and respiratory rate in newborn dogs.

    PubMed

    Piccione, Giuseppe; Giudice, Elisabetta; Fazio, Francesco; Mortola, Jacopo P

    2010-08-01

    We asked whether, during the postnatal period, the daily patterns of body temperature (Tb), heart rate (HR) and breathing frequency (f) begin and develop in synchrony. To this end, measurements of HR, f and Tb were performed weekly, on two consecutive days, for the first two postnatal months on puppies of three breeds of dogs (Rottweiler, Cocker Spaniel and Carlino dogs) with very different birth weights and postnatal growth patterns. Ambient conditions and feeding habits were constant for all puppies. The results indicated that (1) the 24-h average Tb increased and average HR and f decreased with growth, (2) the daily rhythms in Tb were apparent by 4 weeks, irrespective of the puppy's growth pattern, (3) the daily rhythm of Tb in the puppy was not necessarily following that of the mother; in fact, it could anticipate it. (4) The daily rhythms in HR and f were not apparent for the whole study period. We conclude that in neonatal dogs the onset of the daily rhythms of Tb has no obvious relationship with body size or rate of growth and is not cued by the maternal Tb rhythm. The daily rhythms of HR and f do not appear before 2 months of age. Hence, they are not in synchrony with those of Tb.

  7. The phonetic rhythm/syntax headedness connection: Evidence from Tagalog

    NASA Astrophysics Data System (ADS)

    Bird, Sonya; Fais, Laurel; Werker, Janet

    2005-04-01

    Ramus, Nespor, and Mehler [Cognition (1999)] show that the rhythm of a language (broadly: stress- versus syllable- versus mora-timing) results from the proportion of vocalic material in an utterance (%V) and the standard deviation of consonantal intervals (delta-C). Based on 14 languages, Shukla, Nespor, and Mehler [submitted] further argue that rhythm is correlated with syntactic headedness: low %V is correlated with head-first languages (e.g., English); high %V is correlated with head-final languages (e.g., Japanese). Together, these proposals have important implications for language acquisition: infants can discriminate across rhythm classes [Nazzi, Bertoncini, and Mehler, J. Exp. Psych: Human Perception and Performance (1998)]. If rhythm, as defined by %V and delta-C, can predict headedness, then infants can potentially use rhythm information to bootstrap into their languages syntactic structure. This paper reports on a study analyzing rhythm in a language not yet considered: Tagalog. Results support the Shukla et al. proposal in an interesting way: based on its %V and delta-C, Tagalog falls between head-first and head-last languages, slighty closer to the head-first group. This placement correlates well with the fact that, although Tagalog is said to be primarily head-first syntactically, head-last phrases are permitted and common in the language.

  8. Rhythm perception, production, and synchronization during the perinatal period

    PubMed Central

    Provasi, Joëlle; Anderson, David I.; Barbu-Roth, Marianne

    2014-01-01

    Sensori-motor synchronization (SMS) is the coordination of rhythmic movement with an external rhythm. It plays a central role in motor, cognitive, and social behavior. SMS is commonly studied in adults and in children from four years of age onward. Prior to this age, the ability has rarely been investigated due to a lack of available methods. The present paper reviews what is known about SMS in young children, infants, newborns, and fetuses. The review highlights fetal and infant perception of rhythm and cross modal perception of rhythm, fetal, and infant production of rhythm and cross modal production of rhythm, and the contexts in which production of rhythm can be observed in infants. A primary question is whether infants, even newborns, can modify their spontaneous rhythmical motor behavior in response to external rhythmical stimulation. Spontaneous sucking, crying, and leg movements have been studied in the presence or absence of rhythmical auditory stimulation. Findings suggest that the interaction between movement and sound is present at birth and that SMS can be observed in special conditions and within a narrow range of tempi, particularly near the infant’s own spontaneous motor tempo. The discussion centers on the fundamental role of SMS in interaction and communication at the beginning of life. PMID:25278929

  9. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  10. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.

    PubMed

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2016-02-01

    The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Osteoarthritis-like pathologic changes in the knee joint induced by environmental disruption of circadian rhythms is potentiated by a high-fat diet.

    PubMed

    Kc, Ranjan; Li, Xin; Forsyth, Christopher B; Voigt, Robin M; Summa, Keith C; Vitaterna, Martha Hotz; Tryniszewska, Beata; Keshavarzian, Ali; Turek, Fred W; Meng, Qing-Jun; Im, Hee-Jeong

    2015-11-20

    A variety of environmental factors contribute to progressive development of osteoarthritis (OA). Environmental factors that upset circadian rhythms have been linked to various diseases. Our recent work establishes chronic environmental circadian disruption - analogous to rotating shiftwork-associated disruption of circadian rhythms in humans - as a novel risk factor for the development of OA. Evidence suggests shift workers are prone to obesity and also show altered eating habits (i.e., increased preference for high-fat containing food). In the present study, we investigated the impact of chronic circadian rhythm disruption in combination with a high-fat diet (HFD) on progression of OA in a mouse model. Our study demonstrates that when mice with chronically circadian rhythms were fed a HFD, there was a significant proteoglycan (PG) loss and fibrillation in knee joint as well as increased activation of the expression of the catabolic mediators involved in cartilage homeostasis. Our results, for the first time, provide the evidence that environmental disruption of circadian rhythms plus HFD potentiate OA-like pathological changes in the mouse joints. Thus, our findings may open new perspectives on the interactions of chronic circadian rhythms disruption with diet in the development of OA and may have potential clinical implications.

  12. Effects of restricted feeding schedules on circadian organization in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Boulos, Z.; Frim, D. M.; Dewey, L. K.; Moore-Ede, M. C.

    1989-01-01

    Free running circadian rhythms of motor activity, food-motivated lever-pressing, and either drinking (N = 7) or body temperature (N = 3) were recorded from 10 squirrel monkeys maintained in constant illumination with unlimited access to food. Food availability was then restricted to a single unsignaled 3-hour interval each day. The feeding schedule failed to entrain the activity rhythms of 8 monkeys, which continued to free-run. Drinking was almost completely synchronized by the schedule, while body temperature showed a feeding-induced rise superimposed on a free-running rhythm. Nonreinforced lever-pressing showed both a free-running component and a 24-hour component that anticipated the time of feeding. At the termination of the schedule, all recorded variables showed free-running rhythms, but in 3 animals the initial phase of the postschedule rhythms was advanced by several hours, suggesting relative coordination. Of the remaining 2 animals, one exhibited stable entrainment of all 3 recorded rhythms, while the other appeared to entrain temporarily to the feeding schedule. These results indicate that restricted feeding schedules are only a weak zeitgeber for the circadian pacemaker generating free-running rhythms in the squirrel monkey. Such schedules, however, may entrain a separate circadian system responsible for the timing of food-anticipatory changes in behavior and physiology.

  13. Pineal Photoreceptor Cells Are Required for Maintaining the Circadian Rhythms of Behavioral Visual Sensitivity in Zebrafish

    PubMed Central

    Li, Xinle; Montgomery, Jake; Cheng, Wesley; Noh, Jung Hyun; Hyde, David R.; Li, Lei

    2012-01-01

    In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity. PMID:22815753

  14. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Pavlova, Milena

    2017-08-01

    The endogenous circadian rhythms are one of the cardinal processes that control sleep. They are self-sustaining biological rhythms with a periodicity of approximately 24 hours that may be entrained by external zeitgebers (German for time givers), such as light, exercise, and meal times. This article discusses the physiology of the circadian rhythms, their relationship to neurologic disease, and the presentation and treatment of circadian rhythm sleep-wake disorders. Classic examples of circadian rhythms include cortisol and melatonin secretion, body temperature, and urine volume. More recently, the impact of circadian rhythm on several neurologic disorders has been investigated, such as the timing of occurrence of epileptic seizures as well as neurobehavioral functioning in dementia. Further updates include a more in-depth understanding of the symptoms, consequences, and treatment of circadian sleep-wake disorders, which may occur because of extrinsic misalignment with clock time or because of intrinsic dysfunction of the brain. An example of extrinsic misalignment occurs with jet lag during transmeridian travel or with intrinsic circadian rhythm sleep-wake disorders such as advanced or delayed sleep-wake phase disorders. In advanced sleep-wake phase disorder, which is most common in elderly individuals, sleep onset and morning arousal are undesirably early, leading to impaired evening function with excessive sleepiness and sleep-maintenance insomnia with early morning awakening. By contrast, delayed sleep-wake phase disorder is characterized by an inability to initiate sleep before the early morning hours, with subsequent delayed rise time, leading to clinical symptoms of severe sleep-onset insomnia coupled with excessive daytime sleepiness in the morning hours, as patients are unable to "sleep in" to attain sufficient sleep quantity. Irregular sleep-wake rhythm disorder is misentrainment with patches of brief sleep and wakefulness spread throughout the day, leading to unstable sleep and waking behavioral patterns and an entirely idiosyncratic sleep-wake schedule. Familiarity with these major circadian rhythm sleep-wake disorder phenotypes and their overlap with other neurologic disorders is essential for the neurologist so that clinicians may intervene and improve patient functioning and quality of life.

  15. A stochastic model of input effectiveness during irregular gamma rhythms.

    PubMed

    Dumont, Grégory; Northoff, Georg; Longtin, André

    2016-02-01

    Gamma-band synchronization has been linked to attention and communication between brain regions, yet the underlying dynamical mechanisms are still unclear. How does the timing and amplitude of inputs to cells that generate an endogenously noisy gamma rhythm affect the network activity and rhythm? How does such "communication through coherence" (CTC) survive in the face of rhythm and input variability? We present a stochastic modelling approach to this question that yields a very fast computation of the effectiveness of inputs to cells involved in gamma rhythms. Our work is partly motivated by recent optogenetic experiments (Cardin et al. Nature, 459(7247), 663-667 2009) that tested the gamma phase-dependence of network responses by first stabilizing the rhythm with periodic light pulses to the interneurons (I). Our computationally efficient model E-I network of stochastic two-state neurons exhibits finite-size fluctuations. Using the Hilbert transform and Kuramoto index, we study how the stochastic phase of its gamma rhythm is entrained by external pulses. We then compute how this rhythmic inhibition controls the effectiveness of external input onto pyramidal (E) cells, and how variability shapes the window of firing opportunity. For transferring the time variations of an external input to the E cells, we find a tradeoff between the phase selectivity and depth of rate modulation. We also show that the CTC is sensitive to the jitter in the arrival times of spikes to the E cells, and to the degree of I-cell entrainment. We further find that CTC can occur even if the underlying deterministic system does not oscillate; quasicycle-type rhythms induced by the finite-size noise retain the basic CTC properties. Finally a resonance analysis confirms the relative importance of the I cell pacing for rhythm generation. Analysis of whole network behaviour, including computations of synchrony, phase and shifts in excitatory-inhibitory balance, can be further sped up by orders of magnitude using two coupled stochastic differential equations, one for each population. Our work thus yields a fast tool to numerically and analytically investigate CTC in a noisy context. It shows that CTC can be quite vulnerable to rhythm and input variability, which both decrease phase preference.

  16. Event-induced theta responses as a window on the dynamics of memory.

    PubMed

    Bastiaansen, Marcel; Hagoort, Peter

    2003-01-01

    An important, but often ignored distinction in the analysis of EEG signals is that between evoked activity and induced activity. Whereas evoked activity reflects the summation of transient post-synaptic potentials triggered by an event, induced activity, which is mainly oscillatory in nature, is thought to reflect changes in parameters controlling dynamic interactions within and between brain structures. We hypothesize that induced activity may yield information about the dynamics of cell assembly formation, activation and subsequent uncoupling, which may play a prominent role in different types of memory operations. We then describe a number of analysis tools that can be used to study the reactivity of induced rhythmic activity, both in terms of amplitude changes and of phase variability. We briefly discuss how alpha, gamma and theta rhythms are thought to be generated, paying special attention to the hypothesis that the theta rhythm reflects dynamic interactions between the hippocampal system and the neocortex. This hypothesis would imply that studying the reactivity of scalp-recorded theta may provide a window on the contribution of the hippocampus to memory functions. We review studies investigating the reactivity of scalp-recorded theta in paradigms engaging episodic memory, spatial memory and working memory. In addition, we review studies that relate theta reactivity to processes at the interface of memory and language. Despite many unknowns, the experimental evidence largely supports the hypothesis that theta activity plays a functional role in cell assembly formation, a process which may constitute the neural basis of memory formation and retrieval. The available data provide only highly indirect support for the hypothesis that scalp-recorded theta yields information about hippocampal functioning. It is concluded that studying induced rhythmic activity holds promise as an additional important way to study brain function.

  17. EEG Correlates of Song Prosody: A New Look at the Relationship between Linguistic and Musical Rhythm

    PubMed Central

    Gordon, Reyna L.; Magne, Cyrille L.; Large, Edward W.

    2011-01-01

    Song composers incorporate linguistic prosody into their music when setting words to melody, a process called “textsetting.” Composers tend to align the expected stress of the lyrics with strong metrical positions in the music. The present study was designed to explore the idea that temporal alignment helps listeners to better understand song lyrics by directing listeners’ attention to instances where strong syllables occur on strong beats. Three types of textsettings were created by aligning metronome clicks with all, some or none of the strong syllables in sung sentences. Electroencephalographic recordings were taken while participants listened to the sung sentences (primes) and performed a lexical decision task on subsequent words and pseudowords (targets, presented visually). Comparison of misaligned and well-aligned sentences showed that temporal alignment between strong/weak syllables and strong/weak musical beats were associated with modulations of induced beta and evoked gamma power, which have been shown to fluctuate with rhythmic expectancies. Furthermore, targets that followed well-aligned primes elicited greater induced alpha and beta activity, and better lexical decision task performance, compared with targets that followed misaligned and varied sentences. Overall, these findings suggest that alignment of linguistic stress and musical meter in song enhances musical beat tracking and comprehension of lyrics by synchronizing neural activity with strong syllables. This approach may begin to explain the mechanisms underlying the relationship between linguistic and musical rhythm in songs, and how rhythmic attending facilitates learning and recall of song lyrics. Moreover, the observations reported here coincide with a growing number of studies reporting interactions between the linguistic and musical dimensions of song, which likely stem from shared neural resources for processing music and speech. PMID:22144972

  18. "Cuts in Action": A High-Density EEG Study Investigating the Neural Correlates of Different Editing Techniques in Film.

    PubMed

    Heimann, Katrin S; Uithol, Sebo; Calbi, Marta; Umiltà, Maria A; Guerra, Michele; Gallese, Vittorio

    2017-08-01

    In spite of their striking differences with real-life perception, films are perceived and understood without effort. Cognitive film theory attributes this to the system of continuity editing, a system of editing guidelines outlining the effect of different cuts and edits on spectators. A major principle in this framework is the 180° rule, a rule recommendation that, to avoid spectators' attention to the editing, two edited shots of the same event or action should not be filmed from angles differing in a way that expectations of spatial continuity are strongly violated. In the present study, we used high-density EEG to explore the neural underpinnings of this rule. In particular, our analysis shows that cuts and edits in general elicit early ERP component indicating the registration of syntactic violations as known from language, music, and action processing. However, continuity edits and cuts-across the line differ from each other regarding later components likely to be indicating the differences in spatial remapping as well as in the degree of conscious awareness of one's own perception. Interestingly, a time-frequency analysis of the occipital alpha rhythm did not support the hypothesis that such differences in processing routes are mainly linked to visual attention. On the contrary, our study found specific modulations of the central mu rhythm ERD as an indicator of sensorimotor activity, suggesting that sensorimotor networks might play an important role. We think that these findings shed new light on current discussions about the role of attention and embodied perception in film perception and should be considered when explaining spectators' different experience of different kinds of cuts. Copyright © 2016 Cognitive Science Society, Inc.

  19. Circadian preferences, oxidative stress and inflammatory cytokines in bipolar disorder: A community study.

    PubMed

    Mondin, Thaise Campos; de Azevedo Cardoso, Taiane; Moreira, Fernanda Pedrotti; Wiener, Carolina; Oses, Jean Pierre; de Mattos Souza, Luciano Dias; Jansen, Karen; da Silva Magalhães, Pedro Vieira; Kapczinski, Flávio; da Silva, Ricardo Azevedo

    2016-12-15

    To assess circadian preference among a community sample of people with bipolar disorder, major depression and without any mood disorders. Secondly, we investigated the association of circadian preference with cytokines interleukin-6 (IL-6), interleukin-10 (IL-10) and, tumor necrosis factor alpha (TNF-α) and oxidative stress assessed by thiobarbituric acid reactive substances (TBARS), uric acid and Protein Carbonyl Content (PCC). A cross-sectional study nested in a population-based sample. Caseness was confirmed with the Structured Clinical Interview for DSM-IV. A sample of 215 participants, in whom we measured circadian preferences, IL-6, IL-10, TNF-α, TBARS, uric acid, PCC. Biological rhythms were evaluated using the Biological Interview of Assessment in Neuropsychiatry. Bipolar group presented a higher alteration in biological rhythms (40.40±9.78) when compared with the major depression group (36.35±9.18) and control group (27.61±6.89) p<0.001. Subjects with bipolar disorder who were active at night and had a day/night cycle reverse showed decreased levels of IL-6 (t, 44=2.096; p=0.042), (t, 44=2.213; p=0.032), respectively. In the bipolar disorder group subjects who presented day/night cycle reverse had lower TBARS levels (t, 41=2.612; p=0.013). TNF-α were decreased in subjects more active at night with bipolar disorder. Lower serum levels of IL-6, TNF-α and TBARS were associated with evening preference in bipolar disorder group. These findings suggest that chronotype may alter the levels of interleukins and oxidative stress levels in bipolar and healthy subjects. A better understanding of the role of circadian preferences in levels of interleukins and oxidative stress are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    NASA Technical Reports Server (NTRS)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  1. The effect of the number of consecutive night shifts on diurnal rhythms in cortisol, melatonin and heart rate variability (HRV): a systematic review of field studies.

    PubMed

    Jensen, Marie Aarrebo; Garde, Anne Helene; Kristiansen, Jesper; Nabe-Nielsen, Kirsten; Hansen, Åse Marie

    2016-05-01

    The purpose of this review is to summarize the current knowledge from field studies on how many consecutive night shifts are required for adaptation of diurnal rhythms in cortisol, melatonin and heart rate variability (HRV) to night work. A systematic search of the databases PubMed and Web of Science resulted in 18 studies selected for review. Cortisol was measured in five studies, melatonin in 11 studies and HRV in four studies. Diurnal rhythms were assessed by use of several different measures based on three to eight samples per day for cortisol and melatonin and 24-h recordings for HRV. Most of the studies in the review were small studies with less than 30 participants, and most studies evaluated diurnal rhythms after only two consecutive night shifts whereas only six studies used seven or more consecutive night shifts. The majority of studies found that adaptation to night work had not occurred after two consecutive night shifts, whereas a small number found evidence for full adaptation after seven consecutive night shifts based on diurnal rhythms in cortisol and melatonin. There are methodological differences in the field studies analyzing diurnal rhythms and large diversity in the occupational fields studied. Nevertheless, we conclude that diurnal rhythms in cortisol, melatonin and HRV are not adapted to night work after 1-3 consecutive night shifts. Studies are needed to establish how many consecutive night shifts are needed for full adaptation of diurnal rhythms to night work.

  2. Agomelatine's effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats.

    PubMed

    Souza, Leonardo C; Martynhak, Bruno J; Bassani, Taysa B; Turnes, Joelle de M; Machado, Meira M; Moura, Eric; Andreatini, Roberto; Vital, Maria A B F

    2018-05-01

    Parkinson's disease (PD) patients often suffer from circadian locomotor rhythms impairment and depression, important non-motor symptoms. It is known that toxin-based animal models of PD can reproduce these features. In a 6-hydroxydopamine (6-OHDA) intranigral model, we first investigated the possible disturbances on circadian rhythms of locomotor activity. The rats were divided into 6-OHDA and Sham groups. After a partial dopaminergic lesion, the 6-OHDA group showed slight alterations in different circadian locomotor rhythms parameters. In a second experiment, we hypothesized agomelatine, an melatoninergic antidepressant with potential to resynchronize disturbed rhythms, could prevent neuronal damage and rhythm alterations in the same 6-OHDA model. The animals were divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. However, the treated animals (agomelatine 50 mg/kg for 22 days) showed an impaired rhythm robustness, and agomelatine did not induce significant changes in the other circadian parameters nor neuroprotection. Finally, in a third experiment, we examined the effects of agomelatine in the 6-OHDA model regarding depressive-like behavior, evaluated by sucrose preference test. The animals were also divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. The toxin infused animals showed a decrease in sucrose preference in comparison with the vehicle infused animals, however, agomelatine did not prevent this decrease. Our findings indicate that agomelatine worsened circadian locomotor rhythm and was not able to reverse the depressive-like behavior of rats in the 6-OHDA PD model. Copyright © 2018. Published by Elsevier Inc.

  3. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    PubMed

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  4. Wheel Running Improves REM Sleep and Attenuates Stress-induced Flattening of Diurnal Rhythms in F344 Rats

    PubMed Central

    Thompson, Robert S.; Roller, Rachel; Greenwood, Benjamin N.; Fleshner, Monika

    2016-01-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12hr light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise. PMID:27124542

  5. Timing Matters: Circadian Rhythm in Sepsis, Obstructive Lung Disease, Obstructive Sleep Apnea, and Cancer

    PubMed Central

    Truong, Kimberly K.; Lam, Michael T.; Grandner, Michael A.; Sassoon, Catherine S.

    2016-01-01

    Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption. PMID:27104378

  6. [Effects of acupuncture on circadian rhythm of blood pressure in patients with essential hypertension].

    PubMed

    Lei, Yun; Jin, Jiu; Ban, Haipeng; Du, Yuzheng

    2017-11-12

    To observe the effects of acupuncture combined with medication on circadian rhythm of blood pressure in patients with essential hypertension. Sixty-four patients of essential hypertension were randomly divided into an observation group and a control group, 32 cases in each group. All the patients maintained original treatment (taking antihypertensive medication); the patients in the observation group were treated with acupuncture method of " Huoxue Sanfeng , Shugan Jianpi ", once a day, five times per week, for totally 6 weeks (30 times). The circadian rhythm of blood pressure and related dynamic parameters were observed before and after treatment in the two groups. (1) The differences of daytime average systolic blood pressure (dASBP), daytime average diastolic blood pressure (dADBP), nighttime average systolic blood pressure (nASBP) and circadian rhythm of systolic blood pressure before and after treatment were significant in the observation group (all P <0.05); the differences of circadian rhythm of blood pressure and related dynamic parameters before and after treatment were insignificant in the control group (all P >0.05). The nASBP and circadian rhythm of systolic blood pressure in the observation group were significantly different from those in the control group (all P <0.05). (2) After the treatment, the spoon-shaped rate of circadian rhythm of blood pressure in the observation group was higher than that in the control group ( P <0.05). The acupuncture combined with medication could effectively improve the circadian rhythm of blood pressure and related dynamic parameters in patients with essential hypertension.

  7. Consequences of acute and long-term removal of neuromodulatory input on the episodic gastric rhythm of the crab Cancer borealis

    PubMed Central

    Marder, Eve

    2015-01-01

    For decades, the episodic gastric rhythm of the crustacean stomatogastric nervous system (STNS) has served as an important model system for understanding the generation of rhythmic motor behaviors. Here we quantitatively describe many features of the gastric rhythm of the crab Cancer borealis under several conditions. First, we analyzed spontaneous gastric rhythms produced by freshly dissected preparations of the STNS, including the cycle frequency and phase relationships among gastric units. We find that phase is relatively conserved across frequency, similar to the pyloric rhythm. We also describe relationships between these two rhythms, including a significant gastric/pyloric frequency correlation. We then performed continuous, days-long extracellular recordings of gastric activity from preparations of the STNS in which neuromodulatory inputs to the stomatogastric ganglion were left intact and also from preparations in which these modulatory inputs were cut (decentralization). This allowed us to provide quantitative descriptions of variability and phase conservation within preparations across time. For intact preparations, gastric activity was more variable than pyloric activity but remained relatively stable across 4–6 days, and many significant correlations were found between phase and frequency within animals. Decentralized preparations displayed fewer episodes of gastric activity, with altered phase relationships, lower frequencies, and reduced coordination both among gastric units and between the gastric and pyloric rhythms. Together, these results provide insight into the role of neuromodulation in episodic pattern generation and the extent of animal-to-animal variability in features of spontaneously occurring gastric rhythms. PMID:26156388

  8. Development of a Low-cost, Comprehensive Recording System for Circadian Rhythm Behavior.

    PubMed

    Kwon, Jea; Park, Min Gu; Lee, Seung Eun; Lee, C Justin

    2018-02-01

    Circadian rhythm is defined as a 24-hour biological oscillation, which persists even without any external cues but also can be re-entrained by various environmental cues. One of the widely accepted circadian rhythm behavioral experiment is measuring the wheel-running activity (WRA) of rodents. However, the price for commercially available WRA recording system is not easily affordable for researchers due to high-cost implementation of sensors for wheel rotation. Here, we developed a cost-effective and comprehensive system for circadian rhythm recording by measuring the house-keeping activities (HKA). We have monitored animal's HKA as electrical signal by simply connecting animal housing cage with a standard analog/digital converter: input to the metal lid and ground to the metal grid floor. We show that acquired electrical signals are combined activities of eating, drinking and natural locomotor behaviors which are well-known indicators of circadian rhythm. Post-processing of measured electrical signals enabled us to draw actogram, which verifies HKA to be reliable circadian rhythm indicator. To provide easy access of HKA recording system for researchers, we have developed user-friendly MATLAB-based software, Circa Analysis. This software provides functions for easy extraction of scalable "touch activity" from raw data files by automating seven steps of post-processing and drawing actograms with highly intuitive user-interface and various options. With our cost-effective HKA circadian rhythm recording system, we have estimated the cost of our system to be less than $150 per channel. We anticipate our system will benefit many researchers who would like to study circadian rhythm.

  9. Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate.

    PubMed

    De Guchtenaere, A; Vande Walle, C; Van Sintjan, P; Raes, A; Donckerwolcke, R; Van Laecke, E; Hoebeke, P; Vande Walle, J

    2007-12-01

    Monosymptomatic nocturnal enuresis is frequently associated with nocturnal polyuria and low urinary osmolality during the night. Initial studies found decreased vasopressin levels associated with low urinary osmolality overnight. Together with the documented desmopressin response, this was suggestive of a primary role for vasopressin in the pathogenesis of enuresis in the absence of bladder dysfunction. Recent studies no longer confirm this primary role of vasopressin. Other pathogenetic factors such as disordered renal sodium handling, hypercalciuria, increased prostaglandins and/or osmotic excretion might have a role. So far, little attention has been given to abnormalities in the circadian rhythm of glomerular filtration rate. We evaluated the circadian rhythm of glomerular filtration rate and diuresis in children with desmopressin resistant monosymptomatic nocturnal enuresis and nocturnal polyuria. We evaluated 15 children (9 boys) 9 to 14 years old with monosymptomatic nocturnal enuresis and nocturnal polyuria resistant to desmopressin treatment. The control group consisted of 25 children (12 boys) 9 to 16 years old with monosymptomatic nocturnal enuresis without nocturnal polyuria. Compared to the control population, children with nocturnal polyuria lost their circadian rhythm not only for diuresis and sodium excretion but also for glomerular filtration rate. Patients with monosymptomatic nocturnal enuresis and nocturnal polyuria lack a normal circadian rhythm for diuresis and sodium excretion, and the circadian rhythm of glomerular filtration rate is absent. This absence of circadian rhythm of glomerular filtration rate and/or sodium handling cannot be explained by a primary role of vasopressin, but rather by a disorder in circadian rhythm of renal glomerular and/or tubular functions.

  10. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    PubMed Central

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  11. Is pulseless electrical activity a reason to refuse cardiopulmonary resuscitation with ECMO support?

    PubMed

    Pabst, Dirk; Brehm, Christoph E

    2018-04-01

    Cardiopulmonary resuscitation with ECMO support (ECPR) has shown to improve outcome in patients after cardiac arrest under resuscitation. Most current recommendations for ECPR do not include patients with a non-shockable rhythm such as PEA and asystole. The aim of this study was to investigate the outcome of 3 patient groups separated by initial rhythm at time of ECMO placement during CPR: asystole, PEA and shockable rhythm. We made a retrospective single-center study of adults who underwent ECPR for in-hospital cardiac arrest between June 2008 and January 2017. Outcome and survival were identified in 3 groups of patients regarding to the heart rhythm at the time decision for ECMO support was made: 1. patients with asystole, 2. patients with pulseless electrical activity, 3. patients with a shockable rhythm. 63 patients underwent ECPR in the mentioned time frame. Five patients were excluded due to incomplete data. Under the 58 included patients the number of cases for asystole, PEA, shockable rhythm was 7, 21 and 30 respectively. The means of CPR-time in these groups were 37, 41 and 37min. Survival to discharge was 0.0%, 23.8% and 40.0% respectively (p=0.09). All survivors to discharge had a good neurological outcome, defined as cerebral performance category 1or 2. Survival to discharge in patients with PEA as initial rhythm at the time of decision for ECPR is 23.8% while no patients with asystole as initial rhythm survived discharge. Patients with PEA should be carefully considered for ECPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    NASA Astrophysics Data System (ADS)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  13. Rhythm's Gonna Get You: Regular Meter Facilitates Semantic Sentence Processing

    ERIC Educational Resources Information Center

    Rothermich, Kathrin; Schmidt-Kassow, Maren; Kotz, Sonja A.

    2012-01-01

    Rhythm is a phenomenon that fundamentally affects the perception of events unfolding in time. In language, we define "rhythm" as the temporal structure that underlies the perception and production of utterances, whereas "meter" is defined as the regular occurrence of beats (i.e. stressed syllables). In stress-timed languages such as German, this…

  14. Speech Rhythm: Its Relation to Performance Universals and Articulatory Timing

    ERIC Educational Resources Information Center

    Allen, George D.

    1975-01-01

    The relationship between the rhythms of spoken language and the rhythms of other human behavior is examined in terms of: (1) types of rhythmic structures observed, (2) rate of succession of rhythmic units, (3) a perceptual tendency equalization of physically unequal intervals, and (4) the variability of rhythmic motor action. (Author/RM)

  15. Comparison of English Language Rhythm and Kalhori Kurdish Language Rhythm

    ERIC Educational Resources Information Center

    Taghva, Nafiseh; Zadeh, Vahideh Abolhasani

    2016-01-01

    Interval-based method is a method of studying the rhythmic quantitative features of languages. This method use Pairwise Variability Index (PVI) to consider the variability of vocalic duration and inter-vocalic duration of sentences which leads to classification of languages rhythm into stress-timed languages and syllable-timed ones. This study…

  16. Analysis of Handwriting based on Rhythm Perception

    NASA Astrophysics Data System (ADS)

    Saito, Kazuya; Uchida, Masafumi; Nozawa, Akio

    Humanity fluctuation was reported in some fields. In handwriting process, fluctuation appears on handwriting-velocity. In this report, we focused attention on human rhythm perception and analyzed fluctuation in handwriting process. As a result, 1/f noise related to rhythm perception and features may caused by Kahneman's capacity model were measured on handwriting process.

  17. Got Rhythm...For Better and for Worse. Cross-Modal Effects of Auditory Rhythm on Visual Word Recognition

    ERIC Educational Resources Information Center

    Brochard, Renaud; Tassin, Maxime; Zagar, Daniel

    2013-01-01

    The present research aimed to investigate whether, as previously observed with pictures, background auditory rhythm would also influence visual word recognition. In a lexical decision task, participants were presented with bisyllabic visual words, segmented into two successive groups of letters, while an irrelevant strongly metric auditory…

  18. Detecting and Correcting Speech Rhythm Errors

    ERIC Educational Resources Information Center

    Yurtbasi, Metin

    2015-01-01

    Every language has its own rhythm. Unlike many other languages in the world, English depends on the correct pronunciation of stressed and unstressed or weakened syllables recurring in the same phrase or sentence. Mastering the rhythm of English makes speaking more effective. Experiments have shown that we tend to hear speech as more rhythmical…

  19. Common and distinct neural substrates for the perception of speech rhythm and intonation.

    PubMed

    Zhang, Linjun; Shu, Hua; Zhou, Fengying; Wang, Xiaoyi; Li, Ping

    2010-07-01

    The present study examines the neural substrates for the perception of speech rhythm and intonation. Subjects listened passively to synthesized speech stimuli that contained no semantic and phonological information, in three conditions: (1) continuous speech stimuli with fixed syllable duration and fundamental frequency in the standard condition, (2) stimuli with varying vocalic durations of syllables in the speech rhythm condition, and (3) stimuli with varying fundamental frequency in the intonation condition. Compared to the standard condition, speech rhythm activated the right middle superior temporal gyrus (mSTG), whereas intonation activated the bilateral superior temporal gyrus and sulcus (STG/STS) and the right posterior STS. Conjunction analysis further revealed that rhythm and intonation activated a common area in the right mSTG but compared to speech rhythm, intonation elicited additional activations in the right anterior STS. Findings from the current study reveal that the right mSTG plays an important role in prosodic processing. Implications of our findings are discussed with respect to neurocognitive theories of auditory processing. (c) 2009 Wiley-Liss, Inc.

  20. Rain reverses diel activity rhythms in an estuarine teleost

    PubMed Central

    Payne, Nicholas L.; van der Meulen, Dylan E.; Gannon, Ruan; Semmens, Jayson M.; Suthers, Iain M.; Gray, Charles A.; Taylor, Matthew D.

    2013-01-01

    Activity rhythms are ubiquitous in nature, and generally synchronized with the day–night cycle. Several taxa have been shown to switch between nocturnal and diurnal activity in response to environmental variability, and these relatively uncommon switches provide a basis for greater understanding of the mechanisms and adaptive significance of circadian (approx. 24 h) rhythms. Plasticity of activity rhythms has been identified in association with a variety of factors, from changes in predation pressure to an altered nutritional or social status. Here, we report a switch in activity rhythm that is associated with rainfall. Outside periods of rain, the estuarine-associated teleost Acanthopagrus australis was most active and in shallower depths during the day, but this activity and depth pattern was reversed in the days following rain, with diurnality restored as estuarine conductivity and turbidity levels returned to pre-rain levels. Although representing the first example of a rain-induced reversal of activity rhythm in an aquatic animal of which we are aware, our results are consistent with established models on the trade-offs between predation risk and foraging efficiency. PMID:23173211

  1. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer.

    PubMed

    Altman, Brian J

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.

  2. The effect of lens aging and cataract surgery on circadian rhythm.

    PubMed

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.

  3. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer

    PubMed Central

    Altman, Brian J.

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight. PMID:27500134

  4. The effect of lens aging and cataract surgery on circadian rhythm

    PubMed Central

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm. PMID:27500118

  5. Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization

    PubMed Central

    Fonken, Laura K.; Kitt, Meagan M.; Gaudet, Andrew D.; Barrientos, Ruth M.; Watkins, Linda R.; Maier, Steven F.

    2016-01-01

    Aged animals exhibit diminished circadian rhythms, and both aging and circadian disruption sensitize neuroinflammatory responses. Microglia –the innate immune cell of the CNS – possess endogenous timekeeping mechanisms that regulate immune responses. Here, we explored whether aging is associated with disrupted diurnal rhythms in microglia and neuroinflammatory processes. First, hippocampal microglia isolated from young rats (4 mos. F344XBN) rhythmically expressed circadian clock genes, whereas microglia isolated from the hippocampus of aged rats (25 mos.) had aberrant Per1 and Per2 rhythms. Unstimulated microglia from young rats exhibited robust rhythms of TNFα and IL-1β mRNA expression, whereas those from aged rats had flattened and tonically-elevated cytokine expression. Similarly, microglial activation markers were diurnally regulated in the hippocampus of young but not aged rats and diurnal differences in responsiveness to both ex vivo and in vivo inflammatory challenges were abolished in aged rats. Corticosterone is an entraining signal for extra-SCN circadian rhythms. Here, corticosterone stimulation elicited similar Per1 induction in aged and young microglia. Overall, these results indicate that aging dysregulates circadian regulation of neuroinflammatory functions. PMID:27568094

  6. Time-of-day effects in implicit racial in-group preferences are likely selection effects, not circadian rhythms

    PubMed Central

    2016-01-01

    Time-of-day effects in human psychological functioning have been known of since the 1800s. However, outside of research specifically focused on the quantification of circadian rhythms, their study has largely been neglected. Moves toward online data collection now mean that psychological investigations take place around the clock, which affords researchers the ability to easily study time-of-day effects. Recent analyses have shown, for instance, that implicit attitudes have time-of-day effects. The plausibility that these effects indicate circadian rhythms rather than selection effects is considered in the current study. There was little evidence that the time-of-day effects in implicit attitudes shifted appropriately with factors known to influence the time of circadian rhythms. Moreover, even variables that cannot logically show circadian rhythms demonstrated stronger time-of-day effects than did implicit attitudes. Taken together, these results suggest that time-of-day effects in implicit attitudes are more likely to represent processes of selection rather than circadian rhythms, but do not rule out the latter possibility. PMID:27114886

  7. Cortisol-mediated synchronization of circadian rhythm in urinary potassium excretion

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Schmelzer, W. S.; Kass, D. A.; Herd, J. A.

    1977-01-01

    Conscious chair-acclimatized squirrel monkeys (Saimiri sciureus) studied with lights on (600 lx) from 0800 to 2000 hr daily (LD 12:12) display a prominent circadian rhythm in renal potassium excretion. The characteristics of this rhythm were reproduced in adrenalectomized monkeys by infusing 5 mg cortisol and 0.001 mg aldosterone, or 5 mg cortisol alone, between 0800 and 0900 kr daily. When the timing of cortisol administration (with or without aldosterone) was phase-delayed by 8 hr, the urinary potassium rhythm resynchronized by 80% of the cortisol phase shift, but only after a transient response lasting 3-4 days. With the same daily dose of adrenal steroids given as a continuous infusion throughout each 24 hr, urinary potassium excretion showed free-running oscillations no longer synchronized to the light-dark cycle. These results indicate that the circadian rhythm of plasma cortisol concentration acts as an internal mediator in the circadian timing system, synchronizing a potentially autonomous oscillation in renal potassium excretion to environmental time cues and to other circadian rhythms within the animal.

  8. Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals.

    PubMed

    Goda, Tadahiro; Doi, Masao; Umezaki, Yujiro; Murai, Iori; Shimatani, Hiroyuki; Chu, Michelle L; Nguyen, Victoria H; Okamura, Hitoshi; Hamada, Fumika N

    2018-01-15

    Daily body temperature rhythm (BTR) is essential for maintaining homeostasis. BTR is regulated separately from locomotor activity rhythms, but its molecular basis is largely unknown. While mammals internally regulate BTR, ectotherms, including Drosophila , exhibit temperature preference rhythm (TPR) behavior to regulate BTR. Here, we demonstrate that the diuretic hormone 31 receptor (DH31R) mediates TPR during the active phase in Drosophila DH31R is expressed in clock cells, and its ligand, DH31, acts on clock cells to regulate TPR during the active phase. Surprisingly, the mouse homolog of DH31R, calcitonin receptor (Calcr), is expressed in the suprachiasmatic nucleus (SCN) and mediates body temperature fluctuations during the active phase in mice. Importantly, DH31R and Calcr are not required for coordinating locomotor activity rhythms. Our results represent the first molecular evidence that BTR is regulated distinctly from locomotor activity rhythms and show that DH31R/Calcr is an ancient specific mediator of BTR during the active phase in organisms ranging from ectotherms to endotherms. © 2018 Goda et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Characteristics and classification of hippocampal θ rhythm induced by passive translational displacement.

    PubMed

    Xie, Kangning; Yan, Yili; Fang, Xiaolei; Gao, Shangkai; Hong, Bo

    2012-04-25

    Theta rhythms in the hippocampus are believed to be the "metric" relating to various behavior patterns for free roaming rats. In this study, the theta rhythms were studied while rats either walked or were passively translated by a toy car on a linear track (referred to as WALK and TRANS respectively). For the similar running speeds in WALK and TRANS conditions, theta frequency and amplitude were both reduced during TRANS. Theta modulation of pyramidal cells during TRANS was reduced compared to that during WALK. Theta frequency was positively correlated with translation speed during TRANS. Theta rhythm remained apparent during TRANS and WALK after large dose of atropine sulfate (blocking the cholinergic pathway) was injected compared to still states. The present study demonstrated the patterns of theta rhythm induced by passive translation in rats and suggested that the Type I theta rhythm could occur during non-voluntary locomotion. We further argued that the perception of actual self-motion may be the underlying mechanism that initiates and modulates type I theta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Time-of-day effects in implicit racial in-group preferences are likely selection effects, not circadian rhythms.

    PubMed

    Schofield, Timothy P

    2016-01-01

    Time-of-day effects in human psychological functioning have been known of since the 1800s. However, outside of research specifically focused on the quantification of circadian rhythms, their study has largely been neglected. Moves toward online data collection now mean that psychological investigations take place around the clock, which affords researchers the ability to easily study time-of-day effects. Recent analyses have shown, for instance, that implicit attitudes have time-of-day effects. The plausibility that these effects indicate circadian rhythms rather than selection effects is considered in the current study. There was little evidence that the time-of-day effects in implicit attitudes shifted appropriately with factors known to influence the time of circadian rhythms. Moreover, even variables that cannot logically show circadian rhythms demonstrated stronger time-of-day effects than did implicit attitudes. Taken together, these results suggest that time-of-day effects in implicit attitudes are more likely to represent processes of selection rather than circadian rhythms, but do not rule out the latter possibility.

  11. Social Rhythm and Mental Health: A Cross-Cultural Comparison.

    PubMed

    Margraf, Jürgen; Lavallee, Kristen; Zhang, XiaoChi; Schneider, Silvia

    2016-01-01

    Social rhythm refers to the regularity with which one engages in social activities throughout the week, and has established links with bipolar disorder, as well as some links with depression and anxiety. The aim of the present study is to examine social rhythm and its relationship to various aspects of health, including physical health, negative mental health, and positive mental health. Questionnaire data were obtained from a large-scale multi-national sample of 8095 representative participants from the U.S., Russia, and Germany. Results indicated that social rhythm irregularity is related to increased reporting of health problems, depression, anxiety, and stress. In contrast, greater regularity is related to better overall health state, life satisfaction, and positive mental health. The effects are generally small in size, but hold even when controlling for gender, marital status, education, income, country, and social support. Further, social rhythm means differ across Russia, the U.S., and Germany. Relationships with mental health are present in all three countries, but differ in magnitude. Social rhythm irregularity is related to mental health in Russia, the U.S., and Germany.

  12. Principles for circadian orchestration of metabolic pathways.

    PubMed

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim; Westermark, Pål O

    2017-02-14

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo.

  13. Principles for circadian orchestration of metabolic pathways

    PubMed Central

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim

    2017-01-01

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo. PMID:28159888

  14. Rhythms in the endocrine system of fish: a review.

    PubMed

    Cowan, Mairi; Azpeleta, Clara; López-Olmeda, Jose Fernando

    2017-12-01

    The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.

  15. Beta phase synchronization in the frontal-temporal-cerebellar network during auditory-to-motor rhythm learning.

    PubMed

    Edagawa, Kouki; Kawasaki, Masahiro

    2017-02-22

    Rhythm is an essential element of dancing and music. To investigate the neural mechanisms underlying how rhythm is learned, we recorded electroencephalographic (EEG) data during a rhythm-reproducing task that asked participants to memorize an auditory stimulus and reproduce it via tapping. Based on the behavioral results, we divided the participants into Learning and No-learning groups. EEG analysis showed that error-related negativity (ERN) in the Learning group was larger than in the No-learning group. Time-frequency analysis of the EEG data showed that the beta power in right and left temporal area at the late learning stage was smaller than at the early learning stage in the Learning group. Additionally, the beta power in the temporal and cerebellar areas in the Learning group when learning to reproduce the rhythm were larger than in the No Learning group. Moreover, phase synchronization between frontal and temporal regions and between temporal and cerebellar regions at late stages of learning were larger than at early stages. These results indicate that the frontal-temporal-cerebellar beta neural circuits might be related to auditory-motor rhythm learning.

  16. A combined study of MEG and pico-Tesla TMS on children with autism disorder.

    PubMed

    Anninos, Photios; Chatzimichael, Athanasios; Adamopoulos, Adam; Kotini, Athanasia; Tsagas, Nicolaos

    2016-12-01

    Magnetoencephalographic (MEG) recordings from the brain of 10 children with autism (6 boys and 4 girls, with ages range from 5-12 years, mean[Formula: see text][Formula: see text][Formula: see text]SD: 8.3[Formula: see text][Formula: see text][Formula: see text]2.1) were obtained using a whole-head 122-channel MEG system in a magnetically shielded room of low magnetic noise. A double-blind experimental design was used in order to look for possible effect of external pico-Tesla Transcranial Magnetic Stimulation (pT-TMS). The pT-TMS was applied on the brain of the autistic children with proper field characteristics (magnetic field amplitude: 1-7.5[Formula: see text]pT, frequency: the alpha - rhythm of the patient 8-13[Formula: see text]Hz). After unblinding it was found a significant effect of an increase of frequencies in the range of 2-7[Formula: see text]Hz across the subjects followed by an improvement and normalization of their MEG recordings. The statistical analysis of our results showed a statistical significance at 6 out of 10 patients (60%). It is also observed an increase of alpha activity in autistic children at the end of one month after pT-TMS treatment at home. In conclusion, the application of pT-TMS has the prospective to be a noninvasive, safe and important modality in the management of autism children.

  17. Electroencephalographic profiles for differentiation of disorders of consciousness

    PubMed Central

    2013-01-01

    Background Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings. Methods Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC. Results Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients’ behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases. Conclusions Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article). PMID:24143892

  18. Multi-frequency localization of aberrant brain activity in autism spectrum disorder.

    PubMed

    Xiang, Jing; Korostenskaja, Milena; Molloy, Cynthia; deGrauw, Xinyao; Leiken, Kimberly; Gilman, Carley; Meinzen-Derr, Jareen; Fujiwara, Hisako; Rose, Douglas F; Mitchell, Terry; Murray, Donna S

    2016-01-01

    The abnormality of intrinsic brain activity in autism spectrum disorders (ASDs) is still inconclusive. Contradictory results have been found pointing towards hyper-activity or hypo-activity in various brain regions. The present research aims to investigate the spatial and spectral signatures of aberrant brain activity in an unprecedented frequency range of 1-2884 Hz at source levels in ASD using newly developed methods. Seven ASD subjects and age- and gender-matched controls were studied using a high-sampling rate magnetoencephalography (MEG) system. Brain activity in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), low gamma (30-55 Hz), high gamma (65-90 Hz), ripples (90-200 Hz), high-frequency oscillations (HFOs, 200-1000 Hz), and very high-frequency oscillations (VHFOs, 1000-2884 Hz) was volumetrically localized and measured using wavelet and beamforming. In comparison to controls, ASD subjects had significantly higher odds of alpha activity (8-12 Hz) in the sensorimotor cortex (mu rhythm), and generally high-frequency activity (90-2884 Hz) in the frontal cortex. The source power of HFOs (200-1000 Hz) in the frontal cortex in ASD was significantly elevated as compared with controls. The results suggest that ASD has significantly altered intrinsic brain activity in both low- and high-frequency ranges. Increased intrinsic high-frequency activity in the frontal cortex may play a key role in ASD. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Variation with semilunar periodicity of plasma steroid hormone production in the mudskipper Boleophthalmus pectinirostris.

    PubMed

    Wang, Qiong; Hong, Wanshu; Chen, Shixi; Zhang, Qiyong

    2008-02-01

    Variation in the production of the plasma steroid hormones E(2), 17alpha-OHP and T in females and T and 11-KT in males, was investigated in the mudskipper Boleophthalmus pectinirostris during the spawning season. Females with oocytes at the vitellogenic stage (GSI 5.97-6.86%) and mature males with GSI of 0.255-0.288% were collected at intervals of 3-4 days within the two complete semilunar cycles from May 31 to June 30, 2006. The results showed that variations in the levels of plasma steroid hormones were synchronized obviously with semilunar periodicity in both females and males. Each steroid hormone level exhibited two cycles, each cycle with a peak. In females, the first peaks in plasma E(2), 17alpha-OHP and T levels were observed 3 days after the first lunar quarter, and the second ones, 4 days after the last lunar quarter. In males, the first peaks of plasma T and 11-KT levels occurred 3 days after the first lunar quarter, and the second ones, at the last lunar quarter. The fact that, in the present study, changes in the levels of plasma steroid hormones were synchronized with semilunar periodicity, although the fish were at the same stages of gonadal development, suggests that variation of plasma steroid hormones is basically regulated by biological rhythms (Zeitgebers), and that tidal movement (with its semilunar periodicity) is the major environmental factor stimulating steroid hormone production in B. pectinirostris.

  20. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaper, Tasso J., E-mail: tasso@bu.edu; Kramer, Mark A., E-mail: mak@bu.edu; Rotstein, Horacio G., E-mail: horacio@njit.edu

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focusmore » issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.« less

  1. Novice Shooters With Lower Pre-shooting Alpha Power Have Better Performance During Competition in a Virtual Reality Scenario.

    PubMed

    Pereira, Michael; Argelaguet, Ferran; Millán, José Del R; Lécuyer, Anatole

    2018-01-01

    Competition changes the environment for athletes. The difficulty of training for such stressful events can lead to the well-known effect of "choking" under pressure, which prevents athletes from performing at their best level. To study the effect of competition on the human brain, we recorded pilot electroencephalography (EEG) data while novice shooters were immersed in a realistic virtual environment representing a shooting range. We found a differential between-subject effect of competition on mu (8-12 Hz) oscillatory activity during aiming; compared to training, the more the subject was able to desynchronize his mu rhythm during competition, the better was his shooting performance. Because this differential effect could not be explained by differences in simple measures of the kinematics and muscular activity, nor by the effect of competition or shooting performance per se , we interpret our results as evidence that mu desynchronization has a positive effect on performance during competition.

  2. Novice Shooters With Lower Pre-shooting Alpha Power Have Better Performance During Competition in a Virtual Reality Scenario

    PubMed Central

    Pereira, Michael; Argelaguet, Ferran; Millán, José del R.; Lécuyer, Anatole

    2018-01-01

    Competition changes the environment for athletes. The difficulty of training for such stressful events can lead to the well-known effect of “choking” under pressure, which prevents athletes from performing at their best level. To study the effect of competition on the human brain, we recorded pilot electroencephalography (EEG) data while novice shooters were immersed in a realistic virtual environment representing a shooting range. We found a differential between-subject effect of competition on mu (8–12 Hz) oscillatory activity during aiming; compared to training, the more the subject was able to desynchronize his mu rhythm during competition, the better was his shooting performance. Because this differential effect could not be explained by differences in simple measures of the kinematics and muscular activity, nor by the effect of competition or shooting performance per se, we interpret our results as evidence that mu desynchronization has a positive effect on performance during competition.

  3. A marked point process approach for identifying neural correlates of tics in Tourette Syndrome.

    PubMed

    Loza, Carlos A; Shute, Jonathan B; Principe, Jose C; Okun, Michael S; Gunduz, Aysegul

    2017-07-01

    We propose a novel interpretation of local field potentials (LFP) based on a marked point process (MPP) framework that models relevant neuromodulations as shifted weighted versions of prototypical temporal patterns. Particularly, the MPP samples are categorized according to the well known oscillatory rhythms of the brain in an effort to elucidate spectrally specific behavioral correlates. The result is a transient model for LFP. We exploit data-driven techniques to fully estimate the model parameters with the added feature of exceptional temporal resolution of the resulting events. We utilize the learned features in the alpha and beta bands to assess correlations to tic events in patients with Tourette Syndrome (TS). The final results show stronger coupling between LFP recorded from the centromedian-paraficicular complex of the thalamus and the tic marks, in comparison to electrocorticogram (ECoG) recordings from the hand area of the primary motor cortex (M1) in terms of the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.

  4. Melatonin is synthesised by yeast during alcoholic fermentation in wines.

    PubMed

    Rodriguez-Naranjo, M Isabel; Gil-Izquierdo, Angel; Troncoso, Ana M; Cantos-Villar, Emma; Garcia-Parrilla, M Carmen

    2011-06-15

    Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone produced in the pineal gland. Its biological properties are related to the circadian rhythm. Recently, the European Food Safety Authority (EFSA) accepted the health claim related to melatonin and the alleviation of subjective feelings of jet lag. This molecule has been detected in some foods. In this work, 13 grape varieties were studied; 7 monovarietal wines were produced in an experimental winery under strictly controlled conditions and were sampled in different steps. The grape varieties used to make the wines were: Cabernet Sauvignon, Merlot, Syrah, Tempranillo, Tintilla de Rota, Palomino Fino and Alpha red. Liquid chromatography tandem mass spectrometry (LC-MS/MS) unequivocally confirmed the presence of melatonin in wines. The main contribution of this paper is the results that clearly show that melatonin is synthesised during the winemaking process, specifically after the alcoholic fermentation. Indeed, melatonin is absent in grapes and musts and is formed during alcoholic fermentation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Dynamical complexity in a mean-field model of human EEG

    NASA Astrophysics Data System (ADS)

    Frascoli, Federico; Dafilis, Mathew P.; van Veen, Lennaert; Bojak, Ingo; Liley, David T. J.

    2008-12-01

    A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.

  6. Effect of low-level laser stimulation on EEG.

    PubMed

    Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan

    2012-01-01

    Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  7. Presenting rhythm in sudden deaths temporally proximate to discharge of TASER conducted electrical weapons.

    PubMed

    Swerdlow, Charles D; Fishbein, Michael C; Chaman, Linda; Lakkireddy, Dhanunjaya R; Tchou, Patrick

    2009-08-01

    Sudden deaths proximate to use of conducted electrical weapons (CEWs) have been attributed to cardiac electrical stimulation. The rhythm in death caused by rapid, cardiac electrical stimulation usually is ventricular fibrillation (VF); electrical stimulation has not been reported to cause asystole or pulseless electrical activity (PEA). The authors studied the presenting rhythms in sudden deaths temporally proximate to use of TASER CEWs to estimate the likelihood that these deaths could be caused by cardiac electrical stimulation. This was a retrospective review of CEW-associated, nontraumatic sudden deaths from 2001 to 2008. Emergency medical services (EMS), autopsy, and law enforcement reports were requested and analyzed. Subjects were included if they collapsed within 15 minutes of CEW discharge and the first cardiac arrest rhythm was reported. Records for 200 cases were received. The presenting rhythm was reported for 56 of 118 subjects who collapsed within 15 minutes (47%). The rhythm was VF in four subjects (7%; 95% confidence interval [CI] = 3% to 17%) and bradycardia-asystole or PEA in 52 subjects (93%; 95% CI = 83% to 97%). None of the eight subjects who collapsed during electrocardiogram (ECG) monitoring had VF. Only one subject (2%) collapsed immediately after CEW discharge. This was the only death typical of electrically induced VF (2%, 95% CI = 0% to 9%). An additional 4 subjects (7%) collapsed within 1 minute, and the remaining 51 subjects (91%) collapsed more than 1 minute later. The time from collapse to first recorded rhythm was 3 minutes or less in 35 subjects (62%) and 5 minutes or less in 43 subjects (77%). In sudden deaths proximate to CEW discharge, immediate collapse is unusual, and VF is an uncommon VF presenting rhythm. Within study limitations, including selection bias and the possibility that VF terminated before the presenting rhythm was recorded, these data do not support electrically induced VF as a common mechanism of these sudden deaths.

  8. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2.

    PubMed

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter; Thomsen, Morten B

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2 -/- mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT 100 = QT/(RR/100) 1/2 ). Moreover, QT intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QT mean-RR ). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2 -/- (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2 -/- mice. Circadian rhythms in QT 100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2 -/- , respectively (p = 0.15). A diurnal rhythm in QT 100 intervals was only found in WT mice. QT mean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2 -/- . The amplitude of the circadian rhythm in QT mean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2 -/- , respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.

  9. The effect of pitch, rhythm, and familiarity on working memory and anxiety as measured by digit recall performance.

    PubMed

    Silverman, Michael J

    2010-01-01

    The purpose of this study was to isolate and quantitatively evaluate the effects of pitch and rhythm of unfamiliar and familiar melodies on working memory and anxiety as measured by sequential digit recall performance. Participants (N = 60) listened to 6 treatment conditions each consisting of 9 randomized monosyllabic digits. The digits were paired with (a) a familiar melody and pitch only, (b) a familiar melody and rhythm only, (c) a familiar melody with both pitch and rhythm, (d) an unfamiliar melody with pitch only, (e) an unfamiliar melody with rhythm only, and (f) an unfamiliar melody with both pitch and rhythm. The 6 different treatments were counterbalanced using a Latin square design in an attempt to control for order effects. Participants rated their state anxiety on a Likert-type scale before, midway through, and after the digits test. No statistically significant order, learning, or practice effects were found. A 3-way repeated-measures ANOVA indicated a statistically significant difference in digit recall performance across musical element conditions and groups. Results indicated that music majors outperformed nonmusic majors on the digit recall task. Participants were able to recall digits from the rhythm condition most accurately while recalling digits from pitch only and both pitch and rhythm conditions the least accurately. Graphic analysis of treatment as a function of sequential position indicated digit recall was best during conditions of primacy and recency. No main effects were found for the familiarity condition. Additionally, no main effects or interactions were found for the anxiety variable. The results of this study are congruent with existing working memory and music literature suggesting that pairing information with rhythm can facilitate recall, music majors outperform non-music majors, and recall accuracy is best in positions of primacy and recency. Implications for practice in therapy and education are made as well as suggestions for future research.

  10. Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells.

    PubMed

    Sandbichler, Adolf M; Jansen, Bianca; Peer, Bettina A; Paulitsch, Monika; Pelster, Bernd; Egg, Margit

    2018-01-01

    Reduced oxygen availability, hypoxia, is frequently encountered by organisms, tissues and cells, in aquatic environments as well as in high altitude or under pathological conditions such as infarct, stroke or cancer. The hypoxic signaling pathway was found to be mutually intertwined with circadian timekeeping in vertebrates and, as reported recently, also in mammals. However, the impact of hypoxia on intracellular metabolic oscillations is still unknown. For determination of metabolites we used Multilabel Reader based fluorescence and luminescence assays, circadian levels of Hypoxia Inducible Factor 1 alpha and oxidized peroxiredoxins were semi quantified by Western blotting and ratiometric quantification of cytosolic and mitochondrial H2O2 was achieved with stable transfections of a redox sensitive green fluorescent protein sensor into zebrafish fibroblasts. Circadian oscillations of core clock gene mRNA´s were assessed using realtime qPCR with subsequent cosine wave fit analysis. Here we show that under normoxia primary metabolic activity of cells predominately occurs during day time and that after acute hypoxia of two hours, administrated immediately before each sampling point, steady state concentrations of glycolytic key metabolites such as glucose and lactate reveal to be highly rhythmic, following a circadian pattern with highest levels during the night periods and reflecting the circadian variation of the cellular response to hypoxia. Remarkably, rhythms in glycolysis are transferred to cellular energy states under normoxic conditions, so that ADP/ATP ratios oscillate as well, which is the first evidence for cycling ADP/ATP pools in a metazoan cell line to our knowledge. Furthermore, the hypoxia induced alterations in rhythms of glycolysis lead to the alignment of three major cellular redox systems, namely the circadian oscillations of NAD+/NADH and NADP+/NADPH ratios and of increased nocturnal levels of oxidized peroxiredoxins, resulting in a highly oxidized nocturnal cellular environment. Of note, circadian rhythms of cytosolic H2O2 remain unaltered, while the transcriptional clock is already attenuated, as it is known to occur also under chronic hypoxia. We therefor propose that the realignment of metabolic redox oscillations might initiate the observed hypoxia induced attenuation of the transcriptional clock, based on the reduced binding affinity of the CLOCK/BMAL complex to the DNA in an oxidized environment. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Circadian Rhythm Sleep Disorders

    PubMed Central

    Zhu, Lirong; Zee, Phyllis C.

    2012-01-01

    There have been remarkable advances in our understanding of the molecular, cellular and physiological mechanisms underlying the regulation of circadian rhythms, as well as the impact of circadian dysfunction on health and disease. This information has transformed our understanding of the effect of circadian rhythm sleep disorders (CRSD) on health, performance and safety. CRSDs are caused by alterations of the central circadian time-keeping system, or a misalignment of the endogenous circadian rhythm and the external environment. In this section, we provide a review of circadian biology and discuss the pathophysiology, clinical features, diagnosis, and treatment of the most commonly encountered CRSDs in clinical practice. PMID:23099133

  12. Circadian rhythms of visual accommodation responses and physiological correlations.

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Williams, B. A.

    1972-01-01

    Use of a recently developed servocontrolled infrared optometer to continuously record the state of monocular focus while subjects viewed a visual target for which the stimulus to focus was systematically varied. Calculated parameters form recorded data - e.g., speeds of accommodation to approaching and receding targets, magnitude of accommodation to step changes in target distance, and amplitude and phase lag of response to sinusoidally varying stimuli were submitted to periodicity analyses. Ear canal temperature (ECT) and heart rate (HR) rhythms were also recorded for physiological correlation with accommodation rhythms. HR demonstrated a 24-hr rhythm, but ECT data did not.

  13. When Synchronizing to Rhythms Is Not a Good Thing: Modulations of Preparatory and Post-Target Neural Activity When Shifting Attention Away from On-Beat Times of a Distracting Rhythm.

    PubMed

    Breska, Assaf; Deouell, Leon Y

    2016-07-06

    Environmental rhythms potently drive predictive resource allocation in time, typically leading to perceptual and motor benefits for on-beat, relative to off-beat, times, even if the rhythmic stream is not intentionally used. In two human EEG experiments, we investigated the behavioral and electrophysiological expressions of using rhythms to direct resources away from on-beat times. This allowed us to distinguish goal-directed attention from the automatic capture of attention by rhythms. The following three conditions were compared: (1) a rhythmic stream with targets appearing frequently at a fixed off-beat position; (2) a rhythmic stream with targets appearing frequently at on-beat times; and (3) a nonrhythmic stream with matched target intervals. Shifting resources away from on-beat times was expressed in the slowing of responses to on-beat targets, but not in the facilitation of off-beat targets. The shifting of resources was accompanied by anticipatory adjustment of the contingent negative variation (CNV) buildup toward the expected off-beat time. In the second experiment, off-beat times were jittered, resulting in a similar CNV adjustment and also in preparatory amplitude reduction of beta-band activity. Thus, the CNV and beta activity track the relevance of time points and not the rhythm, given sufficient incentive. Furthermore, the effects of task relevance (appearing in a task-relevant vs irrelevant time) and rhythm (appearing on beat vs off beat) had additive behavioral effects and also dissociable neural manifestations in target-evoked activity: rhythm affected the target response as early as the P1 component, while relevance affected only the later N2 and P3. Thus, these two factors operate by distinct mechanisms. Rhythmic streams are widespread in our environment, and are typically conceptualized as automatic, bottom-up resource attractors to on-beat times-preparatory neural activity peaks at rhythm-on-beat times and behavioral benefits are seen to on-beat compared with off-beat targets. We show that this behavioral benefit is reversed when targets are more frequent at off-beat compared with on-beat times, and that preparatory neural activity, previously thought to be driven by the rhythm to on-beat times, is adjusted toward off-beat times. Furthermore, the effect of this relevance-based shifting on target-evoked brain activity was dissociable from the automatic effect of rhythms. Thus, rhythms can act as cues for flexible resource allocation according to the goal relevance of each time point, instead of being obligatory resource attractors. Copyright © 2016 the authors 0270-6474/16/367154-13$15.00/0.

  14. Implications of Circadian Rhythm in Dopamine and Mood Regulation.

    PubMed

    Kim, Jeongah; Jang, Sangwon; Choe, Han Kyoung; Chung, Sooyoung; Son, Gi Hoon; Kim, Kyungjin

    2017-07-31

    Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-erbα induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

  15. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.

    PubMed

    Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk

    2017-03-01

    Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.

  16. [Melatonin, synthetic analogs, and the sleep/wake rhythm].

    PubMed

    Escames, G; Acuña-Castroviejo, D

    Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.

  17. Effect of tidal cycle and food intake on the baseline plasma corticosterone rhythm in intertidally foraging marine iguanas.

    PubMed

    Woodley, Sarah K; Painter, Danika L; Moore, Michael C; Wikelski, Martin; Romero, L Michael

    2003-06-15

    In most species, plasma levels of baseline glucocorticoids such as corticosterone (B) have a circadian rhythm. This rhythm can be entrained by both photoperiod and food intake and is related to aspects of energy intake and metabolism. Marine iguanas (Amblyrhynchus cristatus) offer a unique opportunity to better understand the relative importance of the light:dark cycle versus food intake in influencing the rhythm in baseline B in a natural system. Compared to other species, food intake is not as strictly determined by the phase of the light:dark cycle. Animals feed in the intertidal zone so feeding activity is heavily influenced by the tidal cycle. We measured baseline plasma B levels in free-living iguanas over several 24-h periods that varied in the timing of low tide/foraging activity. We found that baseline B levels were higher during the day relative to night. However, when low tide occurred during the day, baseline B levels dropped coincident with the timing of low tide. Whether the baseline B rhythm (including the drop during foraging) is an endogenous rhythm with a circatidal component, or is simply a result of feeding and associated physiological changes needs to be tested. Together, these data suggest that the baseline B rhythm in marine iguanas is influenced by the tidal cycle/food intake as well as the light:dark cycle.

  18. What is the function of hippocampal theta rhythm?--Linking behavioral data to phasic properties of field potential and unit recording data.

    PubMed

    Hasselmo, Michael E

    2005-01-01

    The extensive physiological data on hippocampal theta rhythm provide an opportunity to evaluate hypotheses about the role of theta rhythm for hippocampal network function. Computational models based on these hypotheses help to link behavioral data with physiological measurements of different variables during theta rhythm. This paper reviews work on network models in which theta rhythm contributes to the following functions: (1) separating the dynamics of encoding and retrieval, (2) enhancing the context-dependent retrieval of sequences, (3) buffering of novel information in entorhinal cortex (EC) for episodic encoding, and (4) timing interactions between prefrontal cortex and hippocampus for memory-guided action selection. Modeling shows how these functional mechanisms are related to physiological data from the hippocampal formation, including (1) the phase relationships of synaptic currents during theta rhythm measured by current source density analysis of electroencephalographic data from region CA1 and dentate gyrus, (2) the timing of action potentials, including the theta phase precession of single place cells during running on a linear track, the context-dependent changes in theta phase precession across trials on each day, and the context-dependent firing properties of hippocampal neurons in spatial alternation (e.g., "splitter cells"), (3) the cholinergic regulation of sustained activity in entorhinal cortical neurons, and (4) the phasic timing of prefrontal cortical neurons relative to hippocampal theta rhythm. Copyright 2005 Wiley-Liss, Inc.

  19. Neural mechanisms of rhythm perception: current findings and future perspectives.

    PubMed

    Grahn, Jessica A

    2012-10-01

    Perception of temporal patterns is fundamental to normal hearing, speech, motor control, and music. Certain types of pattern understanding are unique to humans, such as musical rhythm. Although human responses to musical rhythm are universal, there is much we do not understand about how rhythm is processed in the brain. Here, I consider findings from research into basic timing mechanisms and models through to the neuroscience of rhythm and meter. A network of neural areas, including motor regions, is regularly implicated in basic timing as well as processing of musical rhythm. However, fractionating the specific roles of individual areas in this network has remained a challenge. Distinctions in activity patterns appear between "automatic" and "cognitively controlled" timing processes, but the perception of musical rhythm requires features of both automatic and controlled processes. In addition, many experimental manipulations rely on participants directing their attention toward or away from certain stimulus features, and measuring corresponding differences in neural activity. Many temporal features, however, are implicitly processed whether attended to or not, making it difficult to create controlled baseline conditions for experimental comparisons. The variety of stimuli, paradigms, and definitions can further complicate comparisons across domains or methodologies. Despite these challenges, the high level of interest and multitude of methodological approaches from different cognitive domains (including music, language, and motor learning) have yielded new insights and hold promise for future progress. Copyright © 2012 Cognitive Science Society, Inc.

  20. Shared Components of Rhythm Generation for Locomotion and Scratching Exist Prior to Motoneurons

    PubMed Central

    Hao, Zhao-Zhe; Berkowitz, Ari

    2017-01-01

    Does the spinal cord use a single network to generate locomotor and scratching rhythms or two separate networks? Previous research showed that simultaneous swim and scratch stimulation (“dual stimulation”) in immobilized, spinal turtles evokes a single rhythm in hindlimb motor nerves with a frequency often greater than during swim stimulation alone or scratch stimulation alone. This suggests that the signals that trigger swimming and scratching converge and are integrated within the spinal cord. However, these results could not determine whether the integration occurs in motoneurons themselves or earlier, in spinal interneurons. Here, we recorded intracellularly from hindlimb motoneurons during dual stimulation. Motoneuron membrane potentials displayed regular oscillations at a higher frequency during dual stimulation than during swim or scratch stimulation alone. In contrast, arithmetic addition of the oscillations during swimming alone and scratching alone with various delays always generated irregular oscillations. Also, the standard deviation of the phase-normalized membrane potential during dual stimulation was similar to those during swimming or scratching alone. In contrast, the standard deviation was greater when pooling cycles of swimming alone and scratching alone for two of the three forms of scratching. This shows that dual stimulation generates a single rhythm prior to motoneurons. Thus, either swimming and scratching largely share a rhythm generator or the two rhythms are integrated into one rhythm by strong interactions among interneurons. PMID:28848402

Top