Science.gov

Sample records for alpha-glucan acting enzymes

  1. Starch and alpha-glucan acting enzymes, modulating their properties by directed evolution.

    PubMed

    Kelly, Ronan M; Dijkhuizen, Lubbert; Leemhuis, Hans

    2009-03-25

    Starch is the major food reserve in plants and forms a large part of the daily calorie intake in the human diet. Industrially, starch has become a major raw material in the production of various products including bio-ethanol, coating and anti-staling agents. The complexity and diversity of these starch based industries and the demand for high quality end products through extensive starch processing, can only be met through the use of a broad range of starch and alpha-glucan modifying enzymes. The economic importance of these enzymes is such that the starch industry has grown to be the largest market for enzymes after the detergent industry. However, as the starch based industries expand and develop the demand for more efficient enzymes leading to lower production cost and higher quality products increases. This in turn stimulates interest in modifying the properties of existing starch and alpha-glucan acting enzymes through a variety of molecular evolution strategies. Within this review we examine and discuss the directed evolution strategies applied in the modulation of specific properties of starch and alpha-glucan acting enzymes and highlight the recent developments in the field of directed evolution techniques which are likely to be implemented in the future engineering of these enzymes.

  2. Functional characterization of alpha-glucan,water dikinase, the starch phosphorylating enzyme.

    PubMed Central

    Mikkelsen, René; Baunsgaard, Lone; Blennow, Andreas

    2004-01-01

    GWD (alpha-glucan,water dikinase) is the enzyme that catalyses the phosphorylation of starch by a dikinase-type reaction in which the beta-phosphate of ATP is transferred to either the C-6 or the C-3 position of the glycosyl residue of amylopectin. GWD shows similarity in both sequence and reaction mechanism to bacterial PPS (pyruvate,water dikinase) and PPDK (pyruvate,phosphate dikinase). Amino acid sequence alignments identified a conserved histidine residue located in the putative phosphohistidine domain of potato GWD. Site-directed mutagenesis of this histidine residue resulted in an inactive enzyme and loss of autophosphorylation. Native GWD is a homodimer and shows a strict requirement for the presence of alpha-1,6 branch points in its polyglucan substrate, and exhibits a sharp 20-fold increase in activity when the degree of polymerization is increased from 27.8 to 29.5. In spite of the high variability in the degree of starch phosphorylation, GWD proteins are ubiquitous in plants. The overall reaction mechanism of GWD is similar to that of PPS and PPDK, but the GWD family appears to have arisen after divergence of the plant kingdom. The nucleotide-binding domain of GWD exhibits a closer phylogenetic relationship to prokaryotic PPSs than to PPDKs. PMID:14525539

  3. 1, 4-alpha-Glucan phosphorylase from Klebsiella pneumoniae purification, subunit structure and amino acid composition.

    PubMed

    Linder, D; Kurz, G; Bender, H; Wallenfels, K

    1976-11-01

    1. A 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae has been purified about 80-fold with an over-all yield greater than 35%. The purified enzyme has been shown to be homogeneous by gel electrophoresis at different pH-values, by isoelectric focusing, by dodecylsulfate electrophoresis and by ultracentrifugation. 2. The molecular weight of the native enzyme has been determined to be 180 000 by ultra-centrifugation studies, in good agreement with the value of 189 000 estimated by gel permeation chromatography. 3. The enzyme dissociates in the presence of 0.1% dodecylsulfate or 5 M guanidine hydrochloride into polypeptide chains. The molecular weight of these polypeptide chains has been found to be 88 000 by dodecylsulfate polyacrylamide gel electrophoresis and 99 000 by sedimentation equilibrium studies, indicating that the native enzyme is composed of two polypeptide chains. 4. The enzyme contains pyridoxalphosphate with a stoichiometry of two moles per 180 000 g protein, confirming that the 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is a dimeric enzyme. 5. The amino acid composition of the enzyme has been determined, and its correspondence to that of 1,4-alpha-glucan phosphorylases from other sources is discussed. 6. The pI of the enzyme has been shown to be 5.3 and its pH-optimum to be about pH 5.9. The enzyme is stable in the range from pH 5.9 to 10.5.

  4. 1,4-alpha-Glucan phosphorylase form Klebsiella pneumoniae covalently couple on porous glass.

    PubMed

    Wengenmayer, F; Linder, D; Wallenfels, K

    1977-09-01

    A simplified procedure for the preparation of 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is described. An 80-fold purification is achieved in two steps with an overall yield of about 50%. The specific activity of the homogeneous enzyme protein is 17.7 units/mg. Compared with glycogen phosphorylase from rabbit muscle the enzyme from K. pneumoniae shows a markedly higher stability against deforming and chaotropic agents. The 1,4-alpha-glucan phosphorylase was covalently bound to porous glass particles by three different methods. Coupling with glutaraldehyde gave the highest specific activity, i.e., 5.6 units/mg of bound protein or 133 units/g of glass with maltodextrin as substrate. This corresponds to about 30% of the specific activity of the soluble enzyme. With substrates of higher molecular weight, such as glycogen or amylopectin, lower relative activity was observed. The immobilized enzyme preparations showed pH activity profiles which were slightly displaced to higher values and exhibited an increased temperature stability.

  5. The Structural Basis of Alpha-Glucan Recognition by a Family 41 Carbohydrate-Binding Module from Therotoga Maritima

    SciTech Connect

    van Bueren,A.; Boraston, A.

    2006-01-01

    Starch recognition by carbohydrate-binding modules (CBMs) is important for the activity of starch-degrading enzymes. The N-terminal family 41 CBM, TmCBM41 (from pullulanase PulA secreted by Thermotoga maritima) was shown to have {alpha}-glucan binding activity with specificity for {alpha}-1, 4-glucans but was able to tolerate the {alpha}-1, 6-linkages found roughly every three or four glucose units in pullulan. Using X-ray crystallography, the structures were solved for TmCBM41 in an uncomplexed form and in complex with maltotetraose and 63-{alpha}-d-glucosyl-maltotriose (GM3). Ligand binding was facilitated by stacking interactions between the {alpha}-faces of the glucose residues and two tryptophan side-chains in the two main subsites of the carbohydrate-binding site. Overall, this mode of starch binding is quite well conserved by other starch-binding modules. The structure in complex with GM3 revealed a third binding subsite with the flexibility to accommodate an {alpha}-1, 4- or an {alpha}-1, 6-linked glucose.

  6. Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice.

    PubMed

    Hong, Lei; Xun, Ma; Wutong, Wu

    2007-04-01

    We have evaluated the anti-diabetic effect of a alpha-glucan (MT-alpha-glucan) from the fruit body of maitake mushrooms (Grifola frondosa) on KK-Ay mice (a kind of genetical type 2 diabetes animal model). The effects of MT-alpha-glucan (450 or 150 mg kg (-1)) on diabetic mice were investigated by observing the changes in body weight, the level of fasting plasma glucose, glycosylated serum protein (GSP), hepatic glycogen, serum insulin, triglycerides, cholesterol, free fatty acid, liver superoxide dismutase (SOD), glutathione peroxidase (GSHpx), reduced glutathione (GSH) and malondialdehyde (MDA). Moreover, the binding capacity of insulin receptors on liver crude plasma membranes was assayed and histopathological changes in the pancreas were observed. Treatment with MT-alpha-glucan significantly decreased the body weight, level of fasting plasma glucose, GSP, serum insulin, triglycerides, cholesterol, free fatty acid and MDA content in livers. Treatment with MT-alpha-glucan significantly increased the content of hepatic glycogen, GSH and the activity of SOD and GSHpx. Moreover, the insulin binding capacity to liver crude plasma membranes increased and histopathological changes in the pancreas were ameliorated in the treatment group. These data suggest that MT-alpha-glucan has an anti-diabetic effect on KK-Ay mice, which might be related to its effect on insulin receptors (i.e., increasing insulin sensitivity and ameliorating insulin resistance of peripheral target tissues).

  7. The Laforin-like dual-specificity phosphatase SEX4 from Arabidopsis hydrolyzes both C6- and C3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of alpha-glucans.

    PubMed

    Hejazi, Mahdi; Fettke, Joerg; Kötting, Oliver; Zeeman, Samuel C; Steup, Martin

    2010-02-01

    The biochemical function of the Laforin-like dual-specific phosphatase AtSEX4 (EC 3.1.3.48) has been studied. Crystalline maltodextrins representing the A- or the B-type allomorph were prephosphorylated using recombinant glucan, water dikinase (StGWD) or the successive action of both plastidial dikinases (StGWD and AtPWD). AtSEX4 hydrolyzed carbon 6-phosphate esters from both the prephosphorylated A- and B-type allomorphs and the kinetic constants are similar. The phosphatase also acted on prelabeled carbon-3 esters from both crystalline maltodextrins. Similarly, native starch granules prelabeled in either the carbon-6 or carbon-3 position were also dephosphorylated by AtSEX4. The phosphatase did also hydrolyze phosphate esters of both prephosphorylated maltodextrins when the (phospho)glucans had been solubilized by heat treatment. Submillimolar concentrations of nonphosphorylated maltodextrins inhibited AtSEX4 provided they possessed a minimum of length and had been solubilized. As opposed to the soluble phosphomaltodextrins, the AtSEX4-mediated dephosphorylation of the insoluble substrates was incomplete and at least 50% of the phosphate esters were retained in the pelletable (phospho)glucans. The partial dephosphorylation of the insoluble glucans also strongly reduced the release of nonphosphorylated chains into solution. Presumably, this effect reflects fast structural changes that following dephosphorylation occur near the surface of the maltodextrin particles. A model is proposed defining distinct stages within the phosphorylation/dephosphorylation-dependent transition of alpha-glucans from the insoluble to the soluble state.

  8. Structure and function of enzymes acting on chitin and chitosan.

    PubMed

    Eijsink, Vincent; Hoell, Ingunn; Vaaje-Kolstada, Gustav

    2010-01-01

    Enzymatic conversions of chitin and its soluble, partially deacetylated derivative chitosan are of great interest. Firstly, chitin metabolism is an important process in fungi, insects and crustaceans. Secondly, such enzymatic conversions may be used to transform an abundant biomass to useful products such as bioactive chito-oligosaccharides. Enzymes acting on chitin and chitosan are abundant in nature. Here we review current knowledge on the structure and function of enzymes involved in the conversion of these polymeric substrates: chitinases (glycoside hydrolase families 18 & 19), chitosanases (glycoside hydrolase families 8, 46, 75 & 80) and chitin deacetylases (carbohydrate esterase family 4).

  9. Apparent cooperativity and apparent hyperbolic behavior of enzyme mixtures acting on the same substrate.

    PubMed

    Cappiello, Mario; Balestri, Francesco; Moschini, Roberta; Del-Corso, Antonella; Mura, Umberto

    2016-12-01

    It is well known that a negative cooperative behavior displayed by a monomeric enzyme may be associated with the simultaneous presence of two enzymes acting on the same substrate. In this paper, emphasis is given to the effect exerted by a rapid equilibrium between the enzyme forms in leading to a hyperbolic behavior, thus masking the presence of multiple enzyme forms.

  10. Truncation of the amino terminus of branching enzyme changes its chain transfer pattern.

    PubMed

    Binderup, Kim; Mikkelsen, René; Preiss, Jack

    2002-01-15

    Previous work has reported the production of an Escherichia coli branching enzyme with a 112-residue deletion at the amino terminal by limited proteolysis. Here, we study the chain transfer pattern of this enzyme. Gel-permeation chromatography of in vitro branched amylose shows that the truncated branching enzyme transfers fewer short chains (degree of polymerization [d.p.] <20) and a greater proportion of intermediate size chains (d.p. 30-90) than the native enzyme. High-performance anion-exchange chromatography (HPAEC) of the branching limited alpha-glucan product indicates that the truncated branching enzyme transfers a smaller proportion of chains with d.p. 4-11 and more chains longer than d.p. 12. Also, the genes encoding native or truncated branching enzyme were individually expressed in a branching enzyme-deficient mutant, AC71 (glgB(-)). By HPAEC analysis of the purified alpha-glucans we find that truncated branching enzyme transfers fewer chains of d.p. 5-11 and more chains longer than d.p. 12 relative to the full-length enzyme. These observations allow us to conclude that truncation of the amino-terminal domain has altered the branching pattern of the enzyme. Our results are consistent with the construction of hybrid branching enzymes from the maize isoforms.

  11. Water and a protic ionic liquid acted as refolding additives for chemically denatured enzymes.

    PubMed

    Attri, Pankaj; Venkatesu, P; Kumar, Anil

    2012-10-07

    In this communication, we present the ability of water and a protic ionic liquid, triethyl ammonium phosphate (TEAP) to act as refolding additives for the urea-induced chemical denaturated state of the two enzymes, α-chymotrypsin and succinylated Con A. We show that the enzymatic activity is regained and in certain circumstances enhanced.

  12. Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism.

    PubMed

    Lang, Eric J M; Cross, Penelope J; Mittelstädt, Gerd; Jameson, Geoffrey B; Parker, Emily J

    2014-12-01

    Allosteric regulation of enzyme activity plays important metabolic roles. Here we review the allostery of enzymes of amino-acid metabolism conferred by a discrete domain known as the ACT domain. This domain of 60-70 residues has a βαββαβ topology leading to a four-stranded β4β1β3β2 antiparallel sheet with two antiparallel helices on one face. Extensive sequence variation requires a combined sequence/structure/function analysis for identification of the ACT domain. Common features include highly varied modes of self-association of ACT domains, ligand binding at domain interfaces, and transmittal of allosteric signals through conformational changes and/or the manipulation of quaternary equilibria. A recent example illustrates the relatively facile adoption of this versatile module of allostery by gene fusion.

  13. Quantitative assay and subcellular distribution of enzymes acting on dolichyl phosphate in rat liver

    PubMed Central

    Ravoet, A; Amar-Costesec, A; Godelaine, D; Beaufay, H

    1981-01-01

    To establish on a quantitative basis the subcellular distribution of the enzymes that glycosylate dolichyl phosphate in rat liver, preliminary kinetic studies on the transfer of mannose, glucose, and N-acetylglucosamine-1-phosphate from the respective (14)C- labeled nucleotide sugars to exogenous dolichyl phosphate were conducted in liver microsomes. Mannosyltransferase, glucosyltransferase, and, to a lesser extent, N- acetylglucosamine-phosphotransferase were found to be very unstable at 37 degrees C in the presence of Triton X-100, which was nevertheless required to disperse the membranes and the lipid acceptor in the aqueous reaction medium. The enzymes became fairly stable in the range of 10-17 degrees C and the reactions then proceeded at a constant velocity for at least 15 min. Conditions under which the reaction products are formed in amount proportional to that of microsomes added are described. For N- acetylglucosaminephosphotransferase it was necessary to supplement the incubation medium with microsomal lipids. Subsequently, liver homogenates were fractionated by differential centrifugation, and the microsome fraction, which contained the bulk of the enzymes glycosylating dolichyl phosphate, was analyzed by isopycnic centrifugation in a sucrose gradient without any previous treatment, or after addition of digitonin. The centrifugation behavior of these enzymes was compared to that of a number of reference enzymes for the endoplasmic reticulum, the golgi complex, the plasma membranes, and mitochondria. It was very simily to that of enzymes of the endoplasmic reticulum, especially glucose-6-phosphatase. Subcellular preparations enriched in golgi complex elements, plasma membranes, outer membranes of mitochondira, or mitoplasts showed for the transferases acting on dolichyl phosphate relative activities similar to that of glucose- 6-phosphatase. It is concluded that glycosylations of dolichyl phosphate into mannose, glucose, and N-acetylglucosamine-1

  14. Human dipeptidyl peptidase III acts as a post-proline-cleaving enzyme on endomorphins.

    PubMed

    Barsun, Marina; Jajcanin, Nina; Vukelić, Bojana; Spoljarić, Jasminka; Abramić, Marija

    2007-03-01

    Dipeptidyl peptidase III (DPP III) is a zinc exopeptidase with an implied role in the mammalian pain-modulatory system owing to its high affinity for enkephalins and localisation in the superficial laminae of the spinal cord dorsal horn. Our study revealed that this human enzyme hydrolyses opioid peptides belonging to three new groups, endomorphins, hemorphins and exorphins. The enzymatic hydrolysis products of endomorphin-1 were separated and quantified by capillary electrophoresis and the kinetic parameters were determined for human DPP III and rat DPP IV. Both peptidases cleave endomorphin-1 at comparable rates, with liberation of the N-terminal Tyr-Pro. This is the first evidence of DPP III acting as an endomorphin-cleaving enzyme.

  15. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  16. Mechanistic investigation of a starch-branching enzyme using hydrodynamic volume SEC analysis.

    PubMed

    Hernández, Javier M; Gaborieau, Marianne; Castignolles, Patrice; Gidley, Michael J; Myers, Alan M; Gilbert, Robert G

    2008-03-01

    Two linear alpha-(1,4)-D-glucans substrates, of degrees of polymerization DP approximately 150 and 6000, were exposed to maize starch-branching enzyme IIa (mSBEIIa) in vitro. The resulting branched alpha-glucans and their constituent chains (obtained by debranching) were analyzed by nuclear magnetic resonance (NMR) and size-exclusion chromatography (SEC). SEC data for the debranched species are presented as chain-length distributions, while those for branched species are presented as hydrodynamic volume distributions (HVDs), which is the most meaningful way to present such data (because SEC separates by size, not molar mass, and a sample of branched polymers with the same size can have a range of molar masses). A rigorous interpretation of the HVDs of the substrate and its branched product show that at least part of the branching is an interchain transfer mechanism in both the short- and long-chain substrate cases. A bimodal HVD of the in vitro branched alpha-glucan derived from the short-chain substrate was observed, and it is postulated that the divergence of the two populations is due to very small chains being unable to undergo branching. In the case of the in vitro branching of the long-chain substrate, the formation of maltohexaose during the reaction and the presence of a monomodal HVD were observed, suggesting a distinct mode of action of mSBEIIa on this substrate. Quantification of the branching level by NMR showed the branched glucans from both substrates had substantial amounts of branching (2.1-4.5%), ascribed to the intrinsic nature of the action of mSBEIIa on the two substrates. It is postulated that differences in the degrees of substrate association affect the pattern of branching catalyzed by the enzyme, and a putative active site structure is proposed based on the appearance of maltohexaose. The molar mass distribution of the constituent chains of the in vitro branched alpha-glucans obtained by isoamylase treatment reveals the transfer of chains

  17. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus.

    PubMed

    Becker, Stephen C; Roach, Dwayne R; Chauhan, Vinita S; Shen, Yang; Foster-Frey, Juli; Powell, Anne M; Bauchan, Gary; Lease, Richard A; Mohammadi, Homan; Harty, William J; Simmons, Chad; Schmelcher, Mathias; Camp, Mary; Dong, Shengli; Baker, John R; Sheen, Tamsin R; Doran, Kelly S; Pritchard, David G; Almeida, Raul A; Nelson, Daniel C; Marriott, Ian; Lee, Jean C; Donovan, David M

    2016-04-28

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics.

  18. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus

    PubMed Central

    Becker, Stephen C.; Roach, Dwayne R.; Chauhan, Vinita S.; Shen, Yang; Foster-Frey, Juli; Powell, Anne M.; Bauchan, Gary; Lease, Richard A.; Mohammadi, Homan; Harty, William J.; Simmons, Chad; Schmelcher, Mathias; Camp, Mary; Dong, Shengli; Baker, John R.; Sheen, Tamsin R.; Doran, Kelly S.; Pritchard, David G.; Almeida, Raul A.; Nelson, Daniel C.; Marriott, Ian; Lee, Jean C.; Donovan, David M.

    2016-01-01

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics. PMID:27121552

  19. Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans.

    PubMed

    Sakamoto, Tatsuji; Ishimaru, Megumi

    2013-06-01

    Arabinogalactans (AGs) are branched galactans to which arabinose residues are bound as side chains and are widely distributed in plant cell walls. They can be grouped into two types based on the structures of their backbones. Type I AGs have β-1,4-galactan backbones and are often covalently linked to the rhamnogalacturonan-I region of pectins. Type II AGs have β-1,3-galactan backbones and are often covalently linked to proteins. The main enzymes involved in the degradation of AGs are endo-β-galactanases, exo-β-galactanases, and β-galactosidases, although other enzymes such as α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases are required to remove the side chains for efficient degradation of the polysaccharides. Galactanolytic enzymes have a wide variety of potential uses, including the bioconversion of AGs to fermentable sugars for production of commodity chemicals like ethanol, biobleaching of cellulose pulp, modulation of pectin properties, improving animal feed, and determining the chemical structure of AGs. This review summarizes our current knowledge about the biochemical properties and potential applications of AG-degrading enzymes.

  20. Molecular design and synthesis of novel peptides from amphibians skin acting as inhibitors of cholinesterase enzymes.

    PubMed

    Siano, Alvaro; Garibotto, Francisco F; Andujar, Sebastian A; Baldoni, Hector A; Tonarelli, Georgina G; Enriz, Ricardo D

    2017-03-01

    Cholinesterases are a family of enzymes that catalyze the hydrolysis of neurotransmitter acetylcholine. There are two types of cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which differ in their distribution in the body. Currently, cholinesterase inhibitors (ChEI) represent the treatment of choice for Alzheimer's disease (AD). In this paper, we report the synthesis and inhibitory effect on both enzymes of four new peptides structurally related to P1-Hp-1971 (amphibian skin peptide found in our previous work. Sequence: TKPTLLGLPLGAGPAAGPGKR-NH2 ). The bioassay data and cytotoxicity test show that some of the compounds possess a significant AChE and BChE inhibition and no toxic effect. The present work demonstrates that diminution of the size of the original peptide could potentially result in new compounds with significant cholinesterase inhibition activity, although it appears that there is an optimal size for the sequence. We also conducted an exhaustive molecular modeling study to better understand the mechanism of action of these compounds by combining docking techniques with molecular dynamics simulations on BChE. This is the first report about amphibian peptides and the second one of natural peptides with ChE inhibitory activity. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  1. A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials.

    PubMed

    Kotchey, Gregg P; Hasan, Saad A; Kapralov, Alexander A; Ha, Seung Han; Kim, Kang; Shvedova, Anna A; Kagan, Valerian E; Star, Alexander

    2012-10-16

    Over the past three decades, revolutionary research in nanotechnology by the scientific, medical, and engineering communities has yielded a treasure trove of discoveries with diverse applications that promise to benefit humanity. With their unique electronic and mechanical properties, carbon nanomaterials (CNMs) represent a prime example of the promise of nanotechnology with applications in areas that include electronics, fuel cells, composites, and nanomedicine. Because of toxicological issues associated with CNMs, however, their full commercial potential may not be achieved. The ex vitro, in vitro, and in vivo data presented in this Account provide fundamental insights into the biopersistence of CNMs, such as carbon nanotubes and graphene, and their oxidation/biodegradation processes as catalyzed by peroxidase enzymes. We also communicate our current understanding of the mechanism for the enzymatic oxidation and biodegradation. Finally, we outline potential future directions that could enhance our mechanistic understanding of the CNM oxidation and biodegradation and could yield benefits in terms of human health and environmental safety. The conclusions presented in this Account may catalyze a rational rethinking of CNM incorporation in diverse applications. For example, armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation and biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. In nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. On the other hand, in the construction of aircraft, a CNM composite should be stable to oxidizing conditions in the environment. Therefore, pristine, inert CNMs would be ideal for this application. Finally, the incorporation of CNMs with defect sites in consumer goods could provide a facile mechanism that promotes the

  2. Extracellular calcium acts as a “third messenger” to regulate enzyme and alkaline secretion

    PubMed Central

    Caroppo, Rosa; Gerbino, Andrea; Fistetto, Gregorio; Colella, Matilde; Debellis, Lucantonio; Hofer, Aldebaran M.; Curci, Silvana

    2004-01-01

    It is generally assumed that the functional consequences of stimulation with Ca2+-mobilizing agonists are derived exclusively from the second messenger action of intracellular Ca2+, acting on targets inside the cells. However, during Ca2+ signaling events, Ca2+ moves in and out of the cell, causing changes not only in intracellular Ca2+, but also in local extracellular Ca2+. The fact that numerous cell types possess an extracellular Ca2+ “sensor” raises the question of whether these dynamic changes in external [Ca2+] may serve some sort of messenger function. We found that in intact gastric mucosa, the changes in extracellular [Ca2+] secondary to carbachol-induced increases in intracellular [Ca2+] were sufficient and necessary to elicit alkaline secretion and pepsinogen secretion, independent of intracellular [Ca2+] changes. These findings suggest that extracellular Ca2+ can act as a “third messenger” via Ca2+ sensor(s) to regulate specific subsets of tissue function previously assumed to be under the direct control of intracellular Ca2+. PMID:15240573

  3. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate

    PubMed Central

    Andexer, Jennifer N.; Kendrew, Steven G.; Nur-e-Alam, Mohammad; Lazos, Orestis; Foster, Teresa A.; Zimmermann, Anna-Sophie; Warneck, Tony D.; Suthar, Dipen; Coates, Nigel J.; Koehn, Frank E.; Skotnicki, Jerauld S.; Carter, Guy T.; Gregory, Matthew A.; Martin, Christine J.; Moss, Steven J.; Leadlay, Peter F.; Wilkinson, Barrie

    2011-01-01

    The macrocyclic polyketides FK506, FK520, and rapamycin are potent immunosuppressants that prevent T-cell proliferation through initial binding to the immunophilin FKBP12. Analogs of these molecules are of considerable interest as therapeutics in both metastatic and inflammatory disease. For these polyketides the starter unit for chain assembly is (4R,5R)-4,5-dihydroxycyclohex-1-enecarboxylic acid derived from the shikimate pathway. We show here that the first committed step in its formation is hydrolysis of chorismate to form (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. This chorismatase activity is encoded by fkbO in the FK506 and FK520 biosynthetic gene clusters, and by rapK in the rapamycin gene cluster of Streptomyces hygroscopicus. Purified recombinant FkbO (from FK520) efficiently catalyzed the chorismatase reaction in vitro, as judged by HPLC-MS and NMR analysis. Complementation using fkbO from either the FK506 or the FK520 gene cluster of a strain of S. hygroscopicus specifically deleted in rapK (BIOT-4010) restored rapamycin production, as did supplementation with (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. Although BIOT-4010 produced no rapamycin, it did produce low levels of BC325, a rapamycin analog containing a 3-hydroxybenzoate starter unit. This led us to identify the rapK homolog hyg5 as encoding a chorismatase/3-hydroxybenzoate synthase. Similar enzymes in other bacteria include the product of the bra8 gene from the pathway to the terpenoid natural product brasilicardin. Expression of either hyg5 or bra8 in BIOT-4010 led to increased levels of BC325. Also, purified Hyg5 catalyzed the predicted conversion of chorismate into 3-hydroxybenzoate. FkbO, RapK, Hyg5, and Bra8 are thus founder members of a previously unrecognized family of enzymes acting on chorismate. PMID:21383123

  4. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate.

    PubMed

    Andexer, Jennifer N; Kendrew, Steven G; Nur-e-Alam, Mohammad; Lazos, Orestis; Foster, Teresa A; Zimmermann, Anna-Sophie; Warneck, Tony D; Suthar, Dipen; Coates, Nigel J; Koehn, Frank E; Skotnicki, Jerauld S; Carter, Guy T; Gregory, Matthew A; Martin, Christine J; Moss, Steven J; Leadlay, Peter F; Wilkinson, Barrie

    2011-03-22

    The macrocyclic polyketides FK506, FK520, and rapamycin are potent immunosuppressants that prevent T-cell proliferation through initial binding to the immunophilin FKBP12. Analogs of these molecules are of considerable interest as therapeutics in both metastatic and inflammatory disease. For these polyketides the starter unit for chain assembly is (4R,5R)-4,5-dihydroxycyclohex-1-enecarboxylic acid derived from the shikimate pathway. We show here that the first committed step in its formation is hydrolysis of chorismate to form (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. This chorismatase activity is encoded by fkbO in the FK506 and FK520 biosynthetic gene clusters, and by rapK in the rapamycin gene cluster of Streptomyces hygroscopicus. Purified recombinant FkbO (from FK520) efficiently catalyzed the chorismatase reaction in vitro, as judged by HPLC-MS and NMR analysis. Complementation using fkbO from either the FK506 or the FK520 gene cluster of a strain of S. hygroscopicus specifically deleted in rapK (BIOT-4010) restored rapamycin production, as did supplementation with (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. Although BIOT-4010 produced no rapamycin, it did produce low levels of BC325, a rapamycin analog containing a 3-hydroxybenzoate starter unit. This led us to identify the rapK homolog hyg5 as encoding a chorismatase/3-hydroxybenzoate synthase. Similar enzymes in other bacteria include the product of the bra8 gene from the pathway to the terpenoid natural product brasilicardin. Expression of either hyg5 or bra8 in BIOT-4010 led to increased levels of BC325. Also, purified Hyg5 catalyzed the predicted conversion of chorismate into 3-hydroxybenzoate. FkbO, RapK, Hyg5, and Bra8 are thus founder members of a previously unrecognized family of enzymes acting on chorismate.

  5. Sinorhizobium meliloti YbeY is an endoribonuclease with unprecedented catalytic features, acting as silencing enzyme in riboregulation.

    PubMed

    Saramago, Margarida; Peregrina, Alexandra; Robledo, Marta; Matos, Rute G; Hilker, Rolf; Serrania, Javier; Becker, Anke; Arraiano, Cecilia M; Jiménez-Zurdo, José I

    2016-12-06

    Structural and biochemical features suggest that the almost ubiquitous bacterial YbeY protein may serve catalytic and/or Hfq-like protective functions central to small RNA (sRNA)-mediated regulation and RNA metabolism. We have biochemically and genetically characterized the YbeY ortholog of the legume symbiont Sinorhizobium meliloti (SmYbeY). Co-immunoprecipitation (CoIP) with a FLAG-tagged SmYbeY yielded a poor enrichment in RNA species, compared to Hfq CoIP-RNA uncovered previously by a similar experimental setup. Purified SmYbeY behaved as a monomer that indistinctly cleaved single- and double-stranded RNA substrates, a unique ability among bacterial endoribonucleases. SmYbeY-mediated catalysis was supported by the divalent metal ions Mg(2+), Mn(2+) and Ca(2+), which influenced in a different manner cleavage efficiency and reactivity patterns, with Ca(2+) specifically blocking activity on double-stranded and some structured RNA molecules. SmYbeY loss-of-function compromised expression of core energy and RNA metabolism genes, whilst promoting accumulation of motility, late symbiotic and transport mRNAs. Some of the latter transcripts are known Hfq-binding sRNA targets and might be SmYbeY substrates. Genetic reporter and in vitro assays confirmed that SmYbeY is required for sRNA-mediated down-regulation of the amino acid ABC transporter prbA mRNA. We have thus discovered a bacterial endoribonuclease with unprecedented catalytic features, acting also as gene silencing enzyme.

  6. Production, purification and characterization of an extracellular alpha-amylase enzyme isolated from Aspergillus flavus.

    PubMed

    Abou-Zeid, A M

    1997-01-01

    Filamentous fungi isolated from cereals were screened for their ability to produce alpha-amylase (1,4-alpha-glucan glucanohydrolase, EC 3.2.1.1). A selected strain identified as Aspergillus flavus showed high enzymatic activity. A single extracellular alpha-amylase was purified to homogeneity by a starch adsorption method. The molecular weight (M(r)) of the A. flavus alpha-amylase was approximately 75,000 +/- 3,000 by polyacrylamide gel electrophoresis (PAGE) and that of the subunit was approximately 75,000 +/- 3000 SDS-PAGE. The optimal activity of the purified enzyme was achieved at pH 7.0 and 30 degrees C. K+ ions increased the alpha-amylase activity, but Mg2+ did not greatly affect enzyme activity. Mn2+, Zn2+, Cu2+ and Fe3+ ions strongly inhibited the enzyme activity. The products of hydrolysis of native starch by the A. flavus enzyme were mainly glucose as well as unidentified oligosaccharides.

  7. Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose.

    PubMed

    Rytioja, Johanna; Hildén, Kristiina; Hatakka, Annele; Mäkelä, Miia R

    2014-11-01

    The recent discovery of oxidative cellulose degradation enhancing enzymes has considerably changed the traditional concept of hydrolytic cellulose degradation. The relative expression levels of ten cellulose-acting enzyme encoding genes of the white-rot fungus Dichomitus squalens were studied on solid-state spruce wood and in microcrystalline Avicel cellulose cultures. From the cellobiohydrolase encoding genes, cel7c was detected at the highest level and showed constitutive expression whereas variable transcript levels were detected for cel7a, cel7b and cel6 in the course of four-week spruce cultivation. The cellulolytic enzyme activities detected in the liquid cultures were consistent with the transcript levels. Interestingly, the selected lytic polysaccharide monooxygenase (LPMO) encoding genes were expressed in both cultures, but showed different transcription patterns on wood compared to those in submerged microcrystalline cellulose cultures. On spruce wood, higher transcript levels were detected for the lpmos carrying cellulose binding module (CBM) than for the lpmos without CBMs. In both cultures, the expression levels of the lpmo genes were generally higher than the levels of cellobiose dehydrogenase (CDH) encoding genes. Based on the results of this work, the oxidative cellulose cleaving enzymes of D. squalens have essential role in cellulose degrading machinery of the fungus.

  8. The Catalytic Scaffold fo the Haloalkanoic Acid Dehalogenase Enzyme Superfamily Acts as a Mold for the Trigonal Bipyramidal Transition State

    SciTech Connect

    Lu,Z.; Dunaway-Mariano, D.; Allen, K.

    2008-01-01

    The evolution of new catalytic activities and specificities within an enzyme superfamily requires the exploration of sequence space for adaptation to a new substrate with retention of those elements required to stabilize key intermediates/transition states. Here, we propose that core residues in the large enzyme family, the haloalkanoic acid dehalogenase enzyme superfamily (HADSF) form a 'mold' in which the trigonal bipyramidal transition states formed during phosphoryl transfer are stabilized by electrostatic forces. The vanadate complex of the hexose phosphate phosphatase BT4131 from Bacteroides thetaiotaomicron VPI-5482 (HPP) determined at 1.00 Angstroms resolution via X-ray crystallography assumes a trigonal bipyramidal coordination geometry with the nucleophilic Asp-8 and one oxygen ligand at the apical position. Remarkably, the tungstate in the complex determined to 1.03 Angstroms resolution assumes the same coordination geometry. The contribution of the general acid/base residue Asp-10 in the stabilization of the trigonal bipyramidal species via hydrogen-bond formation with the apical oxygen atom is evidenced by the 1.52 Angstroms structure of the D10A mutant bound to vanadate. This structure shows a collapse of the trigonal bipyramidal geometry with displacement of the water molecule formerly occupying the apical position. Furthermore, the 1.07 Angstroms resolution structure of the D10A mutant complexed with tungstate shows the tungstate to be in a typical 'phosphate-like' tetrahedral configuration. The analysis of 12 liganded HADSF structures deposited in the protein data bank (PDB) identified stringently conserved elements that stabilize the trigonal bipyramidal transition states by engaging in favorable electrostatic interactions with the axial and equatorial atoms of the transferring phosphoryl group.

  9. Undariase, a direct-acting fibrin(ogen)olytic enzyme from Undaria pinnatifida, inhibits thrombosis in vivo and exhibits in vitro thrombolytic properties.

    PubMed

    Choi, Jun-Hui; Sapkota, Kumar; Kim, Myung-Kon; Kim, Seung; Kim, Sung-Jun

    2014-08-01

    A direct-acting fibrinolytic serine protease named undariase possessing anticoagulant and antiplatelet properties was purified from Undaria pinnatifida. Undariase showed a molecular weight of 50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. It displayed a strong fibrin zymogram lysis band corresponding to the same molecular mass. The N-terminal sequence of undariase, LTATTCEELAAAPTD, does not match with any known fibrinolytic enzyme. The enzyme was stable and active at high temperatures (35-70 °C). The fibrinolytic activity of undariase was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF) and 4-(amidinophenyl) methanesulfonyl fluoride (APMSF). The K m and V max values for substrate S-2251 were determined as 6.15 mM and 90.91 mM/min/ml, respectively. Undariase resulted in clot lysis by directly cleaving α and β chains of fibrin. Similarly, it preferentially acted on the Aα chain of fibrinogen followed by cleavage of the Bβ chain. It significantly prolonged the PFA-100 closure times of citrated whole human blood. In addition, undariase delayed the coagulation time and increased activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). Undariase exerted a significant protective effect against collagen plus epinephrine-induced pulmonary thromboembolism in mice. It prevented carrageenan-induced thrombus formation in the tail of mice. It also resulted in prolongation of APTT ex vivo. In conclusion, these results suggested a therapeutic potential of undariase for thrombosis.

  10. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control

    PubMed Central

    Lindenberg, Sandra; Klauck, Gisela; Pesavento, Christina; Klauck, Eberhard; Hengge, Regine

    2013-01-01

    C-di-GMP—which is produced by diguanylate cyclases (DGC) and degraded by specific phosphodiesterases (PDEs)—is a ubiquitous second messenger in bacterial biofilm formation. In Escherichia coli, several DGCs (YegE, YdaM) and PDEs (YhjH, YciR) and the MerR-like transcription factor MlrA regulate the transcription of csgD, which encodes a biofilm regulator essential for producing amyloid curli fibres of the biofilm matrix. Here, we demonstrate that this system operates as a signalling cascade, in which c-di-GMP controlled by the DGC/PDE pair YegE/YhjH (module I) regulates the activity of the YdaM/YciR pair (module II). Via multiple direct interactions, the two module II proteins form a signalling complex with MlrA. YciR acts as a connector between modules I and II and functions as a trigger enzyme: its direct inhibition of the DGC YdaM is relieved when it binds and degrades c-di-GMP generated by module I. As a consequence, YdaM then generates c-di-GMP and—by direct and specific interaction—activates MlrA to stimulate csgD transcription. Trigger enzymes may represent a general principle in local c-di-GMP signalling. PMID:23708798

  11. Adaptation of acyl-enzyme kinetic theory and an experimental method for evaluating the kinetics of fast-acting, irreversible protease inhibitors.

    PubMed

    Leytus, S P; Peltz, S W; Mangel, W F

    1983-01-26

    The theory of acyl-enzyme kinetics (Bender, M.L., Kézdy, F.J. and Wedler, F.C. (1967) J. Chem. Educ. 44, 84-88) has been adapted for use in evaluating the kinetics of inhibition of serine proteases by both natural and synthetic irreversible inhibitors. The new theory is based upon formal analysis of the case of an irreversible, active-site-directed inhibitor competing with an irreversible, active-site-directed substrate for the active site of a serine protease. From this theory, an experimentally simple and accurate method is described to obtain a second-order rate constant that is characteristic of the efficiency with which an irreversible inhibitor reacts. The experimental method is particularly useful for characterizing fast-acting, irreversible inhibitors. The theory and method which are applicable to a wide variety of enzymes are verified by analysis of the inhibition of bovine trypsin by three model inhibitors, p-nitrophenyl p'-guanidinobenzoate, soybean trypsin inhibitor and alpha-1-proteinase inhibitor as well as by human antithrombin III in the presence of heparin and by bovine pancreatic trypsin inhibitor.

  12. Rat Liver Enzyme Release Depends on Blood Flow-Bearing Physical Forces Acting in Endothelium Glycocalyx rather than on Liver Damage

    PubMed Central

    Díaz-Juárez, Julieta A.

    2017-01-01

    We have found selective elevation of serum enzyme activities in rats subjected to partial hepatectomy (PH), apparently controlled by hemodynamic flow-bearing physical forces. Here, we assess the involvement of stretch-sensitive calcium channels and calcium mobilization in isolated livers, after chemical modifications of the endothelial glycocalyx and changing perfusion directionality. Inhibiting in vivo protein synthesis, we found that liver enzyme release is influenced by de novo synthesis of endothelial glycocalyx components, and released enzymes are confined into a liver “pool.” Moreover, liver enzyme release depended on extracellular calcium entry possibly mediated by stretch-sensitive calcium channels, and this endothelial-mediated mechanotransduction in liver enzyme release was also evidenced by modifying the glycocalyx carbohydrate components, directionality of perfusing flow rate, and the participation of nitric oxide (NO) and malondialdehyde (MDA), leading to modifications in the intracellular distribution of these enzymes mainly as nuclear enrichment of “mitochondrial” enzymes. In conclusion, the flow-induced shear stress may provide fine-tuned control of released hepatic enzymes through mediation by the endothelium glycocalyx, which provides evidence of a biological role of the enzyme release rather to be merely a biomarker for evaluating hepatotoxicity and liver damage, actually positively influencing progression of liver regeneration in mammals. PMID:28337244

  13. Identification of bioactivating enzymes involved in the hydrolysis of laninamivir octanoate, a long-acting neuraminidase inhibitor, in human pulmonary tissue.

    PubMed

    Koyama, Kumiko; Ogura, Yuji; Nakai, Daisuke; Watanabe, Mihoko; Munemasa, Toshiko; Oofune, Yuka; Kubota, Kazuishi; Shinagawa, Akira; Izumi, Takashi

    2014-06-01

    Laninamivir octanoate (LO) is an octanoyl ester prodrug of the neuraminidase inhibitor laninamivir. After inhaled administration, LO exhibits clinical efficacy for both treatment and prophylaxis of influenza virus infection, resulting from hydrolytic bioactivation into its pharmacologically active metabolite laninamivir in the pulmonary tissue. In this study, we focused on the identification of LO-hydrolyzing enzymes from human pulmonary tissue extract using proteomic correlation profiling-a technology integration of traditional biochemistry and proteomics. In a single elution step by gel-filtration chromatography, LO-hydrolyzing activity was separated into two distinct peaks, designated as peak I and peak II. By mass spectrometry, 1160 and 1003 proteins were identified and quantitated for peak I and peak II, respectively, and enzyme candidates were ranked based on the correlation coefficient between the enzyme activity and the proteomic profiles. Among proteins with a high correlation value, S-formylglutathione hydrolase (esterase D; ESD) and acyl-protein thioesterase 1 (APT1) were selected as the most likely candidates for peak I and peak II, respectively, which was confirmed by LO-hydrolyzing activity of recombinant proteins. In the case of peak II, LO-hydrolyzing activity was completely inhibited by treatment with a specific APT1 inhibitor, palmostatin B. Moreover, immunohistochemical analysis revealed that both enzymes were mainly localized in the pulmonary epithelia, a primary site of influenza virus infection. These findings demonstrate that ESD and APT1 are key enzymes responsible for the bioactivation of LO in human pulmonary tissue.

  14. Inhibitory properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives acting on glycogen metabolising enzymes.

    PubMed

    Díaz-Lobo, Mireia; Concia, Alda Lisa; Gómez, Livia; Clapés, Pere; Fita, Ignacio; Guinovart, Joan J; Ferrer, Joan C

    2016-09-26

    Glycogen synthase (GS) and glycogen phosphorylase (GP) are the key enzymes that control, respectively, the synthesis and degradation of glycogen, a multi-branched glucose polymer that serves as a form of energy storage in bacteria, fungi and animals. An abnormal glycogen metabolism is associated with several human diseases. Thus, GS and GP constitute adequate pharmacological targets to modulate cellular glycogen levels by means of their selective inhibition. The compound 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) is a known potent inhibitor of GP. We studied the inhibitory effect of DAB, its enantiomer LAB, and 29 DAB derivatives on the activity of rat muscle glycogen phosphorylase (RMGP) and E. coli glycogen synthase (EcGS). The isoform 4 of sucrose synthase (SuSy4) from Solanum tuberosum L. was also included in the study for comparative purposes. Although these three enzymes possess highly conserved catalytic site architectures, the DAB derivatives analysed showed extremely diverse inhibitory potential. Subtle changes in the positions of crucial residues in their active sites are sufficient to discriminate among the structural differences of the tested inhibitors. For the two Leloir-type enzymes, EcGS and SuSy4, which use sugar nucleotides as donors, the inhibitory potency of the compounds analysed was synergistically enhanced by more than three orders of magnitude in the presence of ADP and UDP, respectively. Our results are consistent with a model in which these compounds bind to the subsite in the active centre of the enzymes that is normally occupied by the glucosyl residue which is transferred between donor and acceptor substrates. The ability to selectively inhibit the catalytic activity of the key enzymes of the glycogen metabolism may represent a new approach for the treatment of disorders of the glycogen metabolism.

  15. Evolutionary dynamics of enzymes.

    PubMed

    Demetrius, L

    1995-08-01

    This paper codifies and rationalizes the large diversity in reaction rates and substrate specificity of enzymes in terms of a model which postulates that the kinetic properties of present-day enzymes are the consequence of the evolutionary force of mutation and selection acting on a class of primordial enzymes with poor catalytic activity and broad substrate specificity. Enzymes are classified in terms of their thermodynamic parameters, activation enthalpy delta H* and activation entropy delta S*, in their kinetically significant transition states as follows: type 1, delta H* > 0, delta S* < 0; type 2, delta H* < or = 0, delta S* < or = 0; type 3, delta H* > 0, delta S* > 0. We study the evolutionary dynamics of these three classes of enzymes subject to mutation, which acts at the level of the gene which codes for the enzyme and selection, which acts on the organism that contains the enzyme. Our model predicts the following evolutionary trends in the reaction rate and binding specificity for the three classes of molecules. In type 1 enzymes, evolution results in random, non-directional changes in the reaction rate and binding specificity. In type 2 and 3 enzymes, evolution results in a unidirectional increase in both the reaction rate and binding specificity. We exploit these results in order to codify the diversity in functional properties of present-day enzymes. Type 1 molecules will be described by intermediate reaction rates and broad substrate specificity. Type 2 enzymes will be characterized by diffusion-controlled rates and absolute substrate specificity. The type 3 catalysts can be further subdivided in terms of their activation enthalpy into two classes: type 3a (delta H* small) and type 3b (delta H* large). We show that type 3a will be represented by the same functional properties that identify type 2, namely, diffusion-controlled rates and absolute substrate specificity, whereas type 3b will be characterized by non-diffusion-controlled rates and absolute

  16. Catalyzed enzyme electrodes

    DOEpatents

    Zawodzinski, Thomas A.; Wilson, Mahlon S.; Rishpon, Judith; Gottesfeld, Shimshon

    1993-01-01

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  17. Enzyme assays.

    PubMed

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-07

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  18. Characterization of the starch-acting MaAmyB enzyme from Microbacterium aurum B8.A representing the novel subfamily GH13_42 with an unusual, multi-domain organization

    PubMed Central

    Valk, Vincent; van der Kaaij, Rachel M.; Dijkhuizen, Lubbert

    2016-01-01

    The bacterium Microbacterium aurum strain B8.A degrades granular starches, using the multi-domain MaAmyA α-amylase to initiate granule degradation through pore formation. This paper reports the characterization of the M. aurum B8.A MaAmyB enzyme, a second starch-acting enzyme with multiple FNIII and CBM25 domains. MaAmyB was characterized as an α-glucan 1,4-α-maltohexaosidase with the ability to subsequently hydrolyze maltohexaose to maltose through the release of glucose. MaAmyB also displays exo-activity with a double blocked PNPG7 substrate, releasing PNP. In M. aurum B8.A, MaAmyB may contribute to degradation of starch granules by rapidly hydrolyzing the helical and linear starch chains that become exposed after pore formation by MaAmyA. Bioinformatics analysis showed that MaAmyB represents a novel GH13 subfamily, designated GH13_42, currently with 165 members, all in Gram-positive soil dwelling bacteria, mostly Streptomyces. All members have an unusually large catalytic domain (AB-regions), due to three insertions compared to established α-amylases, and an aberrant C-region, which has only 30% identity to established GH13 C-regions. Most GH13_42 members have three N-terminal domains (2 CBM25 and 1 FNIII). This is unusual as starch binding domains are commonly found at the C-termini of α-amylases. The evolution of the multi-domain M. aurum B8.A MaAmyA and MaAmyB enzymes is discussed. PMID:27808246

  19. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  20. Marine enzymes.

    PubMed

    Debashish, Ghosh; Malay, Saha; Barindra, Sana; Joydeep, Mukherjee

    2005-01-01

    Marine enzyme biotechnology can offer novel biocatalysts with properties like high salt tolerance, hyperthermostability, barophilicity, cold adaptivity, and ease in large-scale cultivation. This review deals with the research and development work done on the occurrence, molecular biology, and bioprocessing of marine enzymes during the last decade. Exotic locations have been accessed for the search of novel enzymes. Scientists have isolated proteases and carbohydrases from deep sea hydrothermal vents. Cold active metabolic enzymes from psychrophilic marine microorganisms have received considerable research attention. Marine symbiont microorganisms growing in association with animals and plants were shown to produce enzymes of commercial interest. Microorganisms isolated from sediment and seawater have been the most widely studied, proteases, carbohydrases, and peroxidases being noteworthy. Enzymes from marine animals and plants were primarily studied for their metabolic roles, though proteases and peroxidases have found industrial applications. Novel techniques in molecular biology applied to assess the diversity of chitinases, nitrate, nitrite, ammonia-metabolizing, and pollutant-degrading enzymes are discussed. Genes encoding chitinases, proteases, and carbohydrases from microbial and animal sources have been cloned and characterized. Research on the bioprocessing of marine-derived enzymes, however, has been scanty, focusing mainly on the application of solid-state fermentation to the production of enzymes from microbial sources.

  1. Enzymes, Industrial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymes serve key roles in numerous biotechnology processes and products that are commonly encountered in the forms of food and beverages, cleaning supplies, clothing, paper products, transportation fuels, pharmaceuticals, and monitoring devices. Enzymes can display regio- and stereo-specificity, p...

  2. Glutathione Degradation by the Alternative Pathway (DUG Pathway) in Saccharomyces cerevisiae Is Initiated by (Dug2p-Dug3p)2 Complex, a Novel Glutamine Amidotransferase (GATase) Enzyme Acting on Glutathione*

    PubMed Central

    Kaur, Hardeep; Ganguli, Dwaipayan; Bachhawat, Anand K.

    2012-01-01

    The recently identified, fungi-specific alternative pathway of glutathione degradation requires the participation of three genes, DUG1, DUG2, and DUG3. Dug1p has earlier been shown to function as a Cys-Gly-specific dipeptidase. In the present study, we describe the characterization of Dug2p and Dug3p. Dug3p has a functional glutamine amidotransferase (GATase) II domain that is catalytically important for glutathione degradation as demonstrated through mutational analysis. Dug2p, which has an N-terminal WD40 and a C-terminal M20A peptidase domain, has no peptidase activity. The previously demonstrated Dug2p-Dug3p interaction was found to be mediated through the WD40 domain of Dug2p. Dug2p was also shown to be able to homodimerize, and this was mediated by its M20A peptidase domain. In vitro reconstitution assays revealed that Dug2p and Dug3p were required together for the cleavage of glutathione into glutamate and Cys-Gly. Purification through gel filtration chromatography confirmed the formation of a Dug2p-Dug3p complex. The functional complex had a molecular weight that corresponded to (Dug2p-Dug3p)2 in addition to higher molecular weight oligomers and displayed Michaelis-Menten kinetics. (Dug2p-Dug3p)2 had a Km for glutathione of 1.2 mm, suggesting a novel GATase enzyme that acted on glutathione. Dug1p activity in glutathione degradation was found to be restricted to its Cys-Gly peptidase activity, which functioned downstream of the (Dug2p-Dug3p)2 GATase. The DUG2 and DUG3 genes, but not DUG1, were derepressed by sulfur limitation. Based on these studies and the functioning of GATases, a mechanism is proposed for the functioning of the Dug proteins in the degradation of glutathione. PMID:22277648

  3. Privacy Act

    EPA Pesticide Factsheets

    Learn about the Privacy Act of 1974, the Electronic Government Act of 2002, the Federal Information Security Management Act, and other information about the Environmental Protection Agency maintains its records.

  4. Food Enzymes

    ERIC Educational Resources Information Center

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  5. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  6. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA).

    PubMed

    Erova, Tatiana E; Kosykh, Valeri G; Sha, Jian; Chopra, Ashok K

    2012-05-01

    Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam(+)) and GM33 (∆dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA(+) strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ∆gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation

  7. Bacteriolytic Enzymes from Streptomycetes

    PubMed Central

    Welsch, Maurice

    1962-01-01

    A study of the bacteriolytic properties of streptomycetes has progressively uncovered the production by these microorganisms of a large number of different enzymes acting upon various bacterial constituents, especially on some of them located in the cell wall. Although the mechanism of the bacteriolysis is far from being completely elucidated at present, it can, however, be stated that, in two instances at least, it can be regarded as an osmotic explosion following upon the destruction of the structure responsible for the rigidity of the cell wall. PMID:14006056

  8. Primary enzyme quantitation

    DOEpatents

    Saunders, G.C.

    1982-03-04

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  9. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    PubMed

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory.

  10. Identification of a novel glycan processing enzyme with exo-acting β-allosidase activity in the Golgi apparatus using a new platform for the synthesis of fluorescent substrates.

    PubMed

    Hakamata, Wataru; Miura, Kazuki; Hirano, Takako; Nishio, Toshiyuki

    2015-01-01

    The majority of eukaryotic proteins undergo post-translational modifications (PTMs) involving the attachment of complex glycans, predominantly through N-glycosylation and O-glycosylation. PTMs play important roles in virtually all cellular processes, and aberrant regulation of protein glycosylation and glycan processing has been implicated in various diseases. However, glycan processing on proteins in various cellular contexts has not been visualized. We had previously developed a quinone methide cleavage (QMC) platform for enhanced substrate design. This platform was applied here to screen for novel glycan-processing enzymes. We designed and synthesized fluorescent substrates with β-allopyranoside residues using the QMC platform. When applied in cell-based assays, the fluorescent substrates allowed rapid and clear visualization of β-allosidase activity in the Golgi apparatus of human cultured cells. The QMC platform will likely find broad applications in visualizing the activities of glycan processing enzymes in living cells and in studying PTMs.

  11. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  12. Elevated Liver Enzymes

    MedlinePlus

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  13. Balancing Act

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2007-01-01

    For some administrators and planners, designing and building education facilities may sometimes seem like a circus act--trying to project a persona of competence and confidence while juggling dozens of issues. Meanwhile, the audience--students, staff members and taxpayers--watch and wait with anticipation in hopes of getting what they paid for and…

  14. Fundamentals of enzyme kinetics.

    PubMed

    Seibert, Eleanore; Tracy, Timothy S

    2014-01-01

    This chapter provides a general introduction to the kinetics of enzyme-catalyzed reactions, with a focus on drug-metabolizing enzymes. A prerequisite to understanding enzyme kinetics is having a clear grasp of the meanings of "enzyme" and "catalysis." Catalysts are reagents that can increase the rate of a chemical reaction without being consumed in the reaction. Enzymes are proteins that form a subset of catalysts. These concepts are further explored below.

  15. Bacterial enzymes involved in lignin degradation.

    PubMed

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-10-20

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)processing of lignocellulosic feedstocks, more effective degradation methods of lignin are in demand. Nature has found ways to fully degrade lignin through the production of dedicated ligninolytic enzyme systems. While such enzymes have been well thoroughly studied for ligninolytic fungi, only in recent years biochemical studies on bacterial enzymes capable of lignin modification have intensified. This has revealed several types of enzymes available to bacteria that enable them to act on lignin. Two major classes of bacterial lignin-modifying enzymes are DyP-type peroxidases and laccases. Yet, recently also several other bacterial enzymes have been discovered that seem to play a role in lignin modifications. In the present review, we provide an overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignin-derived products.

  16. Curious Cases of the Enzymes

    PubMed Central

    Ulusu, Nuriye Nuray

    2015-01-01

    Summary Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts… Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This paper is dedicated to these early moments of this remarkable science that touched our lives in the past and will make life a lot more efficient for humanity in the future. There was almost always a delicate, fundamentally essential relationship between mankind and the enzymes. Challenged by a very alien and hostile Nature full of predators, prehistoric men soon discovered the medicinal properties of the plants, through trial and error. In fact, they accidently discovered the enzyme inhibitors and thus, in crude terms, kindled a sparkling area of research. These plant-derivatives that acted as enzyme inhibitors helped prehistoric men in their pursuit of survival and protection from predators; in hunting and fishing… Later in history, while the underlying purposes of survival and increasing the quality of life stayed intact, the ways and means of enzymology experienced a massive transformation, as the ‘trial and error’ methodology of the ancients is now replaced with rational scientific theories. PMID:28356837

  17. Engineering Cellulase Enzymes for Bioenergy

    NASA Astrophysics Data System (ADS)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  18. Insolubilization process increases enzyme stability

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Lyn, J.

    1971-01-01

    Enzymes complexed with polymeric matrices contain properties suggesting application to enzyme-controlled reactions. Stability of insolubilized enzyme derivatives is markedly greater than that of soluble enzymes and physical form of insolubilized enzymes is useful in column and batch processes.

  19. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    SciTech Connect

    Maltz, Lauren

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  20. Developments in Enzyme Technology.

    ERIC Educational Resources Information Center

    Chaplin, M. F.

    1984-01-01

    Enzyme technology has a well-established industrial base, with applications that have survived competition. The most prominent applications of enzymes in biotechnology are examined with an explanation of some theoretical background. Topics include extending an enzyme's useful life, partition and diffusion, industrial uses, and therapeutic uses.…

  1. The average enzyme principle

    PubMed Central

    Reznik, Ed; Chaudhary, Osman; Segrè, Daniel

    2013-01-01

    The Michaelis-Menten equation for an irreversible enzymatic reaction depends linearly on the enzyme concentration. Even if the enzyme concentration changes in time, this linearity implies that the amount of substrate depleted during a given time interval depends only on the average enzyme concentration. Here, we use a time re-scaling approach to generalize this result to a broad category of multi-reaction systems, whose constituent enzymes have the same dependence on time, e.g. they belong to the same regulon. This “average enzyme principle” provides a natural methodology for jointly studying metabolism and its regulation. PMID:23892076

  2. Profiling the orphan enzymes.

    PubMed

    Sorokina, Maria; Stam, Mark; Médigue, Claudine; Lespinet, Olivier; Vallenet, David

    2014-06-06

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called "orphan enzymes". The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to "local orphan enzymes" that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new activities.

  3. How thiamine diphosphate is activated in enzymes.

    PubMed

    Kern, D; Kern, G; Neef, H; Tittmann, K; Killenberg-Jabs, M; Wikner, C; Schneider, G; Hübner, G

    1997-01-03

    The controversial question of how thiamine diphosphate, the biologically active form of vitamin B1, is activated in different enzymes has been addressed. Activation of the coenzyme was studied by measuring thermodynamics and kinetics of deprotonation at the carbon in the 2-position (C2) of thiamine diphosphate in the enzymes pyruvate decarboxylase and transketolase by use of nuclear magnetic resonance spectroscopy, proton/deuterium exchange, coenzyme analogs, and site-specific mutant enzymes. Interaction of a glutamate with the nitrogen in the 1'-position in the pyrimidine ring activated the 4'-amino group to act as an efficient proton acceptor for the C2 proton. The protein component accelerated the deprotonation of the C2 atom by several orders of magnitude, beyond the rate of the overall enzyme reaction. Therefore, the earlier proposed concerted mechanism or stabilization of a C2 carbanion can be excluded.

  4. Self-powered enzyme micropumps

    NASA Astrophysics Data System (ADS)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  5. Enzyme kinetics of conjugating enzymes: PAPS sulfotransferase.

    PubMed

    James, Margaret O

    2014-01-01

    The sulfotransferase (SULT) enzymes catalyze the formation of sulfate esters or sulfamates from substrates that contain hydroxy or amine groups, utilizing 3'-phosphoadenosyl-5'-phosphosulfate (PAPS) as the donor of the sulfonic group. The rate of product formation depends on the concentrations of PAPS and substrate as well as the sulfotransferase enzyme; thus, if PAPS is held constant while varying substrate concentration (or vice versa), the kinetic constants derived are apparent constants. When studied over a narrow range of substrate concentrations, classic Michaelis-Menten kinetics can be observed with many SULT enzymes and most substrates. Some SULT enzymes exhibit positive or negative cooperativity during conversion of substrate to product, and the kinetics fit the Hill plot. A characteristic feature of most sulfotransferase-catalyzed reactions is that, when studied over a wide range of substrate concentrations, the rate of product formation initially increases as substrate concentration increases, then decreases at high substrate concentrations, i.e., they exhibit substrate inhibition or partial substrate inhibition. This chapter gives an introduction to sulfotransferases, including a historical note, the nomenclature, a description of the function of SULTs with different types of substrates, presentation of examples of enzyme kinetics with SULTs, and a discussion of what is known about mechanisms of substrate inhibition in the sulfotransferases.

  6. Divergence and Convergence in Enzyme Evolution*

    PubMed Central

    Galperin, Michael Y.; Koonin, Eugene V.

    2012-01-01

    Comparative analysis of the sequences of enzymes encoded in a variety of prokaryotic and eukaryotic genomes reveals convergence and divergence at several levels. Functional convergence can be inferred when structurally distinct and hence non-homologous enzymes show the ability to catalyze the same biochemical reaction. In contrast, as a result of functional diversification, many structurally similar enzyme molecules act on substantially distinct substrates and catalyze diverse biochemical reactions. Here, we present updates on the ATP-grasp, alkaline phosphatase, cupin, HD hydrolase, and N-terminal nucleophile (Ntn) hydrolase enzyme superfamilies and discuss the patterns of sequence and structural conservation and diversity within these superfamilies. Typically, enzymes within a superfamily possess common sequence motifs and key active site residues, as well as (predicted) reaction mechanisms. These observations suggest that the strained conformation (the entatic state) of the active site, which is responsible for the substrate binding and formation of the transition complex, tends to be conserved within enzyme superfamilies. The subsequent fate of the transition complex is not necessarily conserved and depends on the details of the structures of the enzyme and the substrate. This variability of reaction outcomes limits the ability of sequence analysis to predict the exact enzymatic activities of newly sequenced gene products. Nevertheless, sequence-based (super)family assignments and generic functional predictions, even if imprecise, provide valuable leads for experimental studies and remain the best approach to the functional annotation of uncharacterized proteins from new genomes. PMID:22069324

  7. Magnetically responsive enzyme powders

    NASA Astrophysics Data System (ADS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  8. Rational enzyme redesign

    SciTech Connect

    Ornstein, R.L.

    1994-05-01

    Protein engineering is first a means of elucidating structure-function relations in an enzyme, and second, a means of changing a protein to make it serve a different, but generally related, purpose. In principle, one may change the functional characteristics of an enzyme by altering its substrate specificity, kinetics, optimum range of activity, and chemical mechanism. Obviously one cannot make all possible combinations of amino acid changes for even the smallest enzyme, so the essential question is which changes to make. The intent of rational protein/enzyme redesign is to alter a protein/enzyme in a timely and premeditated fashion. This article provides an outline of the process of rational enzyme redesign.

  9. Enzymes for improved biomass conversion

    SciTech Connect

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  10. Enzymes on material surfaces.

    PubMed

    Talbert, Joey N; Goddard, Julie M

    2012-05-01

    Enzyme interactions with material surfaces are of interest for industrial food and pharmaceutical transformations, biosensors, artificial cells, cell free reactions, drug and nutrition delivery technologies, and imaging. When in contact with a material surface, an enzyme may lose or appear to lose activity due to the nature of the enzyme, the nature of the material, and/or the nature of the interface between the enzyme, material, and substrate environment. The purpose of this review is to survey recent advances that have been made towards the preservation, optimization, and enhancement of enzyme activity on material surfaces within the context of well-known concepts that describe the loss of activity after immobilization. This review breaks down the immobilized enzyme system to look at the individual components of the system-namely the enzyme, the material, and the interface. For each piece, possible causes for the loss of enzyme activity are described as well as strategies that have been applied to limit the affect. At the conclusion we identify areas of future research needed to overcome limitations in the current state-of-the art for immobilized enzyme systems.

  11. Food and feed enzymes.

    PubMed

    Fraatz, Marco Alexander; Rühl, Martin; Zorn, Holger

    2014-01-01

    Humans have benefited from the unique catalytic properties of enzymes, in particular for food production, for thousands of years. Prominent examples include the production of fermented alcoholic beverages, such as beer and wine, as well as bakery and dairy products. The chapter reviews the historic background of the development of modern enzyme technology and provides an overview of the industrial food and feed enzymes currently available on the world market. The chapter highlights enzyme applications for the improvement of resource efficiency, the biopreservation of food, and the treatment of food intolerances. Further topics address the improvement of food safety and food quality.

  12. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four mucosal alpha-glucosidases, which differ in their digestive roles, generate glucose from glycemic carbohydrates and accordingly can be viewed as a control point for rate of glucose delivery to the body. In this study, individual recombinant enzymes were used to understand how alpha-glucan o...

  13. Extracting enzyme processivity from kinetic assays

    NASA Astrophysics Data System (ADS)

    Barel, Itay; Reich, Norbert O.; Brown, Frank L. H.

    2015-12-01

    A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g., sliding, hopping, intersegmental transfer, etc.), is considered. The modeling suggests an elementary and general method of data analysis, which enables the extraction of the enzyme's processivity directly and unambiguously from experimental data. This analysis is not limited to the initial velocity regime. The predictions are validated both against detailed numerical models and by revisiting published experimental data for EcoRI endonuclease acting on DNA.

  14. Industrial Enzymes and Biocatalysis

    NASA Astrophysics Data System (ADS)

    McAuliffe, Joseph C.; Aehle, Wolfgang; Whited, Gregory M.; Ward, Donald E.

    All life processes are the result of enzyme activity. In fact, life itself, whether plant or animal, involves a complex network of enzymatic reactions. An enzyme is a protein that is synthesized in a living cell. It catalyzes a thermodynamically possible reaction so that the rate of the reaction is compatible with the numerous biochemical processes essential for the growth and maintenance of a cell. The synthesis of an enzyme thus is under tight metabolic regulations and controls that can be genetically or environmentally manipulated sometimes to cause the overproduction of an enzyme by the cell. An enzyme, like chemical catalysts, in no way modifies the equilibrium constant or the free energy change of a reaction.

  15. Cotton cellulose: enzyme adsorption and enzymic hydrolysis

    SciTech Connect

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Cattaneo, M.

    1982-01-01

    The adsorption of a crude cellulase complex from Trichoderma viride on variously pretreated cotton cellulose samples was studied in the framework of the Langmuir approach at 2-8 degrees. The saturation amount of adsorbed enzyme was related to the susceptibility of the substrates to hydrolysis. In every case the adsorption process was faster by 2-3 orders of magnitude than the hydrolysis step to give end products. For ZnCl/sub 2/-treated cotton cellulose the Langmuir parameters correlated fairly well with the value of the Michaelis constant, measured for its enzymic hydrolysis, and the adsorptive complex was indistinguishable from the complex of the Michaelis-Menten model for the hydrolysis.

  16. Molecular scissors: RNA enzymes go commercial

    SciTech Connect

    Gibbons, A.

    1991-02-01

    When Thomas Cech of the University of Colorado discovered in 1982 that RNA can act as an enzyme, catalyzing specific biological reactions, the result surprised molecular biologists. Only proteins, they thought, could act as enzymes. The work not only led to a Nobel Prize for Cech, it prompted prophecies of a new kind of genetic engineering - one based on RNA instead of the conventional DNA. Foreign governments launched research efforts, and researchers scrambled to file patents. The stakes were so high that American and Australian researchers became embroiled in a dispute over patent rights for catalytic RNA. Last week the US Patent Office awarded Cech and the University of Colorado an unusually broad patent for the use and synthesis of enzymatic RNA - also known as ribozymes. The significance of the patent stems from Cech's unexpected observation that preribosomal RNA can cut and splice itself, removing sequences not needed for biological function.

  17. Chemotactic separation of enzymes.

    PubMed

    Dey, Krishna Kanti; Das, Sambeeta; Poyton, Matthew F; Sengupta, Samudra; Butler, Peter J; Cremer, Paul S; Sen, Ayusman

    2014-12-23

    We demonstrate a procedure for the separation of enzymes based on their chemotactic response toward an imposed substrate concentration gradient. The separation is observed within a two-inlet, five-outlet microfluidic network, designed to allow mixtures of active (ones that catalyze substrate turnover) and inactive (ones that do not catalyze substrate turnover) enzymes, labeled with different fluorophores, to flow through one of the inlets. Substrate solution prepared in phosphate buffer was introduced through the other inlet of the device at the same flow rate. The steady-state concentration profiles of the enzymes were obtained at specific positions within the outlets of the microchannel using fluorescence microscopy. In the presence of a substrate concentration gradient, active enzyme molecules migrated preferentially toward the substrate channel. The excess migration of the active enzyme molecules was quantified in terms of an enrichment coefficient. Experiments were carried out with different pairs of enzymes. Coupling the physics of laminar flow of liquid and molecular diffusion, multiphysics simulations were carried out to estimate the extent of the chemotactic separation. Our results show that, with appropriate microfluidic arrangement, molecular chemotaxis leads to spontaneous separation of active enzyme molecules from their inactive counterparts of similar charge and size.

  18. Cyclooxygenase enzymes: regulation and function.

    PubMed

    Fitzpatrick, F A

    2004-01-01

    The cyclooxygenase isoenzymes, COX-1 and COX-2, catalyze the formation of prostaglandins, thromboxane, and levuloglandins. The prostaglandins are autocoid mediators that affect virtually all known physiological and pathological processes via their reversible interaction with G-protein coupled membrane receptors. The levuloglandins are a newer class of products that appear to act via irreversible, covalent attachment to numerous proteins. COX enzymes are clinically important because they are inhibited by aspirin and numerous other non-steroidal anti-inflammatory drugs. This inhibition of COX confers relief from inflammatory, pyretic, thrombotic, neurodegenerative and oncological maladies. About one hundred years have elapsed since Hoffman designed and synthesized acetylsalicylic (aspirin) as an agent intended to lessen the gastrointestinal irritation of salicylates while maintaining their efficacy. During the past forty years systematic advances in our understanding of the structure, regulation and function of COX isoenzymes have enabled the design and synthesis of COX-2 selective inhibitors as agents intended to lessen the gastrointestinal irritation of aspirin and non-selective NSAIDs. This review discusses: 1) how two separate catalytic processes in COX - peroxidase and prostaglandin synthase - act in an integrated fashion manner to generate prostaglandins; 2) why irreversible inactivation of COX is important constitutively and pharmacologically; 3) how cells have managed to use two closely related, almost identical enzymes in ways that discriminate their physiological versus pathological roles; 4) how investigators have used these advances to formulate and test medically important uses for old drugs (i.e. aspirin) and create new ones that still seek to achieve Hoffman's original goal.

  19. Enzyme molecules as nanomotors.

    PubMed

    Sengupta, Samudra; Dey, Krishna K; Muddana, Hari S; Tabouillot, Tristan; Ibele, Michael E; Butler, Peter J; Sen, Ayusman

    2013-01-30

    Using fluorescence correlation spectroscopy, we show that the diffusive movements of catalase enzyme molecules increase in the presence of the substrate, hydrogen peroxide, in a concentration-dependent manner. Employing a microfluidic device to generate a substrate concentration gradient, we show that both catalase and urease enzyme molecules spread toward areas of higher substrate concentration, a form of chemotaxis at the molecular scale. Using glucose oxidase and glucose to generate a hydrogen peroxide gradient, we induce the migration of catalase toward glucose oxidase, thereby showing that chemically interconnected enzymes can be drawn together.

  20. A stimulatory RNA associated with RecBCD enzyme.

    PubMed Central

    Amundsen, S K; Taylor, A F; Smith, G R

    1998-01-01

    RecBCD enzyme acts in the major pathway of homologous recombination of linear DNA in Escherichia coli. The enzyme unwinds DNA and is an ATP-dependent double-strand and single-strand exonuclease and a single-strand endonuclease; it acts at Chi recombination hotspots (5'-GCTGGTGG-3') to produce a recombinogenic single-stranded DNA 3'-end. We found that a small RNA with a unique sequence of approximately 24 nt was tightly bound to RecBCD enzyme and co-purified with it. When added to native enzyme this RNA, but not four others, increased DNA unwinding and Chi nicking activities of the enzyme. In seven similarly active enzyme preparations the molar ratio of RNA molecules to RecBCD enzyme molecules ranged from 0.2 to <0.008. These results suggest that, although this unique RNA is not an essential enzyme subunit, it has a biological role in stimulating RecBCD enzyme activity. PMID:9547270

  1. A Hands-On Classroom Simulation to Demonstrate Concepts in Enzyme Kinetics

    ERIC Educational Resources Information Center

    Junker, Matthew

    2010-01-01

    A classroom exercise is described to introduce enzyme kinetics in an undergraduate biochemistry or chemistry course. The exercise is a simulation in which a student acts as an enzyme that "catalyzes" the unscrewing of a nut from a bolt. With other students assisting, the student enzyme carries out reactions with bolt-nut substrates under different…

  2. Commercial production of microbial enzymes

    SciTech Connect

    Munro, I.G.

    1985-01-01

    The advantages and uses of industrially produced microbial enzymes are described. The processes involved in the production of these enzymes, cultivation techniques, enzyme extraction, enzyme purification and immobilization are outlined. Both the history of enzyme technology and its future development are discussed.

  3. Assaying inositol and phosphoinositide phosphatase enzymes.

    PubMed

    Donahue, Janet L; Ercetin, Mustafa; Gillaspy, Glenda E

    2013-01-01

    One critical aspect of phosphoinositide signaling is the turnover of signaling molecules in the pathway. These signaling molecules include the phosphatidylinositol phosphates (PtdInsPs) and inositol phosphates (InsPs). The enzymes that catalyze the breakdown of these molecules are thus important potential regulators of signaling, and in many cases the activity of such enzymes needs to be measured and compared to other enzymes. PtdInsPs and InsPs are broken down by sequential dephosphorylation reactions which are catalyzed by a set of specific phosphatases. Many of the phosphatases can act on both PtdInsP and InsP substrates. The protocols described in this chapter detail activity assays that allow for the measurement of PtdInsP and InsP phosphatase activities in vitro starting with native or recombinant enzymes. Three different assays are described that have different equipment requirements and allow one to test a range of PtdInsP and InsP phosphatases that act on different substrates.

  4. RNA as an Enzyme.

    ERIC Educational Resources Information Center

    Cech, Thomas R.

    1986-01-01

    Reviews current findings that explain RNA's function as an enzyme in addition to being an informational molecule. Highlights recent research efforts and notes changes in the information base on RNA activity. Includes models and diagrams of RNA activity. (ML)

  5. Indicators: Sediment Enzymes

    EPA Pesticide Factsheets

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  6. Overproduction of ligninolytic enzymes

    SciTech Connect

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  7. Lignin-degrading enzymes.

    PubMed

    Pollegioni, Loredano; Tonin, Fabio; Rosini, Elena

    2015-04-01

    A main goal of green biotechnology is to reduce our dependence on fossil reserves and to increase the use of renewable materials. For this, lignocellulose, which is composed of cellulose, hemicellulose and lignin, represents the most promising feedstock. The latter is a complex aromatic heteropolymer formed by radical polymerization of guaiacyl, syringyl, and p-hydroxyphenyl units linked by β-aryl ether linkages, biphenyl bonds and heterocyclic linkages. Accordingly, lignin appears to be a potentially valuable renewable aromatic chemical, thus representing a main pillar in future biorefinery. The resistance of lignin to breakdown is the main bottleneck in this process, although a variety of white-rot fungi, as well as bacteria, have been reported to degrade lignin by employing different enzymes and catabolic pathways. Here, recent investigations have expanded the range of natural biocatalysts involved in lignin degradation/modification and significant progress related to enzyme engineering and recombinant expression has been made. The present review is focused primarily on recent trends in ligninolytic green biotechnology to suggest the potential (industrial) application of ligninolytic enzymes. Future perspectives could include synergy between natural enzymes from different sources (as well as those obtained by protein engineering) and other pretreatment methods that may be required for optimal results in enzyme-based, environmentally friendly, technologies.

  8. Aminoglycoside Modifying Enzymes

    PubMed Central

    Ramirez, Maria S.; Tolmasky, Marcelo E.

    2010-01-01

    Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different −OH or −NH2 groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltranferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes. PMID:20833577

  9. Random-walk enzymes.

    PubMed

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  10. Random-walk enzymes

    PubMed Central

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  11. Random-walk enzymes

    NASA Astrophysics Data System (ADS)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  12. Entropy and Enzyme Catalysis.

    PubMed

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  13. Evolution of enzyme superfamilies.

    PubMed

    Glasner, Margaret E; Gerlt, John A; Babbitt, Patricia C

    2006-10-01

    Enzyme evolution is often constrained by aspects of catalysis. Sets of homologous proteins that catalyze different overall reactions but share an aspect of catalysis, such as a common partial reaction, are called mechanistically diverse superfamilies. The common mechanistic steps and structural characteristics of several of these superfamilies, including the enolase, Nudix, amidohydrolase, and haloacid dehalogenase superfamilies have been characterized. In addition, studies of mechanistically diverse superfamilies are helping to elucidate mechanisms of functional diversification, such as catalytic promiscuity. Understanding how enzyme superfamilies evolve is vital for accurate genome annotation, predicting protein functions, and protein engineering.

  14. [Micro fabricated enzyme battery].

    PubMed

    Sasaki, S; Karube, I

    1996-10-01

    Although various work has been done in the field of implantable micro actuators such as artificial organs and micro surgery robots, a suitable electric power supply for these is yet to be developed. For this purpose a micro fabricated enzyme fuel cell was developed which uses glucose contained in the human body as a fuel. In order to obtain enough voltage each cell was formed as part of a serial array on a silicon wafer. Glucose solution enters the cells by a capillary effect. In this article fuel cells already developed using biocatalysts are described, and the future possibility of a micro fabricated enzyme battery is discussed.

  15. Co-immobilized Coupled Enzyme Systems in Biotechnology

    DTIC Science & Technology

    2010-01-01

    individually (Pita et al. , 2008). THE ARCHETYPE OF COOPERATING ENZYMES Polyketide synthases (PKS), non-ribosomal peptide synthases and fatty acid... synthases constitute the paradigm of sequentially acting enzymes. As in an industrial assembly line, substrates are handed from one functional domain...However, the use of large modular multi-domain synthases (eg., Type I PKS) still remains a challenge. One of the reasons for the infrequent use of these

  16. Investigation of enzyme activity by SERRS using poly-functionalised benzotriazole derivatives as enzyme substrates.

    PubMed

    Ingram, Andrew M; Stirling, Kirsten; Faulds, Karen; Moore, Barry D; Graham, Duncan

    2006-08-07

    New methods of measuring biologically relevant concentrations of enzymes are necessary to allow greater understanding of biological systems. We have previously shown that aryl azo benzotriazolyl alkyl esters can act as enzyme substrates, with the progress of the reaction being monitored using SERRS (see Nat. Biotechnol., 2004, 22, 1133, ref. ). This is a wholly novel analytical application of SERRS, and the low detection levels of the technique allow for an ultra-sensitive enzyme assay. Masked enzyme substrates are used that are invisible to SERRS until enzymatic hydrolysis. Turnover of the substrate by the enzyme leads to the release of the surface-seeking dye necessary for SERRS, and intense signals are produced. Here we report an improved synthesis of 2H-benzotriazolyl alkyl esters via nucleophilic substitution of a chloromethyl ester by benzotriazolyl azo dyes, giving up to a ten-fold increase on previously reported yields. Introduction of electron-withdrawing groups to the benzotriazole ring allows control over the SERRS properties of the compounds. This is of great significance in expanding the synthetic flexibility and subsequently the fundamental use of these compounds as ultra-sensitive and selective reporters of enzyme activity.

  17. Quorum quenching enzymes.

    PubMed

    Fetzner, Susanne

    2015-05-10

    Bacteria use cell-to-cell communication systems based on chemical signal molecules to coordinate their behavior within the population. These quorum sensing systems are potential targets for antivirulence therapies, because many bacterial pathogens control the expression of virulence factors via quorum sensing networks. Since biofilm maturation is also usually influenced by quorum sensing, quenching these systems may contribute to combat biofouling. One possibility to interfere with quorum sensing is signal inactivation by enzymatic degradation or modification. Such quorum quenching enzymes are wide-spread in the bacterial world and have also been found in eukaryotes. Lactonases and acylases that hydrolyze N-acyl homoserine lactone (AHL) signaling molecules have been investigated most intensively, however, different oxidoreductases active toward AHLs or 2-alkyl-4(1H)-quinolone signals as well as other signal-converting enzymes have been described. Several approaches have been assessed which aim at alleviating virulence, or biofilm formation, by reducing the signal concentration in the bacterial environment. These involve the application or stimulation of signal-degrading bacteria as biocontrol agents in the protection of crop plants against soft-rot disease, the use of signal-degrading bacteria as probiotics in aquaculture, and the immobilization or entrapment of quorum quenching enzymes or bacteria to control biofouling in membrane bioreactors. While most approaches to use quorum quenching as antivirulence strategy are still in the research phase, the growing number of organisms and enzymes known to interfere with quorum sensing opens up new perspectives for the development of innovative antibacterial strategies.

  18. Photoperiodism and Enzyme Activity

    PubMed Central

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  19. Amperometric Enzyme Electrodes

    DTIC Science & Technology

    1989-12-01

    form of carbon (glascy carbon, graphite, reticulated vitreous carbon, carbon paste, fiber or foil). Carbon is favored for enzyme immoblization...interference from spurious electroactive species in blood, t proprietary multilayer membranie that includes a cellulose acetate memirane and a Nucleopore

  20. Synthetic Helizyme Enzymes

    DTIC Science & Technology

    1989-08-18

    Enzymes START DATE: 1 August 1986; END DATE: 31 July 1989 RESEARCH OBSCTE: The goal of this project as to design, synthesize and test totally new...the peptide from the resin by HF. Coupling reactions were monitored at nearly all steps using qualitative and quantitative ninhydrin reactions

  1. Toying with Enzyme Catalysis.

    ERIC Educational Resources Information Center

    Richards, Debbie

    1998-01-01

    Describes a set of manipulatives that are used to establish a secure understanding of the concepts related to the environmental factors that affect the activities of enzymes. Includes a description of the model components and procedures for construction of the model. (DDR)

  2. Computational enzyme design

    NASA Astrophysics Data System (ADS)

    Bolon, Daniel N.

    2002-08-01

    The long-term objective of computational enzyme design is the ability to generate efficient protein catalysts for any chemical reaction. This thesis develops and experimentally validates a general computational approach for the design of enzymes with novel function. In order to include catalytic mechanism in protein design, a high-energy state (HES) rotamer (side chain representation) was constructed. In this rotamer, substrate atoms are in a HES. In addition, at least one amino acid side chain is positioned to interact favorably with substrate atoms in their HES and facilitate the reaction. Including an amino acid side chain in the HES rotamer automatically positions substrate relative to a protein scaffold and allows protein design algorithms to search for sequences capable of interacting favorably with the substrate. Because chemical similarity exists between the transition state and the high-energy state, optimizing the protein sequence to interact favorably with the HES rotamer should lead to transition state stabilization. In addition, the HES rotamer model focuses the subsequent computational active site design on a relevant phase space where an amino acid is capable of interacting in a catalytically active geometry with substrate. Using a HES rotamer model of the histidine mediated nucleophilic hydrolysis of p-nitrophenyl acetate, the catalytically inert 108 residue E. coli thioredoxin as a scaffold, and the ORBIT protein design software to compute sequences, an active site scan identified two promising active site designs. Experimentally, both candidate ?protozymes? demonstrated catalytic activity significantly above background. In addition, the rate enhancement of one of these ?protozymes? was the same order of magnitude as the first catalytic antibodies. Because polar groups are frequently buried at enzyme-substrate interfaces, improved modeling of buried polar interactions may benefit enzyme design. By studying native protein structures, rules have been

  3. Privacy Act Statement

    EPA Pesticide Factsheets

    Any information you provide to the Environmental Protection Agency’s (EPA) Suspension and Debarment Program will be governed by the Privacy Act and will be included in the EPA Debarment and Suspension Files, a Privacy Act system of records.

  4. ACTS data center

    NASA Technical Reports Server (NTRS)

    Syed, Ali; Vogel, Wolfhard J.

    1993-01-01

    Viewgraphs on ACTS Data Center status report are included. Topics covered include: ACTS Data Center Functions; data flow overview; PPD flow; RAW data flow; data compression; PPD distribution; RAW Data Archival; PPD Audit; and data analysis.

  5. Recovery Act Milestones

    ScienceCinema

    Rogers, Matt

    2016-07-12

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  6. Autism: Why Act Early?

    MedlinePlus

    ... What's this? Submit Button Past Emails CDC Features Autism: Why Act Early? Language: English Español (Spanish) Recommend ... helped the world make sense." Florida teenager with Autism Spectrum Disorder "Because my parents acted early, I ...

  7. Recovery Act Milestones

    SciTech Connect

    Rogers, Matt

    2009-01-01

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  8. Peroxisomal bifunctional enzyme deficiency.

    PubMed Central

    Watkins, P A; Chen, W W; Harris, C J; Hoefler, G; Hoefler, S; Blake, D C; Balfe, A; Kelley, R I; Moser, A B; Beard, M E

    1989-01-01

    Peroxisomal function was evaluated in a male infant with clinical features of neonatal adrenoleukodystrophy. Very long chain fatty acid levels were elevated in both plasma and fibroblasts, and beta-oxidation of very long chain fatty acids in cultured fibroblasts was significantly impaired. Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts. The latter three parameters distinguish this case from classical neonatal adrenoleukodystrophy. In addition, electron microscopy and catalase subcellular distribution studies revealed that, in contrast to neonatal adrenoleukodystrophy, peroxisomes were present in the patient's tissues. Immunoblot studies of peroxisomal beta-oxidation enzymes revealed that the bifunctional enzyme (enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase) was deficient in postmortem liver samples, whereas acyl-CoA oxidase and the mature form of beta-ketothiolase were present. Density gradient centrifugation of fibroblast homogenates confirmed that intact peroxisomes were present. Immunoblots of fibroblasts peroxisomal fractions showed that they contained acyl-CoA oxidase and beta-ketothiolase, but bifunctional enzyme was not detected. Northern analysis, however, revealed that mRNA coding for the bifunctional enzyme was present in the patient's fibroblasts. These results indicate that the primary biochemical defect in this patient is a deficiency of peroxisomal bifunctional enzyme. It is of interest that the phenotype of this patient resembled neonatal adrenoleukodystrophy and would not have been distinguished from this disorder by clinical study alone. Images PMID:2921319

  9. The Enzyme Function Initiative†

    PubMed Central

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  10. Monitoring enzyme kinetic behavior of enzyme-quantum dot bioconjugates

    NASA Astrophysics Data System (ADS)

    Claussen, Jonathan C.; Walper, Scott A.; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2014-05-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) hold tremendous promise for in vivo biosensing, cellular imaging, theranostics, and smart molecular sensing probes due to their small size and favorable photonic properties such as resistance to photobleaching, size-tunable PL, and large effective Stokes shifts. Herein, we demonstrate how QD-based bioconjugates can be used to enhance enzyme kinetics. Enzyme-substrate kinetics are analyzed for solutions containing both alkaline phosphatase enzymes and QDs with enzyme-to- QD molar ratios of 2, 12, and 24 as well as for a solution containing the same concentration of enzymes but without QDs. The enzyme kinetic paramters Vmax, KM, and Kcat/KM are extracted from the enzyme progress curves via the Lineweaver-Burk plot. Results demonstrate an approximate increase in enzyme efficiency of 5 - 8% for enzymes immobilized on the QD versus free in solution without QD immobilization.

  11. The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness.

    PubMed

    Bar-Even, Arren; Milo, Ron; Noor, Elad; Tawfik, Dan S

    2015-08-18

    The pioneering model of Henri, Michaelis, and Menten was based on the fast equilibrium assumption: the substrate binds its enzyme reversibly, and substrate dissociation is much faster than product formation. Here, we examine this assumption from a somewhat different point of view, asking what fraction of enzyme-substrate complexes are futile, i.e., result in dissociation rather than product formation. In Knowles' notion of a "perfect" enzyme, all encounters of the enzyme with its substrate result in conversion to product. Thus, the perfect enzyme's catalytic efficiency, kcat/KM, is constrained by only the diffusion on-rate, and the fraction of futile encounters (defined as φ) approaches zero. The available data on >1000 different enzymes suggest that for ≥90% of enzymes φ > 0.99 and for the "average enzyme" φ ≥ 0.9999; namely, <1 of 10(4) encounters is productive. Thus, the "fast equilibrium" assumption holds for the vast majority of enzymes. We discuss possible molecular origins for the dominance of futile encounters, including the coexistence of multiple sub-states of an enzyme's active site (enzyme floppiness) and/or its substrate. Floppiness relates to the inherent flexibility of proteins, but also to conflicting demands, or trade-offs, between rate acceleration (the rate-determining chemical step) and catalytic turnover, or between turnover rate and accuracy. The study of futile encounters and active-site floppiness may contribute to a better understanding of enzyme catalysis, enzyme evolution, and improved enzyme design.

  12. The dermatology acting internship.

    PubMed

    Stephens, John B; Raimer, Sharon S; Wagner, Richard F

    2011-07-15

    Acting internships are an important component of modern day medical school curriculum. Several specialties outside of internal medicine now offer acting internship experiences to fourth year medical students. We have found that a dermatology acting internship is a valuable experience for fourth year medical students who are interested in pursuing a residency in dermatology. Our experience with the dermatology acting internship over the 2010-2011 academic year is described.

  13. Enzyme Systems of Anaerobes for Biomass Conversion.

    PubMed

    Munir, Riffat; Levin, David B

    Biofuels from abundantly available cellulosic biomass are an attractive alternative to current petroleum-based fuels (fossil fuels). Although several strategies exist for commercial production of biofuels, conversion of biomass to biofuels via consolidated bioprocessing offers the potential to reduce production costs and increase processing efficiencies. In consolidated bioprocessing (CBP), enzyme production, cellulose hydrolysis, and fermentation are all carried out in a single-step by microorganisms that efficiently employ a multitude of intricate enzymes which act synergistically to breakdown cellulose and its associated cell wall components. Various strategies employed by anaerobic cellulolytic bacteria for biomass hydrolysis are described in this chapter. In addition, the regulation of CAZymes, the role of "omics" technologies in assessing lignocellulolytic ability, and current strategies for improving biomass hydrolysis for optimum biofuel production are highlighted.

  14. Halophilic adaptation of enzymes.

    PubMed

    Madern, D; Ebel, C; Zaccai, G

    2000-04-01

    It is now clear that the understanding of halophilic adaptation at a molecular level requires a strategy of complementary experiments, combining molecular biology, biochemistry, and cellular approaches with physical chemistry and thermodynamics. In this review, after a discussion of the definition and composition of halophilic enzymes, the effects of salt on their activity, solubility, and stability are reviewed. We then describe how thermodynamic observations, such as parameters pertaining to solvent-protein interactions or enzyme-unfolding kinetics, depend strongly on solvent composition and reveal the important role played by water and ion binding to halophilic proteins. The three high-resolution crystal structures now available for halophilic proteins are analyzed in terms of haloadaptation, and finally cellular response to salt stress is discussed briefly.

  15. Enzyme catalysis "reilluminated".

    PubMed

    Gärtner, Wolfgang

    2009-01-01

    In a new light: The NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR; see structure, green Pchlide, yellow NADPH) is a good model to investigate catalytical processes in enzymes, as its light activation allows an immediate start of the catalyzed reaction. By irradiation with weak, short laser pulses it is possible to detect conformation changes during the reaction and thus to uncover the elementary steps of the catalytic process.

  16. Uronic polysaccharide degrading enzymes.

    PubMed

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide.

  17. Extracting enzyme processivity from kinetic assays

    SciTech Connect

    Barel, Itay; Brown, Frank L. H.; Reich, Norbert O.

    2015-12-14

    A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g., sliding, hopping, intersegmental transfer, etc.), is considered. The modeling suggests an elementary and general method of data analysis, which enables the extraction of the enzyme’s processivity directly and unambiguously from experimental data. This analysis is not limited to the initial velocity regime. The predictions are validated both against detailed numerical models and by revisiting published experimental data for EcoRI endonuclease acting on DNA.

  18. Micellar Polymer Encapsulation of Enzymes.

    PubMed

    Besic, Sabina; Minteer, Shelley D

    2017-01-01

    Although enzymes are highly efficient and selective catalysts, there have been problems incorporating them into fuel cells. Early enzyme-based fuel cells contained enzymes in solution rather than immobilized on the electrode surface. One problem utilizing an enzyme in solution is an issue of transport associated with long diffusion lengths between the site of bioelectrocatalysis and the electrode. This issue drastically decreases the theoretical overall power output due to the poor electron conductivity. On the other hand, enzymes immobilized at the electrode surface have eliminated the issue of poor electron conduction due to close proximity of electron transfer between electrode and the biocatalyst. Another problem is inefficient and short term stability of catalytic activity within the enzyme that is suspended in free flowing solution. Enzymes in solutions are only stable for hours to days, whereas immobilized enzymes can be stable for weeks to months and now even years. Over the last decade, there has been substantial research on immobilizing enzymes at electrode surfaces for biofuel cell and sensor applications. The most commonly used techniques are sandwich or wired. Sandwich techniques are powerful and successful for enzyme immobilization; however, the enzymes optimal activity is not retained due to the physical distress applied by the polymer limiting its applications as well as the non-uniform distribution of the enzyme and the diffusion of analyte through the polymer is slowed significantly. Wired techniques have shown to extend the lifetime of an enzyme at the electrode surface; however, this technique is very hard to master due to specific covalent bonding of enzyme and polymer which changes the three-dimensional configuration of enzyme and with that decreases the optimal catalytic activity. This chapter details encapsulation techniques where an enzyme will be immobilized within the pores/pockets of the hydrophobically modified micellar polymers such as

  19. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups.

  20. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  1. Enzyme Molar Fractions: A Powerful Tool for Understanding Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Serra, Juan L.; And Others

    1986-01-01

    Deduces the relationship between reduced velocity and molar fractions for productive enzyme complexes; obtains the mathematical expression of molar fractions for an enzyme with two specific binding sites per molecule; and proposes a useful plot to follow the dependence of enzyme molar fractions with the concentration of one of its ligands. (JN)

  2. Treating Wastewater With Immobilized Enzymes

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  3. Quantum Measurement Act as a Speech Act

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2005-10-01

    I show that the quantum measurement problem can be understood if the measurement is seen as a "speech act" in the sense of modern language theory. The reduction of the state vector is in this perspective an intersubjective -- or, better, a-subjective -- symbolic process. I then give some perspectives on applications to the "Mind-Body Problem".

  4. The Catalytic Function of Enzymes.

    ERIC Educational Resources Information Center

    Splittgerber, Allan G.

    1985-01-01

    Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…

  5. Calmodulin-mediated reversible immobilization of enzymes.

    PubMed

    Daunert, Sylvia; Bachas, Leonidas G; Schauer-Vukasinovic, Vesna; Gregory, Kalvin J; Schrift, G; Deo, Sapna

    2007-07-01

    This work demonstrates the use of the protein calmodulin, CaM, as an affinity tag for the reversible immobilization of enzymes on surfaces. Our strategy takes advantage of the of the reversible, calcium-mediated binding of CaM to its ligand phenothiazine and of the ability to produce fusion proteins between CaM and a variety of enzymes to reversibly immobilize enzymes in an oriented fashion to different surfaces. Specifically, we employed two different enzymes, organophosphorus hydrolase (OPH) and beta-lactamase and two different solid supports, a silica surface and cellulose membrane modified by covalently attaching a phenothiazine ligand, to demonstrate the versatility of our immobilization method. Fusion proteins between CaM-OPH and CaM-beta-lactamase were prepared by using genetic engineering strategies to introduce the calmodulin tail at the N-terminus of each of the two enzymes. In the presence of Ca(2+), CaM adopts a conformation that favors interaction between hydrophobic pockets in CaM and phenothiazine, while in the presence of a Ca(2+)-chelating agent such as EGTA, the interaction between CaM and phenothiazine is disrupted, thus allowing for removal of the CaM-fusion protein from the surface under mild conditions. CaM also acts as a spacer molecule, orienting the enzyme away from the surface and toward the solution, which minimizes enzyme interactions with the immobilization surface. Since the method is based on the highly selective binding of CaM to its phenothiazine ligand, and this is covalently immobilized on the surface, the method does not suffer from ligand leaching nor from interference from other proteins present in the cell extract. An additional advantage lies in that the support can be regenerated by passing through EGTA, and then reused for the immobilization of the same or, if desired, a different enzyme. Using a fusion protein approach for immobilization purposes avoids the use of harsh conditions in the immobilization and/or regeneration

  6. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  7. Kinetic Measurements for Enzyme Immobilization.

    PubMed

    Cooney, Michael J

    2017-01-01

    Enzyme kinetics is the study of the chemical reactions that are catalyzed by enzymes, with a focus on their reaction rates. The study of an enzyme's kinetics considers the various stages of activity, reveals the catalytic mechanism of this enzyme, correlates its value to assay conditions, and describes how a drug or a poison might inhibit the enzyme. Victor Henri initially reported that enzyme reactions were initiated by a bond between the enzyme and the substrate. By 1910, Michaelis and Menten were advancing their work by studying the kinetics of an enzyme saccharase which catalyzes the hydrolysis of sucrose into glucose and fructose. They published their analysis and ever since the Michaelis-Menten equation has been used as the standard to describe the kinetics of many enzymes. Unfortunately, soluble enzymes must generally be immobilized to be reused for long times in industrial reactors. In addition, other critical enzyme properties have to be improved like stability, activity, inhibition by reaction products, and selectivity towards nonnatural substrates. Immobilization is by far the chosen process to achieve these goals.Although the Michaelis-Menten approach has been regularly adapted to the analysis of immobilized enzyme activity, its applicability to the immobilized state is limited by the barriers the immobilization matrix places upon the measurement of compounds that are used to model enzyme kinetics. That being said, the estimated value of the Michaelis-Menten coefficients (e.g., V max, K M) can be used to evaluate effects of immobilization on enzyme activity in the immobilized state when applied in a controlled manner. In this review enzyme activity and kinetics are discussed in the context of the immobilized state, and a few novel protocols are presented that address some of the unique constraints imposed by the immobilization barrier.

  8. Kinetic measurements for enzyme immobilization.

    PubMed

    Cooney, Michael J

    2011-01-01

    Enzyme kinetics is the study of the chemical reactions that are catalyzed by enzymes, with a focus on their reaction rates. The study of an enzyme's kinetics considers the various stages of activity, reveals the catalytic mechanism of the enzyme, correlates its value to assay conditions, and describes how a drug or a poison might inhibit the enzyme. Victor Henri initially reported that enzyme reactions were initiated by a bond between the enzyme and the substrate. By 1910, Michaelis and Menten had advanced this work by studying the kinetics of the enzyme saccharase, which catalyzes the hydrolysis of sucrose into glucose and fructose. They published their analysis, and ever since, the Michaelis-Menten equation has been used as the standard to describe the kinetics of many enzymes. Unfortunately, soluble enzymes must generally be immobilized to be reused for long times in industrial reactors. In addition, other critical enzyme properties have to be improved like stability, activity, inhibition by reaction products, selectivity toward nonnatural substrates. Immobilization is by far the chosen process to achieve these goals.Although the Michaelis-Menten approach has been regularly adopted for the analysis of immobilized enzyme activity, its applicability to the immobilized state is limited by the barriers the immobilization matrix places upon the measurement of compounds that are used to model enzyme kinetics. That being said, the estimated value of the Michaelis-Menten coefficients (e.g., V(max), K(M)) can be used to evaluate effects of immobilization on enzyme activity in the immobilized state when applied in a controlled manner. In this review, enzyme activity and kinetics are discussed in the context of the immobilized state, and a few novel protocols are presented that address some of the unique constraints imposed by the immobilization barrier.

  9. The 46 kDa dimeric protein from Variovorax paradoxus shows faster methotrexate degrading activity in its nanoform compare to the native enzyme.

    PubMed

    Bayineni, Venkata Krishna; Venkatesh, Krishna; Sahu, Chandan Kumar; Kadeppagari, Ravi-Kumar

    2016-04-01

    Methotrexate degrading enzymes are required to overcome the toxicity of the methotrexate while treating the cancer. The enzyme from Variovorax paradoxus converts the methotrexate in to non toxic products. Methotrexate degrading enzyme from V. paradoxus is a dimeric protein with a molecular mass of 46 kDa and it acts on casein and gelatin. This enzyme is optimally active at pH 7.5 and 40°C and nanoparticles of this enzyme were prepared by desolvation-crosslinking method. Enzyme nanoparticles could degrade methotrexate faster than the native enzyme and they show lower Km compare to the native enzyme. Enzyme nanoparticles show better thermostability and they were stable for much longer time in the serum compare to the native enzyme. Enzyme nanoparticles show better functionality than the native enzyme while clearing the methotrexate added to the serum suggesting their advantage over the native enzyme for the therapeutic and biotechnological applications.

  10. Enzymes, embryos, and ancestors.

    PubMed

    Gerhart, John

    2010-01-01

    In the 1950s, cellular regulatory mechanisms were newly recognized; with Arthur Pardee I investigated the initial enzyme of pyrimidine biosynthesis, which he discovered is controlled by feedback inhibition. The protein proved unusual in having separate but interacting sites for substrates and regulators. Howard Schachman and I dissociated the protein into different subunits, one binding regulators and one substrates. The enzyme became an early prime example of allostery. In developmental biology I studied the egg of the frog, Xenopus laevis, characterizing early processes of axis formation. My excellent students and I described cortical rotation, a 30° movement of the egg's cortex over tracks of parallel microtubules anchored to the underlying cytoplasmic core, and we perturbed it to alter Spemann's organizer and effect spectacular phenotypes. The entire sequence of events has been elucidated by others at the molecular level, making Xenopus a prime example of vertebrate axis formation. Marc Kirschner, Christopher Lowe, and I then compared hemichordate (half-chordate) and chordate early development. Despite anatomical-physiological differences, these groups share numerous steps of axis formation, ones that were probably already in use in their pre-Cambrian ancestor. I've thoroughly enjoyed exploring these areas during a 50-year period of great advances in biological sciences by the worldwide research community.

  11. Regulation of rat liver phenylalanine hydroxylase. I. Kinetic properties of the enzyme's iron and enzyme reduction site.

    PubMed

    Shiman, R; Gray, D W; Hill, M A

    1994-10-07

    Tetrahydropterins react with phenylalanine hydroxylase at a redox site, a regulatory site, and the catalytic site, but neither the properties of nor relationships among these sites are well understood. We have studied the redox site using the fluorescent iron chelators 2,3-dihydroxynaphthalene and bathophenanthroline; these compounds act as site-specific reporter groups for reactions on oxidized and reduced enzyme, respectively. The chelators bind reversibly and specifically to the enzyme's iron with 1:1 stoichiometry, high affinity (Kd values approximately 1 nM), and complete quenching of their own fluorescence. The kinetic behavior of these and other iron chelators indicates that the enzyme's iron is solvent accessible and in a hydrophobic pocket of the protein. Both ferrous and ferric chelators inhibit phenylalanine hydroxylase activity. Bathophenanthroline inhibits by binding to Fe2+ on reduced, active enzyme. 2,3-Dihydroxynaphthalene inhibits by binding to Fe3+ on enzyme that is oxidized during catalysis. This oxidation occurs approximately 1/150 enzyme turnovers, and its rate is increased when p-chloro- or p-fluorophenylalanine is used as the reaction substrate. Studies of the reaction of tetrahydrobiopterin (BH4) at the enzyme's redox site showed that BH4 reduces the enzyme more slowly than 6-methyltetrahydropterin under catalytic and non-catalytic conditions. Reduction occurs at a distinct site whose binding determinants and reaction characteristics are different from those of the BH4 regulatory or catalytic sites, and phenylalanine-activated enzyme is reduced more rapidly than unactivated enzyme. In reducing phenylalanine activated enzyme, BH4 donates one electron/subunit (1/iron atom); the reduction kinetics suggest a trihydrobiopterin-free radical as a reaction intermediate.

  12. Industrial use of immobilized enzymes.

    PubMed

    DiCosimo, Robert; McAuliffe, Joseph; Poulose, Ayrookaran J; Bohlmann, Gregory

    2013-08-07

    Although many methods for enzyme immobilization have been described in patents and publications, relatively few processes employing immobilized enzymes have been successfully commercialized. The cost of most industrial enzymes is often only a minor component in overall process economics, and in these instances, the additional costs associated with enzyme immobilization are often not justified. More commonly the benefit realized from enzyme immobilization relates to the process advantages that an immobilized catalyst offers, for example, enabling continuous production, improved stability and the absence of the biocatalyst in the product stream. The development and attributes of several established and emerging industrial applications for immobilized enzymes, including high-fructose corn syrup production, pectin hydrolysis, debittering of fruit juices, interesterification of food fats and oils, biodiesel production, and carbon dioxide capture are reviewed herein, highlighting factors that define the advantages of enzyme immobilization.

  13. ACT and College Success

    ERIC Educational Resources Information Center

    Bleyaert, Barbara

    2010-01-01

    What is the relationship between ACT scores and success in college? For decades, admissions policies in colleges and universities across the country have required applicants to submit scores from a college entrance exam, most typically the ACT (American College Testing) or SAT (Scholastic Aptitude Test). This requirement suggests that high school…

  14. Clean Air Act Text

    EPA Pesticide Factsheets

    The Clean Air Act is the law that defines EPA's responsibilities for protecting and improving the nation's air quality and the stratospheric ozone layer. The last major change in the law, the Clean Air Act Amendments of 1990, enacted in 1990 by Congress.

  15. Americans With Disabilities Act.

    PubMed

    Walk, E E; Ahn, H C; Lampkin, P M; Nabizadeh, S A; Edlich, R F

    1993-01-01

    The Americans with Disabilities Act gives all Americans with disabilities a chance to achieve the same quality of life that individuals without disabilities enjoy. This act prohibits discrimination on the basis of disabilities in employment, public services, privately operated public accommodations, services, and telecommunications. The Americans with Disabilities Act is divided into five titles. Title I of the act pertains to discrimination against the disabled in the workplace. Title II prevents discrimination against persons with a disability in state and local government services. Title III prohibits discrimination against persons with disabilities in places of public accommodations and commercial facilities. Title IV ensures that companies offering telephone services to the general public provide special services for individuals with hearing and speech impairments. Under the enforcement provisions of the Americans with Disabilities Act, stringent penalties will be implemented for failure to comply with its provisions.

  16. Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes.

    PubMed

    Boriack-Sjodin, P Ann; Swinger, Kerren K

    2016-03-22

    Methyltransferase proteins make up a superfamily of enzymes that add one or more methyl groups to substrates that include protein, DNA, RNA, and small molecules. The subset of proteins that act upon arginine and lysine side chains are characterized as epigenetic targets because of their activity on histone molecules and their ability to affect transcriptional regulation. However, it is now clear that these enzymes target other protein substrates, as well, greatly expanding their potential impact on normal and disease biology. Protein methyltransferases are well-characterized structurally. In addition to revealing the overall architecture of the subfamilies of enzymes, structures of complexes with substrates and ligands have permitted detailed analysis of biochemical mechanism, substrate recognition, and design of potent and selective inhibitors. This review focuses on how knowledge gained from structural studies has impacted the understanding of this large class of epigenetic enzymes.

  17. Purification and characterization of a tuliposide-converting enzyme from bulbs of Tulipa gesneriana.

    PubMed

    Kato, Yasuo; Shoji, Kazuaki; Ubukata, Makoto; Shigetomi, Kengo; Sato, Yukio; Nakajima, Noriyuki; Ogita, Shinjiro

    2009-08-01

    An enzyme that catalyzes the stoichiometric conversion of 6-tuliposide into tulipalin was purified and characterized from bulbs of Tulipa gesneriana. The enzyme appeared to be a dimer, the relative molecular mass (Mr) of each subunit being 34,900; it had maximum activity and stability at neutral pH and moderate temperature. The enzyme preferentially acted on such glucose esters as 6-tuliposides, and to a lesser extent on p-nitrophenylacetate.

  18. [Impact of the industrial enzyme progress on the production of chemicals].

    PubMed

    Duan, Gang

    2009-12-01

    Industrial enzymes play dual roles for the production of chemicals and biochemicals, one is to act as direct catalyst for the reaction, the other is to participate in the fermentation process to convert substrates to fermentable sugars or to make it more efficient. The review briefs the applications of industrial enzymes for chemical productions, with emphasis on direct conversion of starch and their roles in bioethanol production process, also analyzes the benefits by using new enzymes and prospects for future development.

  19. Evolution of Enzyme Kinetic Mechanisms.

    PubMed

    Ulusu, Nuriye Nuray

    2015-06-01

    This review paper discusses the reciprocal kinetic behaviours of enzymes and the evolution of structure-function dichotomy. Kinetic mechanisms have evolved in response to alterations in ecological and metabolic conditions. The kinetic mechanisms of single-substrate mono-substrate enzyme reactions are easier to understand and much simpler than those of bi-bi substrate enzyme reactions. The increasing complexities of kinetic mechanisms, as well as the increasing number of enzyme subunits, can be used to shed light on the evolution of kinetic mechanisms. Enzymes with heterogeneous kinetic mechanisms attempt to achieve specific products to subsist. In many organisms, kinetic mechanisms have evolved to aid survival in response to changing environmental factors. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzymes with broad substrate specificity and promiscuous properties are believed to be more evolved than single-substrate enzymes. This group of enzymes can adapt to changing environmental substrate conditions and adjust catalysing mechanisms according to the substrate's properties, and their kinetic mechanisms have evolved in response to substrate variability.

  20. Acts of kindness and acts of novelty affect life satisfaction.

    PubMed

    Buchanan, Kathryn E; Bardi, Anat

    2010-01-01

    The present experiment was designed to establish the effects of acts of kindness and acts of novelty on life satisfaction. Participants aged 18-60 took part on a voluntary basis. They were randomly assigned to perform either acts of kindness, acts of novelty, or no acts on a daily basis for 10 days. Their life satisfaction was measured before and after the 10-day experiment. As expected, performing acts of kindness or acts of novelty resulted in an increase in life satisfaction.

  1. Draconian dress act repealed.

    PubMed

    Mhone, C

    1994-01-01

    The Dress Act was put into place in Malawi by the government of President Kamuzu Banda after the long period of direct colonialism. The act made it illegal for women in Malawi to be seen publicly wearing dresses which did not completely cover their knees or wearing pants; men had to wear their hair short. Police officers even scrutinized women's attire at private house parties and in homes. The autocratic political structure established by Banda, however, was voted out in a referendum June 14, 1993. Pressure by opposition forces such as the United Democratic Front forced a repeal of the act on November 16 of the same year. The repeal was vigorously attacked by female Parliament members as a move which would result in moral degradation and an increase in the level of sexual harassment against women. Other citizens and tourists have generally detested the act. The act has most certainly kept many potential visitors from vacationing in Malawi. Some expert observers think that repeals of the Dress Act, the Forfeiture Act, and legislation which allowed the government to detain opposition figures without trial were done to garner support from the Paris Club for the resumption of balance of payments support suspended due to the country's poor human rights record.

  2. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications.

    PubMed

    Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R; Holmgren, Arne; Arnér, Elias S J

    2016-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.

  3. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications

    PubMed Central

    Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R.; Holmgren, Arne; Arnér, Elias S. J.

    2015-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways. PMID:26681794

  4. Microbial Enzymes with Special Characteristics for Biotechnological Applications

    PubMed Central

    Nigam, Poonam Singh

    2013-01-01

    This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations. PMID:24970183

  5. Enzyme molecules in solitary confinement.

    PubMed

    Liebherr, Raphaela B; Gorris, Hans H

    2014-09-12

    Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  6. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  7. ACTS mobile SATCOM experiments

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Frye, Robert E.; Jedrey, Thomas C.

    1993-01-01

    Over the last decade, the demand for reliable mobile satellite communications (satcom) for voice, data, and video applications has increased dramatically. As consumer demand grows, the current spectrum allocation at L-band could become saturated. For this reason, NASA and the Jet Propulsion Laboratory are developing the Advanced Communications Technology Satellites (ACTS) mobile terminal (AMT) and are evaluating the feasibility of K/Ka-band (20/30 GHz) mobile satcom to meet these growing needs. U.S. industry and government, acting as co-partners, will evaluate K/Ka-band mobile satcom and develop new technologies by conducting a series of applications-oriented experiments. The ACTS and the AMT testbed will be used to conduct these mobile satcom experiments. The goals of the ACTS Mobile Experiments Program and the individual experiment configurations and objectives are further presented.

  8. Disabilities Act in Action.

    ERIC Educational Resources Information Center

    Daynes, Kristine S.

    1990-01-01

    Eight true or false questions explore implications of the Americans with Disabilities Act of 1990. Topics include AIDS, drug abuse, undue hardship, reasonable accommodation, and company size affected by the law. (SK)

  9. Phage lytic enzymes: a history.

    PubMed

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  10. Enzyme therapeutics for systemic detoxification.

    PubMed

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  11. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  12. Digestive Enzyme Replacement Therapy: Pancreatic Enzymes and Lactase.

    PubMed

    Felicilda-Reynaldo, Rhea Faye D; Kenneally, Maria

    2016-01-01

    Maldigestion occurs when digestive enzymes are lacking to help break complex food components into absorbable nutrients within the gastrointestinal tract. Education is needed to help patients manage the intricacies of digestive enzyme replacement therapies and ensure their effectiveness in reducing symptoms of maldigestion.

  13. [The rise of enzyme engineering in China].

    PubMed

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  14. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    PubMed

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward.

  15. Making the Rate: Enzyme Dynamics

    ERIC Educational Resources Information Center

    Ragsdale, Frances R.

    2004-01-01

    An enzyme exercise to address the problem of students inability to visualize chemical reaction at the molecular level is described. This exercise is designed as a dry lab exercise but can be modified into a classroom activity then can be augmented by a wet lab procedure, thereby providing students with a practical exposure to enzyme function.

  16. Moonlighting enzymes in parasitic protozoa.

    PubMed

    Collingridge, Peter W; Brown, Robert W B; Ginger, Michael L

    2010-08-01

    Enzymes moonlight in a non-enzymatic capacity in a diverse variety of cellular processes. The discovery of these non-enzymatic functions is generally unexpected, and moonlighting enzymes are known in both prokaryotes and eukaryotes. Importantly, this unexpected multi-functionality indicates that caution might be needed on some occasions in interpreting phenotypes that result from the deletion or gene-silencing of some enzymes, including some of the best known enzymes from classic intermediary metabolism. Here, we provide an overview of enzyme moonlighting in parasitic protists. Unequivocal and putative examples of moonlighting are discussed, together with the possibility that the unusual biological characteristics of some parasites either limit opportunities for moonlighting to arise or perhaps contribute to the evolution of novel proteins with clear metabolic ancestry.

  17. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  18. Enzyme-carrying electrospun nanofibers.

    PubMed

    Jia, Hongfei

    2011-01-01

    Compared to other nanomaterials as supports for enzyme immobilization, nanofibers provide a promising configuration in balancing the key factors governing the catalytic performance of the immobilized enzymes including surface area-to-volume ratio, mass transfer resistance, effective loading, and the easiness to recycle. Synthetic and natural polymers can be fabricated into nanofibers via a physical process called electrospinning. The process requires only simple apparatus to operate, yet has proved to be very flexible in the selection of feedstock materials and also effective to control and manipulate the properties of the resulting nanofibers such as size and surface morphology, which are typically important parameters for enzyme immobilization supports. This chapter describes a protocol for the preparation of nanofibrous enzyme, involving the synthesis and end-group functionalization of polystyrene, production of electrospun nanofibers, and surface immobilization of enzyme via covalent attachment.

  19. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  20. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  1. The ACTS multibeam antenna

    NASA Technical Reports Server (NTRS)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  2. The ACTS multibeam antenna

    NASA Astrophysics Data System (ADS)

    Regier, Frank A.

    1992-06-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  3. Registration of heavy metal ions and pesticides with ATR planar waveguide enzyme sensors

    NASA Astrophysics Data System (ADS)

    Nabok, Alexei; Haron, Saharudin; Ray, Asim

    2004-11-01

    The proposed novel type of enzyme optical sensors is based on a combination of SiO2/Si3N4/SiO2 planar waveguide ATR (attenuated total reflection) transducer, fabricated by standard silicon planar technology, with the composite polyelectrolyte self-assembled coating containing both organic chromophores and enzyme molecules. Such devices were deployed to monitor typical industrial and agricultural water pollutants, such as heavy metal ions and pesticides, acting as inhibitors of enzyme reactions. The sensitivity of registration of these pollutants in the range of 1 ppb was achieved. The use of different enzymes in the sensitive membrane provides a background for pattern recognition of the above pollutants.

  4. An investigation into keratinolytic enzymes to enhance ungual drug delivery.

    PubMed

    Mohorcic, M; Torkar, A; Friedrich, J; Kristl, J; Murdan, S

    2007-03-06

    The topical therapy of nail diseases is limited by the low permeability of drugs through the nail plate. To increase drug penetration, the integrity of the nail plate must be compromised to a certain extent. We hypothesised that keratinolytic enzymes might decrease the barrier properties of the nail plate by hydrolysing the nail keratins, and thereby enhance ungual drug permeation. To determine enzyme action on nail plates, nail clippings were incubated at 35 degrees C, in the presence of keratinase at optimal pH for 48h, after which the nail plates were examined using scanning electron microscopy. It was found that the enzyme acted on the intercellular matrix which holds nail cells together, such that corneocytes on the dorsal surface separated from one another and 'lifted off' the nail plate. In addition, the surface of the corneocytes was corroded. Permeation studies using modified Franz diffusion cells and bovine hoof membranes as a model for the nail plate showed that the enzyme enhanced drug permeation through the hoof membrane. The permeability and partition coefficients, and the drug flux were found to be significantly increased in the presence of the enzyme. We can conclude that the enzyme, via its hydrolytic action on nail plate proteins, could increase ungual drug delivery.

  5. Sodium and Potassium Ions in Proteins and Enzyme Catalysis.

    PubMed

    Vašák, Milan; Schnabl, Joachim

    2016-01-01

    The group I alkali metal ions Na(+) and K(+) are ubiquitous components of biological fluids that surround biological macromolecules. They play important roles other than being nonspecific ionic buffering agents or mediators of solute exchange and transport. Molecular evolution and regulated high intracellular and extracellular M(+) concentrations led to incorporation of selective Na(+) and K(+) binding sites into enzymes to stabilize catalytic intermediates or to provide optimal positioning of substrates. The mechanism of M(+) activation, as derived from kinetic studies along with structural analysis, has led to the classification of cofactor-like (type I) or allosteric effector (type II) activated enzymes. In the type I mechanism substrate anchoring to the enzyme active site is mediated by M(+), often acting in tandem with a divalent cation like Mg(2+), Mn(2+) or Zn(2+). In the allosteric type II mechanism, M(+) binding enhances enzyme activity through conformational transitions triggered upon binding to a distant site. In this chapter, following the discussion of the coordination chemistry of Na(+) and K(+) ions and the structural features responsible for the metal binding site selectivity in M(+)-activated enzymes, well-defined examples of M(+)-activated enzymes are used to illustrate the structural basis for type I and type II activation by Na(+) and K(+).

  6. Integrated microdroplet-based system for enzyme synthesis and sampling

    NASA Astrophysics Data System (ADS)

    Lapierre, Florian; Best, Michel; Stewart, Robert; Oakeshott, John; Peat, Thomas; Zhu, Yonggang

    2013-12-01

    Microdroplet-based microfluidic devices are emerging as powerful tools for a wide range of biochemical screenings and analyses. Monodispersed aqueous microdroplets from picoliters to nanoliters in volume are generated inside microfluidic channels within an immiscible oil phase. This results in the formation of emulsions which can contain various reagents for chemical reactions and can be considered as discrete bioreactors. In this paper an integrated microfluidic platform for the synthesis, screening and sorting of libraries of an organophosphate degrading enzyme is presented. The variants of the selected enzyme are synthesized from a DNA source using in-vitro transcription and translation method. The synthesis occurs inside water-in-oil emulsion droplets, acting as bioreactors. Through a fluorescence based detection system, only the most efficient enzymes are selected. All the necessary steps from the enzyme synthesis to selection of the best genes (producing the highest enzyme activity) are thus integrated inside a single and unique device. In the second part of the paper, an innovative design of the microfluidic platform is presented, integrating an electronic prototyping board for ensuring the communication between the various components of the platform (camera, syringe pumps and high voltage power supply), resulting in a future handheld, user-friendly, fully automated device for enzyme synthesis, screening and selection. An overview on the capabilities as well as future perspectives of this new microfluidic platform is provided.

  7. Affordable Care Act.

    PubMed

    Rak, Sofija; Coffin, Janis

    2013-01-01

    The Patient Protection and Affordable Care Act of 2010 (PPACA), although a subject of much debate in the Unites States, was enacted on March 23, 2010, and upheld by the Supreme Court on June 28, 2012. This act advocates that "healthcare is a right, not a privilege." The main goals of PPACA are to minimize the number of uninsured Americans and make healthcare available to everyone at an affordable price. The Congressional Budget Office has determined that 94% of Americans will have healthcare coverage while staying under the $900 billion limit that President Barack Obama established by bending the healthcare cost curve and reducing the deficit over the next 10 years.

  8. Early peptidic enzymes

    NASA Astrophysics Data System (ADS)

    Brack, André; Barbier, Bernard

    Oligopeptides supposed to be essential to primitive living cells could not be obtained by a prebiotic organic chemistry working mainly at random. Selection pathways were required. Experimental evidence is given for selective condensation of amino-acids in water as well as for selective resistance to degradation. Polycationic polypeptides containing lysyl (or arginyl) and hydrophobic residues strongly accelerate the hydrolysis of oligoribonucleotides. A ionic complex is first formed and the polypeptides are particularly active when they adopt a stable conformation, β-sheet or α-helix, in the complex. Well-defined short peptides were synthesized in order to determine the critical chain-length required for chemical activity. In a contemporary cell, proteins represent about 40 % of the dry weight. They fulfil a structural role and they are particularly helpful as chemical catalysts (enzymes). They can be represented as long chains made of twenty different building blocks, the amino-acids NH2-CHR-COOH, which differ by the side-chain R. Proteins are remarkable in the sense that they use amino-acids having only one carbon atom between the -NH2 and -COOH functions. The central carbon atom has always the same spatial asymmetry (chirality) and always bears a hydrogen atom. When the side-chain R is a hydrocarbon, it is branched. When R contains a chemical function, the side functions do not participate to the peptide bond construction. The protein chain results from the condensation of amino-acids, i.e. water molecules are removed between molecules in a medium which is mainly aqueous (the cell contains 75 % of water). The protein chains adopt rigid asymmetric conformations (α-helices, β-sheet structures) which are essential for the protein functions. Proteins, even the smallest ones, are too sophisticated entities to be considered as the products of an organic chemistry working at random, without any chemical selection. The chemist has therefore to understand, with simple

  9. Selective neutrality and enzyme kinetics.

    PubMed

    Demetrius, L

    1997-10-01

    This article appeals to a recent theory of enzyme evolution to show that the properties, neutral or adaptive, which characterize the observed allelic variation in natural populations can be inferred from the functional parameters, substrate specificity, and reaction rate. This study delineates the following relations between activity variables, and the forces--adaptive or neutral--determining allelic variation: (1) Enzymes with broad substrate specificity: The observed polymorphism is adaptive; mutations in this class of enzymes can result in increased fitness of the organism and hence be relevant for positive selection. (2) Enzymes with absolute substrate specificity and diffusion-controlled rates: Observed allelic variation will be absolutely neutral; mutations in this class of enzymes will be either deleterious or have no effect on fitness. (3) Enzymes with absolute or group specificity and nondiffusion-controlled rates: Observed variation will be partially neutral; mutants which are selectively neutral may become advantageous under an appropriate environmental condition or different genetic background. We illustrate each of the relations between kinetic properties and evolutionary states with examples drawn from enzymes whose evolutionary dynamics have been intensively studied.

  10. The Kentucky Civil Rights Act: Explanation, the Act, Regulations.

    ERIC Educational Resources Information Center

    Kentucky State Commission on Human Rights, Frankfort.

    The Kentucky Civil Rights Act, introduced on January 4, 1966, enacted January 27, 1966 and effective July 1, 1966 is said to meet the requirements of the Federal Civil Rights Act of 1964. In 1968, the Act was amended to prohibit housing discrimination. In 1972, the coverage of the Act was extended to prohibit employment discrimination because of…

  11. Asymptotic Expansion in Enzyme Reactions with High Enzyme Concentrations

    NASA Astrophysics Data System (ADS)

    Bersani, Alberto Maria; Dell'Acqua, Guido

    2010-09-01

    In this paper we find a new asymptotic expansion valid in enzymatic reactions where the total amount of enzyme exceeds greatly the total amount of substrate. In such case it is well known that the Michelis-Menten approximation is no longer valid; therefore our asymptotic expansion is a new tool to approximate in a closed form the concentrations of the reactants in presence of an enzyme excess.

  12. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  13. Enzyme catalysis on solid surfaces.

    PubMed

    Laurent, Nicolas; Haddoub, Rose; Flitsch, Sabine L

    2008-06-01

    Enzyme-catalysed reactions in which substrates are bound (immobilised) to solid surfaces are becoming increasingly important in biotechnology. There is a general drive for miniaturisation and automation in chemistry and biology, and immobilisation of the reaction intermediates and substrates, for example on microarrays or nanoparticles, helps to address technical challenges in this area. In bionanotechnology, enzyme catalysis can provide highly selective and biocompatible tools for the modification of surfaces on the nano-scale. Here, we review the range of enzyme-catalysed reactions that have been successfully performed on the solid phase and discuss their application in biotechnology.

  14. The USA PATRIOT Act.

    ERIC Educational Resources Information Center

    Minow, Mary; Coyle, Karen; Kaufman, Paula

    2002-01-01

    Explains the USA PATRIOT (Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism) Act, passed after the September 11 terrorist attacks, and its implications for libraries and patron records. Considers past dealings with the FBI; court orders; search warrants; wiretaps; and subpoenas. Includes:…

  15. The Equal Access Act.

    ERIC Educational Resources Information Center

    Catron, J. Gregory

    1987-01-01

    Reviews past history of access of religious activities in public schools in relation to the establishment clause of the First Amendment and sets forth the prerequisites in the Equal Access Act of 1984 for creating a well-defined forum for student-initiated free speech including religious groups in public high schools. (MD)

  16. Special Appropriation Act Projects

    EPA Pesticide Factsheets

    EPA is sometimes directed to provide funding to a specific entity for study, purpose, or activity.This information will be of interest to a community or other entity that has been identified in one of EPA's appropriations acts to receive such funding.

  17. Job Training Partnership Act.

    ERIC Educational Resources Information Center

    Tindall, Lloyd W.; Hedberg, Sally B.

    1987-01-01

    The Job Training Partnership Act, which provides money to programs preparing disadvantaged (including disabled) individuals for entry into the labor force, has helped special education students in such programs as the Special Education Local Plan Areas Job Project and the Day Training Activity Center at the Las Trampas School, Inc. in Lafayette,…

  18. Acting like a Pro

    ERIC Educational Resources Information Center

    Walker, Marlon A.

    2012-01-01

    The Saturday morning acting class in the Pearson Hall auditorium at Miles College boasts the school's highest attendance all year. The teacher, actress Robin Givens, was a lure few students--and others from surrounding areas--could resist. Some came to learn about their prospective field from a professional. Others were there for pointers to…

  19. ACTS Mobile Terminals

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Agan, Martin J.; Jedrey, Thomas C.

    1997-01-01

    The development of the Advanced Communications Technology Satellite (ACTS) Mobile Terminal (AMT) and its follow-on, the Broadband Aeronautical Terminal (BAT), have provided an excellent testbed for the evaluation of K- and Ka-band mobile satellite communications systems. An overview of both of these terminals is presented in this paper.

  20. Improving America's Schools Act

    NASA Technical Reports Server (NTRS)

    Cradler, John; Bridgforth, Elizabeth

    1995-01-01

    The Improving America's Schools ACT (IASA) emphasizes coherent systemic education reform, with Goals 2000 setting common standards for IASA and the recently authorized School-to-Work Program. IASA addresses the need to raise academic achievement, increase opportunities to learn, improve professional development, increase community involvement, utilize instructional applications of technology, and improve assessment, and allow more local flexibility in the use of funds.

  1. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.

    PubMed

    Vidal-Melgosa, Silvia; Pedersen, Henriette L; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G T

    2015-04-03

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths.

  2. A New Versatile Microarray-based Method for High Throughput Screening of Carbohydrate-active Enzymes*

    PubMed Central

    Vidal-Melgosa, Silvia; Pedersen, Henriette L.; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B.; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G. T.

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. PMID:25657012

  3. Nuclear localization of tetrahydrobiopterin biosynthetic enzymes.

    PubMed

    Elzaouk, Lina; Laufs, Stephanie; Heerklotz, Dirk; Leimbacher, Walter; Blau, Nenad; Résibois, Annette; Thöny, Beat

    2004-01-05

    Biosynthesis of the tetrahydrobiopterin (BH(4)) cofactor, essential for catecholamines and serotonin production and nitric oxide synthase (NOS) activity, requires the enzymes GTP cyclohydrolase I (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS), and sepiapterin reductase (SR). Upon studying the distribution of GTPCH and PTPS with polyclonal immune sera in cross sections of rat brain, prominent nuclear staining in many neurons was observed besides strong staining in peri-ventricular structures. Furthermore, localization studies in transgenic mice expressing a Pts-LacZ gene fusion containing the N-terminal 35 amino acids of PTPS revealed beta-galactosidase in the nucleus of neurons. In contrast, PTPS-beta-galactosidase was exclusively cytoplasmic in the convoluted kidney tubules but nuclear in other parts of the nephron, indicating again that nuclear targeting may occur only in specific cell categories. Furthermore, the N terminus of PTPS acts as a domain able to target the PTPS-beta-galactosidase fusion protein to the nucleus. In transiently transfected COS-1 cells, which do not express GTPCH and PTPS endogenously, we found cytoplasmic and nuclear staining for GTPCH and PTPS. To further investigate nuclear localization of all three BH(4)-biosynthetic enzymes, we expressed Flag-fusion proteins in transiently transfected COS-1 cells and analyzed the distribution by immunolocalization and sub-cellular fractionation using anti-Flag antibodies and enzymatic assays. Whereas 5-10% of total GTPCH and PTPS and approximately 1% of total SR were present in the nucleus, only GTPCH was confirmed to be an active enzyme in nuclear fractions. The in vitro studies together with the tissue staining corroborate specific nuclear localization of BH(4)-biosynthetic proteins with yet unknown biological function.

  4. Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F.

    PubMed

    Hrast, Martina; Sosič, Izidor; Sink, Roman; Gobec, Stanislav

    2014-08-01

    The widespread emergence of resistant bacterial strains is becoming a serious threat to public health. This thus signifies the need for the development of new antibacterial agents with novel mechanisms of action. Continuous efforts in the design of novel antibacterials remain one of the biggest challenges in drug development. In this respect, the Mur enzymes, MurA-F, that are involved in the formation of UDP-N-acetylmuramyl-pentapeptide can be genuinely considered as promising antibacterial targets. This review provides an in-depth insight into the recent developments in the field of inhibitors of the MurA-F enzymes. Special attention is also given to compounds that act as multiple inhibitors of two, three or more of the Mur enzymes. Moreover, the reasons for the lack of preclinically successful inhibitors and the challenges to overcome these hurdles in the next years are also debated.

  5. Biochemical characterization of a novel fibrinolytic enzyme from Cordyceps militaris.

    PubMed

    Liu, Xiaolan; Kopparapu, Narasimha-Kumar; Li, Yao; Deng, Yongping; Zheng, Xiqun

    2017-01-01

    A fibrinolytic enzyme was produced by the medicinal mushroom, Cordyceps militaris using submerged fermentation. The enzyme was purified from culture supernatant by hydrophobic interaction, ion exchange and gel filtration chromatographies. It was purified by 36 fold, with a specific activity of 1,467.4U/mg protein and the final yield was 5.8%. The molecular weight of the enzyme as determined by SDS-PAGE and gel filtration was 28kDa and 24.5kDa, respectively, and its isoelectric point (pI) was 9.0±0.2. It was found to be a glycoprotein with carbohydrate content of 1.67% (w/v). The enzyme was optimally active at 37°C and pH 7.2. The enzyme activity was strongly inhibited by soybean trypsin inhibitor (SBTI) and aprotinin which indicated it to be a serine protease, while other inhibitors like N-α-tosyl-l-phenylalanine chloromethyl ketone (TPCK), phenyl methane sulfonyl fluoride (PMSF), pepstatin and metal chelator EDTA did not inhibit its activity. Amino acid sequences of the purified enzyme were determined partially by Q-TOF2 and they were IEDFPYQVDLR; ANCGGTVISEK; YVLTAGHCAEGYTGLNIR; TNYASVTPITADMICAGFPEGK; KDSCSGDSGGPLVTGGK; VVGIVSFGTGCAR; ANKPGVYSSVASAEIR. Sequences of the seven peptides completely matched with those of a trypsin-like serine protease from Cordyceps militaris CM01 (accession no. EGX95217.1). The purified enzyme degraded α chains of fibrinogen first and then β and γ chains and also activated plasminogen into plasmin. It can act as an anticoagulant and prevent clot formation by degrading fibrinogen. Based on these studies, the purified enzyme has great potential to be developed as a natural agent for prevention and treatment of thrombolytic diseases.

  6. Human Chitotriosidase Is an Endo-Processive Enzyme

    PubMed Central

    Sørlie, Morten; Väljamäe, Priit

    2017-01-01

    Human chitotriosidase (HCHT) is involved in immune response to chitin-containing pathogens in humans. The enzyme is able to degrade chitooligosaccharides as well as crystalline chitin. The catalytic domain of HCHT is connected to the carbohydrate binding module (CBM) through a flexible hinge region. In humans, two active isoforms of HCHT are found–the full length enzyme and its truncated version lacking CBM and the hinge region. The active site architecture of HCHT is reminiscent to that of the reducing-end exo-acting processive chitinase ChiA from bacterium Serratia marcescens (SmChiA). However, the presence of flexible hinge region and occurrence of two active isoforms are reminiscent to that of non-processive endo-chitinase from S. marcescens, SmChiC. Although the studies on soluble chitin derivatives suggest the endo-character of HCHT, the mode of action of the enzyme on crystalline chitin is not known. Here, we made a thorough characterization of HCHT in terms of the mode of action, processivity, binding, and rate constants for the catalysis and dissociation using α-chitin as substrate. HCHT efficiently released the end-label from reducing-end labelled chitin and had also high probability (95%) of endo-mode initiation of processive run. These results qualify HCHT as an endo-processive enzyme. Processivity and the rate constant of dissociation of HCHT were found to be in-between those, characteristic to processive exo-enzymes, like SmChiA and randomly acting non-processive endo-enzymes, like SmChiC. Apart from increasing the affinity for chitin, CBM had no major effect on kinetic properties of HCHT. PMID:28129403

  7. Molybdenum enzymes in higher organisms

    PubMed Central

    Hille, Russ; Nishino, Takeshi; Bittner, Florian

    2010-01-01

    Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein. PMID:21516203

  8. The origins of enzyme kinetics.

    PubMed

    Cornish-Bowden, Athel

    2013-09-02

    The equation commonly called the Michaelis-Menten equation is sometimes attributed to other authors. However, although Victor Henri had derived the equation from the correct mechanism, and Adrian Brown before him had proposed the idea of enzyme saturation, it was Leonor Michaelis and Maud Menten who showed that this mechanism could also be deduced on the basis of an experimental approach that paid proper attention to pH and spontaneous changes in the product after formation in the enzyme-catalysed reaction. By using initial rates of reaction they avoided the complications due to substrate depletion, product accumulation and progressive inactivation of the enzyme that had made attempts to analyse complete time courses very difficult. Their methodology has remained the standard approach to steady-state enzyme kinetics ever since.

  9. Engineering the ligninolytic enzyme consortium.

    PubMed

    Alcalde, Miguel

    2015-03-01

    The ligninolytic enzyme consortium is one of the most-efficient oxidative systems found in nature, playing a pivotal role during wood decay and coal formation. Typically formed by high redox-potential oxidoreductases, this array of enzymes can be used within the emerging lignocellulose biorefineries in processes that range from the production of bioenergy to that of biomaterials. To ensure that these versatile enzymes meet industry standards and needs, they have been subjected to directed evolution and hybrid approaches that surpass the limits imposed by nature. This Opinion article analyzes recent achievements in this field, including the incipient groundbreaking research into the evolution of resurrected enzymes, and the engineering of ligninolytic secretomes to create consolidated bioprocessing microbes with synthetic biology applications.

  10. Enzyme immobilisation in permselective microcapsules.

    PubMed

    Pachariyanon, Pavadee; Barth, Ekkehard; Agar, David W

    2011-01-01

    The objective of this investigation was to study the permselective behaviour of calcium alginate membranes, including the modifying effects of silica additives, which were subsequently used as microcapsule shells. Diffusion experiments and HPLC were carried out to ascertain the size-exclusion property of the membranes for a mixed molecular-weight dextran solution. Hollow microcapsules containing the enzyme dextranase were prepared using double concentric nozzles and the encapsulation performance was evaluated based on an analysis of the enzyme reactivity and stability. To improve mass transport within the microcapsules, magnetic nanoparticles were introduced into the liquid core and agitated using an alternating external magnetic field. The modified membranes exhibited better size-exclusion behaviour than the unmodified membranes. The magnetic nanoparticles slightly improved mass transport inside the microcapsule. The encapsulated enzyme yielded nearly 80% of the free enzyme activity and retained about 80% of the initial catalytic activity even after being used for eight reaction cycles.

  11. Enzymes: principles and biotechnological applications.

    PubMed

    Robinson, Peter K

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed.

  12. Enzymes: principles and biotechnological applications

    PubMed Central

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  13. Immobilized Enzymes for Automated Analyses.

    DTIC Science & Technology

    1979-12-01

    by others. Reaction velocity was found to increase with temperature at a rate of about 5%/’C. Three distinct types of immobilization processes were...trifunctional silane ........... 10 2 Linearity of protein assay ............................. 14 3 Reaction rate for native and oxygenated enzyme solu...in a clinical chemistry analyzer enables catalysis of the analyzer reactions with retention of active enzyme by the system for subsequent reuse. When a

  14. Preparation of enzyme calibration materials.

    PubMed

    Férard, G; Lessinger, J M

    1998-12-01

    Standardisation in clinical enzymology needs not only reference methods but also reference materials. While single-enzyme reference enzymes have been developed, a multienzyme certified reference material (MECRM) available in high amount remains to be produced. To transfer trueness from the value of the reference system to patients' results, validated enzyme calibrators (EC) are also needed. Both the MECRM and the ECs must exhibit the same catalytic properties as the corresponding enzymes in human plasma. Moreover, commutability of these materials with patients' samples must be experimentally tested for one or a set of methods defined by an analytical specificity equal to that of the reference method. Various experimental studies have shown that the commutability of an enzyme material depends on the source of enzyme and its purification process, the matrix (including cofactors, effectors, additives, stabilisers... ) and the mode of processing of the final material. To promote intermethod calibration in clinical enzymology, a collaborative programme between the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) and IFCC corporate members is in progress for the development of a MECRM containing amylase, ALT, AST, ALP, CK, GGT, LDH, and lipase and exhibiting a wide and defined commutability.

  15. ACTS of Education

    NASA Technical Reports Server (NTRS)

    Bauer, Robert; Krawczyk, Richard; Gargione, Frank; Kruse, Hans; Vrotsos, Pete (Technical Monitor)

    2002-01-01

    Now in its ninth year of operations, the Advanced Communications Technology Satellite (ACTS) program has continued, although since May 2000 in a new operations arrangement involving a university based consortium, the Ohio Consortium for Advanced Communications Technology (OCACT), While NASA has concluded its experimental intentions of ACTS, the spacecraft's ongoing viability has permitted its further operations to provide educational opportunities to engineering and communications students interested in satellite operations, as well as a Ka-band test bed for commercial interests in utilizing Kaband space communications. The consortium has reached its first year of operations. This generous opportunity by NASA has already resulted in unique educational opportunities for students in obtaining "hands-on" experience, such as, in satellite attitude control. An update is presented on the spacecraft and consortium operations.

  16. Regulation of Proteolysis by Human Deubiquitinating Enzymes

    PubMed Central

    Eletr, Ziad M.; Wilkinson, Keith D.

    2013-01-01

    The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein-protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USP) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN+/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target

  17. Toxic Substances Control Act

    SciTech Connect

    Not Available

    1992-05-15

    This Reference Book contains a current copy of the Toxic Substances Control Act and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

  18. ACTE Wing Loads Analysis

    NASA Technical Reports Server (NTRS)

    Horn, Nicholas R.

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) project modified a Gulfstream III (GIII) aircraft with a new flexible flap that creates a seamless transition between the flap and the wing. As with any new modification, it is crucial to ensure that the aircraft will not become overstressed in flight. To test this, Star CCM a computational fluid dynamics (CFD) software program was used to calculate aerodynamic data for the aircraft at given flight conditions.

  19. Freedom of Information Act

    USGS Publications Warehouse

    Newman, D.J.

    2012-01-01

    The Freedom of Information Act( FOIA), 5 U.S.C.§ 552, as amended, generally provides that any person has a right to request access to Federal agency records. The USGS proactively promotes information disclosure as inherent to its mission of providing objective science to inform decisionmakers and the general public. USGS scientists disseminate up-to-date and historical scientific data that are critical to addressing national and global priorities.

  20. The ACTS multibeam antenna

    NASA Technical Reports Server (NTRS)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The satellite is introduced briefly, and then the MBA, consisting of electrically similar 30 GHz received and 20 GHz transmit offset Cassegrain systems utilizing orthogonal linear polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 deg beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz high mobility electron transmitter (HEMT) low-noise amplifier and a 20 GHz TWT power amplifier.

  1. The ACTS multibeam antenna

    NASA Astrophysics Data System (ADS)

    Regier, Frank A.

    1992-04-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The satellite is introduced briefly, and then the MBA, consisting of electrically similar 30 GHz received and 20 GHz transmit offset Cassegrain systems utilizing orthogonal linear polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 deg beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz high mobility electron transmitter (HEMT) low-noise amplifier and a 20 GHz TWT power amplifier.

  2. Imaging enzymes at work: metabolic mapping by enzyme histochemistry.

    PubMed

    Van Noorden, Cornelis J F

    2010-06-01

    For the understanding of functions of proteins in biological and pathological processes, reporter molecules such as fluorescent proteins have become indispensable tools for visualizing the location of these proteins in intact animals, tissues, and cells. For enzymes, imaging their activity also provides information on their function or functions, which does not necessarily correlate with their location. Metabolic mapping enables imaging of activity of enzymes. The enzyme under study forms a reaction product that is fluorescent or colored by conversion of either a fluorogenic or chromogenic substrate or a fluorescent substrate with different spectral characteristics. Most chromogenic staining methods were developed in the latter half of the twentieth century but still find new applications in modern cell biology and pathology. Fluorescence methods have rapidly evolved during the last decade. This review critically evaluates the methods that are available at present for metabolic mapping in living animals, unfixed cryostat sections of tissues, and living cells, and refers to protocols of the methods of choice.

  3. [Preface for special issue on enzyme engineering].

    PubMed

    Jin, Cheng

    2009-12-01

    Enzyme engineering is a combined technology of enzymology and engineering, which is becoming one of the major fields of modem biotechnology. In recent years, China has made some advances in enzyme engineering research. To promote enzyme engineering research in China, invited reviews and selected research articles were published in this special issue of "Enzyme Engineering". The reviews and research articles focus on the fields of enzymatic conversion, therapeutic enzymes, enzymes as additives to animal feedstuff, enzymes for degradation of organic pollutes, and enzymes for biofuel and biorefinery.

  4. A sweet new role for LCP enzymes in protein glycosylation

    SciTech Connect

    Amer, Brendan R.; Clubb, Robert T.

    2014-11-21

    The peptidoglycan that surrounds Gram-positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytRCpsA-Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton-That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromolecules to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Furthermore, since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell-based tool to discover inhibitors of this important enzyme family.

  5. A sweet new role for LCP enzymes in protein glycosylation

    DOE PAGES

    Amer, Brendan R.; Clubb, Robert T.

    2014-11-21

    The peptidoglycan that surrounds Gram-positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytRCpsA-Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton-That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromoleculesmore » to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Furthermore, since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell-based tool to discover inhibitors of this important enzyme family.« less

  6. Microtubule-severing enzymes at the cutting edge.

    PubMed

    Sharp, David J; Ross, Jennifer L

    2012-06-01

    ATP-dependent severing of microtubules was first reported in Xenopus laevis egg extracts in 1991. Two years later this observation led to the purification of the first known microtubule-severing enzyme, katanin. Katanin homologs have now been identified throughout the animal kingdom and in plants. Moreover, members of two closely related enzyme subfamilies, spastin and fidgetin, have been found to sever microtubules and might act alongside katanins in some contexts (Roll-Mecak and McNally, 2010; Yu et al., 2008; Zhang et al., 2007). Over the past few years, it has become clear that microtubule-severing enzymes contribute to a wide range of cellular activities including mitosis and meiosis, morphogenesis, cilia biogenesis and disassembly, and migration. Thus, this group of enzymes is revealing itself to be among the most important of the microtubule regulators. This Commentary focuses on our growing understanding of how microtubule-severing enzymes contribute to the organization and dynamics of diverse microtubule arrays, as well as the structural and biophysical characteristics that afford them the unique capacity to catalyze the removal of tubulin from the interior microtubule lattice. Our goal is to provide a broader perspective, focusing on a limited number of particularly informative, representative and/or timely findings.

  7. Enzyme activation through the utilization of intrinsic dianion binding energy.

    PubMed

    Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P

    2016-11-29

    We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol., 43: , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed.

  8. A novel 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis strain DPN7T acting as a key enzyme during catabolism of 3,3'-dithiodipropionic acid is a member of the acyl-CoA dehydrogenase superfamily.

    PubMed

    Schürmann, Marc; Deters, Anika; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2013-04-01

    3-Sulfinopropionyl coenzyme A (3SP-CoA) desulfinase (AcdDPN7) is a new desulfinase that catalyzes the sulfur abstraction from 3SP-CoA in the betaproteobacterium Advenella mimigardefordensis strain DPN7(T). During investigation of a Tn5::mob-induced mutant defective in growth on 3,3'-dithiodipropionate (DTDP) and also 3-sulfinopropionate (3SP), the transposon insertion was mapped to an open reading frame with the highest homology to an acyl-CoA dehydrogenase (Acd) from Burkholderia phenoliruptrix strain BR3459a (83% identical and 91% similar amino acids). An A. mimigardefordensis Δacd mutant was generated and verified the observed phenotype of the Tn5::mob-induced mutant. For enzymatic studies, AcdDPN7 was heterologously expressed in Escherichia coli BL21(DE3)/pLysS by using pET23a::acdDPN7. The purified protein is yellow and contains a noncovalently bound flavin adenine dinucleotide (FAD) cofactor, as verified by high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses. Size-exclusion chromatography revealed a native molecular mass of about 173 kDa, indicating a homotetrameric structure (theoretically 179 kDa), which is in accordance with other members of the acyl-CoA dehydrogenase superfamily. In vitro assays unequivocally demonstrated that the purified enzyme converted 3SP-CoA into propionyl-CoA and sulfite (SO3(2-)). Kinetic studies of AcdDPN7 revealed a Vmax of 4.19 μmol min(-1) mg(-1), an apparent Km of 0.013 mM, and a kcat/Km of 240.8 s(-1) mM(-1) for 3SP-CoA. However, AcdDPN7 is unable to perform a dehydrogenation, which is the usual reaction catalyzed by members of the acyl-CoA dehydrogenase superfamily. Comparison to other known desulfinases showed a comparably high catalytic efficiency of AcdDPN7 and indicated a novel reaction mechanism. Hence, AcdDPN7 encodes a new desulfinase based on an acyl-CoA dehydrogenase (EC 1.3.8.x) scaffold. Concomitantly, we identified the gene product that is responsible for the

  9. Evolutionary Aspects of Enzyme Dynamics*

    PubMed Central

    Klinman, Judith P.; Kohen, Amnon

    2014-01-01

    The role of evolutionary pressure on the chemical step catalyzed by enzymes is somewhat enigmatic, in part because chemistry is not rate-limiting for many optimized systems. Herein, we present studies that examine various aspects of the evolutionary relationship between protein dynamics and the chemical step in two paradigmatic enzyme families, dihydrofolate reductases and alcohol dehydrogenases. Molecular details of both convergent and divergent evolution are beginning to emerge. The findings suggest that protein dynamics across an entire enzyme can play a role in adaptation to differing physiological conditions. The growing tool kit of kinetics, kinetic isotope effects, molecular biology, biophysics, and bioinformatics provides means to link evolutionary changes in structure-dynamics function to the vibrational and conformational states of each protein. PMID:25210031

  10. Subcellular localization of pituitary enzymes

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  11. Supramolecular catalysis beyond enzyme mimics.

    PubMed

    Meeuwissen, Jurjen; Reek, Joost N H

    2010-08-01

    Supramolecular catalysis - the assembly of catalyst species by harnessing multiple weak intramolecular interactions - has, until recently, been dominated by enzyme-inspired approaches. Such approaches often attempt to create an enzyme-like 'active site' and have concentrated on reactions similar to those catalysed by enzymes themselves. Here, we discuss the application of supramolecular assembly to the more traditional transition metal catalysis and to small-molecule organocatalysis. The modularity of self-assembled multicomponent catalysts means that a relatively small pool of catalyst components can provide rapid access to a large number of catalysts that can be evaluated for industrially relevant reactions. In addition, we discuss how catalyst-substrate interactions can be tailored to direct substrates along particular reaction paths and selectivities.

  12. Micromotors Powered by Enzyme Catalysis.

    PubMed

    Dey, Krishna K; Zhao, Xi; Tansi, Benjamin M; Méndez-Ortiz, Wilfredo J; Córdova-Figueroa, Ubaldo M; Golestanian, Ramin; Sen, Ayusman

    2015-12-09

    Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture.

  13. Immunomodulatory Effects of Chitotriosidase Enzyme

    PubMed Central

    Elmonem, Mohamed A.; van den Heuvel, Lambertus P.; Levtchenko, Elena N.

    2016-01-01

    Chitotriosidase enzyme (EC: 3.2.1.14) is the major active chitinase in the human body. It is produced mainly by activated macrophages, in which its expression is regulated by multiple intrinsic and extrinsic signals. Chitotriosidase was confirmed as essential element in the innate immunity against chitin containing organisms such as fungi and protozoa; however, its immunomodulatory effects extend far beyond innate immunity. In the current review, we will try to explore the expanding spectrum of immunological roles played by chitotriosidase enzyme in human health and disease and will discuss its up-to-date clinical value. PMID:26881065

  14. ACTS broadband aeronautical experiment

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Jedrey, Thomas C.; Estabrook, Polly; Agan, Martin J.

    1993-01-01

    In the last decade, the demand for reliable data, voice, and video satellite communication links between aircraft and ground to improve air traffic control, airline management, and to meet the growing demand for passenger communications has increased significantly. It is expected that in the near future, the spectrum required for aeronautical communication services will grow significantly beyond that currently available at L-band. In anticipation of this, JPL is developing an experimental broadband aeronautical satellite communications system that will utilize NASA's Advanced Communications Technology Satellite (ACTS) as a satellite of opportunity and the technology developed under JPL's ACTS Mobile Terminal (AMT) Task to evaluate the feasibility of using K/Ka-band for these applications. The application of K/Ka-band for aeronautical satellite communications at cruise altitudes is particularly promising for several reasons: (1) the minimal amount of signal attenuation due to rain; (2) the reduced drag due to the smaller K/Ka-band antennas (as compared to the current L-band systems); and (3) the large amount of available bandwidth. The increased bandwidth available at these frequencies is expected to lead to significantly improved passenger communications - including full-duplex compressed video and multiple channel voice. A description of the proposed broadband experimental system will be presented including: (1) applications of K/Ka-band aeronautical satellite technology to U.S. industry; (2) the experiment objectives; (3) the experiment set-up; (4) experimental equipment description; and (5) industrial participation in the experiment and the benefits.

  15. Vaccination: An Act of Love

    MedlinePlus

    ... dreams. Remember too: Vaccination is an Act of Love. Dr. Mirta Roses Periago Director, Pan American Health ... MICROSCOPE ? KNOW WHY VACCINATION IS AN ACT OF LOVE? IT PROTECTS AGAINST MANY TYPES OF DISEASE! AND ...

  16. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.

    PubMed

    Nielsen, Morten M; Bozonnet, Sophie; Seo, Eun-Seong; Mótyán, János A; Andersen, Joakim M; Dilokpimol, Adiphol; Abou Hachem, Maher; Gyémánt, Gyöngyi; Naested, Henrik; Kandra, Lili; Sigurskjold, Bent W; Svensson, Birte

    2009-08-18

    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)(8)-barrel and the noncatalytic C-terminal domain, respectively. Site-directed mutagenesis of Trp(278) and Trp(279), stacking onto adjacent ligand glucosyl residues at SBS1, and of Tyr(380) and His(395), making numerous ligand contacts at SBS2, suggested that SBS1 and SBS2 act synergistically in degradation of starch granules. While SBS1 makes the major contribution to binding and hydrolysis of starch granules, SBS2 exhibits a higher affinity for the starch mimic beta-cyclodextrin. Compared to that of wild-type AMY1, the K(d) of starch granule binding by the SBS1 W278A, W279A, and W278A/W279A mutants thus increased 15-35 times; furthermore, the k(cat)/K(m) of W278A/W279A was 2%, whereas both affinity and activity for Y380A at SBS2 were 10% of the wild-type values. Dual site double and triple SBS1/SBS2 substitutions eliminated binding to starch granules, and the k(cat)/K(m) of W278A/W279A/Y380A AMY1 was only 0.4% of the wild-type value. Surface plasmon resonance analysis of mutants showed that beta-cyclodextrin binds to SBS2 and SBS1 with K(d,1) and K(d,2) values of 0.07 and 1.40 mM, respectively. A model that accounts for the observed synergy in starch hydrolysis, where SBS1 and SBS2 bind ordered and free alpha-glucan chains, respectively, thus targeting the enzyme to single alpha-glucan chains accessible for hydrolysis, is proposed. SBS1 and SBS2 also influence the kinetics of hydrolysis for amylose and maltooligosaccharides, the degree of multiple attack on amylose, and subsite binding energies.

  17. The Nurse Reinvestment Act revisited.

    PubMed

    Luther, Ann P

    2007-01-01

    The United States is in the midst of a widely recognized critical nursing shortage. In 2002 the "Nurse Reinvestment Act" was passed with overwhelming bipartisan support in an effort to address this serious public health threat. The Act is due for reauthorization of funding in 2007. This paper provides a brief overview of the programs contained within the Act and describes practical ways in which members of the nursing community can take action to insure renewed support for the Act.

  18. Taking the Mystery Out of Enzymes.

    ERIC Educational Resources Information Center

    DeYoung, H. Garrett

    1984-01-01

    Discusses structure and function of enzymes, design of new enzymes and enzyme substitutes, and enzyme uses in industry, medicine, and wastewater treatment. The latter is a low-cost method which can remove as much as 99 percent of toxic substances found in many industrial wastewater streams. (JN)

  19. FCC and the Sunshine Act.

    ERIC Educational Resources Information Center

    Weiss, Kenneth

    The Sunshine Act, designed to encourage open meetings to increase public understanding of the governmental decision-making process, went into effect in March 1977. A total of 50 agencies, including the Federal Communications Commission (FCC), are subject to the provisions of the Sunshine Act. The act lists 10 exemptions, any of which can result in…

  20. Advances in enzyme technology--UK contributions.

    PubMed

    Woodley, J M

    2000-01-01

    Enzyme technology has been a recognised part of bioprocess engineering since its inception in the 1950s and 1960s. In this article the early history of enzyme technology is discussed and the subsequent developments in enzyme isolation, enzyme modification and process technology are described. These creative developments have put enzyme technology in a position of huge potential to contribute to environmentally compatible and cost effective means of industrial chemical synthesis. Recent developments in protein modification to produce designer enzymes are leading a new wave of enzyme application.

  1. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  2. Enzyme nanoassemblies for biomass conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass represents a vast resource for the production of the world’s fuel and chemical feedstock needs. The use of enzymes to effect these bioconversions offers an alternative that is potentially more specific and environmentally-friendly than harsher chemical methodologies. Some species of anaero...

  3. Rennin--a Neglected Enzyme?

    ERIC Educational Resources Information Center

    Gill, John; Saunders, Terry

    1987-01-01

    Presents investigations to explore the substrate specificity, pH, concentration, and temperature relations of an enzyme with only inexpensive commercial rennet and basic laboratory equipment. Describes how the activities were carried out with a group of 15-year-old students. (CW)

  4. Phage lytic enzymes targeting streptococci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcal pathogens contribute to a wide variety of human and livestock diseases. There is a need for new antimicrobials to replace over-used conventional antibiotics. Bacteriophage (viruses that infect bacteria) endolysins (enzymes that help degrade the bacterial cell wall) are ideal candidat...

  5. Lipolytic Enzymes in Myxococcus xanthus▿

    PubMed Central

    Moraleda-Muñoz, Aurelio; Shimkets, Lawrence J.

    2007-01-01

    The genome of Myxococcus xanthus encodes lipolytic enzymes in three different families: patatin lipases, α/β hydrolases, and GDSL lipases. One member of each family was characterized. The protein encoded by MXAN_3852 contains motifs characteristic of patatins. MXAN_5522 encodes a protein with the G-X-S-X-G motif characteristic of the lipase subfamily of α/β hydrolases. MXAN_4569 encodes a member of the GDSL family of lipolytic enzymes. Strains with deletions of MXAN_5522 and MXAN_4569 undergo faster development and earlier myxospore formation than the wild-type strain. The MXAN_5522 mutation results in spore yields substantially higher than those seen for wild-type cells. Gene expression analysis using translational lacZ fusions indicates that while all three genes are expressed during development, only MXAN_5522 and MXAN_4569 are expressed during vegetative growth. The proteins encoded by these genes were overexpressed using a T7 RNA polymerase transcription (pET102/D-TOPO) system in Escherichia coli BL21 Star (DE3) cells. The substrate specificities of the purified enzymes were investigated using p-nitrophenyl esters with chain lengths from C2 to C16. These enzymes preferentially hydrolyzed esters of short-chain fatty acids, yielding the highest activity with p-nitrophenyl acetate. PMID:17307851

  6. Insolubilized enzymes for food synthesis

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  7. Speeding up enzyme engineering computationally.

    PubMed

    Scrutton, Nigel S

    2017-01-01

    Can in silico engineering speed up the delivery of biocatalysts for the burgeoning bioeconomy? In this issue, Kamerlin and coworkers introduce CADEE [Amrein et al. (2017), IUCrJ, 4, 50-64] - a framework for Computer-Aided Directed Evolution of Enzymes - that promises to lessen the burden on 'wet lab' enzymologists when optimizing biocatalysts using laboratory-based directed evolution methods.

  8. The enzymes associated with denitrification

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  9. Biological abatement of enzyme inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulose pretreatments release phenolic compounds that cause enzyme inhibition and deactivation. Bio-abatement, the biological removal of furfurals, acetic acid and phenolics, may utilize fungal fermentation to metabolize these compounds to CO2, water, cell mass, and heat. Our work with Coni...

  10. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  11. [Enzyme alterations during chemical hepatocarcinogenesis].

    PubMed

    Sato, K; Satoh, K; Hatayama, I

    1987-06-01

    Biochemical phenotypes such as the forms of enzyme proteins alter during the promotion and progression stages in chemical hepatocarcinogenesis. Many enzymes or isoenzymes have been identified as markers of (pre) neoplastic hepatic tissues and used for analysis of the carcinogenic process. The levels of hepatic isoenzymes decrease and those of prototypic or fetal isozymes increase during the progression of hepatocarcinogenesis. Some drug-metabolizing enzymes are also very variable at the promotion stage in rat chemical carcinogenesis; Phase I enzymes such as cytochrome P-450 decrease and Phase II (iso)-enzymes such as UDP-glucuronyl-transferase, glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (gamma-GTP) increase. A new neutral GST form with pI 7.0 (GST-P) has been identified by us as one of the best markers for rat chemical hepatocarcinogenesis. GST-P is a homodimer consisting of a subunit (Mr 26,000, more accurately 23,307, and pI 6.7), the smallest among rat GST subunits, and differs immunochemically from any other GST form. It is present in very low levels in normal rat liver and is not inducible by most drugs including carcinogens without the appearance of preneoplastic hepatocyte nodules (HN) but it is increased by several ten-fold in HN-bearing liver and hepatomas induced by different carcinogens. Immunohistochemically, it is localized in HN and very early and small GST-positive foci are detectable using anti-GST-P antibody. (Pre) neoplastic hepatic lesions induced by nongenotoxic carcinogens such as hypolipidemic peroxisome-proliferating agents do not express GST-P as well as gamma-GTP.

  12. FAST ACTING CURRENT SWITCH

    DOEpatents

    Batzer, T.H.; Cummings, D.B.; Ryan, J.F.

    1962-05-22

    A high-current, fast-acting switch is designed for utilization as a crowbar switch in a high-current circuit such as used to generate the magnetic confinement field of a plasma-confining and heat device, e.g., Pyrotron. The device particularly comprises a cylindrical housing containing two stationary, cylindrical contacts between which a movable contact is bridged to close the switch. The movable contact is actuated by a differential-pressure, airdriven piston assembly also within the housing. To absorb the acceleration (and the shock imparted to the device by the rapidly driven, movable contact), an adjustable air buffer assembly is provided, integrally connected to the movable contact and piston assembly. Various safety locks and circuit-synchronizing means are also provided to permit proper cooperation of the invention and the high-current circuit in which it is installed. (AEC)

  13. ACTS mobile propagation campaign

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1994-01-01

    Preliminary results are presented for three propagation measurement campaigns involving a mobile receiving laboratory and 20 GHz transmissions from the Advanced Communications Technology Satellite (ACTS). Four 1994 campaigns were executed during weekly periods in and around Austin, Texas in February and May, in Central Maryland during March, and in Fairbanks, Alaska and environs in June. Measurements tested the following effects at 20 GHz: (1) attenuation due to roadside trees with and without foliage, (2) multipath effects for scenarios in which line-of-sight paths were unshadowed, (3) fades due to terrain and roadside obstacles, (4) fades due to structures in urban environs, (5) single tree attenuation, and (6) effects of fading at low elevation angles (8 deg in Fairbanks, Alaska) and high elevation angles (55 deg in Austin, Texas). Results presented here cover sampled measurements in Austin, Texas for foliage and non-foliage cases and in Central Maryland for non-foliage runs.

  14. Federal Employees' Compensation Act.

    PubMed

    Ladou, Joseph

    2009-01-01

    The Federal Employees' Compensation Act (FECA) program provides wage loss compensation and payments for medical treatment to federal civilian employees. Administered by the Department of Labor (DOL), FECA covers over 2.7 million federal employees in more than 70 different agencies. FECA costs rose from $1.4 billion in 1990 to $2.6 in 2006, while the federal workforce remained essentially unchanged. While federal civilian employees represent only 2.1% of all workers eligible for workers' compensation benefits, federal programs account for 6% of the benefits paid. Disability benefits under FECA are far greater than those in the state workers' compensation programs. The benefit payments often exceed the former salary of the injured employee. The last congressional hearings on the FECA program were held over thirty years ago. It is unlikely that Congressional review will occur any time soon, as the entrenched bureaucracy that benefits from the FECA program defines and protects its future.

  15. Triple acting radial seal

    SciTech Connect

    Ebert, Todd A; Carella, John A

    2012-03-13

    A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.

  16. Role of Conformational Motions in Enzyme Function: Selected Methodologies and Case Studies

    PubMed Central

    Narayanan, Chitra; Bernard, David N.; Doucet, Nicolas

    2017-01-01

    It is now common knowledge that enzymes are mobile entities relying on complex atomic-scale dynamics and coordinated conformational events for proper ligand recognition and catalysis. However, the exact role of protein dynamics in enzyme function remains either poorly understood or difficult to interpret. This mini-review intends to reconcile biophysical observations and biological significance by first describing a number of common experimental and computational methodologies employed to characterize atomic-scale residue motions on various timescales in enzymes, and second by illustrating how the knowledge of these motions can be used to describe the functional behavior of enzymes and even act upon it. Two biologically relevant examples will be highlighted, namely the HIV-1 protease and DNA polymerase β enzyme systems. PMID:28367322

  17. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  18. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  19. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  20. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  1. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  2. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    PubMed

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine

  3. Engineered enzymes for chemical production.

    PubMed

    Luetz, Stephan; Giver, Lori; Lalonde, James

    2008-11-01

    In order to enable competitive manufacturing routes, most biocatalysts must be tailor-made for their processes. Enzymes from nature rarely have the combined properties necessary for industrial chemical production such as high activity and selectivity on non-natural substrates and toleration of high concentrations of organic media over the wide range of conditions (decreasing substrate, increasing product concentrations, solvents, etc.,) that will be present over the course of a manufacturing process. With the advances in protein engineering technologies, a variety of enzyme properties can be altered simultaneously, if the appropriate screening parameters are employed. Here we discuss the process of directed evolution for the generation of commercially viable biocatalysts for the production of fine chemicals, and how novel approaches have helped to overcome some of the challenges.

  4. Metrological aspects of enzyme production

    NASA Astrophysics Data System (ADS)

    Kerber, T. M.; Dellamora-Ortiz, G. M.; Pereira-Meirelles, F. V.

    2010-05-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies.

  5. Improvements of biomass deconstruction enzymes

    SciTech Connect

    Sale, K. L.

    2012-03-01

    Sandia National Laboratories and DSM Innovation, Inc. collaborated on the investigation of the structure and function of cellulases from thermophilic fungi. Sandia's role was to use its expertise in protein structure determination and X-ray crystallography to solve the structure of these enzymes in their native state and in their substrate and product bound states. Sandia was also tasked to work with DSM to use the newly solved structure to, using computational approaches, analyze enzyme interactions with both bound substrate and bound product; the goal being to develop approaches for rationally designing improved cellulases for biomass deconstruction. We solved the structures of five cellulases from thermophilic fungi. Several of these were also solved with bound substrate/product, which allowed us to predict mutations that might enhance activity and stability.

  6. The Amborella vacuolar processing enzyme family

    PubMed Central

    Poncet, Valérie; Scutt, Charlie; Tournebize, Rémi; Villegente, Matthieu; Cueff, Gwendal; Rajjou, Loïc; Balliau, Thierry; Zivy, Michel; Fogliani, Bruno; Job, Claudette; de Kochko, Alexandre; Sarramegna-Burtet, Valérie; Job, Dominique

    2015-01-01

    Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs). In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013). In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella's genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations in New Caledonia. PMID:26347753

  7. Silica-Immobilized Enzyme Reactors

    DTIC Science & Technology

    2007-08-01

    relief from the symptoms of inflammation and pain Silica-IMERs 10 and is the mode of action of drugs such as aspirin and ibuprofen .[61] Serotonin...supports and using the enantiomeric selectivity of the enzyme to resolve racemic mixtures.[100] Immobilization onto supports with various pore sizes and...activity (~37%) and used as a packed- bed IMER to catalyze the racemic resolution of (S)-ketoprofen from its constituent enantiomers . The optically pure (S

  8. Malolactic enzyme from Oenococcus oeni

    PubMed Central

    Schümann, Christina; Michlmayr, Herbert; del Hierro, Andrés M.; Kulbe, Klaus D.; Jiranek, Vladimir; Eder, Reinhard; Nguyen, Thu-Ha

    2013-01-01

    Malolactic enzymes (MLE) are known to directly convert L-malic acid into L-lactic acid with a catalytical requirement of nicotinamide adenine dinucleotide (NAD+) and Mn2+; however, the reaction mechanism is still unclear. To study a MLE, the structural gene from Oenococcus oeni strain DSM 20255 was heterologously expressed in Escherichia coli, yielding 22.9 kU l−1 fermentation broth. After affinity chromatography and removal of apparently inactive protein by precipitation, purified recombinant MLE had a specific activity of 280 U mg−1 protein with a recovery of approximately 61%. The enzyme appears to be a homodimer with a molecular mass of 128 kDa consisting of two 64 kDa subunits. Characterization of the recombinant enzyme showed optimum activity at pH 6.0 and 45°C, and Km, Vmax and kcat values of 4.9 mM, 427 U mg−1 and 456 sec−1 for L-malic acid, 91.4 µM, 295 U mg−1 and 315 sec−1 for NAD+ and 4.6 µM, 229 U mg−1 and 244 sec−1 for Mn2+, respectively. The recombinant MLE retained 95% of its activity after 3 mo at room temperature and 7 mo at 4°C. When using pyruvic acid as substrate, the enzyme showed the conversion of pyruvic acid with detectable L-lactate dehydrogenase (L-LDH) activity and oxidation of NADH. This interesting observation might explain that MLE catalyzes a redox reaction and hence, the requirements for NAD+ and Mn2+ during the conversion of L-malic to L-lactic acid. PMID:23196745

  9. Fast-Acting Valve

    NASA Technical Reports Server (NTRS)

    Wojciechowski, Bogdan V. (Inventor); Pegg, Robert J. (Inventor)

    2003-01-01

    A fast-acting valve includes an annular valve seat that defines an annular valve orifice between the edges of the annular valve seat, an annular valve plug sized to cover the valve orifice when the valve is closed, and a valve-plug holder for moving the annular valve plug on and off the annular valve seat. The use of an annular orifice reduces the characteristic distance between the edges of the valve seat. Rather than this distance being equal to the diameter of the orifice, as it is for a conventional circular orifice, the characteristic distance equals the distance between the inner and outer radii (for a circular annulus). The reduced characteristic distance greatly reduces the gap required between the annular valve plug and the annular valve seat for the valve to be fully open, thereby greatly reducing the required stroke and corresponding speed and acceleration of the annular valve plug. The use of a valve-plug holder that is under independent control to move the annular valve plug between its open and closed positions is important for achieving controllable fast operation of the valve.

  10. Double acting bit holder

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1994-01-01

    A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.

  11. Long-acting progestogens.

    PubMed

    Affandi, Biran

    2002-04-01

    Steroids can be administered in at least five different ways: injectables; hormone-releasing intra-uterine devices (IUDs); implants; vaginal rings; and pills. Progestogens which are synthetic steroids, are used as the main bioactive substances. Different progestogens are effective for different periods of time. Progestins in daily oral pills are effective for 24 hours. The effectiveness of a progestogen can be prolonged by incorporating it in a sustained-release system that gradually releases the hormone; therefore they can be effective up to 5 years or more. Two progestogen-only injectables are widely available in the family planning programmes, (DMPA and NET-EN) and two combined injectables, Cyclofem (DMPA + EC), and Mesigyna (NET-EN + EV). The ring is placed by the woman in her vagina, where it gradually releases hormone. Implantable contraceptives are placed just under the skin on the inside of the woman's arm. Implant capsules release the progestogen at a slow, steady rate. There are three implantables available in the market: Implanon; Norplant; and Jadelle. They are effective for 1-5 years, but then must be replaced. Natural and synthetic progestogens were first added to IUDs in the early 1970s. The main problem of long-acting progestogens is the disruption of the menstrual cycle.

  12. Acting to gain information

    NASA Technical Reports Server (NTRS)

    Rosenchein, Stanley J.; Burns, J. Brian; Chapman, David; Kaelbling, Leslie P.; Kahn, Philip; Nishihara, H. Keith; Turk, Matthew

    1993-01-01

    This report is concerned with agents that act to gain information. In previous work, we developed agent models combining qualitative modeling with real-time control. That work, however, focused primarily on actions that affect physical states of the environment. The current study extends that work by explicitly considering problems of active information-gathering and by exploring specialized aspects of information-gathering in computational perception, learning, and language. In our theoretical investigations, we analyzed agents into their perceptual and action components and identified these with elements of a state-machine model of control. The mathematical properties of each was developed in isolation and interactions were then studied. We considered the complexity dimension and the uncertainty dimension and related these to intelligent-agent design issues. We also explored active information gathering in visual processing. Working within the active vision paradigm, we developed a concept of 'minimal meaningful measurements' suitable for demand-driven vision. We then developed and tested an architecture for ongoing recognition and interpretation of visual information. In the area of information gathering through learning, we explored techniques for coping with combinatorial complexity. We also explored information gathering through explicit linguistic action by considering the nature of conversational rules, coordination, and situated communication behavior.

  13. Molecular mechanism of induction of key enzymes related to lipogenesis.

    PubMed

    Noguchi, T; Iritani, N; Tanaka, T

    1992-06-01

    Key enzymes related to lipogenesis in the liver are induced by a high glucose diet or insulin and suppressed by starvation, diabetes, or glucagon. Most of these enzymes are also induced by dietary fructose, even in diabetic liver. This regulation occurs at the posttranscriptional level as well as at the transcriptional level. We studied extensively the molecular mechanism of induction of L-type pyruvate kinase (LPK). The transcription of the LPK gene in the liver was stimulated by insulin and inhibited by glucagon. This insulin action required ongoing protein synthesis and metabolism of glucose and was enhanced by glucocorticoid. On the other hand, the mechanism of induction of the LPK by dietary fructose depended on plasma insulin levels. Dietary fructose stimulated transcription of the LPK gene in normal rats, whereas it acted mainly at the posttranscriptional level in diabetic rats. These fructose effects were attributable to a common metabolite of fructose and glycerol. The induction of LPK mRNA by dietary glucose was impaired in the liver of Wistar fatty rats, a model of obese non-insulin-dependent diabetes mellitus, but fructose-induced accumulation of the mRNA was not. Studies on transgenic mice indicated that the 5'-flanking region up to -3 kb of the LPK gene contained all cis-acting elements necessary for tissue-specific expression of LPK and its stimulation by diets and insulin. Further analysis using a transient expression assay revealed the presence of three cis-acting elements necessary for expression of LPK in hepatocytes in the region up to -170 kb. However, these elements alone were not sufficient for dietary and hormonal regulation of this enzyme when analyzed in transgenic mice.

  14. The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae.

    PubMed

    Abbott, D Wade; Higgins, Melanie A; Hyrnuik, Susanne; Pluvinage, Benjamin; Lammerts van Bueren, Alicia; Boraston, Alisdair B

    2010-07-01

    The genome of Streptococcus pneumoniae strains, as typified by the TIGR4 strain, contain several genes encoding proteins putatively involved in alpha-glucan degradation, modification and synthesis. The extracellular components comprise an ATP binding cassette-transporter with its solute binding protein, MalX, and the hydrolytic enzyme SpuA. We show that of the commonly occurring exogenous alpha-glucans, S. pneumoniae TIGR4 is only able to grow on glycogen in a MalX- and SpuA-dependent manner. SpuA is able to degrade glycogen into a ladder of alpha-1,4-glucooligosaccharides while the high-affinity interaction (K(a) approximately 10(6) M(-1)) of MalX with maltooligosaccharides plays a key role in promoting the selective uptake of the glycogen degradation products that are produced by SpuA. The X-ray crystallographic analyses of apo- and complexed MalX illuminate the protein's specificity for the degradation products of glycogen and its striking ability to recognize the helical structure of the ligand. Overall, the results of this work provide new structural and functional insight into streptococcal alpha-glucan metabolism while supplying biochemical support for the hypothesis that the substrate of the S. pneumoniaealpha-glucan metabolizing machinery is glycogen, which in a human host is abundant in lung epithelial cells, a common target for invasive S. pneumoniae.

  15. Enzymes and other agents that enhance cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  16. Simulating feedback and reversibility in substrate-enzyme reactions

    NASA Astrophysics Data System (ADS)

    van Zwieten, D. A. J.; Rooda, J. E.; Armbruster, D.; Nagy, J. D.

    2011-12-01

    We extend discrete event models (DEM) of substrate-enzyme reactions to include regulatory feedback and reversible reactions. Steady state as well as transient systems are modeled and validated against ordinary differential equation (ODE) models. The approach is exemplified in a model of the first steps of glycolysis with the most common regulatory mechanisms. We find that in glycolysis, feedback and reversibility together act as a significant damper on the stochastic variations of the intermediate products as well as for the stochastic variation of the transit times. This suggests that these feedbacks have evolved to control both the overall rate of, as well as stochastic fluctuations in, glycolysis.

  17. [Euthanasia and medical act].

    PubMed

    2011-05-01

    Right to life -as the prohibition of intentionally and arbitrarily taking life, even with authorization of the concerned one- is an internationally recognized right. In many countries, debate regarding euthanasia is more centered in its convenience, social acceptability and how it is regulated, than in its substantial legitimacy. Some argue that euthanasia should be included as part of clinical practice of health professionals, grounded on individual's autonomy claims-everyone having the liberty to choose how to live and how to die. Against this, others sustain that life has a higher value than autonomy, exercising autonomy without respecting the right to life would become a serious moral and social problem. Likewise, euthanasia supporters some-times claim a 'right to live with dignity', which must be understood as a personal obligation, referred more to the ethical than to the strictly legal sphere. In countries where it is already legalized, euthanasia practice has extended to cases where it is not the patient who requests this but the family or some healthcare professional, or even the legal system-when they think that the patient is living in a condition which is not worthy to live. Generalization of euthanasia possibly will end in affecting those who need more care, such as elder, chronically ill or dying people, damaging severely personal basic rights. Nature, purpose and tradition of medicine rule out the practice of euthanasia, which ought not be considered a medical act or legitimately compulsory for physicians. Today's medicine counts with effective treatments for pain and suffering, such as palliative care, including sedative therapy, which best preserves persons dignity and keeps safe the ethos of the medical profession.

  18. Extracellular enzyme kinetics scale with resource availability

    EPA Science Inventory

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  19. ENZYME DEGRADATION OF CHIRAL ORGANIC PHOSPHORUS INSECTICIDES

    EPA Science Inventory

    Chiral organic phosphorus pesticides (OPs) are expected to be biologically degraded enantioselectively by endogenous enzymes. Various chiral Ops were treated with the enzyme phosphotriesterase (PTE) obtained from partially purified extracts of Escherichia coli strain DH-5- carryi...

  20. Activation of thiamin diphosphate in enzymes.

    PubMed

    Hübner, G; Tittmann, K; Killenberg-Jabs, M; Schäffner, J; Spinka, M; Neef, H; Kern, D; Kern, G; Schneider, G; Wikner, C; Ghisla, S

    1998-06-29

    Activation of the coenzyme ThDP was studied by measuring the kinetics of deprotonation at the C2 carbon of thiamin diphosphate in the enzymes pyruvate decarboxylase, transketolase, pyruvate dehydrogenase complex, pyruvate oxidase, in site-specific mutant enzymes and in enzyme complexes containing coenzyme analogues by proton/deuterium exchange detected by 1H-NMR spectroscopy. The respective deprotonation rate constant is above the catalytic constant in all enzymes investigated. The fast deprotonation requires the presence of an activator in pyruvate decarboxylase from yeast, showing the allosteric regulation of this enzyme to be accomplished by an increase in the C2-H dissociation rate of the enzyme-bound thiamin diphosphate. The data of the thiamin diphosphate analogues and of the mutant enzymes show the N1' atom and the 4'-NH2 group to be essential for the activation of the coenzyme and a conserved glutamate involved in the proton abstraction mechanism of the enzyme-bound thiamin diphosphate.

  1. An isozyme of earthworm serine proteases acts on hydrolysis of triacylglycerol.

    PubMed

    Nakajima, Nobuyoshi; Sugimoto, Manabu; Tsuboi, Sadao; Tsuji, Hideaki; Ishihara, Kohji

    2005-10-01

    An enzyme catalyzing the hydrolysis of triacylglycerol was purified from an earthworm. The N-terminal amino acid sequence and the catalytic function of the purified enzyme were identical to those of Isozyme C, an isozyme of the earthworm-serine proteases. No other lipase proteins were found in the earthworm cells. The isozyme might act on the hydrolysis of triacylglycerol as well as the protein decomposition.

  2. Biomedical Applications of Enzymes From Marine Actinobacteria.

    PubMed

    Kamala, K; Sivaperumal, P

    2017-01-01

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described.

  3. Chemistry and Flatulence: An Introductory Enzyme Experiment

    NASA Astrophysics Data System (ADS)

    Hardee, John R.; Montgomery, Tina M.; Jones, Wray H.

    2000-04-01

    An inexpensive introductory-level enzyme experiment was developed using raffinose family sugars extracted from green split peas as a substrate and the enzymes alpha-galactosidase and sucrase found in Beano. The reaction studied was the hydrolysis of raffinose family sugars to galactose, glucose, and fructose, and the reaction rate was determined using a retail glucometer to measure the concentration of glucose. Results are given on the effect of substrate concentration, enzyme concentration, temperature, and heavy metals on enzyme activity.

  4. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    SciTech Connect

    Maltz, Lauren

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  5. 7 CFR 1170.2 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Milk), DEPARTMENT OF AGRICULTURE DAIRY PRODUCT MANDATORY REPORTING § 1170.2 Act. Act means the Agricultural Marketing Act of 1946, 7 U.S.C. 1621 et seq., as amended by the Dairy Market Enhancement Act...

  6. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  7. Digestive Enzyme Supplementation in Gastrointestinal Diseases

    PubMed Central

    Ianiro, Gianluca; Pecere, Silvia; Giorgio, Valentina; Gasbarrini, Antonio; Cammarota, Giovanni

    2016-01-01

    Background: Digestive enzymes are able to break down proteins and carbohydrates and lipids, and their supplementation may play a role in the management of digestive disorders, from lactose intolerance to cystic fibrosis. To date, several formulations of digestive enzymes are available on the market, being different each other in terms of enzyme type, source and origin, and dosage. Methods: This review, performed through a non-systematic search of the available literature, will provide an overview of the current knowledge of digestive enzyme supplementation in gastrointestinal disorders, discussion of the use of pancreatic enzymes, lactase (β-galactosidase) and conjugated bile acids, and also exploring the future perspective of digestive enzyme supplementation. Results: Currently, the animal-derived enzymes represent an established standard of care, however the growing study of plant-based and microbe-derived enzymes offers great promise in the advancement of digestive enzyme therapy. Conclusion: New frontiers of enzyme replacement are being evaluated also in the treatment of diseases not specifically related to enzyme deficiency, whereas the combination of different enzymes might constitute an intriguing therapeutic option in the future. PMID:26806042

  8. Immobilization of Enzymes in Polymer Supports.

    ERIC Educational Resources Information Center

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  9. Evaluation of immobilized enzymes for industrial applications.

    PubMed

    Liese, Andreas; Hilterhaus, Lutz

    2013-08-07

    In contrast to the application of soluble enzymes in industry, immobilized enzymes often offer advantages in view of stability, volume specific biocatalyst loading, recyclability as well as simplified downstream processing. In this tutorial review the focus is set on the evaluation of immobilized enzymes in respect to mass transport limitations, immobilization yield and stability, to enable industrial applications.

  10. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  11. A DNA enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity

    NASA Technical Reports Server (NTRS)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approx. 10(exp -4)/ min in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 C. The Mg(2+) - dependent reaction is more difficult, with an uncatalyzed rate of approx. 10(exp -7)/ min under comparable conditions. Mg(2+) - dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+) - dependent reaction. Results: We generated a population of greater than 10(exp 13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg(2+), Mn(2+), Zn(2+) or Pb(2+). Examination of individual clones from the Mg(2+) lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction.This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01/ min. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. Conclusions: We have generated a Mg(2+) - dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approx. 10(exp 5) - fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.

  12. Single-molecule enzyme kinetics in the presence of inhibitors.

    PubMed

    Saha, Soma; Sinha, Antara; Dua, Arti

    2012-07-28

    Recent studies in single-molecule enzyme kinetics reveal that the turnover statistics of a single enzyme is governed by the waiting time distribution that decays as mono-exponential at low substrate concentration and multi-exponential at high substrate concentration. The multi-exponentiality arises due to protein conformational fluctuations, which act on the time scale longer than or comparable to the catalytic reaction step, thereby inducing temporal fluctuations in the catalytic rate resulting in dynamic disorder. In this work, we study the turnover statistics of a single enzyme in the presence of inhibitors to show that the multi-exponentiality in the waiting time distribution can arise even when protein conformational fluctuations do not influence the catalytic rate. From the Michaelis-Menten mechanism of inhibited enzymes, we derive exact expressions for the waiting time distribution for competitive, uncompetitive, and mixed inhibitions to quantitatively show that the presence of inhibitors can induce dynamic disorder in all three modes of inhibitions resulting in temporal fluctuations in the reaction rate. In the presence of inhibitors, dynamic disorder arises due to transitions between active and inhibited states of enzymes, which occur on time scale longer than or comparable to the catalytic step. In this limit, the randomness parameter (dimensionless variance) is greater than unity indicating the presence of dynamic disorder in all three modes of inhibitions. In the opposite limit, when the time scale of the catalytic step is longer than the time scale of transitions between active and inhibited enzymatic states, the randomness parameter is unity, implying no dynamic disorder in the reaction pathway.

  13. 76 FR 59073 - Privacy Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ...: Consistent with the Privacy Act (PA), the Central Intelligence Agency (CIA) has undertaken and completed a... clearly reflect the current CIA organizational structure and policies and practices, and to eliminate... Act (PA), the CIA has undertaken and completed a review of its public PA regulations. As a result...

  14. Implementing the Amended FOI Act.

    ERIC Educational Resources Information Center

    McClain, Wallis

    The Freedom of Information Act amendments, which became effective in February 1975, have so far yielded mixed results. This report provides an account of how different federal agencies are implementing this amended statute. Among the topics discussed are modifications of the original 1966 Freedom of Information Act, which were made in the attempt…

  15. Online Challenge versus Offline ACT

    ERIC Educational Resources Information Center

    Peckham, Irvin

    2010-01-01

    This article compares essays written in response to the ACT Essay prompt and a locally developed prompt used for placement. The two writing situations differ by time and genre: the ACT Essay is timed and argumentative; the locally developed is untimed and explanatory. The article analyzes the differences in student performance and predictive…

  16. Education Leaders Applaud ATTAIN Act

    ERIC Educational Resources Information Center

    Curriculum Review, 2007

    2007-01-01

    This article talks about Achievement Through Technology and Innovation (ATTAIN) Act, a bill introduced by Senators Bingaman (D-NM), Burr (R-NC), and Murray (D-WA) and applauded by a coalition of education and industry groups. The proposed ATTAIN Act is similar to its companion in the House (HR 2449), and builds upon the Enhancing Education Through…

  17. Clean Air Act 1990 Amendments

    SciTech Connect

    Stensvaag, J.M.

    1991-01-01

    This book is an analysis of the 1990 Amendments to the Clean Air Act that includes compliance requirements, the new operating permit system, the enhanced enforcement provisions and criminal penalties, potential for citizen enforcement, and the increased reporting requirements. Also analyzed are the new defenses such as permit compliance and protection of employees acting within the direction of employers.

  18. Biomass Program Recovery Act Factsheet

    SciTech Connect

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  19. Nurse Reinvestment Act. Public Law.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC.

    This document contains the text of the Nurse Reinvestment Act, which amends the Public Health Service Act to address the increasing shortage of registered nurses by instituting a series of policies to improve nurse recruitment and nurse retention. Title I details two initiatives to boost recruitment of nurses. The first initiative includes the…

  20. Go it alone: four-electron oxidations by mononuclear non-heme iron enzymes.

    PubMed

    Peck, Spencer C; van der Donk, Wilfred A

    2017-04-01

    This review discusses the current mechanistic understanding of a group of mononuclear non-heme iron-dependent enzymes that catalyze four-electron oxidation of their organic substrates without the use of any cofactors or cosubstrates. One set of enzymes acts on α-ketoacid-containing substrates, coupling decarboxylation to oxygen activation. This group includes 4-hydroxyphenylpyruvate dioxygenase, 4-hydroxymandelate synthase, and CloR involved in clorobiocin biosynthesis. A second set of enzymes acts on substrates containing a thiol group that coordinates to the iron. This group is comprised of isopenicillin N synthase, thiol dioxygenases, and enzymes involved in the biosynthesis of ergothioneine and ovothiol. The final group of enzymes includes HEPD and MPnS that both carry out the oxidative cleavage of the carbon-carbon bond of 2-hydroxyethylphosphonate but generate different products. Commonalities amongst many of these enzymes are discussed and include the initial substrate oxidation by a ferric-superoxo-intermediate and a second oxidation by a ferryl species.

  1. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.

  2. 76 FR 14439 - No FEAR Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... TRANSPARENCY BOARD No FEAR Act Notice AGENCY: Recovery Accountability and Transparency Board. ACTION: Notice... and Retaliation Act (No FEAR Act or Act), as implemented by Office of Personnel Management (OPM... No FEAR Act. See Public Law 107-174, codified at 5 U.S.C. 2301 note. One purpose of the Act is...

  3. Direct-acting fibrinolytic enzymes in shark cartilage extract: potential therapeutic role in vascular disorders.

    PubMed

    Ratel, David; Glazier, Geneviève; Provençal, Mathieu; Boivin, Dominique; Beaulieu, Edith; Gingras, Denis; Béliveau, Richard

    2005-01-01

    Fibrinogen and fibrin are molecules with overlapping roles in blood clotting, fibrinolysis, wound healing, inflammation, matrix and cellular interactions and neoplasia. There is currently much interest in the possible use of fibrinolytic agents in human therapeutics. In this study, we report the presence of fibrinolytic activities in shark cartilage extract (SCE). In vitro, SCE at 100 microg/ml completely degraded fibrin gel in an aprotinin-insensitive manner, suggesting a non-plasmin molecular nature. SCE was able to cleave all chains of fibrinogen and fibrin and the cleavage was completely inhibited by 1,10-phenanthroline, suggesting an essential role for metalloprotease(s) in this process. Using fibrinogen zymography, we show that SCE contains two plasmin-independent fibrinolytic activities and that these activities are correlated with the presence of 58 and 62 kDa proteases in the extract. SCE-fibrinolytic activities are inhibited by dithiothreitol, suggesting that disulfide bonds are necessary for the protease structure. Finally, using thromboelastography, SCE markedly induced retraction of human platelet-rich plasma (PRP) clot, this process being completely abolished by 1,10-phenanthroline. These data suggest the presence of novel non-plasmin fibrinolytic activities within SCE. This extract may thus represent a potential source of new therapeutic molecules to prevent and treat vaso-occlusive and thromboembolic disorders.

  4. Rennin Enzyme of Endothia parasitica

    PubMed Central

    Sardinas, Joseph L.

    1968-01-01

    A microbiological screening program was instituted to search for an animal rennet substitute. Among 381 bacteria and 540 fungi tested, only one organism, Endothia parasitica, yielded a suitable enzyme substitute. The fungal rennin enzyme was crystallized and some of its properties were studied. It was found to be water-soluble, nondialyzable, precipitable with (NH4)2SO4 and organic solvents (e.g., acetone and isopropanol), and destroyed by heating for 5 min at 60 C. It was determined to be most stable in water at pH 4.5 and to have an isoelectric point of pH 5.5. On acid hydrolysis, it yielded: alanine, ammonia, arginine, aspartic acid, cysteic acid, cystine, glutamic acid, glycine, histidine, isoleucine, leucine, phenylalanine, proline, serine, threonine, tyrosine, and valine. No tryptophan was detected after alkaline hydrolysis. Its molecular weight was estimated to be in the range of 34,000 to 39,000. The milk-clotting activities of the fungal and animal rennins proved to be essentially identical in milk containing various concentrations of CaCl2. Both rennins manifested comparable clotting activities in milk at pH 6.0 to 7.0. Images Fig. 1 PMID:4868859

  5. Smart mud and sensitive enzymes

    SciTech Connect

    Knott, D.

    1993-04-19

    Environmental legislation is increasingly preventing use of oil base mud. Most recently, Marathon Oil U.K. Ltd. won a U.K. production license that specified oil base mud cannot be used on the license blocks. The goal is to protect sea-birds. Unfortunately, water base mud, the green' alternative, does not have a performance to match oil base mud. But an Aberdeen chemist thinks he has found the answer with Smart Mud, an emulsion drilling mud that becomes water soluble as soon as it hits the sea. Smart Mud passed the laboratory test stage and is ready for field trials this year. Another researcher is using enzymes and organisms to detect gases that are hard to monitor and cause problems for the oil and gas industry: phenol vapors, methane, and sulfur and nitrous oxides. The methane sensor, for example, uses methanotrophic organisms. They metabolize methane, producing chemicals that can be detected by electrochemical sensors, which relay signals to instruments. Enzymes perform a similar task for phenol and oxide detection. The main problem is to keep the biosensors alive and detect their by-products, while maintaining contact with the toxic gases. To do this, the team invented a polymer matrix in which the biosensors can live.

  6. Application of Enzymes in Food Analysis

    NASA Astrophysics Data System (ADS)

    Powers, Joseph R.

    Enzymes are protein catalysts that are capable of very great specificity and reactivity under physiological conditions. Enzymatic analysis is the measurement of compoundswith the aid of added enzymes or themeasurement of endogenous enzyme activity to give an indication of the state of a biological system including foods. The fact that enzyme catalysis can take place under relatively mild conditions allows for measurement of relatively unstable compounds not amenable to some other techniques. In addition, the specificity of enzyme reactions can allow for measurement of components of complex mixtures without the time and expense of complicated chromatographic separation techniques.

  7. Purification of the enzyme NADPH: protochlorophyllide oxidoreductase.

    PubMed

    Beer, N S; Griffiths, W T

    1981-04-01

    A procedure for the purification of the enzyme NADPH:protochlorophyllide oxidoreductase is described. This involves fractionation of sonicated oat etioplast membranes by discontinuous-sucrose-density-gradient centrifugation, which gives membranes in which the enzyme is present at a high specific activity. The enzyme is solubilized from the membranes with Triton X-100, followed by gel filtration of the extract; enzyme activity is eluted in fractions corresponding to a mol.wt of approx. 35000. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the enzyme-containing fractions from gel filtration shows two peptides, of mol.wts. approx. 35000 and 37000.

  8. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    PubMed

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities.

  9. DNA-Based Enzyme Reactors and Systems

    PubMed Central

    Linko, Veikko; Nummelin, Sami; Aarnos, Laura; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.

    2016-01-01

    During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications. PMID:28335267

  10. Cell-free translation of biofuel enzymes.

    PubMed

    Takasuka, Taichi E; Walker, Johnnie A; Bergeman, Lai F; Vander Meulen, Kirk A; Makino, Shin-ichi; Elsen, Nathaniel L; Fox, Brian G

    2014-01-01

    In nature, bacteria and fungi are able to utilize recalcitrant plant materials by secreting a diverse set of enzymes. While genomic sequencing efforts offer exhaustive lists of genes annotated as potential polysaccharide-degrading enzymes, biochemical and functional characterizations of the encoded proteins are still needed to realize the full potential of this natural genomic diversity. This chapter outlines an application of wheat germ cell-free translation to the study of biofuel enzymes using genes from Clostridium thermocellum, a model cellulolytic organism. Since wheat germ extract lacks enzymatic activities that can hydrolyze insoluble polysaccharide substrates and is likewise devoid of enzymes that consume the soluble sugar products, the cell-free translation reactions provide a clean background for production and study of the reactions of biofuel enzymes. Examples of assays performed with individual enzymes or with small sets of enzymes obtained directly from cell-free translation are provided.

  11. Virulence-Associated Enzymes of Cryptococcus neoformans

    PubMed Central

    Almeida, Fausto; Wolf, Julie M.

    2015-01-01

    Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review focuses on recent developments in the virulence-associated enzymes from Cryptococcus neoformans. The enzymatic suite of C. neoformans has evolved for environmental survival, but several of these enzymes play a dual role in colonizing the mammalian host. We also discuss new therapeutic and diagnostic strategies that could be based on the underlying enzymology. PMID:26453651

  12. Extracellular functions of glycolytic enzymes of parasites: unpredicted use of ancient proteins.

    PubMed

    Gómez-Arreaza, Amaranta; Acosta, Hector; Quiñones, Wilfredo; Concepción, Juan Luis; Michels, Paul A M; Avilán, Luisana

    2014-02-01

    In addition of their usual intracellular localization where they are involved in catalyzing reactions of carbohydrate and energy metabolism by glycolysis, multiple studies have shown that glycolytic enzymes of many organisms, but notably pathogens, can also be present extracellularly. In the case of parasitic protists and helminths, they can be found either secreted or attached to the surface of the parasites. At these extracellular localizations, these enzymes have been shown to perform additional, very different so-called "moonlighting" functions, such as acting as ligands for a variety of components of the host. Due to this recognition, different extracellular glycolytic enzymes participate in various important parasite-host interactions such as adherence and invasion of parasites, modulation of the host's immune and haemostatic systems, promotion of angiogenesis, and acquisition of specific nutrients by the parasites. Accordingly, extracellular glycolytic enzymes are important for the invasion of the parasites and their establishment in the host, and in determining their virulence.

  13. ACTS and OLYMPUS propagation experiments

    NASA Technical Reports Server (NTRS)

    Bostian, Charles W.; Baker, Kenneth R.

    1988-01-01

    The OLYMPUS and ACTS satellites both provide opportunities for 10 to 30 GHz propagation measurements. The spacecraft are sufficiently alike that OLYMPUS can be used to test some prototype ACTS equipment and experiments. Data are particularly needed on short term signal behavior and in support of uplink power control and adaptive forward error correction (FEC) techniques. The Virginia Tech Satellite Communications Group has proposed a set of OLYMPUS experiments including attenuation and fade rate measurements, data communications, uplink power control, rain scatter interference, and small-scale site diversity operation. A digital signal processing receiver for the OLYMPUS and ACTS beacon signals is being developed.

  14. Assessment & Commitment Tracking System (ACTS)

    SciTech Connect

    Bryant, Robert A.; Childs, Teresa A.; Miller, Michael A.; Sellars, Kevin J.

    2004-12-20

    The ACTS computer code provides a centralized tool for planning and scheduling assessments, tracking and managing actions associated with assessments or that result from an event or condition, and "mining" data for reporting and analyzing information for improving performance. The ACTS application is designed to work with the MS SQL database management system. All database interfaces are written in SQL. The following software is used to develop and support the ACTS application: Cold Fusion HTML JavaScript Quest TOAD Microsoft Visual Source Safe (VSS) HTML Mailer for sending email Microsoft SQL Microsoft Internet Information Server

  15. Ethanologenic Enzymes of Zymomonas mobilis

    SciTech Connect

    Ingram, Lonnie O'Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  16. Encapsulation of Enzymes and Peptides

    NASA Astrophysics Data System (ADS)

    Meesters, Gabrie M. H.

    A large part of formulated peptides and proteins, e.g., enzymes used as food ingredients, are formulated in a liquid form. Often, they are dissolved in water to which glycerol or sorbitol is added to reduce the water activity of the liquid, thus reducing the change of microbial growth. Still, there are reasons to formulate them in a solid form. Often, these reasons are stability, since a dry formulation is often much better than liquid formulations, and less transportation cost, since less mass is transported if one gets rid of the liquid; however, most of the times, the reason is that the product is mixed with a solid powder. Here, a liquid addition would lead to lump formation.

  17. Enzyme analysis of Schistosoma haematobium*

    PubMed Central

    Wright, C. A.; Ross, G. C.

    1983-01-01

    Results are reported of enzyme analyses, by isoelectric focusing in polyacrylamide gels, of adult Schistosoma haematobium worms derived from 22 isolates originating from 13 countries. Polymorphisms have been identified in the glucose-6-phosphate dehydrogenase (G6PD) and phosphoglucomutase (PGM) systems. Certain forms appear to be restricted in their geographical distribution and their occurrence outside their usual areas suggests human population movements resulting in mixing of parasite strains. The possible implications of minor variations in some PGM patterns and the apparent absence of heteropolymer fractions in presumed G6PD heterozygotes are discussed. The use of the technique to detect natural multiple miracidial infections in snails is reported and discussed. ImagesFig. 1 PMID:6222843

  18. High-Throughput Enzyme Kinetics Using Microarrays

    SciTech Connect

    Guoxin Lu; Edward S. Yeung

    2007-11-01

    We report a microanalytical method to study enzyme kinetics. The technique involves immobilizing horseradish peroxidase on a poly-L-lysine (PLL)- coated glass slide in a microarray format, followed by applying substrate solution onto the enzyme microarray. Enzyme molecules are immobilized on the PLL-coated glass slide through electrostatic interactions, and no further modification of the enzyme or glass slide is needed. In situ detection of the products generated on the enzyme spots is made possible by monitoring the light intensity of each spot using a scientific-grade charged-coupled device (CCD). Reactions of substrate solutions of various types and concentrations can be carried out sequentially on one enzyme microarray. To account for the loss of enzyme from washing in between runs, a standard substrate solution is used for calibration. Substantially reduced amounts of substrate solution are consumed for each reaction on each enzyme spot. The Michaelis constant K{sub m} obtained by using this method is comparable to the result for homogeneous solutions. Absorbance detection allows universal monitoring, and no chemical modification of the substrate is needed. High-throughput studies of native enzyme kinetics for multiple enzymes are therefore possible in a simple, rapid, and low-cost manner.

  19. Enzymes, detergents and skin: facts and fantasies.

    PubMed

    Basketter, D A; English, J S C; Wakelin, S H; White, I R

    2008-06-01

    In their raw state, enzymes of bacterial/fungal origin cause allergic reactions in the lung. Proteolytic enzymes also cause irritation to skin, eyes and the respiratory tract. For 40 years, encapsulated enzymes have been used worldwide in detergent products, especially laundry formulations, and have increasing importance due to biodegradability and functionality at low temperatures, offering environmental benefits. Uniquely to the U.K., for years it has been suggested that the inclusion of enzymes in such products leads to adverse skin reactions, including erythema, pruritus and exacerbation of eczema. In this review, we look at the facts, asking whether there is evidence that the hazards identified for enzymes translate into any risk for consumer health. By considering the actual exposures in consumer use and exaggerated product usage, it is concluded that the irritating and allergenic hazards of enzyme raw materials do not translate into a risk of skin reactions, either irritant or allergic. Investigations of numerous individuals with skin complaints attributed to laundry products demonstrate convincingly that enzymes were not responsible. Indeed, enzyme-containing laundry products have an extensive history of safe use. Thus, the supposed adverse effects of enzymes on skin seem to be a consequence of a mythology. The important practical lesson is that when primary or secondary care practitioners are presented with a skin complaint, it should not be dismissed as a result of using an enzyme-containing laundry product as the diagnosis will certainly lie elsewhere. Education for healthcare professionals could usefully be enhanced to take this on board.

  20. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  1. Summary of the Privacy Act

    EPA Pesticide Factsheets

    The purpose of the Privacy Act is to balance the government's need to maintain information about individuals with the rights of individuals to be protected against unwarranted invasions of their privacy.

  2. Prelinguistic Vocalizations Distinguish Pointing Acts

    ERIC Educational Resources Information Center

    Grunloh, Thomas; Liszkowski, Ulf

    2015-01-01

    The current study investigated whether point-accompanying characteristics, like vocalizations and hand shape, differentiate infants' underlying motives of prelinguistic pointing. We elicited imperative (requestive) and declarative (expressive and informative) pointing acts in experimentally controlled situations, and analyzed accompanying…

  3. Criminal Acts Against Civil Aviation

    DTIC Science & Technology

    1991-01-01

    28 Soviet Union ...34 Feature Articles Civil Aviation in the Soviet Union ................................................................. 39 Attacks on Airline...relief transport aircraft or hijackings; none were related to the Gulf war. Likewise, in Asia, there were few criminal acts against civil aviation

  4. Clean Water Act Analytical Methods

    EPA Pesticide Factsheets

    EPA publishes laboratory analytical methods (test procedures) that are used by industries and municipalities to analyze the chemical, physical and biological components of wastewater and other environmental samples required by the Clean Water Act.

  5. Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1

    PubMed Central

    Fukuda, Wakao; Sari Ismail, Yulia; Fukui, Toshiaki; Atomi, Haruyuki; Imanaka, Tadayuki

    2005-01-01

    Although the interconversion between C4 and C3 compounds has an important role in overall metabolism, limited information is available on the properties and regulation of enzymes acting on these metabolites in hyperthermophilic archaea. Malic enzyme is one of the enzymes involved in this interconversion, catalyzing the oxidative decarboxylation of malate to pyruvate as well as the reductive carboxylation coupled with NAD(P)H. This study focused on the enzymatic properties and expression profile of an uncharacterized homolog of malic enzyme identified in the genome of a heterotrophic, hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (Tk-Mae). The amino acid sequence of Tk-Mae was 52–58% identical to those of malic enzymes from bacteria, whereas the similarities to the eukaryotic homologs were lower. Several catalytically important regions and residues were conserved in the primary structure of Tk-Mae. The recombinant protein, which formed a homodimer, exhibited thermostable malic enzyme activity with strict divalent cation dependency. The enzyme preferred NADP+ rather than NAD+, but did not catalyze the decarboxylation of oxaloacetate, unlike the usual NADP-dependent malic enzymes. The apparent Michaelis constant (Km) of Tk-Mae for malate (16.9 mM) was much larger than those of known enzymes, leading to no strong preference for the reaction direction. Transcription of the gene encoding Tk-Mae and intracellular malic enzyme activity in T. kodakaraensis were constitutively weak, regardless of the growth substrates. Possible roles of Tk-Mae are discussed based on these results and the metabolic pathways of T. kodakaraensis deduced from the genome sequence. PMID:15876562

  6. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria

    PubMed Central

    van Hijum, Sacha A. F. T.; Kralj, Slavko; Ozimek, Lukasz K.; Dijkhuizen, Lubbert; van Geel-Schutten, Ineke G. H.

    2006-01-01

    Lactic acid bacteria (LAB) employ sucrase-type enzymes to convert sucrose into homopolysaccharides consisting of either glucosyl units (glucans) or fructosyl units (fructans). The enzymes involved are labeled glucansucrases (GS) and fructansucrases (FS), respectively. The available molecular, biochemical, and structural information on sucrase genes and enzymes from various LAB and their fructan and α-glucan products is reviewed. The GS and FS enzymes are both glycoside hydrolase enzymes that act on the same substrate (sucrose) and catalyze (retaining) transglycosylation reactions that result in polysaccharide formation, but they possess completely different protein structures. GS enzymes (family GH70) are large multidomain proteins that occur exclusively in LAB. Their catalytic domain displays clear secondary-structure similarity with α-amylase enzymes (family GH13), with a predicted permuted (β/α)8 barrel structure for which detailed structural and mechanistic information is available. Emphasis now is on identification of residues and regions important for GS enzyme activity and product specificity (synthesis of α-glucans differing in glycosidic linkage type, degree and type of branching, glucan molecular mass, and solubility). FS enzymes (family GH68) occur in both gram-negative and gram-positive bacteria and synthesize β-fructan polymers with either β-(2→6) (inulin) or β-(2→1) (levan) glycosidic bonds. Recently, the first high-resolution three-dimensional structures have become available for FS (levansucrase) proteins, revealing a rare five-bladed β-propeller structure with a deep, negatively charged central pocket. Although these structures have provided detailed mechanistic insights, the structural features in FS enzymes dictating the synthesis of either β-(2→6) or β-(2→1) linkages, degree and type of branching, and fructan molecular mass remain to be identified. PMID:16524921

  7. On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme.

    PubMed

    Kuhn, Claus-D; Wilusz, Jeremy E; Zheng, Yuxuan; Beal, Peter A; Joshua-Tor, Leemor

    2015-02-12

    Transcription in eukaryotes produces a number of long noncoding RNAs (lncRNAs). Two of these, MALAT1 and Menβ, generate a tRNA-like small RNA in addition to the mature lncRNA. The stability of these tRNA-like small RNAs and bona fide tRNAs is monitored by the CCA-adding enzyme. Whereas CCA is added to stable tRNAs and tRNA-like transcripts, a second CCA repeat is added to certain unstable transcripts to initiate their degradation. Here, we characterize how these two scenarios are distinguished. Following the first CCA addition cycle, nucleotide binding to the active site triggers a clockwise screw motion, producing torque on the RNA. This ejects stable RNAs, whereas unstable RNAs are refolded while bound to the enzyme and subjected to a second CCA catalytic cycle. Intriguingly, with the CCA-adding enzyme acting as a molecular vise, the RNAs proofread themselves through differential responses to its interrogation between stable and unstable substrates.

  8. A new conceptual framework for enzyme catalysis. Hydrogen tunnelling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes.

    PubMed

    Sutcliffe, Michael J; Scrutton, Nigel S

    2002-07-01

    Recent years have witnessed high levels of activity in identifying enzyme systems that catalyse H-transfer by quantum tunneling. Rather than being restricted to a small number of specific enzymes as perceived initially, it has now become an accepted mechanism for H-transfer in a growing number of enzymes. Furthermore, H-tunneling is driven by the thermally induced dynamics of the enzyme. In some of those enzymes that break stable C-H bonds the reaction proceeds purely by quantum tunneling, without the need to partially ascend the barrier. Enzymes studied that fall into this category include the flavoprotein and quinoprotein amine dehydrogenases, which have proved to be excellent model systems. These enzymes have enabled us to study the relationship between barrier shape and reaction kinetics. This has involved studies with "slow" and "fast" substrates and enzymes impaired by mutagenesis. A number of key questions now remain, including the nature of the coupling between protein dynamics and quantum tunneling. The wide-ranging implications of quantum tunneling introduce a paradigm shift in the conceptual framework for enzyme catalysis, inhibition and design.

  9. Quantum dot based enzyme activity sensors present deviations from Michaelis-Menten kinetic model

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián. A.; Brown, Carl W.; Malanoski, Anthony P.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.

    2016-03-01

    Nanosensors employing quantum dots (QDs) and enzyme substrates with fluorescent moieties offer tremendous promise for disease surveillance/diagnostics and as high-throughput co-factor assays. Advantages of QDs over other nanoscaffolds include their small size and inherent photochemical properties such as size tunable fluorescence, ease in attaching functional moieties, and resistance to photobleaching. These properties make QDs excellent Förster Resonance Energy Transfer (FRET) donors; well-suited for rapid, optical measurement applications. We report enzyme sensors designed with a single FRET donor, the QD donor acting as a scaffold to multiple substrates or acceptors. The QD-sensor follows the concrete activity of the enzyme, as compared to the most common methodologies that quantify the enzyme amount or its mRNA precursor. As the sensor reports on the enzyme activity in real-time we can actively follow the kinetics of the enzyme. Though classic Michaelis-Menten (MM) parameters can be obtained to describe the activity. In the course of these experiments deviations, both decreasing and increasing the kinetics, from the common MM model were observed upon close examinations. From these observations additional experiments were undertaken to understand the varying mechanisms. Different enzymes can present different deviations depending on the chosen target, e.g. trypsin appears to present a positive hopping mechanism while collagenase demonstrates a QD caused reversible inhibition.

  10. Uroporphyrinogen decarboxylation as a benchmark for the catalytic proficiency of enzymes

    PubMed Central

    Lewis, Charles A.; Wolfenden, Richard

    2008-01-01

    The magnitude of an enzyme's affinity for the altered substrate in the transition state exceeds its affinity for the substrate in the ground state by a factor matching the rate enhancement that the enzyme produces. Particularly remarkable are those enzymes that act as simple protein catalysts, without the assistance of metals or other cofactors. To determine the extent to which one such enzyme, human uroporphyrinogen decarboxylase, enhances the rate of substrate decarboxylation, we examined the rate of spontaneous decarboxylation of pyrrolyl-3-acetate. Extrapolation of first-order rate constants measured at elevated temperatures indicates that this reaction proceeds with a half-life of 2.3 × 109 years at 25 °C in the absence of enzyme. This enzyme shows no significant homology with orotidine 5′-monophosphate decarboxylase (ODCase), another cofactorless enzyme that catalyzes a very slow reaction. It is proposed that, in both cases, a protonated basic residue (Arg-37 in the case of human UroD; Lys-93 in the case of yeast ODCase) furnishes a counterion that helps the scissile carboxylate group of the substrate leave water and enter a relatively nonpolar environment, stabilizes the incipient carbanion generated by the departure of CO2, and supplies the proton that takes its place. PMID:18988736

  11. Simplified assays of lipolysis enzymes for drug discovery and specificity assessment of known inhibitors.

    PubMed

    Iglesias, Jose; Lamontagne, Julien; Erb, Heidi; Gezzar, Sari; Zhao, Shangang; Joly, Erik; Truong, Vouy Linh; Skorey, Kathryn; Crane, Sheldon; Madiraju, S R Murthy; Prentki, Marc

    2016-01-01

    Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, α/β-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors.

  12. Enzymes in cleaning products: an overview of toxicological properties and risk assessment/management.

    PubMed

    Basketter, David; Berg, Ninna; Broekhuizen, Cees; Fieldsend, Mark; Kirkwood, Sheila; Kluin, Cornelia; Mathieu, Sophie; Rodriguez, Carlos

    2012-10-01

    Enzymes used in cleaning products have an excellent safety profile, with little ability to cause adverse responses in humans. For acute toxicity, genotoxicity, sub-acute and repeated dose toxicity, enzymes are unremarkable. Reproductive toxicity and carcinogenicity are also not endpoints of concern. Exceptions are the ability of some proteases to produce irritating effects at high concentrations and more importantly, the intrinsic potential of these bacterial/fungal proteins to act as respiratory sensitizers. It is a reasonable assumption that the majority of enzyme proteins possess this hazard. However, methods for characterising the respiratory sensitisation hazard of enzymes are lacking and the information required for risk assessment and risk management, although sufficient, remains limited. Previously, most data was generated in animal models and in in vitro immunoassays that assess immunological cross-reactivity. Nevertheless, by the establishment of strict limits on airborne exposure (based on a defined minimal effect limit of 60ng active enzyme protein/m(3)) and air and health monitoring, occupational safety can be assured. Similarly, by ensuring that airborne exposure is kept similarly low, coupled with knowledge of the fate of these enzymes on skin and fabrics, it has proven possible to establish a long history of safe consumer use of enzyme containing products.

  13. Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes.

    PubMed

    Ufarté, Lisa; Bozonnet, Sophie; Laville, Elisabeth; Cecchini, Davide A; Pizzut-Serin, Sandra; Jacquiod, Samuel; Demanèche, Sandrine; Simonet, Pascal; Franqueville, Laure; Veronese, Gabrielle Potocki

    2016-01-01

    Activity-based metagenomics is one of the most efficient approaches to boost the discovery of novel biocatalysts from the huge reservoir of uncultivated bacteria. In this chapter, we describe a highly generic procedure of metagenomic library construction and high-throughput screening for carbohydrate-active enzymes. Applicable to any bacterial ecosystem, it enables the swift identification of functional enzymes that are highly efficient, alone or acting in synergy, to break down polysaccharides and oligosaccharides.

  14. Characterisation of three starch degrading enzymes: thermostable β-amylase, maltotetraogenic and maltogenic α-amylases.

    PubMed

    Derde, L J; Gomand, S V; Courtin, C M; Delcour, J A

    2012-11-15

    Maltogenic α-amylase from Bacillus stearothermophilus (BStA) is widely used as bread crumb anti-firming enzyme. A maltotetraose-forming α-amylase from Pseudomonas saccharophila (PSA) was recently proposed as alternative, hence the need to compare both exo-acting enzymes with some endo-action component. A purely exo-acting thermostable β-amylase from Clostridium thermosulfurogenes (CTB) was included for reference purposes. Under the experimental conditions used, temperature optima of the enzymes are rather similar (60-65 °C), but temperature stability decreased in the order BStA, PSA and CTB. The action of the enzymes on different substrates and their impact on the rheological behaviour of maize starch suspensions demonstrated that, while CTB acts exclusively through an exo-action mechanism, BStA displayed limited endo-action which became more pronounced at higher temperatures. PSA has more substantial endo-action than BStA, which is rather temperature independent. This is important for their impact in processes such as breadmaking, where temperature is gradually increased.

  15. Industrial Fungal Enzymes: An Occupational Allergen Perspective

    PubMed Central

    Green, Brett J.; Beezhold, Donald H.

    2011-01-01

    Occupational exposure to high-molecular-weight allergens is a risk factor for the development and pathogenesis of IgE-mediated respiratory disease. In some occupational environments, workers are at an increased risk of exposure to fungal enzymes used in industrial production. Fungal enzymes have been associated with adverse health effects in the work place, in particular in baking occupations. Exposure-response relationships have been demonstrated, and atopic workers directly handling fungal enzymes are at an increased risk for IgE-mediated disease and occupational asthma. The utilization of new and emerging fungal enzymes in industrial production will present new occupational exposures. The production of antibody-based immunoassays is necessary for the assessment of occupational exposure and the development of threshold limit values. Allergen avoidance strategies including personal protective equipment, engineering controls, protein encapsulation, and reduction of airborne enzyme concentrations are required to mitigate occupational exposure to fungal enzymes. PMID:21747869

  16. Enzymes in Fish and Seafood Processing.

    PubMed

    Fernandes, Pedro

    2016-01-01

    Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested.

  17. Enzymes in Fish and Seafood Processing

    PubMed Central

    Fernandes, Pedro

    2016-01-01

    Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested. PMID:27458583

  18. Toward mechanistic classification of enzyme functions.

    PubMed

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function.

  19. Production of Enzymes from Marine Actinobacteria.

    PubMed

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies.

  20. Enzyme immobilization on reactive polymer films.

    PubMed

    Cordeiro, Ana L; Pompe, Tilo; Salchert, Katrin; Werner, Carsten

    2011-01-01

    Immobilized enzymes are currently used in many bioanalytical and biomedical applications. This protocol describes the use of thin films of maleic anhydride copolymers to covalently attach enzymes directly to solid supports at defined concentrations. The concentration and activity of the surface-bound enzymes can be tuned over a wide range by adjusting the concentration of enzyme used for immobilization and the physicochemical properties of the polymer platform, as demonstrated here for the proteolytic enzyme Subtilisin A. The versatile method presented allows for the immobilization of biomolecules containing primary amino groups to a broad variety of solid carriers, ranging from silicon oxide surfaces to standard polystyrene well plates and metallic surfaces. The approach can be used to investigate the effects of immobilized enzymes on cell adhesion, and on the catalysis of specific reactions.

  1. The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes.

    PubMed

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    2015-11-20

    The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing α-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-α-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave α1→4 linkages, and synthesize linear α1→6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of α1→6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-α-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with α-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (β/α)8 barrel. The GtfC 4,6-α-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between α-amylase and glucansucrase enzymes.

  2. The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes

    PubMed Central

    Gangoiti, Joana; Pijning, Tjaard

    2015-01-01

    The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing α-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-α-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave α1→4 linkages, and synthesize linear α1→6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of α1→6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-α-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with α-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (β/α)8 barrel. The GtfC 4,6-α-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between α-amylase and glucansucrase enzymes. PMID:26590275

  3. Enzyme-Catalyzed Mutation in Breast Cancer

    DTIC Science & Technology

    2014-08-01

    instance, polycyclic aromatic hydrocarbons are converted by cellular cytochrome P450 enzymes into activated epox- ides, which can then react to form...Award Number: W81XWH-13-1-0247 TITLE: Enzyme -Catalyzed Mutation in Breast Cancer PRINCIPAL INVESTIGATOR: Reuben Harris CONTRACTING...CONTRACT NUMBER Enzyme -catalyzed Mutation in Breast Cancer 5b. GRANT NUMBER W81XWH-13-1-0247 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Reuben S. Harris

  4. Advanced development of immobilized enzyme reactors

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.; Carter, Layne

    1991-01-01

    Fixed-bed reactors have been used at NASA-Marshall to purify wastewater generated by an end-use equipment facility, on the basis of a combination of multifiltration unibeds and enzyme unibeds. The enzyme beds were found to effectively remove such targeted organics as urea, alcohols, and aldehydes, down to levels lying below detection limits. The enzyme beds were also found to remove organic contaminants not specifically targeted.

  5. Inhibiting the Function of an Enzyme

    SciTech Connect

    2015-06-17

    In order to stop bacteria from reproducing and causing a disease like tuberculosis, researchers must first block its enzymes' ability to bind with certain molecules. A research team from Brandeis University worked with the Advanced Protein Characterization Facility at Argonne National Laboratory to define 13 different bacterial structures and uncover the mechanism by which their enzymes form and break bonds with molecules. This animation depicts how an enzyme may be inhibited using this knowledge.

  6. Monobody-mediated alteration of enzyme specificity.

    PubMed

    Tanaka, Shun-Ichi; Takahashi, Tetsuya; Koide, Akiko; Ishihara, Satoru; Koikeda, Satoshi; Koide, Shohei

    2015-10-01

    Current methods for engineering enzymes modify enzymes themselves and require a detailed mechanistic understanding or a high-throughput assay. Here, we describe a new approach where catalytic properties are modulated with synthetic binding proteins, termed monobodies, directed to an unmodified enzyme. Using the example of a β-galactosidase from Bacillus circulans, we efficiently identified monobodies that restricted its substrates for its transgalactosylation reaction and selectively enhanced the production of small oligosaccharide prebiotics.

  7. 7 CFR 33.1 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.1 Act. Act and Export Apple Act are synonymous and mean “An act to promote the foreign trade of the United States in apples to protect the reputation of American-grown apples in foreign markets, to prevent deception or misrepresentation as to the quality...

  8. 7 CFR 33.1 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.1 Act. Act and Export Apple Act are synonymous and mean “An act to promote the foreign trade of the United States in apples to protect the reputation of American-grown apples in foreign markets, to prevent deception or misrepresentation as to the quality...

  9. 7 CFR 33.1 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.1 Act. Act and Export Apple Act are synonymous and mean “An act to promote the foreign trade of the United States in apples to protect the reputation of American-grown apples in foreign markets, to prevent deception or misrepresentation as to the quality...

  10. 7 CFR 33.1 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.1 Act. Act and Export Apple Act are synonymous and mean “An act to promote the foreign trade of the United States in apples to protect the reputation of American-grown apples in foreign markets, to prevent deception or misrepresentation as to the quality...

  11. 7 CFR 33.1 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.1 Act. Act and Export Apple Act are synonymous and mean “An act to promote the foreign trade of the United States in apples to protect the reputation of American-grown apples in foreign markets, to prevent deception or misrepresentation as to the quality...

  12. 78 FR 17403 - No FEAR Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... AGENCY No FEAR Act Notice AGENCY: Federal Housing Finance Agency. ACTION: Notice. SUMMARY: The Federal... and Federal Employee Antidiscrimination and Retaliation Act of 2002, which is now known as the No FEAR Act (No FEAR Act), (Pub. L. 107-174). One purpose of the No FEAR Act is to require that...

  13. 7 CFR 1170.2 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Orders; Milk), DEPARTMENT OF AGRICULTURE DAIRY PRODUCT MANDATORY REPORTING § 1170.2 Act. Act means the Agricultural Marketing Act of 1946, 7 U.S.C. 1621 et seq., as amended by the Dairy Market Enhancement Act of 2000, Public Law 106-532, 114 Stat. 2541, and the Farm Security and Rural Investment Act of...

  14. 7 CFR 1170.2 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; MILK), DEPARTMENT OF AGRICULTURE DAIRY PRODUCT MANDATORY REPORTING § 1170.2 Act. Act means the Agricultural Marketing Act of 1946, 7 U.S.C. 1621 et seq., as amended by the Dairy Market Enhancement Act of 2000, Pub. L. 106-532, 114 Stat. 2541; the Farm Security and Rural Investment Act of 2002, Pub. L....

  15. 7 CFR 1170.2 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; MILK), DEPARTMENT OF AGRICULTURE DAIRY PRODUCT MANDATORY REPORTING § 1170.2 Act. Act means the Agricultural Marketing Act of 1946, 7 U.S.C. 1621 et seq., as amended by the Dairy Market Enhancement Act of 2000, Pub. L. 106-532, 114 Stat. 2541; the Farm Security and Rural Investment Act of 2002, Pub. L....

  16. 7 CFR 1170.2 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Orders; Milk), DEPARTMENT OF AGRICULTURE DAIRY PRODUCT MANDATORY REPORTING § 1170.2 Act. Act means the Agricultural Marketing Act of 1946, 7 U.S.C. 1621 et seq., as amended by the Dairy Market Enhancement Act of 2000, Public Law 106-532, 114 Stat. 2541, and the Farm Security and Rural Investment Act of...

  17. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    PubMed

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  18. Designing Artificial Enzymes by Intuition and Computation

    PubMed Central

    Nanda, Vikas; Koder, Ronald L.

    2012-01-01

    The rational design of artificial enzymes either by applying physio-chemical intuition of protein structure and function or with the aid of computation methods is a promising area of research with the potential to tremendously impact medicine, industrial chemistry and energy production. Designed proteins also provide a powerful platform for dissecting enzyme mechanisms of natural systems. Artificial enzymes have come a long way, from simple α-helical peptide catalysts to proteins that facilitate multi-step chemical reactions designed by state-of-the-art computational methods. Looking forward, we examine strategies employed by natural enzymes which could be used to improve the speed and selectivity of artificial catalysts. PMID:21124375

  19. Potential of enzymes for wood debarking

    SciTech Connect

    Raettoe, M.; Kantelinen, A.; Bailey, M.; Viikari, L. )

    1993-02-01

    The effect of enzymatic pretreatment on the energy consumption of wood debarking was studied on the laboratory scale using enzymes to degrade the cambial layer. The energy consumed in debarking spruce was decreased as much as 80% after pretreatment with pectinolytic enzymes. In addition to polygalacturonase activity, pectin lyase and xylanase activities were also present in the most efficient enzyme preparation. Due to the complex composition of the cambium and inner phloem, these and other enzymes that hydrolyze the various inner bark components are probably needed for efficient debarking.

  20. Modified kinetics of enzymes interacting with nanoparticles

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián. A.; Breger, Joyce C.; Malanoski, Anthony; Claussen, Jonathan C.; Walper, Scott A.; Ancona, Mario G.; Brown, Carl W.; Stewart, Michael H.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.

    2015-08-01

    Enzymes are important players in multiple applications, be it bioremediation, biosynthesis, or as reporters. The business of catalysis and inhibition of enzymes is a multibillion dollar industry and understanding the kinetics of commercial enzymes can have a large impact on how these systems are optimized. Recent advances in nanotechnology have opened up the field of nanoparticle (NP) and enzyme conjugates and two principal architectures for NP conjugate systems have been developed. In the first example the enzyme is bound to the NP in a persistent manner, here we find that key factors such as directed enzyme conjugation allow for enhanced kinetics. Through controlled comparative experiments we begin to tease out specific mechanisms that may account for the enhancement. The second system is based on dynamic interactions of the enzymes with the NP. The enzyme substrate is bound to the NP and the enzyme is free in solution. Here again we find that there are many variables , such as substrate positioning and NP selection, that modify the kinetics.

  1. Immobilization of enzyme on chiral polyelectrolyte surface.

    PubMed

    Ding, Chao; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2017-02-01

    Chiral D- and L-N-acryloyl aspartic acid (NAsp) polyelectrolyte (PE) surfaces with similar chemical compositions and physical properties but opposite chirality are designed for enzyme immobilization. Enzymes immobilized onto the chiral PE surfaces present high chiral preference, namely L-NAsp PE surface can keep most of the catalytic activity of the immobilized enzymes, however, for enzymes immobilized on D-NAsp PE surface a large decrease in catalytic activity occurred which was 11 times lower compared with L-NAsp PE surface. This phenomenon of chiral effect on enzymes immobilization can be explained by attenuated total reflectance (ATR) and circular dichroism (CD) results. The results exhibited that L-NAsp PE surface could preserve most of the secondary structures of immobilized enzymes while on D-NAsp PE surface with a large conformation alteration. These chiral surface induced differences after enzyme immobilization can be further used for logic operation. These results imply a novel strategy for the design of new enzymes immobilization materials based on the chiral effect and expand the applications of enzymes in biochips, chemical transformations and chiral biodevices.

  2. Directed evolution of industrial enzymes: an update.

    PubMed

    Cherry, Joel R; Fidantsef, Ana L

    2003-08-01

    The use of enzymes in industrial processes can often eliminate the use of high temperatures, organic solvents and extremes of pH, while at the same time offering increased reaction specificity, product purity and reduced environmental impact. The growing use of industrial enzymes is dependent on constant innovation to improve performance and reduce cost. This innovation is driven by a rapidly increasing database of natural enzyme diversity, recombinant DNA and fermentation technologies that allow this diversity to be produced at low cost, and protein modification tools that enable enzymes to be tuned to fit into the industrial marketplace.

  3. STUDIES ON THE ENZYMES OF PNEUMOCOCCUS

    PubMed Central

    Avery, O. T.; Cullen, Glenn E.

    1920-01-01

    1. Pneumococci contain an intracellular enzyme or enzymes which (a) hydrolyze to some extent intact protein and (b) hydrolyze with striking avidity peptones. The optimum reaction for hydrolysis is pH 7 to 7.8, which also represents the optimum for the growth of pneumococcus. For convenience the terms "protease" and "peptonase" have been used, but no assumption is made as to whether the two actions, proteolysis and peptolysis, are due to two separate enzymes or are two activities of the same enzyme. 2. Solutions of intracellular substance of comparable enzymic activity may be prepared by dissolving the bacteria in bile, in sodium choleate, or by mechanical and autolytic disintegration of the cell. 3. The rapidity with which peptone is hydrolyzed is proportional to the concentration of the enzyme. 4. Heating the enzyme for 10 minutes at 100°C. destroys its activity. 5. Increasing the acidity to pH 5, the acid death-point of pneumococcus, suspends activity but does not destroy the enzyme, for activity is restored by readjustment to pH 7.8. 6. Attenuation of virulence to 1/1,000,000 of the original virulence had no measurable quantitative effect on the enzyme activity. PMID:19868460

  4. CO2-fixing enzymes and phosphoenolpyruvate metabolism in the fish parasite Hysterothylacium aduncum (Ascaridoidea, Anisakidae).

    PubMed

    Malagón, David; Benítez, Rocio; Valero, Adela; Adroher, Francisco Javier

    2009-07-23

    CO2 stimulates the development of many of the intestinal helminths that are able to fix CO2 by means of phosphoenolpyruvate carboxykinase (PEPCK), such as Hysterothylacium aduncum. We determined the activity of CO2-fixing enzymes such as PEPCK and phosphoenolpyruvate carboxylase (PEPC), although no significant activity was detected for pyruvate carboxylase or carboxylating-malic enzyme. The former act on phosphoenolpyruvate (PEP) to yield oxalacetate. In the helminths studied, PEP has a vital role in glucidic metabolism. Consequently, we determined the activity of other enzymes involved in the crossroad of PEP, such as pyruvate kinase (PK), lactate dehydrogenase and malate dehydrogenase. All enzymes detected showed significant variations in activity during the in vitro development of the parasite from the third larval stage to mature adult. Fixing of CO2 by PEPCK decreased during development (from 228 to 115 nmol min(-1) mg(-1) protein), while that by PEPC increased (from 19 to 46 nmol min(-1) mg(-1) protein). This enzyme, which is rare in animals, could play a part in detecting levels of free phosphate, releasing it from PEP when required for processes such as glycogenolysis, glycolysis and adenosine 5'-triphosphate (ATP) synthesis. PK, which showed increasing activity during development up to immature adult (from 56 to 82 nmol min(-1) mg(-1) protein), could act in combination with PEPC to obtain energy in the cytosol (in the form of ATP) and in the mitochondria (possible destination of the pyruvate formed), compensating for the decrease in activity of PEPCK.

  5. Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia.

    PubMed

    Schnecker, Jörg; Wild, Birgit; Takriti, Mounir; Eloy Alves, Ricardo J; Gentsch, Norman; Gittel, Antje; Hofer, Angelika; Klaus, Karoline; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Richter, Andreas

    2015-04-01

    , suggests that microbial community composition shapes enzyme patterns and might act as a modifier for the usual dependency of decomposition rates on SOM content or C/N ratios.

  6. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  7. Inactivation of the RTEM beta-lactamase from Escherichia coli. Interaction of penam sulfones with enzyme.

    PubMed

    Fisher, J; Charnas, R L; Bradley, S M; Knowles, J R

    1981-05-12

    The characteristics of the reaction of a number of mechanism-based inactivators of the RTEM beta-lactamase have suggested that a common mechanistic pathway may be followed by many of these compounds. These ideas have been tested by the synthesis and evaluation of some penam sulfones as beta-lactamase inactivators. The sulfones of poor beta-lactamase substrates are, as predicted, potent inactivators of the enzyme. A unique serin residue (Ser-70) is labeled by quinacillin sulfone, and it is likely that this serine acts nucleophilically in the normal hydrolytic reaction of the beta-lactamase to form an acyl-enzyme intermediate.

  8. 7 CFR 65.100 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL..., AND GINSENG General Provisions Definitions § 65.100 Act. Act means the Agricultural Marketing Act...

  9. 7 CFR 1150.101 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Milk), DEPARTMENT OF AGRICULTURE DAIRY PROMOTION PROGRAM Dairy Promotion and Research Order Definitions § 1150.101 Act. Act means Title I, Subtitle B, of the Dairy and Tobacco Adjustment Act of...

  10. Enzyme kinetics approach to assess biocatalyst inhibition and deactivation caused by [bmim][Cl] ionic liquid during cellulose hydrolysis.

    PubMed

    Nemestóthy, Nándor; Megyeri, Gábor; Bakonyi, Péter; Lakatos, Patrik; Koók, László; Polakovic, Milan; Gubicza, László; Bélafi-Bakó, Katalin

    2017-04-01

    The aim of this work was to study the inhibition and deactivation of commercial enzyme cocktail (Cellic® Htec2) in the presence of [bmim][Cl] ionic liquid employing model cellulosic substrate, carboxymethyl cellulose (CMC). It turned out from the experiments - relying on enzyme kinetics approach - that [bmim][Cl] could act as a competitive inhibitor. Furthermore, depending on the process conditions i.e. contact of enzyme solution with high concentration [bmim][Cl], severe biocatalyst inactivation should be also taken into account as a potential risk during the enzymatic cellulose hydrolysis even in as short process times as few minutes.

  11. Self-assembled enzyme capsules in ionic liquid [BMIM][BF4] as templating nanoreactors for hollow silica nanocontainers.

    PubMed

    Soni, Sarvesh K; Ramanathan, Rajesh; Coloe, Peter J; Bansal, Vipul; Bhargava, Suresh K

    2010-10-19

    Most of the self-assembly studies have hitherto explored the aqueous media as fluid phase for self-assembly of amphiphilic biomacromolecules, wherein architectural modification of biomolecules is generally a prerequisite for self-assembly of modified biomolecules. We demonstrate for the first time that ionic liquids can act as nonaqueous designer solvents to self-assemble amphiphilic biomacromolecules without requiring their prior modification. To this end, we show that enzyme (phytase) molecules self-assembled in the presence of an appropriate ionic liquid, resulting in the formation of enzyme capsules. Phytase capsules synthesized using this approach were further used as templating nanoreactors for the synthesis of enzyme-containing hollow silica nanocontainers. In situ immobilized phytase enzyme in the silica nanocontainers, when subjected to enzyme-reusability application, establishes them as excellent reusable biocatalysts.

  12. Self-acting shaft seals

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.

    1978-01-01

    Self-acting seals are described in detail. The mathematical models for obtaining a seal force balance and the equilibrium operating film thickness are outlined. Particular attention is given to primary ring response (seal vibration) to rotating seat face runout. This response analysis reveals three different vibration models with secondary seal friction being an important parameter. Leakage flow inlet pressure drop and affects of axisymmetric sealing face deformations are discussed. Experimental data on self-acting face seals operating under simulated gas turbine conditions are given. Also a spiral groove seal design operated to 244 m/sec (800 ft/sec) is described.

  13. Long-acting reversible contraception.

    PubMed

    Peck, Susan A

    2013-10-01

    Although short-acting reversible hormonal contraceptives, such as oral contraceptives and the contraceptive patch and vaginal ring, remain the most commonly used contraceptive methods in the United States, they are also associated with the highest failure rates. Long-acting reversible contraception (LARC) methods, such as intrauterine devices and contraceptive implants, offer high continuation rates and very low failure rates, and are safe for use in most women. The provision of LARC methods to adolescent, young adult and nulliparous women is a relatively new concept that offers an innovative option for these populations.

  14. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  15. Enzyme Engineering for In Situ Immobilization.

    PubMed

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  16. Biocatalytic material comprising multilayer enzyme coated fiber

    DOEpatents

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  17. Cobalamin- and Corrinoid-Dependent Enzymes

    PubMed Central

    Matthews, Rowena G.

    2011-01-01

    This chapter will review the literature on cobalamin- and corrinoid-containing enzymes. These enzymes fall into two broad classes, those using methylcobalamin or related methylcorrinoids as prosthetic groups and catalyzing methyltransfer reactions, and those using adenosylcobalamin as the prosthetic group and catalyzing the generation of substrate radicals that in turn undergo rearrangements and/or eliminations. PMID:20877792

  18. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  19. Orphan enzymes in ether lipid metabolism.

    PubMed

    Watschinger, Katrin; Werner, Ernst R

    2013-01-01

    Ether lipids are an emerging class of lipids which have so far not been investigated and understood in every detail. They have important roles as membrane components of e.g. lens, brain and testis, and as mediators such as platelet-activating factor. The metabolic enzymes for biosynthesis and degradation have been investigated to some extent. As most involved enzymes are integral membrane proteins they are tricky to handle in biochemical protocols. The sequence of some ether lipid metabolising enzymes has only recently been reported and other sequences still remain obscure. Defined enzymes without assigned sequence are known as orphan enzymes. One of these enzymes with uncharacterised sequence is plasmanylethanolamine desaturase, a key enzyme for the biosynthesis of one of the most abundant phospholipids in our body, the plasmalogens. This review aims to briefly summarise known functions of ether lipids, give an overview on their metabolism including the most prominent members, platelet-activating factor and the plasmalogens. A special focus is set on the description of orphan enzymes in ether lipid metabolism and on the successful strategies how four previous orphans have recently been assigned a sequence. Only one of these four was characterised by classical protein purification and sequencing, whereas the other three required alternative strategies such as bioinformatic candidate gene selection and recombinant expression or development of an inhibitor and multidimensional metabolic profiling.

  20. A DNA enzyme that cleaves RNA

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.; Hoyce, G. F. (Principal Investigator)

    1994-01-01

    BACKGROUND: Several types of RNA enzymes (ribozymes) have been identified in biological systems and generated in the laboratory. Considering the variety of known RNA enzymes and the similarity of DNA and RNA, it is reasonable to imagine that DNA might be able to function as an enzyme as well. No such DNA enzyme has been found in nature, however. We set out to identify a metal-dependent DNA enzyme using in vitro selection methodology. RESULTS: Beginning with a population of 10(14) DNAs containing 50 random nucleotides, we carried out five successive rounds of selective amplification, enriching for individuals that best promote the Pb(2+)-dependent cleavage of a target ribonucleoside 3'-O-P bond embedded within an otherwise all-DNA sequence. By the fifth round, the population as a whole carried out this reaction at a rate of 0.2 min-1. Based on the sequence of 20 individuals isolated from this population, we designed a simplified version of the catalytic domain that operates in an intermolecular context with a turnover rate of 1 min-1. This rate is about 10(5)-fold increased compared to the uncatalyzed reaction. CONCLUSIONS: Using in vitro selection techniques, we obtained a DNA enzyme that catalyzes the Pb(2+)-dependent cleavage of an RNA phosphoester in a reaction that proceeds with rapid turnover. The catalytic rate compares favorably to that of known RNA enzymes. We expect that other examples of DNA enzymes will soon be forthcoming.

  1. Enzyme Catalysis and the Gibbs Energy

    ERIC Educational Resources Information Center

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  2. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    ERIC Educational Resources Information Center

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  3. KINEXP: Computer Simulation in Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Gelpi, Josep Lluis; Domenech, Carlos

    1988-01-01

    Describes a program which allows students to identify and characterize several kinetic inhibitory mechanisms. Uses the generic model of reversible inhibition of a monosubstrate enzyme but can be easily modified to run other models such as bisubstrate enzymes. Uses MS-DOS BASIC. (MVL)

  4. Restriction Enzyme Mapping: A Simple Student Practical.

    ERIC Educational Resources Information Center

    Higgins, Stephen J.; And Others

    1990-01-01

    An experiment that uses the recombinant plasmid pX1108 to illustrate restriction mapping is described. The experiment involves three restriction enzymes and employs single and double restriction enzyme digestions. A list of needed materials, procedures, safety precautions, results, and discussion are included. (KR)

  5. Post-production modification of industrial enzymes.

    PubMed

    Minten, Inge J; Abello, Nicolas; Schooneveld-Bergmans, Margot E F; van den Berg, Marco A

    2014-01-01

    Industry has an increasing interest in the use of enzymes as environmentally friendly, highly efficient, and specific bio-catalysts. Enzymes have primarily evolved to function in aqueous environments at ambient temperature and pressure. These conditions however do not always correspond with industrial processes or applications, and only a small portion of all known enzymes are therefore suitable for industrial use. Protein engineering can sometimes be applied to convey more desirable properties to enzymes, such as increased stability, but is limited to the 20 naturally occurring amino acids or homologs thereof. Using post-production modification, which has the potential to combine desirable properties from the enzyme and the conjugated compounds, enzymes can be modified with both natural and synthetic molecules. This offers access to a myriad of possibilities for tuning the properties of enzymes. At this moment, however, the effects of post-production modification cannot yet be reliably predicted. The increasing number of applications will improve this so that the potential of this technology can be fully exploited. This review will focus on post-production modification of enzymes and its use and opportunities in industry.

  6. Enzymes: A Workshop for Secondary School Students.

    ERIC Educational Resources Information Center

    Bering, C. Larry

    1994-01-01

    Describes the weekend science workshop on enzymes and includes several projects that involve students directly, parts of which can be incorporated into a traditional chemistry, biology, or physical science course at the secondary level. Subjects include catalysts and catalytic converters in cars, enzymes as consumer products and in industrial…

  7. Enzyme Activity Experiments Using a Simple Spectrophotometer

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  8. 7 CFR 1207.302 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.302 Act. Act means the Potato Research...

  9. 7 CFR 1207.302 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.302 Act. Act means the Potato Research...

  10. 7 CFR 1207.302 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.302 Act. Act means the Potato Research...

  11. 7 CFR 1207.302 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.302 Act. Act means the Potato Research...

  12. 7 CFR 1207.302 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.302 Act. Act means the Potato Research...

  13. 7 CFR 1221.1 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.1 Act. Act means...

  14. 7 CFR 1221.1 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.1 Act. Act means...

  15. 7 CFR 1221.1 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.1 Act. Act means...

  16. 7 CFR 1221.1 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.1 Act. Act means...

  17. 7 CFR 1221.1 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.1 Act. Act means...

  18. 7 CFR 1218.1 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.1 Act. Act means...

  19. 7 CFR 1218.1 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.1 Act. Act means...

  20. 7 CFR 1218.1 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.1 Act. Act means...

  1. 7 CFR 1218.1 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.1 Act. Act means...

  2. 7 CFR 1218.1 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.1 Act. Act means...

  3. 7 CFR 65.100 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) COUNTRY OF ORIGIN LABELING OF BEEF, PORK, LAMB, CHICKEN, GOAT MEAT, PERISHABLE AGRICULTURAL COMMODITIES, MACADAMIA NUTS, PECANS,...

  4. 7 CFR 65.100 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) COUNTRY OF ORIGIN LABELING OF BEEF, PORK, LAMB, CHICKEN, GOAT MEAT, PERISHABLE AGRICULTURAL COMMODITIES, MACADAMIA NUTS, PECANS,...

  5. 7 CFR 65.100 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) COUNTRY OF ORIGIN LABELING OF BEEF, PORK, LAMB, CHICKEN, GOAT MEAT, PERISHABLE AGRICULTURAL COMMODITIES, MACADAMIA NUTS, PECANS,...

  6. 7 CFR 65.100 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) COUNTRY OF ORIGIN LABELING OF BEEF, PORK, LAMB, CHICKEN, GOAT MEAT, PERISHABLE AGRICULTURAL COMMODITIES, MACADAMIA NUTS, PECANS,...

  7. 7 CFR 1216.1 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.1 Act. Act means...

  8. 7 CFR 1216.1 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.1 Act. Act means...

  9. 7 CFR 1216.1 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.1 Act. Act means...

  10. 7 CFR 1216.1 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.1 Act. Act means...

  11. 7 CFR 1216.1 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.1 Act. Act means...

  12. 7 CFR 1220.600 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.600 Act. Act means the...

  13. 7 CFR 1220.600 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.600 Act. Act means the...

  14. 7 CFR 1220.600 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.600 Act. Act means the...

  15. 7 CFR 1220.600 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.600 Act. Act means the...

  16. 7 CFR 1220.600 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.600 Act. Act means the...

  17. 7 CFR 1206.1 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.1 Act. Act means the...

  18. 7 CFR 1206.1 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.1 Act. Act means the...

  19. 7 CFR 1206.1 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.1 Act. Act means the...

  20. 7 CFR 1206.1 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.1 Act. Act means the...

  1. 7 CFR 1206.1 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.1 Act. Act means the...

  2. 7 CFR 1280.101 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Lamb Promotion, Research, and Information Order Definitions § 1280.101 Act. Act means...

  3. THE ALTERATION OF INTRACELLULAR ENZYMES

    PubMed Central

    Kaplan, J. Gordin

    1954-01-01

    activated by concentrations of altering agent which cause no decrease in viability at all. Hence alteration, unlike death, may not be all-or-none per cell. 6. The fact that the biological criterion being examined was the activation of a water-soluble enzyme rules out the possibility that the reason for the logarithmic increase in altering activity with chain length was increase in concentration of the altering agent in some intracellular fat phase. It is concluded that these surface-active agents cause enzyme alteration by becoming adsorbed at some intracellular interface and thus causing, directly or indirectly, the modification of catalase properties. 7. It is considered that these data support, but do not provide critical proof for, the interfacial hypothesis, which states that catalase is present at the intracellular interface in question, but is desorbed into solution as a consequence of the alteration process. PMID:13211996

  4. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  5. Potent inhibition of retinoic acid metabolism enzyme(s) by novel azolyl retinoids.

    PubMed

    Njar, V C; Nnane, I P; Brodie, A M

    2000-09-04

    Novel (+/-)-4-azolyl retinoic acid analogues 4, 5, 7 and 8 have been designed and synthesized and have been shown to be powerful inhibitors of hamster microsomal all-trans-retinoic acid 4-hydroxylase enzyme(s). (+/-)-4-(1H-Imidazol-1-yl)retinoic acid (4) is the most potent inhibitor of this enzyme reported to date.

  6. Biotechnological uses of enzymes from psychrophiles

    PubMed Central

    Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S. Mohd; Siddiqui, K. S.; Williams, T. J.

    2011-01-01

    Summary The bulk of the Earth's biosphere is cold (e.g. 90% of the ocean's waters are ≤ 5°C), sustaining a broad diversity of microbial life. The permanently cold environments vary from the deep ocean to alpine reaches and to polar regions. Commensurate with the extent and diversity of the ecosystems that harbour psychrophilic life, the functional capacity of the microorganisms that inhabitat the cold biosphere are equally diverse. As a result, indigenous psychrophilic microorganisms provide an enormous natural resource of enzymes that function effectively in the cold, and these cold‐adapted enzymes have been targeted for their biotechnological potential. In this review we describe the main properties of enzymes from psychrophiles and describe some of their known biotechnological applications and ways to potentially improve their value for biotechnology. The review also covers the use of metagenomics for enzyme screening, the development of psychrophilic gene expression systems and the use of enzymes for cleaning. PMID:21733127

  7. Enzyme replacement therapy: conception, chaos and culmination.

    PubMed Central

    Brady, Roscoe O

    2003-01-01

    Soon after the enzymatic defects in Gaucher disease and in Niemann-Pick disease were discovered, enzyme replacement or enzyme supplementation was proposed as specific treatment for patients with these and related metabolic storage disorders. While relatively straightforward in concept, successful implementation of this approach required many years of intensive effort to bring it to fruition. Procedures were eventually developed to produce sufficient quantities of the requisite enzymes for clinical trials and to target therapeutic enzymes to lipid-storing cells. These achievements led to the development of effective enzyme replacement therapy for patients with Gaucher disease and for Fabry disease. These demonstrations provide strong incentive for the application of this strategy for the treatment of many human disorders of metabolism. PMID:12803925

  8. Practical steady-state enzyme kinetics.

    PubMed

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described.

  9. Directed Evolution of Enzymes for Industrial Biocatalysis.

    PubMed

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-02

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment.

  10. Enzyme stabilization: state of the art.

    PubMed

    Gianfreda, L; Scarfi, M R

    1991-02-02

    'Enzyme stabilization' is one of the most important fields in basic and applied enzymology. In basic enzymology, it is of particular relevance to understand enzyme stabilization principles first elucidating how and why the enzymes lose their biological activity and then deriving structure-stability relationships existing in enzymatic molecules. In applied enzymology, the most significant goal is to achieve useful compounds by biocatalysis. Enzymes are good catalysts in terms of high catalytic and specific activity with ability to function under mild conditions. However, they are not always ideal catalysts for practical applications because they are generally unstable and they inactivate rapidly through several mechanisms. In order to enhance enzyme stability, many strategies have been pursued in recent years. The present article is an attempt to provide detailed information about these strategies.

  11. Characterization of five fatty aldehyde dehydrogenase enzymes from Marinobacter and Acinetobacter: structural insights into the aldehyde binding pocket.

    PubMed

    Bertram, Jonathan H; Mulliner, Kalene M; Shi, Ke; Plunkett, Mary H; Nixon, Peter; Serratore, Nicholas A; Douglas, Christopher J; Aihara, Hideki; Barney, Brett M

    2017-04-07

    Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage, and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid, and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes from Marinobacter aquaeolei VT8 and an additional enzyme from Acinetobacter baylyi were heterologously expressed in Escherichia coli and shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572 and WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal, and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificity of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction quality crystals of one particular FAldDH (Maqu_3316) from M. aquaeolei VT8. Crystals were independently treated with both the NAD(+) cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how the catalysis by the enzyme is accomplished is also provided.Importance: This study provides a comparison of multiple enzymes with the ability to oxidize fatty aldehydes to fatty acids, and provides a likely picture of how the fatty aldehyde and NAD(+) is bound to the enzyme to facilitate catalysis. Based on the information obtained from this structural analysis and the comparisons of specificity for the five enzymes that were characterized, correlations may be drawn to the potential roles played by specific residues within the structure.

  12. 13 CFR 107.115 - 1940 Act and 1980 Act Companies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false 1940 Act and 1980 Act Companies... INVESTMENT COMPANIES Qualifying for an SBIC License Organizing An Sbic § 107.115 1940 Act and 1980 Act Companies. A 1940 Act or 1980 Act Company is eligible to apply for an SBIC license, and an existing...

  13. 13 CFR 107.115 - 1940 Act and 1980 Act Companies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false 1940 Act and 1980 Act Companies... INVESTMENT COMPANIES Qualifying for an SBIC License Organizing An Sbic § 107.115 1940 Act and 1980 Act Companies. A 1940 Act or 1980 Act Company is eligible to apply for an SBIC license, and an existing...

  14. 13 CFR 107.115 - 1940 Act and 1980 Act Companies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false 1940 Act and 1980 Act Companies... INVESTMENT COMPANIES Qualifying for an SBIC License Organizing An Sbic § 107.115 1940 Act and 1980 Act Companies. A 1940 Act or 1980 Act Company is eligible to apply for an SBIC license, and an existing...

  15. Legislative Branch Appropriations Act, 2010

    THOMAS, 111th Congress

    Rep. Wasserman Schultz, Debbie [D-FL-20

    2009-06-17

    10/01/2009 Became Public Law No: 111-68. (PDF) (All Actions) Notes: Division A is the Legislative Branch Appropriations Act, 2010. Division B is the Continuing Appropriations Resolution, 2010. Tracker: This bill has the status Became LawHere are the steps for Status of Legislation:

  16. FDA Food Safety Modernization Act

    THOMAS, 111th Congress

    Rep. Sutton, Betty [D-OH-13

    2009-06-08

    01/04/2011 Became Public Law No: 111-353. (PDF) (All Actions) Notes: H.R.2751 was introduced and first passed the House as the Consumer Assistance to Recycle and Save Act. Tracker: This bill has the status Became LawHere are the steps for Status of Legislation:

  17. The Federal Employees' Compensation Act.

    ERIC Educational Resources Information Center

    Nordlund, Willis J.

    1991-01-01

    The 1916 Federal Employees' Compensation Act is still the focal point around which the federal workers compensation program works today. The program has gone through many changes on its way to becoming a modern means of compensating workers for job-related injury, disease, and death. (Author)

  18. The Indian Child Welfare Act.

    ERIC Educational Resources Information Center

    Steward, Katy Jo

    The Indian Child Welfare Act of 1978 (I.C.W.A.) is federal legislation which preempts state law whenever Indian children may be removed from their families. The I.C.W.A. permits Indian tribal courts to decide the future of Indian children, establishes minimum federal standards for removal of Indian children from their families, requires that…

  19. The Indian Mineral Development Act.

    ERIC Educational Resources Information Center

    Houle, Antoinette

    1986-01-01

    Discusses the objectives of the Indian Mineral Development Act of 1982 (IMDA) and the possible effects it may have on Indian mineral development. Explains how the provisions of IMDA work to provide Indian tribes with greater flexibility for the development and sale of their mineral resources. (ML)

  20. Legislative Branch Appropriations Act, 2010

    THOMAS, 111th Congress

    Rep. Wasserman Schultz, Debbie [D-FL-20

    2009-06-17

    10/01/2009 Became Public Law No: 111-68. (TXT | PDF) (All Actions) Notes: Division A is the Legislative Branch Appropriations Act, 2010. Division B is the Continuing Appropriations Resolution, 2010. Tracker: This bill has the status Became LawHere are the steps for Status of Legislation:

  1. The altruistic act of asking.

    PubMed

    Kirklin, D

    2003-06-01

    There are a number of obstacles to increasing the supply of cadaveric organs for transplantation. These include reluctance on the part of relatives to agree to the so called harvesting of organs from their deceased relative, and the unwillingness of some doctors to approach grieving families and ask consent for this harvesting to take place. In this paper I will focus on the altruistic act of asking that the latter entails, and will argue that failure to acknowledge the personal cost of this act to physicians is having an adverse impact on the supply of organs. I will draw analogies with the almost equally neglected altruistic act of undertaking anatomy dissection and all of the related breaking of societal taboos. I will examine the language used in discussions about increasing organ supply and conclude that the terms cadaveric and harvest are unhelpful in gaining public confidence. A process and vocabulary that openly acknowledges and validates the altruistic acts demanded of all the human beings involved--donors, recipients, their respective relatives, and the health professionals who mediate between them--is needed if the supply of organs is to be increased.

  2. ACT and General Cognitive Ability

    ERIC Educational Resources Information Center

    Koenig, Katherine A.; Frey, Meredith C.; Detterman, Douglas K.

    2008-01-01

    Research on the SAT has shown a substantial correlation with measures of "g" such as the Armed Services Vocational Aptitude Battery (ASVAB). Another widely administered test for college admission is the American College Test (ACT). Using the National Longitudinal Survey of Youth 1979, measures of "g" were derived from the ASVAB and correlated with…

  3. 78 FR 46256 - Privacy Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION 11 CFR Part 1 Privacy Act CFR Correction In Title 11 of the Code of Federal Regulations, revised as of January 1, 2012, on page 5, in Sec. 1.2, the words ``95 and 96 of the Internal Revenue Code...

  4. Community Environmental Response Facilitation Act

    EPA Pesticide Factsheets

    To amend the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 to require the Federal Government, before termination of Federal activities on any real property owned by the Government, to identify real property where no hazardous substance was stored, released, or disposed of.

  5. FDA Food Safety Modernization Act

    THOMAS, 111th Congress

    Rep. Sutton, Betty [D-OH-13

    2009-06-08

    01/04/2011 Became Public Law No: 111-353. (TXT | PDF) (All Actions) Notes: H.R.2751 was introduced and first passed the House as the Consumer Assistance to Recycle and Save Act. Tracker: This bill has the status Became LawHere are the steps for Status of Legislation:

  6. Clery Act: Road to Compliance

    ERIC Educational Resources Information Center

    McNeal, Laura R.

    2007-01-01

    The purpose of this study was to explore what factors served as impediments to institutional efforts to comply with Clery Act guidelines through the perceptions of campus law administrators. Statistical analyses were performed on data collected from an online survey, which was distributed to members of the International Association of Campus Law…

  7. Selection of commercial hydrolytic enzymes with potential antifouling activity in marine environments.

    PubMed

    Zanaroli, Giulio; Negroni, Andrea; Calisti, Cecilia; Ruzzi, Maurizio; Fava, Fabio

    2011-12-10

    In this work, the marine antifouling potential of some commercially available hydrolytic enzymes acting on the main constituents of extracellular polymeric substances (EPS) involved in bacterial biofilm formation was determined. The selected protease (i.e., alpha-chymotrypsin from bovine pancreas), carbohydrase (i.e., alpha-amylase from porcine pancreas) and lipase (from porcine pancreas) exhibited remarkable hydrolytic activities towards target macromolecules typically composing EPS under a wide range of pHs (6.5-9.0 for alpha-chymotrysin and alpha-amylase; 7.0-8.5 for the lipase) and temperatures (from 10 °C to 30 °C), as well as relevant half-lives (from about 2 weeks to about 2 months), in a marine synthetic water. The activity displayed by each enzyme was poorly affected by the co-presence of the other enzymes, thus indicating their suitability to be employed in combination. None of the enzymes was able to inhibit the formation of biofilm by an actual site marine microbial community when applied singly. However, a mixture of the same enzymes reduced biofilm formation by about 90% without affecting planktonic growth of the same microbial community. This indicates that multiple hydrolytic activities are required to efficiently prevent biofilm formation by complex microbial communities, and that the mixture of enzymes selected in this study has the potential to be employed as an environmental friendly antifouling agent in marine antifouling coatings.

  8. Molecular mechanism for the inhibition of acetylcholinesterase enzyme by organophosphorothionates.

    PubMed

    Awad, O M

    1984-01-01

    The different mechanisms, whereby EPN and malathion inhibit the action of cholinesterase on acetylcholine, are described. Partially purified brain enzyme was used for the kinetic studies. The approach of the theory of Krupka and Laidler was followed. The ratio of [S]I opt/[S]opt = 1 + Ki [I] to the first power was found with malathion but to the square root of (1 + Ki [I]) 1/2 with EPN. The intercept on the slope axis of plots of slopes of (1/V not equal to [I]) against the reciprocal of substrate concentrations showed a non-zero value in the case of EPN and a zero value in the case of malathion. Accordingly, and based on the above theory, it seems that malathion acts as a competitive inhibitor of cholinesterase while EPN seems to be a mixed type inhibitor.

  9. A conserved family of enzymes that phosphorylate inositol hexakisphosphate.

    PubMed

    Mulugu, Sashidhar; Bai, Wenli; Fridy, Peter C; Bastidas, Robert J; Otto, James C; Dollins, D Eric; Haystead, Timothy A; Ribeiro, Anthony A; York, John D

    2007-04-06

    Inositol pyrophosphates are a diverse group of high-energy signaling molecules whose cellular roles remain an active area of study. We report a previously uncharacterized class of inositol pyrophosphate synthase and find it is identical to yeast Vip1 and Asp1 proteins, regulators of actin-related protein-2/3 (ARP 2/3) complexes. Vip1 and Asp1 acted as enzymes that encode inositol hexakisphosphate (IP6) and inositol heptakisphosphate (IP7) kinase activities. Alterations in kinase activity led to defects in cell growth, morphology, and interactions with ARP complex members. The functionality of Asp1 and Vip1 may provide cells with increased signaling capacity through metabolism of IP6.

  10. Irc3 is a mitochondrial DNA branch migration enzyme

    PubMed Central

    Gaidutšik, Ilja; Sedman, Tiina; Sillamaa, Sirelin; Sedman, Juhan

    2016-01-01

    Integrity of mitochondrial DNA (mtDNA) is essential for cellular energy metabolism. In the budding yeast Saccharomyces cerevisiae, a large number of nuclear genes influence the stability of mitochondrial genome; however, most corresponding gene products act indirectly and the actual molecular mechanisms of mtDNA inheritance remain poorly characterized. Recently, we found that a Superfamily II helicase Irc3 is required for the maintenance of mitochondrial genome integrity. Here we show that Irc3 is a mitochondrial DNA branch migration enzyme. Irc3 modulates mtDNA metabolic intermediates by preferential binding and unwinding Holliday junctions and replication fork structures. Furthermore, we demonstrate that the loss of Irc3 can be complemented with mitochondrially targeted RecG of Escherichia coli. We suggest that Irc3 could support the stability of mtDNA by stimulating fork regression and branch migration or by inhibiting the formation of irregular branched molecules. PMID:27194389

  11. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    PubMed

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments.

  12. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    PubMed

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community.

  13. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    PubMed Central

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  14. Enzyme stereospecificity as a powerful tool in searching for new enzymes.

    PubMed

    Skarydová, Lucie; Skarka, Adam; Solich, Petr; Wsól, Vladimír

    2010-07-01

    Chirality is a ubiquitous feature present in all biological systems that plays a very important role in many processes. Drug metabolism is one of these and is the subject of this review. Chiral drugs can be metabolized without changes in their chiral characteristics, but also their biotransformation may give rise to a new chiral center. On the other hand, prochiral drugs are always metabolized to chiral metabolites. The ratio of formed enantiomers/diastereoisomers is the constant known as enzyme stereospecificity, and this is as important a characteristic for each enzyme-substrate pair as is the Michaelis constant. Drugs are often substrates for multiple biotransformation enzymes, and all enzymes involved may metabolize a chiral or prochiral drug with different stereospecificity so that variant enantiomer ratios are achieved. Enzyme stereospecificity of whole cell fraction is the sum of the stereospecificities of all enzymes participating in metabolism of a substrate. Differing stereospecificities in the metabolism of a drug between whole cell fraction and enzymes point to the contribution of other enzymes. Using several drugs as examples, this review shows that enzyme stereospecificity can serve as a powerful tool in searching for new biotransformation enzymes. Although it is not often used in this way, it is clear that this is possible. There are today drugs with well-known chiral metabolism, but, inasmuch as many xenobiotics are poorly characterized in terms of chiral metabolism, enzyme stereospecificity could be widely utilized in researching such substances.

  15. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    PubMed

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  16. 40 CFR 1508.2 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Act. 1508.2 Section 1508.2 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.2 Act. Act means the National Environmental Policy Act, as amended (42 U.S.C. 4321, et seq.) which is also referred to as “NEPA.”...

  17. 77 FR 52066 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... to the Board on the appropriations request for FY 2014 (Resolution 2012-XXX) 4. Consider and act on... 2012-XXX) 6. Consider and act on whether to authorize an executive session of the Board Closed Session... 2012-XXX) 9. Public comment 10. Consider and act on other business 11. Consider and act on motion...

  18. 7 CFR 948.2 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulating Handling Definitions § 948.2 Act. Act means Public Act No. 10 73d Congress, as amended and as reenacted and amended by the Agricultural Marketing Agreement Act of 1937, as amended (sections 1-19, 48 Stat. 31, as amended; 7 U.S.C. 601-674)....

  19. 7 CFR 959.2 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Handling Definitions § 959.2 Act. Act means Public Act No. 10, 73d Congress, as amended and as reenacted and amended by the Agricultural Marketing Agreement Act of 1937, as amended (sections 1-19, 48 Stat. 31, as amended; 7 U.S.C. 601-674)....

  20. Michigan Minimum Wage: Act 154, Public Act of 1964, As Amended and Act 390, Public Act of 1978. Legal Modules for Vocational Cooperative Education.

    ERIC Educational Resources Information Center

    Western Michigan Univ., Kalamazoo.

    Intended for use by cooperative education program coordinators, this module deals with the rights of cooperative education program enrollees as they are specified by Michigan minimum wage legislation. Specifically, the module deals with two Michigan laws--Act 154 of Public Act of 1964, as amended and Act 390 of Public Act of 1978. Designed to be a…

  1. 7 CFR 35.1 - Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT GRAPES AND PLUMS Definitions § 35.1 Act. Act or Export Grape and Plum Act means “An Act to promote the foreign trade of the United States in grapes and plums, to protect the reputation of American-grown grapes and plums...

  2. 7 CFR 35.1 - Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT GRAPES AND PLUMS Definitions § 35.1 Act. Act or Export Grape and Plum Act means “An Act to promote the foreign trade of the United States in grapes and plums, to protect the reputation of American-grown grapes and plums...

  3. 7 CFR 35.1 - Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT GRAPES AND PLUMS Definitions § 35.1 Act. Act or Export Grape and Plum Act means “An Act to promote the foreign trade of the United States in grapes and plums, to protect the reputation of American-grown grapes and plums...

  4. 7 CFR 35.1 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT GRAPES AND PLUMS Definitions § 35.1 Act. Act or Export Grape and Plum Act means “An Act to promote the foreign trade of the United States in grapes and plums, to protect the reputation of American-grown grapes and plums...

  5. 7 CFR 35.1 - Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT GRAPES AND PLUMS Definitions § 35.1 Act. Act or Export Grape and Plum Act means “An Act to promote the foreign trade of the United States in grapes and plums, to protect the reputation of American-grown grapes and plums...

  6. 76 FR 25665 - No Fear Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... COMMISSION No Fear Act AGENCY: American Battle Monuments Commission. ACTION: Notice. SUMMARY: The American... FEAR Act), as implemented by the Office of Personnel Management (OPM) regulations at 5 CFR part 724... Retaliation Act of 2002,'' which is now known as the No FEAR Act. See Public Law 107-174, codified at 5...

  7. Acting Out; Theoretical and Clinical Aspects.

    ERIC Educational Resources Information Center

    Abt, Lawrence Edwin, Ed.; Weissman, Stuart L.

    The beneficial and harmful effects of acting out are studied in a series of short essays by numerous authors. Included are four articles on the theoretical and dynamic considerations of acting out, along with five clinical manifestations of acting out involving suicide and criminality in adolescents and adults. Special forms of harmful acting out…

  8. 7 CFR 953.2 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Order Regulating Handling Definitions § 953.2 Act. Act means Public Act No. 10, 73d Congress, as amended and as re-enacted and amended by the Agricultural Marketing Agreement Act of 1937, as amended (7...

  9. 7 CFR 993.2 - Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Regulating Handling Definitions § 993.2 Act. Act means Public Act No. 10, 73d Congress, as amended and reenacted and amended by the Agricultural Marketing Agreement Act of 1937, as amended (7 U.S.C. 601 et seq.)....

  10. 40 CFR 791.105 - Prohibited acts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Prohibited acts. 791.105 Section 791.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) DATA REIMBURSEMENT Prohibited Acts § 791.105 Prohibited acts. Failure to provide...

  11. Structure-based repurposing of FDA-approved drugs as inhibitors of NEDD8-activating enzyme.

    PubMed

    Zhong, Hai-Jing; Liu, Li-Juan; Chan, Daniel Shiu-Hin; Wang, Hui-Min; Chan, Philip Wai Hong; Ma, Dik-Lung; Leung, Chung-Hang

    2014-07-01

    We report the discovery of an inhibitor of NEDD8-activating enzyme (NAE) by an integrated virtual screening approach. Piperacillin 1 inhibited NAE activity in cell-free and cell-based systems with high selectivity. Furthermore, piperacillin 1 was able to inhibit the degradation of the NAE downstream protein substrate p27(kip1). Our molecular modeling and kinetic studies suggested that this compound may act as a non-covalent ATP-competitive inhibitor of NAE.

  12. Forms and functions of human SDR enzymes.

    PubMed

    Oppermann, U C; Filling, C; Jörnvall, H

    2001-01-30

    Short-chain dehydrogenases/reductases (SDR) are defined by distinct, common sequence motifs but constitute a functionally heterogenous superfamily of enzymes. At present, well over 1600 members from all forms of life are annotated in databases. Using the defined sequence motifs as queries, 37 distinct human members of the SDR family can be retrieved. The functional assignments of these forms fall minimally into three main groups, enzymes involved in intermediary metabolism, enzymes participating in lipid hormone and mediator metabolism, and open reading frames (ORFs) of yet undeciphered function. This overview, prepared just before completion of the human genome project, gives the different human SDR forms and relates them to human diseases.

  13. The Mismetallation of Enzymes during Oxidative Stress*

    PubMed Central

    Imlay, James A.

    2014-01-01

    Mononuclear iron enzymes can tightly bind non-activating metals. How do cells avoid mismetallation? The model bacterium Escherichia coli may control its metal pools so that thermodynamics favor the correct metallation of each enzyme. This system is disrupted, however, by superoxide and hydrogen peroxide. These species oxidize ferrous iron and thereby displace it from many iron-dependent mononuclear enzymes. Ultimately, zinc binds in its place, confers little activity, and imposes metabolic bottlenecks. Data suggest that E. coli compensates by using thiols to extract the zinc and by importing manganese to replace the catalytic iron atom. Manganese resists oxidants and provides substantial activity. PMID:25160623

  14. Industrial applications of hyperthermophilic enzymes: a review.

    PubMed

    de Miguel Bouzas, Trinidad; Barros-Velázquez, Jorge; Villa, Tomás González

    2006-01-01

    Over the past two decades, research scientists have been involved in the investigation of thermophilic and hyperthermophilic microorganisms owing to the unique features of their enzymic systems. Such in-depth investigations are now on their way to mastering the cloning and industrial exploitation of a broad variety of genes encoding enzymes involved in starch hydrolysis, amino acid biosynthesis, protein hydrolysis, etc. In this work, we review the state of the art and future perspectives of industrial applications of enzymes from hyperthermophilic and extreme thermophilic microorganisms, special attention being paid to the biotechnological methods involved in their industrial exploitation.

  15. Multilocus enzyme analysis of Legionella dumoffii.

    PubMed Central

    Woods, T C; McKinney, R M; Plikaytis, B D; Steigerwalt, A G; Bibb, W F; Brenner, D J

    1988-01-01

    Variability among 29 clinical and environmental strains of Legionella dumoffii was investigated by multilocus enzyme analysis by use of starch gel electrophoresis. Based on results of analysis at 20 enzyme loci, the strains were separated into five closely related electrophoretic types (ETs), which were clearly distinguished from 53 strains representing 53 ETs of L. pneumophila. DNA hybridization results (hydroxyapatite method, 60 and 75 degrees C) for representative strains confirmed that all L. dumoffii ETs were a single genetic species. Although multilocus enzyme analysis indicated that L. dumoffii was genetically a quite uniform species, sufficient variability existed to warrant electromorph fingerprinting for epidemiologic studies. PMID:3384905

  16. Protein conformational disorder and enzyme catalysis.

    PubMed

    Schulenburg, Cindy; Hilvert, Donald

    2013-01-01

    Though lacking a well-defined three-dimensional structure, intrinsically unstructured proteins are ubiquitous in nature. These molecules play crucial roles in many cellular processes, especially signaling and regulation. Surprisingly, even enzyme catalysis can tolerate substantial disorder. This observation contravenes conventional wisdom but is relevant to an understanding of how protein dynamics modulates enzyme function. This chapter reviews properties and characteristics of disordered proteins, emphasizing examples of enzymes that lack defined structures, and considers implications of structural disorder for catalytic efficiency and evolution.

  17. Immobilized enzyme studies in a microscale bioreactor.

    PubMed

    Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B

    2004-01-01

    Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.

  18. Invariants reveal multiple forms of robustness in bifunctional enzyme systems.

    PubMed

    Dexter, Joseph P; Dasgupta, Tathagata; Gunawardena, Jeremy

    2015-08-01

    Experimental and theoretical studies have suggested that bifunctional enzymes catalyzing opposing modification and demodification reactions can confer steady-state concentration robustness to their substrates. However, the types of robustness and the biochemical basis for them have remained elusive. Here we report a systematic study of the most general biochemical reaction network for a bifunctional enzyme acting on a substrate with one modification site, along with eleven sub-networks with more specialized biochemical assumptions. We exploit ideas from computational algebraic geometry, introduced in previous work, to find a polynomial expression (an invariant) between the steady state concentrations of the modified and unmodified substrate for each network. We use these invariants to identify five classes of robust behavior: robust upper bounds on concentration, robust two-sided bounds on concentration ratio, hybrid robustness, absolute concentration robustness (ACR), and robust concentration ratio. This analysis demonstrates that robustness can take a variety of forms and that the type of robustness is sensitive to many biochemical details, with small changes in biochemistry leading to very different steady-state behaviors. In particular, we find that the widely-studied ACR requires highly specialized assumptions in addition to bifunctionality. An unexpected result is that the robust bounds derived from invariants are strictly tighter than those derived by ad hoc manipulation of the underlying differential equations, confirming the value of invariants as a tool to gain insight into biochemical reaction networks. Furthermore, invariants yield multiple experimentally testable predictions and illuminate new strategies for inferring enzymatic mechanisms from steady-state measurements.

  19. Catalytic mechanism of the arylsulfatase promiscuous enzyme from Pseudomonas aeruginosa.

    PubMed

    Marino, Tiziana; Russo, Nino; Toscano, Marirosa

    2013-02-04

    To elucidate the working mechanism of the "broad substrate specificity" by the Pseudomonas aeruginosa aryl sulfatase (PAS) enzyme, we present here a full quantum chemical study performed at the density functional level. This enzyme is able to catalyze the hydrolysis of the original p-nitrophenyl-sulfate (PNPS) substrate and the promiscuous p-nitrophenyl-phosphate (PNPP) one with comparable reaction kinetics. Based on the obtained results, a multistep mechanism including activation of the nucleophile, the nucleophilic attack, and the cleavage of the S-O (P-O) bond is proposed. Regarding the phosphate monoester, the results indicate that only some steps of the promiscuous reaction are identical to those in the native process. Differences concern mainly the last step in which the His115 residue acts as a general base to accept the proton by the O atom of the FGly51 in the PNPS, whereas in PNPP, the Asp317 protonated residue works as a general acid to deliver a proton by a water molecule to the oxygen atom of the C-O bond. The shapes of the relative potential-energy surface (PES) are similar in the two examined cases but the rate-determining step is different (nucleophile attack vs. nucleophile activation). The influence of the dispersion contributions on the investigated reactions was also taken into account.

  20. Substrate tunnels in enzymes: structure-function relationships and computational methodology.

    PubMed

    Kingsley, Laura J; Lill, Markus A

    2015-04-01

    In enzymes, the active site is the location where incoming substrates are chemically converted to products. In some enzymes, this site is deeply buried within the core of the protein, and, in order to access the active site, substrates must pass through the body of the protein via a tunnel. In many systems, these tunnels act as filters and have been found to influence both substrate specificity and catalytic mechanism. Identifying and understanding how these tunnels exert such control has been of growing interest over the past several years because of implications in fields such as protein engineering and drug design. This growing interest has spurred the development of several computational methods to identify and analyze tunnels and how ligands migrate through these tunnels. The goal of this review is to outline how tunnels influence substrate specificity and catalytic efficiency in enzymes with buried active sites and to provide a brief summary of the computational tools used to identify and evaluate these tunnels.

  1. Substrate Tunnels in Enzymes: Structure-Function Relationships and Computational Methodology

    PubMed Central

    Kingsley, Laura J.; Lill, Markus A.

    2015-01-01

    In enzymes, the active site is the location where incoming substrates are chemically converted to products. In some enzymes, this site is deeply buried within the core of the protein and in order to access the active site, substrates must pass through the body of the protein via a tunnel. In many systems, these tunnels act as filters and have been found to influence both substrate specificity and catalytic mechanism. Identifying and understanding how these tunnels exert such control has been of growing interest over the past several years due to implications in fields such as protein engineering and drug design. This growing interest has spurred the development of several computational methods to identify and analyze tunnels and how ligands migrate through these tunnels. The goal of this review is to outline how tunnels influence substrate specificity and catalytic efficiency in enzymes with tunnels and to provide a brief summary of the computational tools used to identify and evaluate these tunnels. PMID:25663659

  2. Dietary modulation of thymic enzymes.

    PubMed

    Susana, Feliu María; Paula, Perris; Slobodianik, Nora

    2014-01-01

    Malnutrition is a complex syndrome caused by an inadequate intake of energy, protein, minerals and vitamins which affects the immune system. Nutritional imbalances, present in children with energy-protein malnutrition and infections, make defining the specific effects of each of them on the thymus difficult. For this reason, it is necessary to design an experimental model in animals that could define a single variable. As the thymus atrophy described in humans is similar to that observed in murines, a rat experimental model makes the extrapolation to man possible. Some authors suggest that the activity of Adenosine Deaminase (ADA) and Purine Nucleoside Phosphorylase (PNP)--involved in purine metabolism--have an influence on T lymphocyte development and the immune system, due to intracellular accumulation of toxic levels of deoxynucleotides. Studies in our group, performed in an experimental model on Wistar growing rats, have demonstrated that protein deficiency or imbalance in the profile of essential amino acids in the diet, produce loss of thymus weight, reduction in the number of thymocytes, a diminished proportion of T cells presenting the W3/13 antigenic determinant and DNA content with concomitant increase in cell size, and the proportion of immature T cells and activity of ADA and PNP, without modifying the activity of 5´Nucleotidase in the thymus. It is important to point out that there were neither differences in energy intake between experimental groups and their controls, nor clinical symptoms of deficiency of other nutrients. The increase in these thymic enzyme activities was an alternative mechanism to avoid the accumulation of high levels of deoxynucleotides, which would be toxic for T lymphocytes. On the other hand, the administration of a recovery diet, with a high amount of high quality protein, was able to reverse the mentioned effects. The quick reply of Adenosine Deaminase to nutritional disorders and the following nutritional recovery, points

  3. Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase.

    PubMed

    Lorenz, B; Schröder, H C

    2001-06-11

    Recent results revealed that inorganic polyphosphates (polyP), being energy-rich linear polymers of orthophosphate residues known from bacteria and yeast, also exist in higher eukaryotes. However, the enzymatic basis of their metabolism especially in mammalian cells is still uncertain. Here we demonstrate for the first time that alkaline phosphatase from calf intestine (CIAP) is able to cleave polyP molecules up to a chain length of about 800. The enzyme acts as an exopolyphosphatase degrading polyP in a processive manner. The pH optimum is in the alkaline range. Divalent cations are not required for catalytic activity but inhibit the degradation of polyP. The rate of hydrolysis of short-chain polyP by CIAP is comparable to that of the standard alkaline phosphatase (AP) substrate p-nitrophenyl phosphate. The specific activity of the enzyme decreases with increasing chain length of the polymer both in the alkaline and in the neutral pH range. The K(m) of the enzyme also decreases with increasing chain length. The mammalian tissue non-specific isoform of AP was not able to hydrolyze polyP under the conditions applied while the placental-type AP and the bacterial (Escherichia coli) AP displayed polyP-degrading activity.

  4. Process for preparing multilayer enzyme coating on a fiber

    DOEpatents

    Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  5. Immobilized enzymes in organic media: Determinants of water dependence. Progress statement

    SciTech Connect

    Nandi, S.; DeFilippi, I.; Bedwell, B.; Zemel, H.

    1994-08-01

    The overall goals of this project are to investigate the critical factors that limit commercial scale applications of enzymes in organic solvents, and to scale-up a process for the production of a precursor to a specialty polymer. The overall performance of an immobilized enzyme can be influenced by its intrinsic structure and by external factors such as water content, support, pH, etc.. We have investigated the interrelation between support morphology and water content, and its effect on overall enzyme performance. Using a lipase catalyzed inter-esterification reaction as a model, we studied the controlling factors when water content in the organic solvent is such that a micro-aqueous phase is formed. In such an environment it was found that support particle aggregation is the major cause for decline in enzyme activity. We have shown that particle porosity, as well as the use of a particular non-woven fabric as an enzyme support, could alleviate this problem. These findings are being translated into a bioreactor design. We have also studied two {open_quotes}dry{close_quotes} non-aqueous systems, where a water phase is not formed since the water content is below its solubility in the organic solvent. In one of the systems, Subtilisin catalyzed trans-esterification of vinyl acrylate with a chiral alcohol, we have demonstrated that the use of a proprietary fabric support provides a significant boost in enzyme activity. We suggest that this particular fabric with its hydrophilic fibers acts as a lyoprotectant in the process of drying the enzyme. The benefits of this material as an enzyme support and its use in a lab scale bioreactor are being studied. Preliminary experiments have also been performed with a second {open_quotes}dry{close_quotes} reaction. This is the lipase catalyzed synthesis of AlliedSignal`s new product, VEctomer 4010.

  6. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    USGS Publications Warehouse

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  7. Lipid bilayer nanodisc platform for investigating polyprenol-dependent enzyme interactions and activities

    PubMed Central

    Hartley, Meredith D.; Schneggenburger, Philipp E.; Imperiali, Barbara

    2013-01-01

    Membrane-bound polyprenol-dependent pathways are important for the assembly of essential glycoconjugates in all domains of life. However, despite their prevalence, the functional significance of the extended linear polyprenyl groups in the interactions of the glycan substrates, the biosynthetic enzymes that act upon them, and the membrane bilayer in which they are embedded remains a mystery. These interactions are investigated simultaneously and uniquely through application of the nanodisc membrane technology. The Campylobacter jejuni N-linked glycosylation pathway has been chosen as a model pathway in which all of the enzymes and substrates are biochemically accessible. We present the functional reconstitution of two enzymes responsible for the early membrane-committed steps in glycan assembly. Protein stoichiometry analysis, fluorescence-based approaches, and biochemical activity assays are used to demonstrate the colocalization of the two enzymes in nanodiscs. Isotopic labeling of the substrates reveals that undecaprenyl-phosphate is coincorporated into discs with the two enzymes, and furthermore, that both enzymes are functionally reconstituted and can sequentially convert the coembedded undecaprenyl-phosphate into undecaprenyl-diphosphate-linked disaccharide. These studies provide a proof-of-concept demonstrating that the nanodisc model membrane system represents a promising experimental platform for analyzing the multifaceted interactions among the enzymes involved in polyprenol-dependent glycan assembly pathways, the membrane-associated substrates, and the lipid bilayer. The stage is now set for exploration of the roles of the conserved polyprenols in promoting protein–protein interactions among pathway enzymes and processing of substrates through sequential steps in membrane-associated glycan assembly. PMID:24302767

  8. Structural features of the regulatory ACT domain of phenylalanine hydroxylase.

    PubMed

    Carluccio, Carla; Fraternali, Franca; Salvatore, Francesco; Fornili, Arianna; Zagari, Adriana

    2013-01-01

    Phenylalanine hydroxylase (PAH) catalyzes the conversion of L-Phe to L-Tyr. Defects in PAH activity, caused by mutations in the human gene, result in the autosomal recessively inherited disease hyperphenylalaninemia. PAH activity is regulated by multiple factors, including phosphorylation and ligand binding. In particular, PAH displays positive cooperativity for L-Phe, which is proposed to bind the enzyme on an allosteric site in the N-terminal regulatory domain (RD), also classified as an ACT domain. This domain is found in several proteins and is able to bind amino acids. We used molecular dynamics simulations to obtain dynamical and structural insights into the isolated RD of PAH. Here we show that the principal motions involve conformational changes leading from an initial open to a final closed domain structure. The global intrinsic motions of the RD are correlated with exposure to solvent of a hydrophobic surface, which corresponds to the ligand binding-site of the ACT domain. Our results strongly suggest a relationship between the Phe-binding function and the overall dynamic behaviour of the enzyme. This relationship may be affected by structure-disturbing mutations. To elucidate the functional implications of the mutations, we investigated the structural effects on the dynamics of the human RD PAH induced by six missense hyperphenylalaninemia-causing mutations, namely p.G46S, p.F39C, p.F39L, p.I65S, p.I65T and p.I65V. These studies showed that the alterations in RD hydrophobic interactions induced by missense mutations could affect the functionality of the whole enzyme.

  9. 21 CFR 184.1287 - Enzyme-modified fats.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Enzyme-modified fats. 184.1287 Section 184.1287... Listing of Specific Substances Affirmed as GRAS § 184.1287 Enzyme-modified fats. (a) Enzyme-modified refined beef fat, enzyme-modified butterfat, and enzyme-modified steam-rendered chicken fat are...

  10. 21 CFR 184.1287 - Enzyme-modified fats.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Enzyme-modified fats. 184.1287 Section 184.1287... Listing of Specific Substances Affirmed as GRAS § 184.1287 Enzyme-modified fats. (a) Enzyme-modified refined beef fat, enzyme-modified butterfat, and enzyme-modified steam-rendered chicken fat are...

  11. 21 CFR 184.1287 - Enzyme-modified fats.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Enzyme-modified fats. 184.1287 Section 184.1287... GRAS § 184.1287 Enzyme-modified fats. (a) Enzyme-modified refined beef fat, enzyme-modified butterfat, and enzyme-modified steam-rendered chicken fat are prepared from refined beef fat; butterfat...

  12. 21 CFR 184.1287 - Enzyme-modified fats.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Enzyme-modified fats. 184.1287 Section 184.1287... Listing of Specific Substances Affirmed as GRAS § 184.1287 Enzyme-modified fats. (a) Enzyme-modified refined beef fat, enzyme-modified butterfat, and enzyme-modified steam-rendered chicken fat are...

  13. 21 CFR 184.1287 - Enzyme-modified fats.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Enzyme-modified fats. 184.1287 Section 184.1287... Listing of Specific Substances Affirmed as GRAS § 184.1287 Enzyme-modified fats. (a) Enzyme-modified refined beef fat, enzyme-modified butterfat, and enzyme-modified steam-rendered chicken fat are...

  14. Potato Peroxidase for the Study of Enzyme Properties.

    ERIC Educational Resources Information Center

    Shamaefsky, Brian R.

    1993-01-01

    Explains how the surface of a freshly sliced potato can be used for a variety of enzyme action experiments including the influence of pH on enzyme action, the enzyme denaturation potential of boiling water, the inhibition of enzymes by heavy metals, and the effects of salt concentration on enzyme effectiveness. (PR)

  15. False memories for aggressive acts.

    PubMed

    Laney, Cara; Takarangi, Melanie K T

    2013-06-01

    Can people develop false memories for committing aggressive acts? How does this process compare to developing false memories for victimhood? In the current research we used a simple false feedback procedure to implant false memories for committing aggressive acts (causing a black eye or spreading malicious gossip) or for victimhood (receiving a black eye). We then compared these false memories to other subjects' true memories for equivalent events. False aggressive memories were all too easy to implant, particularly in the minds of individuals with a proclivity towards aggression. Once implanted, the false memories were indistinguishable from true memories for the same events, on several dimensions, including emotional content. Implications for aggression-related memory more generally as well as false confessions are discussed.

  16. The new Clean Air Act

    SciTech Connect

    Padmanabha, A.P. ); Olem, H. )

    1991-05-01

    This article is a title by title review of the new Clean Air Act and how it affects water quality and wastewater treatment. The bill provides for restoring and protecting lakes and rivers by reducing acid-rain-causing emissions and toxics from nonpoint-source runoff. Topics covered include urban smog, mobile sources, air toxics, acid rain, permits, ozone-depleting chemicals, enforcement, and the law's socio-economic impacts.

  17. Clean Air Act. Revision 5

    SciTech Connect

    Not Available

    1994-02-15

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  18. SCADA Application for ACTS Technology

    NASA Technical Reports Server (NTRS)

    Fairbanks, Barry

    1992-01-01

    The results of a system level study done by Hughes Network Systems for NASA are presented. For the supervisory control and data acquisition (SCADA) application, use of Ka-band spot beam satellite technology associated with NASA's Advanced Communication Technology Satellite (ACTS) offers a reduction in Earth station antenna size and transmitter power that may translate into lower system costs. The approaches taken to determine commercial potential of the system are described.

  19. A Preview of Act 1.

    DTIC Science & Technology

    1981-05-01

    parallel processors. Our group is proposing to construct such a machine, called the Apiary [10 Implementation of Act I on an Apiary will require solving...load balancing and garbage collection. A preliminary simulation of the Apiary has been constructed by Jeff Schiller, using several Lisp Machines...Computation, MIT Lab for Computer Science report TR-197 [101 Carl Hewitt and Jeff Schiller, The Design of Apiary -0, 1980 Lisp Conference, Stanford

  20. Enzyme function is regulated by its localization.

    PubMed

    Gifford, Stacey M; Meyer, Pablo

    2015-12-01

    To better understand how enzyme localization affects enzyme activity we studied the cellular localization of the glycosyltransferase MurG, an enzyme necessary for cell wall synthesis at the spore during sporulation in the bacterium Bacillus subtilis. During sporulation MurG was gradually enriched to the membrane at the forespore and point mutations in a MurG helical domain disrupting its localization to the membrane caused severe sporulation defects, but did not affect localization nor caused detectable defects during exponential growth. We found that this localization is dependent on the phospholipid cardiolipin, as in strains where the cardiolipin-synthesizing genes were deleted, MurG levels were diminished at the forespore. Furthermore, in this cardiolipin-less strain, MurG localization during sporulation was rescued by external addition of purified cardiolipin. These results support localization as a critical factor in the regulation of proper enzyme function and catalysis.

  1. The quest for industrial enzymes from microorganisms.

    PubMed

    Yamaguchi, Shotaro

    2017-01-01

    Satoshi Ōmura, Professor Emeritus at Kitasato University, was awarded the Nobel Prize for his discovery of a substance of tremendous value to mankind from a microorganism. As a researcher who regularly deals with enzymes produced by microorganisms and a person engaged in microorganism-based business, Professor Ōmura's Nobel Prize fills me with great pride and joy. It is perhaps not surprising that this Nobel Prize-winning research would emerge from Asia, specifically Japan, where people live in harmony with nature rather than try to conquer it. At Amano Enzyme Inc., we devote ourselves to searching for novel enzymes from microorganisms. While incorporating my own experiences, I will recount the stories of a few discoveries of valuable enzyme-producing microbes in soil and bacterial strain libraries. I will also briefly introduce microbial strain library construction as a tool for facilitating the identification of the desired producing bacteria.

  2. Impulsive Enzymes: A New Force in Mechanobiology.

    PubMed

    Butler, Peter J; Dey, Krishna K; Sen, Ayusman

    2015-03-01

    We review studies that quantify newly discovered forces from single enzymatic reactions. These forces arise from the conversion of chemical energy to kinetic energy, which can be harnessed to direct diffusion of the enzyme up a concentration gradient of substrate, a novel phenomenon of molecular chemotaxis. When immobilized, enzymes can move fluid around them and perform directional pumping in microfluidic chambers. Because of the extensive array of enzymes in biological cells, we also develop three new hypotheses: that enzymatic self diffusion can assist in organizing signaling pathways in cells, can assist in pumping of fluid in cells, and can impose biologically significant forces on organelles, which will be manifested as stochastic motion not explained by thermal forces or myosin II. Such mechanochemical phenomena open up new directions in research in mechanobiology in which all enzymes, in addition to their primary function as catalysts for reactions, may have secondary functions as initiators of mechanosensitive transduction pathways.

  3. Enzymes as useful tools for environmental purposes.

    PubMed

    Rao, M A; Scelza, R; Acevedo, F; Diez, M C; Gianfreda, L

    2014-07-01

    In the environment enzymes may play important and different roles at least in three cases: as main agents (as isolated, cell-bound or immobilized enzymes) in charge of either the transformation and/or degradation of compounds polluting the environment and the restoration of the polluted environment; as reliable and sensitive tools to detect and measure the amount and concentration of pollutants before, during and after the restoration process; as reliable, easy and sensitive indicators of quality and health status of the environment subjected to the restoration process. To our knowledge papers or reviews integrating findings on these three functions of enzymes are missing in literature. Therefore the main scope of the present paper is to briefly encompass general and specific concepts about roles of enzymes as decontaminating agents, pollutant assaying agents and indicators of environment safety. Examples chosen among those published very recently, supporting and confirming peculiarities, features, and performance of enzymatic agents will be illustrated.

  4. FTIR studies of organometalcarbonyl-tagged enzymes

    NASA Astrophysics Data System (ADS)

    Anson, Christopher E.; Creaser, Colin S.; Egyed, Orsolya; Stephenson, G. Richard

    1997-10-01

    Attachment of organometaltricarbonyl tags to enzymes is revealed by changes in the vibrational modes of the carbonyl groups. Shoulders on νsym( CO) and νasym( CO) bands in the FTIR spectrum of an organometallic tag derived from tricarbonyl[1-{(2,3,4,5-η)-2,4-cyclohexadien-1-yl}pyridinium]iron(1 +) hexafluorophosphate(1 -) were detected on binding to enzymes (α-chymotrypsin, ribonuclease A, alkaline phosphatase and a triacylglycerol lipase). By comparison with tagging reactions between the tricarbonyliron moiety and model compounds, the new spectral features were attributed to an iron complex covalently bonded to the NH 2 groups of the amino acid residues of the enzymes. FTIR spectroscopy was used to monitor deprotonation of tagged amino groups on the enzyme surface. Interactions between the organometalcarbonyl tag and other side-chain groups of the amino acid residues were also investigated.

  5. Archaeal Enzymes and Applications in Industrial Biocatalysts

    PubMed Central

    Littlechild, Jennifer A.

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches. PMID:26494981

  6. Biotechnological relevance of starch-degrading enzymes

    SciTech Connect

    Stewart, G.G.

    1987-01-01

    Traditional enzymes, such as the amylases and the proteases, have been improved, novel applications have been found and new and valuable products have been marketed. The enzymatic hydrolysis of starch is described in some detail. (Refs. 8).

  7. Microbial Enzymes: Tools for Biotechnological Processes

    PubMed Central

    Adrio, Jose L.; Demain, Arnold L.

    2014-01-01

    Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi. PMID:24970208

  8. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    PubMed

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  9. On the hydrodynamics of swimming enzymes.

    PubMed

    Bai, Xiaoyu; Wolynes, Peter G

    2015-10-28

    Several recent experiments suggest that rather generally the diffusion of enzymes may be augmented through their activity. We demonstrate that such swimming motility can emerge from the interplay between the enzyme energy landscape and the hydrodynamic coupling of the enzyme to its environment. Swimming thus occurs during the transit time of a transient allosteric change. We estimate the velocity during the transition. The analysis of such a swimming motion suggests the final stroke size is limited by the hydrodynamic size of the enzyme. This limit is quite a bit smaller than the values that can be inferred from the recent experiments. We also show that one proposed explanation of the experiments based on reaction heat effects can be ruled out using an extended hydrodynamic analysis. These results lead us to propose an alternate explanation of the fluorescence correlation measurements.

  10. Practical Enzyme Kinetics: A Biochemical Laboratory Experiment.

    ERIC Educational Resources Information Center

    Rowe, H. Alan; Brown, Morris

    1988-01-01

    Describes an experiment that provides a fundamental understanding of the kinetics of the enzyme papain. Discusses background, materials, procedures and results. Mentions analogous experiments that can be conducted with enzymatic contact-lens cleaning solutions. (CW)

  11. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    SciTech Connect

    Siuti, Piro; Retterer, Scott T; Choi, Chang Kyoung; Doktycz, Mitchel John

    2012-01-01

    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  12. Variability in human in vitro enzyme kinetics.

    PubMed

    Wang, Ying-Hong; Gibson, Christopher R

    2014-01-01

    There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below.

  13. An enzyme immunoassay for plasma betamethasone

    SciTech Connect

    Kominami, G.; Yamauchi, A.; Ishihara, S.; Kono, M.

    1981-03-01

    A sensitive enzyme immunoassay for plasma betamethasone was developed using betamethasone-3-(O-carboxymethyl)oxime-beta-D-galactosidase conjugate as a labelled antigen and 4-methylumbelliferyl-beta-D-galactoside as a fluorescence substrate. The performances of the enzyme immunoassay were compared with that of a radioimmunoassay using /sup 3/H-betamethasone and the same antiserum. The minimal detectable level for the enzyme immunoassay was 0.15 pg/tube or 0.15 ng/ml of plasma, which was remarkably more sensitive than the radioimmunoassay level of 10 pg/tube or 2 ng/ml of plasma. The specificity was sufficient, in particular, the cross reactivity of cortisol as 0.008%. However, the precision of the enzyme immunoassay was inferior to that of the radioimmunoassay.

  14. Enzyme mechanisms: Flexibility leads to function

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Rubinstein, John L.

    2014-03-01

    ATP synthase is an important enzyme for the storage and release of energy in cells. Ion-mobility mass spectrometry has now been used to study its structure, revealing important mechanistic details about its operation and regulation.

  15. Ethanologenic enzymes of Zymomonas mobilis: Progress report

    SciTech Connect

    Ingram, L.O.

    1989-02-01

    In this study, we have proposed to investigate the regulatory mechanisms which permit the high level expression of the ethanologenic enzymes from Zymomonas mobilis (PDC, ADHI, ADHII). This research is continuing essentially as proposed in the original grant except that the scope is being expanded to include the glycolytic enzymes which are also highly expressed. Several enzymes which are expressed only at moderate levels are being examined for comparison (tryptophan biosynthesis, acid phosphatase). Studies of highly expressed genes involve enzyme purification and the production of antibodies, investigations of the effects of growth conditions on expression, cloning and characterization of structural genes, construction of hybrid genes, mutation of alcohol dehydrogenases, and investigation of transcriptional and translational regulation. In addition, we are investigating the feasibility of replacing the NAD regeneration systems of other bacteria with an artificial operon containing the Z. mobilis genes (PDC and ADHII) for the production of ethanol, the ''PET'' operon. 30 refs.

  16. Impulsive Enzymes: A New Force in Mechanobiology

    PubMed Central

    Butler, Peter J.; Dey, Krishna K.; Sen, Ayusman

    2015-01-01

    We review studies that quantify newly discovered forces from single enzymatic reactions. These forces arise from the conversion of chemical energy to kinetic energy, which can be harnessed to direct diffusion of the enzyme up a concentration gradient of substrate, a novel phenomenon of molecular chemotaxis. When immobilized, enzymes can move fluid around them and perform directional pumping in microfluidic chambers. Because of the extensive array of enzymes in biological cells, we also develop three new hypotheses: that enzymatic self diffusion can assist in organizing signaling pathways in cells, can assist in pumping of fluid in cells, and can impose biologically significant forces on organelles, which will be manifested as stochastic motion not explained by thermal forces or myosin II. Such mechanochemical phenomena open up new directions in research in mechanobiology in which all enzymes, in addition to their primary function as catalysts for reactions, may have secondary functions as initiators of mechanosensitive transduction pathways. PMID:26019728

  17. Overview of the ACT program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1992-01-01

    NASA's Advanced Composites Program (ACT) was initiated in 1988. A National Research Announcement was issued to solicit innovative ideas that could significantly contribute to development and demonstration of an integrated technology data base and confidence level that permits cost-effective use of composite primary structures in transport aircraft. Fifteen contracts were awarded by the Spring of 1989 and the participants include commercial and military airframe manufacturers, materials developers and suppliers, universities, and government laboratories. The program approach is to develop materials, structural mechanics methodology, design concepts, and fabrication procedures that offer the potential to make composite structures cost-effective compared to aluminum structure. Goals for the ACT program included 30-50 percent weight reduction, 20-25 percent acquisition cost reduction, and provided the scientific basis for predicting materials and structures performance. This paper provides an overview of the ACT program status, plans, and selected technical accomplishments. Sixteen additional papers, which provide more detailed information on the research and development accomplishments, are contained in this publication.

  18. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    PubMed

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  19. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters.

    PubMed

    Bar-Even, Arren; Noor, Elad; Savir, Yonatan; Liebermeister, Wolfram; Davidi, Dan; Tawfik, Dan S; Milo, Ron

    2011-05-31

    The kinetic parameters of enzymes are key to understanding the rate and specificity of most biological processes. Although specific trends are frequently studied for individual enzymes, global trends are rarely addressed. We performed an analysis of k(cat) and K(M) values of several thousand enzymes collected from the literature. We found that the "average enzyme" exhibits a k(cat) of ~0 s(-1) and a k(cat)/K(M) of ~10(5) s(-1) M(-1), much below the diffusion limit and the characteristic textbook portrayal of kinetically superior enzymes. Why do most enzymes exhibit moderate catalytic efficiencies? Maximal rates may not evolve in cases where weaker selection pressures are expected. We find, for example, that enzymes operating in secondary metabolism are, on average, ~30-fold slower than those of central metabolism. We also find indications that the physicochemical properties of substrates affect the kinetic parameters. Specifically, low molecular mass and hydrophobicity appear to limit K(M) optimization. In accordance, substitution with phosphate, CoA, or other large modifiers considerably lowers the K(M) values of enzymes utilizing the substituted substrates. It therefore appears that both evolutionary selection pressures and physicochemical constraints shape the kinetic parameters of enzymes. It also seems likely that the catalytic efficiency of some enzymes toward their natural substrates could be increased in many cases by natural or laboratory evolution.

  20. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    NASA Astrophysics Data System (ADS)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g