Science.gov

Sample records for alpha-helical protein backbones

  1. A Novel Method for Sampling Alpha-Helical Protein Backbones

    DOE R&D Accomplishments Database

    Fain, Boris; Levitt, Michael

    2001-01-01

    We present a novel technique of sampling the configurations of helical proteins. Assuming knowledge of native secondary structure, we employ assembly rules gathered from a database of existing structures to enumerate the geometrically possible 3-D arrangements of the constituent helices. We produce a library of possible folds for 25 helical protein cores. In each case the method finds significant numbers of conformations close to the native structure. In addition we assign coordinates to all atoms for 4 of the 25 proteins. In the context of database driven exhaustive enumeration our method performs extremely well, yielding significant percentages of structures (0.02%--82%) within 6A of the native structure. The method's speed and efficiency make it a valuable contribution towards the goal of predicting protein structure.

  2. Alpha-helices direct excitation energy flow in the Fenna Matthews Olson protein.

    PubMed

    Müh, Frank; Madjet, Mohamed El-Amine; Adolphs, Julia; Abdurahman, Ayjamal; Rabenstein, Björn; Ishikita, Hiroshi; Knapp, Ernst-Walter; Renger, Thomas

    2007-10-23

    In photosynthesis, light is captured by antenna proteins. These proteins transfer the excitation energy with almost 100% quantum efficiency to the reaction centers, where charge separation takes place. The time scale and pathways of this transfer are controlled by the protein scaffold, which holds the pigments at optimal geometry and tunes their excitation energies (site energies). The detailed understanding of the tuning of site energies by the protein has been an unsolved problem since the first high-resolution crystal structure of a light-harvesting antenna appeared >30 years ago [Fenna RE, Matthews BW (1975) Nature 258:573-577]. Here, we present a combined quantum chemical/electrostatic approach to compute site energies that considers the whole protein in atomic detail and provides the missing link between crystallography and spectroscopy. The calculation of site energies of the Fenna-Matthews-Olson protein results in optical spectra that are in quantitative agreement with experiment and reveals an unexpectedly strong influence of the backbone of two alpha-helices. The electric field from the latter defines the direction of excitation energy flow in the Fenna-Matthews-Olson protein, whereas the effects of amino acid side chains, hitherto thought to be crucial, largely compensate each other. This result challenges the current view of how energy flow is regulated in pigment-protein complexes and demonstrates that attention has to be paid to the backbone architecture. PMID:17940020

  3. Conformational transitions in peptides containing two putative alpha-helices of the prion protein.

    PubMed

    Zhang, H; Kaneko, K; Nguyen, J T; Livshits, T L; Baldwin, M A; Cohen, F E; James, T L; Prusiner, S B

    1995-07-21

    Prions are composed largely, if not entirely, of the scrapie isoform of the prion protein (PrPSc). Conversion of the cellular isoform (PrPC) to PrPSc is accompanied by a diminution in the alpha-helical content and an increase in the beta-sheet structure. To investigate the structural basis of this transition, peptide fragments corresponding to Syrian hamster PrP residues 90 to 145 and 109 to 141, which contain the most conserved residues of the prion protein and the first two putative alpha-helical regions in a PrPC model, were studied using infrared spectroscopy and circular dichroism. The peptides could be induced to form alpha-helical structures in aqueous solutions in the presence of organic solvents, such as trifluoroethanol and hexafluoroisopropanol, or detergents, such as sodium dodecyl sulfate and dodecyl phosphocholine. NaCl at physiological concentration or acetonitrile induced the peptides to acquire substantial beta-sheet. The intermolecular nature of the beta-sheet was evident in the formation of rod-shaped polymers as detected by electron microscopy. Resistance to hydrolysis by proteinase K and epitope mapping argue that the beta-sheet structures were formed by the interaction of residues lying between 109 and 141. A similar range of residues was shown by nuclear magnetic resonance spectroscopy to be capable of forming alpha-helices. The alpha-helical structures seem to require a hydrophobic support from either intermolecular interactions or the hydrophobic environment provided by micelles, in agreement with the predicted hydrophobic nature of the packing surface among the four putative helices of PrPC and the outer surfaces of the first two helices. Our results suggest that perturbation of the packing environment of the highly conserved residues is a possible mechanism for triggering the conversion of PrPC to PrPSc where alpha-helices appear to be converted into beta-sheets.

  4. The nature of phonons and solitary waves in alpha-helical proteins.

    PubMed Central

    Lawrence, A. F.; McDaniel, J. C.; Chang, D. B.; Birge, R. R.

    1987-01-01

    A parametric study of the Davydov model of energy transduction in alpha-helical proteins is described. Previous investigations have shown that the Davydov model predicts that nonlinear interactions between phonons and amide-I excitations can stabilize the latter and produce a long-lived combined excitation (the so-called Davydov soliton), which propagates along the helix. The dynamics of this solitary wave are approximately those of solitons described using the nonlinear Schrödinger equation. The present study extends these previous investigations by analyzing the effect of helix length and nonlinear coupling efficiency on the phonon spectrum in short and medium length alpha-helical segments. The phonon energy accompanying amide-I excitation shows periodic variation in time with fluctuations that follow three different time scales. The phonon spectrum is highly dependent upon chain length but a majority of the energy remains localized in normal mode vibrations even in the long chain alpha-helices. Variation of the phonon-exciton coupling coefficient changes the amplitudes but not the frequencies of the phonon spectrum. The computed spectra contain frequencies ranging from 200 GHz to 6 THz, and as the chain length is increased, the long period oscillations increase in amplitude. The most important prediction of this study, however, is that the dynamics predicted by the numerical calculations have more in common with dynamics described by using the Frohlich polaron model than by using the Davydov soliton. Accordingly, the relevance of the Davydov soliton model was applied to energy transduction in alpha-helical proteins is questionable. We conclude that the Raman lines that have been assigned to solitons in E. coli are either associated with low frequency normal modes or are instrumental- or fluorescence-induced artifacts. PMID:3593874

  5. Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant

    PubMed Central

    Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J.

    2009-01-01

    Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709

  6. Alpha-helical protein networks are self-protective and flaw-tolerant.

    PubMed

    Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J

    2009-06-23

    Alpha-helix based protein networks as they appear in intermediate filaments in the cell's cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance.

  7. An amphipathic alpha-helical peptide from Apolipoprotein A1 stabilizes protein polymer vesicles

    PubMed Central

    Pastuszka, Martha K.; Wang, Xiangdong; Lock, Lye Lin; Janib, Siti Mohd; Cui, Honggang; DeLeve, Laurie D.; MacKay, J. Andrew

    2014-01-01

    L4F, an alpha helical peptide inspired by the lipid-binding domain of the ApoA1 protein, has potential applications in the reduction of inflammation involved with cardiovascular disease as well as liver fibrosis. In addition to its biological activity, amphipathic peptides such as L4F are likely candidates to direct the molecular assembly of peptide nanostructures. Here we describe the stabilization of the amphipathic L4F peptide through fusion to a high molecular weight protein polymer. Comprised of multiple pentameric repeats, elastin-like polypeptides (ELPs) are biodegradable protein polymers inspired from the human gene for tropoelastin. Dynamic light scattering confirmed that the fusion peptide forms nanoparticles with a hydrodynamic radius of approximately 50 nm, which is unexpectedly above that observed for the free ELP (~5.1 nm). To further investigate their morphology, negative and cryogenic transmission electron microscopy were used to reveal that they are unilamellar vesicles. On average, these vesicles are 49 nm in radius with lamellae 8 nm in thickness. To evaluate their therapeutic potential, the L4F nanoparticles were incubated with hepatic stellate cells. Stellate cell activation leads to hepatic fibrosis; furthermore, their activation is suppressed by ApoA1 mimetic peptides. Consistent with this observation, L4F nanoparticles were found to suppress hepatic stellate cell activation in vitro. To evaluate the in vivo potential for these nanostructures, their plasma pharmacokinetics were evaluated in rats. Despite the assembly of nanostructures, both free L4F and L4F nanoparticles exhibited similar half-lives of approximately 1 hr in plasma. This is the first study reporting the stabilization of peptide-based vesicles using ApoA1 mimetic peptides fused to a protein polymer; furthermore, this platform for peptide-vesicle assembly may have utility in the design of biodegradable nanostructures. PMID:25016969

  8. Structural Origins of Nitroxide Side Chain Dynamics on Membrane Protein [alpha]-Helical Sites

    SciTech Connect

    Kroncke, Brett M.; Horanyi, Peter S.; Columbus, Linda

    2010-12-07

    Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed {alpha}-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i {+-} 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact

  9. High-resolution spot-scan electron microscopy of microcrystals of an alpha-helical coiled-coil protein.

    PubMed

    Bullough, P A; Tulloch, P A

    1990-09-01

    We describe the electron microscopy of a crystalline assembly of an alpha-helical coiled-coil protein extracted from the ootheca of the praying mantis. Electron diffraction patterns of unstained crystals show crystal lattice sampling of the coiled-coil molecular transform to a resolution beyond 1.5 A. Using a "spot-scan" method of electron imaging, micrographs of unstained crystals have been obtained that visibly diffract laser light from crystal spacings as small as 4.3 A. A projection map was calculated to 4 A using electron diffraction amplitudes and phases from computer-processed images. The projection map clearly shows modulations in density arising from the 5.1 A alpha-helical repeat, the first time this type of modulation has been revealed by electron microscopy. The crystals have p2 plane group symmetry with a = 92.4 A, b = 150.7 A, y = 92.4 degrees. Examination of tilted specimens shows that c is approximately 18 A, indicating that the unit cell is only one molecule thick. A preliminary interpretation shows tightly packed molecules some 400 A long lying with their long axes in the plane of the projection. The molecules have a coiled-coil configuration for most of their length. The possible modes of packing of the molecules in three dimensions are discussed. PMID:2398496

  10. Bioinformatics Analysis Reveals Abundant Short Alpha-Helices as a Common Structural Feature of Oomycete RxLR Effector Proteins

    PubMed Central

    Ye, Wenwu; Wang, Yang; Wang, Yuanchao

    2015-01-01

    RxLR effectors represent one of the largest and most diverse effector families in oomycete plant pathogens. These effectors have attracted enormous attention since they can be delivered inside the plant cell and manipulates host immunity. With the exceptions of a signal peptide and the following RxLR-dEER and C-terminal W/Y/L motifs identified from the sequences themselves, nearly no functional domains have been found. Recently, protein structures of several RxLRs were revealed to comprise alpha-helical bundle repeats. However, approximately half of all RxLRs lack obvious W/Y/L motifs, which are associated with helical structures. In this study, secondary structure prediction of the putative RxLR proteins was performed. We found that the C-terminus of the majority of these RxLR proteins, irrespective of the presence of W/Y/L motifs, contains abundant short alpha-helices. Since a large-scale experimental determination of protein structures has been difficult to date, results of the current study extend our understanding on the oomycete RxLR effectors in protein secondary structures from individual members to the entire family. Moreover, we identified less alpha-helix-rich proteins from secretomes of several oomycete and fungal organisms in which RxLRs have not been identified, providing additional evidence that these organisms are unlikely to harbor RxLR-like proteins. Therefore, these results provide additional information that will aid further studies on the evolution and functional mechanisms of RxLR effectors. PMID:26252511

  11. An experimental approach to testing modular evolution: directed replacement of alpha-helices in a bacterial protein.

    PubMed Central

    DuBose, R F; Hartl, D L

    1989-01-01

    We have used oligonucleotide site-directed mutagenesis to ask whether certain structural motifs in proteins are determined mainly by local interactions among amino acids. Multiple consecutive amino acids in three alpha-helices in the alkaline phosphatase (EC 3.1.3.1) of Escherichia coli have been replaced with helical sequences from four other sources. Altogether, 12 distinct helical replacements were created, 9 of which retain enzymatic activity. Most short stretches of helical sequence can be replaced with unrelated helical sequences without eliminating enzyme activity. Replacements of the carboxyl half of an alpha-helix are less harmful than those of the amino half, and the two together are synergistic rather than additive. These results are consistent with the hypothesis that proteins originally evolved by the assembly of small functional folding units. Images PMID:2690081

  12. Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long alpha-helical domain.

    PubMed

    Masuda, K; Xu, Z J; Takahashi, S; Ito, A; Ono, M; Nomura, K; Inoue, M

    1997-04-10

    A monoclonal antibody, CML-1, raised against carrot (Daucus carota L.) nuclear-matrix proteins selectively labeled the nuclear periphery of carrot protoplasts when visualized by confocal and electron microscopy. To identify the constituent proteins of higher plant cells structurally homologous to the vertebrate nuclear lamina, we cloned overlapping cDNAs partially encoding a CML-1-recognized protein and determined the entire sequence including the open reading frame. When the deduced amino acid sequence was compared with other known protein sequences contained in major databases, no protein was found to show high sequence identity across the whole region of the protein, while the partial sequence showed strong similarities with myosin, tropomyosin, and some intermediate filament proteins. The protein, designated NMCP1, had an estimated molecular mass of 133.6 kDa and showed three characteristic domains. The central domain contains long alpha-helices exhibiting heptad repeats of apolar residues, demonstrating structural similarity to that of filament-forming proteins. The terminal domains are predominantly nonhelical and contain potential sequence motifs for nuclear localization signals. NMCP1 has many recognition motifs for different types of protein kinases, including cdc2 kinase and PKC. These results suggest that NMCP1 protein forms coiled-coil filaments and is a constituent of the peripheral architecture of the higher plant cell nucleus.

  13. Structural classification and prediction of reentrant regions in alpha-helical transmembrane proteins: application to complete genomes.

    PubMed

    Viklund, Håkan; Granseth, Erik; Elofsson, Arne

    2006-08-18

    Alongside the well-studied membrane spanning helices, alpha-helical transmembrane (TM) proteins contain several functionally and structurally important types of substructures. Here, existing 3D structures of transmembrane proteins have been used to define and study the concept of reentrant regions, i.e. membrane penetrating regions that enter and exit the membrane on the same side. We find that these regions can be divided into three distinct categories based on secondary structure motifs, namely long regions with a helix-coil-helix motif, regions of medium length with the structure helix-coil or coil-helix and regions of short to medium length consisting entirely of irregular secondary structure. The residues situated in reentrant regions are significantly smaller on average compared to other regions and reentrant regions can be detected in the inter-transmembrane loops with an accuracy of approximately 70% based on their amino acid composition. Using TOP-MOD, a novel method for predicting reentrant regions, we have scanned the genomes of Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. The results suggest that more than 10% of transmembrane proteins contain reentrant regions and that the occurrence of reentrant regions increases linearly with the number of transmembrane regions. Reentrant regions seem to be most commonly found in channel proteins and least commonly in signal receptors.

  14. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  15. Towards Accurate Residue-Residue Hydrophobic Contact Prediction for Alpha Helical Proteins Via Integer Linear Optimization

    PubMed Central

    Rajgaria, R.; McAllister, S. R.; Floudas, C. A.

    2008-01-01

    A new optimization-based method is presented to predict the hydrophobic residue contacts in α-helical proteins. The proposed approach uses a high resolution distance dependent force field to calculate the interaction energy between different residues of a protein. The formulation predicts the hydrophobic contacts by minimizing the sum of these contact energies. These residue contacts are highly useful in narrowing down the conformational space searched by protein structure prediction algorithms. The proposed algorithm also offers the algorithmic advantage of producing a rank ordered list of the best contact sets. This model was tested on four independent α-helical protein test sets and was found to perform very well. The average accuracy of the predictions (separated by at least six residues) obtained using the presented method was approximately 66% for single domain proteins. The average true positive and false positive distances were also calculated for each protein test set and they are 8.87 Å and 14.67 Å respectively. PMID:18767158

  16. Structural analysis of alpha-helical proteins from wool using cysteine labelling and mass spectrometry.

    PubMed

    O'Cualain, R D M; Sims, P F G; Carr, C M

    2011-10-01

    A simple reduction/labelling/extraction protocol has been developed to fractionate cortical matrix proteins from filament proteins in wool. Through differential labelling of cysteine residues their relative accessibility in the wool fibre has been investigated. This has allowed the preliminary development of a map of the chemical functionality that is accessible within wool fibres under native conditions. Protein analyses of wool subjected to mechanical action, wet chemical permonosulphate/sulphite treatment and dry argon plasma treatment revealed that none of these detectably improved the accessibility of functional groups at the wool cortex. It is anticipated that this analytical method can be extended to improve the sensitivity and scope with which chemical functionality within native fibres can be mapped and lead to a better understanding of the potential limits/opportunities for fibre modification.

  17. Alpha-helical regions of the protein molecule as organic nanotubes

    NASA Astrophysics Data System (ADS)

    Suprun, Anatol D.; Shmeleva, Liudmyla V.

    2014-05-01

    An α-helical region of protein molecule was considered in a model of nanotube. The molecule is in conditions of quantum excitations. Such model corresponds to a one-dimensional molecular nanocrystal with three molecules in an elementary cell at the presence of excitation. For the analysis of different types of conformational response of the α-helical area of the protein molecule on excitation, the nonlinear response of this area to the intramolecular quantum excitation caused by hydrolysis of adenosine triphosphate (ATP) is taken into account. It has been established that in the simplest case, three types of excitation are realized. As estimates show, each of them `serves' different kinds of protein. The symmetrical type of excitation, most likely, is realized in the reduction of traversal-striped skeletal muscles. It has the highest excitation energy. This well protects from casual actions. Antisymmetric excitations have intermediate energy (between symmetrical and asymmetrical). They, most likely, are realized in membranous and nucleic proteins. It is shown that the conformational response of the α-helical region of the protein is (in angstroms) a quantity of order N c /5, where N c is the number of spiral turns. For the number of turns typical in this case: N c ~ 10, displacement compounds are a quantity of order 2 Å. It qualitatively corresponds to observable values. Asymmetrical excitations have the lowest energy. Therefore, most likely, they are realized in enzymatic proteins. It was shown that at this type of excitation, the bending of the α-helix is formally directed to the opposite side with respect to the antisymmetric excitations. Also, it has a greater value than the antisymmetric case for N c ≤ 14 and smaller for N c > 14.

  18. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    PubMed

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary; Castellanos, Angélica; Kajava, Andrey V; Servis, Catherine; Felger, Ingrid; Moret, Remy; Arévalo-Herrera, Myriam; Corradin, Giampietro; Herrera, Sócrates

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  19. Characterizing alpha helical properties of Ebola viral proteins as potential targets for inhibition of alpha-helix mediated protein-protein interactions.

    PubMed

    Chakraborty, Sandeep; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Ebola, considered till recently as a rare and endemic disease, has dramatically transformed into a potentially global humanitarian crisis. The genome of Ebola, a member of the Filoviridae family, encodes seven proteins. Based on the recently implemented software (PAGAL) for analyzing the hydrophobicity and amphipathicity properties of alpha helices (AH) in proteins, we characterize the helices in the Ebola proteome. We demonstrate that AHs with characteristically unique features are involved in critical interactions with the host proteins. For example, the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain has an AH with a large hydrophobic moment. The neutralizing antibody (KZ52) derived from a human survivor of the 1995 Kikwit outbreak recognizes a protein epitope on this AH, emphasizing the critical nature of this secondary structure in the virulence of the Ebola virus. Our method ensures a comprehensive list of such `hotspots'. These helices probably are or can be the target of molecules designed to inhibit AH mediated protein-protein interactions. Further, by comparing the AHs in proteins of the related Marburg viruses, we are able to elicit subtle changes in the proteins that might render them ineffective to previously successful drugs. Such differences are difficult to identify by a simple sequence or structural alignment. Thus, analyzing AHs in the small Ebola proteome can aid rational design aimed at countering the `largest Ebola epidemic, affecting multiple countries in West Africa' ( http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html). PMID:25717367

  20. Phase space trajectories and Lyapunov exponents in the dynamics of an alpha-helical protein lattice with intra- and inter-spine interactions

    SciTech Connect

    Angelin Jeba, K.; Latha, M. M.; Jain, Sudhir R.

    2015-11-15

    The nonlinear dynamics of intra- and inter-spine interaction models of alpha-helical proteins is investigated by proposing a Hamiltonian using the first quantized operators. Hamilton's equations of motion are derived, and the dynamics is studied by constructing the trajectories and phase space plots in both cases. The phase space plots display a chaotic behaviour in the dynamics, which opens questions about the relationship between the chaos and exciton-exciton and exciton-phonon interactions. This is verified by plotting the Lyapunov characteristic exponent curves.

  1. A fast method for the quantitative estimation of the distribution of hydrophobic and hydrophilic segments in alpha-helices of membrane proteins.

    PubMed

    Luzhkov, V B; Surkov, N F

    2000-01-01

    The work presents a fast quantitative approach for estimating the orientations of hydrophilic and hydrophobic regions in the helical wheels of membrane-spanning alpha-helices of transmembrane proteins. The common hydropathy analysis provides an estimate of the integral hydrophobicity in a moving window which scans an amino acid sequence. The new parameter, orientation hydrophobicity, is based on the estimate of hydrophobicity of the angular segment that scans the helical wheel of a given amino acid sequence. The corresponding procedure involves the treatment of transmembrane helices as cylinders with equal surface elements for each amino acid residue. The orientation hydrophobicity, P(phi), phi = 0-360 degrees, of a helical cylinder is given as a sum of hydrophobicities of individual amino acids which are taken as the S-shaped functions of the angle between the centre of amino acid surface element and the centre of the segment. Non-zero contribution to P(phi) comes only from the amino acids belonging to the angular segment for a given angle phi. The size of the angular segment is related to the size of the channel pore. The amplitudes of amino acid S-functions are calibrated in the way that their maximum values (reached when the amino acid is completely exposed into the pore) are equal to the corresponding hydropathy index in the selected scale (here taken as Goldman-Engelman-Steitz hydropathy scale). The given procedure is applied in the studies of three ionic channels with well characterized three-dimensional structures where the channel pore is formed by a bundle of alpha-helices: cholera toxin B, nicotinic acetylcholine homopentameric alpha7 receptor, and phospholamban. The estimated maximum of hydrophilic properties at the helical wheels are in a good agreement with the spatial orientations of alpha-helices in the corresponding channel pores.

  2. Pseudo 5D HN(C)N experiment to facilitate the assignment of backbone resonances in proteins exhibiting high backbone shift degeneracy

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Raikwal, Nisha; Shukla, Vaibhav Kumar; Pandey, Himanshu; Arora, Ashish; Guleria, Anupam

    2014-09-01

    Assignment of protein backbone resonances is most routinely carried out using triple resonance three-dimensional NMR experiments involving amide 1H/15N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high-degree of backbone shift degeneracy. In this backdrop, a novel reduced-dimensionality (RD) experiment -(5, 3)D-hNCO-CANH- is presented to facilitate/validate the sequential backbone resonance assignment in such proteins. The proposed 3D NMR experiment makes use of the modulated amide 15N chemical shifts (resulting from the joint sampling along both its indirect dimensions) to resolve the ambiguity involved in connecting the neighboring amide resonances (i.e. HiNi and Hi-1Ni-1) for overlapping amide-NH peaks. The experiment -in combination with routine triple resonance 3D-NMR experiments involving backbone amide (1H/15N) and carbon (13Cα/13C‧) chemical shifts- will serve as a powerful complementary tool to achieve the nearly complete assignment of protein backbone resonances in a time efficient manner.

  3. Assembly defects of desmin disease mutants carrying deletions in the alpha-helical rod domain are rescued by wild type protein.

    PubMed

    Bär, Harald; Mücke, Norbert; Katus, Hugo A; Aebi, Ueli; Herrmann, Harald

    2007-04-01

    Most mutations of desmin that cause severe autosomal dominant forms of myofibrillar myopathy are point mutations and locate in the central alpha-helical coiled-coil rod domain. Recently, two in-frame deletions of one and three amino acids, respectively, in the alpha-helix have been described and discussed to drastically interfere with the architecture of the desmin dimer and possibly also the formation of tetramers and higher order complexes [Kaminska, A., Strelkov, S.V., Goudeau, B., Olive, M., Dagvadorj, A., Fidzianska, A., Simon-Casteras, M., Shatunov, A., Dalakas, M.C., Ferrer, I., Kwiecinski, H., Vicart, P., Goldfarb, L.G., 2004. Small deletions disturb desmin architecture leading to breakdown of muscle cells and development of skeletal or cardioskeletal myopathy. Hum. Genet. 114, 306-313.]. Therefore, it was proposed that they may poison intermediate filament (IF) assembly. We have now recombinantly synthesized both mutant proteins and subjected them to comprehensive in vitro assembly experiments. While exhibiting assembly defects when analyzed on their own, both one-to-one mixtures of the respective mutant protein with wild type desmin facilitated proper filament formation. Transient transfection studies complemented this fundamental finding by demonstrating that wild type desmin is also rescuing these assembly defects in vivo. In summary, our findings strongly question the previous hypothesis that it is assembly incompetence due to molecular rearrangements caused by the mutations, which triggers the development of disease. As an alternative, we propose that these mutations cause subtle age-dependent structural alterations of desmin IFs that eventually lead to disease. PMID:17188893

  4. Deciphering the structural code for proteins: helical propensities in domain classes and statistical multiresidue information in alpha-helices.

    PubMed Central

    Negrete, J. A.; Viñuales, Y.; Palau, J.

    1998-01-01

    We made several statistical analyses in a large sample of nearly 4,000 helices (from 546 redundancy-controlled PDB protein subunits), which give new insights into the helical properties of globular proteins. In a first experiment, the amino acid composition of the whole sample was compared with the composition of two helical sample subgroups (the "mainly-alpha" and the "(alpha/beta)8 barrel" domain classes); we reached the conclusion that composition-based helical propensities for secondary structure prediction do not depend on the structural class. Running a five-residue window through the whole sample, the positional composition revealed that positive and negative residues are located throughout the helices and tend to neutralize the macrodipole effect. On this basis, we analyzed charged triplets using a running five-residue window. The conclusion was that only mixed charged residues [positive (+) and negative (-)] located at positions 1-2-5 and 1-4-5 are clearly favored. In these locations the most abundant are (- -..+) and (-..+ +), and this shows the existence of side chain microdipoles, which neutralize the large macrodipole of the helix. We made a systematic statistical analysis of charged, dipolar, and hydrophobic + aromatic residues, which enabled us to work out rules that should be useful for modeling and design purposes. Finally, we analyzed the relative abundance of all the different amphipathic double-arcs that are present in helices formed by octapeptides (8) and nonapeptides (18). All of the double-arcs that make up Schiffer and Edmundson's classical helical wheel are found in abundance in the sample. PMID:9655341

  5. Domain analysis of the plant DNA-binding protein GT1a: requirement of four putative alpha-helices for DNA binding and identification of a novel oligomerization region.

    PubMed Central

    Lam, E

    1995-01-01

    Light is an important environmental signal that can influence diverse developmental processes in plants. Many plant nuclear genes respond to light at the level of transcription initiation. GT-1 and GT2 are nuclear factors which interact with DNA sequences in many light-responsive gene promoters. cDNA clones which encode proteins with sequence binding specificities similar to those of these two factors have been isolated. They show significant amino acid sequence similarities within three closely spaced, putative alpha-helices that were predicted by secondary structure analysis but do not show significant homologies with any other reported DNA-binding protein. In this work, N- and C-terminal deletions of tobacco GT1a were generated by in vitro transcription and translation, and their DNA-binding activities and subunit structures were studied. The results suggest that the C-terminal domain of GT1a is critical for protein oligomerization, while a region predicted to contain four closely spaced alpha-helices is required for DNA binding. Direct chemical cross-linking and gel filtration analyses of full-length and truncated derivatives of GT1a suggest that this factor can exist in solution as a homotetramer and that oligomerization is independent of DNA binding. This study thus establishes two independent functional domains in this class of eukaryotic trans-acting factors. Possible implications of the multimeric nature of GT1a in relation to the known characteristics of light-responsive promoter architecture are discussed. PMID:7823917

  6. Repacking protein cores with backbone freedom: structure prediction for coiled coils.

    PubMed

    Harbury, P B; Tidor, B; Kim, P S

    1995-08-29

    Progress in homology modeling and protein design has generated considerable interest in methods for predicting side-chain packing in the hydrophobic cores of proteins. Present techniques are not practically useful, however, because they are unable to model protein main-chain flexibility. Parameterization of backbone motions may represent a general and efficient method to incorporate backbone relaxation into such fixed main-chain models. To test this notion, we introduce a method for treating explicitly the backbone motions of alpha-helical bundles based on an algebraic parameterization proposed by Francis Crick in 1953 [Crick, F. H. C. (1953) Acta Crystallogr. 6, 685-689]. Given only the core amino acid sequence, a simple calculation can rapidly reproduce the crystallographic main-chain and core side-chain structures of three coiled coils (one dimer, one trimer, and one tetramer) to within 0.6-A root-mean-square deviations. The speed of the predictive method [approximately 3 min per rotamer choice on a Silicon Graphics (Mountain View, CA) 4D/35 computer] permits it to be used as a design tool.

  7. De novo design of a non-natural fold for an iron-sulfur protein: alpha-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core.

    PubMed

    Grzyb, Joanna; Xu, Fei; Weiner, Lev; Reijerse, Eduard J; Lubitz, Wolfgang; Nanda, Vikas; Noy, Dror

    2010-03-01

    Using a 'metal-first' approach, we computationally designed, prepared, and characterized a four-iron four-sulfur (Fe(4)S(4)) cluster protein with a non-natural alpha-helical coiled-coil fold. The novelty of this fold lies in the placement of a Fe(4)S(4) cluster within the hydrophobic core of a four-helix bundle, making it unique among previous iron-sulfur (FeS) protein designs, and different from known natural FeS proteins. The apoprotein, recombinantly expressed and purified from E. coli, readily self-assembles with Fe(4)S(4) clusters in vitro. UV-Vis absorption and CD spectroscopy, elemental analysis, gel filtration, and analytical ultracentrifugation confirm that the protein is folded and assembled as designed, namely, alpha-helical coiled-coil binding a single Fe(4)S(4) cluster. Dithionite-reduced holoprotein samples have characteristic rhombic EPR spectra, typical of low-potential, [Fe(4)S(4)](+) (S=1/2), with g values of g(zy)=(1.970, 1.975), and g(x)=2.053. The temperature, and power dependence of the signal intensity were also characteristic of [Fe(4)S(4)](+) clusters with very efficient spin relaxation, but almost without any interaction between adjacent clusters. The new design is very promising although optimization is required, particularly for preventing aggregation, and adding second shell interactions to stabilize the reduced state. Its main advantage is its extendibility into a multi-FeS cluster protein by simply duplicating and translating the binding site along the coiled-coil axis. This opens new possibilities for designing protein-embedded redox chains that may be used as "wires" for coupling any given set of redox enzymes. PMID:20035711

  8. Solution structure and backbone dynamics of the defunct domain of calcium vector protein.

    PubMed

    Théret, I; Baladi, S; Cox, J A; Gallay, J; Sakamoto, H; Craescu, C T

    2001-11-20

    CaVP (calcium vector protein) is a Ca(2+) sensor of the EF-hand protein family which is highly abundant in the muscle of Amphioxus. Its three-dimensional structure is not known, but according to the sequence analysis, the protein is composed of two domains, each containing a pair of EF-hand motifs. We determined recently the solution structure of the C-terminal domain (Trp81-Ser161) and characterized the large conformational and dynamic changes induced by Ca(2+) binding. In contrast, the N-terminal domain (Ala1-Asp86) has lost the capacity to bind the metal ion due to critical mutations and insertions in the two calcium loops. In this paper, we report the solution structure of the N-terminal domain and its backbone dynamics based on NMR spectroscopy, nuclear relaxation, and molecular modeling. The well-resolved three-dimensional structure is typical of a pair of EF-hand motifs, joined together by a short antiparallel beta-sheet. The tertiary arrangement of the two EF-hands results in a closed-type conformation, with near-antiparallel alpha-helices, similar to other EF-hand pairs in the absence of calcium ions. To characterize the internal dynamics of the protein, we measured the (15)N nuclear relaxation rates and the heteronuclear NOE effect in (15)N-labeled N-CaVP at a magnetic field of 11.74 T and 298 K. The domain is mainly monomeric in solution and undergoes an isotropic Brownian rotational diffusion with a correlation time of 7.1 ns, in good agreement with the fluorescence anisotropy decay measurements. Data analysis using a model-free procedure showed that the amide backbone groups in the alpha-helices and beta-strands undergo highly restricted movements on a picosecond to nanosecond time scale. The amide groups in Ca(2+) binding loops and in the linker fragment also display rapid fluctuations with slightly increased amplitudes. PMID:11705378

  9. Nonlinear backbone torsional pair correlations in proteins

    PubMed Central

    Long, Shiyang; Tian, Pu

    2016-01-01

    Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain elusive despite intensive studies during last two and half decades. Based on analysis of molecular dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion of participating torsions, and occur on widely different and relatively longer time scales. In contrast, correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These findings implicate a general search strategy for novel allosteric modulation sites of protein activities. PMID:27708342

  10. Nonlinear backbone torsional pair correlations in proteins

    NASA Astrophysics Data System (ADS)

    Long, Shiyang; Tian, Pu

    2016-10-01

    Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain elusive despite intensive studies during last two and half decades. Based on analysis of molecular dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion of participating torsions, and occur on widely different and relatively longer time scales. In contrast, correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These findings implicate a general search strategy for novel allosteric modulation sites of protein activities.

  11. Inter-helical interactions in membrane proteins: analysis based on the local backbone geometry and the side chain interactions.

    PubMed

    Jha, Anupam Nath; Vishveshwara, Saraswathi

    2009-06-01

    The availability of a significant number of the structures of helical membrane proteins has prompted us to investigate the mode of helix-helix packing. In the present study, we have considered a dataset of alpha-helical membrane proteins representing structures solved from all the known superfamilies. We have described the geometry of all the helical residues in terms of local coordinate axis at the backbone level. Significant inter-helical interactions have been considered as contacts by weighing the number of atom-atom contacts, including all the side-chain atoms. Such a definition of local axis and the contact criterion has allowed us to investigate the inter-helical interaction in a systematic and quantitative manner. We show that a single parameter (designated as alpha), which is derived from the parameters representing the mutual orientation of local axes, is able to accurately capture the details of helix-helix interaction. The analysis has been carried out by dividing the dataset into parallel, anti-parallel, and perpendicular orientation of helices. The study indicates that a specific range of alpha value is preferred for interactions among the anti-parallel helices. Such a preference is also seen among interacting residues of parallel helices, however to a lesser extent. No such preference is seen in the case of perpendicular helices, the contacts that arise mainly due to the interaction of surface helices with the end of the trans-membrane helices. The study supports the prevailing view that the anti-parallel helices are well packed. However, the interactions between helices of parallel orientation are non-trivial. The packing in alpha-helical membrane proteins, which is systematically and rigorously investigated in this study, may prove to be useful in modeling of helical membrane proteins.

  12. UV raman examination of alpha-helical peptide water hydrogen bonding.

    PubMed

    Pimenov, Konstantin V; Bykov, Sergei V; Mikhonin, Aleksandr V; Asher, Sanford A

    2005-03-01

    UV resonance Raman spectra (UVRS) of an alpha-helical, 21 residue, mainly Ala peptide (AP) in the dehydrated solid state were compared to those in aqueous solution at different temperatures. The UVRS amide band frequencies of a dehydrated solid alpha-helix peptide show frequency shifts compared to those in aqueous solution due to the loss of amide backbone hydrogen bonding to water; the amide II and amide III bands of the solid alpha-helix downshift, while the amide I band upshifts. The shifts are identical in direction but smaller than those that occur for alpha-helices in aqueous solution as the temperature increases; water hydrogen bonding strengths decrease as the temperature increases. The UV Raman amide band frequency shifts can be used to monitor alpha-helix hydrogen bonding. PMID:15740105

  13. Amphipathic alpha-helices and putative cholesterol binding domains of the influenza virus matrix M1 protein are crucial for virion structure organisation.

    PubMed

    Tsfasman, Tatyana; Kost, Vladimir; Markushin, Stanislav; Lotte, Vera; Koptiaeva, Irina; Bogacheva, Elena; Baratova, Ludmila; Radyukhin, Victor

    2015-12-01

    The influenza virus matrix M1 protein is an amphitropic membrane-associated protein, forming the matrix layer immediately beneath the virus raft membrane, thereby ensuring the proper structure of the influenza virion. The objective of this study was to elucidate M1 fine structural characteristics, which determine amphitropic properties and raft membrane activities of the protein, via 3D in silico modelling with subsequent mutational analysis. Computer simulations suggest the amphipathic nature of the M1 α-helices and the existence of putative cholesterol binding (CRAC) motifs on six amphipathic α-helices. Our finding explains for the first time many features of this protein, particularly the amphitropic properties and raft/cholesterol binding potential. To verify these results, we generated mutants of the A/WSN/33 strain via reverse genetics. The M1 mutations included F32Y in the CRAC of α-helix 2, W45Y and W45F in the CRAC of α-helix 3, Y100S in the CRAC of α-helix 6, M128A and M128S in the CRAC of α-helix 8 and a double L103I/L130I mutation in both a putative cholesterol consensus motif and the nuclear localisation signal. All mutations resulted in viruses with unusual filamentous morphology. Previous experimental data regarding the morphology of M1-gene mutant influenza viruses can now be explained in structural terms and are consistent with the pivotal role of the CRAC-domains and amphipathic α-helices in M1-lipid interactions.

  14. Probing the alpha-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis.

    PubMed

    Guo, Zuojun; Mohanty, Udayan; Noehre, Justin; Sawyer, Tomi K; Sherman, Woody; Krilov, Goran

    2010-04-01

    Reactivation of the p53 cell apoptosis pathway through inhibition of the p53-hDM2 interaction is a viable approach to suppress tumor growth in many human cancers and stabilization of the helical structure of synthetic p53 analogs via a hydrocarbon cross-link (staple) has been found to lead to increased potency and inhibition of protein-protein binding (J. Am. Chem. Soc. 129: 5298). However, details of the structure and dynamic stability of the stapled peptides are not well understood. Here, we use extensive all-atom molecular dynamics simulations to study a series of stapled alpha-helical peptides over a range of temperatures in solution. The peptides are found to exhibit substantial variations in predicted alpha-helical propensities that are in good agreement with the experimental observations. In addition, we find significant variation in local structural flexibility of the peptides with the position of the linker, which appears to be more closely related to the observed differences in activity than the absolute alpha-helical stability. These simulations provide new insights into the design of alpha-helical stapled peptides and the development of potent inhibitors of alpha-helical protein-protein interfaces.

  15. Amphipathic Alpha-Helical Peptide Compositions as Antiviral Agents

    NASA Technical Reports Server (NTRS)

    Glenn, Jeffrey (Inventor); Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Cheong, Kwang Ho (Inventor)

    2014-01-01

    The invention features methods and compositions that exploit the ability of amphipathic alpha-helical (AH) peptides to cause disruption of lipid-containing vesicles, such as enveloped viruses, in a size-dependent manner.

  16. A sampling approach for protein backbone fragment conformations.

    PubMed

    Yu, J Y; Zhang, W

    2013-01-01

    In protein structure prediction, backbone fragment bias information can narrow down the conformational space of the whole polypeptide chain significantly. Unlike existing methods that use fragments as building blocks, the paper presents a probabilistic sampling approach for protein backbone torsion angles by modelling angular correlation of (phi, psi) with a directional statistics distribution. Given a protein sequence and secondary structure information, this method samples backbone fragments conformations by using a backtrack sampling algorithm for the hidden Markov model with multiple inputs and a single output. The proposed approach is applied to a fragment library, and some well-known structural motifs are sampled very well on the optimal path. Computational results show that the method can help to obtain native-like backbone fragments conformations. PMID:23777175

  17. Structural dependencies of protein backbone 2JNC' couplings.

    PubMed

    Juranić, Nenad; Dannenberg, J J; Cornilescu, Gabriel; Salvador, Pedro; Atanasova, Elena; Ahn, Hee-Chul; Macura, Slobodan; Markley, John L; Prendergast, Franklyn G

    2008-04-01

    Protein folding can introduce strain in peptide covalent geometry, including deviations from planarity that are difficult to detect, especially for a protein in solution. We have found dependencies in protein backbone (2)J(NC') couplings on the planarity and the relative orientation of the sequential peptide planes. These dependences were observed in experimental (2)J(NC') couplings from seven proteins, and also were supported by DFT calculations for a model tripeptide. Findings indicate that elevated (2)J(NC') couplings may serve as reporters of structural strain in the protein backbone imposed by protein folds. Such information, supplemented with the H-bond strengths derived from (h3)J(NC') couplings, provides useful insight into the overall energy profile of the protein backbone in solution.

  18. Consequences of non-uniformity in the stoichiometry of component fractions within one and two loops models of alpha-helical peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atoms in biomolecular structures like alpha helices contain an array of distances and angles which include abundant multiple patterns of redundancies. Thus all peptides backbones contain the three atom sequence N-C*C, whereas the repeating set of a four atom sequences (N-C*C-N, C*-C-N-C*, and C-N-C...

  19. Asp96 deprotonation and transmembrane alpha-helical structural changes in bacteriorhodopsin.

    PubMed

    Rothschild, K J; Marti, T; Sonar, S; He, Y W; Rath, P; Fischer, W; Khorana, H G

    1993-12-25

    The M-->N transition in the photocycle of bacteriorhodopsin involves the transfer of a proton from Asp96 to the retinylidene Schiff base, possibly through a network of hydrogen-bonded amino acid residues and water molecules (Rothschild, K. J., He, Y. W., Sonar, S., Marti, T., and Khorana, H. G. (1992) J. Biol. Chem. 267, 1615-1622). A conformational change of the protein backbone is also observed during this transition. In this work, we have investigated the effects of replacing the residue Thr46, which might be part of this chain, with an aspartic acid. Both Fourier transform infrared and resonance Raman spectroscopy show that the chromophore structure of this mutant (T46D) is normal. However, N formation is accelerated and N decay is significantly slowed compared to wild-type bacteriorhodopsin. This effect causes the N intermediate to accumulate under steady-state illumination thereby facilitating spectroscopic studies under normal pH conditions. Fourier transform infrared difference spectroscopy reveals that like native bacteriorhodopsin, N formation in T46D involves deprotonation of Asp96, reprotonation of the Schiff base, and a change in the backbone secondary structure. However, in contrast to bacteriorhodopsin, bands assigned to the C = O stretch mode of the carboxylic acid group of Asp96 are upshifted by 10 cm-1 reflecting a change in the Asp96 environment and a drop in its effective pKa throughout the photocycle. This change in the pKa can directly account for changes in the photocycle kinetics and indicates that Asp96 deprotonation/protonation are the rate limiting steps in the formation and decay of the N intermediate. By studying the effects of H/D exchange, evidence is found that the backbone structural changes involve transmembrane alpha-helices. It is proposed that these structural changes serve to modulate the local environment and protonation state of Asp96 during the photocycle and are also essential for formation of the proton conducting hydrogen

  20. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.

    PubMed

    Turner, David R; Kubelka, Jan

    2007-02-22

    Theoretical simulations are used to investigate the effects of aqueous solvent on the vibrational spectra of model alpha-helices, which are only partly exposed to solvent to mimic alpha-helices in proteins. Infrared absorption (IR) and vibrational circular dichroism (VCD) amide I' spectra for 15-amide alanine alpha-helices are simulated using density functional theory (DFT) calculations combined with the property transfer method. The solvent is modeled by explicit water molecules hydrogen bonded to the solvated amide groups. Simulated spectra for two partially solvated model alpha-helices, one corresponding to a more exposed and the other to a more buried structure, are compared to the fully solvated and unsolvated (gas phase) simulations. The dependence of the amide I spectra on the orientation of the partially solvated helix with respect to the solvent and effects of solvation on the amide I' of 13C isotopically substituted alpha-helices are also investigated. The partial exposure to solvent causes significant broadening of the amide I' bands due to differences in the vibrational frequencies of the explicitly solvated and unsolvated amide groups. The different degree of partial solvation is reflected primarily in the frequency shifts of the unsolvated (buried) amide group vibrations. Depending on which side of the alpha-helix is exposed to solvent, the simulated IR band-shapes exhibit significant changes, from broad and relatively featureless to distinctly split into two maxima. The simulated amide I' VCD band-shapes for the partially solvated alpha-helices parallel the broadening of the IR and exhibit more sign variation, but generally preserve the sign pattern characteristic of the alpha-helical structures and are much less dependent on the alpha-helix orientation with respect to the solvent. The simulated amide I' IR spectra for the model peptides with explicitly hydrogen-bonded water are consistent with the experimental data for small alpha-helical proteins

  1. Increasing protein production by directed vector backbone evolution

    PubMed Central

    2013-01-01

    Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis protocol for vector backbone optimization we report a novel directed evolution based approach to increase protein production levels by randomly introducing mutations in the vector backbone. In the current study we validate the epMEGAWHOP mutagenesis protocol for three different expression systems. The latter demonstrated the general applicability of the epMEGAWHOP method. Cellulase and lipase production was doubled in one round of directed evolution by random mutagenesis of pET28a(+) and pET22b(+) vector backbones. Protease production using the vector pHY300PLK was increased ~4-times with an average of ~1.25 mutations per kb vector backbone. The epMEGAWHOP does not require any rational understanding of the expression machinery and can generally be applied to enzymes, expression vectors and related hosts. epMEGAWHOP is therefore from our point of view a robust, rapid and straight forward alternative for increasing protein production in general and for biotechnological applications. PMID:23890095

  2. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Iljina, Marija; Tosatto, Laura; Choi, Minee L.; Sang, Jason C.; Ye, Yu; Hughes, Craig D.; Bryant, Clare E.; Gandhi, Sonia; Klenerman, David

    2016-09-01

    The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.

  3. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein

    PubMed Central

    Iljina, Marija; Tosatto, Laura; Choi, Minee L.; Sang, Jason C.; Ye, Yu; Hughes, Craig D.; Bryant, Clare E.; Gandhi, Sonia; Klenerman, David

    2016-01-01

    The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation. PMID:27671749

  4. Protein-Backbone Thermodynamics across the Membrane Interface.

    PubMed

    Bereau, Tristan; Kremer, Kurt

    2016-07-01

    The thermodynamics of insertion of a protein in a membrane depends on the fine interplay between backbone and side-chain contributions interacting with the lipid environment. Using computer simulations, we probe how different descriptions of the backbone glycyl unit affect the thermodynamics of insertion of individual residues, dipeptides, and entire transmembrane helices. Due to the lack of reference data, we first introduce an efficient methodology to estimate atomistic potential of mean force (PMF) curves from a series of representative and uncorrelated coarse-grained (CG) snapshots. We find strong discrepancies between two CG models, Martini and PLUM, against reference atomistic PMFs and experiments. Atomistic simulations suggest a weak free energy of insertion between water and a POPC membrane for the glycyl unit, in overall agreement with experimental results despite severe assumptions in our calculations. We show that refining the backbone contribution in PLUM significantly improves the PMF of insertion of the WALP16 transmembrane peptide. An improper balance between the glycyl backbone and the attached side chain will lead to energetic artifacts, rationalizing Martini's overstabilization of WALP's adsorbed interfacial state. It illustrates difficulties associated with free-energy-based parametrizations of single-residue models, as the relevant free energy of partitioning used for force-field parametrization does not arise from the entire residue but rather the solvent-accessible chemical groups. PMID:27138459

  5. Examining the Conservation of Kinks in Alpha Helices

    PubMed Central

    Wilman, Henry R.; Kelm, Sebastian; Shi, Jiye; Deane, Charlotte M.

    2016-01-01

    Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description. From this perspective, we examine the conservation of kinks in proteins. We find that kink angles are not generally a conserved property of homologs, pointing either to their not being functionally critical or to their function being related to conformational flexibility. In the latter case, the different structures of homologs are providing snapshots of different conformations. Sequence identity between homologous helices is informative in terms of kink conservation, but almost equally so is the sequence identity of residues in spatial proximity to the kink. In the specific case of proline, which is known to be prevalent in kinked helices, loss of a proline from a kinked helix often also results in the loss of a kink or reduction in its kink angle. We carried out a study of the seven transmembrane helices in the GPCR family and found that changes in kinks could be related both to subfamilies of GPCRs and also, in a particular subfamily, to the binding of agonists or antagonists. These results suggest conformational change upon receptor activation within the GPCR family. We also found correlation between kink angles in different helices, and the possibility of concerted motion could be investigated further by applying our method to molecular dynamics simulations. These observations reinforce the belief that helix kinks are key, functional, flexible points in structures. PMID:27314675

  6. Examining the Conservation of Kinks in Alpha Helices.

    PubMed

    Law, Eleanor C; Wilman, Henry R; Kelm, Sebastian; Shi, Jiye; Deane, Charlotte M

    2016-01-01

    Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description. From this perspective, we examine the conservation of kinks in proteins. We find that kink angles are not generally a conserved property of homologs, pointing either to their not being functionally critical or to their function being related to conformational flexibility. In the latter case, the different structures of homologs are providing snapshots of different conformations. Sequence identity between homologous helices is informative in terms of kink conservation, but almost equally so is the sequence identity of residues in spatial proximity to the kink. In the specific case of proline, which is known to be prevalent in kinked helices, loss of a proline from a kinked helix often also results in the loss of a kink or reduction in its kink angle. We carried out a study of the seven transmembrane helices in the GPCR family and found that changes in kinks could be related both to subfamilies of GPCRs and also, in a particular subfamily, to the binding of agonists or antagonists. These results suggest conformational change upon receptor activation within the GPCR family. We also found correlation between kink angles in different helices, and the possibility of concerted motion could be investigated further by applying our method to molecular dynamics simulations. These observations reinforce the belief that helix kinks are key, functional, flexible points in structures.

  7. Examining the Conservation of Kinks in Alpha Helices.

    PubMed

    Law, Eleanor C; Wilman, Henry R; Kelm, Sebastian; Shi, Jiye; Deane, Charlotte M

    2016-01-01

    Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description. From this perspective, we examine the conservation of kinks in proteins. We find that kink angles are not generally a conserved property of homologs, pointing either to their not being functionally critical or to their function being related to conformational flexibility. In the latter case, the different structures of homologs are providing snapshots of different conformations. Sequence identity between homologous helices is informative in terms of kink conservation, but almost equally so is the sequence identity of residues in spatial proximity to the kink. In the specific case of proline, which is known to be prevalent in kinked helices, loss of a proline from a kinked helix often also results in the loss of a kink or reduction in its kink angle. We carried out a study of the seven transmembrane helices in the GPCR family and found that changes in kinks could be related both to subfamilies of GPCRs and also, in a particular subfamily, to the binding of agonists or antagonists. These results suggest conformational change upon receptor activation within the GPCR family. We also found correlation between kink angles in different helices, and the possibility of concerted motion could be investigated further by applying our method to molecular dynamics simulations. These observations reinforce the belief that helix kinks are key, functional, flexible points in structures. PMID:27314675

  8. Deuterium exchange of alpha-helices and beta-sheets as monitored by electrospray ionization mass spectrometry.

    PubMed Central

    Wagner, D. S.; Melton, L. G.; Yan, Y.; Erickson, B. W.; Anderegg, R. J.

    1994-01-01

    Deuterium exchange was monitored by electrospray ionization mass spectrometry (ESI-MS) to study the slowly exchanging (hydrogen bonded) peptide hydrogens of several alpha-helical peptides and beta-sheet proteins. Polypeptides were synthetically engineered to have mainly disordered, alpha-helical, or beta-sheet structure. For 3 isomeric 31-residue alpha-helical peptides, the number of slowly exchanging hydrogens as measured by ESI-MS in 50% CF3CD2OD (pD 9.5) provided estimates of their alpha-helicities (26%, 40%, 94%) that agreed well with the values (17%, 34%, 98%) measured by circular dichroic spectroscopy in the same nondeuterated solvent. For 3 betabellins containing a pair of beta-sheets and a related disordered peptide, their order of structural stability (12D > 12S > 14D > 14S) shown by their deuterium exchange rates in 10% CD3OD/0.5% CD3CO2D (pD 3.8) as measured by ESI-MS was the same as their order of structural stability to unfolding with increasing temperature or guanidinium chloride concentration as measured by circular dichroic spectroscopy in water. Compared to monitoring deuterium exchange by proton NMR spectrometry, monitoring deuterium exchange by ESI-MS requires much less sample (1-50 micrograms), much shorter analysis time (10-90 min), and no chemical quenching of the exchange reaction. PMID:7987225

  9. Determination of backbone nitrogen-nitrogen J correlations in proteins.

    PubMed

    Theis, K; Dingley, A J; Hoffmann, A; Omichinski, J G; Grzesiek, S

    1997-12-01

    Recently, a quantitative J correlation technique has been presented which makes use of homonuclear Hartmann-Hahn cross-polarization (TOCSY) to measure (3)J(C)'(C)' in proteins isotopically enriched with (13)C [Grzesiek, S. and Bax, A. (1997) J. Biomol. NMR, 9, 207-211]. Since homonuclear Hartmann-Hahn is twice as fast as conventional COSY transfer, this method is much less sensitive to transverse relaxation, which is the principal limiting factor in achieving long-range J-coupling correlations in macromolecules. Here we describe a similar experiment which is used to measure(3) J(NN) coupling constants between sequential amide(15) N nuclei in the backbone of ubiquitin. As expected from the low magnetic moment of (15)N, the (3)J(NN) coupling constants are exceedingly small, with values between 0.14 and 0.36 Hz for residues in β-conformations and values below 0.15 Hz for residues in α-conformations. In contrast to what is expected from a Karplus-type dependence on the backbone angle ψ, large differences in the values of(3) J(NN) are observed for a number of residues with very similar backbone ψ angles. A quantitative description of statistical and systematic errors, in particular of relaxation effects during the TOCSY transfer, shows that these differences are highly significant. PMID:20859784

  10. Bax-induced cytochrome c release from mitochondria depends on alpha-helices-5 and -6.

    PubMed Central

    Heimlich, Gerd; McKinnon, Alastair D; Bernardo, Katussevani; Brdiczka, Dieter; Reed, John C; Kain, Renate; Krönke, Martin; Jürgensmeier, Juliane M

    2004-01-01

    The pro-apoptotic protein Bax plays a key role in the mitochondrial signalling pathway. Upon induction of apoptosis, Bax undergoes a conformational change and translocates to mitochondrial membranes, where it inserts and mediates the release of cytochrome c from the intermembrane space into the cytosol. However, the domains of Bax that are essential for the induction of cytochrome c release are still elusive. Therefore various Bax deletion mutants were generated and expressed in Escherichia coli. The proteins were then purified in order to delineate the function of the transmembrane domain, the BH3 (Bcl-2 homology 3) domain and the putative pore-forming alpha-helices-5 and -6. These proteins were used to analyse the mechanism of Bax-induced cytochrome c release from mitochondria. None of the Bax proteins caused cytochrome c release merely through physical perturbation of the mitochondrial outer membrane. The alpha-helices-5 and -6 of Bax were shown to mediate the insertion of the protein into mitochondrial membranes and to be essential for the cytochrome c -releasing activity of Bax. In contrast, neither the transmembrane domain nor a functional BH3 domain is required for the Bax-mediated release of cytochrome c from mitochondria. PMID:14614769

  11. Relaxation of backbone bond geometry improves protein energy landscape modeling.

    PubMed

    Conway, Patrick; Tyka, Michael D; DiMaio, Frank; Konerding, David E; Baker, David

    2014-01-01

    A key issue in macromolecular structure modeling is the granularity of the molecular representation. A fine-grained representation can approximate the actual structure more accurately, but may require many more degrees of freedom than a coarse-grained representation and hence make conformational search more challenging. We investigate this tradeoff between the accuracy and the size of protein conformational search space for two frequently used representations: one with fixed bond angles and lengths and one that has full flexibility. We performed large-scale explorations of the energy landscapes of 82 protein domains under each model, and find that the introduction of bond angle flexibility significantly increases the average energy gap between native and non-native structures. We also find that incorporating bonded geometry flexibility improves low resolution X-ray crystallographic refinement. These results suggest that backbone bond angle relaxation makes an important contribution to native structure energetics, that current energy functions are sufficiently accurate to capture the energetic gain associated with subtle deformations from chain ideality, and more speculatively, that backbone geometry distortions occur late in protein folding to optimize packing in the native state.

  12. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    SciTech Connect

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  13. Retrieving backbone string neighbors provides insights into structural modeling of membrane proteins.

    PubMed

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-07-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold.

  14. A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.

    PubMed Central

    Efremov, R G; Nolde, D E; Vergoten, G; Arseniev, A S

    1999-01-01

    We describe application of the implicit solvation model (see the first paper of this series), to Monte Carlo simulations of several peptides in bilayer- and water-mimetic environments, and in vacuum. The membrane-bound peptides chosen were transmembrane segments A and B of bacteriorhodopsin, the hydrophobic segment of surfactant lipoprotein, and magainin2. Their conformations in membrane-like media are known from the experiments. Also, molecular dynamics study of surfactant lipoprotein with different explicit solvents has been reported (Kovacs, H., A. E. Mark, J. Johansson, and W. F. van Gunsteren. 1995. J. Mol. Biol. 247:808-822). The principal goal of this work is to compare the results obtained in the framework of our solvation model with available experimental and computational data. The findings could be summarized as follows: 1) structural and energetic properties of studied molecules strongly depend on the solvent; membrane-mimetic media significantly promote formation of alpha-helices capable of traversing the bilayer, whereas a polar environment destabilizes alpha-helical conformation via reduction of solvent-exposed surface area and packing; 2) the structures calculated in a membrane-like environment agree with the experimental ones; 3) noticeable differences in conformation of surfactant lipoprotein assessed via Monte Carlo simulation with implicit solvent (this work) and molecular dynamics in explicit solvent were observed; 4) in vacuo simulations do not correctly reproduce protein-membrane interactions, and hence should be avoided in modeling membrane proteins. PMID:10233063

  15. Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy.

    PubMed Central

    Müller, Daniel J; Kessler, Max; Oesterhelt, Filipp; Möller, Clemens; Oesterhelt, Dieter; Gaub, Hermann

    2002-01-01

    The combination of high-resolution atomic force microscopy imaging and single-molecule force spectroscopy allows the identification, selection, and mechanical investigation of individual proteins. In a recent paper we had used this technique to unfold and extract single bacteriorhodopsins (BRs) from native purple membrane patches. We show that subsets of the unfolding spectra can be classified and grouped to reveal detailed insight into the individualism of the unfolding pathways. We have further developed this technique and analysis to report here on the influence of pH effects and local mutations on the stability of individual structural elements of BR against mechanical unfolding. We found that, although the seven transmembrane alpha-helices predominantly unfold in pairs, each of the helices may also unfold individually and in some cases even only partially. Additionally, intermittent states in the unfolding process were found, which are associated with the stretching of the extracellular loops connecting the alpha-helices. This suggests that polypeptide loops potentially act as a barrier to unfolding and contribute significantly to the structural stability of BR. Chemical removal of the Schiff base, the covalent linkage of the photoactive retinal to the helix G, resulted in a predominantly two-step unfolding of this helix. It is concluded that the covalent linkage of the retinal to helix G stabilizes the structure of BR. Trapping mutant D96N in the M state of the proton pumping photocycle did not affect the unfolding barriers of BR. PMID:12496125

  16. Alpha-turn mimetics: short peptide alpha-helices composed of cyclic metallopentapeptide modules.

    PubMed

    Kelso, Michael J; Beyer, Renée L; Hoang, Huy N; Lakdawala, Ami S; Snyder, James P; Oliver, Warren V; Robertson, Tom A; Appleton, Trevor G; Fairlie, David P

    2004-04-21

    Alpha-Helices are key structural components of proteins and important recognition motifs in biology. Short peptides (protein environments. New techniques for stabilizing short peptide helices could be valuable for studying protein folding, modeling proteins, creating artificial proteins, and may aid the design of inhibitors or mimics of protein function. This study reports the facile incorporation of 3- and 4-alpha turns in 10-15 residue peptides through formation in situ of multiple cyclic metallopeptide modules [Pd(en)(H*XXXH*)](2+). The nonhelical peptides Ac-H*ELTH*H*VTDH*-NH(2) (1), Ac-H*ELTH*AVTDYH*ELTH*-NH(2) (2), and Ac-H*AAAH*HELTH*H*VTDH*-NH(2) (3) (H is histidine-methylated at imidazole-N3) react in N,N-dimethylformamide (DMF) or water with 2, 2, and 3 molar equivalents, respectively, of [Pd(en)(NO(3))(2)] to form exclusively [Pd(2)(en)(2)(Ac-H*ELTH*H*VTDH*-NH(2))](4+) (4), [Pd(2)(en)(2)(Ac-H*ELTH*AVTDYH*ELTH*-NH(2))](4+) (5), and [Pd(3)(en)(3)(Ac-H*AAAH*HELTH*H*VTDH*-NH(2))](6+) (6), characterized by mass spectrometry, 1D and 2D (1)H- and 1D (15)N-NMR spectroscopy. Despite the presence of multiple histidines and other possible metal-binding residues in these peptides, 2D (1)H NMR spectra reveal that Pd(en)(2+) is remarkably specific in coordinating to imidazole-N1 of only (i, i + 4) pairs of histidines (i.e., only those separated by three amino acids), resulting in 4-6 made up of cyclic metallopentapeptide modules ([Pd(en)(H*XXXH*)](2+))(n), n = 2, 2, 3, respectively, each cycle being a 22-membered ring. We have previously shown that a single metallopentapeptide can nucleate alpha-helicity (Kelso et al., Angew. Chem., Int. Ed. 2003, 42, 421-424.). We now demonstrate its use as an alpha-turn-mimicking module for the facile conversion of unstructured short peptides into helices of macrocycles and provide 1D and 2D NMR spectroscopic data, structure

  17. Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold

    SciTech Connect

    Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew; Carrico, Chris; Kalyuzhniy, Oleksandr; Chen, Lei; Schroeter, Alexandria; Huang, Po-Ssu; McLellan, Jason S.; Kwong, Peter D.; Baker, David; Strong, Roland K.; Schief, William R.

    2012-02-07

    The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

  18. Backbone Additivity in the Transfer Model of Protein Solvation

    SciTech Connect

    Hu, Char Y.; Kokubo, Hironori; Lynch, Gillian C.; Bolen, D Wayne; Pettitt, Bernard M.

    2010-05-01

    The transfer model implying additivity of the peptide backbone free energy of transfer is computationally tested. Molecular dynamics simulations are used to determine the extent of change in transfer free energy (ΔGtr) with increase in chain length of oligoglycine with capped end groups. Solvation free energies of oligoglycine models of varying lengths in pure water and in the osmolyte solutions, 2M urea and 2M trimethylamine N-oxide (TMAO), were calculated from simulations of all atom models, and ΔGtr values for peptide backbone transfer from water to the osmolyte solutions were determined. The results show that the transfer free energies change linearly with increasing chain length, demonstrating the principle of additivity, and provide values in reasonable agreement with experiment. The peptide backbone transfer free energy contributions arise from van der Waals interactions in the case of transfer to urea, but from electrostatics on transfer to TMAO solution. The simulations used here allow for the calculation of the solvation and transfer free energy of longer oligoglycine models to be evaluated than is currently possible through experiment. The peptide backbone unit computed transfer free energy of –54 cal/mol/Mcompares quite favorably with –43 cal/mol/M determined experimentally.

  19. Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR 15N-relaxation measurements.

    PubMed

    Lo, Ryan H; Kroncke, Brett M; Solomon, Tsega L; Columbus, Linda

    2014-10-01

    The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR (15)N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins.

  20. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence. PMID:27586953

  1. Modeling 15N NMR chemical shift changes in protein backbone with pressure

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-01

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  2. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain

    PubMed Central

    Schumann, Frank H.; Varadan, Ranjani; Tayakuniyil, Praveen P.; Grossman, Jennifer H.; Camarero, Julio A.; Fushman, David

    2015-01-01

    Understanding of the effects of the backbone cyclization on the structure and dynamics of a protein is essential for using protein topology engineering to alter protein stability and function. Here we have determined, for the first time, the structure and dynamics of the linear and various circular constructs of the N-SH3 domain from protein c-Crk. These constructs differ in the length and amino acid composition of the cyclization region. The backbone cyclization was carried out using intein-mediated intramolecular chemical ligation between the juxtaposed N- and the C-termini. The structure and backbone dynamics studies were performed using solution NMR. Our data suggest that the backbone cyclization has little effect on the overall three-dimensional structure of the SH3 domain: besides the termini, only minor structural changes were found in the proximity of the cyclization region. In contrast to the structure, backbone dynamics are significantly affected by the cyclization. On the subnanosecond time scale, the backbone of all circular constructs on average appears more rigid than that of the linear SH3 domain; this effect is observed over the entire backbone and is not limited to the cyclization site. The backbone mobility of the circular constructs becomes less restricted with increasing length of the circularization loop. In addition, significant conformational exchange motions (on the sub-millisecond time scale) were found in the N-Src loop and in the adjacent β-strands in all circular constructs studied in this work. These effects of backbone cyclization on protein dynamics have potential implications for the stability of the protein fold and for ligand binding. PMID:25905098

  3. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    PubMed

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation.

  4. Using Excel To Study The Relation Between Protein Dihedral Angle Omega And Backbone Length

    NASA Astrophysics Data System (ADS)

    Shew, Christopher; Evans, Samari; Tao, Xiuping

    How to involve the uninitiated undergraduate students in computational biophysics research? We made use of Microsoft Excel to carry out calculations of bond lengths, bond angles and dihedral angles of proteins. Specifically, we studied protein backbone dihedral angle omega by examining how its distribution varies with the length of the backbone length. It turns out Excel is a respectable tool for this task. An ordinary current-day desktop or laptop can handle the calculations for midsized proteins in just seconds. Care has to be taken to enter the formulas for the spreadsheet column after column to minimize the computing load. Supported in part by NSF Grant #1238795.

  5. Nano-Scale Alignment of Proteins on a Flexible DNA Backbone

    PubMed Central

    Nojima, Tatsuya; Konno, Hiroki; Kodera, Noriyuki; Seio, Kohji; Taguchi, Hideki; Yoshida, Masasuke

    2012-01-01

    Nano-scale alignment of several proteins with freedom of motion is equivalent to an enormous increase in effective local concentration of proteins and will enable otherwise impossible weak and/or cooperative associations between them or with their ligands. For this purpose, a DNA backbone made of six oligodeoxynucleotide (ODN) chains is designed in which five double-stranded segments are connected by four single-stranded flexible linkers. A desired protein with an introduced cysteine is connected covalently to the 5′-end of azido-ODN by catalyst-free click chemistry. Then, six protein-ODN conjugates are assembled with their complementary nucleotide sequences into a single multi-protein-DNA complex, and six proteins are aligned along the DNA backbone. Flexible alignment of proteins is directly observed by high-speed AFM imaging, and association of proteins with weak interaction is demonstrated by fluorescence resonance energy transfer between aligned proteins. PMID:23300700

  6. Effects of Protein Stabilizing Agents on Thermal Backbone Motions: A Disulfide Trapping Study†

    PubMed Central

    Butler, Scott L.; Falke, Joseph J.

    2010-01-01

    Chemical stabilizers are widely used to enhance protein stability, both in nature and in the laboratory. Here, the molecular mechanism of chemical stabilizers is studied using a disulfide trapping assay to measure the effects of stabilizers on thermal backbone dynamics in the Escherichia coli galactose/glucose binding protein. Two types of backbone fluctuations are examined: (a) relative movements of adjacent surface α-helices within the same domain and (b) interdomain twisting motions. Both types of fluctuations are significantly reduced by all six stabilizers tested (glycerol, sucrose, trehalose, l-glucose, d-glucose, and d-galactose), and in each case larger amplitude motions are inhibited more than smaller ones. Motional inhibition does not require a high-affinity stabilizer binding site, indicating that the effects of stabilizers are nonspecific. Overall, the results support the theory that effective stabilizing agents act by favoring the most compact structure of a protein, thereby reducing local backbone fluctuations away from the fully folded state. Such inhibition of protein backbone dynamics may be a general mechanism of protein stabilization in extreme thermal or chemical environments. PMID:8718847

  7. Protein backbone torsion angle-based structure comparison and secondary structure database web server.

    PubMed

    Jung, Sunghoon; Bae, Se-Eun; Ahn, Insung; Son, Hyeon S

    2013-09-01

    Structural information has been a major concern for biological and pharmaceutical studies for its intimate relationship to the function of a protein. Three-dimensional representation of the positions of protein atoms is utilized among many structural information repositories that have been published. The reliability of the torsional system, which represents the native processes of structural change in the structural analysis, was partially proven with previous structural alignment studies. Here, a web server providing structural information and analysis based on the backbone torsional representation of a protein structure is newly introduced. The web server offers functions of secondary structure database search, secondary structure calculation, and pair-wise protein structure comparison, based on a backbone torsion angle representation system. Application of the implementation in pair-wise structural alignment showed highly accurate results. The information derived from this web server might be further utilized in the field of ab initio protein structure modeling or protein homology-related analyses.

  8. A unified NMR strategy for high-throughput determination of backbone fold of small proteins.

    PubMed

    Kumar, Dinesh; Gautam, Anmol; Hosur, Ramakrishna V

    2012-12-01

    An efficient semi-automated strategy called PFBD (i.e. Protein Fold from Backbone Data only) has been presented for rapid backbone fold determination of small proteins. It makes use of NMR parameters involving backbone atoms only. These include chemical shifts, amide-amide NOEs and H-bonds. The backbone chemical shifts are obtained in an automated manner from the orthogonal 2D projections of variants of HNN and HN(C)N experiments (Kumar et al., in Magn Reson Chem 50(5):357-363, 2012) using AUTOBA (Borkar et al. in J Biomol NMR 50(3):285-297, 2011); backbone H-bonds are manually derived from constant time long-range 2D-HnCO spectrum (Cordier and Grzesiek in J Am Chem Soc 121:1601-1602, 1999); and amide-amide NOEs are derived from 3D HNCO NOESY experiment which provides NOEs along the direct (1)H dimension that has maximum resolution (Lohr and Ruterjans in J Biomol NMR 9(1):371-388, 1997). All the experiments needed for the execution of PFBD can be recorded and analyzed in about 24-48 h depending upon the concentration of the protein and dispersion of amide cross-peaks in the (1)H-(15)N correlation spectrum. Thus, we believe that the strategy, because of its speed and simplicity will be very valuable in Biomolecular NMR community for high-throughput structural proteomics of small folded proteins of MW < 10-12 kDa, the regime where NMR is generally preferred over X-ray crystallography. The strategy has been validated and demonstrated here on two small globular proteins: human ubiquitin (76 aa) and chicken SH3 domain (62 aa). PMID:23054485

  9. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements.

  10. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  11. Folding a protein by discretizing its backbone torsional dynamics

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    1999-05-01

    The aim of this work is to provide a coarse codification of local conformational constraints associated with each folding motif of a peptide chain in order to obtain a rough solution to the protein folding problem. This is accomplished by implementing a discretized version of the soft-mode dynamics on a personal computer (PC). Our algorithm mimics a parallel process as it evaluates concurrent folding possibilities by pattern recognition. It may be implemented in a PC as a sequence of perturbation-translation-renormalization (p-t-r) cycles performed on a matrix of local topological constraints (LTM). This requires suitable representational tools and a periodic quenching of the dynamics required for renormalization. We introduce a description of the peptide chain based on a local discrete variable the values of which label the basins of attraction of the Ramachandran map for each residue. Thus, the local variable indicates the basin in which the torsional coordinates of each residue lie at a given time. In addition, a coding of local topological constraints associated with each secondary and tertiary structural motif is introduced. Our treatment enables us to adopt a computation time step of 81 ps, a value far larger than hydrodynamic drag time scales. Folding pathways are resolved as transitions between patterns of locally encoded structural signals that change within the 10 μs-100 ms time scale range. These coarse folding pathways are generated by the periodic search for structural patterns in the time-evolving LTM. Each pattern is recorded as a contact matrix, an operation subject to a renormalization feedback loop. The validity of our approach is tested vis-a-vis experimentally-probed folding pathways eventually generating tertiary interactions in proteins which recover their active structure under in vitro renaturation conditions. As an illustration, we focus on determining significant folding intermediates and late kinetic bottlenecks that occur within the

  12. Centrosymmetric bilayers in the 0.75 A resolution structure of a designed alpha-helical peptide, D,L-Alpha-1.

    PubMed Central

    Patterson, W. R.; Anderson, D. H.; DeGrado, W. F.; Cascio, D.; Eisenberg, D.

    1999-01-01

    We report the 0.75 A crystal structure of a racemic mixture of the 12-residue designed peptide "Alpha-1" (Acetyl-ELLKKLLEELKG), the L-enantiomer of which is described in the accompanying paper. Equivalent solutions of the centrosymmetric bilayers were determined by two direct phasing programs in space groups P1 and P1bar. The unit cell contains two L-alpha-helices and two D-alpha-helices. The columnar-sheet bilayer motif seen in L-Alpha-1 is maintained in the D,L-Alpha-1 structure except that each sheet of head-to-tail helices is composed of one enantiomer and is related to its neighboring sheets by inversion symmetry. Comparison to the L-Alpha-1 structure provides further insight into peptide design. The high resolution and small asymmetric unit allowed building an intricate model (R = 13.1%, Rfree = 14.5%) that incorporates much of the discrete disorder of peptide and solvent. Ethanolamine and 2-methyl-2,4-pentanediol (MPD) molecules bind near helix termini. Rigid body analysis identifies sites of restricted displacements and torsions. Side-chain discrete disorder propagates into the backbone of one helix but not the other. Although no side chain in Alpha-1 is rigid, the environments in the crystal restrict some of them to no or only one active torsion. PMID:10422829

  13. RASP: rapid and robust backbone chemical shift assignments from protein structure.

    PubMed

    MacRaild, Christopher A; Norton, Raymond S

    2014-03-01

    Chemical shift prediction has an unappreciated power to guide backbone resonance assignment in cases where protein structure is known. Here we describe Resonance Assignment by chemical Shift Prediction (RASP), a method that exploits this power to derive protein backbone resonance assignments from chemical shift predictions. Robust assignments can be obtained from a minimal set of only the most sensitive triple-resonance experiments, even for spectroscopically challenging proteins. Over a test set of 154 proteins RASP assigns 88 % of residues with an accuracy of 99.7 %, using only information available from HNCO and HNCA spectra. Applied to experimental data from a challenging 34 kDa protein, RASP assigns 90 % of manually assigned residues using only 40 % of the experimental data required for the manual assignment. RASP has the potential to significantly accelerate the backbone assignment process for a wide range of proteins for which structural information is available, including those for which conventional assignment strategies are not feasible. PMID:24445369

  14. Protein backbone angle restraints from searching a database for chemical shift and sequence homology.

    PubMed

    Cornilescu, G; Delaglio, F; Bax, A

    1999-03-01

    Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C alpha, 13C beta, 13C', 1H alpha and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar phi and psi backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 degrees. Approximately 3% of the predictions made by TALOS are found to be in error.

  15. On the satisfaction of backbone-carbonyl lone pairs of electrons in protein structures.

    PubMed

    Bartlett, Gail J; Woolfson, Derek N

    2016-04-01

    Protein structures are stabilized by a variety of noncovalent interactions (NCIs), including the hydrophobic effect, hydrogen bonds, electrostatic forces and van der Waals' interactions. Our knowledge of the contributions of NCIs, and the interplay between them remains incomplete. This has implications for computational modeling of NCIs, and our ability to understand and predict protein structure, stability, and function. One consideration is the satisfaction of the full potential for NCIs made by backbone atoms. Most commonly, backbone-carbonyl oxygen atoms located within α-helices and β-sheets are depicted as making a single hydrogen bond. However, there are two lone pairs of electrons to be satisfied for each of these atoms. To explore this, we used operational geometric definitions to generate an inventory of NCIs for backbone-carbonyl oxygen atoms from a set of high-resolution protein structures and associated molecular-dynamics simulations in water. We included more-recently appreciated, but weaker NCIs in our analysis, such as n→π* interactions, Cα-H bonds and methyl-H bonds. The data demonstrate balanced, dynamic systems for all proteins, with most backbone-carbonyl oxygen atoms being satisfied by two NCIs most of the time. Combinations of NCIs made may correlate with secondary structure type, though in subtly different ways from traditional models of α- and β-structure. In addition, we find examples of under- and over-satisfied carbonyl-oxygen atoms, and we identify both sequence-dependent and sequence-independent secondary-structural motifs in which these reside. Our analysis provides a more-detailed understanding of these contributors to protein structure and stability, which will be of use in protein modeling, engineering and design. PMID:26833776

  16. On the satisfaction of backbone-carbonyl lone pairs of electrons in protein structures.

    PubMed

    Bartlett, Gail J; Woolfson, Derek N

    2016-04-01

    Protein structures are stabilized by a variety of noncovalent interactions (NCIs), including the hydrophobic effect, hydrogen bonds, electrostatic forces and van der Waals' interactions. Our knowledge of the contributions of NCIs, and the interplay between them remains incomplete. This has implications for computational modeling of NCIs, and our ability to understand and predict protein structure, stability, and function. One consideration is the satisfaction of the full potential for NCIs made by backbone atoms. Most commonly, backbone-carbonyl oxygen atoms located within α-helices and β-sheets are depicted as making a single hydrogen bond. However, there are two lone pairs of electrons to be satisfied for each of these atoms. To explore this, we used operational geometric definitions to generate an inventory of NCIs for backbone-carbonyl oxygen atoms from a set of high-resolution protein structures and associated molecular-dynamics simulations in water. We included more-recently appreciated, but weaker NCIs in our analysis, such as n→π* interactions, Cα-H bonds and methyl-H bonds. The data demonstrate balanced, dynamic systems for all proteins, with most backbone-carbonyl oxygen atoms being satisfied by two NCIs most of the time. Combinations of NCIs made may correlate with secondary structure type, though in subtly different ways from traditional models of α- and β-structure. In addition, we find examples of under- and over-satisfied carbonyl-oxygen atoms, and we identify both sequence-dependent and sequence-independent secondary-structural motifs in which these reside. Our analysis provides a more-detailed understanding of these contributors to protein structure and stability, which will be of use in protein modeling, engineering and design.

  17. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks.

    PubMed

    Shen, Yang; Bax, Ad

    2013-07-01

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (ϕ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ(1) rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  18. Simulation of coherent energy transfer in an alpha-helical peptide by Fermi resonance.

    PubMed Central

    Clarke, D L; Collins, M A

    1992-01-01

    A mechanism by which NH stretching quanta are coherently transported along a chain of hydrogen bonded peptide groups is demonstrated by classical simulation of a section of the alpha-helical peptide poly(L-alanine). Vibrational motion takes place on a complex energy surface constructed from earlier ab initio and empirical surfaces. A speculative hypothesis of the biological role of this mechanism is presented, and the critical parameters governing the dynamics are identified and discussed. Images FIGURE 1 PMID:1547322

  19. RosettaBackrub—a web server for flexible backbone protein structure modeling and design

    PubMed Central

    Lauck, Florian; Smith, Colin A.; Friedland, Gregory F.; Humphris, Elisabeth L.; Kortemme, Tanja

    2010-01-01

    The RosettaBackrub server (http://kortemmelab.ucsf.edu/backrub) implements the Backrub method, derived from observations of alternative conformations in high-resolution protein crystal structures, for flexible backbone protein modeling. Backrub modeling is applied to three related applications using the Rosetta program for structure prediction and design: (I) modeling of structures of point mutations, (II) generating protein conformational ensembles and designing sequences consistent with these conformations and (III) predicting tolerated sequences at protein–protein interfaces. The three protocols have been validated on experimental data. Starting from a user-provided single input protein structure in PDB format, the server generates near-native conformational ensembles. The predicted conformations and sequences can be used for different applications, such as to guide mutagenesis experiments, for ensemble-docking approaches or to generate sequence libraries for protein design. PMID:20462859

  20. Computer assignment of the backbone resonances of labelled proteins using two-dimensional correlation experiments.

    PubMed

    Morelle, N; Brutscher, B; Simorre, J P; Marion, D

    1995-02-01

    We present ALPS (Assignment for Labelled Protein Spectra), a flexible computer program for the automatic assignment of backbone NMR resonances of (15)N/(13)C-labelled proteins. The program constructs pseudoresidues from peak-picking lists of a set of two-dimensional triple resonance experiments and uses either a systematic search or a simulated annealing-based optimization to perform the assignment. This method has been successfully tested on two-dimensional triple resonance spectra of Rhodobacter capsulatus ferrocytochrome c (2) (116 amino acids).

  1. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  2. NMR Structure Determination for Larger Proteins Using Backbone-Only Data

    PubMed Central

    Raman, Srivatsan; Lange, Oliver F.; Rossi, Paolo; Tyka, Michael; Wang, Xu; Aramini, James; Liu, Gaohua; Ramelot, Theresa; Eletsky, Alexander; Szyperski, Thomas; Kennedy, Michael; Prestegard, James; Montelione, Gaetano T.; Baker, David

    2010-01-01

    Conventional protein structure determination from nuclear magnetic resonance data relies heavily on side-chain proton-proton distances. The necessary side-chain resonance assignment, however, is labor intensive and prone to error. Here we show that structures can be accurately determined without NMR information on the sidechains for proteins up to 25 kDa by incorporating backbone chemical shifts, residual dipolar couplings, and amide proton distances into the Rosetta protein structure modelling methodology. These data, which are too sparse for conventional methods, serve only to guide conformational search towards the lowest energy conformations in the folding landscape; the details of the computed models are determined by the physical chemistry implicit in the Rosetta all atom energy function. The new method is not hindered by the deuteration required to suppress nuclear relaxation processes for proteins greater than 15 kDa, and should enable routine NMR structure determination for larger proteins. PMID:20133520

  3. A practical implementation of cross-spectrum in protein backbone resonance assignment.

    PubMed

    Chen, Kang; Delaglio, Frank; Tjandra, Nico

    2010-04-01

    The concept of cross-spectrum is applied in protein NMR spectroscopy to assist in the backbone sequential resonance assignment. Cross-spectrum analysis is used routinely to reveal correlations in frequency domains as a means to reveal common features contained in multiple time series. Here the cross-spectrum between related NMR spectra, for example HNCO and HN(CA)CO, can be calculated with point-by-point multiplications along their common C' carbon axis. In the resulting higher order cross-spectrum, an enhanced correlation signal occurs at every common i-1 carbon frequency allowing the amide proton H(N) (and nitrogen N) resonances from residues i and i-1 to be identified. The cross-spectrum approach is demonstrated using 2D spectra H(N)CO, H(NCA)CO, H(NCO)CACB, and H(N)CACB measured on a 15N/13C double-labeled Ubiquitin sample. These 2D spectra are used to calculate two pseudo-3D cross-spectra, H(i)-H(i)(-1)-C'(i)(-1) and H(i)-H(i)(-1)-CA(i)(-1)CB(i)(-1). We show using this approach, backbone resonances of H, C', CA, and CB can be fully assigned without ambiguity. The cross-spectrum principle is expected to offer an easy, practical, and more quantitative approach for heteronuclear backbone resonance assignment. PMID:20053573

  4. Conformation of di-n-propylglycine residues (Dpg) in peptides: crystal structures of a type I' beta-turn forming tetrapeptide and an alpha-helical tetradecapeptide.

    PubMed

    Hegde, Raghurama P; Aravinda, Subrayashastry; Rai, Rajkishor; Kaul, Ramesh; Vijayalakshmi, Sarojini; Rao, R Balaji; Shamala, Narayanaswamy; Balaram, Padmanabhan

    2008-05-01

    The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I'beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 --> 1 hydrogen bonds. In addition, a single 4 --> 1 hydrogen bond is also observed at the N-terminus. All five Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C(alpha)-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean tau values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively.

  5. Structure and assembly of group B streptococcus pilus 2b backbone protein.

    PubMed

    Cozzi, Roberta; Malito, Enrico; Lazzarin, Maddalena; Nuccitelli, Annalisa; Castagnetti, Andrea; Bottomley, Matthew J; Margarit, Immaculada; Maione, Domenico; Rinaudo, C Daniela

    2015-01-01

    Group B Streptococcus (GBS) is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b) at 1.06Å resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468) encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization.

  6. Structure and Assembly of Group B Streptococcus Pilus 2b Backbone Protein

    PubMed Central

    Cozzi, Roberta; Malito, Enrico; Lazzarin, Maddalena; Nuccitelli, Annalisa; Castagnetti, Andrea; Bottomley, Matthew J.; Margarit, Immaculada; Maione, Domenico; Rinaudo, C. Daniela

    2015-01-01

    Group B Streptococcus (GBS) is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b) at 1.06Å resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468) encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization. PMID:25942637

  7. BEST-HNN and 2D-(HN) NH experiments for rapid backbone assignment in proteins

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Paul, Subhradip; Hosur, Ramakrishna V.

    2010-05-01

    HNN has proven to be an extremely valuable experiment for rapid and unambiguous backbone (H N, 15N) assignment in ( 13C, 15N) labeled proteins. However, low sensitivity of the experiment is often a limiting factor, especially when the transverse relaxation times ( T2) are short. We show here that BEST modification Schanda et al. (2006) [2] increases the sensitivity per unit time by more than a factor of 2.0 and thus substantially increases the speed of data collection; good 3D data can be collected in 8-10 h. Next, we present a simple method for amino-acid type identification based on simple 2D versions of the HNN experiment, labeled here as 2D-(HN) NH. Each of these experiments which produce anchor points for Gly, Ala, Ser/Thr residues, can be recorded in less than an hour. These enable rapid data acquisition, rapid analysis, and consequently rapid assignment of backbone (H N, 15N) resonances. The 2D-(HN) NH experiment does not involve aliphatic/aromatic protons and hence can be applied to deuterated protein samples as well, which is an additional advantage. The experiments have been demonstrated with human ubiquitin (76 aa) and acetic-acid denatured HIV-1 protease (99 aa), as representatives of folded and unfolded protein systems, respectively.

  8. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.

    PubMed

    Shen, Yang; Delaglio, Frank; Cornilescu, Gabriel; Bax, Ad

    2009-08-01

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between 13C, 15N and 1H chemical shifts and backbone torsion angles phi and psi (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted phi and psi angles, equals +/-13 degrees . Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

  9. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    DOE PAGES

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL)more » of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.« less

  10. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    SciTech Connect

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL) of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.

  11. Enhanced biosynthetically directed fractional carbon-13 enrichment of proteins for backbone NMR assignments.

    PubMed

    Wenrich, Broc R; Sonstrom, Reilly E; Gupta, Riju A; Rovnyak, David

    2015-11-01

    Routes to carbon-13 enrichment of bacterially expressed proteins include achieving uniform or positionally selective (e.g. ILV-Me, or (13)C', etc.) enrichment. We consider the potential for biosynthetically directed fractional enrichment (e.g. carbon-13 incorporation in the protein less than 100%) for performing routine n-(D)dimensional NMR spectroscopy of proteins. First, we demonstrate an approach to fractional isotope addition where the initial growth media containing natural abundance glucose is replenished at induction with a small amount (e.g. 10%(w/w)u-(13)C-glucose) of enriched nutrient. The approach considered here is to add 10% (e.g. 200mg for a 2g/L culture) u-(13)C-glucose at the induction time (OD600=0.8), resulting in a protein with enhanced (13)C incorporation that gives almost the same NMR signal levels as an exact 20% (13)C sample. Second, whereas fractional enrichment is used for obtaining stereospecific methyl assignments, we find that (13)C incorporation levels no greater than 20%(w/w) yield (13)C and (13)C-(13)C spin pair incorporation sufficient to conduct typical 3D-bioNMR backbone experiments on moderate instrumentation (600 MHz, RT probe). Typical 3D-bioNMR experiments of a fractionally enriched protein yield expected backbone connectivities, and did not show amino acid biases in this work, with one exception. When adding 10% u-(13)C glucose to expression media at induction, there is poor preservation of (13)Cα-(13)Cβ spin pairs in the amino acids ILV, leading to the absence of Cβ signals in HNCACB spectra for ILV, a potentially useful editing effect. Enhanced fractional carbon-13 enrichment provides lower-cost routes to high throughput protein NMR studies, and makes modern protein NMR more cost-accessible.

  12. "Chameleonic" backbone hydrogen bonds in protein binding and as drug targets.

    PubMed

    Menéndez, C A; Accordino, S R; Gerbino, D C; Appignanesi, G A

    2015-10-01

    We carry out a time-averaged contact matrix study to reveal the existence of protein backbone hydrogen bonds (BHBs) whose net persistence in time differs markedly form their corresponding PDB-reported state. We term such interactions as "chameleonic" BHBs, CBHBs, precisely to account for their tendency to change the structural prescription of the PDB for the opposite bonding propensity in solution. We also find a significant enrichment of protein binding sites in CBHBs, relate them to local water exposure and analyze their behavior as ligand/drug targets. Thus, the dynamic analysis of hydrogen bond propensity might lay the foundations for new tools of interest in protein binding-site prediction and in lead optimization for drug design. PMID:26486885

  13. Subpicosecond protein backbone changes detected during the green-absorbing proteorhodopsin primary photoreaction.

    PubMed

    Amsden, Jason J; Kralj, Joel M; Chieffo, Logan R; Wang, Xihua; Erramilli, Shyamsunder; Spudich, Elena N; Spudich, John L; Ziegler, Lawrence D; Rothschild, Kenneth J

    2007-10-11

    Recent studies demonstrate that photoactive proteins can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal photoisomerization may impulsively drive structural changes in nearby protein groups. Here, we test this possibility by investigating the earliest protein structural changes occurring in proteorhodopsin (PR) using ultrafast transient infrared (TIR) spectroscopy with approximately 200 fs time resolution combined with nonperturbing isotope labeling. PR is a recently discovered microbial rhodopsin similar to bacteriorhodopsin (BR) found in marine proteobacteria and functions as a proton pump. Vibrational bands in the retinal fingerprint (1175-1215 cm(-1)) and ethylenic stretching (1500-1570 cm(-1)) regions characteristic of all-trans to 13-cis chromophore isomerization and formation of a red-shifted photointermediate appear with a 500-700 fs time constant after photoexcitation. Bands characteristic of partial return to the ground state evolve with a 2.0-3.5 ps time constant. In addition, a negative band appears at 1548 cm(-1) with a time constant of 500-700 fs, which on the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling is assigned to an amide II peptide backbone mode that shifts to near 1538 cm(-1) concomitantly with chromophore isomerization. Our results demonstrate that one or more peptide backbone groups in PR respond with a time constant of 500-700 fs, almost coincident with the light-driven retinylidene chromophore isomerization. The protein changes we observe on a subpicosecond time scale may be involved in storage of the absorbed photon energy subsequently utilized for proton transport. PMID:17880126

  14. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity

    PubMed Central

    Ollikainen, Noah; de Jong, René M.; Kortemme, Tanja

    2015-01-01

    Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein–ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art “fixed backbone” design methods perform poorly on these tests, we develop a new “coupled moves” design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein – ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution. PMID:26397464

  15. Flexible backbone sampling methods to model and design protein alternative conformations.

    PubMed

    Ollikainen, Noah; Smith, Colin A; Fraser, James S; Kortemme, Tanja

    2013-01-01

    Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remain experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side-chain conformations, native side-chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid covariation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity.

  16. Using halogen bonds to address the protein backbone: a systematic evaluation.

    PubMed

    Wilcken, Rainer; Zimmermann, Markus O; Lange, Andreas; Zahn, Stefan; Boeckler, Frank M

    2012-08-01

    Halogen bonds are specific embodiments of the sigma hole bonding paradigm. They represent directional interactions between the halogens chlorine, bromine, or iodine and an electron donor as binding partner. Using quantum chemical calculations at the MP2 level, we systematically explore how they can be used in molecular design to address the omnipresent carbonyls of the protein backbone. We characterize energetics and directionality and elucidate their spatial variability in sub-optimal geometries that are expected to occur in protein-ligand complexes featuring a multitude of concomitant interactions. By deriving simple rules, we aid medicinal chemists and chemical biologists in easily exploiting them for scaffold decoration and design. Our work shows that carbonyl-halogen bonds may be used to expand the patentable medicinal chemistry space, redefining halogens as key features. Furthermore, this data will be useful for implementing halogen bonds into pharmacophore models or scoring functions making the QM information available for automatic molecular recognition in virtual high throughput screening.

  17. Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting

    PubMed Central

    2016-01-01

    Molecular dynamics simulations depend critically on the accuracy of the underlying force fields in properly representing biomolecules. Hence, it is crucial to validate the force-field parameter sets in this respect. In the context of the GROMOS force field, this is usually achieved by comparing simulation data to experimental observables for small molecules. In this study, we develop new amino acid backbone dihedral angle potential energy parameters based on the widely used 54A7 parameter set by matching to experimental J values and secondary structure propensity scales. In order to find the most appropriate backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the context of larger peptides and full proteins, further studies have to be undertaken. PMID:27559757

  18. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices.

    PubMed

    Schumacher, M A; Choi, K Y; Zalkin, H; Brennan, R G

    1994-11-01

    The three-dimensional structure of a ternary complex of the purine repressor, PurR, bound to both its corepressor, hypoxanthine, and the 16-base pair purF operator site has been solved at 2.7 A resolution by x-ray crystallography. The bipartite structure of PurR consists of an amino-terminal DNA-binding domain and a larger carboxyl-terminal corepressor binding and dimerization domain that is similar to that of the bacterial periplasmic binding proteins. The DNA-binding domain contains a helix-turn-helix motif that makes base-specific contacts in the major groove of the DNA. Base contacts are also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. Critical to hinge helix-minor groove binding is the intercalation of the side chains of Leu54 and its symmetry-related mate, Leu54', into the central CpG-base pair step. These residues thereby act as "leucine levers" to pry open the minor groove and kink the purF operator by 45 degrees.

  19. Variable pathogenic potentials of mutations located in the desmin alpha-helical domain.

    PubMed

    Goudeau, Bertrand; Rodrigues-Lima, Fernando; Fischer, Dirk; Casteras-Simon, Monique; Sambuughin, Nyamkhishig; de Visser, Marianne; Laforet, Pascal; Ferrer, Xavier; Chapon, Françoise; Sjöberg, Gunnar; Kostareva, Anna; Sejersen, Thomas; Dalakas, Marinos C; Goldfarb, Lev G; Vicart, Patrick

    2006-09-01

    Mutations in the desmin gene have been recognized as a cause of desminopathy, a familial or sporadic disorder characterized by skeletal muscle weakness, often associated with cardiomyopathy or respiratory insufficiency. Distinctive histopathologic features include aberrant intracytoplasmic accumulation of desmin (DES). We present here comparative phenotypic, molecular, and functional characteristics of four novel and three previously reported, but not fully characterized, desmin mutations localized in desmin alpha-helical domain. The results indicate that the c.638C>T (p.A213V), c.1178A>T (p.N393I), and to some extent the c.1078G>C (p.A360P) mutations exhibit pathogenic potentials only if combined with other mutations in desmin or other genes and should therefore be considered conditionally pathogenic. The c.1009G>C (p.A337P), c.1013T>G (p.L338R), c.1195G>T (p.D399Y), and c.1201G>A (p.E401K) mutations make desmin filaments dysfunctional and are capable of causing disease. The pathogenic potentials of desmin mutations correlate with the type and location of the disease-associated mutations in the relatively large and structurally and functionally complex desmin molecule. Mutations within the highly conserved alpha-helical structures are especially damaging since the integrity of the alpha-helix is critical for desmin filament assembly and stability.

  20. Two-phase induction of the nonnative alpha-helical form of beta-lactoglobulin in the presence of trifluoroethanol.

    PubMed Central

    Mendieta, J; Folqué, H; Tauler, R

    1999-01-01

    The trifluoroethanol-dependent induction of the nonnative alpha-helical form of beta-lactoglubulin has been studied by circular dichroism spectroscopy. Data analysis is performed by factor analysis and multivariate curve resolution. An intermediate form in the induction of the alpha-helical form of the beta-lactoglobulin has been identified at low TFE concentration. By application of an alternating least-squares algorithm, the CD spectrum corresponding to the intermediate form has been resolved. The deconvolution of this CD spectrum shows a secondary structure content more in agreement with the one predicted from the amino acid sequence than the secondary structure of the helical form obtained at higher TFE concentrations. The additional alpha-helical content of the form present at higher TFE concentrations could be due to nonspecific interaction of TFE with the polypeptide chain. PMID:9876157

  1. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of Cα atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  2. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    SciTech Connect

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-07

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of C{sub α} atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  3. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis.

    PubMed

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of C(α) atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  4. OLIGOMERIZATION OF A RETROVIRAL MATRIX PROTEIN IS FACILITATED BY BACKBONE FLEXIBILITY ON NS TIMESCALE

    PubMed Central

    Srb, Pavel; Vlach, Jiří; Prchal, Jan; Grocký, Marián; Ruml, Tomáš; Lang, Jan; Hrabal, Richard

    2011-01-01

    Oligomerization capacity of the retroviral matrix protein is an important feature that affects assembly of immature virions and their interaction with cellular membrane. A combination of NMR relaxation measurements and advanced analysis of molecular dynamics simulation trajectory provided an unprecedentedly detailed insight into internal mobility of matrix proteins of the Mason-Pfizer monkey virus. Strong evidences have been obtained that the oligomerization capacity of the wild type matrix protein is closely related to the enhanced dynamics of several parts of its backbone on ns timescale. Increased flexibility has been observed for two regions: the loop between α-helices α2 and α3 and the C-terminal half of α-helix α3 which accommodate amino acid residues that form the oligomerization interface. On the other hand, matrix mutant R55F that has changed structure and does not exhibit any specific oligomerization in solution was found considerably more rigid. Our results document that conformational selection mechanism together with induced fit and favorable structural pre-organization play an important role in the control of the oligomerization process. PMID:21366213

  5. Structure and function of the third intracellular loop of the 5-hydroxytryptamine2A receptor: the third intracellular loop is alpha-helical and binds purified arrestins.

    PubMed

    Gelber, E I; Kroeze, W K; Willins, D L; Gray, J A; Sinar, C A; Hyde, E G; Gurevich, V; Benovic, J; Roth, B L

    1999-05-01

    Understanding the precise structure and function of the intracellular domains of G protein-coupled receptors is essential for understanding how receptors are regulated, and how they transduce their signals from the extracellular milieu to intracellular sites. To understand better the structure and function of the intracellular domain of the 5-hydroxytryptamine2A (5-HT2A) receptor, a model G(alpha)q-coupled receptor, we overexpressed and purified to homogeneity the entire third intracellular loop (i3) of the 5-HT2A receptor, a region previously implicated in G-protein coupling. Circular dichroism spectroscopy of the purified i3 protein was consistent with alpha-helical and beta-loop, -turn, and -sheet structure. Using random peptide phage libraries, we identified several arrestin-like sequences as i3-interacting peptides. We subsequently found that all three known arrestins (beta-arrestin, arrestin-3, and visual arrestin) bound specifically to fusion proteins encoding the i3 loop of the 5-HT(2A) receptor. Competition binding studies with synthetic and recombinant peptides showed that the middle portion of the i3 loop, and not the extreme N and C termini, was likely to be involved in i3-arrestin interactions. Dual-label immunofluorescence confocal microscopic studies of rat cortex indicated that many cortical pyramidal neurons coexpressed arrestins (beta-arrestin or arrestin-3) and 5-HT2A receptors, particularly in intracellular vesicles. Our results demonstrate (a) that the i3 loop of the 5-HT2A receptor represents a structurally ordered domain composed of alpha-helical and beta-loop, -turn, and -sheet regions, (b) that this loop interacts with arrestins in vitro, and is hence active, and (c) that arrestins are colocalized with 5-HT2A receptors in vivo.

  6. Solution structure and backbone dynamics of Mason-Pfizer monkey virus (MPMV) nucleocapsid protein.

    PubMed Central

    Gao, Y.; Kaluarachchi, K.; Giedroc, D. P.

    1998-01-01

    Retroviral nucleocapsid proteins (NCPs) are CCHC-type zinc finger proteins that mediate virion RNA binding activities associated with retrovirus assembly and genomic RNA encapsidation. Mason-Pfizer monkey virus (MPMV), a type D retrovirus, encodes a 96-amino acid nucleocapsid protein, which contains two Cys-X2-Cys-X4-His-X4-Cys (CCHC) zinc fingers connected by an unusually long 15-amino acid linker. Homonuclear, two-dimensional sensitivity-enhanced 15N-1H, three-dimensional 15N-1H, and triple resonance NMR spectroscopy have been used to determine the solution structure and residue-specific backbone dynamics of the structured core domain of MPMV NCP containing residues 21-80. Structure calculations and spectral density mapping of N-H bond vector mobility reveal that MPMV NCP 21-80 is best described as two independently folded, rotationally uncorrelated globular domains connected by a seven-residue flexible linker consisting of residues 42-48. The N-terminal CCHC zinc finger domain (residues 24-37) appears to adopt a fold like that described previously for HIV-1 NCP; however, residues within this domain and the immediately adjacent linker region (residues 38-41) are characterized by extensive conformational averaging on the micros-ms time scale at 25 degrees C. In contrast to other NCPs, residues 49-77, which includes the C-terminal CCHC zinc-finger (residues 53-66), comprise a well-folded globular domain with the Val49-Pro-Gly-Leu52 sequence and C-terminal tail residues 67-77 characterized by amide proton exchange properties and 15N R1, R2, and (1H-15N) NOE values indistinguishable to residues in the core C-terminal finger. Twelve refined structural models of MPMV NCP residues 49-80 (pairwise backbone RMSD of 0.77 A) reveal that the side chains of the conserved Pro50 and Trp62 are in van der Waals contact with one another. Residues 70-73 in the C-terminal tail adopt a reverse turn-like structure. Ile77 is involved in extensive van der Waals contact with the core

  7. Water proton spin saturation affects measured protein backbone 15 N spin relaxation rates

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Tjandra, Nico

    2011-12-01

    Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios ( s/ n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1H N recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (< S2> = 0.81) than the non-saturated ones (< S2> = 0.88), indicating such order parameters may be previously underestimated.

  8. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    PubMed

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  9. ANGLOR: A Composite Machine-Learning Algorithm for Protein Backbone Torsion Angle Prediction

    PubMed Central

    Wu, Sitao; Zhang, Yang

    2008-01-01

    We developed a composite machine-learning based algorithm, called ANGLOR, to predict real-value protein backbone torsion angles from amino acid sequences. The input features of ANGLOR include sequence profiles, predicted secondary structure and solvent accessibility. In a large-scale benchmarking test, the mean absolute error (MAE) of the phi/psi prediction is 28°/46°, which is ∼10% lower than that generated by software in literature. The prediction is statistically different from a random predictor (or a purely secondary-structure-based predictor) with p-value <1.0×10−300 (or <1.0×10−148) by Wilcoxon signed rank test. For some residues (ILE, LEU, PRO and VAL) and especially the residues in helix and buried regions, the MAE of phi angles is much smaller (10–20°) than that in other environments. Thus, although the average accuracy of the ANGLOR prediction is still low, the portion of the accurately predicted dihedral angles may be useful in assisting protein fold recognition and ab initio 3D structure modeling. PMID:18923703

  10. Role of evolutionary information in prediction of aromatic-backbone NH interactions in proteins.

    PubMed

    Kaur, Harpreet; Raghava, G P S

    2004-04-23

    In this study, an attempt has been made to develop a neural network-based method for predicting segments in proteins containing aromatic-backbone NH (Ar-NH) interactions using multiple sequence alignment. We have analyzed 3121 segments seven residues long containing Ar-NH interactions, extracted from 2298 non-redundant protein structures where no two proteins have more than 25% sequence identity. Two consecutive feed-forward neural networks with a single hidden layer have been trained with standard back-propagation as learning algorithm. The performance of the method improves from 0.12 to 0.15 in terms of Matthews correlation coefficient (MCC) value when evolutionary information (multiple alignment obtained from PSI-BLAST) is used as input instead of a single sequence. The performance of the method further improves from MCC 0.15 to 0.20 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields an overall prediction accuracy of 70.1% and an MCC of 0.20 when tested by five-fold cross-validation. Overall the performance is 15.2% higher than the random prediction. The method consists of two neural networks: (i) a sequence-to-structure network which predicts the aromatic residues involved in Ar-NH interaction from multiple alignment of protein sequences and (ii) a structure-to structure network where the input consists of the output obtained from the first network and predicted secondary structure. Further, the actual position of the donor residue within the 'potential' predicted fragment has been predicted using a separate sequence-to-structure neural network. Based on the present study, a server Ar_NHPred has been developed which predicts Ar-NH interaction in a given amino acid sequence. The web server Ar_NHPred is available at and (mirror site).

  11. A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences.

    PubMed

    Tsay, Jyh-Jong; Su, Shih-Chieh; Yu, Chin-Sheng

    2015-07-03

    Protein structure prediction (PSP) is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD) of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP.

  12. A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences

    PubMed Central

    Tsay, Jyh-Jong; Su, Shih-Chieh; Yu, Chin-Sheng

    2015-01-01

    Protein structure prediction (PSP) is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD) of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP. PMID:26151847

  13. A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream

    PubMed Central

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2016-01-01

    Chemical restraints are a fundamental part of crystallographic protein structure refinement. In response to mounting evidence that conventional restraints have shortcomings, it has previously been documented that using backbone restraints that depend on the protein backbone conformation helps to address these shortcomings and improves the performance of refinements [Moriarty et al. (2014 ▸), FEBS J. 281, 4061–4071]. It is important that these improvements be made available to all in the protein crystallography community. Toward this end, a change in the default geometry library used by Phenix is described here. Tests are presented showing that this change will not generate increased numbers of outliers during validation, or deposition in the Protein Data Bank, during the transition period in which some validation tools still use the conventional restraint libraries. PMID:26894545

  14. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins. PMID:27166805

  15. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.

  16. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    PubMed

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations.

  17. Predicting protein backbone chemical shifts from Cα coordinates: extracting high resolution experimental observables from low resolution models.

    PubMed

    Frank, Aaron T; Law, Sean M; Ahlstrom, Logan S; Brooks, Charles L

    2015-01-13

    Given the demonstrated utility of coarse-grained modeling and simulations approaches in studying protein structure and dynamics, developing methods that allow experimental observables to be directly recovered from coarse-grained models is of great importance. In this work, we develop one such method that enables protein backbone chemical shifts (1HN, 1Hα, 13Cα, 13C, 13Cβ, and 15N) to be predicted from Cα coordinates. We show that our Cα-based method, LARMORCα, predicts backbone chemical shifts with comparable accuracy to some all-atom approaches. More importantly, we demonstrate that LARMORCα predicted chemical shifts are able to resolve native structure from decoy pools that contain both native and non-native models, and so it is sensitive to protein structure. As an application, we use LARMORCα to characterize the transient state of the fast-folding protein gpW using recently published NMR relaxation dispersion derived backbone chemical shifts. The model we obtain is consistent with the previously proposed model based on independent analysis of the chemical shift dispersion pattern of the transient state. We anticipate that LARMORCα will find utility as a tool that enables important protein conformational substates to be identified by “parsing” trajectories and ensembles generated using coarse-grained modeling and simulations.

  18. Amide-I relaxation-induced hydrogen bond distortion: An intermediate in electron capture dissociation mass spectrometry of alpha-helical peptides?

    PubMed

    Pouthier, Vincent; Tsybin, Yury O

    2008-09-01

    Electron capture dissociation (ECD) of peptides and proteins in the gas phase is a powerful tool in tandem mass spectrometry whose current description is not sufficient to explain many experimental observations. Here, we attempt to bridge the current understanding of the vibrational dynamics in alpha-helices with the recent experimental results on ECD of alpha-helical peptides through consideration of amide-I relaxation-induced hydrogen bond distortion. Based on a single spine of H-bonded peptide units, we assume that charge neutralization upon electron capture by a charged alpha-helix excites a nearby amide-I mode, which relaxes over a few picoseconds due to Fermi resonances with intramolecular normal modes. The amide-I population plays the role of an external force, which drives the displacements of each peptide unit. It induces a large immobile contraction of the H bonds surrounding the excited site whose lifetime is about the amide-I lifetime. In addition, it creates two lattice deformations describing H bond stretchings, which propagate from the excited region toward both termini of the alpha-helix, get reflected at the termini and yield H bond contractions which move back to the excited region. Consequently, we show that H bonds experience rather large contractions whose amplitude depends on general features such as the position of the amide-I mode, the peptide length and the H bond force constants. When an H bond contraction is sufficiently large, it may promote a hydrogen atom transfer between two neighboring peptide units leading to the formation of a radical at charge site remote carbonyl carbon which is known to be a precursor to the rupture of the corresponding N[Single Bond]C(alpha) bond. The introduced here way of excitation energy generation and transfer may significantly advance ECD understanding and complement existing ECD mechanisms.

  19. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers.

    PubMed Central

    Oliver, A E; Deamer, D W

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two

  20. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers

    NASA Technical Reports Server (NTRS)

    Oliver, A. E.; Deamer, D. W.

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two

  1. Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins

    PubMed Central

    Wen, Jie; Wu, Jihui; Zhou, Pei

    2011-01-01

    Intrinsically disordered proteins (IDPs) play important roles in many critical cellular processes. Due to their limited chemical shift dispersion, IDPs often require four pairs of resonance connectivities (Hα, Cα, Cβ and CO) for establishing sequential backbone assignment. Because most conventional 4-D triple-resonance experiments share an overlapping Cα evolution period, combining existing 4-D experiments does not offer an optimal solution for non-redundant collection of a complete set of backbone resonances. Using alternative chemical shift evolution schemes, we propose a new pair of 4-D triple resonance experiments—HA(CA)CO(CA)NH/HA(CA)CONH—that complement the 4-D HNCACB/HN(CO)CACB experiments to provide complete backbone resonance information. Collection of high-resolution 4-D spectra with sparse sampling and FFT-CLEAN processing enables efficient acquisition and assignment of complete backbone resonances of IDPs. Importantly, because the CLEAN procedure iteratively identifies resonance signals and removes their associating aliasing artifacts, it greatly reduces the dependence of the reconstruction quality on sampling schemes and produces high-quality spectra even with less-than-optimal sampling schemes. PMID:21277815

  2. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  3. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  4. Reduced dimensionality (4,3)D-hnCOCANH experiment: an efficient backbone assignment tool for NMR studies of proteins.

    PubMed

    Kumar, Dinesh

    2013-09-01

    Sequence specific resonance assignment of proteins forms the basis for variety of structural and functional proteomics studies by NMR. In this context, an efficient standalone method for rapid assignment of backbone ((1)H, (15)N, (13)C(α) and (13)C') resonances of proteins has been presented here. Compared to currently available strategies used for the purpose, the method employs only a single reduced dimensionality experiment--(4,3)D-hnCOCANH and exploits the linear combinations of backbone ((13)C(α) and (13)C') chemical shifts to achieve a dispersion relatively better compared to those of individual chemical shifts (see the text). The resulted increased dispersion of peaks--which is different in sum (CA + CO) and difference (CA - CO) frequency regions--greatly facilitates the analysis of the spectrum by resolving the problems (associated with routine assignment strategies) arising because of degenerate amide (15)N and backbone (13)C chemical shifts. Further, the spectrum provides direct distinction between intra- and inter-residue correlations because of their opposite peak signs. The other beneficial feature of the spectrum is that it provides: (a) multiple unidirectional sequential (i→i + 1) (15)N and (13)C correlations and (b) facile identification of certain specific triplet sequences which serve as check points for mapping the stretches of sequentially connected HSQC cross peaks on to the primary sequence for assigning the resonances sequence specifically. On top of all this, the F₂-F₃ planes of the spectrum corresponding to sum (CA + CO) and difference (CA - CO) chemical shifts enable rapid and unambiguous identification of sequential HSQC peaks through matching their coordinates in these two planes (see the text). Overall, the experiment presented here will serve as an important backbone assignment tool for variety of structural and functional proteomics and drug discovery research programs by NMR involving well behaved small folded proteins (MW

  5. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.

    PubMed

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking.

  6. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning

    PubMed Central

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking. PMID:26098304

  7. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.

    PubMed

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking. PMID:26098304

  8. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey.

    PubMed

    Zhao, C; Nguyen, T; Boo, L M; Hong, T; Espiritu, C; Orlov, D; Wang, W; Waring, A; Lehrer, R I

    2001-10-01

    Rhesus monkey bone marrow expresses a cathelicidin whose C-terminal domain comprises a 37-residue alpha-helical peptide (RL-37) that resembles human LL-37. Like its human counterpart, RL-37 rapidly permeabilized the membranes of Escherichia coli ML-35p and lysed liposomes that simulated bacterial membranes. When tested in media whose NaCl concentrations approximated those of extracellular fluids, RL-37 was considerably more active than LL-37 against staphylococci. Whereas human LL-37 contains five acidic residues and has a net charge of +6, rhesus RL-37 has only two acidic residues and a net charge of +8. Speculating that the multiple acidic residues of human LL-37 reduced its efficacy against staphylococci, we made a peptide (LL-37 pentamide) in which each aspartic acid of LL-37 was replaced by an asparagine and each glutamic acid was replaced by a glutamine. LL-37 pentamide's antistaphylococcal activity was substantially greater than that of LL-37. Thus, although the precursor of LL-37 is induced in human skin keratinocytes by injury or inflammation, its insufficiently cationic antimicrobial domain may contribute to the success of staphylococci in colonizing and infecting human skin.

  9. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes.

    PubMed Central

    Knight, C A; Cheng, C C; DeVries, A L

    1991-01-01

    The noncolligative peptide and glycopeptide antifreezes found in some cold-water fish act by binding to the ice surface and preventing crystal growth, not by altering the equilibrium freezing point of the water. A simple crystal growth and etching technique allows determination of the crystallographic planes where the binding occurs. In the case of elongated molecules, such as the alpha-helical peptides in this report, it also allows a deduction of the molecular alignment on the ice surface. The structurally similar antifreeze peptides from winter flounder (Pseudopleuronectes americanus) and Alaskan plaice (Pleuronectes quadritaberulatus) adsorb onto the (2021) pyramidal planes of ice, whereas the sculpin (Myoxocephalus scorpius) peptide adsorbs on (2110), the secondary prism planes. All three are probably aligned along (0112). These antifreeze peptides have 11-amino acid sequence repeats ending with a polar residue, and each repeat constitutes a distance of 16.5 A along the helix, which nearly matches the 16.7 A repeat spacing along (0112) in ice. This structural match is undoubtedly important, but the mechanism of binding is not yet clear. The suggested mechanism of growth inhibition operates through the influence of local surface curvature upon melting point and results in complete inhibition of the crystal growth even though individual antifreeze molecules bind at only one interface orientation. Images FIGURE 2 PMID:2009357

  10. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey.

    PubMed

    Zhao, C; Nguyen, T; Boo, L M; Hong, T; Espiritu, C; Orlov, D; Wang, W; Waring, A; Lehrer, R I

    2001-10-01

    Rhesus monkey bone marrow expresses a cathelicidin whose C-terminal domain comprises a 37-residue alpha-helical peptide (RL-37) that resembles human LL-37. Like its human counterpart, RL-37 rapidly permeabilized the membranes of Escherichia coli ML-35p and lysed liposomes that simulated bacterial membranes. When tested in media whose NaCl concentrations approximated those of extracellular fluids, RL-37 was considerably more active than LL-37 against staphylococci. Whereas human LL-37 contains five acidic residues and has a net charge of +6, rhesus RL-37 has only two acidic residues and a net charge of +8. Speculating that the multiple acidic residues of human LL-37 reduced its efficacy against staphylococci, we made a peptide (LL-37 pentamide) in which each aspartic acid of LL-37 was replaced by an asparagine and each glutamic acid was replaced by a glutamine. LL-37 pentamide's antistaphylococcal activity was substantially greater than that of LL-37. Thus, although the precursor of LL-37 is induced in human skin keratinocytes by injury or inflammation, its insufficiently cationic antimicrobial domain may contribute to the success of staphylococci in colonizing and infecting human skin. PMID:11557457

  11. Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange

    SciTech Connect

    Earnest, T.N.; Herzfeld, J.; Rothschild, K.J. )

    1990-12-01

    The secondary structure of bacteriorhodopsin has been investigated by polarized Fourier transform infrared spectroscopy combined with hydrogen/deuterium exchange, isotope labeling and resolution enhancement methods. Oriented films of purple membrane were measured at low temperature after exposure to H2O or D2O. Resolution enhancement techniques and isotopic labeling of the Schiff base were used to assign peaks in the amide I region of the spectrum. alpha-helical structure, which exhibits strong infrared dichroism, undergoes little H/D exchange, even after 48 h of D2O exposure. In contrast, non-alpha-helical structure, which exhibits little dichroism, undergoes rapid H/D exchange. A band at 1,640 cm-1, which has previously been assigned to beta-sheet structure, is found to be due in part to the C = N stretching vibration of protonated Schiff base of the retinylidene chromophore. We conclude that the membrane spanning regions of bR consist predominantly of alpha-helical structure whereas most beta-type structure is located in surface regions directly accessible to water.

  12. Alpha helical structures in the leader sequence of human GLUD2 glutamate dehydrogenase responsible for mitochondrial import.

    PubMed

    Kotzamani, Dimitra; Plaitakis, Andreas

    2012-09-01

    Human glutamate dehydrogenase (hGDH) exists in two highly homologous isoforms with a distinct regulatory and tissue expression profile: a housekeeping hGDH1 isoprotein encoded by the GLUD1 gene and an hGDH2 isoenzyme encoded by the GLUD2 gene. There is evidence that both isoenzymes are synthesized as pro-enzymes containing a 53 amino acid long N-terminal leader peptide that is cleaved upon translocation into the mitochondria. However, this GDH signal peptide is substantially larger than that of most nuclear DNA-encoded mitochondrial proteins, the leader sequence of which typically contains 17-35 amino acids and they often form a single amphipathic α-helix. To decode the structural elements that are essential for the mitochondrial targeting of human GDHs, we performed secondary structure analyses of their leader sequence. These analyses predicted, with 82% accuracy, that both leader peptides are positively charged and that they form two to three α-helices, separated by intermediate loops. The first α-helix of hGDH2 is strongly amphipathic, displaying both a positively charged surface and a hydrophobic plane. We then constructed GLUD2-EGFP deletion mutants and used them to transfect three mammalian cell lines (HEK293, COS 7 and SHSY-5Y). Confocal laser scanning microscopy, following co-transfection with pDsRed2-Mito mitochondrial targeting vector, revealed that deletion of the entire leader sequence prevented the enzyme from entering the mitochondria, resulting in its retention in the cytoplasm. Deletion of the first strongly amphipathic α-helix only was also sufficient to prevent the mitochondrial localization of the truncated protein. Moreover, truncated leader sequences, retaining the second and/or the third putative α-helix, failed to restore the mitochondrial import of hGDH2. As such, the first N-terminal alpha helical structure is crucial for the mitochondrial import of hGDH2 and these findings may have implications in understanding the evolutionary

  13. N- and C-capping preferences for all 20 amino acids in alpha-helical peptides.

    PubMed Central

    Doig, A. J.; Baldwin, R. L.

    1995-01-01

    We have determined the N- and C-capping preferences of all 20 amino acids by substituting residue X in the peptides NH2-XAKAAAAKAAAAKAAGY-CONH2 and in Ac-YGAAKAAAAKAAAAKAX-CO2H. Helix contents were measured by CD spectroscopy to obtain rank orders of capping preferences. The data were further analyzed by our modified Lifson-Roig helix-coil theory, which includes capping parameters (n and c), to find free energies of capping (-RT ln n and -RT ln c), relative to Ala. Results were obtained for charged and uncharged termini and for different charged states of titratable side chains. N-cap preferences varied from Asn (best) to Gln (worst). We find, as expected, that amino acids that can accept hydrogen bonds from otherwise free backbone NH groups, such as Asn, Asp, Ser, Thr, and Cys generally have the highest N-cap preference. Gly and acetyl group are favored, as are negative charges in side chains and at the N-terminus. Our N-cap preference scale agrees well with preferences in proteins. In contrast, we find little variation when changing the identity of the C-cap residue. We find no preference for Gly at the C-cap in contrast to the situation in proteins. Both N-cap and C-cap results for Tyr and Trp are inaccurate because their aromatic groups affect the CD spectrum. The data presented here are of value in rationalizing mutations at capping sites in proteins and in predicting the helix contents of peptides. PMID:7670375

  14. Assembly and Structure of alpha-helical Peptide Films on Hydrophobic Fluorocarbon Surfaces

    SciTech Connect

    Weidner, T.; Samual, N; McCrea, K; Gamble, L; Ward, R; Castner, D

    2010-01-01

    The structure, orientation, and formation of amphiphilic {alpha}-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The {alpha}-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide {pi}* is likely due to the broad distribution of amide bond orientations inherent to the {alpha}-helical secondary structure. SFG spectra exhibit strong peaks near 2865 and 2935 cm{sup -1} related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 and 3400 cm{sup -1} indicate ordering of water molecules in the adsorbed-peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm{sup -1} confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air-buffer interface showed features related to well-ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates.

  15. Synergistic inhibition of human cancer cell growth by cytotoxic drugs and mixed backbone antisense oligonucleotide targeting protein kinase A

    PubMed Central

    Tortora, Giampaolo; Caputo, Rosa; Damiano, Vincenzo; Bianco, Roberto; Pepe, Stefano; Bianco, A. Raffaele; Jiang, Zhiwei; Agrawal, Sudhir; Ciardiello, Fortunato

    1997-01-01

    Protein kinase A type I plays a key role in neoplastic transformation, conveying mitogenic signals of different growth factors and oncogenes. Inhibition of protein kinase A type I by antisense oligonucleotides targeting its RIα regulatory subunit results in cancer cell growth inhibition in vitro and in vivo. A novel mixed backbone oligonucleotide HYB 190 and its mismatched control HYB 239 were tested on soft agar growth of several human cancer cell types. HYB 190 demonstrated a dose-dependent inhibition of colony formation in all cell lines whereas the HYB 239 at the same doses caused a modest or no growth inhibition. A noninhibitory dose of each mixed backbone oligonucleotide was used in OVCAR-3 ovarian and GEO colon cancer cells to study whether any cooperative effect may occur between the antisense and a series of cytotoxic drugs acting by different mechanisms. Treatment with HYB 190 resulted in an additive growth inhibitory effect with several cytotoxic drugs when measured by soft agar colony formation. A synergistic growth inhibition, which correlated with increased apoptosis, was observed when HYB 190 was added to cancer cells treated with taxanes, platinum-based compounds, and topoisomerase II selective drugs. This synergistic effect was also observed in breast cancer cells and was obtained with other related drugs such as docetaxel and carboplatin. Combination of HYB 190 and paclitaxel resulted in an accumulation of cells in late S-G2 phases of cell cycle and marked induction of apoptosis. A cooperative effect of HYB 190 and paclitaxel was also obtained in vivo in nude mice bearing human GEO colon cancer xenografts. These results are the first report of a cooperative growth inhibitory effect obtained in a variety of human cancer cell lines by antisense mixed backbone oligonucleotide targeting protein kinase A type I-mediated mitogenic signals and specific cytotoxic drugs. PMID:9356493

  16. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.

    PubMed

    Liu, Qing; Shi, Chaowei; Yu, Lu; Zhang, Longhua; Xiong, Ying; Tian, Changlin

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of (15)N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S(2)) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S(2)) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S(2) values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S(2) parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S(2) calculated from the experimental NMR relaxation measurements, in a site-specific manner.

  17. Introduction of all-hydrocarbon i,i+3 staples into alpha-helices via ring-closing olefin metathesis.

    PubMed

    Kim, Young-Woo; Kutchukian, Peter S; Verdine, Gregory L

    2010-07-01

    The introduction of all-hydrocarbon i,i+3 staples into alpha-helical peptide scaffolds via ring-closing olefin metathesis (RCM) between two alpha-methyl,alpha-pentenylglycine residues incorporated at i and i+3 positions, which lie on the same face of the helix, has been investigated. The reactions were found to be highly dependent upon the side-chain stereochemistry of the amino acids undergoing RCM. The i,i+3 stapling system established here provides a potentially useful alternative to the well-established i,i+4 stapling system now in widespread use.

  18. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences.

    PubMed

    Wang, Jun; Liu, Haiyan

    2007-01-01

    Chemical shifts contain substantial information about protein local conformations. We present a method to assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. The method uses a scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to have a particular conformation. The Ramachandran map is partitioned into representative regions at two levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different secondary structure regions on the map. At the higher resolution level, the alpha and beta regions are further divided into subregions. Predictions are attempted at both levels of resolution. We compared our method with TALOS using the original TALOS database, and obtained comparable results. Although TALOS may produce the best results with currently available databases which are much enlarged, the Bayesian-probability-based approach can provide a quantitative measure for the reliability of predictions.

  19. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    SciTech Connect

    Liu, Qing; Shi, Chaowei; Yu, Lu; Zhang, Longhua; Xiong, Ying; Tian, Changlin

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.

  20. The three-dimensional structural surface of two beta-sheet scorpion toxins mimics that of an alpha-helical dihydropyridine receptor segment.

    PubMed Central

    Green, Daniel; Pace, Suzi; Curtis, Suzanne M; Sakowska, Magdalena; Lamb, Graham D; Dulhunty, Angela F; Casarotto, Marco G

    2003-01-01

    An alpha-helical II-III loop segment of the dihydropyridine receptor activates the ryanodine receptor calcium-release channel. We describe a novel manipulation in which this agonist's activity is increased by modifying its surface structure to resemble that of a toxin molecule. In a unique system, native beta-sheet scorpion toxins have been reported to activate skeletal muscle ryanodine receptor calcium channels with high affinity by binding to the same site as the lower-affinity alpha-helical dihydropyridine receptor segment. We increased the alignment of basic residues in the alpha-helical peptide to mimic the spatial orientation of active residues in the scorpion toxin, with a consequent 2-20-fold increase in the activity of the alpha-helical peptide. We hypothesized that, like the native peptide, the modified peptide and the scorpion toxin may bind to a common site. This was supported by (i) similar changes in ryanodine receptor channel gating induced by the native or modified alpha-helical peptide and the beta-sheet toxin, a 10-100-fold reduction in channel closed time, with a < or = 2-fold increase in open dwell time and (ii) a failure of the toxin to further activate channels activated by the peptides. These results suggest that diverse structural scaffolds can present similar conformational surface properties to target common receptor sites. PMID:12429019

  1. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog

    SciTech Connect

    Cuneo, Matthew J.; Tian, Yaji; Allert, Malin; Hellinga, Homme W.

    2008-10-27

    We report the X-ray crystal structure of a Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) determined to 1.9 {angstrom} resolution. We find that tteRBP is significantly more stable ({sup app}T{sub m} value {approx} 102 C) than the mesophilic Escherichia coli ribose binding protein (ecRBP) ({sup app}T{sub m} value {approx} 56 C). The tteRBP has essentially the identical backbone conformation (0.41 {angstrom} RMSD of 235/271 C{sub {alpha}} positions and 0.65 {angstrom} RMSD of 270/271 C{sub {alpha}} positions) as ecRBP. Classification of the amino acid substitutions as a function of structure therefore allows the identification of amino acids which potentially contribute to the observed thermal stability of tteRBP in the absence of large structural heterogeneities.

  2. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

    PubMed

    Lamley, Jonathan M; Lougher, Matthew J; Sass, Hans Juergen; Rogowski, Marco; Grzesiek, Stephan; Lewandowski, Józef R

    2015-09-14

    Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C'R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C'R1, (15)N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.

  3. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.

    PubMed

    Lyons, James; Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Paliwal, Kuldip; Sattar, Abdul; Zhou, Yaoqi; Yang, Yuedong

    2014-10-30

    Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org.

  4. The effects of regularly spaced glutamine substitutions on alpha-helical peptide structures: A DFT/ONIOM study

    NASA Astrophysics Data System (ADS)

    Roy, Dipankar; Dannenberg, J. J.

    2011-08-01

    The side-chains of the residues of glutamine (Q) and asparagine (N) contain amide groups. These can H-bond to each other in patterns similar to those of the backbone amides in α-helices. We show that mutating multiple Q's for alanines (A's) in a polyalanine helix stabilizes the helical structure, while similar mutations with multiple N's do not. We suggest that modification of peptides by incorporating Q's in such positions can make more robust helices that can be used to test the effects of secondary structures in biochemical experiments linked to proteins with variable structures such as tau and α-synuclein.

  5. Root-mean-square-deviation-based rapid backbone resonance assignments in proteins.

    PubMed

    Rout, Ashok K; Barnwal, Ravi P; Agarwal, Geetika; Chary, Kandala V R

    2010-10-01

    We have shown that the methodology based on the estimation of root-mean-square deviation (RMSD) between two sets of chemical shifts is very useful to rapidly assign the spectral signatures of (1)H(N), (13)C(α), (13)C(β), (13)C', (1)H(α) and (15)N spins of a given protein in one state from the knowledge of its resonance assignments in a different state, without resorting to routine established procedures (manual and automated). We demonstrate the utility of this methodology to rapidly assign the 3D spectra of a metal-binding protein in its holo-state from the knowledge of its assignments in apo-state, the spectra of a protein in its paramagnetic state from the knowledge of its assignments in diamagnetic state and, finally, the spectra of a mutant protein from the knowledge of the chemical shifts of the corresponding wild-type protein. The underlying assumption of this methodology is that, it is impossible for any two amino acid residues in a given protein to have all the six chemical shifts degenerate and that the protein under consideration does not undergo large conformational changes in going from one conformational state to another. The methodology has been tested using experimental data on three proteins, M-crystallin (8.5 kDa, predominantly β-sheet, for apo- to holo-state), Calbindin (7.5 kDa, predominantly α-helical, for diamagnetic to paramagnetic state and apo to holo) and EhCaBP1 (14.3 kDa, α-helical, the wild-type protein with one of its mutant). In all the cases, the extent of assignment is found to be greater than 85%.

  6. Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.

    PubMed

    Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2014-10-01

    Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.

  7. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis.

    PubMed

    Mack, J W; Usha, M G; Long, J; Griffin, R G; Wittebort, R J

    2000-01-01

    We have used 2H-nmr to study backbone dynamics of the 2H-labeled, slowly exchanging amide sites of fully hydrated, crystalline hen egg white lysozyme. Order parameters are determined from the residual quadrupole coupling and values increase from S2 = 0.85 at 290 K to S2 = 0.94 at 200 K. Dynamical rates are determined from spin-lattice relaxation at three nmr frequencies (38.8, 61.5, and 76.7 MHz). The approach used here is thus distinct from solution nmr studies where dynamical amplitudes and rates are both determined from relaxation measurements. At temperatures below 250 K, relaxation is independent of the nmr frequency indicating that backbone motions are fast compared to the nmr frequencies. However, as the temperature is increased above 250 K, relaxation is significantly more efficient at the lowest frequency, which shows, in addition, the presence of motions that are slow compared to the nmr frequencies. Using the values of S2 determined from the residual quadrupole coupling and a model-free relaxation formalism that allows for fast and slow internal motions, we conclude that these slow motions have correlation times in the range of 0.1 to 1.0 microsecond and are effectively frozen out at 250 K where fast motions of the amide planes with approximately 15 ps effective correlation times and 9 degrees rms amplitudes dominate relaxation. The fast internal motions increase slightly in amplitude as the temperature rises toward 290 K, but the correlation time, as is also observed in solution nmr studies of RNase H, is approximately constant. These findings are consistent with hypotheses of dynamic glass transitions in hydrated proteins arising from temperature-dependent damping of harmonic modes of motion above the transition point.

  8. Independent Metrics for Protein Backbone and Side-Chain Flexibility: Time Scales and Effects of Ligand Binding.

    PubMed

    Fuchs, Julian E; Waldner, Birgit J; Huber, Roland G; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R

    2015-03-10

    Conformational dynamics are central for understanding biomolecular structure and function, since biological macromolecules are inherently flexible at room temperature and in solution. Computational methods are nowadays capable of providing valuable information on the conformational ensembles of biomolecules. However, analysis tools and intuitive metrics that capture dynamic information from in silico generated structural ensembles are limited. In standard work-flows, flexibility in a conformational ensemble is represented through residue-wise root-mean-square fluctuations or B-factors following a global alignment. Consequently, these approaches relying on global alignments discard valuable information on local dynamics. Results inherently depend on global flexibility, residue size, and connectivity. In this study we present a novel approach for capturing positional fluctuations based on multiple local alignments instead of one single global alignment. The method captures local dynamics within a structural ensemble independent of residue type by splitting individual local and global degrees of freedom of protein backbone and side-chains. Dependence on residue type and size in the side-chains is removed via normalization with the B-factors of the isolated residue. As a test case, we demonstrate its application to a molecular dynamics simulation of bovine pancreatic trypsin inhibitor (BPTI) on the millisecond time scale. This allows for illustrating different time scales of backbone and side-chain flexibility. Additionally, we demonstrate the effects of ligand binding on side-chain flexibility of three serine proteases. We expect our new methodology for quantifying local flexibility to be helpful in unraveling local changes in biomolecular dynamics.

  9. HMM-based prediction for protein structural motifs' two local properties: solvent accessibility and backbone torsion angles.

    PubMed

    Yu, Jianyong; Xiang, Leijun; Hong, Jiang; Zhang, Weidong

    2013-02-01

    Protein structure prediction is often assisted by predicting one-dimensional structural properties including relative solvent accessibility (RSA) surface and backbone torsion angles (BTA) of residues, and these two properties are continuously varying variables because proteins can move freely in a three-dimensional space. Instead of subdividing them into a few arbitrarily defined states that many popular approaches used, this paper proposes an integrated system for realvalue prediction of protein structural motifs' two local properties, based on the modified Hidden Markov Model that we previously presented. The model was used to capture the relevance of RSA and the dependency of BTA between adjacent residues along the local protein chain in motifs with definite probabilities. These two properties were predicted according to their own probability distribution. The method was applied to a protein fragment library. For nine different classes of motifs, real values of RSA were predicted with mean absolute error (MAE) of 0.122-0.175 and Pearson's correlation coefficient (PCC) of 0.623-0.714 between predicted and actual RSA. Meanwhile, real values of BTA were obtained with MAE of 8.5⁰-29.4⁰ for Φ angles, 11.2⁰-38.5⁰ for ψ angles and PCC of 0.601-0.716 for Φ, 0.597-0.713 for ψ. The results were compared with well-known Real-SPINE Server, and indicate the proposed method may at least serve as the foundation to obtain better local properties from structural motifs for protein structure prediction. PMID:22894152

  10. Protein structure quality assessment based on the distance profiles of consecutive backbone Cα atoms.

    PubMed

    Chakraborty, Sandeep; Venkatramani, Ravindra; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya M

    2013-01-01

    Predicting the three dimensional native state structure of a protein from its primary sequence is an unsolved grand challenge in molecular biology. Two main computational approaches have evolved to obtain the structure from the protein sequence - ab initio/de novo methods and template-based modeling - both of which typically generate multiple possible native state structures. Model quality assessment programs (MQAP) validate these predicted structures in order to identify the correct native state structure. Here, we propose a MQAP for assessing the quality of protein structures based on the distances of consecutive Cα atoms. We hypothesize that the root-mean-square deviation of the distance of consecutive Cα (RDCC) atoms from the ideal value of 3.8 Å, derived from a statistical analysis of high quality protein structures (top100H database), is minimized in native structures. Based on tests with the top100H set, we propose a RDCC cutoff value of 0.012 Å, above which a structure can be filtered out as a non-native structure. We applied the RDCC discriminator on decoy sets from the Decoys 'R' Us database to show that the native structures in all decoy sets tested have RDCC below the 0.012 Å cutoff. While most decoy sets were either indistinguishable using this discriminator or had very few violations, all the decoy structures in the fisa decoy set were discriminated by applying the RDCC criterion. This highlights the physical non-viability of the fisa decoy set, and possible issues in benchmarking other methods using this set. The source code and manual is made available at https://github.com/sanchak/mqap and permanently available on 10.5281/zenodo.7134.

  11. Synthesis and in vitro antioxidant functions of protein hydrolysate from backbones of Rastrelliger kanagurta by proteolytic enzymes

    PubMed Central

    Sheriff, Sheik Abdulazeez; Sundaram, Balasubramanian; Ramamoorthy, Baranitharan; Ponnusamy, Ponmurugan

    2013-01-01

    Every year, a huge quantity of fishery wastes and by-products are generated by fish processing industries. These wastes are either underutilized to produce low market value products or dumped leading to environmental issues. Complete utilization of fishery wastes for recovering value added products would be beneficial to the society and individual. The fish protein hydrolysates and derived peptides of fishery resources are widely used as nutritional supplements, functional ingredients, and flavor enhancers in food, beverage and pharmaceutical industries. Antioxidants from fishery resources have attracted the attention of researchers as they are cheaper in cost, easy to derive, and do not have side effects. Thus the present investigation was designed to produce protein hydrolysate by pepsin and papain digestion from the backbones of Rastrelliger kanagurta (Indian mackerel) and evaluate its antioxidant properties through various in vitro assays. The results reveal that both hydrolysates are potent antioxidants, capable of scavenging 46% and 36% of DPPH (1,1-diphenyl-2 picrylhydrazyl) and 58.5% and 37.54% of superoxide radicals respectively. The hydrolysates exhibit significant (p < 0.05) reducing power and lipid peroxidation inhibition. Among the two hydrolysates produced, pepsin derived fraction is superior than papain derived fraction in terms of yield, DH (Degree of hydrolysis), and antioxidant activity. PMID:24596496

  12. Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins.

    PubMed

    Bagai, Ireena; Ragsdale, Stephen W; Zuiderweg, Erik R P

    2011-02-01

    The solution NMR resonance assignment of the protein backbone is most commonly carried out using triple resonance experiments that involve (15)N and (1)HN resonances. The assignment becomes problematic when there is resonance overlap of (15)N-(1)HN cross peaks. For such residues, one cannot unambiguously link the "left" side of the NH root to the "right" side, and the residues associated with such overlapping HN resonances remain often unassigned. Here we present a solution to this problem: a hybrid (4d,3d) reduced-dimensionality HN(CO)CA(CON)CA sequence. In this experiment, the Ca(i) resonance is modulated with the frequency of the Ca(i-1) resonance, which helps in resolving the ambiguity involved in connecting the Ca(i) and Ca(i-1) resonances for overlapping NH roots. The experiment has limited sensitivity, and is only suited for small or unfolded proteins. In a companion experiment, (4d,3d) reduced-dimensionality HNCO(N)CA, the Ca(i) resonance is modulated with the frequency of the CO(i-1) resonance, hence resolving the ambiguity existent in pairing up the Ca(i) and CO(i-1) resonances for overlapping NH roots. PMID:21190062

  13. Hybrid character of a large neurofilament protein (NF-M): intermediate filament type sequence followed by a long and acidic carboxy-terminal extension.

    PubMed Central

    Geisler, N; Fischer, S; Vandekerckhove, J; Plessmann, U; Weber, K

    1984-01-01

    The sequence of the amino-terminal 436 residues of porcine neurofilament component NF-M (apparent mol. wt. in gel electrophoresis 160 kd), one of the two high mol. wt. components of mammalian neurofilaments, reveals the typical structural organization of an intermediate filament (IF) protein of the non-epithelial type. A non-alpha-helical arginine-rich headpiece with multiple beta-turns (residues 1-98) precedes a highly alpha-helical rod domain able to form double-stranded coiled-coils (residues 99-412) and a non-alpha-helical tailpiece array starting at residue 413. All extra mass of NF-M forms, as a carboxy-terminal tailpiece extension of approximately 500 residues, an autonomous domain of unique composition. Limited sequence data in the amino-terminal region of this domain document a lysine- and particularly glutamic acid-rich array somewhat reminiscent of the much shorter tailpiece extension of NF-L (apparent mol. wt. 68 kd), the major neurofilament protein. NF-M is therefore a true intermediate filament protein co-polymerized with NF-L via presumptive coiled-coil type interactions and not a peripherally bound associated protein of a filament backbone built exclusively from NF-L. Along the structurally conserved coiled-coil domains the two neurofilament proteins show only approximately 65% sequence identity, a value similar to that seen when NF-L and NF-M are compared with mesenchymal vimentin. The highly charged and acidic tailpiece extensions of all triplet proteins particularly rich in glutamic acid seem unique to the neurofilament type of IFs. They could form extra-filamentous scaffolds suitable for interactions with other neuronal components.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6439558

  14. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase.

    PubMed

    Choi, Yong-Geun; Park, Chin-Ju; Kim, Hee-Eun; Seo, Yeo-Jin; Lee, Ae-Ree; Choi, Seo-Ree; Lee, Shim Sung; Lee, Joon-Hwa

    2015-02-01

    Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 3(10)-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins.

  15. Using MUSIC and CC(CO)NH for backbone assignment of two medium-sized proteins not fully accessible to standard 3D NMR.

    PubMed

    Brenner, Annette K; Frøystein, Nils Åge

    2014-01-01

    The backbone assignment of medium-sized proteins is rarely as straightforward as that of small proteins, and thus often requires creative solutions. Here, we describe the application of a combination of standard 3D heteronuclear methods with CC(CO)NH and a variety of MUltiplicity Selective In-phase Coherence transfer (MUSIC) experiments. Both CC(CO)NH and MUSIC are, in theory, very powerful methods for the backbone assignment of proteins. Due to low sensitivity, their use has usually been linked to small proteins only. However, we found that combining CC(CO)NH and MUSIC experiments simplified the assignment of two challenging medium-sized proteins of 13 and 19.5 kDa, respectively. These methods are to some extent complementary to each other: CC(CO)NH acquired with a long isotropic mixing time can identify amino acids with large aliphatic side chains. Whereas the most sensitive MUSIC experiments identify amino acid types that cannot be detected by CC(CO)NH, comprising the residues with acid and amide groups, and aromatic rings in their side chains. Together these methods provide a means of identifying the majority of peaks in the 2D 15N HSQC spectrum which simplifies the backbone assignment work even for proteins, e.g., small kinases, whose standard spectra resulted in little spectral resolution and low signal intensities.

  16. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.

    PubMed

    Clore, G Marius; Schwieters, Charles D

    2004-08-24

    Backbone residual dipolar coupling (N-H, Calpha-Halpha, N-C', and Calpha-C') data collected in five different media on the B3 IgG binding domain of streptococcal protein G (GB3) have been analyzed by simultaneous refinement of the coordinates and optimization of the magnitudes and orientations of the alignment tensors using single and multiple structure representations. We show, using appropriate error analysis, that agreement between observed and calculated dipolar couplings at the level of experimental uncertainty is obtained with a two-structure (N(e) = 2) ensemble representation which represents the simplest equilibrium description of anisotropic motions. The data permit one to determine the magnitude of the anisotropic motions along the four different backbone bond vectors in terms of order parameters. The order parameters, , for the N-H bond vectors are in qualitative agreement with the generalized order parameters, S(2)NH(relaxation), derived from (15)N relaxation measurements, with a correlation coefficient of 0.84. S(2)NH(relaxation) can be regarded as the product of an anisotropic order parameter, corresponding to derived from the residual dipolar couplings, and an axially symmetric order parameter, S(2)NH(axial), corresponding to bond librations which are expected to be essentially uniform along the polypeptide chain. The current data indicate that the average value of S(2)NH(axial) is approximately 0.9. The close correspondence of and S(2)NH(relaxation) indicates that any large-scale displacements from the mean coordinate positions on time scales longer than the rotational correlation time are rare and hence do not perturb the observed dipolar couplings. Analysis of a set of 100 N(e) = 2 ensembles reveals the presence of some long-range correlated motions of N-H and Calpha-Halpha vectors involving residues far apart in the sequence but close together in space. In addition, direct evidence is

  17. Rapid analysis of protein backbone resonance assignments using cryogenic probes, a distributed Linux-based computing architecture, and an integrated set of spectral analysis tools.

    PubMed

    Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T

    2002-01-01

    Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.

  18. Charged single alpha-helices in proteomes revealed by a consensus prediction approach.

    PubMed

    Gáspári, Zoltán; Süveges, Dániel; Perczel, András; Nyitray, László; Tóth, Gábor

    2012-04-01

    Charged single α-helices (CSAHs) constitute a recently recognized protein structural motif. Its presence and role is characterized in only a few proteins. To explore its general features, a comprehensive study is necessary. We have set up a consensus prediction method available as a web service (at http://csahserver.chem.elte.hu) and downloadable scripts capable of predicting CSAHs from protein sequences. Using our method, we have performed a comprehensive search on the UniProt database. We found that the motif is very rare but seems abundant in proteins involved in symbiosis and RNA binding/processing. Although there are related proteins with CSAH segments, the motif shows no deep conservation in protein families. We conclude that CSAH-containing proteins, although rare, are involved in many key biological processes. Their conservation pattern and prevalence in symbiosis-associated proteins suggest that they might be subjects of relatively rapid molecular evolution and thus can contribute to the emergence of novel functions.

  19. Backbone 1H, 13C, and 15N NMR assignments for the Cyanothece 51142 protein cce_0567: a protein associated with nitrogen fixation in the DUF683 family

    SciTech Connect

    Buchko, Garry W.; Sofia, Heidi J.

    2008-06-01

    The recently sequenced genome of the diurnal cyanobacterium Cyanothece sp. PCC 51142 (contig 83.1_1_243_746) contains the sequence for an hypothetical protein that falls into the DUF683 family. As observed for the other 54 DUF683 proteins currently listed in the GenBank database, this 78-residue (9.0 kDa) protein in Cyanothece is also found in a nitrogen fixation gene cluster suggesting that it is involved in the process. To date no structural information exists for any of the proteins in the DUF683 family. In an effort to elucidate the biochemical role DUF683 may play in nitrogen fixation and to obtain structural information for a member of the DUF683 protein family, a construct containing DUF683 from Cyanothece 51142 was generated, expressed, purified, and the solution properties characterized. A total rotational correlation time (tc) of 17.1 ns was estimated by nuclear magnetic resonance (NMR) spectroscopy suggesting a molecular weight of ~ 40 kDa, an observation dictating that DUF683 is a tetramer in solution. Using triple-labeled (2H, 13C, 15N) and residue-specific 15N-labeled amino acids (L, K, V, and E/Q) samples, most of the backbone and side chain resonances for DUF683 were assigned. The 13C alpha chemical shifts and NOESY NMR data indicate that the protein is helical from K18-E75.

  20. Drug screening strategy for human membrane proteins: from NMR protein backbone structure to in silica- and NMR-screened hits

    PubMed Central

    Lindert, Steffen; Maslennikov, Innokentiy; Chiu, Ellis; Pierce, Levi C; McCammon, J. Andrew; Choe, Senyon

    2015-01-01

    About 8,000 genes encode membrane proteins in the human genome. The information about their druggability will be very useful to facilitate drug discovery and development. The main problem, however, consists of limited structural and functional information about these proteins because they are difficult to produce biochemically and to study. In this paper we describe the strategy that combines Cell-free protein expression, NMR spectroscopy, and molecular DYnamics simulation (CNDY) techniques. Results of a pilot CNDY experiment provide us with a guiding light towards expedited identification of the hit compounds against a new uncharacterized membrane protein as a potentially druggable target. These hits can then be further characterized and optimized to develop the initial lead compound quicker. We illustrate such “omics” approach for drug discovery with the CNDY strategy applied to two example proteins: hypoxia-induced genes HIGD1A and HIGD1B. PMID:24525125

  1. Fowlicidin-3 is an alpha-helical cationic host defense peptide with potent antibacterial and lipopolysaccharide-neutralizing activities.

    PubMed

    Bommineni, Yugendar R; Dai, Huaien; Gong, Yu-Xi; Soulages, Jose L; Fernando, Samodha C; Desilva, Udaya; Prakash, Om; Zhang, Guolong

    2007-01-01

    Cathelicidins are an important family of cationic host defense peptides in vertebrates with both antimicrobial and immunomodulatory activities. Fowlicidin-1 and fowlicidin-2 are two newly identified chicken cathelicidins with potent antibacterial activities. Here we report structural and functional characterization of the putatively mature form of the third chicken cathelicidin, fowlicidin-3, for exploration of its therapeutic potential. NMR spectroscopy revealed that fowlicidin-3 comprises 27 amino-acid residues and adopts a predominantly alpha-helical structure extending from residue 9 to 25 with a slight kink induced by a glycine at position 17. It is highly potent against a broad range of Gram-negative and Gram-positive bacteria in vitro, including antibiotic-resistant strains, with minimum inhibitory concentrations in the range 1-2 microM. It kills bacteria quickly, permeabilizing cytoplasmic membranes immediately on coming into contact with them. Unlike many other host defense peptides with antimicrobial activities that are diminished by serum or salt, fowlicidin-3 retains bacteria-killing activities in the presence of 50% serum or physiological concentrations of salt. Furthermore, it is capable of suppressing lipopolysaccharide-induced expression of proinflammatory genes in mouse macrophage RAW264.7 cells, with nearly complete blockage at 10 microM. Fowlicidin-3 appears to be an excellent candidate for future development as a novel antimicrobial and antisepsis agent, particularly against antibiotic-resistant pathogens.

  2. Effects of Synthetic Amphiphilic alpha-Helical Peptides on the Electrochemical and Structural Properties of Supported Hybrid Bilayers on Gold

    SciTech Connect

    Smith,M.; Tong, J.; Genzer, J.; Fischer, D.; Kilpatrick, P.

    2006-01-01

    Amphiphilic {alpha}-helices were formed from designed synthetic peptides comprising alanine, phenylalanine, and lysine residues. The insertion of the -helical peptides into hybrid bilayers assembled on gold was studied by a variety of methods to assess the resulting structural characteristics, such as electrical resistance and molecular orientation. Self-assembled monolayers (SAMs) of dodecanethiol (DDT); octadecanethiol (ODT); and 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) were formed on gold substrates with and without incorporated peptide. Supported hybrid bilayers and multilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were formed on SAMs by the 'paint-freeze' method of bilayer formation. Modeling of electrochemical impedance spectroscopy data using equivalent electrochemical circuits revealed that the addition of peptide decreased dramatically the resistive element of the bilayer films while maintaining the value of the capacitive element, indicating successful incorporation of peptide into a well-formed bilayer. Near-edge X-ray absorption fine structure spectroscopy data provided evidence that the molecules in the SAMs and hybrid multilayers were ordered even in the presence of peptide. The peptide insertion into the SAM was confirmed by observing the {pi}* resonance peak correlating with phenylalanine and a peak in the nitrogen K-edge regime attributable to the peptide bond.

  3. Graft copolymer composed of cationic backbone and bottle brush-like side chains as a physically adsorbed coating for protein separation by capillary electrophoresis.

    PubMed

    Zhou, Dan; Xiang, Lina; Zeng, Rongju; Cao, Fuhu; Zhu, Xiaoxi; Wang, Yanmei

    2011-12-01

    To stabilize electroosmotic flow (EOF) and suppress protein adsorption onto the silica capillary inner wall, a cationic hydroxyethylcellulose-graft-poly (poly(ethylene glycol) methyl ether methacrylate) (cat-HEC-g-PPEGMA) graft copolymer composed of cationic backbone and bottle brush-like side chains was synthesized for the first time and used as a novel physically adsorbed coating for protein separation by capillary electrophoresis. Reversed (anodal) and very stable EOF was obtained in cat-HEC-g-PPEGMA-coated capillary at pH 2.2-7.8. The effects of degree of cationization, PEGMA grafting ratio, PEGMA molecular mass, and buffer pH on the separation of basic proteins were investigated. A systematic comparative study of protein separation in bare and HEC-coated capillaries and in cat-HEC-g-PPEGMA-coated capillary was also performed. The basic proteins can be well separated in cat-HEC-g-PPEGMA-coated capillary over the pH range of 2.8-6.8 with good repeatability and high separation efficiency, because the coating combines good protein-resistant property of bottle brush-like PPEGMA side chains with excellent coating ability of cat-HEC backbone. Besides its success in separation of basic proteins, the cat-HEC-g-PPEGMA coating was also superior in the fast separation of other protein samples, such as protein mixture, egg white, and saliva, which indicates that it is a promising coating for further proteomics analysis. PMID:22038787

  4. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.

    PubMed

    Faraggi, Eshel; Xue, Bin; Zhou, Yaoqi

    2009-03-01

    This article attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable for networks of any size. The method employs a part of the weights for guiding and the other part for training and optimization. We demonstrate this technique by predicting residue solvent accessibility and real-value backbone torsion angles of proteins. In this application, the guiding factor is designed to satisfy the intuitive condition that for most residues, the contribution of a residue to the structural properties of another residue is smaller for greater separation in the protein-sequence distance between the two residues. We show that the guided-learning method makes a 2-4% reduction in 10-fold cross-validated mean absolute errors (MAE) for predicting residue solvent accessibility and backbone torsion angles, regardless of the size of database, the number of hidden layers and the size of input windows. This together with introduction of two-layer neural network with a bipolar activation function leads to a new method that has a MAE of 0.11 for residue solvent accessibility, 36 degrees for psi, and 22 degrees for phi. The method is available as a Real-SPINE 3.0 server in http://sparks.informatics.iupui.edu.

  5. Influence of trifluoroethanol on membrane interfacial anchoring interactions of transmembrane alpha-helical peptides.

    PubMed

    Ozdirekcan, Suat; Nyholm, Thomas K M; Raja, Mobeen; Rijkers, Dirk T S; Liskamp, Rob M J; Killian, J Antoinette

    2008-02-15

    Interfacial anchoring interactions between aromatic amino acid residues and the lipid-water interface are believed to be important determinants for membrane protein structure and function. Thus, it is possible that molecules that partition into the lipid-water interface can influence membrane protein activity simply by interfering with these anchoring interactions. Here we tested this hypothesis by investigating the effects of 2,2,2-trifluoroethanol (TFE) on the interaction of a Trp-flanked synthetic transmembrane peptide (acetyl-GW(2)(LA)(8)LW(2)A-NH(2)) with model membranes of dimyristoylphosphatidylcholine. Two striking observations were made. First, using (2)H nuclear magnetic resonance on acyl chain deuterated lipids, we found that addition of 4 or 8 vol % of TFE completely abolishes the ability of the peptide to order and stretch the lipid acyl chains in these relatively thin bilayers. Second, we observed that addition of 8 vol % TFE reduces the tilt angle of the peptide from 5.3 degrees to 2.5 degrees, as measured by (2)H NMR on Ala-d(4) labeled peptides. The "straightening" of the peptide was accompanied by an increased exposure of Trp to the aqueous phase, as shown by Trp-fluorescence quenching experiments using acrylamide. The observation of a reduced tilt angle was surprising because we also found that TFE partioning results in a significant thinning of the membrane, which would increase the extent of hydrophobic mismatch. In contrast to the Trp-flanked peptide, no effect of TFE was observed on the interaction of a Lys-flanked analog (acetyl-GK(2)(LA)(8)LK(2)A-NH(2)) with the lipid bilayer. These results emphasize the importance of interfacial anchoring interactions for membrane organization and provide new insights into how molecules such as TFE that can act as anesthetics may affect the behavior of membrane proteins that are enriched in aromatic amino acids at the lipid-water interface.

  6. Stable proline box motif at the N-terminal end of alpha-helices.

    PubMed Central

    Viguera, A. R.; Serrano, L.

    1999-01-01

    We describe a novel N-terminal alpha-helix local motif that involves three hydrophobic residues and a Pro residue (Pro-box motif). Database analysis shows that when Pro is the N-cap of an alpha-helix the distribution of amino acids in adjacent positions changes dramatically with respect to the average distribution in an alpha-helix, but not when Pro is at position N1. N-cap Pro residues are usually associated to Ile and Leu, at position N', Val at position N3 and a hydrophobic residue (h) at position N4. The side chain of the N-cap Pro packs against Val, while the hydrophobic residues at positions N' and N4 make favorable interactions. To analyze the role of this putative motif (sequence fingerprint hPXXhh), we have synthesized a series of peptides and analyzed them by circular dichroism (CD) and NMR. We find that this motif is formed in peptides, and that the accompanying hydrophobic interactions contribute up to 1.2 kcal/mol to helix stability. The fact that some of the residues in this fingerprint are not good N-cap and helix formers results in a small overall stabilization of the alpha-helix with respect to other peptides having Gly as the N-cap and Ala at N3 and N4. This suggests that the Pro-box motif will not specially contribute to protein stability but to the specificity of its fold. In fact, 80% of the sequences that contain the fingerprint sequence in the protein database are adopting the described structural motif, and in none of them is the helix extended to place Pro at the more favorable N1 position. PMID:10493574

  7. Backbone ¹H, ¹³C and ¹⁵N resonance assignments of the α-helical membrane protein TM0026 from Thermotoga maritima.

    PubMed

    Kroncke, Brett M; Columbus, Linda

    2013-10-01

    Critical to the use of solution NMR to describe the structure and flexibility of membrane proteins is the thorough understanding of the degree of perturbation induced by the detergent or other membrane mimetic. To develop a deeper understanding of the interaction between membrane proteins and micelles or bicelles, we will investigate the differences in structure and flexibility of a model membrane protein TM0026 from Thermotoga maritima using solution NMR. A comparison of the structural differences between TM0026 solubilized in different detergent combinations will provide important insight into the degree of modulation of membrane proteins by detergent physical properties. Here we report the nearly complete backbone and Cβ resonance assignments of the two transmembrane helical model protein TM0026. These assignments are the first step to using TM0026 to elucidate the interaction between membrane proteins and membrane mimetics.

  8. Backbone dynamics of a model membrane protein: 13C NMR spectroscopy of alanine methyl groups in detergent-solubilized M13 coat protein.

    PubMed

    Henry, G D; Weiner, J H; Sykes, B D

    1986-02-11

    The filamentous coliphage M13 possesses multiple copies of a 50-residue coat protein which is inserted into the inner membrane of Escherichia coli during infection. 13C nuclear magnetic resonance (NMR) spectroscopy has been used to probe the structure and dynamics of M13 coat protein solubilized in detergent micelles. A comparison of backbone dynamics within the hydrophobic core region and the hydrophilic terminal domains was obtained by biosynthetic incorporation of [3-13C]alanine. Alanine is distributed throughout the protein and accounts for 10 residues (i.e., 20% of the total). Similar 13C NMR spectra of the protein have been obtained in two anionic detergents, sodium deoxycholate and sodium dodecyl sulfate, although the structures and physical properties of these solubilizing agents are quite different. The N-terminal alanine residues, assigned by pH titration, and the penultimate residue, assigned by carboxypeptidase A digestion, give rise to analogous peaks in both detergent systems. The pKa of Ala-1 (approximately 8.8) and the relaxation parameters of individual carbon atoms (T1, T2, and the nuclear Overhauser enhancement) are also generally similar, suggesting a similarity in the overall protein structure. Relaxation data have been analyzed according to the model-free approach of Lipari and Szabo [Lipari, G., & Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559]. The overall correlation times were obtained by fitting the three experimental relaxation values for a given well-resolved single carbon atom to obtain a unique value for the generalized order parameter, S2, and the effective correlation time, tau e. The former parameter reflects the spatial restriction of motion, and the latter, the rate.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. TAT Modification of Alpha-Helical Anticancer Peptides to Improve Specificity and Efficacy

    PubMed Central

    Hao, Xueyu; Yan, Qiuyan; Zhao, Jing; Wang, Wenren; Huang, Yibing; Chen, Yuxin

    2015-01-01

    HPRP-A1 is an amphipathic α-helical anticancer peptide (ACP) derived from the N-terminus of ribosomal protein L1 (RpL1) of Helicobacter pylori. In our previously study, HPRP-A1 has been reported that induced HeLa cell apoptosis in a caspase-dependent approach and involved both by the death receptor ‘extrinsic’ pathway and the mitochondria ‘intrinsic’ pathway. Here we report the construction of a new hybrid peptide, HPRP-A1-TAT, comprising the cell-permeating peptide TAT linked to the C-terminus of HPRP-A1. This peptide exhibits higher anticancer activity against HeLa cells with lower toxicity against human RBC than HPRP-A1. Two FITC-labeled peptides, FITC-HPRP-A1 and FITC-HPRP-A1-TAT, were used to investigate and compare the cellular uptake mechanism using fluorescence spectra and flow cytometry. Compared with HPRP-A1, HPRP-A1-TAT quickly crossed cell, entered the cytoplasm via endocytosis, and disrupted the cell membrane integrity. HPRP-A1-TAT exhibited stronger anticancer activity than HPRP-A1 at the same concentration by increasing early apoptosis of HeLa cells and inducing caspase activity. Notably, after 24 h, the cellular concentration of HPRP-A1-TAT was higher than that of HPRP-A1. This result suggests that TAT protects HPRP-A1 against degradation, likely due to its high number of positively charged amino acids or the further release of peptides into cancer cells from endocytotic vesicles. We believe that this TAT modification approach may provide an effective new strategy for improving the therapeutic index and anticancer activity of ACPs for clinical use. PMID:26405806

  10. Solution structure and backbone dynamics of the N-terminal region of the calcium regulatory domain from soybean calcium-dependent protein kinase alpha.

    PubMed

    Weljie, Aalim M; Gagné, Stéphane M; Vogel, Hans J

    2004-12-01

    Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.

  11. Backbone dynamics in collagen

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.

    2004-11-01

    Peptide backbone motions of collagen have been extensively studied in the past. The experimental results were interpreted using a model of a collagen rod librating about its helix axis. Considering the size of the collagen molecule and the presence of cross-linked molecules, motional amplitudes derived for the helix axis libration were unusually high. Using solid-state NMR 13C chemical shift anisotropy and 2H quadrupolar lineshape analysis for five different isotope labelled collagens we show that motional averaging of the NMR interactions occurs primarily via small-angle librations about internal bond directions. This type of dynamics is compatible with both the presence of cross-links in collagen and the X-ray data, as well as dynamic models used for other proteins.

  12. Reduced dimensionality tailored HN(C)N experiments for facile backbone resonance assignment of proteins through unambiguous identification of sequential HSQC peaks

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh

    2013-12-01

    Two novel reduced dimensionality (RD) tailored HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR 20 (2001) 135-147] experiments are proposed to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. These experiments - referred here as (4,3)D-hNCOcaNH and (4,3)D-hNcoCANH - exploit the linear combination of backbone 15N and 13C‧/13Cα chemical shifts simultaneously to achieve higher peak dispersion and randomness along their respective F1 dimensions. Simply, this has been achieved by modulating the backbone 15N(i) chemical shifts with that of 13C‧ (i - 1)/13Cα (i - 1) spins following the established reduced dimensionality NMR approach [T. Szyperski, D.C. Yeh, D.K. Sukumaran, H.N. Moseley, G.T. Montelione, Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment, Proc. Natl. Acad. Sci. USA 99 (2002) 8009-8014]. Though the modification is simple it has resulted an ingenious improvement of HN(C)N both in terms of peak dispersion and easiness of establishing the sequential connectivities. The increased dispersion along F1 dimension solves two purposes here: (i) resolves the ambiguities arising because of degenerate 15N chemical shifts and (ii) reduces the signal overlap in F2(15N)-F3(1H) planes (an important requisite in HN(C)N based assignment protocol for facile and unambiguous identification of sequentially connected HSQC peaks). The performance of both these experiments and the assignment protocol has been demonstrated using bovine apo Calbindin-d9k (75 aa) and urea denatured UNC60B (a 152 amino acid ADF/cofilin family protein of Caenorhabditis elegans), as representatives of folded and unfolded protein systems, respectively.

  13. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  14. Solution NMR structure, backbone dynamics, and heme-binding properties of a novel cytochrome c maturation protein CcmE from Desulfovibrio vulgaris.

    PubMed

    Aramini, James M; Hamilton, Keith; Rossi, Paolo; Ertekin, Asli; Lee, Hsiau-Wei; Lemak, Alexander; Wang, Huang; Xiao, Rong; Acton, Thomas B; Everett, John K; Montelione, Gaetano T

    2012-05-01

    Cytochrome c maturation protein E, CcmE, plays an integral role in the transfer of heme to apocytochrome c in many prokaryotes and some mitochondria. A novel subclass featuring a heme-binding cysteine has been identified in archaea and some bacteria. Here we describe the solution NMR structure, backbone dynamics, and heme binding properties of the soluble C-terminal domain of Desulfovibrio vulgaris CcmE, dvCcmE'. The structure adopts a conserved β-barrel OB fold followed by an unstructured C-terminal tail encompassing the CxxxY heme-binding motif. Heme binding analyses of wild-type and mutant dvCcmE' demonstrate the absolute requirement of residue C127 for noncovalent heme binding in vitro.

  15. Solution NMR structure, backbone dynamics, and heme-binding properties of a novel cytochrome c maturation protein CcmE from Desulfovibrio vulgaris.

    PubMed

    Aramini, James M; Hamilton, Keith; Rossi, Paolo; Ertekin, Asli; Lee, Hsiau-Wei; Lemak, Alexander; Wang, Huang; Xiao, Rong; Acton, Thomas B; Everett, John K; Montelione, Gaetano T

    2012-05-01

    Cytochrome c maturation protein E, CcmE, plays an integral role in the transfer of heme to apocytochrome c in many prokaryotes and some mitochondria. A novel subclass featuring a heme-binding cysteine has been identified in archaea and some bacteria. Here we describe the solution NMR structure, backbone dynamics, and heme binding properties of the soluble C-terminal domain of Desulfovibrio vulgaris CcmE, dvCcmE'. The structure adopts a conserved β-barrel OB fold followed by an unstructured C-terminal tail encompassing the CxxxY heme-binding motif. Heme binding analyses of wild-type and mutant dvCcmE' demonstrate the absolute requirement of residue C127 for noncovalent heme binding in vitro. PMID:22497251

  16. NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognition.

    PubMed

    Mukherjee, Munia; Dutta, Kaushik; White, Mark A; Cowburn, David; Fox, Robert O

    2006-06-01

    Flaviviruses cause many human diseases, including dengue fever, yellow fever, West Nile viral encephalitis, and hemorrhagic fevers, and are transmitted to their vertebrate hosts by infected mosquitoes and ticks. Domain III of the envelope protein (E-D3) is considered to be the primary viral determinant involved in the virus-host-cell receptor interaction, and thus represents an excellent target for antiviral drug development. Langat (LGT) virus is a naturally attenuated BSL-2 TBE virus and is a model for the pathogenic BSL-3 and BSL-4 viruses in the serogroup. We have determined the solution structure of LGT-E-D3 using heteronuclear NMR spectroscopy. The backbone dynamics of LGT-E-D3 have been investigated using 15N relaxation measurements. A detailed analysis of the solution structure and dynamics of LGT-E-D3 suggests potential residues that could form a surface for molecular recognition, and thereby represent a target site for antiviral therapeutics design.

  17. Insight into the factors influencing the backbone dynamics of three homologous proteins, dendrotoxins I and K, and BPTI: FTIR and time-resolved fluorescence investigations.

    PubMed

    Hollecker, Michelle; Vincent, Michel; Gallay, Jacques; Ruysschaert, Jean-Marie; Goormaghtigh, Erik

    2002-12-24

    Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, combined with hydrogen/deuterium exchange technique and time-resolved fluorescence spectroscopy, has been used to investigate the changes in structure and dynamics that underlie the thermodynamic stability differences observed for three closely homologous proteins: dendrotoxins I and K, and bovine pancreatic trypsin inhibitor (BPTI). The experiments were performed on proteins under their native state and a modified form, obtained by selective reduction of a disulfide bond at the surface of the molecule, increasing slightly the backbone flexibility without changing the average structure. The data confirmed the high local as well as global rigidity of BPTI. In protein K, the exchange process was slow during the first 2 h of exchange, presumably reflecting a compact three-dimensional conformation, and then increased rapidly, the internal amide protons of the beta-strands exchanging 10-fold faster than in BPTI or protein I. The most probable destabilizing element was identified as Pro32, in the core of the beta-sheet. Protein I was found to present a 10% more expanded volume than protein K or BPTI, and there is a possible correlation between the resulting increased flexibility of the molecule and the lower thermodynamic stability observed for this protein. Interestingly, the interior amide protons of the beta-sheet structure were found to be as protected against exchange in protein I as in BPTI, suggesting that, although globally more flexible than that of Toxin K or BPTI, the structure of Toxin I could be locally quite rigid. The structural factors suspected to be responsible for the differences in internal flexibility of the two toxins could play a significant role in determining their functional properties. PMID:12484765

  18. NMR structure determination of the Escherichia coli DnaJ molecular chaperone: secondary structure and backbone fold of the N-terminal region (residues 2-108) containing the highly conserved J domain.

    PubMed Central

    Szyperski, T; Pellecchia, M; Wall, D; Georgopoulos, C; Wüthrich, K

    1994-01-01

    DnaJ from Escherichia coli is a 376-amino acid protein that functions in conjunction with DnaK and GrpE as a chaperone machine. The N-terminal fragment of residues 2-108, DnaJ-(2-108), retains many of the activities of the full-length protein and contains a structural motif, the J domain of residues 2-72, which is highly conserved in a superfamily of proteins. In this paper, NMR spectroscopy was used to determine the secondary structure and the three-dimensional polypeptide backbone fold of DnaJ-(2-108). By using 13C/15N doubly labeled DnaJ-(2-108), nearly complete sequence-specific assignments were obtained for 1H, 15N, 13C alpha, and 13C beta, and about 40% of the peripheral aliphatic carbon resonances were also assigned. Four alpha-helices in polypeptide segments of residues 6-11, 18-31, 41-55, and 61-68 in the J domain were identified by sequential and medium-range nuclear Overhauser effects. For the J domain, the three-dimensional structure was calculated with the program DIANA from an input of 536 nuclear Overhauser effect upper-distance constraints and 52 spin-spin coupling constants. The polypeptide backbone fold is characterized by the formation of an antiparallel bundle of two long helices, residues 18-31 and 41-55, which is stabilized by a hydrophobic core of side chains that are highly conserved in homologous J domain sequences. The Gly/Phe-rich region from residues 77 to 108 is flexibly disordered in solution. Images PMID:7972061

  19. Structural Insights into the Evolution of a Sexy Protein: Novel Topology and Restricted Backbone Flexibility in a Hypervariable Pheromone from the Red-Legged Salamander, Plethodon shermani

    PubMed Central

    Wilburn, Damien B.; Bowen, Kathleen E.; Doty, Kari A.; Arumugam, Sengodagounder; Lane, Andrew N.; Feldhoff, Pamela W.; Feldhoff, Richard C.

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions – such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake “three-finger” topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this

  20. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    PubMed

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  1. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    PubMed

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  2. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    SciTech Connect

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  3. Backbone and side-chain chemical shift assignments for the C-terminal domain of Tcb2, a cytoskeletal calcium-binding protein from Tetrahymena thermophila.

    PubMed

    Kilpatrick, Adina M; Gurrola, Theodore E; Sterner, Robert C; Sleister, Heidi M; Honts, Jerry E; Fowler, C Andrew

    2016-10-01

    Tcb2 is a putative calcium-binding protein from the membrane-associated cytoskeleton of the ciliated protozoan Tetrahymena thermophila. It has been hypothesized to participate in several calcium-mediated processes in Tetrahymena, including ciliary movement, cell cortex signaling, and pronuclear exchange. Sequence analysis suggests that the protein belongs to the calmodulin family, with N- and C-terminal domains connected by a central linker, and two helix-loop-helix motifs in each domain. However, its calcium-binding properties, structure and precise biological function remain unknown. Interestingly, Tcb2 is a major component of unique contractile fibers isolated from the Tetrahymena cytoskeleton; in these fibers, addition of calcium triggers an ATP-independent type of contraction. Here we report the (1)H, (13)C and (15)N backbone and side-chain chemical shift assignments of the C-terminal domain of the protein (Tcb2-C) in the absence and presence of calcium ions. (1)H-(15)N HSQC spectra show that the domain is well folded both in the absence and presence of calcium, and undergoes a dramatic conformational change upon calcium addition. Secondary structure prediction from chemical shifts reveals an architecture encountered in other calcium-binding proteins, with paired EF-hand motifs connected by a flexible linker. These studies represent a starting point for the determination of the high-resolution solution structure of Tcb2-C at both low and high calcium levels, and, together with additional structural studies on the full-length protein, will help establish the molecular basis of Tcb2 function and unique contractile properties.

  4. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data

    PubMed Central

    Hu, Kan-Nian; Qiang, Wei; Bermejo, Guillermo A.; Schwieters, Charles D.; Tycko, Robert

    2013-01-01

    Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and backbone torsion angles; (ii) restraints on inter-residue proximities from qualitative measurements of internuclear dipole–dipole couplings, detected as the presence or absence of inter-residue crosspeaks in multidimensional spectra. We show that site-specific dipole–dipole couplings among 15N-labeled backbone amide sites and among 13C-labeled backbone carbonyl sites can be measured quantitatively in uniformly-labeled proteins, using dipolar recoupling techniques that we call 15N-BARE and 13C-BARE (BAckbone REcoupling), and that the resulting data represent a new source of restraints on backbone conformation. 15N-BARE and 13C-BARE data can be incorporated into structural modeling calculations as potential energy surfaces, which are derived from comparisons between experimental 15N and 13C signal decay curves, extracted from crosspeak intensities in series of two-dimensional spectra, with numerical simulations of the 15N-BARE and 13C-BARE measurements. We demonstrate this approach through experiments on microcrystalline, uniformly 15N, 13C-labeled protein GB1. Results for GB1 show that 15N-BARE and 13C-BARE restraints are complementary to restraints from chemical shifts and inter-residue crosspeaks, improving both the precision and the accuracy of calculated structures. PMID:22449573

  5. Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations.

    PubMed

    Perez, Alberto; MacCallum, Justin L; Brini, Emiliano; Simmerling, Carlos; Dill, Ken A

    2015-10-13

    Force fields, such as Amber's ff12SB, can be fairly accurate models of the physical forces in proteins and other biomolecules. When coupled with accurate solvation models, force fields are able to bring insight into the conformational preferences, transitions, pathways, and free energies for these biomolecules. When computational speed/cost matters, implicit solvent is often used but at the cost of accuracy. We present an empirical grid-like correction term, in the spirit of cMAPs, to the combination of the ff12SB protein force field and the GBneck2 implicit-solvent model. Ff12SB-cMAP is parametrized on experimental helicity data. We provide validation on a set of peptides and proteins. Ff12SB-cMAP successfully improves the secondary structure biases observed in ff12SB + Gbneck2. Ff12SB-cMAP can be downloaded ( https://github.com/laufercenter/Amap.git ) and used within the Amber package. It can improve the agreement of force fields + implicit solvent with experiments. PMID:26574266

  6. A ‘just-in-time’ HN(CA)CO experiment for the backbone assignment of large proteins with high sensitivity

    NASA Astrophysics Data System (ADS)

    Werner-Allen, Jon W.; Jiang, Ling; Zhou, Pei

    2006-07-01

    Among the suite of commonly used backbone experiments, HNCACO presents an unresolved sensitivity limitation due to fast 13CO transverse relaxation and passive 13Cα-13Cβ coupling. Here, we present a high-sensitivity 'just-in-time' (JIT) HN(CA)CO pulse sequence that uniformly refocuses 13Cα-13Cβ coupling while collecting 13CO shifts in real time. Sensitivity comparisons of the 3-D JIT HN(CA)CO, a CT-HMQC-based control, and a HSQC-based control with selective 13Cα inversion pulses were performed using a 2H/13C/15N labeled sample of the 29 kDa HCA II protein at 15 °C. The JIT experiment shows a 42% signal enhancement over the CT-HMQC-based experiment. Compared to the HSQC-based experiment, the JIT experiment is 16% less sensitive for residues experiencing proper 13Cα refocusing and 13Cα-13Cβ decoupling. However, for the remaining residues, the JIT spectrum shows a 106% average sensitivity gain over the HSQC-based experiment. The high-sensitivity JIT HNCACO experiment should be particularly beneficial for studies of large proteins to provide 13CO resonance information regardless of residue type.

  7. Strike a balance: optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides.

    PubMed

    Wang, Zhi-Xiang; Zhang, Wei; Wu, Chun; Lei, Hongxing; Cieplak, Piotr; Duan, Yong

    2006-04-30

    Based on the AMBER polarizable model (ff02), we have re-optimized the parameters related to the main-chain (Phi, Psi) torsion angles by fitting to the Boltzmann-weighted average quantum mechanical (QM) energies of the important regions (i.e., beta, P(II), alpha(R), and alpha(L) regions). Following the naming convention of the AMBER force field series, this release will be called ff02pol.rl The force field has been assessed both by energetic comparison against the QM data and by the replica exchange molecular dynamics simulations of short alanine peptides in water. For Ace-Ala-Nme, the simulated populations in the beta, P(II) and alpha(R) regions were approximately 30, 43, and 26%, respectively. For Ace-(Ala)(7)-Nme, the populations in these three regions were approximately 24, 49, and 26%. Both were in qualitative agreement with the NMR and CD experimental conclusions. In comparison with the previous force field, ff02pol.rl demonstrated good balance among these three important regions. The optimized torsion parameters, together with those in ff02, allow us to carry out simulations on proteins and peptides with the consideration of polarization.

  8. On the source of entropic elastomeric force in polypeptides and proteins: Backbone configurational vs. side-chain solvational entropy

    SciTech Connect

    Luan, Chihao; Jaggard, J.; Harris, R.D.; Urry, D.W. )

    1989-01-01

    At physiological temperature in water, the relaxed state of the protein, elastin, and model elastomeric sequential polypeptides derived from this biological elastomer is the result of an inverse temperature transition. At lower temperatures, say at 20{degree}C, the hydrophobic side chains of the elastomers are hydrated with a low-entropy net of water. Following Flory and colleagues, thermoelasticity studies suggests that these polypeptide elastomers are dominantly entropic elastomers above the temperature of the inverse temperature transition. A central question becomes the source of the entropic elastomeric force. On stretching, hydrophobic side chains become exposed to water, resulting in an exothermic reaction of hydrophobic hydration. The issue addressed by the present report is whether this decrease in solvent entropy on stretching might make a major contribution to the entropic elastomeric restoring force. It has previously been argued that the free energy of solvation can be made very small by a 30% ethylene glycol (EG):70% water solvent mixture. This is demonstrated here using the repeating pentapeptide sequence of elastin (Val{sup 1}-Pro{sup 2}-Gly{sup 3} -Val{sup 4}-Gly{sup 5}){sub n} or poly(VPGVG) and its {gamma}-irradiation cross-linked elastomeric matrix. Differential scanning calorimetry of the inverse temperature transition of poly(VPGVG) shows the endothermic heat of the transition to become very small in EG/H{sub 2}O when compared with H{sub 2}O alone, which also indicates a very small entropy change for the transition on exposure of the hydrophobic side chains to the EG/H{sub 2}O solvent mixture. A similar result is found for the crosslinked elastomeric matrix. Significantly, however, in spite of the lower heats for hydrophobic solvation, the elastic modulus and the entropic elastomeric forces generated are greater in EG/H{sub 2}O.

  9. Intra-residue interactions in proteins: interplay between serine or cysteine side chains and backbone conformations, revealed by laser spectroscopy of isolated model peptides.

    PubMed

    Alauddin, Mohammad; Biswal, Himansu S; Gloaguen, Eric; Mons, Michel

    2015-01-21

    Intra-residue interactions play an important role in proteins by influencing local folding of the backbone. Taking advantage of the capability of gas phase experiments to provide relevant information on the intrinsic H-bonding pattern of isolated peptide chains, the intra-residue interactions of serine and cysteine residues, i.e., OH/SH···OC(i) C6 and NH(i···)O/S C5 interactions in Ser/Cys residues, are probed by laser spectroscopy of isolated peptides. The strength of these local side chain-main chain interactions, elegantly documented from their IR spectral features for well-defined conformations of the main chain, demonstrates that a subtle competition exists between the two types of intra-residue bond: the C6 H-bond is the major interaction with Ser, in contrast to Cys where C5 interaction takes over. The restricted number of conformers observed in the gas phase experiment with Ser compared to Cys (where both extended and folded forms are observed) also suggests a significant mediation role of these intra-residue interactions on the competition between the several main chain folding patterns. PMID:25482851

  10. Direct measurements of protein backbone 15N spin relaxation rates from peak line-width using a fully-relaxed Accordion 3D HNCO experiment.

    PubMed

    Chen, Kang; Tjandra, Nico

    2009-03-01

    Protein backbone (15)N spin relaxation rates measured by solution NMR provide useful dynamic information with a site-specific resolution. The conventional method is to record a series of 2D (1)H-(15)N HSQC spectra with varied relaxation delays, and derive relaxation rate from the following curve fitting on the resonance intensities. Proteins with poorly resolved spectra often require several 3D HNCO spectra to be collected on a (15)N/(13)C double labeled protein sample. In order to reduce the relaxation dimension Carr et al. (P.A. Carr, D.A. Fearing, A.G. Palmer, 3D accordion spectroscopy for measuring N-15 and (CO)-Carbon-13 relaxation rates in poorly resolved NMR spectra, J. Magn. Reson. 132 (1998) 25-33) employed an Accordion type HNCO pulse sequence to obtain (15)N or (13)C T(1) relaxation rates by numerical fitting of the relaxation interfered free induction decay (FID) data. To avoid intensive analysis of the time domain data, we propose a modified protocol to measure (15)N T(1) and T(2) relaxation rates from easily obtained line-widths in an Accordion HNCO spectrum. Both T(1) and T(2) relaxation could be simultaneously convoluted into the constant-time evolution periods of (13)C' and (15)N, respectively. The relaxation delay was allowed to reach at least 3 x T(1) or 3 x T(2) so that the signal was substantially decayed by the end of the FID, and the resulting peak full-width at half height (FWHH) could be directly used to calculate relaxation rate. When applied to the 76-residue Ubiquitin and the 226-residue glutamine-binding protein (GlnBP), this method yielded T(1) and T(2) values deviating on average by 4-6% and 5-7%, respectively, from the measurements based on the conventional 2D method. In comparison, the conventional methods possessed intrinsic error ranges of 2-4% for T(1) and 3-6% for T(2). In addition to comparable accuracy, the fully-relaxed Accordion HNCO method presented here allowed measurements of relaxation rates for resonances unresolved in

  11. Role of interchain alpha-helical hydrophobic interactions in Ca2+ affinity, formation, and stability of a two-site domain in troponin C.

    PubMed Central

    Monera, O. D.; Shaw, G. S.; Zhu, B. Y.; Sykes, B. D.; Kay, C. M.; Hodges, R. S.

    1992-01-01

    We have previously shown that a 34-residue synthetic peptide representing the calcium-binding site III of troponin C formed a symmetric two-site dimer consisting of two helix-loop-helix motifs arranged in a head-to-tail fashion (Shaw, G.S., Hodges, R.S., & Sykes, B.D., 1990, Science 249, 280-283). In this study the hydrophobicities of the alpha-helices were altered by replacing L-98 and F-102 in the N-terminal region and/or I-121 and L-122 in the C-terminal region with alanine residues. Our results showed that substitution of hydrophobic residues either in the N- or C-terminal region have little effect on alpha-helix formation but resulted in a 100- and 300-fold decrease in Ca2+ affinity, respectively. Simultaneous substitution of both hydrophobes in the N- and C-terminal region resulted in a 1,000-fold decrease in Ca2+ affinity. Data from guanidine hydrochloride denaturation studies suggested that intermolecular interactions occur and that the less hydrophobic analogs had a lower overall conformational stability. These data support the contention that the hydrophobic residues are important in the formation of the two-site domain in troponin C, and this hydrophobic association stabilizes Ca2+ affinity. PMID:1304377

  12. The structure of aquaporin-1 at 4.5-A resolution reveals short alpha-helices in the center of the monomer.

    PubMed

    Mitsuoka, K; Murata, K; Walz, T; Hirai, T; Agre, P; Heymann, J B; Engel, A; Fujiyoshi, Y

    1999-12-01

    Aquaporin-1 is a water channel found in mammalian red blood cells that is responsible for high water permeability of its membrane. Our electron crystallographic analysis of the three-dimensional structure of aquaporin-1 at 4.5-A resolution confirms the previous finding that each subunit consists of a right-handed bundle of six highly tilted transmembrane helices that surround a central X-shaped structure. In our new potential map, the rod-like densities for the transmembrane helices show helically arranged protrusions, indicating the positions of side chains. Thus, in addition to the six transmembrane helices, observation of helically arranged side-chain densities allowed the identification of two short alpha-helices representing the two branches of the central X-shaped structure that extend to the extracellular and cytoplasmic membrane surfaces. The other two branches are believed to be loops connecting the short alpha-helix to a neighboring transmembrane helix. A pore found close to the center of the aquaporin-1 monomer is suggested to be the course of water flow with implications for the water selectivity. PMID:10600556

  13. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.

    PubMed

    Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M

    2000-01-01

    Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp). PMID:11106807

  14. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    SciTech Connect

    Shi, Pan; Xi, Zhaoyong; Wang, Hu; Shi, Chaowei; Xiong, Ying; Tian, Changlin

    2010-11-19

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at three different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.

  15. Molecular dynamics studies of protein folding and aggregation

    NASA Astrophysics Data System (ADS)

    Ding, Feng

    that globular proteins under a denaturing environment partially unfold and aggregate by forming stabilizing hydrogen bonds between the backbones of the partial folded substructures. Proteins or peptides rich in alpha-helices also aggregate into beta-rich amyloid fibrils. Upon aggregation, the protein or peptide undergoes a conformational transition from alpha-helices to beta-sheets. The transition of alpha-helix to beta-hairpin (two-stranded beta-sheet) is studied in an all-heavy-atom discrete molecular dynamics model of a polyalanine chain. An entropical driving scenario for the alpha-helix to beta-hairpin transition is discovered.

  16. Database algorithm for generating protein backbone and side-chain co-ordinates from a C alpha trace application to model building and detection of co-ordinate errors.

    PubMed

    Holm, L; Sander, C

    1991-03-01

    The problem of constructing all-atom model co-ordinates of a protein from an outline of the polypeptide chain is encountered in protein structure determination by crystallography or nuclear magnetic resonance spectroscopy, in model building by homology and in protein design. Here, we present an automatic procedure for generating full protein co-ordinates (backbone and, optionally, side-chains) given the C alpha trace and amino acid sequence. To construct backbones, a protein structure database is first scanned for fragments that locally fit the chain trace according to distance criteria. A best path algorithm then sifts through these segments and selects an optimal path with minimal mismatch at fragment joints. In blind tests, using fully known protein structures, backbones (C alpha, C, N, O) can be reconstructed with a reliability of 0.4 to 0.6 A root-mean-square position deviation and not more than 0 to 5% peptide flips. This accuracy is sufficient to identify possible errors in protein co-ordinate sets. To construct full co-ordinates, side-chains are added from a library of frequently occurring rotamers using a simple and fast Monte Carlo procedure with simulated annealing. In tests on X-ray structures determined at better than 2.5 A resolution, the positions of side-chain atoms in the protein core (less than 20% relative accessibility) have an accuracy of 1.6 A (r.m.s. deviation) and 70% of chi 1 angles are within 30 degrees of the X-ray structure. The computer program MaxSprout is available on request. PMID:2002501

  17. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.

    PubMed

    Killian, J A; Salemink, I; de Planque, M R; Lindblom, G; Koeppe, R E; Greathouse, D V

    1996-01-23

    We have investigated the effect of several hydrophobic polypeptides on the phase behavior of diacylphosphatidylcholines with different acyl chain length. The polypeptides are uncharged and consist of a sequence with variable length of alternating leucine and alanine, flanked on both sides by two tryptophans, and with the N- and C-termini blocked. First it was demonstrated by circular dichroism measurements that these peptides adopt an alpha-helical conformation with a transmembrane orientation in bilayers of dimyristoylphosphatidylcholine. Subsequent 31P NMR measurements showed that the peptides can affect lipid organization depending on the difference in hydrophobic length between the peptide and the lipid bilayer in the liquid-crystalline phase. When a 17 amino acid residue long peptide (WALP17) was incorporated in a 1/10 molar ratio of peptide to lipid, a bilayer was maintained in saturated phospholipids containing acyl chains of 12 and 14 C atoms, an isotropic phase was formed at 16 C atoms, and an inverted hexagonal (HII) phase at 18 and 20 C atoms. For a 19 amino acid residue long peptide (WALP19) similar changes in lipid phase behavior were observed, but at acyl chain lengths of 2 C-atoms longer. Also in several cis-unsaturated phosphatidylcholine model membranes it was found that these peptides and a shorter analog (WALP16) induce the formation of nonbilayer structures as a consequence of hydrophobic mismatch. It is proposed that this unique ability of the peptides to induce nonbilayer structures in phosphatidylcholine model membranes is due to the presence of two tryptophans at both sides of the membrane/water interface, which prevent the peptide from aggregating when the mismatch is increased. Comparison of the hydrophobic length of the bilayers with the length of the different peptides showed that it is the precise extent of mismatch that determines whether the preferred lipid organization is a bilayer, isotropic phase, or HII phase. The peptide

  18. Possible role of the Nt-4/1 protein in macromolecular transport in vascular tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis thaliana 4/1 (At-4/1) protein has a highly alpha-helical structure with potential to interact both with itself and other protein ligands, including the movement proteins of some plant viruses; the Nicotiana tabacum ortholog (Nt-4/1) has similar structure. Here we describe localizatio...

  19. Photocleavage of the Polypeptide Backbone by 2-Nitrophenylalanine

    PubMed Central

    Peters, Francis B.; Brock, Ansgar; Wang, Jiangyun; Schultz, Peter G.

    2009-01-01

    Summary Photocleavage of the polypeptide backbone is potentially a powerful and general method to activate or deactivate functional peptides and proteins with high spatial and temporal resolution. Here we show that 2-nitrophenylalanine is able to photochemically cleave the polypeptide backbone by an unusual cinnoline forming reaction. This unnatural amino acid was genetically encoded in E. coli, and protein containing 2-nitrophenylalanine was expressed and site specifically photocleaved. PMID:19246005

  20. Backbone and side chain NMR assignment, along with the secondary structure prediction of RRM2 domain of La protein from a lower eukaryote exhibiting identical structural organization with its human homolog.

    PubMed

    Argyriou, Aikaterini I; Chasapis, Christos T; Apostolidi, Maria; Konstantinidou, Parthena; Stathopoulos, Constantinos; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    The La protein (Lupus antigen), a key mediator during biogenesis of RNA polymerase III transcripts, contains a characteristic La motif and one or two RNA recognition motif (RRM) domains, depending on the organism of origin. The RRM1 domain is conserved in higher eukaryotes and located in the N-terminal region, whereas the C-terminal RRM2 domain is absent in most lower eukaryotes and its specific role remains, so far, uncharacterized. Here, we present the backbone and side-chain assignment of the (1)H, (13)C and (15)N resonances of RRM2 of La protein from Dictyostelium discoideum. Interestingly, the La protein in this lower eukaryote, exhibits high homology to its human counterpart. Moreover, it contains two RRM domains, instead of one, raising questions on its evolutionary origin and the putative role of RRM2 in vivo. We also provide its secondary structure as predicted by the TALOS+ online tool.

  1. Parameterization of backbone flexibility in a coarse-grained force field for proteins (COFFDROP) derived from all-atom explicit-solvent molecular dynamics simulations of all possible two-residue peptides

    PubMed Central

    Frembgen-Kesner, Tamara; Andrews, Casey T.; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A.; Jain, Aakash; Olayiwola, Oluwatoni; Weishaar, Mitch R.; Elcock, Adrian H.

    2015-01-01

    Recently, we reported the parameterization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs, and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downwards in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multi-domain proteins connected by flexible linkers. PMID:26574429

  2. HRTEM in protein crystallography

    NASA Astrophysics Data System (ADS)

    Dyson, P. W.; Spargo, A. E. C.; Tulloch, P. A.; Johnson, A. W. S.

    Electron microscopy/diffraction (ED/D) using spot-scan and low-dose imaging has been successfully applied to investigate microcrystals of an alpha-helical coiled-coil protein extracted from ootheca of the praying mantis. Fourier transforms of the images show resolution out to 4 A and can be used to phase the corresponding ED data which shows reflections out to 2 A.

  3. Raman spectroscopy of cytoplasmic muscle fiber proteins. Orientational order.

    PubMed Central

    Pézolet, M; Pigeon, M; Ménard, D; Caillé, J P

    1988-01-01

    The polarized Raman spectra of glycerinated and intact single muscle fibers of the giant barnacle were obtained. These spectra show that the conformation-sensitive amide I, amide III, and C-C stretching vibrations give Raman bands that are stronger when the electric field of both the incident and scattered radiation is parallel to the fiber axis (Izz). The detailed analysis of the amide I band by curve fitting shows that approximately 50% of the alpha-helical segments of the contractile proteins are oriented along the fiber axis, which is in good agreement with the conformation and composition of muscle fiber proteins. Difference Raman spectroscopy was also used to highlight the Raman bands attributed to the oriented segments of the alpha-helical proteins. The difference spectrum, which is very similar to the spectrum of tropomyosin, displays amide I and amide III bands at 1,645 and 1,310 cm-1, respectively, the bandwidth of the amide I line being characteristic of a highly alpha-helical biopolymer with a small dispersion of dihedral angles. A small dichroic effect was also observed for the band due to the CH2 bending mode at 1,450 cm-1 and on the 1,340 cm-1 band. In the C-C stretching mode region, two bands were detected at 902 and 938 cm-1 and are both assigned to the alpha-helical conformation. Images FIGURE 2 PMID:3349128

  4. Design of HIV-1 protease inhibitors with pyrrolidinones and oxazolidinones as novel P1'-ligands to enhance backbone-binding interactions with protease: synthesis, biological evaluation, and protein-ligand X-ray studies

    SciTech Connect

    Ghosh, Arun K.; Leshchenko-Yashchuk, Sofiya; Anderson, David D.; Baldridge, Abigail; Noetzel, Marcus; Miller, Heather B.; Tie, Yunfeng; Wang, Yuan-Fang; Koh, Yasuhiro; Weber, Irene T.; Mitsuya, Hiroaki

    2009-09-02

    Structure-based design, synthesis, and biological evaluation of a series of novel HIV-1 protease inhibitors are described. In an effort to enhance interactions with protease backbone atoms, we have incorporated stereochemically defined methyl-2-pyrrolidinone and methyl oxazolidinone as the P1{prime}-ligands. These ligands are designed to interact with Gly-27{prime} carbonyl and Arg-8 side chain in the S1{prime}-subsite of the HIV protease. We have investigated the potential of these ligands in combination with our previously developed bis-tetrahydrofuran (bis-THF) and cyclopentanyltetrahydrofuran (Cp-THF) as the P2-ligands. Inhibitor 19b with a (R)-aminomethyl-2-pyrrolidinone and a Cp-THF was shown to be the most potent compound. This inhibitor maintained near full potency against multi-PI-resistant clinical HIV-1 variants. A high resolution protein-ligand X-ray crystal structure of 19b-bound HIV-1 protease revealed that the P1{prime}-pyrrolidinone heterocycle and the P2-Cp-ligand are involved in several critical interactions with the backbone atoms in the S1{prime} and S2 subsites of HIV-1 protease.

  5. Stabilized helical peptides: a strategy to target protein-protein interactions.

    PubMed

    Klein, Mark A

    2014-08-14

    Protein-protein interactions are critical for cell proliferation, differentiation, and function. Peptides hold great promise for clinical applications focused on targeting protein-protein interactions. Advantages of peptides include a large chemical space and potential diversity of sequences and structures. However, peptides do present well-known challenges for drug development. Progress has been made in the development of stabilizing alpha helices for potential therapeutic applications. Advantages and disadvantages of different methods of helical peptide stabilization are discussed.

  6. Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development.

    PubMed Central

    Borden, K L; Lally, J M; Martin, S R; O'Reilly, N J; Etkin, L D; Freemont, P S

    1995-01-01

    Xenopus nuclear factor XNF7, a maternally expressed protein, functions in patterning of the embryo. XNF7 contains a number of defined protein domains implicated in the regulation of some developmental processes. Among these is a tripartite motif comprising a zinc-binding RING finger and B-box domain next to a predicted alpha-helical coiled-coil domain. Interestingly, this motif is found in a variety of protein including several proto-oncoproteins. Here we describe the solution structure of the XNF7 B-box zinc-binding domain determined at physiological pH by 1H NMR methods. The B-box structure represents the first three-dimensional structure of this new motif and comprises a monomer have two beta-strands, two helical turns and three extended loop regions packed in a novel topology. The r.m.s. deviation for the best 18 structures is 1.15 A for backbone atoms and 1.94 A for all atoms. Structure calculations and biochemical data shows one zinc atom ligated in a Cys2-His2 tetrahedral arrangement. We have used mutant peptides to determine the metal ligation scheme which surprisingly shows that not all of the seven conserved cysteines/histidines in the B-box motif are involved in metal ligation. The B-box structure is not similar in tertiary fold to any other known zinc-binding motif. Images PMID:8846787

  7. Structural Basis for RNA-Silencing Suppression by Tomato Aspermy Virus Protein 2b

    SciTech Connect

    Chen,H.; Yang, J.; Lin, C.; Yuan, Y.

    2008-01-01

    The 2b proteins encoded by cucumovirus act as post-transcriptional gene silencing suppressors to counter host defence during infection. Here we report the crystal structure of Tomato aspermy virus 2b (TAV2b) protein bound to a 19 bp small interfering RNA (siRNA) duplex. TAV2b adopts an all {alpha}-helix structure and forms a homodimer to measure siRNA duplex in a length-preference mode. TAV2b has a pair of hook-like structures to recognize simultaneously two {alpha}-helical turns of A-form RNA duplex by fitting its {alpha}-helix backbone into two adjacent major grooves of siRNA duplex. The conserved {pi}-stackings between tryptophan and the 5'-terminal base of siRNA duplex from both ends enhance the recognition. TAV2b further oligomerizes to form a dimer of dimers through the conserved leucine-zipper-like motif at its amino-terminal {alpha}-helix. Biochemical experiments suggest that TAV2b might interfere with the post-transcriptional gene silencing pathway by directly binding to siRNA duplex.

  8. Improved side-chain torsion potentials for the Amber ff99SB protein force field.

    PubMed

    Lindorff-Larsen, Kresten; Piana, Stefano; Palmo, Kim; Maragakis, Paul; Klepeis, John L; Dror, Ron O; Shaw, David E

    2010-06-01

    Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data.

  9. hnCOcaNH and hncoCANH pulse sequences for rapid and unambiguous backbone assignment in (13C, 15N) labeled proteins.

    PubMed

    Kumar, Dinesh; Reddy, Jithender G; Hosur, Ramakrishna V

    2010-09-01

    Time-saving in data acquisition is a major thrust of NMR pulse sequence development in the context of structural proteomics research. The conventional HNCA and HN(CA)CO pulse sequences, routinely used for sequential backbone assignment, have the limitation that they cannot distinguish inter- and intra-residue correlations. In order to remove this ambiguity, one has to record HNCO and HN(CO)CA or sequential HNCA experiments which provide unambiguous information of sequential correlations. However, this almost doubles the experimental time. Besides, they require repeated scanning through the (15)N planes to search for the matching peaks along the carbon dimension. In this background, we present here two pulse sequences, termed as hncoCANH and hnCOcaNH that lead to spectra equivalent to HNCA and HN(CA)CO spectra, respectively, but with direct distinction of inter- and intra-residue peaks; these occur with opposite signs in the new experiments. The two pulse sequences have been derived by simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] to frequency-label (13)C(alpha) or (13)C' instead of (15)N during the t(1) period. Like HN(C)N, these spectra also exhibit special patterns of self and sequential peaks around glycines and prolines, which enable direct identification of certain triplets of residues and thus provide internal checks during the sequential assignment walk. The spectra enable rapid and unambiguous assignment of H(N), (15)N and (13)C(alpha) (or (13)C') in a single experiment, and thus would be of great value in high-throughput structural proteomics. PMID:20643567

  10. Investigation of the backbone dynamics of the IgG-binding domain of streptococcal protein G by heteronuclear two-dimensional 1H-15N nuclear magnetic resonance spectroscopy.

    PubMed

    Barchi, J J; Grasberger, B; Gronenborn, A M; Clore, G M

    1994-01-01

    The backbone dynamics of the immunoglobulin-binding domain (B1) of streptococcal protein G, uniformly labeled with 15N, have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and nuclear Overhauser enhancement data were obtained for all 55 backbone NH vectors of the B1 domain at both field strengths. The overall correlation time obtained from an analysis of the T1/T2 ratios was 3.3 ns at 26 degrees C. Overall, the B1 domain is a relatively rigid protein, consistent with the fact that over 95% of the residues participate in secondary structure, comprising a four-stranded sheet arranged in a -1, +3x, -1 topology, on top of which lies a single helix. Residues in the turns and loops connecting the elements of secondary structure tend to exhibit a higher degree of mobility on the picosecond time scale, as manifested by lower values of the overall order parameter. A number of residues at the ends of the secondary structure elements display two distinct internal motions that are faster than the overall rotational correlation time: one is fast (< 20 ps) and lies in the extreme narrowing limit, whereas the other is one to two orders of magnitude slower (1-3 ns) and lies outside the extreme narrowing limit. The slower motion can be explained by large-amplitude (20-40 degrees) jumps in the N-H vectors between states with well-defined orientations that are stabilized by hydrogen bonds.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Structure and Dynamics of Helical Protein Fragments Investigated by Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Karimi, Afshin

    This work addresses the conformation and dynamics of model peptides using spectroscopy and molecular dynamics simulations. Experimentally, we investigate the structure and dynamics of peptide fragments taken from coiled coil and three helical bundle motifs of bacterial coat proteins. Theoretically, we use molecular dynamics simulations of isolated helices with explicit water molecules to derive trajectories which reveal features about picosecond dynamics and local unfolding events. The assignment of the ^1H, ^{15}N, and ^ {13}C resonances, secondary structure, backbone dynamics, hydration and other biophysical parameters of a 30 residue recombinant peptide corresponding to an immunogenic site on the coiled coil region of Streptococcus pyogenes 24M protein are reported. Our results suggest that this peptide is a symmetric parallel dimeric alpha-helical coiled coil with local defects within the helix and fraying at the termini. The ^1H and ^ {15}N assignments, the hydration, the overall fold, and other biophysical parameters of a recombinant B domain of Staphylococcal protein A (FB) are reported. Our results indicate FB is a highly stable monomeric three helical bundle. A symmetric two domain construct was used to probe the modular assembly of two B domains. Here, spectroscopic results suggest weak interactions between the two domains. The folding pathway of FB was investigated using amide exchange data of the native protein and peptide models. We propose that the helical hairpin consisting of helices II and III is an on-pathway intermediate in the folding of FB. Two 1 ns molecular dynamics simulations (MD) on two mainly helical peptides--an 18 residue peptide corresponding to a portion of the H helix of myoglobin (MBH) and a 14 residue analogue of the C-peptide of ribonuclease A (CRNA) --were carried out in water using the united atom AMBER/OPLS force-field. In the case of MBH, the initial helical conformation progressively frays to a more disordered structure. A

  12. Development of potent anti-infective agents from Silurana tropicalis: conformational analysis of the amphipathic, alpha-helical antimicrobial peptide XT-7 and its non-haemolytic analogue [G4K]XT-7.

    PubMed

    Subasinghage, Anusha P; Conlon, J Michael; Hewage, Chandralal M

    2010-04-01

    Peptide XT-7 (GLLGP(5)LLKIA(10)AKVGS(15)NLL.NH(2)) is a cationic, leucine-rich peptide, first isolated from skin secretions of the frog, Silurana tropicalis (Pipidae). The peptide shows potent, broad-spectrum antimicrobial activity but its therapeutic potential is limited by haemolytic activity (LC(50)=140 microM). The analogue [G4K]XT-7, however, retains potent antimicrobial activity but is non-haemolytic (LC(50)>500 microM). In order to elucidate the molecular basis for this difference in properties, the three dimensional structures of XT-7 and the analogue have been investigated by proton NMR spectroscopy and molecular modelling. In aqueous solution, both peptides lack secondary structure. In a 2,2,2-trifluoroethanol (TFE-d(3))-H(2)O mixed solvent system, XT-7 is characterised by a right handed alpha-helical conformation between residues Leu(3) and Leu(17) whereas [G4K]XT-7 adopts a more restricted alpha-helical conformation between residues Leu(6) and Leu(17). A similar conformation for XT-7 in 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micellular media was observed with a helical segment between Leu(3) and Leu(17). However, differences in side chain orientations restricting the hydrophilic residues to a smaller patch resulted in an increased hydrophobic surface relative to the conformation in TFE-H(2)O. Molecular modelling of the structures obtained in our study demonstrates the amphipathic character of the helical segments. It is proposed that the marked decrease in haemolytic activity produced by the substitution Gly(4)-->Lys in XT-7 arises from a decrease in both helicity and hydrophobicity. These studies may facilitate the development of potent but non-toxic anti-infective agents based upon the structure of XT-7. PMID:20116461

  13. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    PubMed

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin.

  14. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    PubMed

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin. PMID:21818779

  15. Evaluation of Newcastle disease virus chimeras expressing the hemagglutinin-neuraminidase protein of velogenic strains in the context of a mesogenic recombinant virus backbone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major factor in the pathogenicity of Newcastle disease virus (NDV) is the amino acid sequence of the fusion protein cleavage site, but the role of other viral genes that contribute to virulence and different clinical forms of the disease remain undefined. To assess the role of other NDV genes in ...

  16. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  17. Chemical synthesis of a polypeptide backbone derived from the primary sequence of the cancer protein NY-ESO-1 enabled by kinetically controlled ligation and pseudoprolines.

    PubMed

    Harris, Paul W R; Brimble, Margaret A

    2015-03-01

    The cancer protein NY-ESO-1 has been shown to be one of the most promising vaccine candidates although little is known about its cellular function. Using a chemical protein strategy, the 180 amino acid polypeptide, tagged with an arginine solubilizing tail, was assembled in a convergent manner from four unprotected peptide α-thioester peptide building blocks and one cysteinyl polypeptide, which were in turn prepared by Boc and Fmoc solid phase peptide synthesis (SPPS) respectively. To facilitate the assembly by ligation chemistries, non-native cysteines were introduced as chemical handles into the polypeptide fragments; pseudoproline dipeptides and microwave assisted Fmoc SPPS were crucial techniques to prepare the challenging hydrophobic C-terminal fragment. Three sequential kinetically controlled ligations, which exploited the reactivity between peptide arylthioesters and peptide alkylthioesters, were then used in order to assemble the more tractable N-terminal region of NY-ESO-1. The ensuing 147 residue polypeptide thioester then underwent successful final native chemical ligation with the very hydrophobic C-terminal polypeptide bearing an N-terminal cysteine affording the 186 residue polypeptide as an advanced intermediate en route to the native NY-ESO-1 protein.

  18. Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design

    PubMed Central

    Craven, Timothy W.; Butterfoss, Glenn L.; Chou, Fang-Chieh; Lyskov, Sergey; Bullock, Brooke N.; Watkins, Andrew; Labonte, Jason W.; Pacella, Michael; Kilambi, Krishna Praneeth; Leaver-Fay, Andrew; Kuhlman, Brian; Gray, Jeffrey J.; Bradley, Philip; Kirshenbaum, Kent; Arora, Paramjit S.; Das, Rhiju; Bonneau, Richard

    2013-01-01

    Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones), oligooxopiperazines, oligo-peptoids, -peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org). This work helps address the peptidomimetic community's need for an automated and expandable modeling tool for noncanonical

  19. ANSS Backbone Station Quality Assessment

    NASA Astrophysics Data System (ADS)

    Leeds, A.; McNamara, D.; Benz, H.; Gee, L.

    2006-12-01

    In this study we assess the ambient noise levels of the broadband seismic stations within the United States Geological Survey's (USGS) Advanced National Seismic System (ANSS) backbone network. The backbone consists of stations operated by the USGS as well as several regional network stations operated by universities. We also assess the improved detection capability of the network due to the installation of 13 additional backbone stations and the upgrade of 26 existing stations funded by the Earthscope initiative. This assessment makes use of probability density functions (PDF) of power spectral densities (PSD) (after McNamara and Buland, 2004) computed by a continuous noise monitoring system developed by the USGS- ANSS and the Incorporated Research Institutions in Seismology (IRIS) Data Management Center (DMC). We compute the median and mode of the PDF distribution and rank the stations relative to the Peterson Low noise model (LNM) (Peterson, 1993) for 11 different period bands. The power of the method lies in the fact that there is no need to screen the data for system transients, earthquakes or general data artifacts since they map into a background probability level. Previous studies have shown that most regional stations, instrumented with short period or extended short period instruments, have a higher noise level in all period bands while stations in the US network have lower noise levels at short periods (0.0625-8.0 seconds), high frequencies (8.0- 0.125Hz). The overall network is evaluated with respect to accomplishing the design goals set for the USArray/ANSS backbone project which were intended to increase broadband performance for the national monitoring network.

  20. Physics-based potentials for the coupling between backbone- and side-chain-local conformational states in the united residue (UNRES) force field for protein simulations

    PubMed Central

    Sieradzan, Adam K.; Krupa, Paweł; Scheraga, Harold A.; Liwo, Adam; Czaplewski, Cezary

    2015-01-01

    The UNited RESidue (UNRES) model of polypeptide chains is a coarse-grained model in which each amino-acid residue is reduced to two interaction sites, namely a united peptide group (p) located halfway between the two neighboring α-carbon atoms (Cαs), which serve only as geometrical points, and a united side chain (SC) attached to the respective Cα. Owing to this simplification, millisecond Molecular Dynamics simulations of large systems can be performed. While UNRES predicts overall folds well, it reproduces the details of local chain conformation with lower accuracy. Recently, we implemented new knowledge-based torsional potentials (Krupa et. al. J. Chem. Theory Comput., 2013, 9, 4620–4632) that depend on the virtual-bond dihedral angles involving side chains: Cα ⋯ Cα ⋯ Cα ⋯ SC (τ(1)), SC ⋯ Cα ⋯ Cα ⋯ Cα (τ(2)), and SC ⋯ Cα ⋯ Cα ⋯ SC (τ(3)) in the UNRES force field. These potentials resulted in significant improvement of the simulated structures, especially in the loop regions. In this work, we introduce the physics-based counterparts of these potentials, which we derived from the all-atom energy surfaces of terminally-blocked amino-acid residues by Boltzmann integration over the angles λ(1) and λ(2) for rotation about the Cα ⋯ Cα virtual-bond angles and over the side-chain angles χ. The energy surfaces were, in turn, calculated by using the semiempirical AM1 method of molecular quantum mechanics. Entropy contribution was evaluated with use of the harmonic approximation from Hessian matrices. One-dimensional Fourier series in the respective virtual-bond-dihedral angles were fitted to the calculated potentials, and these expressions have been implemented in the UNRES force field. Basic calibration of the UNRES force field with the new potentials was carried out with eight training proteins, by selecting the optimal weight of the new energy terms and reducing the weight of the regular torsional terms. The force field was

  1. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements.

    PubMed

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-09-01

    Transverse relaxation rate measurements in magic-angle spinning solid-state nuclear magnetic resonance provide information about molecular motions occurring on nanosecond-to-millisecond (ns-ms) time scales. The measurement of heteronuclear ((13)C, (15)N) relaxation rate constants in the presence of a spin-lock radiofrequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins have been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely, (1) the role of CSA/dipolar cross-correlated relaxation (CCR) and (2) the impact of fast proton spin flips (i.e., proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable and that the CCR rate constant depends on ns-ms motions; it can thus provide insight into dynamics. We find that proton spin diffusion attenuates this CCR due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and this article reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation. PMID:27500976

  2. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements.

    PubMed

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-09-01

    Transverse relaxation rate measurements in magic-angle spinning solid-state nuclear magnetic resonance provide information about molecular motions occurring on nanosecond-to-millisecond (ns-ms) time scales. The measurement of heteronuclear ((13)C, (15)N) relaxation rate constants in the presence of a spin-lock radiofrequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins have been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely, (1) the role of CSA/dipolar cross-correlated relaxation (CCR) and (2) the impact of fast proton spin flips (i.e., proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable and that the CCR rate constant depends on ns-ms motions; it can thus provide insight into dynamics. We find that proton spin diffusion attenuates this CCR due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and this article reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation.

  3. The backbone of a city

    NASA Astrophysics Data System (ADS)

    Scellato, S.; Cardillo, A.; Latora, V.; Porta, S.

    2006-03-01

    Recent studies have revealed the importance of centrality measures to analyze various spatial factors affecting human life in cities. Here we show how it is possible to extract the backbone of a city by deriving spanning trees based on edge betweenness and edge information. By using as sample cases the cities of Bologna and San Francisco, we show how the obtained trees are radically different from those based on edge lengths, and allow an extended comprehension of the “skeleton” of most important routes that so much affects pedestrian/vehicular flows, retail commerce vitality, land-use separation, urban crime and collective dynamical behaviours.

  4. TMRPres2D: high quality visual representation of transmembrane protein models.

    PubMed

    Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J

    2004-11-22

    The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184

  5. The noncompetitive blocker ( sup 3 H)chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of regions MII and for the structure of the ion channel

    SciTech Connect

    Revah, F.; Galzi, J.L.; Giraudat, J.; Haumont, P.Y.; Lederer, F.; Changeux, J.P. )

    1990-06-01

    Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker ({sup 3}H)chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by ({sup 3}H)chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The ({sup 3}H)chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.

  6. Nucleotide sequence analysis of HLA-B*1523 and B*8101. Dominant alpha-helical motifs produce complex serologic recognition patterns for the HLA-B"DT" and HLA-B"NM5" antigens.

    PubMed

    Ellexson, M E; Zhang, G; Stewart, D; Lau, M; Teresi, G; Terasaki, P; Roe, B; Hildebrand, W

    1995-10-01

    Assigning a precise serologic specificity to the class I HLA-B"NM5" and HLA-B"DT" molecules has proven difficult, with patterns of serologic cross-reactivity suggesting that NM5 is most like antigens in the B5 CREG and that DT is either B7 or B40 like. To better understand the relationship these antigens share with other HLA-B molecules we determined the nucleotide sequence of the alleles encoding HLA-B"NM5" and HLA-B"DT". Sequencing results show that NM5 shares the most overall sequence homology with the B70 antigens and that differences at the alpha-helical Bw4/Bw6 epitope preclude serologic cross-reactivity between NM5 and the B70 antigens. Accordingly, NM5 has been assigned the name B*1523. The strong serologic impact of helical sequence conservations and variations is reiterated for the class I HLA-B"DT" molecule. Comparative analysis demonstrates that sequence conservations in the first domain's alpha-helix stimulate cross-reactivity between HLA-B"DT" and HLA-B7, whereas epitopes conserved in the second domain's alpha-helix impel cross-reactivity between HLA-B"DT" and HLA-B48. To convey the unique lineage of this hybrid B7/B48 molecule the name HLA-B*8101 has been assigned to HLA-B"DT".

  7. Membrane protein crystallization: Current trends and future perspectives

    PubMed Central

    Parker, Joanne L.; Newstead, Simon

    2016-01-01

    Alpha helical membrane proteins are the targets for many pharmaceutical drugs and play important roles in physiology and disease processes. In recent years substantial progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck still remains; the identification of conditions that give crystals that are suitable for structure determination. Over the past 10 years we have been analyzing the crystallization conditions reported for alpha helical membrane proteins with the aim to facilitate a rational approach to the design and implementation of successful crystallization screens. The result has been the development of MemGold, MemGoldII and the additive screen MemAdvantage. The associated analysis, summarized and updated in this chapter, has revealed a number of surprisingly successfully strategies for crystallization and detergent selection. PMID:27553235

  8. Membrane Protein Crystallisation: Current Trends and Future Perspectives.

    PubMed

    Parker, Joanne L; Newstead, Simon

    2016-01-01

    Alpha helical membrane proteins are the targets for many pharmaceutical drugs and play important roles in physiology and disease processes. In recent years, substantial progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck still remains; the identification of conditions that give crystals that are suitable for structure determination. Over the past 10 years we have been analysing the crystallisation conditions reported for alpha helical membrane proteins with the aim to facilitate a rational approach to the design and implementation of successful crystallisation screens. The result has been the development of MemGold, MemGold2 and the additive screen MemAdvantage. The associated analysis, summarised and updated in this chapter, has revealed a number of surprisingly successfully strategies for crystallisation and detergent selection. PMID:27553235

  9. The "universal polymer backbone" concept

    NASA Astrophysics Data System (ADS)

    Pollino, Joel Matthew

    This thesis begins with a brief analysis of the synthetic methodologies utilized in polymer science. A conclusion is drawn inferring that upper limits in molecular design are inevitable, arising as a direct consequence of the predominance of covalent strategies in the field. To address these concerns, the 'universal polymer backbone' (UPB) concept has been hypothesized. A UPB has been defined as any copolymer, side-chain functionalized with multiple recognition elements that are individually capable of forming strong, directional, and reversible non-covalent bonds. Non-covalent functionalization of these scaffolds can lead to the formation of a multitude of new polymer structures, each stemming from a single parent or 'universal polymer backbone'. To prepare such a UPB, isomerically pure exo-norbornene esters containing either a PdII SCS pincer complex or a diaminopyridine residue were synthesized, polymerized, and copolymerized via ROMP. All polymerizations were living under mild reaction conditions. Kinetic studies showed that the kp values are highly dependent upon the isomeric purity but completely independent of the terminal recognition units. Non-covalent functionalization of these copolymers was accomplished via (1) directed self-assembly, (2) multi-step self-assembly , and (3) one-step orthogonal self-assembly. This system shows complete specificity of each recognition motif for its complementary unit with no observable changes in the association constant upon functionalization. To explore potential applications of this UPB concept, random terpolymers possessing high concentrations of pendant alkyl chains and small amounts of recognition units were synthesized. Non-covalent crosslinking using a directed functionalization strategy resulted in dramatic increases in solution viscosities for metal crosslinked polymers with only minor changes in viscosity for hydrogen bonding motifs. The crosslinked materials were further functionalized via self-assembly by

  10. Free backbone carbonyls mediate rhodopsin activation.

    PubMed

    Kimata, Naoki; Pope, Andreyah; Sanchez-Reyes, Omar B; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Reeves, Philip J; Smith, Steven O

    2016-08-01

    Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins. PMID:27376589

  11. A periodic table of coiled-coil protein structures.

    PubMed

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  12. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to

  13. Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions. Synthesis, Biological Evaluation, and Protein-Ligand X-ray Studies

    SciTech Connect

    Ghosh, Arun K.; Martyr, Cuthbert D.; Osswald, Heather L.; Sheri, Venkat Reddy; Kassekert, Luke A.; Chen, Shujing; Agniswamy, Johnson; Wang, Yuan-Fang; Hayashi, Hironori; Aoki, Manabu; Weber, Irene T.; Mitsuya, Hiroaki

    2015-10-30

    Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand–binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolution X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand–binding site interactions are possibly responsible for their potent activity.

  14. Students' understanding of primary and secondary protein structure: drawing secondary protein structure reveals student understanding better than simple recognition of structures.

    PubMed

    Harle, Marissa; Towns, Marcy H

    2013-01-01

    The interdisciplinary nature of biochemistry courses requires students to use both chemistry and biology knowledge to understand biochemical concepts. Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations in addition to a fragmented understanding of fundamental biochemistry concepts. This project focuses on students' understanding of primary and secondary protein structure and drawings (representations) of hydrogen-bonding in alpha helices and beta sheets. Analysis demonstrated that students can recognize and identify primary protein structure concepts when given a polypeptide. However, when asked to draw alpha helices and beta sheets and explain the role of hydrogen bonding their drawings students exhibited a fragmented understanding that lacked coherence. Faculty are encouraged to have students draw molecular level representations to make their mental models more explicit, complete, and coherent. This is in contrast to recognition and identification tasks, which do not adequately probe mental models and molecular level understanding.

  15. Membrane proteins: the 'Wild West' of structural biology.

    PubMed

    Torres, Jaume; Stevens, Tim J; Samsó, Montserrat

    2003-03-01

    Historically, the task of determining the structure of membrane proteins has been hindered by experimental difficulties associated with their lipid-embedded domains. Here, we provide an overview of recently developed experimental and predictive tools that are changing our view of this largely unexplored territory - the 'Wild West' of structural biology. Crystallography, single-particle methods and atomic force microscopy are being used to study huge membrane proteins with increasing detail. Solid-state nuclear magnetic resonance strategies provide orientational constraints for structure determination of transmembrane (TM) alpha-helices and accurate measurements of intramolecular distances, even in very complex systems. Longer distance constraints are determined by site-directed spin-labelling electron paramagnetic resonance, but current labelling strategies still constitute some limitation. Other methods, such as site-specific infrared dichroism, enable orientational analysis of TM alpha-helices in aligned bilayers and, combined with novel computational and predictive tools that use evolutionary conservation data, are being used to analyze TM alpha-helical bundles.

  16. Exercise: The Backbone of Spine Treatment

    MedlinePlus

    Exercise: The Backbone of Spine Treatment | View Video Back About Video Struggling with Low Back Pain? Many people are surprised to learn that carefully selected exercise can actually reduce back pain. Some exercises can ...

  17. Conformational mapping of the N-terminal segment of surfactant protein B in lipid using 13C-enhanced Fourier transform infrared spectroscopy.

    PubMed

    Gordon, L M; Lee, K Y; Lipp, M M; Zasadzinski, J A; Walther, F J; Sherman, M A; Waring, A J

    2000-04-01

    Synthetic peptides based on the N-terminal domain of human surfactant protein B (SP-B1-25; 25 amino acid residues; NH2-FPIPLPYCWLCRALIKRIQAMIPKG) retain important lung activities of the full-length, 79-residue protein. Here, we used physical techniques to examine the secondary conformation of SP-B1-25 in aqueous, lipid and structure-promoting environments. Circular dichroism and conventional, 12C-Fourier transform infrared (FTIR) spectroscopy each indicated a predominate alpha-helical conformation for SP-B1-25 in phosphate-buffered saline, liposomes of 1-palmitoyl-2-oleoyl phosphatidylglycerol and the structure-promoting solvent hexafluoroisopropanol; FTIR spectra also showed significant beta- and random conformations for peptide in these three environments. In further experiments designed to map secondary structure to specific residues, isotope-enhanced FTIR spectroscopy was performed with 1-palmitoyl-2-oleoyl phosphatidylglycerol liposomes and a suite of SP-B1-25 peptides labeled with 13C-carbonyl groups at either single or multiple sites. Combining these 13C-enhanced FTIR results with energy minimizations and molecular simulations indicated the following model for SP-B1-25 in 1-palmitoyl-2-oleoyl phosphatidylglycerol: beta-sheet (residues 1-6), alpha-helix (residues 8-22) and random (residues 23-25) conformations. Analogous structural motifs are observed in the corresponding homologous N-terminal regions of several proteins that also share the 'saposin-like' (i.e. 5-helix bundle) folding pattern of full-length, human SP-B. In future studies, 13C-enhanced FTIR spectroscopy and energy minimizations may be of general use in defining backbone conformations at amino acid resolution, particularly for peptides or proteins in membrane environments.

  18. The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum.

    PubMed

    Pedersen, Marie Østergaard; Underhaug, Jarl; Dittmer, Jens; Miller, Mette; Nielsen, Niels Chr

    2008-08-20

    The structure of the chlorosome baseplate protein CsmA from Chlorobium tepidum in a 1:1 chloroform:methanol solution was determined using liquid-state NMR spectroscopy. The data reveal that the 59-residue protein is predominantly alpha-helical with a long helical domain extending from residues V6 to L36, containing a putative bacteriochlorophyll a binding domain, and a short helix in the C-terminal part extending from residues M41 to G49. These elements are compatible with a model of CsmA having the long N-terminal alpha-helical stretch immersed into the lipid monolayer confining the chlorosome and the short C-terminal helix protruding outwards, thus available for interaction with the Fenna-Matthews-Olson antenna protein.

  19. Error tolerant NMR backbone resonance assignment and automated structure generation.

    PubMed

    Alipanahi, Babak; Gao, Xin; Karakoc, Emre; Li, Shuai Cheng; Balbach, Frank; Feng, Guangyu; Donaldson, Logan; Li, Ming

    2011-02-01

    Error tolerant backbone resonance assignment is the cornerstone of the NMR structure determination process. Although a variety of assignment approaches have been developed, none works sufficiently well on noisy fully automatically picked peaks to enable the subsequent automatic structure determination steps. We have designed an integer linear programming (ILP) based assignment system (IPASS) that has enabled fully automatic protein structure determination for four test proteins. IPASS employs probabilistic spin system typing based on chemical shifts and secondary structure predictions. Furthermore, IPASS extracts connectivity information from the inter-residue information and the (automatically picked) (15)N-edited NOESY peaks which are then used to fix reliable fragments. When applied to automatically picked peaks for real proteins, IPASS achieves an average precision and recall of 82% and 63%, respectively. In contrast, the next best method, MARS, achieves an average precision and recall of 77% and 36%, respectively. The assignments generated by IPASS are then fed into our protein structure calculation system, FALCON-NMR, to determine the 3D structures without human intervention. The final models have backbone RMSDs of 1.25Å, 0.88Å, 1.49Å, and 0.67Å to the reference native structures for proteins TM1112, CASKIN, VRAR, and HACS1, respectively. The web server is publicly available at http://monod.uwaterloo.ca/nmr/ipass.

  20. The myosin filament XIV backbone structure.

    PubMed Central

    Ashton, F T; Weisel, J; Pepe, F A

    1992-01-01

    The substructure of the thick filaments of chemically skinned chicken pectoralis muscle was investigated by electron microscopy. Images of transverse sections of the myosin filaments were determined to have threefold symmetry by cross-correlation analysis, which gives an unbiased determination of the rotational symmetry of the images. Resolution, using the phase residual test (Frank et al. 1981. Science [Wash. DC]. 214:1353-1355), was found to be between 3.2 and 3.6 nm. Three arrangements of nine subfilaments in the backbone were found in all regions of the filament at ionic strengths of 20 and 200 mM. In the average images of two of these, there were three dense central subfilaments and three pairs of subfilaments on the surface of the thick filament. In the average image of the third arrangement, all of the protein mass of the nine subfilaments was on the surface of the filament with three of them showing less variation in position than the others. A fourth arrangement appearing to be transitional between two of these was seen often at 200 mM ionic strength and only rarely at 20 mM. On average, the myosin subfilaments were parallel to the long axis of the filament. The different arrangements of subfilaments appear to be randomly distributed among the filaments in a transverse section of the A-band. Relative rotational orientations with respect to the hexagonal filament lattice, using the three densest subfilaments as reference showed a major clustering (32%) of filaments within one 10 degrees spread, a lesser clustering (15%) at 90 degrees to the first, and the remainder scattered thinly over the rest of the 120 degrees range. There was no obvious pattern of distribution of the two predominant orientations that could define a superlattice in the filament lattice. Images FIGURE 2 FIGURE 6 FIGURE 8 PMID:1617136

  1. Understanding traffic dynamics at a backbone POP

    NASA Astrophysics Data System (ADS)

    Taft, Nina; Bhattacharyya, Supratik; Jetcheva, Jorjeta; Diot, Christophe

    2001-07-01

    Spatial and temporal information about traffic dynamics is central to the design of effective traffic engineering practices for IP backbones. In this paper we study backbone traffic dynamics using data collected at a major POP on a tier-1 IP backbone. We develop a methodology that combines packet-level traces from access links in the POP and BGP routing information to build components of POP-to-POP traffic matrices. Our results show that there is wide disparity in the volume of traffic headed towards different egress POPs. At the same time, we find that current routing practices in the backbone tend to constrain traffic between ingress-egress POP pairs to a small number of paths. As a result, there is a wide variation in the utilization level of links in the backbone. Frequent capacity upgrades of the heavily used links are expensive; the need for such upgrades can be reduced by designing load balancing policies that will route more traffic over less utilized links. We identify traffic aggregates based on destination address prefixes and find that this set of criteria isolates a few aggregates that account for an overwhelmingly large portion of inter-POP traffic. We also demonstrate that these aggregates exhibit stability throughout the day on per-hour time scales, and thus they form a natural basis for splitting traffic over multiple paths in order to improve load balancing.

  2. Statistical Analysis of RNA Backbone

    PubMed Central

    Hershkovitz, Eli; Sapiro, Guillermo; Tannenbaum, Allen; Williams, Loren Dean

    2009-01-01

    Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA conformation is particularly difficult due to the large number of degrees of freedom (torsion angles) per residue. Proteins, by comparison, have many fewer degrees of freedom per residue. In this work, we use and extend classical tools from statistics and signal processing to search for clusters in RNA conformational space. Results are reported both for scalar analysis, where each torsion angle is separately studied, and for vectorial analysis, where several angles are simultaneously clustered. Adapting techniques from vector quantization and clustering to the RNA structure, we find torsion angle clusters and RNA conformational motifs. We validate the technique using well-known conformational motifs, showing that the simultaneous study of the total torsion angle space leads to results consistent with known motifs reported in the literature and also to the finding of new ones. PMID:17048391

  3. WDM backbone network with guaranteed performance planning

    NASA Astrophysics Data System (ADS)

    Liang, Peng; Sheng, Wang; Zhong, Xusi; Li, Lemin

    2005-11-01

    Wavelength-Division multiplexing (WDM), which allows a single fibre to carry multiple signals simultaneously, has been widely used to increase link capacity and is a promising technology in backbone transport network. But designing such WDM backbone network is hard for two reasons, one is the uncertainty of future traffic demand, the other is difficulty of planning of the backup resource for failure conditions. As a result, enormous amount of link capacity for the network has to be provided for the network. Recently, a new approach called Valiant Load-Balanced Scheme (VLBS) has been proposed to design the WDM backbone network. The network planned by Valiant Load-Balanced Scheme is insensitive to the traffic and continues to guarantee performance under a user defined number of link or node failures. In this paper, the Valiant Load-Balanced Scheme (VLBS) for backbone network planning has been studied and a new Valiant Load-Balanced Scheme has been proposed. Compared with the early work, the new Valiant Load-Balanced Scheme is much more general and can be used for the computation of the link capacity of both homogeneous and heterogeneous networks. The abbreviation for the general Valiant Load-Balanced Scheme is GVLBS. After a brief description of the VLBS, we will give the detail derivation of the GVLBS. The central concept of the derivation of GVLBS is transforming the heterogeneous network into a homogeneous network, and taking advantage of VLBS to get GVLBS. Such transformation process is described and the derivation and analysis of GVLBS for link capacity under normal and failure conditions is also given. The numerical results show that GVLBS can compute the minimum link capacity required for the heterogeneous backbone network under different conditions (normal or failure).

  4. Structures of segments of [alpha]-synuclein fused to maltose-binding protein suggest intermediate states during amyloid formation

    SciTech Connect

    Zhao, Minglei; Cascio, Duilio; Sawaya, Michael R.; Eisenberg, David

    2011-08-29

    Aggregates of the protein {alpha}-synuclein are the main component of Lewy bodies, the hallmark of Parkinson's disease. {alpha}-Synuclein aggregates are also found in many human neurodegenerative diseases known as synucleinopathies. In vivo, {alpha}-synuclein associates with membranes and adopts {alpha}-helical conformations. The details of how {alpha}-synuclein converts from the functional native state to amyloid aggregates remain unknown. In this study, we use maltose-binding protein (MBP) as a carrier to crystallize segments of {alpha}-synuclein. From crystal structures of fusions between MBP and four segments of {alpha}-synuclein, we have been able to trace a virtual model of the first 72 residues of {alpha}-synuclein. Instead of a mostly {alpha}-helical conformation observed in the lipid environment, our crystal structures show {alpha}-helices only at residues 1-13 and 20-34. The remaining segments are extended loops or coils. All of the predicted fiber-forming segments based on the 3D profile method are in extended conformations. We further show that the MBP fusion proteins with fiber-forming segments from {alpha}-synuclein can also form fiber-like nano-crystals or amyloid-like fibrils. Our structures suggest intermediate states during amyloid formation of {alpha}-synuclein.

  5. Hexafluoroacetone hydrate as a structure modifier in proteins: characterization of a molten globule state of hen egg-white lysozyme.

    PubMed Central

    Bhattacharjya, S.; Balaram, P.

    1997-01-01

    A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins. PMID:9144778

  6. Phylogeny of the plant 4/1 proteins.

    PubMed

    Morozov, Sergey Y; Solovyev, Andrey G; Troitsky, Alexey V

    2016-03-01

    The Nt-4/1 protein of unknown function has been shown to be alpha-helical and predominantly expressed in conductive tissues of tobacco plants. So far, obvious Nt-4/1 orthologs were found only in flowering plants. We report the analysis of 4/1 genes and the encoded proteins of lower land plants (Morozov et al., 2015) [1]. In this data article, we present two phylogenetic trees of angiosperm 4/1 proteins together with orthologs from liverworts, lycophytes, ferns and gymnosperms. PMID:26759821

  7. Phylogeny of the plant 4/1 proteins

    PubMed Central

    Morozov, Sergey Y.; Solovyev, Andrey G.; Troitsky, Alexey V.

    2015-01-01

    The Nt-4/1 protein of unknown function has been shown to be alpha-helical and predominantly expressed in conductive tissues of tobacco plants. So far, obvious Nt-4/1 orthologs were found only in flowering plants. We report the analysis of 4/1 genes and the encoded proteins of lower land plants (Morozov et al., 2015) [1]. In this data article, we present two phylogenetic trees of angiosperm 4/1 proteins together with orthologs from liverworts, lycophytes, ferns and gymnosperms. PMID:26759821

  8. Design of Amphiphilic Protein Maquettes: Controlling Assembly, Membrane Insertion, and Cofactor Interactions

    SciTech Connect

    Discher,B.; Noy, D.; Strzalka, J.; Ye, S.; Moser, C.; Lear, J.; Blasie, K.; Dutton, L.

    2005-01-01

    We have designed polypeptides combining selected lipophilic (LP) and hydrophilic (HP) sequences that assemble into amphiphilic (AP) {alpha}-helical bundles to reproduce key structure characteristics and functional elements of natural membrane proteins. The principal AP maquette (AP1) developed here joins 14 residues of a heme binding sequence from a structured diheme-four-{alpha}-helical bundle (HP1), with 24 residues of a membrane-spanning LP domain from the natural four-{alpha}-helical M2 channel of the influenza virus, through a flexible linking sequence (GGNG) to make a 42 amino acid peptide. The individual AP1 helices (without connecting loops) assemble in detergent into four-{alpha}-helical bundles as observed by analytical ultracentrifugation. The helices are oriented parallel as indicated by interactions typical of adjacent hemes. AP1 orients vectorially at nonpolar-polar interfaces and readily incorporates into phospholipid vesicles with >97% efficiency, although most probably without vectorial bias. Mono- and diheme-AP1 in membranes enhance functional elements well established in related HP analogues. These include strong redox charge coupling of heme with interior glutamates and internal electric field effects eliciting a remarkable 160 mV splitting of the redox potentials of adjacent hemes that leads to differential heme binding affinities. The AP maquette variants, AP2 and AP3, removed heme-ligating histidines from the HP domain and included heme-ligating histidines in LP domains by selecting the b{sub H} heme binding sequence from the membrane-spanning d-helix of respiratory cytochrome bc{sub 1}. These represent the first examples of AP maquettes with heme and bacteriochlorophyll binding sites located within the LP domains.

  9. Secondary-structure characterization by far-UV CD of highly purified uncoupling protein 1 expressed in yeast.

    PubMed Central

    Douette, Pierre; Navet, Rachel; Bouillenne, Fabrice; Brans, Alain; Sluse-Goffart, Claudine; Matagne, André; Sluse, Francis E

    2004-01-01

    The rat UCP1 (uncoupling protein 1) is a mitochondrial inner-membrane carrier involved in energy dissipation and heat production. We expressed UCP1 carrying a His6 epitope at its C-terminus in Saccharomyces cerevisiae mitochondria. The recombinant-tagged UCP1 was purified by immobilized metal-ion affinity chromatography to homogeneity (>95%). This made it suitable for subsequent biophysical characterization. Fluorescence resonance energy transfer experiments showed that n-dodecyl-beta-D-maltoside-solubilized UCP1-His6 retained its PN (purine nucleotide)-binding capacity. The far-UV CD spectrum of the functional protein clearly indicated the predominance of alpha-helices in the UCP1 secondary structure. The UCP1 secondary structure exhibited an alpha-helical degree of approx. 68%, which is at least 25% higher than the previously reported estimations based on computational predictions. Moreover, the helical content remained unchanged in free and PN-loaded UCP1. A homology model of the first repeat of UCP1, built on the basis of X-ray-solved close parent, the ADP/ATP carrier, strengthened the CD experimental results. Our experimental and computational results indicate that (i) alpha-helices are the major component of UCP1 secondary structure; (ii) PN-binding mechanism does not involve significant secondary-structure rearrangement; and (iii) UCP1 shares similar secondary-structure characteristics with the ADP/ATP carrier, at least for the first repeat. PMID:14766012

  10. GTP synthases. Proton pumping and phosphorylation in ligand-receptor-G alpha-protein complexes.

    PubMed

    Nederkoorn, P H; Timmerman, H; Donné-Op Den Kelder, G M; Timms, D; Wilkinson, A J; Kelly, D R; Broadley, K J; Davies, R H

    1996-01-01

    A structural model for a ligand-receptor-Gs alpha-protein complex to function as a GTP synthase is presented. The mechanism which is dependent on the movement and rotation of the G alpha-protein alpha 2-helix is seen to involve the delivery of, at least, one proton to the phosphorylation site in the rotation of this helix. The cycle is driven by a ligand-mediated proton pump through the alpha-helices of the receptor, attachment of the conserved Tyr-Arg-Tyr receptor proton shuttle being made to an aspartate group on the Gs alpha-protein terminal sidechain, which is itself linked to the Asn-Gln interaction known to control movement and rotation of the alpha 2-helix between .GDP and .GTP structures. The energetics of proton transfer through the shuttle mechanism and delivery of a proton to the aspartate group are shown to be sufficient to rupture this controlling interaction and its associated backbone bond. The complex leads to full spatial and energetic definition of the receptor proton shuttle mechanism, while there is a striking association of further Tyrosine and Arginine residues in the vicinity of the Gs alpha-protein Asn-Gln interaction. Calculations at the HF 6-31G** level confirm that a critical balance between ion pair and neutral forms of Tyr-Arg interactions under multiply hydrogen bonded conditions in a hydrophobic environment controls proton transfer and recovery mechanisms. The intrinsic preference of the neutral Tyr-Arg form over the ion-pair is 14.0 kcal/mol. Activation of the Tyrosine oxygen atom in the neutral form by single-NH or -OH groups reduces this difference by some 6.4-8.6 kcal/mol but the dominance of the neutral form is maintained. The expected slight overestimates are consistent with the maximum activation enthalpy of 11.0-12.0 kcal/ mol required to initiate proton transfer through the shuttle. The extended form of the shuttle with the Arginine acting competitively between the two Tyrosine residues allows interpretation of observed

  11. Secondary Structure Switch

    ERIC Educational Resources Information Center

    King, Angela G.

    2006-01-01

    Neurogenerative diseases like Alzheimer's disease and Parkinson's disease involve a transformation between two peptide and protein structures of alpha-helices and beta-sheets, where the peptide backbone can also participate in metal ion binding in addition to histidine residues. However, the complete absence of change in conformation of Coiled…

  12. Characterizing Aciniform Silk Repetitive Domain Backbone Dynamics and Hydrodynamic Modularity.

    PubMed

    Tremblay, Marie-Laurence; Xu, Lingling; Sarker, Muzaddid; Liu, Xiang-Qin; Rainey, Jan K

    2016-01-01

    Spider aciniform (wrapping) silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units). In solution, the W units comprise a globular folded core, with five α-helices, and disordered tails that are linked to form a ~63-residue intrinsically disordered linker in concatemers. Herein, we present nuclear magnetic resonance (NMR) spectroscopy-based (15)N spin relaxation analysis, allowing characterization of backbone dynamics as a function of residue on the ps-ns timescale in the context of the single W unit (W₁) and the two unit concatemer (W₂). Unambiguous mapping of backbone dynamics throughout W₂ was made possible by segmental NMR active isotope-enrichment through split intein-mediated trans-splicing. Spectral density mapping for W₁ and W₂ reveals a striking disparity in dynamics between the folded core and the disordered linker and tail regions. These data are also consistent with rotational diffusion behaviour where each globular domain tumbles almost independently of its neighbour. At a localized level, helix 5 exhibits elevated high frequency dynamics relative to the proximal helix 4, supporting a model of fibrillogenesis where this helix unfolds as part of the transition to a mixed α-helix/β-sheet fibre. PMID:27517921

  13. Characterizing Aciniform Silk Repetitive Domain Backbone Dynamics and Hydrodynamic Modularity

    PubMed Central

    Tremblay, Marie-Laurence; Xu, Lingling; Sarker, Muzaddid; Liu, Xiang-Qin; Rainey, Jan K.

    2016-01-01

    Spider aciniform (wrapping) silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units). In solution, the W units comprise a globular folded core, with five α-helices, and disordered tails that are linked to form a ~63-residue intrinsically disordered linker in concatemers. Herein, we present nuclear magnetic resonance (NMR) spectroscopy-based 15N spin relaxation analysis, allowing characterization of backbone dynamics as a function of residue on the ps–ns timescale in the context of the single W unit (W1) and the two unit concatemer (W2). Unambiguous mapping of backbone dynamics throughout W2 was made possible by segmental NMR active isotope-enrichment through split intein-mediated trans-splicing. Spectral density mapping for W1 and W2 reveals a striking disparity in dynamics between the folded core and the disordered linker and tail regions. These data are also consistent with rotational diffusion behaviour where each globular domain tumbles almost independently of its neighbour. At a localized level, helix 5 exhibits elevated high frequency dynamics relative to the proximal helix 4, supporting a model of fibrillogenesis where this helix unfolds as part of the transition to a mixed α-helix/β-sheet fibre. PMID:27517921

  14. Telephone wire is backbone of security system

    SciTech Connect

    Brede, K.; Rackson, L.T.

    1995-09-01

    Video provides a variety of low-cost, high-quality solutions in today`s security environment. Cost-conscious managers of power generation stations, casinos, prison facilities, military bases and office buildings are considering using regular telephone wire (unshielded twisted pair-UTP) within their existing systems as the backbone of a video to the PC, personal and video-conferencing and training are other areas where phone wire in a building can save money and provide an alternative to coax or fiber for video. More and more, businesses and government agencies are meeting their needs efficiently by using telephone wires for more than just telephones.

  15. Backbone and side-chain ¹H, ¹³C and ¹⁵N assignments of the PPIase domain of macrophage infectivity potentiator (Mip) protein from Coxiella burnetii.

    PubMed

    Tse, Man-Kit; Cheung, Stanley K K; Ke, Yi-hong; Lau, Candy C Y; Sze, Kong-Hung; Yuen, Kwok-Yung

    2014-04-01

    Coxiella burnetii is an obligate intracellular gram-negative bacterium uniquely evolved to thrive in the inhospitable phagolysosome of macrophage. C. burnetii causes Q fever in humans and animals, which is emerging as a global public health concern. It is highly infectious and designated as a category B biowarfare agent because of its ubiquitous nature, abundant natural reservoirs, high resistance to environmental conditions, ease of transmission and low infectious dose. The lack of knowledge and awareness of C. burnetii leads to under-reporting and under-diagnosing of Q fever cases. Therefore, further understanding of the interactions between the infected host and the bacteria is necessary. C. burnetii macrophage infectivity potentiator (cb-Mip) is a secreted protein of 230 amino acids involving in intracellular survival of the pathogen. cb-Mip belongs to the family of FK506 binding protein, which possesses peptidyl-prolyl cis/trans isomerase (PPIase) activity. Besides acting as a PPIase, Mip protein homolog has been identified as virulence factor of many intracellular pathogenic microorganisms. In the present study, we report the near complete resonance assignments of the PPIase domain-containing region of Mip protein of C. burnetii. Secondary structure prediction based on chemical shift index analysis indicates that the protein adopts a predominately beta-strand structure, which is consistent with the crystal structure of homologous Mip protein in Legionella pneumophila.

  16. Self-similarity of biopolymer backbones in the ribosome

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Yong

    2008-08-01

    Self-similar properties of the biopolymer backbones in the ribosome are investigated in terms of the fractal dimension. We especially estimate the chain fractal and capacity dimensions of the ribosomal RNAs and proteins, which are constituents of the ribosome. The fractal dimensions of both biopolymers are compared with that of the self-avoiding walk, which is a typical model of a polymer without interaction between monomers. We demonstrate that the fractality found in the ribosomal RNAs is pertinent to explain their structural characteristics: local helix formation and long-range tertiary interaction forming three-dimensional structures. The fractal dimension of the ribosomal protein supports the existence of the long and extended domain, which is hardly seen in the globular protein. The self-similarity also upholds the fact that the ribosomal proteins function primarily to stabilize the structure of the ribosome by both the long-extended domain of the protein penetrating into the inside of the RNA, and the globular domain interacting with the RNA on the exterior of it. These results partially, if not whole, unravel the structural characteristics of the biopolymers in the ribosome.

  17. Structural insights into tail-anchored protein binding and membrane insertion by Get3.

    PubMed

    Bozkurt, Gunes; Stjepanovic, Goran; Vilardi, Fabio; Amlacher, Stefan; Wild, Klemens; Bange, Gert; Favaloro, Vincenzo; Rippe, Karsten; Hurt, Ed; Dobberstein, Bernhard; Sinning, Irmgard

    2009-12-15

    Tail-anchored (TA) membrane proteins are involved in a variety of important cellular functions, including membrane fusion, protein translocation, and apoptosis. The ATPase Get3 (Asna1, TRC40) was identified recently as the endoplasmic reticulum targeting factor of TA proteins. Get3 consists of an ATPase and alpha-helical subdomain enriched in methionine and glycine residues. We present structural and biochemical analyses of Get3 alone as well as in complex with a TA protein, ribosome-associated membrane protein 4 (Ramp4). The ATPase domains form an extensive dimer interface that encloses 2 nucleotides in a head-to-head orientation and a zinc ion. Amide proton exchange mass spectrometry shows that the alpha-helical subdomain of Get3 displays considerable flexibility in solution and maps the TA protein-binding site to the alpha-helical subdomain. The non-hydrolyzable ATP analogue AMPPNP-Mg(2+)- and ADP-Mg(2+)-bound crystal structures representing the pre- and posthydrolysis states are both in a closed form. In the absence of a TA protein cargo, ATP hydrolysis does not seem to be possible. Comparison with the ADP.AlF(4)(-)-bound structure representing the transition state (Mateja A, et al. (2009) Nature 461:361-366) indicates how the presence of a TA protein is communicated to the ATP-binding site. In vitro membrane insertion studies show that recombinant Get3 inserts Ramp4 in a nucleotide- and receptor-dependent manner. Although ATP hydrolysis is not required for Ramp4 insertion per se, it seems to be required for efficient insertion. We postulate that ATP hydrolysis is needed to release Get3 from its receptor. Taken together, our results provide mechanistic insights into posttranslational targeting of TA membrane proteins by Get3. PMID:19948960

  18. Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels.

    PubMed

    Carr, Louisa; Cheng, Gang; Xue, Hong; Jiang, Shaoyi

    2010-09-21

    We have demonstrated that molecularly engineering the chemical structure of a monomer can lead to hydrogels with improved mechanical strength. In this case, hydrogels from zwitterionic sulfobetaine methacrylate monomers were compared to sulfobetaine vinylimidazole (pSBVI) hydrogels. We show that the introduction of the vinylimidazole backbone improves the tensile and compressive mechanical properties of the sulfobetaine hydrogel by an order of magnitude over the same properties of a methacrylate hydrogel. Zwitterionic groups have been shown to create surface coating materials with ultralow fouling properties, and we demonstrate here that the presence of the imidazole group does not compromise the nonfouling properties attributed to the zwitterionic sulfobetaine: surfaces coated with pSBVI exhibited exceptionally low nonspecific protein adsorption, and cell adhesion was reduced by 97% relative to low-fouling poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels. PMID:20731337

  19. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    PubMed

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  20. Solution structure of the phosphocarrier protein HPr from Bacillus subtilis by two-dimensional NMR spectroscopy.

    PubMed Central

    Wittekind, M.; Rajagopal, P.; Branchini, B. R.; Reizer, J.; Saier, M. H.; Klevit, R. E.

    1992-01-01

    The solution structure of the phosphocarrier protein, HPr, from Bacillus subtilis has been determined by analysis of two-dimensional (2D) NMR spectra acquired for the unphosphorylated form of the protein. Inverse-detected 2D (1H-15N) heteronuclear multiple quantum correlation nuclear Overhauser effect (HMQC NOESY) and homonuclear Hartmann-Hahn (HOHAHA) spectra utilizing 15N assignments (reported here) as well as previously published 1H assignments were used to identify cross-peaks that are not resolved in 2D homonuclear 1H spectra. Distance constraints derived from NOESY cross-peaks, hydrogen-bonding patterns derived from 1H-2H exchange experiments, and dihedral angle constraints derived from analysis of coupling constants were used for structure calculations using the variable target function algorithm, DIANA. The calculated models were refined by dynamical simulated annealing using the program X-PLOR. The resulting family of structures has a mean backbone rmsd of 0.63 A (N, C alpha, C', O atoms), excluding the segments containing residues 45-59 and 84-88. The structure is comprised of a four-stranded antiparallel beta-sheet with two antiparallel alpha-helices on one side of the sheet. The active-site His 15 residue serves as the N-cap of alpha-helix A, with its N delta 1 atom pointed toward the solvent to accept the phosphoryl group during the phosphotransfer reaction with enzyme I. The existence of a hydrogen bond between the side-chain oxygen atom of Tyr 37 and the amide proton of Ala 56 is suggested, which may account for the observed stabilization of the region that includes the beta-turn comprised of residues 37-40. If the beta alpha beta beta alpha beta (alpha) folding topology of HPr is considered with the peptide chain polarity reversed, the protein fold is identical to that described for another group of beta alpha beta beta alpha beta proteins that include acylphosphatase and the RNA-binding domains of the U1 snRNP A and hnRNP C proteins. PMID:1303754

  1. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein.

  2. The dominant folding route minimizes backbone distortion in SH3.

    PubMed

    Lammert, Heiko; Noel, Jeffrey K; Onuchic, José N

    2012-01-01

    Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding.

  3. A constraint logic programming approach to associate 1D and 3D structural components for large protein complexes.

    PubMed

    Dal Palù, Alessandro; Pontelli, Enrico; He, Jing; Lu, Yonggang

    2007-01-01

    The paper describes a novel framework, constructed using Constraint Logic Programming (CLP) and parallelism, to determine the association between parts of the primary sequence of a protein and alpha-helices extracted from 3D low-resolution descriptions of large protein complexes. The association is determined by extracting constraints from the 3D information, regarding length, relative position and connectivity of helices, and solving these constraints with the guidance of a secondary structure prediction algorithm. Parallelism is employed to enhance performance on large proteins. The framework provides a fast, inexpensive alternative to determine the exact tertiary structure of unknown proteins.

  4. Protein secondary structural types are differentially coded on messenger RNA.

    PubMed Central

    Thanaraj, T. A.; Argos, P.

    1996-01-01

    Tricodon regions on messenger RNAs corresponding to a set of proteins from Escherichia coli were scrutinized for their translation speed. The fractional frequency values of the individual codons as they occur in mRNAs of highly expressed genes from Escherichia coli were taken as an indicative measure of the translation speed. The tricodons were classified by the sum of the frequency values of the constituent codons. Examination of the conformation of the encoded amino acid residues in the corresponding protein tertiary structures revealed a correlation between codon usage in mRNA and topological features of the encoded proteins. Alpha helices on proteins tend to be preferentially coded by translationally fast mRNA regions while the slow segments often code for beta strands and coil regions. Fast regions correspondingly avoid coding for beta strands and coil regions while the slow regions similarly move away from encoding alpha helices. Structural and mechanistic aspects of the ribosome peptide channel support the relevance of sequence fragment translation and subsequent conformation. A discussion is presented relating the observation to the reported kinetic data on the formation and stabilization of protein secondary structural types during protein folding. The observed absence of such strong positive selection for codons in non-highly expressed genes is compatible with existing theories that mutation pressure may well dominate codon selection in non-highly expressed genes. PMID:8897597

  5. Sofosbuvir as backbone of interferon free treatments.

    PubMed

    Bourlière, Marc; Oules, Valèrie; Ansaldi, Christelle; Adhoute, Xavier; Castellani, Paul

    2014-12-15

    Sofosbuvir is the first-in-class NS5B nucleotide analogues to be launched for hepatitis C virus (HCV) treatment. Its viral potency, pangenotypic activity and high barrier to resistance make it the ideal candidate to become a backbone for several IFN-free regimens. Recent data demonstrated that sofosbuvir either with ribavirin alone or in combination with other direct-acting antivirals (DAAs) as daclatasvir, ledipasvir or simeprevir are able to cure HCV in at least 90% or over of patients. Treatment experienced genotype 3 population may remain the most difficult to treat population, but ongoing DAA combination studies will help to fill this gap. Safety profile of sofosbuvir or combination with other DAAs is good. Resistance to sofosbuvir did not appear as a significant issue. The rationale for using this class of drug and the available clinical data are reviewed.

  6. Extracting the information backbone in online system.

    PubMed

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  7. ¹H, ¹³C, ¹⁵N backbone and side chain NMR resonance assignments for the N-terminal RNA recognition motif of the HvGR-RBP1 protein involved in the regulation of barley (Hordeum vulgare L.) senescence.

    PubMed

    Mason, Katelyn E; Tripet, Brian P; Parrott, David; Fischer, Andreas M; Copié, Valérie

    2014-04-01

    Leaf senescence is an important process in the developmental life of all plant species. Senescence efficiency influences important agricultural traits such as grain protein content and plant growth, which are often limited by nitrogen use. Little is known about the molecular mechanisms regulating this highly orchestrated process. To enhance our understanding of leaf senescence and its regulation, we have undertaken the structural and functional characterization of previously unknown proteins that are involved in the control of senescence in barley (Hordeum vulgare L.). Previous microarray analysis highlighted several barley genes whose transcripts are differentially expressed during senescence, including a specific gene which is greater than 40-fold up-regulated in the flag leaves of early- as compared to late-senescing near-isogenic barley lines at 14 and 21 days past flowering (anthesis). From inspection of its amino acid sequence, this gene is predicted to encode a glycine-rich RNA-binding protein herein referred to as HvGR-RBP1. HvGR-RBP1 has been expressed as a recombinant protein in Escherichia coli, and preliminary NMR data analysis has revealed that its glycine-rich C-terminal region [residues: 93-162] is structurally disordered whereas its N-terminal region [residues: 1-92] forms a well-folded domain. Herein, we report the complete (1)H, (13)C, and (15)N resonance assignments of backbone and sidechain atoms, and the secondary structural topology of the N-terminal RNA recognition motif (RRM) domain of HvGR-RBP1, as a first step to unraveling its structural and functional role in the regulation of barley leaf senescence.

  8. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL).

    PubMed

    Subramaniam, Sabareesh; Senes, Alessandro

    2014-11-01

    Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy-based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data-set, the EBL was created in a backbone-independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone-dependent libraries are more efficient in side chain optimization. Here we present the backbone-dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone-dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone-independent version of the library.

  9. Backbone Assignment of the MALT1 Paracaspase by Solution NMR

    PubMed Central

    Unnerståle, Sofia; Nowakowski, Michal; Baraznenok, Vera; Stenberg, Gun; Lindberg, Jimmy; Mayzel, Maxim; Orekhov, Vladislav; Agback, Tatiana

    2016-01-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the 15N/13C/1H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins. PMID:26788853

  10. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  11. Theoretical model of prion propagation: a misfolded protein induces misfolding.

    PubMed

    Małolepsza, Edyta; Boniecki, Michal; Kolinski, Andrzej; Piela, Lucjan

    2005-05-31

    There is a hypothesis that dangerous diseases such as bovine spongiform encephalopathy, Creutzfeldt-Jakob, Alzheimer's, fatal familial insomnia, and several others are induced by propagation of wrong or misfolded conformations of some vital proteins. If for some reason the misfolded conformations were acquired by many such protein molecules it might lead to a "conformational" disease of the organism. Here, a theoretical model of the molecular mechanism of such a conformational disease is proposed, in which a metastable (or misfolded) form of a protein induces a similar misfolding of another protein molecule (conformational autocatalysis). First, a number of amino acid sequences composed of 32 aa have been designed that fold rapidly into a well defined native-like alpha-helical conformation. From a large number of such sequences a subset of 14 had a specific feature of their energy landscape, a well defined local energy minimum (higher than the global minimum for the alpha-helical fold) corresponding to beta-type structure. Only one of these 14 sequences exhibited a strong autocatalytic tendency to form a beta-sheet dimer capable of further propagation of protofibril-like structure. Simulations were done by using a reduced, although of high resolution, protein model and the replica exchange Monte Carlo sampling procedure. PMID:15911770

  12. Global Transcriptional Regulation of Backbone Genes in Broad-Host-Range Plasmid RA3 from the IncU Group Involves Segregation Protein KorB (ParB Family)

    PubMed Central

    Godziszewska, Jolanta; Wojciechowska, Anna; Ludwiczak, Marta; Jagura-Burdzy, Grazyna

    2016-01-01

    The KorB protein of the broad-host-range conjugative plasmid RA3 from the IncU group belongs to the ParB family of plasmid and chromosomal segregation proteins. As a partitioning DNA-binding factor, KorB specifically recognizes a 16-bp palindrome which is an essential motif in the centromere-like sequence parSRA3, forms a segrosome, and together with its partner IncC (ParA family) participates in active DNA segregation ensuring stable plasmid maintenance. Here we show that by binding to this palindromic sequence, KorB also acts as a repressor for the adjacent mobC promoter driving expression of the mobC-nic operon, which is involved in DNA processing during conjugation. Three other promoters, one buried in the conjugative transfer module and two divergent promoters located at the border between the replication and stability regions, are regulated by KorB binding to additional KorB operators (OBs). KorB acts as a repressor at a distance, binding to OBs separated from their cognate promoters by between 46 and 1,317 nucleotides. This repressor activity is facilitated by KorB spreading along DNA, since a polymerization-deficient KorB variant with its dimerization and DNA-binding abilities intact is inactive in transcriptional repression. KorB may act as a global regulator of RA3 plasmid functions in Escherichia coli, since its overexpression in trans negatively interferes with mini-RA3 replication and stable maintenance of RA3. PMID:26850301

  13. Global Transcriptional Regulation of Backbone Genes in Broad-Host-Range Plasmid RA3 from the IncU Group Involves Segregation Protein KorB (ParB Family).

    PubMed

    Kulinska, Anna; Godziszewska, Jolanta; Wojciechowska, Anna; Ludwiczak, Marta; Jagura-Burdzy, Grazyna

    2016-04-01

    The KorB protein of the broad-host-range conjugative plasmid RA3 from the IncU group belongs to the ParB family of plasmid and chromosomal segregation proteins. As a partitioning DNA-binding factor, KorB specifically recognizes a 16-bp palindrome which is an essential motif in the centromere-like sequence parSRA3, forms a segrosome, and together with its partner IncC (ParA family) participates in active DNA segregation ensuring stable plasmid maintenance. Here we show that by binding to this palindromic sequence, KorB also acts as a repressor for the adjacent mobC promoter driving expression of the mobC-nicoperon, which is involved in DNA processing during conjugation. Three other promoters, one buried in the conjugative transfer module and two divergent promoters located at the border between the replication and stability regions, are regulated by KorB binding to additional KorB operators (OBs). KorB acts as a repressor at a distance, binding to OBs separated from their cognate promoters by between 46 and 1,317 nucleotides. This repressor activity is facilitated by KorB spreading along DNA, since a polymerization-deficient KorB variant with its dimerization and DNA-binding abilities intact is inactive in transcriptional repression. KorB may act as a global regulator of RA3 plasmid functions in Escherichia coli, since its overexpression in transnegatively interferes with mini-RA3 replication and stable maintenance of RA3. PMID:26850301

  14. Solution structure of murine macrophage inflammatory protein-2.

    PubMed

    Shao, W; Jerva, L F; West, J; Lolis, E; Schweitzer, B I

    1998-06-01

    The solution structure of murine macrophage inflammatory protein-2 (MIP-2), a heparin-binding chemokine that is secreted in response to inflammatory stimuli, has been determined using two-dimensional homonuclear and heteronuclear NMR spectroscopy. Structure calculations were carried out by means of torsion-angle molecular dynamics using the program X-PLOR. The structure is based on a total of 2390 experimental restraints, comprising 2246 NOE-derived distance restraints, 44 distance restraints for 22 hydrogen bonds, and 100 torsion angle restraints. The structure is well-defined, with the backbone (N, Calpha, C) and heavy atom atomic rms distribution about the mean coordinates for residues 9-69 of the dimer being 0.57 +/- 0.16 A and 0.96 +/- 0.12 A, respectively. The N- and C-terminal residues (1-8 and 70-73, respectively) are disordered. The overall structure of the MIP-2 dimer is similar to that reported previously for the NMR structures of MGSA and IL-8 and consists of a six-stranded antiparallel beta-sheet (residue 25-29, 39-44, and 48-52) packed against two C-terminal antiparallel alpha-helices. A best fit superposition of the NMR structure of MIP-2 on the structures of MGSA, NAP-2, and the NMR and X-ray structures of IL-8 are 1.11, 1.02, 1.27, and 1.19 A, respectively, for the monomers, and 1.28, 1.10, 1.55, and 1.36 A, respectively, for the dimers (IL-8 residues 7-14 and 16-67, NAP-2 residues 25-84). At the tertiary level, the main differences between the MIP-2 solution structure and the IL-8, MGSA, and NAP-2 structures involve the N-terminal loop between residues 9-23 and the loops formed by residues 30-38 and residues 53-58. At the quaternary level, the difference between MIP-2 and IL-8, MGSA, or NAP-2 results from differing interhelical angles and separations.

  15. Solution structure of murine macrophage inflammatory protein-2.

    PubMed

    Shao, W; Jerva, L F; West, J; Lolis, E; Schweitzer, B I

    1998-06-01

    The solution structure of murine macrophage inflammatory protein-2 (MIP-2), a heparin-binding chemokine that is secreted in response to inflammatory stimuli, has been determined using two-dimensional homonuclear and heteronuclear NMR spectroscopy. Structure calculations were carried out by means of torsion-angle molecular dynamics using the program X-PLOR. The structure is based on a total of 2390 experimental restraints, comprising 2246 NOE-derived distance restraints, 44 distance restraints for 22 hydrogen bonds, and 100 torsion angle restraints. The structure is well-defined, with the backbone (N, Calpha, C) and heavy atom atomic rms distribution about the mean coordinates for residues 9-69 of the dimer being 0.57 +/- 0.16 A and 0.96 +/- 0.12 A, respectively. The N- and C-terminal residues (1-8 and 70-73, respectively) are disordered. The overall structure of the MIP-2 dimer is similar to that reported previously for the NMR structures of MGSA and IL-8 and consists of a six-stranded antiparallel beta-sheet (residue 25-29, 39-44, and 48-52) packed against two C-terminal antiparallel alpha-helices. A best fit superposition of the NMR structure of MIP-2 on the structures of MGSA, NAP-2, and the NMR and X-ray structures of IL-8 are 1.11, 1.02, 1.27, and 1.19 A, respectively, for the monomers, and 1.28, 1.10, 1.55, and 1.36 A, respectively, for the dimers (IL-8 residues 7-14 and 16-67, NAP-2 residues 25-84). At the tertiary level, the main differences between the MIP-2 solution structure and the IL-8, MGSA, and NAP-2 structures involve the N-terminal loop between residues 9-23 and the loops formed by residues 30-38 and residues 53-58. At the quaternary level, the difference between MIP-2 and IL-8, MGSA, or NAP-2 results from differing interhelical angles and separations. PMID:9622482

  16. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    SciTech Connect

    Hajari, Timir; Vegt, Nico F. A. van der

    2015-04-14

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  17. Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein

    SciTech Connect

    Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh; Grembecka, Jolanta; Cierpicki, Tomasz

    2014-10-02

    Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.

  18. Histidine-Directed Arylation/Alkenylation of Backbone N-H Bonds Mediated by Copper(II).

    PubMed

    Ohata, Jun; Minus, Matthew B; Abernathy, Morgan E; Ball, Zachary T

    2016-06-22

    Chemical modification of proteins and peptides represents a challenge of reaction design as well as an important biological tool. In contrast to side-chain modification, synthetic methods to alter backbone structure are extremely limited. In this communication, copper-mediated backbone N-alkenylation or N-arylation of peptides and proteins by direct modification of natural sequences is described. Histidine residues direct oxidative coupling of boronic acids at the backbone NH of a neighboring amino acid. The mild reaction conditions in common physiological buffers, at ambient temperature, are compatible with proteins and biological systems. This simple reaction demonstrates the potential for directed reactions in complex systems to allow modification of N-H bonds that directly affect polypeptide structure, stability, and function. PMID:27249339

  19. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    PubMed

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-20

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided.

  20. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    PubMed

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-01

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided. PMID:26805793

  1. Extracting the Information Backbone in Online System

    PubMed Central

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  2. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments

    PubMed Central

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure–function relationship. PMID:26978354

  3. Physical studies of conformational plasticity in a recombinant prion protein.

    PubMed

    Zhang, H; Stockel, J; Mehlhorn, I; Groth, D; Baldwin, M A; Prusiner, S B; James, T L; Cohen, F E

    1997-03-25

    PrP(Sc) is known to be the major, if not the only, component of the infectious prion. Limited proteolysis of PrP(Sc) produces an N-terminally truncated polypeptide of about 142 residues, designated PrP 27-30. Recently, a recombinant protein (rPrP) of 142 residues corresponding to the Syrian hamster PrP 27-30 was expressed in Escherichia coli and purified (Mehlhorn et al., 1996). rPrP has been refolded into both alpha-helical and beta-sheet structures as well as various intermediates in aqueous buffers. The beta-sheet state and two pH-dependent alpha-helical states were characterized by CD and NMR. The alpha-helical conformation occurred only after the formation of an intramolecular disulfide bond, whereas the beta-sheet form was accessible either with or without the disulfide. Of the different alpha-helical forms studied, only those refolded in the pH range 5-8 were substantially soluble at physiological pH, exhibiting similar conformations and monomeric analytical sedimentation profiles throughout the above pH range. Furthermore, refolded alpha-rPrP showed NMR chemical shift dispersion typical of proteins with native conformations, although 2D NMR indicated large segments of conformational flexibility. It displayed a cooperative thermal denaturation transition; at elevated temperatures, it converted rapidly and irreversibly to the thermodynamically more stable beta-sheet form. Unfolding of alpha-rPrP by GdnHCl revealed a two-phase transition with a relatively stable folding intermediate at 2 M GdnHCl. The deltaG values were estimated to be 1.9 +/- 0.4 kcal/mol for the first phase and 6.5 +/- 1.2 kcal/mol for the second, consistent with a folding core surrounded by significant segments of flexible conformation. By NMR, alpha-rPrP(acid) isolated at pH 2 without refolding exhibited heterogeneous line widths, consistent with an acid-denatured molten globular state. We conclude that to the extent that rPrP constitutes a relevant folding domain of PrP(C), the various

  4. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    SciTech Connect

    Yu,P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure {alpha}-helices, {beta}-sheets, and others such as {beta}-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted {alpha}-helices, {beta}-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm{sup -1}, the results show that barley protein consisted of approximately 18-34% of {alpha}-helices, 14-25% of {beta}-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P < 0.05) proportions of {alpha}-helices (30-34%) than Dolly and Valier ({alpha}-helices 18-23%). Harrington was in between which was 25%. For protein {beta}-sheets, AC Metcalfe, and LP955 consisted of higher proportions (22-25%) than Dolly and Valier (13-17%). Different barley varieties contained different {alpha}-helix to {beta}-sheet ratios, ranging from 1.4 to 2.0, although the difference were

  5. How Sensitive is the Amide I Vibration of the Polypeptide Backbone to Electric Fields?

    PubMed

    Oh, Kwang-Im; Fiorin, Giacomo; Gai, Feng

    2015-12-01

    Site-selective isotopic labeling of amide carbonyls offers a nonperturbative means to introduce a localized infrared probe into proteins. Although this strategy has been widely used to investigate various biological questions, the dependence of the underlying amide I vibrational frequency on electric fields (or Stark tuning rate) has not been fully determined, which prevents it from being used in a quantitative manner in certain applications. Herein, through the use of experiments and molecular dynamics simulations, the Stark tuning rate of the amide I vibration of an isotopically labeled backbone carbonyl in a transmembrane α-helix is determined to be approximately 1.4 cm(-1) /(MV/cm). This result provides a quantitative basis for using this vibrational model to assess local electric fields in proteins, among other applications. For instance, by using this value, we are able to show that the backbone region of a dipeptide has a surprisingly low dielectric constant.

  6. [Interconnection between architecture of protein globule and disposition of conformational conservative oligopeptides in proteins from one protein family].

    PubMed

    Batianovskiĭ, A V; Filatov, I V; Namiot, V A; Esipova, N G; Volotovskiĭ, I D

    2012-01-01

    It was shown that selective interactions between helical segments of macromolecules can realize in globular proteins in the segments characterized by the same periodicities of charge distribution i.e. between conformationally conservative oligopeptides. It was found that in the macromolecules of alpha-helical proteins conformationally conservative oligopeptides are disposed at a distance being characteristic of direct interactions. For representatives of many structural families of alpha-type proteins specific disposition of conformationally conservative segments is observed. This disposition is inherent to a particular structural family. Disposition of conformationally conservative segments is not related to homology of the amino acid sequence but reflects peculiarities of native 3D-architectures of protein globules.

  7. Small-angle x-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly. alpha. -helical conformation

    SciTech Connect

    Kataoka, Mikio; Engelman, D.M. ); Head, J.F. ); Persechini, A.; Kretsinger, R.H. )

    1991-02-05

    Two mutant forms of calmodulin were examined by small-angle X-ray scattering in solution and compared with the wild-type protein. Each mutant has deletions in the linker region of the central helix: one lacks residues Glu-83 and Glu-84 (Des2) and the other lacks residues Ser-81 through Glu-84 (Des4). The deletions change both the radii of gyration and the maximum dimensions of the molecules. In the presence of Ca{sup 2+}, the observed radii of gyration are 22.4 {angstrom} for wild-type bacterially expressed calmodulin, 19.5 {angstrom} for Des2 calmodulin, and 20.3 {angstrom} for Des4 calmodulin. A reduction in the radius of gyration by 1-2 {angstrom} on removal of calcium, previously observed in the native protein, was also found in the wild type and the Des4 mutant; however, no significant size change was observed in the Des2 mutant. The large calcium-dependent conformational change in calmodulin induced by the binding of melittin was observed in all the bacterially expressed proteins. Each protein appears to undergo a transition from a dumbbell shape to a more globular conformation on binding melittin in the presence of calcium, although quantitatively the changes in the wild-type and Des4 proteins greatly exceed those in Des2. Modeling shows that the structural properties of the deletion mutants are well described by modifications of an {alpha} helix in the central linker region of the molecule. Thus, the structure of the linker region is stable enough to maintain the average orientation and separation of the lobes yet flexible enough to permit the lobes to approach each other upon binding a peptide.

  8. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-10

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  9. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  10. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely. {copyright} {ital 1998 American Institute of Physics.}

  11. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    NASA Astrophysics Data System (ADS)

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  12. Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry

    2011-06-01

    Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: (13)C' longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, (13)C'/(13)C'-(13)C(α) CSA/dipolar and (13)C'/(13)C'-(15)N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2-16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone.

  13. Periodicity in DNA primary structure is defined by secondary structure of the coded protein.

    PubMed Central

    Zhurkin, V B

    1981-01-01

    A 10.5-base periodicity found earlier is inherent in both eu- and prokaryotic coding nucleotide sequences. In the case of noncoding eukaryotic sequences no periodicity is found, so the 10.5-base oscillation seemingly does not correlate with the nucleosomal organization of DNA. It is shown that the DNA fragments, coding the alpha-helical protein segments, manifest the pronounced 10.5-base periodicity, while those regions of DNA which code the beta-structure have a 6-base oscillation. The repeating pattern of nucleotide sequences can be used for comparison of the DNA segments with low degree of homology. PMID:7243595

  14. A backbone lever-arm effect enhances polymer mechanochemistry.

    PubMed

    Klukovich, Hope M; Kouznetsova, Tatiana B; Kean, Zachary S; Lenhardt, Jeremy M; Craig, Stephen L

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity. PMID:23344431

  15. A backbone lever-arm effect enhances polymer mechanochemistry

    NASA Astrophysics Data System (ADS)

    Klukovich, Hope M.; Kouznetsova, Tatiana B.; Kean, Zachary S.; Lenhardt, Jeremy M.; Craig, Stephen L.

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  16. Toxoplasma gondii: Biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6

    SciTech Connect

    Bittame, Amina; Effantin, Grégory; Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia; Schoehn, Guy; Weissenhorn, Winfried; Cesbron-Delauw, Marie-France; Gagnon, Jean; Mercier, Corinne

    2015-03-27

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii.

  17. On relationships between surfactant type and globular proteins interactions in solution.

    PubMed

    Blanco, Elena; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix

    2007-12-01

    The binding of sodium perfluorooctanoate (C8FONa), sodium octanoate (C8HONa), lithium perfluorooctanoate (C8FOLi), and sodium dodecanoate (C12HONa) onto myoglobin, ovalbumin, and catalase in water has been characterized using electrophoretic mobility. The tendency of the protein-surfactant complexes to change their charge in the order catalase < ovalbumin < myoglobin was observed which was related to the contents of alpha-helices in the proteins. alpha-Helices are more hydrophobic than beta-sheets. The effect of surfactant on the zeta potentials follows C8HONa < C8FONa < C8FOLi < C12HONa for catalase and ovalbumin; and C8HONa < C8FOLi < C8FONa < C12HONa for myoglobin. The numbers of binding sites on the proteins were determined from the observed increases of the zeta-potential as a function of surfactant concentration in the regions where the binding was a consequence of the hydrophobic effect. The Gibbs energies of binding of the surfactants onto the proteins were evaluated. For all systems, Gibbs energies are negative and large at low concentrations (where binding to the high energy sites takes place) and become less negative at higher ones. This fact suggests a saturation process. Changes in Gibbs energies with the different proteins and surfactants under study have been found to follow same sequence than that found for the charge. The role of hydrophobic interactions in these systems has been demonstrated to be the predominant.

  18. Backbone and sidechain 1H, 15N and 13C assignments of the KSR1 CA1 domain

    PubMed Central

    Koveal, Dorothy; Pinheiro, Anderson S.; Peti, Wolfgang; Page, Rebecca

    2014-01-01

    The backbone and side chain resonance assignments of the murine KSR1 CA1 domain have been determined based on triple-resonance experiments using uniformly [13C, 15N]-labeled protein. This assignment is the first step towards the determination of the three-dimensional structure of the unique KSR1 CA1 domain. PMID:20737253

  19. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions. PMID:26865312

  20. A polarizable force field for computing the infrared spectra of the polypeptide backbone.

    PubMed

    Schultheis, Verena; Reichold, Rudolf; Schropp, Bernhard; Tavan, Paul

    2008-10-01

    The shapes of the amide bands in the infrared (IR) spectra of proteins and peptides are caused by electrostatically coupled vibrations within the polypeptide backbone and code the structures of these biopolymers. A structural decoding of the amide bands has to resort to simplified models because the huge size of these macromolecules prevents the application of accurate quantum mechanical methods such as density functional theory (DFT). Previous models employed transition-dipole coupling methods that are of limited accuracy. Here we propose a concept for the computation of protein IR spectra, which describes the molecular mechanics (MM) of polypeptide backbones by a polarizable force field of "type II". By extending the concepts of conventional polarizable MM force fields, such a PMM/II approach employs field-dependent parameters not only for the electrostatic signatures of the molecular components but also for the local potentials modeling the stiffness of chemical bonds with respect to elongations, angle deformations, and torsions. Using a PMM/II force field, the IR spectra of the polypeptide backbone can be efficiently calculated from the time dependence of the backbone's dipole moment during a short (e.g., 100 ps) MD simulation by Fourier transformation. PMM/II parameters are derived for harmonic bonding potentials of amide groups in polypeptides from a series of DFT calculations on the model molecule N-methylacetamide (NMA) exposed to homogeneous external electric fields. The amide force constants are shown to vary by as much as 20% for relevant field strengths. As a proof of principle, it is shown that the large solvatochromic effects observed in the IR spectra of NMA upon transfer from the gas phase into aqueous solution are not only excellently reproduced by DFT/MM simulations but are also nicely modeled by the PMM/II approach. The tasks remaining for a proof of practice are specified.

  1. Mapping of the Neisseria meningitidis NadA cell-binding site: relevance of predicted {alpha}-helices in the NH2-terminal and dimeric coiled-coil regions.

    PubMed

    Tavano, Regina; Capecchi, Barbara; Montanari, Paolo; Franzoso, Susanna; Marin, Oriano; Sztukowska, Maryta; Cecchini, Paola; Segat, Daniela; Scarselli, Maria; Aricò, Beatrice; Papini, Emanuele

    2011-01-01

    NadA is a trimeric autotransporter protein of Neisseria meningitidis belonging to the group of oligomeric coiled-coil adhesins. It is implicated in the colonization of the human upper respiratory tract by hypervirulent serogroup B N. meningitidis strains and is part of a multiantigen anti-serogroup B vaccine. Structure prediction indicates that NadA is made by a COOH-terminal membrane anchor (also necessary for autotranslocation to the bacterial surface), an intermediate elongated coiled-coil-rich stalk, and an NH(2)-terminal region involved in cell interaction. Electron microscopy analysis and structure prediction suggest that the apical region of NadA forms a compact and globular domain. Deletion studies proved that the NH(2)-terminal sequence (residues 24 to 87) is necessary for cell adhesion. In this study, to better define the NadA cell binding site, we exploited (i) a panel of NadA mutants lacking sequences along the coiled-coil stalk and (ii) several oligoclonal rabbit antibodies, and their relative Fab fragments, directed to linear epitopes distributed along the NadA ectodomain. We identified two critical regions for the NadA-cell receptor interaction with Chang cells: the NH(2) globular head domain and the NH(2) dimeric intrachain coiled-coil α-helices stemming from the stalk. This raises the importance of different modules within the predicted NadA structure. The identification of linear epitopes involved in receptor binding that are able to induce interfering antibodies reinforces the importance of NadA as a vaccine antigen.

  2. The T=1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication.

    PubMed

    Luque, Daniel; González, José M; Garriga, Damiá; Ghabrial, Said A; Havens, Wendy M; Trus, Benes; Verdaguer, Nuria; Carrascosa, José L; Castón, José R

    2010-07-01

    Penicillium chrysogenum virus (PcV), a member of the Chrysoviridae family, is a double-stranded RNA (dsRNA) fungal virus with a multipartite genome, with each RNA molecule encapsidated in a separate particle. Chrysoviruses lack an extracellular route and are transmitted during sporogenesis and cell fusion. The PcV capsid, based on a T=1 lattice containing 60 subunits of the 982-amino-acid capsid protein, remains structurally undisturbed throughout the viral cycle, participates in genome metabolism, and isolates the virus genome from host defense mechanisms. Using three-dimensional cryoelectron microscopy, we determined the structure of the PcV virion at 8.0 A resolution. The capsid protein has a high content of rod-like densities characteristic of alpha-helices, forming a repeated alpha-helical core indicative of gene duplication. Whereas the PcV capsid protein has two motifs with the same fold, most dsRNA virus capsid subunits consist of dimers of a single protein with similar folds. The spatial arrangement of the alpha-helical core resembles that found in the capsid protein of the L-A virus, a fungal totivirus with an undivided genome, suggesting a conserved basic fold. The encapsidated genome is organized in concentric shells; whereas the inner dsRNA shells are well defined, the outermost layer is dense due to numerous interactions with the inner capsid surface, specifically, six interacting areas per monomer. The outermost genome layer is arranged in an icosahedral cage, sufficiently well ordered to allow for modeling of an A-form dsRNA. The genome ordering might constitute a framework for dsRNA transcription at the capsid interior and/or have a structural role for capsid stability.

  3. Peptide Amphiphile Nanofibers with Conjugated Polydiacetylene Backbones in Their Core

    PubMed Central

    Hsu, Lorraine; Cvetanovich, Gregory L.; Stupp, Samuel I.

    2008-01-01

    The coupling of electronic and biological functionality through self-assembly is an interesting target in supramolecular chemistry. We report here on a set of diacetylene-derivatized peptide amphiphiles (PAs) that react to form conjugated polydiacetylene backbones following self-assembly into cylindrical nanofibers. The polymerization reaction yields highly conjugated backbones when the peptidic segment of the PAs has a linear, as opposed to a branched, architecture. Given the topotactic nature of the polymerization, these results suggest that a high degree of internal order exists in the supramolecular nanofibers formed by the linear PA. On the basis of microscopy, the formation of a polydiacetylene backbone to covalently connect the β-sheets that help form the fibers does not disrupt the fiber shape. Interestingly, we observe the appearance of a polydiacetylene (PDA) circular dichroism band at 547 nm in linear PA nanofibers suggesting the conjugated backbone in the core of the nanostructures is twisted. We believe this CD signal is due to chiral induction by the β-sheets, which are normally twisted in helical fashion. Heating and cooling shows simultaneous changes in β-sheet and conjugated backbone structure, indicating they are both correlated. At the same time, poor polymerization in nanofibers formed by branched PAs indicates that less internal order exists in these nanostructures and, as expected, then a circular dichroism signal is not observed for the conjugated backbone. The general variety of materials investigated here has the obvious potential to couple electronic properties and in vitro bioactivity. Furthermore, the polymerization of monomers in peptide amphiphile assemblies by a rigid conjugated backbone also leads to mechanical robustness and insolubility, two properties that may be important for the patterning of these materials at the cellular scale. PMID:18314978

  4. Methods for calculating the entropy and free energy and their application to problems involving protein flexibility and ligand binding.

    PubMed

    Meirovitch, Hagai; Cheluvaraja, Srinath; White, Ronald P

    2009-06-01

    The Helmholtz free energy, F and the entropy, S are related thermodynamic quantities with a special importance in structural biology. We describe the difficulties in calculating these quantities and review recent methodological developments. Because protein flexibility is essential for function and ligand binding, we discuss the related problems involved in the definition, simulation, and free energy calculation of microstates (such as the alpha-helical region of a peptide). While the review is broad, a special emphasize is given to methods for calculating the absolute F (S), where our HSMC(D) method is described in some detail. PMID:19519453

  5. Macromolecular crowding increases structural content of folded proteins.

    PubMed

    Perham, Michael; Stagg, Loren; Wittung-Stafshede, Pernilla

    2007-10-30

    Here we show that increased amount of secondary structure is acquired in the folded states of two structurally-different proteins (alpha-helical VlsE and alpha/beta flavodoxin) in the presence of macromolecular crowding agents. The structural content of flavodoxin and VlsE is enhanced by 33% and 70%, respectively, in 400 mg/ml Ficoll 70 (pH 7, 20 degrees C) and correlates with higher protein-thermal stability. In the same Ficoll range, there are only small effects on the unfolded-state structures of the proteins. This is the first in vitro assessment of crowding effects on the native-state structures at physiological conditions. Our findings imply that for proteins with low intrinsic stability, the functional structures in vivo may differ from those observed in dilute buffers. PMID:17919600

  6. Purification and characterization of oil-bodies (oleosomes) and oil-body boundary proteins (oleosins) from the developing cotyledons of sunflower (Helianthus annuus L.)

    PubMed

    Millichip, M; Tatham, A S; Jackson, F; Griffiths, G; Shewry, P R; Stobart, A K

    1996-02-15

    Oil-bodies, from the immature cotyledons of sunflower (Helianthus annuus L.), were difficult to purify to homogeneity using conventional techniques. The major protein contaminants were albumin and globulin storage proteins. A protocol has been developed, therefore, based upon the stringent washing of the oil-body fraction in 9 M urea, which effectively removed almost all the contaminating protein as judged by SDS/PAGE. The urea-washed oil-bodies were enriched in two major proteins of M(r) 19000 and 20000. These proteins were oleosins as demonstrated by their amino acid compositions and the sequence analysis of peptides produced by CNBr cleavage. Far-UV CD spectra of the oleosins in trifluoroethanol, trifluoroethanol/water mixtures and as mixed micelles in SDS, were typical of alpha-helical proteins with alpha-helical contents of some 55%. The phospholipid content of the urea-washed preparations was less than 0.1% of that required to form a half-unit membrane surrounding the oil-body. The oil-body surface therefore appears to be an unusual and novel structure, covered largely by an oleosin protein coat or pellicle rather than a conventional fluid membrane, half-unit or otherwise.

  7. Triazole linkages and backbone branches in nucleic acids for biological and extra-biological applications

    NASA Astrophysics Data System (ADS)

    Paredes, Eduardo

    The recently increasing evidence of nucleic acids' alternative roles in biology and potential as useful nanomaterials and therapeutic agents has enabled the development of useful probes, elaborate nanostructures and therapeutic effectors based on nucleic acids. The study of alternative nucleic acid structure and function, particularly RNA, hinges on the ability to introduce site-specific modifications that either provide clues to the nucleic acid structure function relationship or alter the nucleic acid's function. Although the available chemistries allow for the conjugation of useful labels and molecules, their limitations lie in their tedious conjugation conditions or the lability of the installed probes. The development and optimization of click chemistry with RNA now provides the access to a robust and orthogonal conjugation methodology while providing stable conjugates. Our ability to introduce click reactive groups enzymatically, rather than only in the solid-phase, allows for the modification of larger, more cell relevant RNAs. Additionally, ligation of modified RNAs with larger RNA constructs through click chemistry represents an improvement over traditional ligation techniques. We determined that the triazole linkage generated through click chemistry is compatible in diverse nucleic acid based biological systems. Click chemistry has also been developed for extra-biological applications, particularly with DNA. We have expanded its use to generate useful polymer-DNA conjugates which can form controllable soft nanoparticles which take advantage of DNA's properties, i.e. DNA hybridization and computing. Additionally, we have generated protein-DNA conjugates and assembled protein-polymer hybrids mediated by DNA hybridization. The use of click chemistry in these reactions allows for the facile synthesis of these unnatural conjugates. We have also developed backbone branched DNA through click chemistry and showed that these branched DNAs are useful in generating

  8. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  9. Cooperative UAV-Based Communications Backbone for Sensor Networks

    SciTech Connect

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  10. Unraveling proteins: a molecular mechanics study.

    PubMed Central

    Rohs, R; Etchebest, C; Lavery, R

    1999-01-01

    An internal coordinate molecular mechanics study of unfolding peptide chains by external stretching has been carried out to predict the type of force spectra that may be expected from single-molecule manipulation experiments currently being prepared. Rather than modeling the stretching of a given protein, we have looked at the behavior of simple secondary structure elements (alpha-helix, beta-ribbon, and interacting alpha-helices) to estimate the magnitude of the forces involved in their unfolding or separation and the dependence of these forces on the way pulling is carried out as well as on the length of the structural elements. The results point to a hierarchy of forces covering a surprisingly large range and to important orientational effects in the response to external stress. PMID:10233091

  11. TRAMPLE: the transmembrane protein labelling environment.

    PubMed

    Fariselli, Piero; Finelli, Michele; Rossi, Ivan; Amico, Mauro; Zauli, Andrea; Martelli, Pier Luigi; Casadio, Rita

    2005-07-01

    TRAMPLE (http://gpcr.biocomp.unibo.it/biodec/) is a web application server dedicated to the detection and the annotation of transmembrane protein sequences. TRAMPLE includes different state-of-the-art algorithms for the prediction of signal peptides, transmembrane segments (both beta-strands and alpha-helices), secondary structure and fast fold recognition. TRAMPLE also includes a complete content management system to manage the results of the predictions. Each user of the server has his/her own workplace, where the data can be stored, organized, accessed and annotated with documents through a simple web-based interface. In this manner, TRAMPLE significantly improves usability with respect to other more traditional web servers. PMID:15980454

  12. The role of charged amphipathic helices in the structure and function of surfactant protein B.

    PubMed

    Waring, A J; Walther, F J; Gordon, L M; Hernandez-Juviel, J M; Hong, T; Sherman, M A; Alonso, C; Alig, T; Braun, A; Bacon, D; Zasadzinski, J A

    2005-12-01

    Surfactant protein B (SP-B) is essential for normal lung surfactant function. Theoretical models predict that the disulfide cross-linked, N- and C-terminal domains of SP-B fold as charged amphipathic helices, and suggest that these adjacent helices participate in critical surfactant activities. This hypothesis is tested using a disulfide-linked construct (Mini-B) based on the primary sequences of the N- and C-terminal domains. Consistent with theoretical predictions of the full-length protein, both isotope-enhanced Fourier transform infrared (FTIR) spectroscopy and molecular modeling confirm the presence of charged amphipathic alpha-helices in Mini-B. Similar to that observed with native SP-B, Mini-B in model surfactant lipid mixtures exhibits marked in vitro activity, with spread films showing near-zero minimum surface tensions during cycling using captive bubble surfactometry. In vivo, Mini-B shows oxygenation and dynamic compliance that compare favorably with that of full-length SP-B. Mini-B variants (i.e. reduced disulfides or cationic residues replaced by uncharged residues) or Mini-B fragments (i.e. unlinked N- and C-terminal domains) produced greatly attenuated in vivo and in vitro surfactant properties. Hence, the combination of structure and charge for the amphipathic alpha-helical N- and C-terminal domains are key to SP-B function.

  13. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence

    SciTech Connect

    Coleman, Bradley M.; Nisbet, Rebecca M.; Han, Sen; Cappai, Roberto; Hatters, Danny M.; Hill, Andrew F.

    2009-03-13

    Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrP{sup C}) into a disease associated form (PrP{sup Sc}). Recombinant PrP can be refolded into either an {alpha}-helical rich conformation ({alpha}-PrP) resembling PrP{sup C} or a {beta}-sheet rich, protease resistant form similar to PrP{sup Sc}. Here, we generated tetracysteine tagged recombinant PrP, folded this into {alpha}- or {beta}-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished {beta}-PrP from {alpha}-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the {alpha}-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the {beta}-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrP{sup Sc} from PrP{sup C}. This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer's, Huntington's and Parkinson's diseases.

  14. Comparative analysis of nanomechanics of protein filaments under lateral loading

    NASA Astrophysics Data System (ADS)

    Solar, Max; Buehler, Markus J.

    2012-02-01

    Using a combination of explicit solvent atomistic simulation and continuum theory, here we study the lateral deformation mechanics of three distinct protein structures: an amyloid fibril, a beta helix, and an alpha helix. We find that the two β-sheet rich structures - amyloid fibril and beta helix, with persistence lengths on the order of μm - are well described by continuum mechanical theory, but differ in the degree to which shear deformation affects the overall bending behavior. The alpha helical protein structure, however, with a persistence length on the order of one nanometer, does not conform to the continuum theory and its deformation is dominated by entropic elasticity due to significant fluctuations. This study provides fundamental insight into the nanomechanics of widely found protein motifs and insight into molecular-scale deformation mechanisms, as well as quantitative estimates of Young's modulus and shear modulus in agreement with experimental results.

  15. Structural evolution of the 4/1 genes and proteins in non-vascular and lower vascular plants.

    PubMed

    Morozov, Sergey Y; Milyutina, Irina A; Bobrova, Vera K; Ryazantsev, Dmitry Y; Erokhina, Tatiana N; Zavriev, Sergey K; Agranovsky, Alexey A; Solovyev, Andrey G; Troitsky, Alexey V

    2015-12-01

    The 4/1 protein of unknown function is encoded by a single-copy gene in most higher plants. The 4/1 protein of Nicotiana tabacum (Nt-4/1 protein) has been shown to be alpha-helical and predominantly expressed in conductive tissues. Here, we report the analysis of 4/1 genes and the encoded proteins of lower land plants. Sequences of a number of 4/1 genes from liverworts, lycophytes, ferns and gymnosperms were determined and analyzed together with sequences available in databases. Most of the vascular plants were found to encode Magnoliophyta-like 4/1 proteins exhibiting previously described gene structure and protein properties. Identification of the 4/1-like proteins in hornworts, liverworts and charophyte algae (sister lineage to all land plants) but not in mosses suggests that 4/1 proteins are likely important for plant development but not required for a primary metabolic function of plant cell.

  16. Structural evolution of the 4/1 genes and proteins in non-vascular and lower vascular plants.

    PubMed

    Morozov, Sergey Y; Milyutina, Irina A; Bobrova, Vera K; Ryazantsev, Dmitry Y; Erokhina, Tatiana N; Zavriev, Sergey K; Agranovsky, Alexey A; Solovyev, Andrey G; Troitsky, Alexey V

    2015-12-01

    The 4/1 protein of unknown function is encoded by a single-copy gene in most higher plants. The 4/1 protein of Nicotiana tabacum (Nt-4/1 protein) has been shown to be alpha-helical and predominantly expressed in conductive tissues. Here, we report the analysis of 4/1 genes and the encoded proteins of lower land plants. Sequences of a number of 4/1 genes from liverworts, lycophytes, ferns and gymnosperms were determined and analyzed together with sequences available in databases. Most of the vascular plants were found to encode Magnoliophyta-like 4/1 proteins exhibiting previously described gene structure and protein properties. Identification of the 4/1-like proteins in hornworts, liverworts and charophyte algae (sister lineage to all land plants) but not in mosses suggests that 4/1 proteins are likely important for plant development but not required for a primary metabolic function of plant cell. PMID:26542289

  17. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata.

    PubMed

    Hou, Xiaomin; Meehan, Edward J; Xie, Jieming; Huang, Mingdong; Chen, Minghuang; Chen, Liqing

    2008-10-01

    A novel type 1 ribosome-inactivating protein (RIP) designated cucurmosin was isolated from the sarcocarp of Cucurbita moschata (pumpkin). Besides rRNA N-glycosidase activity, cucurmosin exhibits strong cytotoxicities to three cancer cell lines of both human and murine origins, but low toxicity to normal cells. Plant genomic DNA extracted from the tender leaves was amplified by PCR between primers based on the N-terminal sequence and X-ray sequence of the C-terminal. The complete mature protein sequence was obtained from N-terminal protein sequencing and partial DNA sequencing, confirmed by high resolution crystal structure analysis. The crystal structure of cucurmosin has been determined at 1.04A, a resolution that has never been achieved before for any RIP. The structure contains two domains: a large N-terminal domain composed of seven alpha-helices and eight beta-strands, and a smaller C-terminal domain consisting of three alpha-helices and two beta-strands. The high resolution structure established a glycosylation pattern of GlcNAc(2)Man(3)Xyl. Asn225 was identified as a glycosylation site. Residues Tyr70, Tyr109, Glu158 and Arg161 define the active site of cucurmosin as an RNA N-glycosidase. The structural basis of cytotoxicity difference between cucurmosin and trichosanthin is discussed.

  18. Molecular studies on bromovirus capsid protein. VII. Selective packaging on BMV RNA4 by specific N-terminal arginine residuals.

    PubMed

    Choi, Y G; Rao, A L

    2000-09-15

    An arginine-rich RNA-binding motif (ARM) found at the N-proximal region of Brome mosaic virus (BMV) coat protein (CP) adopts alpha-helical conformation and shares homology with CPs of plant and insect RNA viruses, HIV-Rev and Tat proteins, bacterial antiterminators, and ribosomal splicing factors. The ARM of BMV CP, consisting of amino acids 9 through 21 with six arginine residues, is essential for RNA binding and subsequent packaging. In this study analysis of the alpha-helical contents of wild-type and mutant peptides by circular dichroism spectra identified protein determinants required for such conformation. Electrophoretic mobility-shift assays between viral RNA and BMV CP peptides with either proline or alanine substitutions revealed that the interaction is nonspecific. Expression in vivo of mature full-length BMV CP subunits, having the same substitutions for each arginine within the ARM, derived from biologically active clones was found to be competent to assemble into infectious virions and cause visible symptom phenotypes in whole plants. However, analysis of virion progeny RNA profiles of CP variants and subsequent in vitro reassembly assays between mutant CP and four BMV RNAs unveiled the ability of arginine residues at positions 10, 13, or 14 of the ARM to confer selective packaging of BMV RNA4. Thus, BMV CP contains determinants that specifically interact with RNA4 to ensure selective packaging.

  19. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata

    SciTech Connect

    Hou, Xiaomin; Meehan, Edward J.; Xie, Jieming; Huang, Mingdong; Chen, Minghuang; Chen, Liqing

    2008-10-27

    A novel type 1 ribosome-inactivating protein (RIP) designated cucurmosin was isolated from the sarcocarp of Cucurbita moschata (pumpkin). Besides rRNA N-glycosidase activity, cucurmosin exhibits strong cytotoxicities to three cancer cell lines of both human and murine origins, but low toxicity to normal cells. Plant genomic DNA extracted from the tender leaves was amplified by PCR between primers based on the N-terminal sequence and X-ray sequence of the C-terminal. The complete mature protein sequence was obtained from N-terminal protein sequencing and partial DNA sequencing, confirmed by high resolution crystal structure analysis. The crystal structure of cucurmosin has been determined at 1.04 {angstrom}, a resolution that has never been achieved before for any RIP. The structure contains two domains: a large N-terminal domain composed of seven {alpha}-helices and eight {beta}-strands, and a smaller C-terminal domain consisting of three {alpha}-helices and two {beta}-strands. The high resolution structure established a glycosylation pattern of GlcNAc{sub 2}Man3Xyl. Asn225 was identified as a glycosylation site. Residues Tyr70, Tyr109, Glu158 and Arg161 define the active site of cucurmosin as an RNA N-glycosidase. The structural basis of cytotoxicity difference between cucurmosin and trichosanthin is discussed.

  20. Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs.

    PubMed

    Strauss, H M; Keller, S

    2008-01-01

    Coiled coils are bundles of intertwined alpha-helices that provide protein-protein interaction sites for the dynamic assembly and disassembly of protein complexes. The coiled-coil motif combines structural versatility and adaptability with mechanical strength and specificity. Multimeric proteins that rely on coiled-coil interactions are structurally and functionally very diverse, ranging from simple homodimeric transcription factors to elaborate heteromultimeric scaffolding clusters. Several coiled-coil-bearing proteins are of outstanding pharmacological importance, most notably SNARE proteins involved in vesicular trafficking of neurotransmitters and viral fusion proteins. Together with their crucial roles in many physiological and pathological processes, the structural simplicity and reversible nature of coiled-coil associations render them a promising target for pharmacological interference, as successfully exemplified by botulinum toxins and viral fusion inhibitors. The alpha-helical coiled coil is a ubiquitous protein domain that mediates highly specific homo- and heteromeric protein-protein interactions among a wide range of proteins. The coiled-coil motif was first proposed by Crick on the basis of X-ray diffraction data on alpha-keratin more than 50 years ago (Crick 1952, 1953) and nowadays belongs to the best-characterized protein interaction modules. By definition, a coiled coil is an oligomeric protein assembly consisting of several right-handed amphipathic alpha-helices that wind around each other into a superhelix (or a supercoil) in which the hydrophobic surfaces of the constituent helices are in continuous contact, forming a hydrophobic core. Both homomeric and heteromeric coiled coils with different stoichiometries are possible, and the helices can be aligned in either a parallel or an antiparallel topology (Harbury et al. 1993, 1994). Stoichiometry and topology are governed by the primary structure, that is, the sequence of the polypeptide chains

  1. Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone.

    PubMed

    Sawada, Tomohisa; Gellman, Samuel H

    2011-05-18

    Artificial mimicry of α-helices offers a basis for development of protein-protein interaction antagonists. Here we report a new type of unnatural peptidic backbone, containing α-, β-, and γ-amino acid residues in an αγααβα repeat pattern, for this purpose. This unnatural hexad has the same number of backbone atoms as a heptad of α residues. Two-dimensional NMR data clearly establish the formation of an α-helix-like conformation in aqueous solution. The helix formed by our 12-mer α/β/γ-peptide is considerably more stable than the α-helix formed by an analogous 14-mer α-peptide, presumably because of the preorganized β and γ residues employed.

  2. Light-activated DNA binding in a designed allosteric protein

    SciTech Connect

    Strickland, Devin; Moffat, Keith; Sosnick, Tobin R.

    2008-09-03

    An understanding of how allostery, the conformational coupling of distant functional sites, arises in highly evolvable systems is of considerable interest in areas ranging from cell biology to protein design and signaling networks. We reasoned that the rigidity and defined geometry of an {alpha}-helical domain linker would make it effective as a conduit for allosteric signals. To test this idea, we rationally designed 12 fusions between the naturally photoactive LOV2 domain from Avena sativa phototropin 1 and the Escherichia coli trp repressor. When illuminated, one of the fusions selectively binds operator DNA and protects it from nuclease digestion. The ready success of our rational design strategy suggests that the helical 'allosteric lever arm' is a general scheme for coupling the function of two proteins.

  3. GADIS: Algorithm for designing sequences to achieve target secondary structure profiles of intrinsically disordered proteins.

    PubMed

    Harmon, Tyler S; Crabtree, Michael D; Shammas, Sarah L; Posey, Ammon E; Clarke, Jane; Pappu, Rohit V

    2016-09-01

    Many intrinsically disordered proteins (IDPs) participate in coupled folding and binding reactions and form alpha helical structures in their bound complexes. Alanine, glycine, or proline scanning mutagenesis approaches are often used to dissect the contributions of intrinsic helicities to coupled folding and binding. These experiments can yield confounding results because the mutagenesis strategy changes the amino acid compositions of IDPs. Therefore, an important next step in mutagenesis-based approaches to mechanistic studies of coupled folding and binding is the design of sequences that satisfy three major constraints. These are (i) achieving a target intrinsic alpha helicity profile; (ii) fixing the positions of residues corresponding to the binding interface; and (iii) maintaining the native amino acid composition. Here, we report the development of a G: enetic A: lgorithm for D: esign of I: ntrinsic secondary S: tructure (GADIS) for designing sequences that satisfy the specified constraints. We describe the algorithm and present results to demonstrate the applicability of GADIS by designing sequence variants of the intrinsically disordered PUMA system that undergoes coupled folding and binding to Mcl-1. Our sequence designs span a range of intrinsic helicity profiles. The predicted variations in sequence-encoded mean helicities are tested against experimental measurements. PMID:27503953

  4. Extracting the multiscale backbone of complex weighted networks

    PubMed Central

    Serrano, M. Ángeles; Boguñá, Marián; Vespignani, Alessandro

    2009-01-01

    A large number of complex systems find a natural abstraction in the form of weighted networks whose nodes represent the elements of the system and the weighted edges identify the presence of an interaction and its relative strength. In recent years, the study of an increasing number of large-scale networks has highlighted the statistical heterogeneity of their interaction pattern, with degree and weight distributions that vary over many orders of magnitude. These features, along with the large number of elements and links, make the extraction of the truly relevant connections forming the network's backbone a very challenging problem. More specifically, coarse-graining approaches and filtering techniques come into conflict with the multiscale nature of large-scale systems. Here, we define a filtering method that offers a practical procedure to extract the relevant connection backbone in complex multiscale networks, preserving the edges that represent statistically significant deviations with respect to a null model for the local assignment of weights to edges. An important aspect of the method is that it does not belittle small-scale interactions and operates at all scales defined by the weight distribution. We apply our method to real-world network instances and compare the obtained results with alternative backbone extraction techniques. PMID:19357301

  5. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit

    PubMed Central

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry

    2015-01-01

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems. PMID:26506617

  6. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrey; Niemi, Antti J.; Peng, Xubiao

    2013-05-01

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.

  7. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics.

    PubMed

    Krokhotin, Andrey; Niemi, Antti J; Peng, Xubiao

    2013-05-01

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit. PMID:23656161

  8. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    SciTech Connect

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  9. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    DOE PAGES

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less

  10. High-throughput backbone resonance assignment of small 13C, 15N-labeled proteins by a triple-resonance experiment with four sequential connectivity pathways using chemical shift-dependent, apparent 1J ( 1H, 13C): HNCACB codedHAHB

    NASA Astrophysics Data System (ADS)

    Pegan, Scott; Kwiatkowski, Witek; Choe, Senyon; Riek, Roland

    2003-12-01

    The proposed three-dimensional triple-resonance experiment HNCACB codedHAHB correlates sequential 15N, 1H moieties via the chemical shifts of 13C α, 13C β, 1H α, and 1H β. The four sequential correlation pathways are achieved by the incorporation of the concept of chemical shift-coding [J. Biomol. NMR 25 (2003) 281] to the TROSY-HNCACB experiment. The monitored 1H α and 1H β chemical shifts are then coded in the line shape of the cross-peaks of 13C α, 13C β along the 13C dimension through an apparent residual scalar coupling, the size of which depends on the attached hydrogen chemical shift. The information of four sequential correlation pathways enables a rapid backbone assignment. The HNCACB codedHAHB experiment was applied to ˜85% labeled 13C, 15N-labeled amino-terminal fragment of Vaccinia virus DNA topoisomerase I comprising residues 1-77. After one day of measurement on a Bruker Avance 700 MHz spectrometer and 8 h of manual analysis of the spectrum 93% of the backbone assignment was achieved.

  11. A novel member of the split betaalphabeta fold: Solution structure of the hypothetical protein YML108W from Saccharomyces cerevisiae.

    PubMed

    Pineda-Lucena, Antonio; Liao, Jack C C; Cort, John R; Yee, Adelinda; Kennedy, Michael A; Edwards, Aled M; Arrowsmith, Cheryl H

    2003-05-01

    As part of the Northeast Structural Genomics Consortium pilot project focused on small eukaryotic proteins and protein domains, we have determined the NMR structure of the protein encoded by ORF YML108W from Saccharomyces cerevisiae. YML108W belongs to one of the numerous structural proteomics targets whose biological function is unknown. Moreover, this protein does not have sequence similarity to any other protein. The NMR structure of YML108W consists of a four-stranded beta-sheet with strand order 2143 and two alpha-helices, with an overall topology of betabetaalphabetabetaalpha. Strand beta1 runs parallel to beta4, and beta2:beta1 and beta4:beta3 pairs are arranged in an antiparallel fashion. Although this fold belongs to the split betaalphabeta family, it appears to be unique among this family; it is a novel arrangement of secondary structure, thereby expanding the universe of protein folds.

  12. Type I antifreeze proteins: possible origins from chorion and keratin genes in Atlantic snailfish.

    PubMed

    Evans, Robert P; Fletcher, Garth L

    2005-10-01

    Type I antifreeze proteins (AFPs) are alanine-rich alpha-helical polypeptides found in some species of right-eye flounders, sculpin, and snailfish. In this study, a shorthorn sculpin skin type I cDNA clone was used to probe an Atlantic snailfish liver cDNA library in order to locate expressed genes corresponding to snailfish plasma AFPs. Clones isolated from the cDNA library had sections with substantial amino acid and nucleotide sequence similarity to snailfish type I AFPs. However, further analysis revealed that the positives were actually three different liver-expressed proteins-two were eggshell proteins, while the third was a type II keratin. We propose that a shift in reading frame could produce alanine-rich candidate AFPs with possible antifreeze activity or ice crystal modification properties. Furthermore, it is plausible that one or more of the liver-expressed proteins represent the progenitors of snailfish type I AFPs.

  13. RNA-Redesign: a web server for fixed-backbone 3D design of RNA.

    PubMed

    Yesselman, Joseph D; Das, Rhiju

    2015-07-01

    RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment.

  14. Supramolecular organization of the repetitive backbone unit of the Streptococcus pneumoniae pilus.

    PubMed

    Spraggon, Glen; Koesema, Eric; Scarselli, Maria; Malito, Enrico; Biagini, Massimiliano; Norais, Nathalie; Emolo, Carla; Barocchi, Michèle Anne; Giusti, Fabiola; Hilleringmann, Markus; Rappuoli, Rino; Lesley, Scott; Covacci, Antonello; Masignani, Vega; Ferlenghi, Ilaria

    2010-06-15

    Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 A resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility.

  15. Supramolecular Organization of the Repetitive Backbone Unit of the Streptococcus pneumoniae Pilus

    PubMed Central

    Spraggon, Glen; Koesema, Eric; Scarselli, Maria; Malito, Enrico; Biagini, Massimiliano; Norais, Nathalie; Emolo, Carla; Barocchi, Michèle Anne; Giusti, Fabiola; Hilleringmann, Markus; Rappuoli, Rino; Lesley, Scott; Covacci, Antonello; Masignani, Vega; Ferlenghi, Ilaria

    2010-01-01

    Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility. PMID:20559564

  16. RNA-Redesign: a web server for fixed-backbone 3D design of RNA

    PubMed Central

    Yesselman, Joseph D.; Das, Rhiju

    2015-01-01

    RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment. PMID:25964298

  17. Resistance of Feynman diagrams and the percolation backbone dimension.

    PubMed

    Janssen, H K; Stenull, O; Oerding, K

    1999-06-01

    We present an alternative view of Feynman diagrams for the field theory of random resistor networks, in which the diagrams are interpreted as being resistor networks themselves. This simplifies the field theory considerably as we demonstrate by calculating the fractal dimension D(B) of the percolation backbone to three loop order. Using renormalization group methods we obtain D(B)=2+epsilon/21-172epsilon(2)/9261+2epsilon(3)[-74 639+22 680zeta(3)]/4 084 101, where epsilon=6-d with d being the spatial dimension and zeta(3)=1.202 057... .

  18. omega-Helices in proteins.

    PubMed

    Enkhbayar, Purevjav; Boldgiv, Bazartseren; Matsushima, Norio

    2010-05-01

    A modification of the alpha-helix, termed the omega-helix, has four residues in one turn of a helix. We searched the omega-helix in proteins by the HELFIT program which determines the helical parameters-pitch, residues per turn, radius, and handedness-and p = rmsd/(N - 1)(1/2) estimating helical regularity, where "rmsd" is the root mean square deviation from the best fit helix and "N" is helix length. A total of 1,496 regular alpha-helices 6-9 residues long with p < or = 0.10 A were identified from 866 protein chains. The statistical analysis provides a strong evidence that the frequency distribution of helices versus n indicates the bimodality of typical alpha-helix and omega-helix. Sixty-two right handed omega-helices identified (7.2% of proteins) show non-planarity of the peptide groups. There is amino acid preference of Asp and Cys. These observations and analyses insist that the omega-helices occur really in proteins.

  19. omega-Helices in proteins.

    PubMed

    Enkhbayar, Purevjav; Boldgiv, Bazartseren; Matsushima, Norio

    2010-05-01

    A modification of the alpha-helix, termed the omega-helix, has four residues in one turn of a helix. We searched the omega-helix in proteins by the HELFIT program which determines the helical parameters-pitch, residues per turn, radius, and handedness-and p = rmsd/(N - 1)(1/2) estimating helical regularity, where "rmsd" is the root mean square deviation from the best fit helix and "N" is helix length. A total of 1,496 regular alpha-helices 6-9 residues long with p < or = 0.10 A were identified from 866 protein chains. The statistical analysis provides a strong evidence that the frequency distribution of helices versus n indicates the bimodality of typical alpha-helix and omega-helix. Sixty-two right handed omega-helices identified (7.2% of proteins) show non-planarity of the peptide groups. There is amino acid preference of Asp and Cys. These observations and analyses insist that the omega-helices occur really in proteins. PMID:20496104

  20. Solution conformation of a peptide fragment representing a proposed RNA-binding site of a viral coat protein studied by two-dimensional NMR

    SciTech Connect

    van der Graaf, M.; van Mierlo, C.P.M.; Hemminga, M.A. )

    1991-06-11

    The first 25 amino acids of the coat protein of cowpea chlorotic mottle virus are essential for binding the encapsidated RNA. Although an {alpha}-helical conformation has been predicted for this highly positively charged N-terminal region. No experimental evidence for this conformation has been presented so far. In this study, two-dimensional proton NMR experiments were performed on a chemically synthesized pentacosapeptide containing the first 25 amino acids of this coat protein. All resonances could be assigned by a combined use of two-dimensional correlated spectroscopy and nuclear Overhauser enhancement spectroscopy carried out at four different temperatures. Various NMR parameters indicate the presence of a conformational ensemble consisting of helical structures rapidly converting into more extended states. Differences in chemical shifts and nuclear Overhauser effects indicate that lowering the temperature induces a shift of the dynamic equilibrium toward more helical structures. At 10{degrees}C, a perceptible fraction of the conformational ensemble consists of structures with an {alpha}-helical conformation between residues 9 and 17, likely starting with a turnlike structure around Thr9 and Arg10. Both the conformation and the position of this helical region agree well with the secondary structure predictions mentioned above.

  1. Structure of the hypothetical Mycoplasma protein, MPN555, suggestsa chaperone function

    SciTech Connect

    Schulze-Gahmen, Ursula; Aono, Shelly; Chen, Shengfeng; Yokota,Hisao; Kim, Rosalind; Kim, Sung-Hou

    2005-06-15

    The crystal structure of the hypothetical protein MPN555from Mycoplasma pneumoniae (gi pbar 1673958) has been determined to a resolution of 2.8 Angstrom using anomalous diffraction data at the Sepeak wavelength. Structure determination revealed a mostly alpha-helical protein with a three-lobed shape. The three lobes or fingers delineate a central binding groove and additional grooves between lobes 1 and 3, and between lobes 2 and 3. For one of the molecules in the asymmetric unit,the central binding pocket was filled with a peptide from the uncleaved N-terminal affinity tag. The MPN555 structure has structural homology to two bacterial chaperone proteins, SurA and trigger factor from Escherichia coli. The structural data and the homology to other chaperone for MPN555.

  2. The evolutionarily conserved Krueppel-associated box domain defines a subfamily of eukaryotic multifingered proteins

    SciTech Connect

    Bellefroid, E.J.; Poncelet, D.A.; Lecocq, P.J.; Revelant, O.; Martial, J.A. )

    1991-05-01

    The authors have previously shown that the human genome includes hundreds of genes coding for putative factors related to the Krueppel zinc-finger protein, which regulates Drosophila segmentation. They report herein that about one-third of these genes code for proteins that share a very conserved region of about 75 amino acids in their N-terminal nonfinger portion. Homologous regions are found in a number of previously described finger proteins, including mouse Zfp-1 and Xenopus Xfin. They named this region the Krueppel-associated box (KRAB). This domain has the potential to form two amphipathic {alpha}-helices. Southern blot analysis of zoo blots suggests that the Krueppel-associated box is highly conserved during evolution. Northern blot analysis shows that these genes are expressed in most adult tissues and are down-regulated during in vitro terminal differentiation of human myeloid cells.

  3. Protein structure and neutral theory of evolution.

    PubMed

    Ptitsyn, O B; Volkenstein, M V

    1986-08-01

    The neutral theory of evolution is extended to the origin of protein molecules. Arguments are presented which suggest that the amino acid sequences of many globular proteins mainly represent "memorized" random sequences while biological evolution reduces to the "editing" these random sequences. Physical requirements for a functional globular protein are formulated and it is shown that many of these requirement do not involve strategical selection of amino acid sequences during biological evolution but are inherent also for typical random sequences. In particular, it is shown that random sequences of polar and amino acid residues can form alpha-helices and beta-strand with lengths and arrangement along the chain similar to those in real globular proteins. These alpha- and beta-regions in random sequences can form three-dimensional folding patterns also similar to those in proteins. The arguments are presented suggesting that even the tight packing of side groups inside protein core do not require very strong biological selection of amino acid sequences either. Thus many structural features of real proteins can exist also in random sequences and the biological selection is needed mainly for the creation of active site of protein and for their stability under physiological conditions.

  4. A phylogenetic backbone for Bivalvia: an RNA-seq approach.

    PubMed

    González, Vanessa L; Andrade, Sónia C S; Bieler, Rüdiger; Collins, Timothy M; Dunn, Casey W; Mikkelsen, Paula M; Taylor, John D; Giribet, Gonzalo

    2015-02-22

    Bivalves are an ancient and ubiquitous group of aquatic invertebrates with an estimated 10 000-20 000 living species. They are economically significant as a human food source, and ecologically important given their biomass and effects on communities. Their phylogenetic relationships have been studied for decades, and their unparalleled fossil record extends from the Cambrian to the Recent. Nevertheless, a robustly supported phylogeny of the deepest nodes, needed to fully exploit the bivalves as a model for testing macroevolutionary theories, is lacking. Here, we present the first phylogenomic approach for this important group of molluscs, including novel transcriptomic data for 31 bivalves obtained through an RNA-seq approach, and analyse these data with published genomes and transcriptomes of other bivalves plus outgroups. Our results provide a well-resolved, robust phylogenetic backbone for Bivalvia with all major lineages delineated, addressing long-standing questions about the monophyly of Protobranchia and Heterodonta, and resolving the position of particular groups such as Palaeoheterodonta, Archiheterodonta and Anomalodesmata. This now fully resolved backbone demonstrates that genomic approaches using hundreds of genes are feasible for resolving phylogenetic questions in bivalves and other animals.

  5. Long-term forecasting of internet backbone traffic.

    PubMed

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future.

  6. A phylogenetic backbone for Bivalvia: an RNA-seq approach

    PubMed Central

    González, Vanessa L.; Andrade, Sónia C. S.; Bieler, Rüdiger; Collins, Timothy M.; Dunn, Casey W.; Mikkelsen, Paula M.; Taylor, John D.; Giribet, Gonzalo

    2015-01-01

    Bivalves are an ancient and ubiquitous group of aquatic invertebrates with an estimated 10 000–20 000 living species. They are economically significant as a human food source, and ecologically important given their biomass and effects on communities. Their phylogenetic relationships have been studied for decades, and their unparalleled fossil record extends from the Cambrian to the Recent. Nevertheless, a robustly supported phylogeny of the deepest nodes, needed to fully exploit the bivalves as a model for testing macroevolutionary theories, is lacking. Here, we present the first phylogenomic approach for this important group of molluscs, including novel transcriptomic data for 31 bivalves obtained through an RNA-seq approach, and analyse these data with published genomes and transcriptomes of other bivalves plus outgroups. Our results provide a well-resolved, robust phylogenetic backbone for Bivalvia with all major lineages delineated, addressing long-standing questions about the monophyly of Protobranchia and Heterodonta, and resolving the position of particular groups such as Palaeoheterodonta, Archiheterodonta and Anomalodesmata. This now fully resolved backbone demonstrates that genomic approaches using hundreds of genes are feasible for resolving phylogenetic questions in bivalves and other animals. PMID:25589608

  7. Side chain and backbone contributions of Phe508 to CFTR folding

    SciTech Connect

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J.

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  8. Crystal structure of cce_0566 from Cyanothece 51142, a protein associated with nitrogen fixation in the DUF269 family

    SciTech Connect

    Buchko G. W.; Robinson H.

    2012-02-01

    The crystal structure for cce{_}0566 (171 aa, 19.4 kDa), a DUF269 annotated protein from the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142, was determined to 1.60 {angstrom} resolution. Cce{_}0566 is a homodimer with each molecule composed of eight {alpha}-helices folded on one side of a three strand anti-parallel {beta}-sheet. Hydrophobic interactions between the side chains of largely conserved residues on the surface of each {beta}-sheet hold the dimer together. The fold observed for cce{_}0566 may be unique to proteins in the DUF269 family, hence, the protein may also have a function unique to nitrogen fixation. A solvent accessible cleft containing conserved charged residues near the dimer interface could represent the active site or ligand-binding surface for the protein's biological function.

  9. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism.

    PubMed

    Bale, Shridhar; Julien, Jean-Philippe; Bornholdt, Zachary A; Kimberlin, Christopher R; Halfmann, Peter; Zandonatti, Michelle A; Kunert, John; Kroon, Gerard J A; Kawaoka, Yoshihiro; MacRae, Ian J; Wilson, Ian A; Saphire, Erica Ollmann

    2012-09-01

    Filoviruses, including Marburg virus (MARV) and Ebola virus (EBOV), cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (ds)RNA-binding domain (RBD) of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.

  10. What befalls the proteins and water in a living cell when the cell dies?

    PubMed

    Ling, Gilbert N; Fu, Ya-zhen

    2005-01-01

    The solvency of solutes of varying molecular size in the intracellular water of freshly-killed Ehrlich carcinoma cells fits the same theoretical curve that describes the solvency of similar solutes in a 36% solution of native bovine hemoglobin--a protein found only in red blood cells and making up 97.3% of the red cell's total intracellular proteins. The merging of the two sets of data confirms the prediction of the AI Hypothesis that key intracellular protein(s) in dying cells undergo(es) a transition from: (1) one in which the polypeptide NHCO groups assume a fully-extended conformation with relatively strong power of polarizing and orienting the bulk-phase water in multilayers; to (2) one in which most of the polypeptide NHCO groups are engaged in alpha-helical and other "introvert" conformations (see below for definition) with much weaker power in polarizing-orienting multilayers of bulk-phase water. This concordance of the two sets of data also shows that what we now call native hemoglobin--supposedly denoting hemoglobin found in its natural state in living red blood cells--, in fact, more closely resembles the water-polarizing, and -orienting intracellular proteins in dead cells. Although in the dead Ehrlich carcinoma cells as well as in the 36% solution of native hemoglobin, much of the protein's polypeptide NHCO groups are engaged in alpha-helical and other "introvert" conformation (Perutz 1969; Weissbluth 1974), both systems produce a weak but nonetheless pervasive and "long-range" water polarization and orientation. It is suggested that in both the dead Ehrlich carcinoma ascites cells and in the 36% native bovine hemoglobin solution, enough polypeptide NHCO groups assume the fully-extended conformation to produce the weak but far-reaching multilayer water polarization and orientation observed. PMID:17022374

  11. Dual-functional ROMP-based betaines: effect of hydrophilicity and backbone structure on nonfouling properties.

    PubMed

    Colak, Semra; Tew, Gregory N

    2012-01-10

    Foundational materials for nonfouling coatings were designed and synthesized from a series of novel dual-functional zwitterionic polymers, Poly[NRZI], which were easily obtained via ring-opening metathesis polymerization (ROMP) followed by a single step transformation of the cationic precursor, Poly[NR(+)], to the zwitterion, Poly[NRZI]. The resulting unique dual-functional structure contained the anion and the cation within the same repeat unit but on separate side chains, enabling the hydrophilicity of the system to be tuned at the repeat unit level. These dual-functional zwitterionic polymers were specifically designed to investigate the impact of structural changes, including the backbone, hydrophilicity, and charge, on the overall nonfouling properties. To evaluate the importance of backbone structure, and as a direct comparison to previously studied methacrylate-based betaines, norbornene-based carbo- and sulfobetaines (Poly[NCarboZI] and Poly[NSulfoZI]) as well as a methacrylate-based sulfobetaine (Poly[MASulfoZI]) were synthesized. These structures contain the anion-cation pairs on the same side chain. Nonfouling coatings were prepared from copolymers, composed of the zwitterionic/cationic precursor monomer and an ethoxysilane-containing monomer. The coatings were evaluated by using protein adsorption studies, which clearly indicated that the overall hydrophilicity has a major influence on the nonfouling character of the materials. The most hydrophilic coating, from the oligoethylene glycol (OEG)-containing dual-functional betaine, Poly[NOEGZI-co-NSi], showed the best resistance to nonspecific protein adsorption (Γ(FIB) = 0.039 ng/mm(2)). Both norbornene-based polymers systems, Poly[NSulfoZI] and Poly[NCarboZI], were more hydrophilic and thus more resistant to protein adsorption than the methacrylate-based Poly[MASulfoZI]. Comparing the protein resistance of the dual-functional zwitterionic coatings, Poly[NRZI-co-NSi], to that of their cationic

  12. GASA: a graph-based automated NMR backbone resonance sequential assignment program.

    PubMed

    Wan, Xiang; Lin, Guohui

    2007-04-01

    The success in backbone resonance sequential assignment is fundamental to three dimensional protein structure determination via Nuclear Magnetic Resonance (NMR) spectroscopy. Such a sequential assignment can roughly be partitioned into three separate steps: grouping resonance peaks in multiple spectra into spin systems, chaining the resultant spin systems into strings, and assigning these strings to non-overlapping consecutive amino acid residues in the target protein. Separately dealing with these three steps has been adopted in many existing assignment programs, and it works well on protein NMR data with close-to-ideal quality, while only moderately or even poorly on most real protein datasets, where noises as well as data degeneracies occur frequently. We propose in this work to partition the sequential assignment not by physical steps, but only virtual steps, and use their outputs to cross validate each other. The novelty lies in the places, where the ambiguities at the grouping step will be resolved in finding the highly confident strings at the chaining step, and the ambiguities at the chaining step will be resolved by examining the mappings of strings at the assignment step. In this way, all ambiguities at the sequential assignment will be resolved globally and optimally. The resultant assignment program is called Graph-based Approach for Sequential Assignment (GASA), which has been compared to several recent similar developments including PACES, RANDOM, MARS, and RIBRA. The performance comparisons with these works demonstrated that GASA is more promising for practical use.

  13. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  14. Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H(+)-ATPase.

    PubMed

    Finbow, M E; Eliopoulos, E E; Jackson, P J; Keen, J N; Meagher, L; Thompson, P; Jones, P; Findlay, J B

    1992-01-01

    A 16 kDa protein has been isolated in a homogeneous form as the major component of a paracrystalline paired membrane structure closely resembling the gap junction. The primary structure of this protein from arthropod and vertebrate species has been determined by protein and cDNA sequencing. The amino acid sequences are highly conserved and virtually identical to the amino acid sequence of the proteolipid subunit of the vacuolar H(+)-ATPases. The disposition of the protein in the membrane has been studied using proteases and the N,N'-dicyclohexylcarbodiimide reactive site identified. These data, together with secondary structure predictions, suggest that the 16 kDa protein is for the most part buried in the membrane, arranged in a bundle of four hydrophobic alpha-helices. Using computer graphics, a model has been constructed based on this arrangement and on the electron microscopic images of the paracrystalline arrays.

  15. Stability and DNA-binding properties of the omega regulator protein from the broad-host range Streptococcus pyogenes plasmid pSM19035.

    PubMed

    Misselwitz, R; de la Hoz, A B; Ayora, S; Welfle, K; Behlke, J; Murayama, K; Saenger, W; Alonso, J C; Welfle, H

    2001-09-21

    At the transcriptional level, the pSM19035-encoded omega protein coordinates the expression of proteins required for control of copy number and maintenance of plasmids. Using circular dichroism, fluorescence spectroscopy, ultracentrifugation and an electrophoretic mobility shift assay, the wild-type omega protein and a variant with a C-terminal hexa-histidine tag (omega-H(6)) were characterized. The omega protein is mainly alpha-helical (42%), occurs as homodimer in solution, unfolds thermally with half transition temperatures, T(m), between approximately 43 and approximately 78 degrees C depending on the ionic strength of the buffer, and binds PcopS-DNA with high affinity. The omega-H(6) protein has a modified conformation with lower alpha-helix content (29%), lower thermal stability, and strongly reduced affinity to PcopS-DNA.

  16. GIS: a comprehensive source for protein structure similarities.

    PubMed

    Guerler, Aysam; Knapp, Ernst-Walter

    2010-07-01

    A web service for analysis of protein structures that are sequentially or non-sequentially similar was generated. Recently, the non-sequential structure alignment algorithm GANGSTA+ was introduced. GANGSTA+ can detect non-sequential structural analogs for proteins stated to possess novel folds. Since GANGSTA+ ignores the polypeptide chain connectivity of secondary structure elements (i.e. alpha-helices and beta-strands), it is able to detect structural similarities also between proteins whose sequences were reshuffled during evolution. GANGSTA+ was applied in an all-against-all comparison on the ASTRAL40 database (SCOP version 1.75), which consists of >10,000 protein domains yielding about 55 x 10(6) possible protein structure alignments. Here, we provide the resulting protein structure alignments as a public web-based service, named GANGSTA+ Internet Services (GIS). We also allow to browse the ASTRAL40 database of protein structures with GANGSTA+ relative to an externally given protein structure using different constraints to select specific results. GIS allows us to analyze protein structure families according to the SCOP classification scheme. Additionally, users can upload their own protein structures for pairwise protein structure comparison, alignment against all protein structures of the ASTRAL40 database (SCOP version 1.75) or symmetry analysis. GIS is publicly available at http://agknapp.chemie.fu-berlin.de/gplus.

  17. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    PubMed

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-01

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function.

  18. Backbones of evolutionary history test biodiversity theory for microbes.

    PubMed

    O'Dwyer, James P; Kembel, Steven W; Sharpton, Thomas J

    2015-07-01

    Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities.

  19. A Native to Amyloidogenic Transition Regulated by a Backbone Trigger

    SciTech Connect

    Eakin,C.; Berman, A.; Miranker, A.

    2006-01-01

    Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by beta-2-microglobulin (beta2m) in dialysis-related amyloidosis. Access of beta2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a beta2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamic and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type beta2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.

  20. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    PubMed

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone.

  1. Carbon backbone topology of the metabolome of a cell.

    PubMed

    Bingol, Kerem; Zhang, Fengli; Bruschweiler-Li, Lei; Brüschweiler, Rafael

    2012-05-30

    The complex metabolic makeup of a biological system, such as a cell, is a key determinant of its biological state providing unique insights into its function. Here we characterize the metabolome of a cell by a novel homonuclear (13)C 2D NMR approach applied to a nonfractionated uniformly (13)C-enriched lysate of E. coli cells and determine de novo their carbon backbone topologies that constitute the "topolome". A protocol was developed, which first identifies traces in a constant-time (13)C-(13)C TOCSY NMR spectrum that are unique for individual mixture components and then assembles for each trace the corresponding carbon-bond topology network by consensus clustering. This led to the determination of 112 topologies of unique metabolites from a single sample. The topolome is dominated by carbon topologies of carbohydrates (34.8%) and amino acids (45.5%) that can constitute building blocks of more complex structures. PMID:22540339

  2. A New DNA Binding Protein Highly Conserved in Diverse Crenarchaeal Viruses

    SciTech Connect

    Larson, E.T.; Eilers, B.J.; Reiter, D.; Ortmann, A.C.; Young, M.J.; Lawrence, C.M.; /Montana State U. /Tubingen U.

    2007-07-09

    Sulfolobus turreted icosahedral virus (STIV) infects Sulfolobus species found in the hot springs of Yellowstone National Park. Its 37 open reading frames (ORFs) generally lack sequence similarity to other genes. One exception, however, is ORF B116. While its function is unknown, orthologs are found in three additional crenarchaeal viral families. Due to the central importance of this protein family to crenarchaeal viruses, we have undertaken structural and biochemical studies of B116. The structure reveals a previously unobserved fold consisting of a five-stranded beta-sheet flanked on one side by three alpha helices. Two subunits come together to form a homodimer with a 10-stranded mixed beta-sheet, where the topology of the central strands resembles an unclosed beta-barrel. Highly conserved loops rise above the surface of the saddle-shaped protein and suggest an interaction with the major groove of DNA. The predicted B116-DNA interaction is confirmed by electrophoretic mobility shift assays.

  3. An Alternative Approach to Protein Folding

    PubMed Central

    Kang, Yeona; Fortmann, Charles M.

    2013-01-01

    A diffusion theory-based, all-physical ab initio protein folding simulation is described and applied. The model is based upon the drift and diffusion of protein substructures relative to one another in the multiple energy fields present. Without templates or statistical inputs, the simulations were run at physiologic and ambient temperatures (including pH). Around 100 protein secondary structures were surveyed, and twenty tertiary structures were determined. Greater than 70% of the secondary core structures with over 80% alpha helices were correctly identified on protein ranging from 30 to 200 amino-acid sequence. The drift-diffusion model predicted tertiary structures with RMSD values in the 3–5 Angstroms range for proteins ranging 30 to 150 amino acids. These predictions are among the best for an all ab initio protein simulation. Simulations could be run entirely on a desktop computer in minutes; however, more accurate tertiary structures were obtained using molecular dynamic energy relaxation. The drift-diffusion model generated realistic energy versus time traces. Rapid secondary structures followed by a slow compacting towards lower energy tertiary structures occurred after an initial incubation period in agreement with observations. PMID:24078920

  4. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  5. Physico-chemical characterization of human von Ebner gland protein expressed in Escherichia coli: implications for its physiological role.

    PubMed

    Creuzenet, C; Mangroo, D

    1998-11-01

    The human von Ebner gland protein (VEG) was expressed in Escherichia coli and purified to homogeneity. The sequence and mass of the recombinant protein were confirmed, and far and near UV circular dichroic analyses showed that the protein was properly folded. The secondary structure of recombinant VEG consisted of 75% beta-sheets and 12% alpha-helices, and it was found to be stable under acidic conditions, in the presence of alcohol, and at high temperatures. The denaturation temperature was 79 degreesC at pH 3.5, with a denaturation enthalpy (DeltaHd) of 160,600 J/mol. Fluorescence analysis and measurement of the denaturation temperature by circular dichroism did not detect any interaction between VEG and extremely bitter (denatonium benzoate, caffein) or sweet (aspartame) compounds. These results suggest that VEG may not function as a shuttle for transfer of sapid molecules to taste receptors.

  6. Comparison of the backbone dynamics of a natural and a consensus designed 3-TPR domain.

    PubMed

    Jarymowycz, Virginia A; Cortajarena, Aitziber L; Regan, Lynne; Stone, Martin J

    2008-07-01

    The tetratricopeptide repeat (TPR) is a 34-amino acid helix-turn-helix motif that occurs in tandem arrays in numerous proteins. Here we compare the backbone dynamics of a natural 3-repeat TPR domain, from the protein UBP, with the behavior of a designed protein CTPR3, which consists of three identical consensus TPR units. Although the three tandem TPR repeats in both CTPR3 and UBP behave as a single unit, with no evidence of independent repeat motions, the data indicate that certain positions in UBP are significantly more flexible than are the corresponding positions in CTPR3. Most of the dynamical changes occur at or adjacent to positions that are involved in intra-repeat packing interactions. These observations lead us to suggest that the three-TPR domain of UBP does not incorporate optimized packing, compared to that seen in the idealized CTPR. The natural TPR domain is not only less stable overall than CTPR3, but also presents increased local flexibility at the positions where the sequences differs from the conserved consensus.

  7. An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines.

    PubMed

    Hickman, Danielle; Hossain, Md Jaber; Song, Haichen; Araya, Yonas; Solórzano, Alicia; Perez, Daniel R

    2008-11-01

    The unprecedented emergence in Asia of multiple avian influenza virus (AIV) subtypes with a broad host range poses a major challenge in the design of vaccination strategies that are both effective and available in a timely manner. The present study focused on the protective effects of a genetically modified AIV as a source for the preparation of vaccines for epidemic and pandemic influenza. It has previously been demonstrated that a live attenuated AIV based on the internal backbone of influenza A/Guinea fowl/Hong Kong/WF10/99 (H9N2), called WF10att, is effective at protecting poultry species against low- and high-pathogenicity influenza strains. More importantly, this live attenuated virus provided effective protection when administered in ovo. In order to characterize the WF10att backbone further for use in epidemic and pandemic influenza vaccines, this study evaluated its protective effects in mice. Intranasal inoculation of modified attenuated viruses in mice provided adequate protective immunity against homologous lethal challenges with both the wild-type influenza A/WSN/33 (H1N1) and A/Vietnam/1203/04 (H5N1) viruses. Adequate heterotypic immunity was also observed in mice vaccinated with modified attenuated viruses carrying H7N2 surface proteins. The results presented in this report suggest that the internal genes of a genetically modified AIV confer similar protection in a mouse model and thus could be used as a master donor strain for the generation of live attenuated vaccines for epidemic and pandemic influenza.

  8. Peptide backbone cleavage by α-amidation is enhanced at methionine residues.

    PubMed

    Hellwig, Michael; Löbmann, Katja; Orywol, Tom

    2015-01-01

    Cleavage reactions at backbone loci are one of the consequences of oxidation of proteins and peptides. During α-amidation, the Cα -N bond in the backbone is cleaved under formation of an N-terminal peptide amide and a C-terminal keto acyl peptide. On the basis of earlier works, a facilitation of α-amidation by the thioether group of adjacent methionine side chains was proposed. This reaction was characterized by using benzoyl methionine and benzoyl alanyl methionine as peptide models. The decomposition of benzoylated amino acids (benzoyl-methionine, benzoyl-alanine, and benzoyl-methionine sulfoxide) to benzamide in the presence of different carbohydrate compounds (reducing sugars, Amadori products, and reductones) was studied during incubation for up to 48 h at 80 °C in acetate-buffered solution (pH 6.0). Small amounts of benzamide (0.3-1.5 mol%) were formed in the presence of all sugars and from all benzoylated species. However, benzamide formation was strongly enhanced, when benzoyl methionine was incubated in the presence of reductones and Amadori compounds (3.5-4.2 mol%). The reaction was found to be intramolecular, because α-amidation of a similar 4-methylbenzoylated amino acid was not enhanced in the presence of benzoyl-methionine and carbohydrate compounds. In the peptide benzoyl-alanyl-methionine, α-amidation at the methionine residue is preferred over α-amidation at the benzoyl peptide bond. We propose here a mechanism for the enhancement of α-amidation at methionine residues.

  9. Mapping of the RNA recognition site of Escherichia coli ribosomal protein S7.

    PubMed Central

    Robert, F; Gagnon, M; Sans, D; Michnick, S; Brakier-Gingras, L

    2000-01-01

    Bacterial ribosomal protein S7 initiates the folding of the 3' major domain of 16S ribosomal RNA by binding to its lower half. The X-ray structure of protein S7 from thermophilic bacteria was recently solved and found to be a modular structure, consisting of an alpha-helical domain with a beta-ribbon extension. To gain further insights into its interaction with rRNA, we cloned the S7 gene from Escherichia coli K12 into a pET expression vector and introduced 4 deletions and 12 amino acid substitutions in the protein sequence. The binding of each mutant to the lower half of the 3' major domain of 16S rRNA was assessed by filtration on nitrocellulose membranes. Deletion of the N-terminal 17 residues or deletion of the B hairpins (residues 72-89) severely decreased S7 affinity for the rRNA. Truncation of the C-terminal portion (residues 138-178), which includes part of the terminal alpha-helix, significantly affected S7 binding, whereas a shorter truncation (residues 148-178) only marginally influenced its binding. Severe effects were also observed with several strategic point mutations located throughout the protein, including Q8A and F17G in the N-terminal region, and K35Q, G54S, K113Q, and M115G in loops connecting the alpha-helices. Our results are consistent with the occurrence of several sites of contact between S7 and the 16S rRNA, in line with its role in the folding of the 3' major domain. PMID:11105763

  10. Mapping of the RNA recognition site of Escherichia coli ribosomal protein S7.

    PubMed

    Robert, F; Gagnon, M; Sans, D; Michnick, S; Brakier-Gingras, L

    2000-11-01

    Bacterial ribosomal protein S7 initiates the folding of the 3' major domain of 16S ribosomal RNA by binding to its lower half. The X-ray structure of protein S7 from thermophilic bacteria was recently solved and found to be a modular structure, consisting of an alpha-helical domain with a beta-ribbon extension. To gain further insights into its interaction with rRNA, we cloned the S7 gene from Escherichia coli K12 into a pET expression vector and introduced 4 deletions and 12 amino acid substitutions in the protein sequence. The binding of each mutant to the lower half of the 3' major domain of 16S rRNA was assessed by filtration on nitrocellulose membranes. Deletion of the N-terminal 17 residues or deletion of the B hairpins (residues 72-89) severely decreased S7 affinity for the rRNA. Truncation of the C-terminal portion (residues 138-178), which includes part of the terminal alpha-helix, significantly affected S7 binding, whereas a shorter truncation (residues 148-178) only marginally influenced its binding. Severe effects were also observed with several strategic point mutations located throughout the protein, including Q8A and F17G in the N-terminal region, and K35Q, G54S, K113Q, and M115G in loops connecting the alpha-helices. Our results are consistent with the occurrence of several sites of contact between S7 and the 16S rRNA, in line with its role in the folding of the 3' major domain.

  11. Conservation of polyproline II helices in homologous proteins: implications for structure prediction by model building.

    PubMed Central

    Adzhubei, A. A.; Sternberg, M. J.

    1994-01-01

    Left-handed polyproline II (PPII) helices commonly occur in globular proteins in segments of 4-8 residues. This paper analyzes the structural conservation of PPII-helices in 3 protein families: serine proteinases, aspartic proteinases, and immunoglobulin constant domains. Calculations of the number of conserved segments based on structural alignment of homologous molecules yielded similar results for the PPII-helices, the alpha-helices, and the beta-strands. The PPII-helices are consistently conserved at the level of 100-80% in the proteins with sequence identity above 20% and RMS deviation of structure alignments below 3.0 A. The most structurally important PPII segments are conserved below this level of sequence identity. These results suggest that the PPII-helices, in addition to the other 2 secondary structure classes, should be identified as part of structurally conserved regions in proteins. This is supported by similar values for the local RMS deviations of the aligned segments for the structural classes of PPII-helices, alpha-helices, and beta-strands. The PPII-helices are shown to participate in supersecondary elements such as PPII-helix/alpha-helix. The conservation of PPII-helices depends on the conservation of a supersecondary element as a whole. PPII-helices also form links, possibly flexible, in the interdomain regions. The role of the PPII-helices in model building by homology is 2-fold; they serve as additional conserved elements in the structure allowing improvement of the accuracy of a model and provide correct chain geometry for modeling of the segments equivalenced to them in a target sequence. The improvement in model building is demonstrated in 2 test studies. PMID:7756993

  12. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor.

    PubMed

    Isogai, Shin; Deupi, Xavier; Opitz, Christian; Heydenreich, Franziska M; Tsai, Ching-Ju; Brueckner, Florian; Schertler, Gebhard F X; Veprintsev, Dmitry B; Grzesiek, Stephan

    2016-02-11

    G protein-coupled receptors (GPCRs) are physiologically important transmembrane signalling proteins that trigger intracellular responses upon binding of extracellular ligands. Despite recent breakthroughs in GPCR crystallography, the details of ligand-induced signal transduction are not well understood owing to missing dynamical information. In principle, such information can be provided by NMR, but so far only limited data of functional relevance on few side-chain sites of eukaryotic GPCRs have been obtained. Here we show that receptor motions can be followed at virtually any backbone site in a thermostabilized mutant of the turkey β1-adrenergic receptor (β1AR). Labelling with [(15)N]valine in a eukaryotic expression system provides over twenty resolved resonances that report on structure and dynamics in six ligand complexes and the apo form. The response to the various ligands is heterogeneous in the vicinity of the binding pocket, but gets transformed into a homogeneous readout at the intracellular side of helix 5 (TM5), which correlates linearly with ligand efficacy for the G protein pathway. The effect of several pertinent, thermostabilizing point mutations was assessed by reverting them to the native sequence. Whereas the response to ligands remains largely unchanged, binding of the G protein mimetic nanobody NB80 and G protein activation are only observed when two conserved tyrosines (Y227 and Y343) are restored. Binding of NB80 leads to very strong spectral changes throughout the receptor, including the extracellular ligand entrance pocket. This indicates that even the fully thermostabilized receptor undergoes activating motions in TM5, but that the fully active state is only reached in presence of Y227 and Y343 by stabilization with a G protein-like partner. The combined analysis of chemical shift changes from the point mutations and ligand responses identifies crucial connections in the allosteric activation pathway, and presents a general experimental

  13. Molecular modeling of protein-glycosaminoglycan interactions.

    PubMed

    Cardin, A D; Weintraub, H J

    1989-01-01

    Forty-nine regions in 21 proteins were identified as potential heparin-binding sites based on the sequence organizations of their basic and nonbasic residues. Twelve known heparin-binding sequences in vitronectin, apolipoproteins E and B-100, and platelet factor 4 were used to formulate two search strings for identifying potential heparin-binding regions in other proteins. Consensus sequences for glycosaminoglycan recognition were determined as [-X-B-B-X-B-X-] and [-X-B-B-B-X-X-B-X-] where B is the probability of a basic residue and X is a hydropathic residue. Predictions were then made as to the heparin-binding domains in endothelial cell growth factor, purpurin, and antithrombin-III. Many of the natural sequences conforming to these consensus motifs show prominent amphipathic periodicities having both alpha-helical and beta-strand conformations as determined by predictive algorithms and circular dichroism studies. The heparin-binding domain of vitronectin was modeled and formed a hydrophilic pocket that wrapped around and folded over a heparin octasaccharide, yielding a complementary structure. We suggest that these consensus sequence elements form potential nucleation sites for the recognition of polyanions in proteins and may provide a useful guide in identifying heparin-binding regions in other proteins. The possible relevance of protein-glycosaminoglycans interactions in atherosclerosis is discussed. PMID:2463827

  14. Pendant Dynamics of Ethylene-Oxide Containing Polymers with Diverse Backbones

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua; Wang, Jing-Han Helen; Chen, Quan; Runt, James; Colby, Ralph

    In the last twenty years, a wide variety of ion conducting polymers have used ether oxygens to facilitate ion conduction, and it is therefore important to understand the dynamics of ether oxygens (EOs) when attached to different polymer backbones. Four different EO-containing polymer architectures are studied by dielectric spectroscopy to understand the backbone effect on the EO dipoles. Polysiloxanes, polyphosphazenes, polymethylmethacrylates, and a polyester ether are compared, with different EO pendant lengths for the siloxane and methylmethacrylate backbones. The flexible polysiloxanes and polyphosphazene backbones impart superior segmental mobility with a glass transition temperature 15 K lower than that of the organic backbone polymers. Short EO pendants are found to impart a lower static dielectric constant at comparable EO content as compared to longer EO pendants of either inorganic or organic backbones. The long-pendant polymethylmethacrylate polymers show two relaxations corresponding to fast EOs near the pendant tail end and slow EOs close to the slower backbone, whereas the long-pendant polysiloxane shows a single relaxation due to the siloxane backbone relaxing faster than the EO pendant. Supported by the NSF Division of Materials Research Polymers Program through Grants DMR-1404586 (RHC) and DMR-1505953 (JR).

  15. Efficient replication of recombinant Enterovirus B types, carrying different P1 genes in the coxsackievirus B5 replicative backbone.

    PubMed

    Jonsson, Nina; Sävneby, Anna; Gullberg, Maria; Evertsson, Kim; Klingel, Karin; Lindberg, A Michael

    2015-06-01

    Recombination is an important feature in the evolution of the Enterovirus genus. Phylogenetic studies of enteroviruses have revealed that the capsid genomic region (P1) is type specific, while the parts of the genome coding for the non-structural proteins (P2-P3) are species specific. Hence, the genome may be regarded as consisting of two modules that evolve independently. In this study, it was investigated whether the non-structural coding part of the genome in one type could support replication of a virus with a P1 region from another type of the same species. A cassette vector (pCas) containing a full-length cDNA copy of coxsackievirus B5 (CVB5) was used as a replicative backbone. The P1 region of pCas was replaced with the corresponding part from coxsackievirus B3 Nancy (CVB3N), coxsackievirus B6 Schmitt (CVB6S), and echovirus 7 Wallace (E7W), all members of the Enterovirus B species. The replication efficiency after transfection with clone-derived in vitro transcribed RNA was studied and compared with that of pCas. All the recombinant viruses replicated with similar efficiencies and showed threshold cycle (Ct) values, tissue culture infectivity dose 50 %, and plaque-forming unit titers comparable to viruses generated from the pCas construct. In addition to this, a clone without the P1 region was also constructed, and Western Blot and immunofluorescence staining analysis showed that the viral genome could be translated and replicated despite the lack of the structural protein-coding region. To conclude, the replicative backbone of the CVB5 cassette vector supports replication of intraspecies constructs with P1 regions derived from other members of the Enterovirus B species. In addition to this, the replicative backbone can be both translated and replicated without the presence of a P1 region.

  16. Family of G protein alpha chains: amphipathic analysis and predicted structure of functional domains.

    PubMed

    Masters, S B; Stroud, R M; Bourne, H R

    1986-01-01

    The G proteins transduce hormonal and other signals into regulation of enzymes such as adenylyl cyclase and retinal cGMP phosphodiesterase. Each G protein contains an alpha subunit that binds and hydrolyzes guanine nucleotides and interacts with beta gamma subunits and specific receptor and effector proteins. Amphipathic and secondary structure analysis of the primary sequences of five different alpha chains (bovine alpha s, alpha t1 and alpha t2, mouse alpha i, and rat alpha o) predicted the secondary structure of a composite alpha chain (alpha avg). The alpha chains contain four short regions of sequence homologous to regions in the GDP binding domain of bacterial elongation factor Tu (EF-Tu). Similarities between the predicted secondary structures of these regions in alpha avg and the known secondary structure of EF-Tu allowed us to construct a three-dimensional model of the GDP binding domain of alpha avg. Identification of the GDP binding domain of alpha avg defined three additional domains in the composite polypeptide. The first includes the amino terminal 41 residues of alpha avg, with a predicted amphipathic alpha helical structure; this domain may control binding of the alpha chains to the beta gamma complex. The second domain, containing predicted beta strands and alpha helices, several of which are strongly amphipathic, probably contains sequences responsible for interaction of alpha chains with effector enzymes. The predicted structure of the third domain, containing the carboxy terminal 100 amino acids, is predominantly beta sheet with an amphipathic alpha helix at the carboxy terminus. We propose that this domain is responsible for receptor binding.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3148932

  17. (1)H, (13)C and (15)N backbone resonance assignments and dynamic properties of the PDZ tandem of Whirlin.

    PubMed

    Delhommel, Florent; Wolff, Nicolas; Cordier, Florence

    2016-10-01

    Mammals perceive sounds thanks to mechanosensory hair cells located in the inner ear. The stereocilia of these cells are tightly bound together in bundles by a network of cadherins and scaffolding proteins. Stereocilia deflection induces stretching of this network and is responsible for hair cell depolarization that triggers the neuronal message, transducing the mechanical signal into an electric signal transmissible to the brain. Nearly all proteins involved in this mechano-electrical transduction network contain short C-terminal motifs of interaction with PDZ domains (PSD-95, Discs Large, ZO-1). Interestingly only two of these proteins encompass PDZ domains: Harmonin and Whirlin. As our first step towards a comprehensive structural study of Whirlin, we have assigned the (1)H, (13)C and (15)N backbone resonances of a tandem formed by the first two PDZ domains of Whirlin, reported the secondary structure elements of this tandem as predicted by the TALOS+ server and evaluated its dynamics from (15)N relaxation measurements.

  18. Data Acquisition Backbone Core DABC release v1.0

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Essel, H. G.; Kurz, N.; Linev, S.

    2010-04-01

    The Data Acquisition Backbone Core (DABC) is a general purpose software framework designed for the implementation of a wide-range of data acquisition systems - from various small detector test beds to high performance systems. DABC consists of a compact data-flow kernel and a number of plug-ins for various functional components like data inputs, device drivers, user functional modules and applications. DABC provides configurable components for implementing event building over fast networks like InfiniBand or Gigabit Ethernet. A generic Java GUI provides the dynamic control and visualization of control parameters and commands, provided by DIM servers. A first set of application plug-ins has been implemented to use DABC as event builder for the front-end components of the GSI standard DAQ system MBS (Multi Branch System). Another application covers the connection to DAQ readout chains from detector front-end boards (N-XYTER) linked to read-out controller boards (ROC) over UDP into DABC for event building, archiving and data serving. This was applied for data taking in the September 2008 test beamtime for the CBM experiment at GSI. DABC version 1.0 is released and available from the website.

  19. Quantitative Analysis of PMLA Nanoconjugate Components after Backbone Cleavage

    PubMed Central

    Ding, Hui; Patil, Rameshwar; Portilla-Arias, Jose; Black, Keith L.; Ljubimova, Julia Y.; Holler, Eggehard

    2015-01-01

    Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles. PMID:25894227

  20. Backbone of complex networks of corporations: The flow of control

    NASA Astrophysics Data System (ADS)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  1. Backbone of complex networks of corporations: the flow of control.

    PubMed

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  2. Conserved Determinants for Membrane Association of Nonstructural Protein 5A from Hepatitis C Virus and Related Viruses▿

    PubMed Central

    Brass, Volker; Pal, Zsuzsanna; Sapay, Nicolas; Deléage, Gilbert; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2007-01-01

    Nonstructural protein 5A (NS5A) is a membrane-associated essential component of the hepatitis C virus (HCV) replication complex. An N-terminal amphipathic alpha helix mediates in-plane membrane association of HCV NS5A and at the same time is likely involved in specific protein-protein interactions required for the assembly of a functional replication complex. The aim of this study was to identify the determinants for membrane association of NS5A from the related GB viruses and pestiviruses. Although primary amino acid sequences differed considerably, putative membrane anchor domains with amphipathic features were predicted in the N-terminal domains of NS5A proteins from these viruses. Confocal laser scanning microscopy, as well as membrane flotation analyses, demonstrated that NS5As from GB virus B (GBV-B), GBV-C, and bovine viral diarrhea virus, the prototype pestivirus, display membrane association characteristics very similar to those of HCV NS5A. The N-terminal 27 to 33 amino acid residues of these NS5A proteins were sufficient for membrane association. Circular dichroism analyses confirmed the capacity of these segments to fold into alpha helices upon association with lipid-like molecules. Despite structural conservation, only very limited exchanges with sequences from related viruses were tolerated in the context of functional HCV RNA replication, suggesting virus-specific interactions of these segments. In conclusion, membrane association of NS5A by an N-terminal amphipathic alpha helix is a feature shared by HCV and related members of the family Flaviviridae. This observation points to conserved roles of the N-terminal amphipathic alpha helices of NS5A in replication complex formation. PMID:17192310

  3. α-Helical to β-Helical Conformation Change in the C-Terminal of the Mammalian Prion Protein

    NASA Astrophysics Data System (ADS)

    Singh, Jesse; Whitford, Paul; Hayre, Natha; Cox, Daniel; Onuchic, José.

    2011-03-01

    We employ all-atom structure-based models with mixed basis contact maps to explore whether there are any significant geometric or energetic constraints limiting conjectured conformational transitions between the alpha-helical (α H) and the left handed beta helical (LHBH) conformations for the C-terminal (residues 166-226) of the mammalian prion protein. The LHBH structure has been proposed to describe infectious oligomers and one class of in vitro grown fibrils, as well as possibly self- templating the conversion of normal cellular prion protein to the infectious form. Our results confirm that the kinetics of the conformation change are not strongely limited by large scale geometry modification and there exists an overall preference for the LHBH conformation.

  4. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension

    NASA Technical Reports Server (NTRS)

    Betanzos, Monica; Chiang, Chien-Sung; Guy, H. Robert; Sukharev, Sergei

    2002-01-01

    MscL, a bacterial mechanosensitive channel of large conductance, is the first structurally characterized mechanosensor protein. Molecular models of its gating mechanisms are tested here. Disulfide crosslinking shows that M1 transmembrane alpha-helices in MscL of resting Escherichia coli are arranged similarly to those in the crystal structure of MscL from Mycobacterium tuberculosis. An expanded conformation was trapped in osmotically shocked cells by the specific bridging between Cys 20 and Cys 36 of adjacent M1 helices. These bridges stabilized the open channel. Disulfide bonds engineered between the M1 and M2 helices of adjacent subunits (Cys 32-Cys 81) do not prevent channel gating. These findings support gating models in which interactions between M1 and M2 of adjacent subunits remain unaltered while their tilts simultaneously increase. The MscL barrel, therefore, undergoes a large concerted iris-like expansion and flattening when perturbed by membrane tension.

  5. Backbone and side-chain resonance assignment of the A147T polymorph of mouse TSPO in complex with a high-affinity radioligand.

    PubMed

    Jaremko, Mariusz; Jaremko, Łukasz; Giller, Karin; Becker, Stefan; Zweckstetter, Markus

    2016-04-01

    The integral polytopic membrane protein TSPO is the target for numerous endogenous and synthetic ligands. However, the affinity of many ligands is influenced by a common polymorphism in TSPO, in which an alanine at position 147 is replaced by threonine, thereby complicating the use of several radioligands for clinical diagnosis. In contrast, the best-characterized TSPO ligand (R)-PK11195 binds with similar affinity to both variants of mitochondrial TSPO (wild-type and A147T variant). Here we report the (1)H, (13)C, (15)N backbone and side-chain resonance assignment of the A147T polymorph of TSPO from Mus Musculus in complex with (R)-PK11195 in DPC detergent micelles. More than 90 % of all resonances were sequence-specifically assigned, demonstrating the ability to obtain high-quality spectral data for both the backbone and the side-chains of medically relevant integral membrane proteins.

  6. Synonymous codon bias and functional constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid

    PubMed Central

    Babbitt, Gregory A.; Alawad, Mohammed A.; Schulze, Katharina V.; Hudson, André O.

    2014-01-01

    While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (≈GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an ‘accessory’ during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context. PMID:25200075

  7. Conformation-specific spectroscopy of capped glutamine-containing peptides: role of a single glutamine residue on peptide backbone preferences.

    PubMed

    Walsh, Patrick S; Dean, Jacob C; McBurney, Carl; Kang, Hyuk; Gellman, Samuel H; Zwier, Timothy S

    2016-04-28

    The conformational preferences of a series of short, aromatic-capped, glutamine-containing peptides have been studied under jet-cooled conditions in the gas phase. This work seeks a bottom-up understanding of the role played by glutamine residues in directing peptide structures that lead to neurodegenerative diseases. Resonant ion-dip infrared (RIDIR) spectroscopy is used to record single-conformation infrared spectra in the NH stretch, amide I and amide II regions. Comparison of the experimental spectra with the predictions of calculations carried out at the DFT M05-2X/6-31+G(d) level of theory lead to firm assignments for the H-bonding architectures of a total of eight conformers of four molecules, including three in Z-Gln-OH, one in Z-Gln-NHMe, three in Ac-Gln-NHBn, and one in Ac-Ala-Gln-NHBn. The Gln side chain engages actively in forming H-bonds with nearest-neighbor amide groups, forming C8 H-bonds to the C-terminal side, C9 H-bonds to the N-terminal side, and an amide-stacked geometry, all with an extended (C5) peptide backbone about the Gln residue. The Gln side chain also stabilizes an inverse γ-turn in the peptide backbone by forming a pair of H-bonds that bridge the γ-turn and stabilize it. Finally, the entire conformer population of Ac-Ala-Gln-NHBn is funneled into a single structure that incorporates the peptide backbone in a type I β-turn, stabilized by the Gln side chain forming a C7 H-bond to the central amide group in the β-turn not otherwise involved in a hydrogen bond. This β-turn backbone structure is nearly identical to that observed in a series of X-(AQ)-Y β-turns in the protein data bank, demonstrating that the gas-phase structure is robust to perturbations imposed by the crystalline protein environment.

  8. Radical-driven peptide backbone dissociation tandem mass spectrometry.

    PubMed

    Oh, Han Bin; Moon, Bongjin

    2015-01-01

    In recent years, a number of novel tandem mass spectrometry approaches utilizing radical-driven peptide gas-phase fragmentation chemistry have been developed. These approaches show a peptide fragmentation pattern quite different from that of collision-induced dissociation (CID). The peptide fragmentation features of these approaches share some in common with electron capture dissociation (ECD) or electron transfer dissociation (ETD) without the use of sophisticated equipment such as a Fourier-transform mass spectrometer. For example, Siu and coworkers showed that CID of transition metal (ligand)-peptide ternary complexes led to the formation of peptide radical ions through dissociative electron transfer (Chu et al., 2000. J Phys Chem B 104:3393-3397). The subsequent collisional activation of the generated radical ions resulted in a number of characteristic product ions, including a, c, x, z-type fragments and notable side-chain losses. Another example is the free radical initiated peptide sequencing (FRIPS) approach, in which Porter et al. and Beauchamp et al. independently introduced a free radical initiator to the primary amine group of the lysine side chain or N-terminus of peptides (Masterson et al., 2004. J Am Chem Soc 126:720-721; Hodyss et al., 2005 J Am Chem Soc 127: 12436-12437). Photodetachment of gaseous multiply charged peptide anions (Joly et al., 2008. J Am Chem Soc 130:13832-13833) and UV photodissociation of photolabile radical precursors including a C-I bond (Ly & Julian, 2008. J Am Chem Soc 130:351-358; Ly & Julian, 2009. J Am Soc Mass Spectrom 20:1148-1158) also provide another route to generate radical ions. In this review, we provide a brief summary of recent results obtained through the radical-driven peptide backbone dissociation tandem mass spectrometry approach.

  9. Ruthenium-catalyzed olefin metathesis accelerated by the steric effect of the backbone substituent in cyclic (alkyl)(amino) carbenes.

    PubMed

    Zhang, Jun; Song, Shangfei; Wang, Xiao; Jiao, Jiajun; Shi, Min

    2013-10-21

    Three ruthenium complexes bearing backbone-monosubstituted CAACs were prepared and displayed dramatic improvement in catalytic efficiency not only in RCM reaction but also in the ethenolysis of methyl oleate, compared to those bearing backbone-disubstituted CAACs. PMID:24013192

  10. Ruthenium-catalyzed olefin metathesis accelerated by the steric effect of the backbone substituent in cyclic (alkyl)(amino) carbenes.

    PubMed

    Zhang, Jun; Song, Shangfei; Wang, Xiao; Jiao, Jiajun; Shi, Min

    2013-10-21

    Three ruthenium complexes bearing backbone-monosubstituted CAACs were prepared and displayed dramatic improvement in catalytic efficiency not only in RCM reaction but also in the ethenolysis of methyl oleate, compared to those bearing backbone-disubstituted CAACs.

  11. Domain organizations of modular extracellular matrix proteins and their evolution.

    PubMed

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  12. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  13. Attosecond Electron Delocalization in the Conduction Band through the Phosphate Backbone of Genomic DNA

    NASA Astrophysics Data System (ADS)

    Ikeura-Sekiguchi, Hiromi; Sekiguchi, Tetsuhiro

    2007-11-01

    Partial density of states in the empty conduction band of the phosphate backbone sites in DNA was probed using energy-dependent resonant Auger spectroscopy. Results show that genomic DNA with periodic backbones exhibits an extended state despite separation of each phosphate group by an insulating sugar group. In antisense DNA with an aperiodic backbone, the equivalent state is localized. Remarkably rapid electron delocalization occurs at ca. 740 attoseconds for wet DNA, as estimated using the core-hole clock method. Such delocalization is comparable to the Fermi velocity of carbon nanotubes.

  14. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.

    PubMed

    Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-07-10

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.

  15. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds

    PubMed Central

    Cino, Elio A.; Soares, Iaci N.; Pedrote, Murilo M.; de Oliveira, Guilherme A. P.; Silva, Jerson L.

    2016-01-01

    The p53 family of proteins is comprised of p53, p63 and p73. Because the p53 DNA binding domain (DBD) is naturally unstable and possesses an amyloidogenic sequence, it is prone to form amyloid fibrils, causing loss of functions. To develop p53 therapies, it is necessary to understand the molecular basis of p53 instability and aggregation. Light scattering, thioflavin T (ThT) and high hydrostatic pressure (HHP) assays showed that p53 DBD aggregates faster and to a greater extent than p63 and p73 DBDs, and was more susceptible to denaturation. The aggregation tendencies of p53, p63, and p73 DBDs were strongly correlated with their thermal stabilities. Molecular Dynamics (MD) simulations indicated specific regions of structural heterogeneity unique to p53, which may be promoted by elevated incidence of exposed backbone hydrogen bonds (BHBs). The results indicate regions of structural vulnerability in the p53 DBD, suggesting new targetable sites for modulating p53 stability and aggregation, a potential approach to cancer therapy. PMID:27600721

  16. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Cino, Elio A.; Soares, Iaci N.; Pedrote, Murilo M.; de Oliveira, Guilherme A. P.; Silva, Jerson L.

    2016-09-01

    The p53 family of proteins is comprised of p53, p63 and p73. Because the p53 DNA binding domain (DBD) is naturally unstable and possesses an amyloidogenic sequence, it is prone to form amyloid fibrils, causing loss of functions. To develop p53 therapies, it is necessary to understand the molecular basis of p53 instability and aggregation. Light scattering, thioflavin T (ThT) and high hydrostatic pressure (HHP) assays showed that p53 DBD aggregates faster and to a greater extent than p63 and p73 DBDs, and was more susceptible to denaturation. The aggregation tendencies of p53, p63, and p73 DBDs were strongly correlated with their thermal stabilities. Molecular Dynamics (MD) simulations indicated specific regions of structural heterogeneity unique to p53, which may be promoted by elevated incidence of exposed backbone hydrogen bonds (BHBs). The results indicate regions of structural vulnerability in the p53 DBD, suggesting new targetable sites for modulating p53 stability and aggregation, a potential approach to cancer therapy.

  17. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    PubMed Central

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  18. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds.

    PubMed

    Cino, Elio A; Soares, Iaci N; Pedrote, Murilo M; de Oliveira, Guilherme A P; Silva, Jerson L

    2016-01-01

    The p53 family of proteins is comprised of p53, p63 and p73. Because the p53 DNA binding domain (DBD) is naturally unstable and possesses an amyloidogenic sequence, it is prone to form amyloid fibrils, causing loss of functions. To develop p53 therapies, it is necessary to understand the molecular basis of p53 instability and aggregation. Light scattering, thioflavin T (ThT) and high hydrostatic pressure (HHP) assays showed that p53 DBD aggregates faster and to a greater extent than p63 and p73 DBDs, and was more susceptible to denaturation. The aggregation tendencies of p53, p63, and p73 DBDs were strongly correlated with their thermal stabilities. Molecular Dynamics (MD) simulations indicated specific regions of structural heterogeneity unique to p53, which may be promoted by elevated incidence of exposed backbone hydrogen bonds (BHBs). The results indicate regions of structural vulnerability in the p53 DBD, suggesting new targetable sites for modulating p53 stability and aggregation, a potential approach to cancer therapy. PMID:27600721

  19. The structure of the archaebacterial ribosomal protein S7 and its possible interaction with 16S rRNA.

    PubMed

    Hosaka, H; Yao, M; Kimura, M; Tanaka, I

    2001-11-01

    Ribosomal protein S7 is one of the ubiquitous components of the small subunit of the ribosome. It is a 16S rRNA-binding protein positioned close to the exit of the tRNA, and it plays a role in initiating assembly of the head of the 30S subunit. Previous structural analyses of eubacterial S7 have shown that it has a stable alpha-helix core and a flexible beta-arm. Unlike these eubacterial proteins, archaebacterial or eukaryotic S7 has an N-terminal extension of approximately 60 residues. The crystal structure of S7 from archaebacterium Pyrococcus horikoshii (PhoS7) has been determined at 2.1 A resolution. The final model of PhoS7 consists of six major alpha-helices, a short 3(10)-helix and two beta-stands. The major part (residues 18-45) of the N-terminal extension of PhoS7 reinforces the alpha-helical core by well-extended hydrophobic interactions, while the other part (residues 46-63) is not visible in the crystal and is possibly fixed only by interacting with 16S rRNA. These differences in the N-terminal extension as well as in the insertion (between alpha1 and alpha2) of the archaebacterial S7 structure from eubacterial S7 are such that they do not necessitate a major change in the structure of the currently available eubacterial 16S rRNA. Some of the inserted chains might pass through gaps formed by helices of the 16S rRNA.

  20. Structure of a C-terminal fragment of its Vps53 subunit suggests similarity of Golgi-associated retrograde protein (GARP) complex to a family of tethering complexes

    SciTech Connect

    Vasan, Neil; Hutagalung, Alex; Novick, Peter; Reinisch, Karin M.

    2010-08-13

    The Golgi-associated retrograde protein (GARP) complex is a membrane-tethering complex that functions in traffic from endosomes to the trans-Golgi network. Here we present the structure of a C-terminal fragment of the Vps53 subunit, important for binding endosome-derived vesicles, at a resolution of 2.9 {angstrom}. We show that the C terminus consists of two {alpha}-helical bundles arranged in tandem, and we identify a highly conserved surface patch, which may play a role in vesicle recognition. Mutations of the surface result in defects in membrane traffic. The fold of the Vps53 C terminus is strongly reminiscent of proteins that belong to three other tethering complexes - Dsl1, conserved oligomeric Golgi, and the exocyst - thought to share a common evolutionary origin. Thus, the structure of the Vps53 C terminus suggests that GARP belongs to this family of complexes.

  1. An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins.

    PubMed

    Mäntylahti, Sampo; Tossavainen, Helena; Hellman, Maarit; Permi, Perttu

    2009-11-01

    An improved pulse sequence, intraresidual i(HCA)CO(CA)NH, is described for establishing solely (13)C'(i), (15)N(i), (1)HN(i) connectivities in uniformly 15N/13C-labeled proteins. In comparison to the "out-and-back" style intra-HN(CA)CO experiment, the new pulse sequence offers at least two-fold higher experimental resolution in the (13)C' dimension and on average 1.6 times higher sensitivity especially for residues in alpha-helices. Performance of the new experiment was tested on a small globular protein ubiquitin and an intrinsically unfolded 110-residue cancer/testis antigen CT16/PAGE5. Use of intraresidual i(HCA)CO(CA)NH experiment in combination with the established HNCO experiment was crucial for the assignment of highly disordered CT16. PMID:19768387

  2. In a changing environment, network backbone upgrades emerge as a wise investment.

    PubMed

    Cupito, M C

    1997-05-01

    The numbers, locations and needs of users change constantly, but they'll always want more bandwidth. Many experts say that upgrading to higher-speed backbones seems to be the smart investment for unsettled times.

  3. Determination of peptide backbone torsion angles using double-quantum dipolar recoupling solid-state NMR spectroscopy.

    PubMed

    Mehta, Manish A; Eddy, Matthew T; McNeill, Seth A; Mills, Frank D; Long, Joanna R

    2008-02-20

    Several approaches for utilizing dipolar recoupling solid-state NMR (ssNMR) techniques to determine local structure at high resolution in peptides and proteins have been developed. However, many of these techniques measure only one torsion angle or are accurate for only certain classes of secondary structure. Additionally, the efficiency with which these dipolar recoupling experiments suppress the deleterious effects of chemical shift anisotropy (CSA) at high magnetic field strengths varies. Dipolar recoupling with a windowless sequence (DRAWS) has proven to be an effective pulse sequence for exciting double-quantum (DQ) coherences between adjacent carbonyl carbons along the peptide backbone. By allowing this DQ coherence to evolve, it is possible to measure the relative orientations of the CSA tensors and subsequently use this information to determine the Ramachandran torsion angles phi and psi. Here, we explore the accuracies of the assumptions made in interpreting DQ-DRAWS data and demonstrate their fidelity in measuring torsion angles corresponding to a variety of secondary structures irrespective of hydrogen-bonding patterns. It is shown how a simple choice of isotopic labels and experimental conditions allows accurate measurement of backbone secondary structures without any prior knowledge. This approach is considerably more sensitive for determining structure in helices and has comparable accuracy for beta-sheet and extended conformations relative to other methods. We also illustrate the ability of DQ-DRAWS to distinguish between structures in heterogeneous samples.

  4. The structure and dynamics in solution of Cu(I) pseudoazurin from Paracoccus pantotrophus.

    PubMed Central

    Thompson, G. S.; Leung, Y. C.; Ferguson, S. J.; Radford, S. E.; Redfield, C.

    2000-01-01

    The solution structure and backbone dynamics of Cu(I) pseudoazurin, a 123 amino acid electron transfer protein from Paracoccus pantotrophus, have been determined using NMR methods. The structure was calculated to high precision, with a backbone RMS deviation for secondary structure elements of 0.35+/-0.06 A, using 1,498 distance and 55 torsion angle constraints. The protein has a double-wound Greek-key fold with two alpha-helices toward its C-terminus, similar to that of its oxidized counterpart determined by X-ray crystallography. Comparison of the Cu(I) solution structure with the X-ray structure of the Cu(II) protein shows only small differences in the positions of some of the secondary structure elements. Order parameters S2, measured for amide nitrogens, indicate that the backbone of the protein is rigid on the picosecond to nanosecond timescale. PMID:10850794

  5. Transport properties of a single-molecular diode with one backbone, and two backbones in parallel: Frontier orbital analysis and NEGF-DFT study

    NASA Astrophysics Data System (ADS)

    Zahedi, Ehsan

    2015-05-01

    The conductance and electronic transport properties of a single-molecular diode with one backbone ( 1), and two backbones in parallel ( 2) have been investigated using frontier orbital analysis, and the NEGF formalism combined with DFT. The frontier orbital analysis results demonstrate that the electron transport from one end of the studied molecules to other end is symmetrically allowed and the conductance of the molecule with two parallel backbones is more than the molecule with a single backbone. Transmission spectra study based on the NEGF-DFT of the selected molecules sandwiched between two gold (1 1 1) electrodes showed that, due to a higher coupling between the two electrodes and the molecule 2, the zero-bias conductance is more than twice that of the other molecular junction. Transmission spectra under different biases showed that the maximum constructive interference exists at the bias voltage 0.2, while in some of the biases destructive effects are observed. I- V curves showed that the rectifying directions of molecular junctions 1 and 2 are opposite.

  6. Backbone assignment and secondary structure of Rnd1, an unusual Rho family small GTPase.

    PubMed

    Cao, Shufen; Mao, Xi'an; Liu, Deli; Buck, Matthias

    2013-10-01

    Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein-protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295-304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many (1)H(N), (13)C, and (15)N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N-H correlations in the (1)H-(15)N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77-83 and residues 127-131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1

  7. Backbone assignment and secondary structure of Rnd1, an unusual Rho family small GTPase.

    PubMed

    Cao, Shufen; Mao, Xi'an; Liu, Deli; Buck, Matthias

    2013-10-01

    Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein-protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295-304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many (1)H(N), (13)C, and (15)N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N-H correlations in the (1)H-(15)N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77-83 and residues 127-131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1

  8. Uranyl mediated photofootprinting reveals strong E. coli RNA polymerase--DNA backbone contacts in the +10 region of the DeoP1 promoter open complex.

    PubMed Central

    Jeppesen, C; Nielsen, P E

    1989-01-01

    Employing a newly developed uranyl photofootprinting technique (Nielsen et al. (1988) FEBS Lett. 235, 122), we have analyzed the structure of the E. coli RNA polymerase deoP1 promoter open complex. The results show strong polymerase DNA backbone contacts in the -40, -10, and most notably in the +10 region. These results suggest that unwinding of the -12 to +3 region of the promoter in the open complex is mediated through polymerase DNA backbone contacts on both sides of this region. The pattern of bases that are hyperreactive towards KMnO4 or uranyl within the -12 to +3 region furthermore argues against a model in which this region is simply unwound and/or single stranded. The results indicate specific protein contacts and/or a fixed DNA conformation within the -12 to +3 region. Images PMID:2503811

  9. Calcium-binding proteins: an overview.

    PubMed

    Weinman, S

    1991-03-01

    In order to understand the mechanism of the various responses evoked by calcium in the cell, the identification and characterization of a number of calcium receptors were undertaken within the past two decades. Advances in amino acid sequence and protein three-dimensional structure led to the description of two families of calcium-binding proteins, the EF-hand homolog family and the annexin family. The EF-hand motif consists of two alpha helices, "E" and "F", joined by a Ca(2+)-binding loop. EF-hands have been identified in numerous Ca(2+)-binding proteins by similarity of amino acid sequence and confirmed in some crystal structures. Functional EF-hands seem always to occur in pairs. To date, the EF-hand homolog family contains more than 160 different Ca(2+)-modulated proteins which have a broad range of functions. Among them, are the calmodulin, the troponin C, the myosin regulatory light chain, the parvalbumin, the S-100 proteins and the calbindins 9- and 28 kDa. The most striking feature of the EF-hand family is the ability to modulate the activity of a number of enzymes. Several groups have identified proteins from various tissues that show calcium-dependent binding to membranes. These proteins, termed annexins have a molecular weight of 35- or 67 kDa. The amino acid sequences of the members of the annexin family show that each protein contains conserved internal repeats of about 70 amino acids each. The 35 kDa annexins contain four repeats, which show a high degree of homology with each other and with the repeat sequences of the other proteins. These repeats correspond to structural domains with a similar fold.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1864864

  10. Sequence-specific 1H, 13C and 15N backbone resonance assignments of the plakin repeat domain of human envoplakin.

    PubMed

    Jeeves, Mark; Fogl, Claudia; Al-Jassar, Caezar; Chidgey, Martyn; Overduin, Michael

    2016-04-01

    The plakin repeat domain is a distinctive hallmark of the plakin superfamily of proteins, which are found within all epithelial tissues. Plakin repeat domains mediate the interactions of these proteins with the cell cytoskeleton and are critical for the maintenance of tissue integrity. Despite their biological importance, no solution state resonance assignments are available for any homologue. Here we report the essentially complete (1)H, (13)C and (15)N backbone chemical shift assignments of the singular 22 kDa plakin repeat domain of human envoplakin, providing the means to investigate its interactions with ligands including intermediate filaments. PMID:26590577

  11. Characterisation of the isolated Che Y C-terminal fragment (79-129)--Exploring the structure/stability/folding relationship of the alpha/beta parallel protein Che Y.

    PubMed

    Bruix, M; Muñoz, V; Campos-Olivas, R; Del Bosque, J R; Serrano, L; Rico, M

    1997-01-15

    To gain insight into how the three-dimensional structure, stability and folding of the protein Che Y are related to one another, we have performed a conformational analysis of a long fragment of this protein, encompassing its C-terminal 51 residues (79-129). This fragment consists of residues in the beta-strands 4 and 5 and alpha-helices 4 and 5 of native Che Y. The study has been performed by two-dimensional NMR and far-ultraviolet circular dichroism in aqueous solution and in 30% (by vol.) trifluoroethanol/ water at 273 K and 298 K. We observe little structure for this fragment in aqueous solution which could be due to low helical populations in the regions corresponding to helices 4 and 5. Within the limits of the residual helical structure experimentally detected, helix 4 appears to extend beyond the N-terminus observed in the native structure by over four residues belonging to the preceding loop. In 30% trifluoroethanol the helical content of both helices increase and helix 4 extends further to include the preceding beta-strand 4. None of the long-range NOEs present in native Che Y are observed under the explored experimental conditions. The conformational shifts of the H(alpha) protons within the alpha-helices of fragment 79-129 are identical to those of shorter synthetic peptides corresponding to the isolated alpha-helices. Thus, the fragment 79-129 appears to behave as an open chain with low local helical populations. The very low intrinsic ability for structure formation displayed by this region of Che Y at pH 2.5 suggests that in the folded protein this region could be mainly stabilised by interactions with the N-terminal Che Y region. This is in accordance with the contact map of Che Y, which shows that the strongest non-local contacts of C-terminal residues are with residues of the N-terminal region, while those within the C-terminal region are very weak. More importantly, the relationship appears to be possibly extended to the folding properties of the

  12. Characterization of protein hydration by solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wand, Joshua

    A comprehensive understanding of the interactions between protein molecules and hydration water remains elusive. Solution nuclear magnetic resonance (NMR) spectroscopy has been proposed as a means to characterize these interactions but is plagued with artifacts when employed in bulk aqueous solution. Encapsulation of proteins in reverse micelles prepared in short chain alkane solvents can overcome these technical limitations. Application of this approach has revealed that the interaction of water with the surface of protein molecules is quite heterogeneous with some regions of the protein having long-lived interactions while other regions show relatively transient hydration. Results from several proteins will be presented including ubiquitin, staphylococcal nuclease, interleukin 1beta, hen egg white lysozyme (HEWL) and T4 lysozyme. Ubiquitin and interleukin 1beta are signaling proteins and interact with other proteins through formation of dry protein-protein interfaces. Interestingly, the protein surfaces of the free proteins show relatively slowed (restricted) motion at the surface, which is indicative of low residual entropy. Other regions of the protein surface have relatively high mobility water. These results are consistent with the idea that proteins have evolved to maximize the hydrophobic effect in optimization of binding with protein partners. As predicted by simulation and theory, we find that hydration of internal hydrophobic cavities of interleukin 1beta and T4 lysozyme is highly disfavored. In contrast, the hydrophilic polar cavity of HEWL is occupied by water. Initial structural correlations suggest that hydration of alpha helical structure is characterized by relatively mobile water while those of beta strands and loops are more ordered and slowed. These and other results from this set of proteins reveals that the dynamical and structural character of hydration of proteins is heterogeneous and complex. Supported by the National Science Foundation.

  13. The FMO protein is related to PscA in the reaction center of green sulfur bacteria.

    PubMed

    Olson, John M; Raymond, Jason

    2003-01-01

    The Fenna-Matthews-Olson protein is a water-soluble protein found only in green sulfur bacteria. Each subunit contains seven bacteriochlorophyll (BChl) a molecules wrapped in a string bag of protein consisting of mostly beta sheet. Most other chlorophyll-binding proteins are water-insoluble proteins containing membrane-spanning alpha helices. We compared an FMO consensus sequence to well-characterized, membrane-bound chlorophyll-binding proteins: L & M (reaction center proteins of proteobacteria), D1 & D2 (reaction center proteins of PS II), CP43 & CP47 (core proteins of PS II), PsaA & PsaB (reaction center proteins of PS I), PscA (reaction center protein of green sulfur bacteria), and PshA (reaction center protein of heliobacteria). We aligned the FMO sequence with the other sequences using the PAM250 matrix modified for His binding-site identities and found a signature sequence (LxHHxxxGxFxxF) common to FMO and PscA. (The two His residues are BChl a. binding sites in FMO.) This signature sequence is part of a 220-residue C-terminal segment with an identity score of 13%. PRSS (Probability of Random Shuffle) analysis showed that the 220-residue alignment is better than 96% of randomized alignments. This evidence supports the hypothesis that FMO protein is related to PscA. PMID:16228607

  14. Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein.

    PubMed Central

    Huenges, M; Rölz, C; Gschwind, R; Peteranderl, R; Berglechner, F; Richter, G; Bacher, A; Kessler, H; Gemmecker, G

    1998-01-01

    The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM). PMID:9670024

  15. The BAR domain proteins: molding membranes in fission, fusion, and phagy.

    PubMed

    Ren, Gang; Vajjhala, Parimala; Lee, Janet S; Winsor, Barbara; Munn, Alan L

    2006-03-01

    The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918

  16. Protein secondary structure prediction using logic-based machine learning.

    PubMed

    Muggleton, S; King, R D; Sternberg, M J

    1992-10-01

    Many attempts have been made to solve the problem of predicting protein secondary structure from the primary sequence but the best performance results are still disappointing. In this paper, the use of a machine learning algorithm which allows relational descriptions is shown to lead to improved performance. The Inductive Logic Programming computer program, Golem, was applied to learning secondary structure prediction rules for alpha/alpha domain type proteins. The input to the program consisted of 12 non-homologous proteins (1612 residues) of known structure, together with a background knowledge describing the chemical and physical properties of the residues. Golem learned a small set of rules that predict which residues are part of the alpha-helices--based on their positional relationships and chemical and physical properties. The rules were tested on four independent non-homologous proteins (416 residues) giving an accuracy of 81% (+/- 2%). This is an improvement, on identical data, over the previously reported result of 73% by King and Sternberg (1990, J. Mol. Biol., 216, 441-457) using the machine learning program PROMIS, and of 72% using the standard Garnier-Osguthorpe-Robson method. The best previously reported result in the literature for the alpha/alpha domain type is 76%, achieved using a neural net approach. Machine learning also has the advantage over neural network and statistical methods in producing more understandable results. PMID:1480619

  17. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases.

    PubMed

    Nyffenegger, Christian; Nordvang, Rune Thorbjørn; Zeuner, Birgitte; Łężyk, Mateusz; Difilippo, Elisabetta; Logtenberg, Madelon J; Schols, Henk A; Meyer, Anne S; Mikkelsen, Jørn Dalgaard

    2015-10-01

    This paper describes the discovery and characterization of two novel β-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as β-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a soil-derived metagenomic library. The β-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest homologues are 59 % for HEX1 and 51 % for HEX2 on the protein level. Both β-N-acetylhexosaminidases are classified into glycosyl hydrolase family 20 (GH 20) are able to hydrolyze para-nitrophenyl-β-N-acetylglucosamine (pNP-GlcNAc) as well as para-nitrophenyl-β-N-acetylgalactosamine (pNP-GalNAc) and exhibit pH optima of 8 and 6 for HEX1 and HEX2, respectively. The enzymes are able to hydrolyze N-acetylchitooligosaccharides with a degree of polymerization of two, three, and four. The major findings were, that HEX1 and HEX2 catalyze trans-glycosylation reactions with lactose as acceptor, giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested with the disaccharide acceptors β-lactose, sucrose, and maltose, as well as with the monosaccharides galactose and glucose resulting in the successful attachment of GlcNAc to the acceptor in all cases.

  18. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases.

    PubMed

    Nyffenegger, Christian; Nordvang, Rune Thorbjørn; Zeuner, Birgitte; Łężyk, Mateusz; Difilippo, Elisabetta; Logtenberg, Madelon J; Schols, Henk A; Meyer, Anne S; Mikkelsen, Jørn Dalgaard

    2015-10-01

    This paper describes the discovery and characterization of two novel β-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as β-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a soil-derived metagenomic library. The β-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest homologues are 59 % for HEX1 and 51 % for HEX2 on the protein level. Both β-N-acetylhexosaminidases are classified into glycosyl hydrolase family 20 (GH 20) are able to hydrolyze para-nitrophenyl-β-N-acetylglucosamine (pNP-GlcNAc) as well as para-nitrophenyl-β-N-acetylgalactosamine (pNP-GalNAc) and exhibit pH optima of 8 and 6 for HEX1 and HEX2, respectively. The enzymes are able to hydrolyze N-acetylchitooligosaccharides with a degree of polymerization of two, three, and four. The major findings were, that HEX1 and HEX2 catalyze trans-glycosylation reactions with lactose as acceptor, giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested with the disaccharide acceptors β-lactose, sucrose, and maltose, as well as with the monosaccharides galactose and glucose resulting in the successful attachment of GlcNAc to the acceptor in all cases. PMID:25843303

  19. Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: thermodynamic characterization.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2010-10-21

    In a situation which is far from ideal, many buffers have been found to be quite reactive, besides maintaining their stable pH values. On the basis of apparent transfer free energies (ΔG(tr)'), through solubility measurements the interactions of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), and tetraglycine (Gly(4)), with several common neutral pH, amine-based buffers have been studied. The biological buffers studied in this work, including TRIS, TES, TAPS, TAPSO, and TABS are structurally related and all contain TRIS groups. These buffers have pK(a) values ranging from 7.5-9.0, which allow them to be used in biological, biochemical or environmental studies. We observed negative values of ΔG(tr)' for Gly(3) and Gly(4) from water to buffer, indicating that the interactions are favorable. However, the ΔG(tr)' values are positive for Gly and Gly(2), revealing unfavorable interactions, which except for the latter in TRIS buffer are negative. The surprising result in our data is the unexpected extraordinarily high favorable interactions between TRIS buffer and peptides (in comparison with the effect of the most common denaturants, urea and guanidine hydrochloride). The transfer free energies (ΔG(tr)') of the peptide backbone unit (-CH(2)C=O-NH-) contributions have been estimated from ΔG(tr)' values. We have also investigated the interactions of TRIS buffer with Bovine Serum Albumin (BSA), as a globular protein, using dynamic light scattering (DLS), zeta potential, UV-Visible absorption, fluorescence and Raman spectroscopy measurements. The results indicated that TRIS buffer stabilized the BSA molecules.

  20. Conserved Patterns in Backbone Torsional Changes Allow For Single Base Flipping from Duplex DNA with Minimal Distortion of the Double Helix

    PubMed Central

    Banavali, Nilesh K.; Huang, Niu; MacKerell, Alexander D.

    2008-01-01

    Base flipping is a structural mechanism common to many DNA processing and repair enzymes. Changes in the local backbone torsions that occur during base flipping and the effect of environment on their behavior are of particular interest in understanding different base flipping mechanisms. In the present study, structures sampled during umbrella sampling molecular dynamics (MD) simulations of base flipping in aqueous and protein-bound environments, carried out with two different MD simulation strategies, are analyzed to find the most significant phosphodiester backbone distortions in the vicinity of the flipping base. Torsional sampling on the 5′ side of the flipping base during flipping through the major groove show similarities to the torsional sampling on the 3′ side during flipping through the minor groove and vice versa. In differing environments, this behavior varies only marginally. These compensating torsional changes in the DNA backbone on 5′ and 3′ sides of the flipping base limit overall distortion of the DNA double helix during single base flipping. Rotameric intermediate states observed during base flipping are identified and postulated to be metastable states implicated in both large-scale structural changes and functional effects of chemical modifications in DNA. PMID:16771353

  1. Phytolacca americana lectin (Pa-2; pokeweed mitogen): an intrinsically unordered protein and its conversion into partial order at low pH.

    PubMed

    Ahmad, Ejaz; Kamranur Rahman, Shah; Masood Khan, Javed; Varshney, Ankita; Hasan Khan, Rizwan

    2009-11-23

    This is the first report of its kind that well demonstrates that a lectin from Phytolacca americana [Pa-2 (P. americana lectin-2)] can also be intrinsically unordered, based on the results obtained by CD, tryptophan fluorescence, ANS (8-anilinonaphthalene-1-sulfonic acid) binding, acrylamide quenching, DLS (dynamic light scattering) and its amino acid composition database analyses. Pa-2 is an acidic monomeric lectin and acquires random coil conformation at neutral pH without any regular secondary structure. As confirmed by different spectroscopic techniques, on lowering the pH, some secondary structures, predominantly alpha-helices, are detected by far-UV CD that adopt a marginally stable partially folded collapsed conformation possessing the characteristics of a premolten globule state. It is in accordance with coil-helix transition that is commonly observed when these intrinsically unordered proteins interact with their partner molecules in vivo.

  2. Transient violations of the second law of thermodynamics in protein unfolding examined using synthetic atomic force microscopy and the fluctuation theorem.

    PubMed

    Paramore, Sterling; Ayton, Gary S; Voth, Gregory A

    2007-09-14

    The synthetic atomic force microscopy (AFM) method is developed to simulate a periodically replicated atomistic system subject to force and length fluctuations characteristic of an AFM experiment. This new method is used to examine the forced-extension and subsequent rupture of the alpha-helical linker connecting periodic images of a spectrin protein repeat unit. A two-dimensional potential of mean force (PMF) along the length and a reaction coordinate describing the state of the linker was calculated. This PMF reveals that the basic material properties of the spectrin repeat unit are sensitive to the state of linker, an important feature that cannot be accounted for in a one-dimensional PMF. Furthermore, nonequilibrium simulations were generated to examine the rupture event in the context of the fluctuation theorem. These atomistic simulations demonstrate that trajectories which are in apparent violation of the second law can overcome unfolding barriers at significantly reduced rupture forces.

  3. 43-kilodalton protein of Torpedo nicotinic postsynaptic membranes: purification and determination of primary structure

    SciTech Connect

    Carr, C.; McCourt, D.; Cohen, J.B.

    1987-11-03

    The primary structure of the 43-kilodalton peripheral membrane protein (43-kDa protein) of Torpedo nicotinic postsynaptic membrane has been determined. The /sup 14/C-labelled 43-kDa protein, which was isolated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, has an amino terminus resistant to Edman degradation, while the sequence at the carboxyl terminus is Tyr-Val. An amino acid sequence of 405 residues was obtained by NH/sub 2/-terminal sequence analysis of complementary peptides generated by digestion with trypsin, chymotrypsin, Staphylococcus aureus V8 protease, and endoproteinase Lys-C, as well as by chemical cleavage at methionine. This sequence of molecular mass 45,618 daltons lacks the amino terminus but extends to the carboxyl terminus of the 43-kDa protein. Unusual structural features of the 43-kDa protein include two regions of approx. 80 residues, each containing 10% cysteine, as well as stretches predicted to exist as amphipathic ..cap alpha..-helices. Other than the group blocking the amino terminus, no evidence was found for posttranslational modification of amino acids. The 43-kDa protein may represent a novel protein family because a computer search of this sequence with the National Biomedical Research Foundation data base (Release 12.0) did not reveal any significant homology to known protein sequences.

  4. Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins.

    PubMed

    Maki, Masatoshi; Kitaura, Yasuyuki; Satoh, Hirokazu; Ohkouchi, Susumu; Shibata, Hideki

    2002-11-01

    Penta-EF-hand (PEF) proteins comprise a family of Ca(2+)-binding proteins that have five repetitive EF-hand motifs. Among the eight alpha-helices (alpha1-alpha8), alpha4 and alpha7 link EF2-EF3 and EF4-EF5, respectively. In addition to the structural similarities in the EF-hand regions, the PEF protein family members have common features: (i) dimerization through unpaired C-terminal EF5s, (ii) possession of hydrophobic Gly/Pro-rich N-terminal domains, and (iii) Ca(2+)-dependent translocation to membranes. Based on comparison of amino acid sequences, mammalian PEF proteins are classified into two groups: Group I PEF proteins (ALG-2 and peflin) and Group II PEF proteins (Ca(2+)-dependent protease calpain subfamily members, sorcin and grancalcin). The Group I genes have also been found in lower animals, plants, fungi and protists. Recent findings of specific interacting proteins have started to gradually unveil the functions of the noncatalytic mammalian PEF proteins.

  5. TMBETADISC-RBF: Discrimination of beta-barrel membrane proteins using RBF networks and PSSM profiles.

    PubMed

    Ou, Yu-Yen; Gromiha, M Michael; Chen, Shu-An; Suwa, Makiko

    2008-06-01

    Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying OMPs from genomic sequences and for the successful prediction of their secondary and tertiary structures. We have developed a method based on radial basis function networks and position specific scoring matrix (PSSM) profiles generated by PSI-BLAST and non-redundant protein database. Our approach with PSSM profiles has correctly predicted the OMPs with a cross-validated accuracy of 96.4% in a set of 1251 proteins, which contain 206 OMPs, 667 globular proteins and 378 alpha-helical inner membrane proteins. Furthermore, we applied our method on a dataset containing 114 OMPs, 187 TMH proteins and 195 globular proteins obtained with less than 20% sequence identity and obtained the cross-validated accuracy of 95%. This accuracy of discriminating OMPs is higher than other methods in the literature and our method could be used as an effective tool for dissecting OMPs from genomic sequences. We have developed a prediction server, TMBETADISC-RBF, which is available at http://rbf.bioinfo.tw/~sachen/OMP.html.

  6. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity.

    PubMed

    Zhang, Shi Qun; Zou, Zui; Shen, Hui; Shen, Shuai Shuai; Miao, Qi; Huang, Xin; Liu, Wei; Li, Li Ping; Chen, Si Min; Yan, Lan; Zhang, Jun Dong; Zhao, Jing Jun; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2016-05-01

    The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3)-glucan, a crucial pathogen-associated molecular pattern (PAMP) of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans. PMID:27144456

  7. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity

    PubMed Central

    Zhang, Shi Qun; Zou, Zui; Shen, Hui; Shen, Shuai Shuai; Miao, Qi; Huang, Xin; Liu, Wei; Li, Li Ping; Chen, Si Min; Yan, Lan; Zhang, Jun Dong; Zhao, Jing Jun; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2016-01-01

    The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3)-glucan, a crucial pathogen-associated molecular pattern (PAMP) of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans. PMID:27144456

  8. Structure of the DNA-Eco RI endonuclease recognition complex at 3 A resolution.

    PubMed

    McClarin, J A; Frederick, C A; Wang, B C; Greene, P; Boyer, H W; Grable, J; Rosenberg, J M

    1986-12-19

    The crystal structure of the complex between Eco RI endonuclease and the cognate oligonucleotide TCGCGAATTCGCG provides a detailed example of the structural basis of sequence-specific DNA-protein interactions. The structure was determined, to 3 A resolution, by the ISIR (iterative single isomorphous replacement) method with a platinum isomorphous derivative. The complex has twofold symmetry. Each subunit of the endonuclease is organized into an alpha/beta domain consisting a five-stranded beta sheet, alpha helices, and an extension, called the "arm," which wraps around the DNA. The large beta sheet consists of antiparallel and parallel motifs that form the foundations for the loops and alpha helices responsible for DNA strand scission and sequence-specific recognition, respectively. The DNA cleavage site is located in a cleft that binds the DNA backbone in the vicinity of the scissile bond. Sequence specificity is mediated by 12 hydrogen bonds originating from alpha helical recognition modules. Arg200 forms two hydrogen bonds with guanine while Glu144 and Arg145 form four hydrogen bonds to adjacent adenine residues. These interactions discriminate the Eco RI hexanucleotide GAATTC from all other hexanucleotides because any base substitution would require rupture of at least one of these hydrogen bonds.

  9. The 1.7 Å resolution structure of At2g44920, a pentapeptide-repeat protein in the thylakoid lumen of Arabidopsis thaliana

    SciTech Connect

    Ni, Shuisong; McGookey, Michael E.; Tinch, Stuart L.; Jones, Alisha N.; Jayaraman, Seetharaman; Tong, Liang; Kennedy, Michael A.

    2012-01-09

    At2g44920 belongs to a diverse family (Pfam PF00805) of pentapeptide-repeat proteins (PRPs) that are present in all known organisms except yeast. PRPs contain at least eight tandem-repeating sequences of five amino acids with an approximate consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Recent crystal structures show that PRPs adopt a highly regular four-sided right-handed {beta}-helical structure consisting mainly of type II and type IV {beta}-turns, sometimes referred to as a repeated five-residue (or Rfr) fold. Among sequenced genomes, PRP genes are most abundant in cyanobacteria, leading to speculation that PRPs play an important role in the unique lifestyle of photosynthetic cyanobacteria. Despite the recent structural characterization of several cyanobacterial PRPs, most of their functions remain unknown. Plants, whose chloroplasts are of cyanobacterial origin, have only four PRP genes in their genomes. At2g44920 is one of three PRPs located in the thylakoid lumen. Here, the crystal structure of a double methionine mutant of residues 81-224 of At2g44920, the naturally processed fragment of one of its full-length isoforms, is reported at 1.7 {angstrom} resolution. The structure of At2g44920 consists of the characteristic Rfr fold with five uninterrupted coils made up of 25 pentapeptide repeats and {alpha}-helical elements capping both termini. A disulfide bridge links the two {alpha}-helices with a conserved loop between the helical elements at its C-terminus. This structure represents the first structure of a PRP protein whose subcellular location has been experimentally confirmed to be the thylakoid lumen in a plant species.

  10. Backbone and side-chain resonance assignments of the membrane localization domain from Pasteurella multocida toxin.

    PubMed

    Brothers, Michael C; Geissler, Brett; Hisao, Grant S; Satchell, Karla J F; Wilson, Brenda A; Rienstra, Chad M

    2014-04-01

    (1)H, (13)C, and (15)N chemical shift assignments are presented for the isolated four-helical bundle membrane localization domain (MLD) from Pasteurella multocida toxin (PMT) in its solution state. We have assigned 99% of all backbone and side-chain carbon atoms, including 99% of all backbone residues excluding proline amide nitrogens. Secondary chemical shift analysis using TALOS+ demonstrates four helices, which align with those observed within the MLD in the crystal structure of the C-terminus of PMT (PDB 2EBF) and confirm the use of the available crystal structures as templates for the isolated MLDs.

  11. Electric field induced localization phenomena in a ladder network with superlattice configuration: Effect of backbone environment

    SciTech Connect

    Dutta, Paramita; Karmakar, S. N.; Maiti, Santanu K.

    2014-09-15

    Electric field induced localization properties of a tight-binding ladder network in presence of backbone sites are investigated. Based on Green's function formalism we numerically calculate two-terminal transport together with density of states for different arrangements of atomic sites in the ladder and its backbone. Our results lead to a possibility of getting multiple mobility edges which essentially plays a switching action between a completely opaque to fully or partly conducting region upon the variation of system Fermi energy, and thus, support in fabricating mesoscopic or DNA-based switching devices.

  12. Polyboramines for Hydrogen Release: Polymers Containing Lewis Pairs in their Backbone.

    PubMed

    Ledoux, Audrey; Larini, Paolo; Boisson, Christophe; Monteil, Vincent; Raynaud, Jean; Lacôte, Emmanuel

    2015-12-21

    The one-step polycondensation of diamines and diboranes triggered by the in situ deprotonation of the diammonium salts and concomitant reduction of bisboronic acids leads to the assembly of polymer chains through multiple Lewis pairing in their backbone. These new polyboramines are dihydrogen reservoirs that can be used for the hydrogenation of imines and carbonyl compounds. They also display a unique dihydrogen thermal release profile that is a direct consequence of the insertion of the amine-borane linkages in the polymeric backbone. PMID:26563914

  13. Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins.

    PubMed Central

    Geisler, N; Kaufmann, E; Fischer, S; Plessmann, U; Weber, K

    1983-01-01

    Mammalian neurofilament triplet proteins (68 K, 160 K and 200 K) have been correlated by a biochemical, immunological and protein chemical study. The 160 K and 200 K triplet proteins are intermediate filament proteins in their own right, since they reveal the alpha-helical coiled-coil rod domain analyzed in detail for the 68 K protein. Triplet proteins display two distinct arrays. Their amino-terminal region built analogously to non-neuronal intermediate filament proteins should allow a co-polymerization process via the interaction of coiled-coil domains. The extra mass of all triplet proteins is allocated to carboxy-terminally located extensions of increasing size and unique amino acid sequences. These may provide highly charged scaffolds suitable for interactions with other neuronal components. Such a domain of 68 K reveals, in sequence analysis, 47 glutamic acids within 106 residues. The epitope recognized by a monoclonal antibody reacting probably with all intermediate filament proteins has been mapped. It is located within the last 20 residues of the rods, where six distinct intermediate filament proteins point to a consensus sequence. Images Fig. 1. PMID:10872323

  14. Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein.

    PubMed

    Hong, Z; Beaudet-Miller, M; Durkin, J; Zhang, R; Kwong, A D

    1996-01-01

    derived from the binding motif, competed with GST/CT for interaction with VP5. In addition, a cyclic analog of the minimal peptide which is designed to stabilize an alpha-helical structure competed more efficiently than the minimal peptide. The evidence suggests that the C-terminal end of ICP35 forms an alpha-helical secondary structure, which may bind specifically to a hydrophobic pocket in VP5. PMID:8523566

  15. Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein.

    PubMed

    Hong, Z; Beaudet-Miller, M; Durkin, J; Zhang, R; Kwong, A D

    1996-01-01

    derived from the binding motif, competed with GST/CT for interaction with VP5. In addition, a cyclic analog of the minimal peptide which is designed to stabilize an alpha-helical structure competed more efficiently than the minimal peptide. The evidence suggests that the C-terminal end of ICP35 forms an alpha-helical secondary structure, which may bind specifically to a hydrophobic pocket in VP5.

  16. Low stability of nucleocapsid protein in SARS virus.

    PubMed

    Wang, Yulong; Wu, Xiaoyu; Wang, Yihua; Li, Bing; Zhou, Hao; Yuan, Guiyong; Fu, Yan; Luo, Yongzhang

    2004-08-31

    The nucleocapsid protein (N protein) is one of the major virion structural proteins of a newly identified coronavirus, which has been confirmed as the causative agent of severe acute respiratory syndrome (SARS). The major function of N protein is to assemble the RNA of coronavirus. In the present study, the gene encoding the N protein was cloned and the protein was expressed, purified, and refolded as shown by (1)H NMR measurement. The maximal Trp emission wavelength occurs near 331 nm, suggesting substantial burial of Trp residues. Circular dichroism measurements indicate that N protein contains little alpha-helical structure. Acid titration shows that N protein begins to unfold near pH 5 and is fully denatured near pH 2.7, and the acid unfolding process is reversible. The physical and chemical properties of N protein indicate that its stability is low. N protein is denatured reversibly at pH 7.4 either by urea (with C(m) of 2.77 M and m value of 2.74 kcal mol(-1) M(-1)) or GdmCl (with C(m) of 1.46 M and m value of 4.50 kcal mol(-1) M(-1)). In the heat-induced denaturation in phosphate-buffered saline buffer, N-protein starts to unfold at 35 degrees C and is completely denatured at 55 degrees C, where SARS virus was also reported to be inactivated. We propose that the low stability of N protein may be critical for the stability and function of SARS virus.

  17. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  18. Synthesis and properties of a novel molecular beacon containing a benzene-phosphate backbone at its stem moiety.

    PubMed

    Ueno, Yoshihito; Kawamura, Akihiro; Takasu, Keiji; Komatsuzaki, Shinji; Kato, Takumi; Kuboe, Satoru; Kitamura, Yoshiaki; Kitade, Yukio

    2009-07-01

    This paper describes the synthesis and properties of a novel molecular beacon (MB) containing a benzene-phosphate backbone at its stem moiety. The fluorescence intensity of MBs was found to stabilize by the introduction of the benzene-phosphate backbone at its stem moiety. Furthermore, an MB containing the benzene-phosphate backbone was more resistant to DNase I (endonuclease) than an MB comprising natural DNA and 2'-O-methyl-RNA. These results indicate that the MB with the benzene-phosphate backbone is superior as a molecular beacon as compared to the MB composed of natural DNA and 2'-O-methyl-RNA.

  19. A novel structure of DNA repair protein RecO from Deinococcus radiodurans.

    PubMed

    Makharashvili, Nodar; Koroleva, Olga; Bera, Sibes; Grandgenett, Duane P; Korolev, Sergey

    2004-10-01

    Recovery of arrested replication requires coordinated action of DNA repair, replication, and recombination machineries. Bacterial RecO protein is a member of RecF recombination repair pathway important for replication recovery. RecO possesses two distinct activities in vitro, closely resembling those of eukaryotic protein Rad52: DNA annealing and RecA-mediated DNA recombination. Here we present the crystal structure of the RecO protein from the extremely radiation resistant bacteria Deinococcus radiodurans (DrRecO) and characterize its DNA binding and strand annealing properties. The RecO structure is totally different from the Rad52 structure. DrRecO is comprised of three structural domains: an N-terminal domain which adopts an OB-fold, a novel alpha-helical domain, and an unusual zinc-binding domain. Sequence alignments suggest that the multidomain architecture is conserved between RecO proteins from other bacterial species and is suitable to elucidate sites of protein-protein and DNA-protein interactions necessary for RecO functions during the replication recovery and DNA repair. PMID:15458636

  20. Topological switching between an alpha-beta parallel protein and a remarkably helical molten globule.

    PubMed

    Nabuurs, Sanne M; Westphal, Adrie H; aan den Toorn, Marije; Lindhoud, Simon; van Mierlo, Carlo P M

    2009-06-17

    Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing characteristic of natively folded proteins. These ensembles of interconverting conformers are prone to aggregation and potentially play a role in numerous devastating pathologies, and thus attract considerable attention. The molten globule that is observed during folding of apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can be formed. Here we report that this species can be trapped under nativelike conditions by substituting amino acid residue F44 by Y44, allowing spectroscopic characterization of its conformation. Whereas native apoflavodoxin contains a parallel beta-sheet surrounded by alpha-helices (i.e., the flavodoxin-like or alpha-beta parallel topology), it is shown that the molten globule has a totally different topology: it is helical and contains no beta-sheet. The presence of this remarkably nonnative species shows that single polypeptide sequences can code for distinct folds that swap upon changing conditions. Topological switching between unrelated protein structures is likely a general phenomenon in the protein structure universe.

  1. An empirical energy function for structural assessment of protein transmembrane domains.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Gelly, Jean-Christophe

    2015-08-01

    Knowing the structure of a protein is essential to characterize its function and mechanism at the molecular level. Despite major advances in solving structures experimentally, most membrane protein native conformations remain unknown. This lack of available structures, along with the physical constraints imposed by the lipid bilayer environment, constitutes a difficulty for the modeling of membrane protein structures. Assessing the quality of membrane protein models is therefore critical. Using a non-redundant set of 66 membrane protein structures (41 alpha and 25 beta), we have developed an empirical energy function for the structural assessment of alpha-helical and beta-sheet transmembrane domains. This statistical potential quantifies the interatomic distance between residues located in the lipid bilayer. To minimize the problem of insufficient sampling, we have used kernel density estimations of the distance distributions. Following a leave-one-out cross-validation procedure, we show that our method outperforms current statistical potentials in discriminating correct from incorrect membrane protein models. Furthermore, the comparison of our distance-dependent statistical potential with one optimized on globular proteins provides insights into the rules by which residues interact within the lipid bilayer. PMID:26044650

  2. Design of HIV Protease Inhibitors Targeting Protein Backbone: An Effective Strategy for Combating Drug Resistance

    SciTech Connect

    Ghosh, Arun K.; Chapsal, Bruno D.; Weber, Irene T.; Mitsuya, Hiroaki

    2008-06-03

    The discovery of human immunodeficiency virus (HIV) protease inhibitors (PIs) and their utilization in highly active antiretroviral therapy (HAART) have been a major turning point in the management of HIV/acquired immune-deficiency syndrome (AIDS). However, despite the successes in disease management and the decrease of HIV/AIDS-related mortality, several drawbacks continue to hamper first-generation protease inhibitor therapies. The rapid emergence of drug resistance has become the most urgent concern because it renders current treatments ineffective and therefore compels the scientific community to continue efforts in the design of inhibitors that can efficiently combat drug resistance.

  3. DNA mimicry by proteins.

    PubMed

    Dryden, D T F; Tock, M R

    2006-04-01

    It has been discovered recently, via structural and biophysical analyses, that proteins can mimic DNA structures in order to inhibit proteins that would normally bind to DNA. Mimicry of the phosphate backbone of DNA, the hydrogen-bonding properties of the nucleotide bases and the bending and twisting of the DNA double helix are all present in the mimics discovered to date. These mimics target a range of proteins and enzymes such as DNA restriction enzymes, DNA repair enzymes, DNA gyrase and nucleosomal and nucleoid-associated proteins. The unusual properties of these protein DNA mimics may provide a foundation for the design of targeted inhibitors of DNA-binding proteins. PMID:16545103

  4. Animals without Backbones: The Invertebrate Story. Grade Level 5-9.

    ERIC Educational Resources Information Center

    Jerome, Brian; Fuqua, Paul

    This guide, when used in tandem with the videotape "Animals Without Backbones," helps students learn about invertebrates. These materials promote hands-on discovery and learning. The guide is composed of six curriculum-based teaching units: (1) "Getting Started"; (2) "Porifera"; (3) "Cnidarians"; (4) "Worms"; (5) "Mollusks"; (6) "Arthropods"; and…

  5. Graduate Education in Kinesiology: Are We Part of "America's Backbone for Competitiveness and Innovation"?

    ERIC Educational Resources Information Center

    DePauw, Karen P.

    2008-01-01

    Graduate education in the United States has been identified as being the backbone of American competitiveness and innovation in a recent report by the Council of Graduate Schools. The report provides a framework for examining the role of graduate education in partnership with business and government to advance an action agenda for achieving…

  6. Computer simulation of bottle-brush polymers with flexible backbone: Good solvent versus theta solvent conditions

    NASA Astrophysics Data System (ADS)

    Theodorakis, Panagiotis E.; Hsu, Hsiao-Ping; Paul, Wolfgang; Binder, Kurt

    2011-10-01

    By molecular dynamics simulation of a coarse-grained bead-spring-type model for a cylindrical molecular brush with a backbone chain of Nb effective monomers to which with grafting density σ side chains with N effective monomers are tethered, several characteristic length scales are studied for variable solvent quality. Side chain lengths are in the range 5 ⩽ N ⩽ 40, backbone chain lengths are in the range 50 ⩽ Nb ⩽ 200, and we perform a comparison to results for the bond fluctuation model on the simple cubic lattice (for which much longer chains are accessible, Nb ⩽ 1027, and which corresponds to an athermal, very good, solvent). We obtain linear dimensions of the side chains and the backbone chain and discuss their N-dependence in terms of power laws and the associated effective exponents. We show that even at the theta point the side chains are considerably stretched, their linear dimension depending on the solvent quality only weakly. Effective persistence lengths are extracted both from the orientational correlations and from the backbone end-to-end distance; it is shown that different measures of the persistence length (which would all agree for Gaussian chains) are not mutually consistent with each other and depend distinctly both on Nb and the solvent quality. A brief discussion of pertinent experiments is given.

  7. Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals.

    PubMed

    Sun, Qingyu; Nelson, Hosea; Ly, Tony; Stoltz, Brian M; Julian, Ryan R

    2009-02-01

    A crown ether based, photolabile radical precursor which forms noncovalent complexes with peptides has been prepared. The peptide/precursor complexes can be electrosprayed, isolated in an ion trap, and then subjected to laser photolysis and collision induced dissociation to generate hydrogen deficient peptide radicals. It is demonstrated that these peptide radicals behave very differently from the hydrogen rich peptide radicals generated by electron capture methods. In fact, it is shown that side chain chemistry dictates both the occurrence and relative abundance of backbone fragments that are observed. Fragmentation at aromatic residues occurs preferentially over most other amino acids. The origin of this selectivity relates to the mechanism by which backbone dissociation is initiated. The first step is abstraction of a beta-hydrogen from the side chain, followed by beta-elimination to yield primarily a-type fragment ions. Calculations reveal that those side chains which can easily lose a beta-hydrogen correlate well with experimentally favored sites for backbone fragmentation. In addition, radical mediated side chain losses from the parent peptide are frequently observed. Eleven amino acids exhibit unique mass losses from side chains which positively identify that particular amino acid as part of the parent peptide. Therefore, side chain losses allow one to unambiguously narrow the possible sequences for a parent peptide, which when combined with predictable backbone fragmentation should lead to greatly increased confidence in peptide identification.

  8. Isolation, characterization, and bioinformatic analysis of calmodulin-binding protein cmbB reveals a novel tandem IP22 repeat common to many Dictyostelium and Mimivirus proteins.

    PubMed

    O'Day, Danton H; Suhre, Karsten; Myre, Michael A; Chatterjee-Chakraborty, Munmun; Chavez, Sara E

    2006-08-01

    A novel calmodulin-binding protein cmbB from Dictyostelium discoideum is encoded in a single gene. Northern analysis reveals two cmbB transcripts first detectable at 4 h during multicellular development. Western blotting detects an approximately 46.6 kDa protein. Sequence analysis and calmodulin-agarose binding studies identified a "classic" calcium-dependent calmodulin-binding domain (179IPKSLRSLFLGKGYNQPLEF198) but structural analyses suggest binding may not involve classic alpha-helical calmodulin-binding. The cmbB protein is comprised of tandem repeats of a newly identified IP22 motif ([I,L]Pxxhxxhxhxxxhxxxhxxxx; where h = any hydrophobic amino acid) that is highly conserved and a more precise representation of the FNIP repeat. At least eight Acanthamoeba polyphaga Mimivirus proteins and over 100 Dictyostelium proteins contain tandem arrays of the IP22 motif and its variants. cmbB also shares structural homology to YopM, from the plague bacterium Yersenia pestis. PMID:16777069

  9. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5.

    PubMed Central

    Bycroft, M; Grünert, S; Murzin, A G; Proctor, M; St Johnston, D

    1995-01-01

    The double-stranded RNA binding domain (dsRBD) is an approximately 65 amino acid motif that is found in a variety of proteins that interact with double-stranded (ds) RNA, such as Escherichia coli RNase III and the dsRNA-dependent kinase, PKR. Drosophila staufen protein contains five copies of this motif, and the third of these binds dsRNA in vitro. Using multinuclear/multidimensional NMR methods, we have determined that staufen dsRBD3 forms a compact protein domain with an alpha-beta-beta-beta-alpha structure in which the two alpha-helices lie on one face of a three-stranded anti-parallel beta-sheet. This structure is very similar to that of the N-terminal domain of a prokaryotic ribosomal protein S5. Furthermore, the consensus derived from all known S5p family sequences shares several conserved residues with the dsRBD consensus sequence, indicating that the two domains share a common evolutionary origin. Using in vitro mutagenesis, we have identified several surface residues which are important for the RNA binding of the dsRBD, and these all lie on the same side of the domain. Two residues that are essential for RNA binding, F32 and K50, are also conserved in the S5 protein family, suggesting that the two domains interact with RNA in a similar way. Images PMID:7628456

  10. Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2003-01-01

    Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4

  11. Isolation, purification and characterization of a nonspecific lipid transfer protein from Cuminum cyminum.

    PubMed

    Zaman, Uzma; Abbasi, Atiya

    2009-05-01

    Cuminum cyminum, an aromatic plant from the family Umbelliferae, is used as a flavoring and seasoning agent in foods. This communication reports the characterization of a nonspecific lipid transfer protein nsLTP1 from its seeds. Plant nsLTPs are small basic proteins involved in transport of lipids between membranes. These proteins are known to participate in plant defense; however, the exact mechanism of their antimicrobial action against fungi or bacteria is still unclear. The cumin nsLTP1 has been purified using a combination of chromatographic procedures and further characterized using mass spectrometry, circular dichroism spectroscopy and Edman degradation. Amino acid sequence has been used to predict homology model of cumin nsLTP1 in complex with myristic acid, and lyso-myristoyl phosphatidyl choline (LMPC). Cumin nsLTP1 is a monomeric protein with a molecular weight of 9.7 kDa as estimated by SDS-PAGE and ESIMS. The protein shows an isoelectric point of 7.8 on 6% PAGE. The primary structure consists of 92 amino acids with eight conserved cysteine residues. The global fold of cumin nsLTP1 includes four alpha-helices stabilized by four disulfide bonds and a C-terminal tail. The role of internal hydrophobic cavity of the protein in lipid transfer is discussed.

  12. Modulation of the multistate folding of designed TPR proteins through intrinsic and extrinsic factors.

    PubMed

    Phillips, J J; Javadi, Y; Millership, C; Main, E R G

    2012-03-01

    Tetratricopeptide repeats (TPRs) are a class of all alpha-helical repeat proteins that are comprised of 34-aa helix-turn-helix motifs. These stack together to form nonglobular structures that are stabilized by short-range interactions from residues close in primary sequence. Unlike globular proteins, they have few, if any, long-range nonlocal stabilizing interactions. Several studies on designed TPR proteins have shown that this modular structure is reflected in their folding, that is, modular multistate folding is observed as opposed to two-state folding. Here we show that TPR multistate folding can be suppressed to approximate two-state folding through modulation of intrinsic stability or extrinsic environmental variables. This modulation was investigated by comparing the thermodynamic unfolding under differing buffer regimes of two distinct series of consensus-designed TPR proteins, which possess different intrinsic stabilities. A total of nine proteins of differing sizes and differing consensus TPR motifs were each thermally and chemically denatured and their unfolding monitored using differential scanning calorimetry (DSC) and CD/fluorescence, respectively. Analyses of both the DSC and chemical denaturation data show that reducing the total stability of each protein and repeat units leads to observable two-state unfolding. These data highlight the intimate link between global and intrinsic repeat stability that governs whether folding proceeds by an observably two-state mechanism, or whether partial unfolding yields stable intermediate structures which retain sufficient stability to be populated at equilibrium.

  13. Structure-function studies of the magnetite-biomineralizing magnetosome-associated protein MamC.

    PubMed

    Nudelman, Hila; Valverde-Tercedor, Carmen; Kolusheva, Sofiya; Perez Gonzalez, Teresa; Widdrat, Marc; Grimberg, Noam; Levi, Hilla; Nelkenbaum, Or; Davidov, Geula; Faivre, Damien; Jimenez-Lopez, Concepcion; Zarivach, Raz

    2016-06-01

    Magnetotactic bacteria are Gram-negative bacteria that navigate along geomagnetic fields using the magnetosome, an organelle that consists of a membrane-enveloped magnetic nanoparticle. Magnetite formation and its properties are controlled by a specific set of proteins. MamC is a small magnetosome-membrane protein that is known to be active in iron biomineralization but its mechanism has yet to be clarified. Here, we studied the relationship between the MamC magnetite-interaction loop (MIL) structure and its magnetite interaction using an inert biomineralization protein-MamC chimera. Our determined structure shows an alpha-helical fold for MamC-MIL with highly charged surfaces. Additionally, the MamC-MIL induces the formation of larger magnetite crystals compared to protein-free and inert biomineralization protein control experiments. We suggest that the connection between the MamC-MIL structure and the protein's charged surfaces is crucial for magnetite binding and thus for the size control of the magnetite nanoparticles. PMID:26970040

  14. Structure-function studies of the magnetite-biomineralizing magnetosome-associated protein MamC.

    PubMed

    Nudelman, Hila; Valverde-Tercedor, Carmen; Kolusheva, Sofiya; Perez Gonzalez, Teresa; Widdrat, Marc; Grimberg, Noam; Levi, Hilla; Nelkenbaum, Or; Davidov, Geula; Faivre, Damien; Jimenez-Lopez, Concepcion; Zarivach, Raz

    2016-06-01

    Magnetotactic bacteria are Gram-negative bacteria that navigate along geomagnetic fields using the magnetosome, an organelle that consists of a membrane-enveloped magnetic nanoparticle. Magnetite formation and its properties are controlled by a specific set of proteins. MamC is a small magnetosome-membrane protein that is known to be active in iron biomineralization but its mechanism has yet to be clarified. Here, we studied the relationship between the MamC magnetite-interaction loop (MIL) structure and its magnetite interaction using an inert biomineralization protein-MamC chimera. Our determined structure shows an alpha-helical fold for MamC-MIL with highly charged surfaces. Additionally, the MamC-MIL induces the formation of larger magnetite crystals compared to protein-free and inert biomineralization protein control experiments. We suggest that the connection between the MamC-MIL structure and the protein's charged surfaces is crucial for magnetite binding and thus for the size control of the magnetite nanoparticles.

  15. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters.

    PubMed

    Zgarbová, Marie; Luque, F Javier; Sponer, Jiří; Cheatham, Thomas E; Otyepka, Michal; Jurečka, Petr

    2013-05-14

    We present a refinement of the backbone torsion parameters ε and ζ of the Cornell et al. AMBER force field for DNA simulations. The new parameters, denoted as εζOL1, were derived from quantum-mechanical calculations with inclusion of conformation-dependent solvation effects according to the recently reported methodology (J. Chem. Theory Comput. 2012, 7(9), 2886-2902). The performance of the refined parameters was analyzed by means of extended molecular dynamics (MD) simulations for several representative systems. The results showed that the εζOL1 refinement improves the backbone description of B-DNA double helices and G-DNA stem. In B-DNA simulations, we observed an average increase of the helical twist and narrowing of the major groove, thus achieving better agreement with X-ray and solution NMR data. The balance between populations of BI and BII backbone substates was shifted towards the BII state, in better agreement with ensemble-refined solution experimental results. Furthermore, the refined parameters decreased the backbone RMS deviations in B-DNA MD simulations. In the antiparallel guanine quadruplex (G-DNA) the εζOL1 modification improved the description of non-canonical α/γ backbone substates, which were shown to be coupled to the ε/ζ torsion potential. Thus, the refinement is suggested as a possible alternative to the current ε/ζ torsion potential, which may enable more accurate modeling of nucleic acids. However, long-term testing is recommended before its routine application in DNA simulations.

  16. The structure of the C-terminal domain of the pro-apoptotic protein Bak and its interaction with model membranes.

    PubMed Central

    Martínez-Senac, María del Mar; Corbalán-García, Senena; Gómez-Fernández, Juan C

    2002-01-01

    Bak is a pro-apoptotic protein widely distributed in different cell types that is associated with the mitochondrial outer membrane, apparently through a C-terminal hydrophobic domain. We used infrared spectroscopy to study the secondary structure of a synthetic peptide ((+)(3)HN-(188)ILNVLVVLGVVLLGQFVVRRFFKS(211)-COO(-)) with the same sequence as the C-terminal domain of Bak. The spectrum of this peptide in D(2)O buffer shows an amide I' band with a maximum at 1636 cm(-1), which clearly indicates the predominance of an extended beta-structure in aqueous solvent. However, the peptide incorporated in multilamellar dimyristoylphosphatidylcholine (DMPC) membranes shows a different amide I' band spectrum, with a maximum at 1658 cm(-1), indicating a predominantly alpha-helical structure induced by its interaction with the membrane. It was observed that through differential scanning calorimetry the transition of the phospholipid model membrane was broadened in the presence of the peptide. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) in fluid DMPC vesicles showed that increasing concentrations of the peptide produced increased polarization values, which is compatible with the peptide being inserted into the membrane. High concentrations of the peptide considerably broaden the phase transition of DMPC multilamellar vesicles, and DPH polarization increased, especially at temperatures above the T(c) transition temperature of the pure phospholipid. The addition of peptide destabilized unilamellar vesicles and released encapsulated carboxyfluorescein. These results indicate that this domain is able to insert itself into membranes, where it adopts an alpha-helical structure and considerably perturbs the physical properties of the membrane. PMID:11751312

  17. Indel PDB: A database of structural insertions and deletions derived from sequence alignments of closely related proteins

    PubMed Central

    Hsing, Michael; Cherkasov, Artem

    2008-01-01

    Background Insertions and deletions (indels) represent a common type of sequence variations, which are less studied and pose many important biological questions. Recent research has shown that the presence of sizable indels in protein sequences may be indicative of protein essentiality and their role in protein interaction networks. Examples of utilization of indels for structure-based drug design have also been recently demonstrated. Nonetheless many structural and functional characteristics of indels remain less researched or unknown. Description We have created a web-based resource, Indel PDB, representing a structural database of insertions/deletions identified from the sequence alignments of highly similar proteins found in the Protein Data Bank (PDB). Indel PDB utilized large amounts of available structural information to characterize 1-, 2- and 3-dimensional features of indel sites. Indel PDB contains 117,266 non-redundant indel sites extracted from 11,294 indel-containing proteins. Unlike loop databases, Indel PDB features more indel sequences with secondary structures including alpha-helices and beta-sheets in addition to loops. The insertion fragments have been characterized by their sequences, lengths, locations, secondary structure composition, solvent accessibility, protein domain association and three dimensional structures. Conclusion By utilizing the data available in Indel PDB, we have studied and presented here several sequence and structural features of indels. We anticipate that Indel PDB will not only enable future functional studies of indels, but will also assist protein modeling efforts and identification of indel-directed drug binding sites. PMID:18578882

  18. The crystal structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface.

    PubMed Central

    Chak, K F; Safo, M K; Ku, W Y; Hsieh, S Y; Yuan, H S

    1996-01-01

    The immunity protein of colicin E7 (ImmE7) can bind specifically to the DNase-type colicin E7 and inhibit its bactericidal activity. Here we report the 1.8-angstrom crystal structure of the ImmE7 protein. This is the first x-ray structure determined in the superfamily of colicin immunity proteins. The ImmE7 protein consists of four antiparallel alpha-helices, folded in a topology similar to the architecture of a four-helix bundle structure. A region rich in acidic residues is identified. This negatively charged area has the greatest variability within the family of DNase-type immunity proteins; thus, it seems likely that this area is involved in specific binding to colicin. Based on structural, genetic, and kinetic data, we suggest that all the DNase-type immunity proteins, as well as colicins, share a "homologous-structural framework" and that specific interaction between a colicin and its cognate immunity protein relies upon how well these two proteins' charged residues match on the interaction surface, thus leading to specific immunity of the colicin. Images Fig. 1 Fig. 2 Fig. 5 PMID:8692833

  19. Synthesis and properties of a novel molecular beacon containing a benzene-phosphate backbone at a stem moiety.

    PubMed

    Ueno, Yoshihito; Kawamura, Akihiro; Kato, Takumi; Kitade, Yukio

    2007-01-01

    This paper describes the synthesis and properties of a novel molecular beacon (MB) containing a benzene-phosphate backbone at the stem moieties. Fluorescent intensity of MBs was found to be stabilized by introducing a benzene-phosphate backbone at stem moieties.

  20. Altered Backbone and Side-Chain Interactions Result in Route Heterogeneity during the Folding of Interleukin-1β (IL-1β)

    PubMed Central

    Capraro, Dominique T.; Lammert, Heiko; Heidary, David K.; Roy, Melinda; Gross, Larry A.; Onuchic, José N.; Jennings, Patricia A.

    2013-01-01

    Deletion of the β-bulge trigger-loop results in both a switch in the preferred folding route, from the functional loop packing folding route to barrel closure, as well as conversion of the agonist activity of IL-1β into antagonist activity. Conversely, circular permutations of IL-1β conserve the functional folding route as well as the agonist activity. These two extremes in the folding-functional interplay beg the question of whether mutations in IL-1β would result in changes in the populations of heterogeneous folding routes and the signaling activity. A series of topologically equivalent water-mediated β-strand bridging interactions within the pseudosymmetric β-trefoil fold of IL-1β highlight the backbone water interactions that stabilize the secondary and tertiary structure of the protein. Additionally, conserved aromatic residues lining the central cavity appear to be essential for both stability and folding. Here, we probe these protein backbone-water molecule and side chain-side chain interactions and the role they play in the folding mechanism of this geometrically stressed molecule. We used folding simulations with structure-based models, as well as a series of folding kinetic experiments to examine the effects of the F42W core mutation on the folding landscape of IL-1β. This mutation alters water-mediated backbone interactions essential for maintaining the trefoil fold. Our results clearly indicate that this perturbation in the primary structure alters a structural water interaction and consequently modulates the population of folding routes accessed during folding and signaling activity. PMID:23972849

  1. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  2. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  3. Monitoring prion protein stability by NMR.

    PubMed

    Julien, Olivier; Graether, Steffen P; Sykes, Brian D

    2009-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurological diseases that affect both humans and animals. At the end of the 20th century, bovine spongiform encephalopathy (BSE), better known as mad cow disease, was shown to be transmissible to humans. This resulted in considerable concern for public health and a number of questions for scientists. The first question answered was the possible source of the disease, which appears to be the prion protein (PrP). There are two major forms of this protein: the native, noninfectious form (PrP(C)), and the misfolded infectious form (PrP(Sc)). PrP(C) is mainly alpha-helical in structure, whereas PrP(Sc) aggregates into an assembly of beta-sheets, forming amyloid fibrils. Since the first solution structure of the noninfectious form of the mouse prion protein, about 30 structures of the globular portion of PrP(C) have been characterized from different organisms. However, only a few minor differences are observed when comparing one PrP(C) structure to another. The key to understanding prion formation may then be not in the structure of PrP(C), but in the mechanism underlying PrP(C) unfolding and then conversion into a misfolded fibril state. To identify the possible region(s) of PrP(C) responsible for initiating the conversion into the amyloid fibril formation, nuclear magnetic resonance (NMR) was applied to characterize the stability and structure of PrP(C) and intermediate states during the conversion from PrP(C) to PrP(Sc). Subsequently urea was used to induce unfolding, and data analysis revealed region-specific structural stabilities that may bring insights into the mechanisms underlying conversion of protein into an infectious prion. PMID:19697241

  4. Structural Conservation, Variability, and Immunogenicity of the T6 Backbone Pilin of Serotype M6 Streptococcus pyogenes

    PubMed Central

    Moreland, Nicole J.; Loh, Jacelyn M.; Bell, Anita; Atatoa Carr, Polly; Proft, Thomas; Baker, Edward N.

    2014-01-01

    Group A streptococcus (GAS; Streptococcus pyogenes) is a Gram-positive human pathogen that causes a broad range of diseases ranging from acute pharyngitis to the poststreptococcal sequelae of acute rheumatic fever. GAS pili are highly diverse, long protein polymers that extend from the cell surface. They have multiple roles in infection and are promising candidates for vaccine development. This study describes the structure of the T6 backbone pilin (BP; Lancefield T-antigen) from the important M6 serotype. The structure reveals a modular arrangement of three tandem immunoglobulin-like domains, two with internal isopeptide bonds. The T6 pilin lysine, essential for polymerization, is located in a novel VAKS motif that is structurally homologous to the canonical YPKN pilin lysine in other three- and four-domain Gram-positive pilins. The T6 structure also highlights a conserved pilin core whose surface is decorated with highly variable loops and extensions. Comparison to other Gram-positive BPs shows that many of the largest variable extensions are found in conserved locations. Studies with sera from patients diagnosed with GAS-associated acute rheumatic fever showed that each of the three T6 domains, and the largest of the variable extensions (V8), are targeted by IgG during infection in vivo. Although the GAS BP show large variations in size and sequence, the modular nature of the pilus proteins revealed by the T6 structure may aid the future design of a pilus-based vaccine. PMID:24778112

  5. Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes.

    PubMed

    Arrese, Estela L; Rivera, Laticia; Hamada, Masakazu; Mirza, Saima; Hartson, Steve D; Weintraub, Susan; Soulages, Jose L

    2008-05-01

    Triglycerides (TG) stored in lipid droplets (LDs) are the main energy reserve in all animals. The mechanism by which animals mobilize TG is complex and not fully understood. Several proteins surrounding the LDs have been implicated in TG homeostasis such as mammalian perilipin A and insect lipid storage proteins (Lsd). Most of the knowledge on LD-associated proteins comes from studies using cells or LDs leaving biochemical properties of these proteins uncharacterized. Here we describe the purification of recombinant Lsd1 and its reconstitution with lipids to form lipoprotein complexes suitable for functional and structural studies. Lsd1 in the lipid bound state is a predominately alpha-helical protein. Using lipoprotein complexes containing triolein it is shown that PKA mediated phosphorylation of Lsd1 promoted a 1.7-fold activation of the main fat body lipase demonstrating the direct link between Lsd1 phosphorylation and activation of lipolysis. Serine 20 was identified as the Lsd1-phosphorylation site triggering this effect. PMID:18342616

  6. Structure and membrane actions of a marine worm protein cytolysin, Cerebratulus toxin A-III.

    PubMed

    Kem, W R

    1994-02-28

    Four homologous Cerebratulus lacteus A toxins are the first and as yet only protein cytolysins to be isolated from an ancient phylum of marine worms, the nemertines. The most abundant and toxic variant, toxin A-III, has been sequenced and its mechanisms of action studied in the most detail. It consists of a single basic polypeptide chain of 95 amino acid residues cross-linked by three disulfide bonds, and possesses a predominantly alpha-helical secondary structure. The C-terminal third of the toxin sequence is postulated to be a helical 'hairpin' structure involved in pore formation. Toxin A-III permeabilizes a variety of cells as well as liposomes made from a variety of phospholipids; apparently large pores are formed, as large proteins are released almost as rapidly as small organic molecules and inorganic ions. At sublytic concentrations, the toxin also inhibits protein kinase C and endogenous voltage-gated cation selective (sodium, calcium) channels occurring in the nervous and cardiovascular systems. A curious observation, also reported for colicins and some other protein cytolysins, was the conservation of toxin secondary structure upon insertion into phospholipid liposomes, despite the strong likelihood that significant changes in tertiary structure occur to provide a hydrophobic surface for interaction with membrane lipids. Because of its small size and presumed single helical hairpin secondary structure, Cl toxin A-III is an excellent molecular subject for investigating protein insertion into biological membranes and mechanisms of pore formation.

  7. Disruption of the glucocorticoid receptor assembly with heat shock protein 90 by a peptidic antiglucocorticoid.

    PubMed

    Dao-Phan, H P; Formstecher, P; Lefebvre, P

    1997-06-01

    Association of glucocorticoid (GR) and progesterone (PR) receptors with a set of molecular chaperones, including the 90-kDa heat shock protein (hsp90), is a dynamic process required for proper folding and maintaining these nuclear receptors under a transcriptionally inactive, ligand-responsive state. Mutational studies of the chicken hsp90 complementary DNA suggested that three regions of this protein (A, B, and Z) interact with the hormone-binding domain of GR, whereas region A is dispensable for hsp90 binding to PR. We found that this 69-amino acid region can be narrowed down to a 35-mer alpha-helical, acidic peptide, which is by itself able to inhibit hsp90 association to GR translated in vitro. The hsp90-free GR did not bind ligand, but was devoid of any specific DNA-binding activity, and higher peptide concentrations specifically inhibited the binding of activated GR to DNA. When overexpressed in cultured cells, this peptide acted as an antiglucocorticoid and inhibited the antiactivating protein-1 activity and the ligand-dependent nuclear transfer of GR. None of these effects, either in vivo and in vitro, was observed for PR. The region from residue 232 to residue 265 of hsp90 is, therefore, a domain critical for its association to GR, an association that is a prerequisite for receptor transcriptional activity. More importantly, these results demonstrate that targeting specific protein/protein interaction interfaces is a powerful means to specifically modulate nuclear receptor signaling pathways in a ligand-independent manner.

  8. Cysteine-Rich Atrial Secretory Protein from the Snail Achatina achatina: Purification and Structural Characterization

    PubMed Central

    Shabelnikov, Sergey; Kiselev, Artem

    2015-01-01

    Despite extensive studies of cardiac bioactive peptides and their functions in molluscs, soluble proteins expressed in the heart and secreted into the circulation have not yet been reported. In this study, we describe an 18.1-kDa, cysteine-rich atrial secretory protein (CRASP) isolated from the terrestrial snail Achatina achatina that has no detectable sequence similarity to any known protein or nucleotide sequence. CRASP is an acidic, 158-residue, N-glycosylated protein composed of eight alpha-helical segments stabilized with five disulphide bonds. A combination of fold recognition algorithms and ab initio folding predicted that CRASP adopts an all-alpha, right-handed superhelical fold. CRASP is most strongly expressed in the atrium in secretory atrial granular cells, and substantial amounts of CRASP are released from the heart upon nerve stimulation. CRASP is detected in the haemolymph of intact animals at nanomolar concentrations. CRASP is the first secretory protein expressed in molluscan atrium to be reported. We propose that CRASP is an example of a taxonomically restricted gene that might be responsible for adaptations specific for terrestrial pulmonates. PMID:26444993

  9. Backbone chemical shift assignments for Xanthomonas campestris peroxiredoxin Q in the reduced and oxidized states: a dramatic change in backbone dynamics.

    PubMed

    Buchko, Garry W; Perkins, Arden; Parsonage, Derek; Poole, Leslie B; Karplus, P Andrew

    2016-04-01

    Peroxiredoxins (Prx) are ubiquitous enzymes that reduce peroxides as part of antioxidant defenses and redox signaling. While Prx catalytic activity and sensitivity to hyperoxidative inactivation depend on their dynamic properties, there are few examples where their dynamics has been characterized by NMR spectroscopy. Here, we provide a foundation for studies of the solution properties of peroxiredoxin Q from the plant pathogen Xanthomonas campestris (XcPrxQ) by assigning the observable (1)H(N), (15)N, (13)C(α), (13)C(β), and (13)C' chemical shifts for both the reduced (dithiol) and oxidized (disulfide) states. In the reduced state, most of the backbone amide resonances (149/152, 98 %) can be assigned in the XcPrxQ (1)H-(15)N HSQC spectrum. In contrast, a remarkable 51 % (77) of these amide resonances are not visible in the (1)H-(15)N HSQC spectrum of the disulfide state of the enzyme, indicating a substantial change in backbone dynamics associated with the formation of an intramolecular C48-C84 disulfide bond. PMID:26438558

  10. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dinesh, Bhimareddy; Squillaci, Marco A.; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-09-01

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to

  11. Solution NMR analysis of the interaction between the actinoporin sticholysin I and DHPC micelles--correlation with backbone dynamics.

    PubMed

    López-Castilla, Aracelys; Pazos, Fabiola; Schreier, Shirley; Pires, José Ricardo

    2014-06-01

    Sticholysin I (StI), an actinoporin expressed as a water-soluble protein by the sea anemone Stichodactyla helianthus, binds to natural and model membranes, forming oligomeric pores. It is proposed that the first event of a multistep pore formation mechanism consists of the monomeric protein attachment to the lipid bilayer. To date there is no high-resolution structure of the actinoporin pore or other membrane-bound form available. Here we evaluated StI:micelle complexes of variable lipid composition to look for a suitable model for NMR studies. Micelles of pure or mixed lysophospholipids and of dihexanoyl phosphatidylcholine (DHPC) were examined. The StI:DHPC micelle was found to be the best system, yielding a stable sample and good quality spectra. A comprehensive chemical shift perturbation analysis was performed to map the StI membrane recognition site in the presence of DHPC micelles. The region mapped (residues F(51), R(52), S(53) in loop 3; F(107), D(108), Y(109), W(111), Y(112), W(115) in loop 7; Q(129), Y(132), D(134), M(135), Y(136), Y(137), G(138) in helix-α2) is in agreement with previously reported data, but additional residues were found to interact, especially residues V(81), A(82), T(83), G(84) in loop 5, and A(85), A(87) in strand-β5. Backbone dynamics measurements of StI free in solution and bound to micelles highlighted the relevance of protein flexibility for membrane binding and suggested that a conformer selection process may take place during protein-membrane interaction. We conclude that the StI:DHPC micelles system is a suitable model for further characterization of an actinoporin membrane-bound form by solution NMR. PMID:24218049

  12. 15N, 13C and 1H backbone resonance assignments of an artificially engineered TEM-1/PSE-4 class A β-lactamase chimera and its deconvoluted mutant.

    PubMed

    Gobeil, Sophie M C; Gagné, Donald; Doucet, Nicolas; Pelletier, Joelle N

    2016-04-01

    The widespread use of β-lactam antibiotics has given rise to a dramatic increase in clinically-relevant β-lactamases. Understanding the structure/function relation in these variants is essential to better address the ever-growing incidence of antibiotic resistance. We previously reported the backbone resonance assignments of a chimeric protein constituted of segments of the class A β-lactamases TEM-1 and PSE-4 (Morin et al. in Biomol NMR Assign 4:127-130, 2010. doi: 10.1007/s12104-010-9227-8 ). That chimera, cTEM17m, held 17 amino acid substitutions relative to TEM-1 β-lactamase, resulting in a well-folded and fully functional protein with increased dynamics. Here we report the (1)H, (13)C and (15)N backbone resonance assignments of chimera cTEM-19m, which includes 19 substitutions and exhibits increased active-site perturbation, as well as one of its deconvoluted variants, as the first step in the analysis of their dynamic behaviours.

  13. Phylogenetic differences in content and intensity of periodic proteins.

    PubMed

    Gatherer, Derek; McEwan, Neil R

    2005-04-01

    Many proteins exhibit sequence periodicity, often correlated with a visible structural periodicity. The statistical significance of such periodicity can be assessed by means of a chi-squared-based test, with significance thresholds being calculated from shuffled sequences. Comparison of the complete proteomes of 45 species reveals striking differences in the proportion of periodic proteins and the intensity of the most significant periodicities. Eukaryotes tend to have a higher proportion of periodic proteins than eubacteria, which in turn tend to have more than archaea. The intensity of periodicity in the most periodic proteins is also greatest in eukaryotes. By contrast, the relatively small group of periodic proteins in archaea also tend to be weakly periodic compared to those of eukaryotes and eubacteria. Exceptions to this general rule are found in those prokaryotes with multicellular life-cycle phases, e.g., Methanosarcina sp., or Anabaena sp., which have more periodicities than prokaryotes in general, and in unicellular eukaryotes, which have fewer than multicellular eukaryotes. The distribution of significantly periodic proteins in eukaryotes is over a wide range of period lengths, whereas prokaryotic proteins typically have a more limited set of period lengths. This is further investigated by repeating the analysis on the NRL-3D database of proteins of solved structure. Some short-range periodicities are explicable in terms of basic secondary structure, e.g., alpha helices, while middle-range periodicities are frequently found to consist of known short Pfam domains, e.g., leucine-rich repeats, tetratricopeptides or armadillo domains. However, not all can be explained in this way. PMID:15883880

  14. Modifications to the Peptidoglycan Backbone Help Bacteria To Establish Infection ▿

    PubMed Central

    Davis, Kimberly M.; Weiser, Jeffrey N.

    2011-01-01

    Bacterial pathogens that colonize mucosal surfaces have acquired resistance to antimicrobials that are abundant at these sites. One of the main antimicrobials present on mucosal surfaces is lysozyme, a muramidase that hydrolyzes the peptidoglycan backbone of bacteria. Cleavage of the peptidoglycan backbone leads to bacterial cell death and lysis, which releases bacterial fragments, including peptidoglycan, at the site of infection. Peptidoglycan fragments can be recognized by host receptors and initiate an immune response that will aid in clearing infection. Many mucosal pathogens modify the peptidoglycan residues surrounding the cleavage site for lysozyme to avoid peptidoglycan degradation and the release of these proinflammatory fragments. This review will focus specifically on peptidoglycan modifications, their role in lysozyme resistance, and downstream effects on the host immune response to infection. PMID:21041496

  15. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  16. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming. PMID:25935050

  17. Graft Copolymers with Conducting Polymer Backbones: A Versatile Route to Functional Materials.

    PubMed

    Strover, Lisa T; Malmström, Jenny; Travas-Sejdic, Jadranka

    2016-02-01

    Graft copolymers with a conducting polymer backbone are a promising class of materials for diverse applications including, but not limited to, organic electronics, stimuli-responsive surfaces, sensors, and biomedical devices. These materials take advantage of the unique electrochemical and optoelectronic properties of conducting polymers, complemented by chemical and/or physical properties of the grafted sidechains. In this Personal Account, we discuss our work in designing functional surfaces based on graft copolymers with a conducting polymer backbone, in the context of broader developments in the field. We review the synthetic approaches available for the rational design of conducting-polymer-based graft copolymers, and examine the types of functional surfaces and soluble materials that may be engineered using these techniques.

  18. An experimental teleradiology transmission system using a high-speed ATM backbone network.

    PubMed

    Kato, K; Shimamoto, K; Ishigaki, T; Niimi, R; Ishiguchi, T; Mimura, T; Yamauchi, K; Ikeda, M; Iwata, A

    2000-01-01

    We evaluated the performance of an experimental teleradiology system based on a high-speed ATM backbone network. Image acquisition, transmission and the disk-to-display processing times were measured. Computerized tomography (CT) scans printed on 14 inch x 17 inch (36 cm x 43 cm) films were digitized and transferred over the network. The average time for the entire process was 1 min 30 s. Three radiologists interpreted 20 cases. For CT image interpretation, the reading time for one case ranged from 2 to 12 min (mean 6 min 46 s) on a monitor, and from 1 to 3 min (mean 1 min 31 s) with the original film. The ATM backbone network operating at 156 Mbit/s provided sufficient speed for remote consultation. However, further improvements in the operability of the system, especially the image viewing station, are necessary before it will be satisfactory for clinical use.

  19. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, George A.; Nelson, David A.; Molton, Peter M.

    1992-01-01

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

  20. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  1. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  2. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase

    PubMed Central

    Harris, Karen S.; Durek, Thomas; Kaas, Quentin; Poth, Aaron G.; Gilding, Edward K.; Conlan, Brendon F.; Saska, Ivana; Daly, Norelle L.; van der Weerden, Nicole L.; Craik, David J.; Anderson, Marilyn A.

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  3. Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity.

    PubMed

    Trevino, Simon G; Zhang, Na; Elenko, Mark P; Lupták, Andrej; Szostak, Jack W

    2011-08-16

    Multiple lines of evidence support the hypothesis that the early evolution of life was dominated by RNA, which can both transfer information from generation to generation through replication directed by base-pairing, and carry out biochemical activities by folding into functional structures. To understand how life emerged from prebiotic chemistry we must therefore explain the steps that led to the emergence of the RNA world, and in particular, the synthesis of RNA. The generation of pools of highly pure ribonucleotides on the early Earth seems unlikely, but the presence of alternative nucleotides would support the assembly of nucleic acid polymers containing nonheritable backbone heterogeneity. We suggest that homogeneous monomers might not have been necessary if populations of heterogeneous nucleic acid molecules could evolve reproducible function. For such evolution to be possible, function would have to be maintained despite the repeated scrambling of backbone chemistry from generation to generation. We have tested this possibility in a simplified model system, by using a T7 RNA polymerase variant capable of transcribing nucleic acids that contain an approximately 11 mixture of deoxy- and ribonucleotides. We readily isolated nucleotide-binding aptamers by utilizing an in vitro selection process that shuffles the order of deoxy- and ribonucleotides in each round. We describe two such RNA/DNA mosaic nucleic acid aptamers that specifically bind ATP and GTP, respectively. We conclude that nonheritable variations in nucleic acid backbone structure may not have posed an insurmountable barrier to the emergence of functionality in early nucleic acids.

  4. East vergent structure of Backbone Range: Insights from A-Lan-Yi area and sandbox modeling

    NASA Astrophysics Data System (ADS)

    Lee, C. A.; Lu, C. Y.

    2015-12-01

    Southern Taiwan, including Pingtung peninsula and Taitung, is the incipient oblique collision zone of Eurasian plate and Philippine Sea plate. The Luzon volcanic arc converged toward Taiwan Island and formed Hengchun Ridge south offshore Taiwan. Thus, Taiwan mountain belt developed from north to south as the Backbone Range, so that we can infer the incipient feature structure from the topography and outcrop study of southern Taiwan. Our field survey of this study concentrated at the southeast coastline of Taiwan, also known as A-Lan-Yi Trail. According to previous study, the deformational structures such as faults and folds are consistent with regional kinematic processes, and the preserved transpression structure is the most important evidence of incipient collision. In this study, we use the sedimentary sequences of study area to trace the regional tectonics from north to south. Discovered structures in this area show the similar kinematic history as the eastern flank of Backbone Range, so that we suggest they are at the same series of a tectonic event. To complete the regional structure mapping in this accessible area, besides the field geological data, we also applied the LiDAR-derived DTM which is a 3D visualization technology to improve our topography information. In addition, we use the sandbox modeling to demonstrate the development of structures in the eastern flank of Backbone Range. After combining the results of field observation and regional structure mapping, this study provides a strong evidence of backthrusting and backfolding deformation during the incipient oblique collision stage.

  5. Probing the Backbone Function of Tumor Targeting Peptides by an Amide-to-Triazole Substitution Strategy.

    PubMed

    Valverde, Ibai E; Vomstein, Sandra; Fischer, Christiane A; Mascarin, Alba; Mindt, Thomas L

    2015-09-24

    Novel backbone-modified radiolabeled analogs based on the tumor targeting peptide bombesin were synthesized and fully evaluated in vitro and in vivo. We have recently introduced the use of 1,4-disubstituted 1,2,3-triazoles as metabolically stable trans-amide bond surrogates in radiolabeled peptides in order to improve their tumor targeting. As an extension of our approach, we now report several backbone-modified analogs of the studied bombesin peptide bearing multiple triazole substitutions. We investigated the effect of the modifications on several biological parameters including the internalization of the radiopeptidomimetics into tumor cells, their affinity toward the gastrin releasing peptide receptor (GRPr), metabolic stability in blood plasma, and biodistribution in mice bearing GRPr-expressing xenografts. The backbone-modified radiotracers exhibited a significantly increased resistance to proteolytic degradation. In addition, some of the radiopeptidomimetics retained a nanomolar affinity toward GRPr, resulting in an up to 2-fold increased tumor uptake in vivo in comparison to a (all amide bond) reference compound. PMID:26309061

  6. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase.

    PubMed

    Harris, Karen S; Durek, Thomas; Kaas, Quentin; Poth, Aaron G; Gilding, Edward K; Conlan, Brendon F; Saska, Ivana; Daly, Norelle L; van der Weerden, Nicole L; Craik, David J; Anderson, Marilyn A

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  7. Proteins

    NASA Astrophysics Data System (ADS)

    Regnier, Fred E.; Gooding, Karen M.

    Because of the complexity of cellular material and body fluids, it is seldom possible to analyze a natural product directly. Qualitative and quantitative analyses must often be preceded by some purification step that separates the molecular species being examined from interfering materials. In the case of proteins, column liquid chromatography has been used extensively for these fractionations. With the advent of gel permeation, cation exchange, anion exchange, hydrophobic, and affinity chromatography, it became possible to resolve proteins through their fundamental properties of size, charge, hydrophobicity, and biological affinity. The chromatographic separations used in the early isolation and characterization of many proteins later became analytical tools in their routine analysis. Unfortunately, these inherently simple and versatile column chromatographic techniques introduced in the 50s and 60s have a severe limitation in routine analysis-separation time. It is common to encounter 1-24 h separation times with the classical gel-type supports.

  8. Structure of a designed protein cage that self-assembles into a highly porous cube

    DOE PAGES

    Lai, Yen-Ting; Reading, Eamonn; Hura, Greg L.; Tsai, Kuang-Lei; Laganowsky, Arthur; Asturias, Francisco J.; Tainer, John A.; Robinson, Carol V.; Yeates, Todd O.

    2014-11-10

    Natural proteins