Science.gov

Sample records for alpha-voltaic power source

  1. Design of Alpha Voltaic Power Source Using Americium 241 (241Am) and Diamond with a Power Density of 10 mW/cm3

    DTIC Science & Technology

    2017-10-19

    GaN) was calculated and compared . Alpha-voltaic energy converters were designed in diamond and GaN based on the energy deposition calculations...Example Power Source Two example device designs are calculated and compared . A diamond device containing 2 charge collection regions (Schottky and p...ARL-TR-8189 ● OCT 2017 US Army Research Laboratory Design of Alpha-Voltaic Power Source Using Americium-241 (241Am) and Diamond

  2. Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.

  3. Alpha-Voltaic Sources Using Diamond as Conversion Medium

    NASA Technical Reports Server (NTRS)

    Patel, Jagadish U.; Fleurial, Jean-Pierre; Kolawa, Elizabeth

    2006-01-01

    A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of a particles into electricity in diamond semiconductor diodes. These power sources would function over a wide range of temperatures encountered in terrestrial and outer-space environments. These sources are expected to have operational lifetimes of 10 to 20 years and energy conversion efficiencies >35 percent. A power source according to the proposal would include a pair of devices like that shown in the figure. Each device would contain Schottky and p/n diode devices made from high-band-gap, radiation-hard diamond substrates. The n and p layers in the diode portion would be doped sparsely (<1014 cm-3) in order to maximize the volume of the depletion region and thereby maximize efficiency. The diode layers would be supported by an undoped diamond substrate. The source of a particles would be a thin film of 244Cm (half-life 18 years) sandwiched between the two paired devices. The sandwich arrangement would force almost every a particle to go through the active volume of at least one of the devices. Typical a particle track lengths in the devices would range from 20 to 30 microns. The a particles would be made to stop only in the undoped substrates to prevent damage to the crystalline structures of the diode portions. The overall dimensions of a typical source are expected to be about 2 by 2 by 1 mm. Assuming an initial 244Cm mass of 20 mg, the estimated initial output of the source is 20 mW (a current of 20 mA at a potential of 1 V).

  4. Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2006-01-01

    A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of alpha particles into electricity. In addition to having long operational lives, these sources are expected to operate with energy-conversion efficiencies from 70 to 90 percent. A power source as proposed (see figure) would be an electrolytic cell in which liquid gallium would serve as both an electrolyte and an energy-conversion medium. The cell would contain an iridium cathode and a zirconium anode. The alpha particles, each with a kinetic energy approx.5.8 MeV, would be emitted by radioactive decay of Cm-244, which has a half-life of 18 years. The Cm-244 source would be positioned so that the a particles would enter the liquid gallium, where their kinetic energy would be dissipated mostly through ionization of Ga atoms, creating Ga(+) ions and free electrons. The electrons would be collected by iridium cathode, and the Ga(+) ions would be neutralized at the zirconium cathode by electrons returning after flowing through an external circuit. Gallium is a candidate for use as the electrolyte and the energy-conversion medium because in the liquid state it is a semimetal: its electrical conductivity is greater than that of a typical semiconductor but small in comparison with the conductivities of metals. Consequently, in liquid gallium, electrons and Ga(+) can exist without immediate recombination and can be moved by electric fields. It is expected that electric fields, resulting at least partly from the difference between the work functions of the electrode metals, would move the electrons and ions to their respective electrodes. The open-circuit potential of the cell is expected to be 1.62 V - equal to the difference between the work functions of iridium and zirconium. Unlike in a solid-state energy conversion medium, the impingement of energetic a particles would not give rise to displacement damage in the liquid gallium. Hence, the cell should have a long

  5. Alpha voltaic batteries and methods thereof

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip (Inventor); Scheiman, David (Inventor); Castro, Stephanie (Inventor); Raffaelle, Ryne P. (Inventor); Wilt, David (Inventor); Chubb, Donald (Inventor)

    2011-01-01

    An alpha voltaic battery includes at least one layer of a semiconductor material comprising at least one p/n junction, at least one absorption and conversion layer on the at least one layer of semiconductor layer, and at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction in the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the one p/n junction in the layer of semiconductor material.

  6. Miniaturized radioisotope solid state power sources

    NASA Astrophysics Data System (ADS)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  7. InGaP alpha voltaic batteries: Synthesis, modeling, and radiation tolerance

    NASA Astrophysics Data System (ADS)

    Cress, Cory D.; Landi, Brian J.; Raffaelle, Ryne P.; Wilt, David M.

    2006-12-01

    The viability of InGaP diodes coupled with α-particle sources as radioisotope power supplies is investigated both theoretically and experimentally. The electrical power output of epitaxially grown InGaP p-type/n-type (p/n) junction diodes coupled with Am241 and Po210 α-particle sources was measured. A theoretical model was developed that determines the α-particle energy deposition profile within an InGaP diode when irradiated by an omnidirectional α-particle source. The results of the model illustrate the dramatic influence the radiation source/diode configuration has on the α-particle energy deposition profile within a device. Progress has been shown towards increasing the radiation tolerance of the InGaP devices, which included utilizing an intrinsic region and reducing the junction thickness. Introduction of the intrinsic region within a conventional n /p diode to form a n-type/intrinsic/p-type diode enabled the device to withstand a ten times greater fluence of 4.2MeV α particles before decreasing to 50% of its original power output under simulated air mass zero illumination, when compared to an abrupt junction device with the same active region thickness.

  8. Power Source

    ERIC Educational Resources Information Center

    Schooley, Michael L.

    2010-01-01

    Principals are powerful: They are the primary catalysts for creating a lasting foundation for learning, driving school and student performance, and shaping the long-term impact of school improvement efforts. Yet few principals would characterize themselves as powerful. Rather, they're self-effacing, adaptable, pragmatic, and quick to share credit…

  9. Nuclear electric power sources

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Measurements on radioactive commercial p-n junction silicon cells show that these units are capable of delivering several hundred microwatts per curie of Am-241 alpha source, indicating their usefulness in such electronic devices as hearing aids, heart pacemakers, electronic watches, delay timers and nuclear dosimeter chargers. It is concluded that the Am-241 sources are superior to the beta sources used previously, because of higher alpha specific ionization and simultaneous production of low energy photons which are easily converted into photoelectrons for additional power.

  10. Integrated Power Source Grant

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed

  11. Technologies. [space power sources

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1992-01-01

    Energy technologies to meet the power requirements of future space missions are reviewed. Photovoltaic, solar dynamic, and solar thermal technologies are discussed along with techniques for energy storage and power management and distribution.

  12. Soldier System Power Sources

    DTIC Science & Technology

    2006-12-31

    dependence, and estimated mass of the stack. The model equations were derived from peer reviewed academic journals , internal studies, and texts on the subject...Liu, R. Dougal, E. Solodovnik, "VTB-Based Design of a Standalone Photovoltaic Power System", International Journal of Green Energy, Vol. 1, No. 3...Powered Battery Chargers 17 Exergy minimization 19 Use of secondary cells as temporary energy repositories 19 Design an automatic energy optimization

  13. Hybrid power source

    DOEpatents

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  14. Electrolyte salts for power sources

    SciTech Connect

    Doddapaneni, Narayan; Ingersoll, David

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  15. Radioisotope Sources of Electric Power

    DTIC Science & Technology

    1973-09-20

    u) watt/cm-3 O) specific activity f) curia/watt (curie/a) a) half-life c) specific power output h) years (capacity) 1) days d) watt/p Polonium - 210 ...AD/A-001 210 RADIOISOTOPE SOURCES OF ELECTRIC POWER G. M. Fradkin, et al Army Foreign Science and Technology Center Charlottesville, Virginia 20...ormed. 6v usino this effect , one may make small-sized 3ources of electrical eneruv. Batteries with direct charde collection may be used to create accel

  16. High power microwave source development

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  17. 46 CFR 183.310 - Power sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2013-10-01 2013-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...

  18. 46 CFR 129.310 - Power sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two... 46 Shipping 4 2011-10-01 2011-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST...

  19. 46 CFR 183.310 - Power sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2012-10-01 2012-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...

  20. 46 CFR 129.310 - Power sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two... 46 Shipping 4 2014-10-01 2014-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST...

  1. 46 CFR 129.310 - Power sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two... 46 Shipping 4 2012-10-01 2012-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST...

  2. 46 CFR 183.310 - Power sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2014-10-01 2014-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...

  3. 46 CFR 129.310 - Power sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two... 46 Shipping 4 2013-10-01 2013-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST...

  4. 46 CFR 183.310 - Power sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2011-10-01 2011-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...

  5. 46 CFR 183.310 - Power sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be...

  6. 46 CFR 129.310 - Power sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two...

  7. 46 CFR 120.310 - Power sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power sources. 120.310 Section 120.310 Shipping COAST... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.310 Power sources. (a)(1) Each vessel that relies on electricity to...

  8. 46 CFR 120.310 - Power sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Power sources. 120.310 Section 120.310 Shipping COAST... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.310 Power sources. (a)(1) Each vessel that relies on electricity to...

  9. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  10. Very high power THz radiation sources

    SciTech Connect

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.

    2002-10-31

    We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.

  11. Power System Oscillatory Behaviors: Sources, Characteristics, & Analyses

    SciTech Connect

    Follum, James D.; Tuffner, Francis K.; Dosiek, Luke A.

    This document is intended to provide a broad overview of the sources, characteristics, and analyses of natural and forced oscillatory behaviors in power systems. These aspects are necessarily linked. Oscillations appear in measurements with distinguishing characteristics derived from the oscillation’s source. These characteristics determine which analysis methods can be appropriately applied, and the results from these analyses can only be interpreted correctly with an understanding of the oscillation’s origin. To describe oscillations both at their source within a physical power system and within measurements, a perspective from the boundary between power system and signal processing theory has been adopted.

  12. How to Integrate Variable Power Source into a Power Grid

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi

    This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.

  13. Portable thermo-photovoltaic power source

    DOEpatents

    Zuppero, Anthony C.; Krawetz, Barton; Barklund, C. Rodger; Seifert, Gary D.

    1997-01-14

    A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

  14. Electrochemical Power Sources for Electric Highway Vehicles

    DOT National Transportation Integrated Search

    1972-06-01

    The report summarizes an assessment of electrochemical power sources (batteries and fuel cells) which are relevant to electric vehicle propulsion. A very brief description of each type of cell is given along with its present level of research.

  15. Small, Optically-Driven Power Source

    NASA Technical Reports Server (NTRS)

    Cockrum, Richard H.; Wang, Ke-Li J.

    1988-01-01

    Power transmitted along fiber-optic cables. Transmitted as infrared light along fiber-optic cable, converted to electricity to supply small electronic circuit. Power source and circuit remains electrically isolated from each other for safety or reduces electromagnetic interference. Array of diodes made by standard integrated-circuit techniques and packaged for mounting at end of fiber-optic cable.

  16. Power conditioning system for energy sources

    DOEpatents

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  17. Anomalous Power Flow and ``Ghost'' Sources

    NASA Astrophysics Data System (ADS)

    Monzon, Cesar

    2008-08-01

    It is demonstrated that EM radiation from complex sources can result in real power in restricted regions of space flowing back towards the sources, thereby mimicking “ghost” sources. This counterintuitive mechanism of radiation does not rely on backward waves, as ordinary waves carry the power. Ways to harness the effect by making it directional are presented, together with selected applications, of which deception is a prime example due to the nature of the phenomenon. The concept can be applied to other areas, such as mechanics, acoustics, etc., and can be realized with available technology.

  18. Spallation Neutron Source reaches megawatt power

    ScienceCinema

    Dr. William F. Brinkman

    2017-12-09

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  19. Radioisotope Power Sources for MEMS Devices,

    SciTech Connect

    Blanchard, J.P.

    2001-06-17

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a {sup 63}Ni liquidmore » source. A source volume containing 64 {micro}Ci provided a power of {approx}0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications.« less

  20. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  1. Unusual Supernovae and Alternative Power Sources

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel

    Recent observations have revealed a diverse class of peculiar supernovae, among them transients that are extremely luminous and unusually dim, or that evolve remarkably rapidly or slowly over time. The light curves of some of these events cannot be powered by ordinary energy sources such as the decay of radioactive isotopes. This chapter begins with a brief description of certain types of unusual supernovae and then reviews the basic physics of supernova light curves, deriving in a pedagogical way the analytic scalings that characterize the peak brightness and duration. After illustrating that ordinary power sources cannot explain all of the observed events, we turn to theoretical ideas involving less common mechanisms, such as energy injection from a long-lived central engine (a rapidly rotating magnetar or an accreting black hole). We conclude by speculating how alternative power sources may be manifest in observations of the assorted classes of peculiar supernovae.

  2. High power THz sources for nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-01

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  3. High power THz sources for nonlinear imaging

    SciTech Connect

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-18

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source deliversmore » 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.« less

  4. Clinical assessment of pacemaker power sources

    SciTech Connect

    Bilitch, M.; Parsonnet, V.; Furman, S.

    1980-01-01

    The development of power sources for cardiac pacemakers has progressed from a 15-year usage of mercury-zinc batteries to widely used and accepted lithium cells. At present, there are about 6 different types of lithium cells incorporated into commercially distributed pacemakers. The authors reviewed experience over a 5-year period with 1711 mercury-zinc, 130 nuclear (P238) and 1912 lithium powered pacemakers. The lithium units have included 698 lithium-iodide, 270 lithium-silver chromate, 135 lithium-thionyl chloride, 31 lithium-lead and 353 lithium-cupric sulfide batteries. 57 of the lithium units have failed (91.2% component failure and 5.3% battery failure). 459 mercury-zinc units failed (25% component failuremore » and 68% battery depletion). The data show that lithium powered pacemaker failures are primarily component, while mercury-zinc failures are primarily battery related. It is concluded that mercury-zinc powered pulse generators are obsolete and that lithium and nuclear (P238) power sources are highly reliable over the 5 years for which data are available. 3 refs.« less

  5. Emissivity Tuned Emitter for RTPV Power Sources

    SciTech Connect

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heatmore » to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation

  6. Environmentally friendly power sources for aerospace applications

    NASA Astrophysics Data System (ADS)

    Lapeña-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Ortí, Fortunato; Dudfield, Christopher; Orsillo, Alessandro

    One of the crucial challenges of the aviation industry in upcoming years is to reduce emissions not only in the vicinity of airfields but also in cruise. Amongst other transport methods, airplanes emissions count for 3% of the CO 2 emissions. Initiatives to reduce this include not only investing in more fuel-efficient aircrafts or adapting existing ones to make them more efficient (e.g. by fitting fuel-saving winglets), but also more actively researching novel propulsion systems that incorporate environmentally friendly technologies. The Boeing Company through its European subsidiary, Boeing Research and Technology Europe (BR&TE) in collaboration with industry partners throughout Europe is working towards this goal by studying the possible application of advanced batteries and fuel-cell systems in aeronautical applications. One example is the development of a small manned two-seater prototype airplane powered only by proton exchange membrane (PEM) fuel-cell stacks, which runs on compressed hydrogen gas as fuel and pressurized air as oxidant, and Li-ion batteries. The efficient all composite motorglider is an all electric prototype airplane which does not produce any of the noxious engine exhaust by-products, such as carbon dioxide, carbon monoxide or NO x, that can contribute to climate change and adversely affect local air quality. Water and heat are the only exhaust products. The main objective is to demonstrate for the first time in aviation history a straight level manned flight with fuel-cells as the only power source. For this purpose, the original engine of a super Dimona HK36TTC glider from Diamond Aircraft Industries (Austria) was replaced by a hybrid power system, which feeds a brushless dc electrical motor that rotates a variable pitch propeller. Amongst the many technical challenges encountered when developing this test platform are maintaining the weight and balance of the aircraft, designing the thermal management system and the power management

  7. Thermophotovoltaic Energy Conversion for Personal Power Sources

    DTIC Science & Technology

    2012-02-01

    FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) February 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) November 2010 to September...accepted power source to date . 3 2. Thermophotovoltaic Energy Conversion 2.1 Thermophotovoltaic Overview Figure 1 describes the primary...photovoltaic material systems for thermophotovoltaic conversion to date are gallium antimonide (GaSb)-related materials (homogeneous: 0.72 eV

  8. Power sources for autonomous underwater vehicles

    NASA Astrophysics Data System (ADS)

    Hasvold, Øistein; Størkersen, Nils J.; Forseth, Sissel; Lian, Torleif

    The paper addresses the general requirements for power sources for AUVs, including battery and semi-fuel cell design and safety considerations. The focus is on the last AUV in the HUGIN family: the HUGIN 1000 mine reconnaissance system. For this AUV, FFI recently developed a pressure tolerant lithium ion battery based on commercially available polymer cells. The Royal Norwegian Navy has been operating HUGIN 1000 since February 2004.

  9. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... certification or under operating rules and that requires a power supply is an “essential load” on the power supply. The power sources and the system must be able to supply the following power loads in probable... source of power is required, after any failure or malfunction in any one power supply system...

  10. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... certification or under operating rules and that requires a power supply is an “essential load” on the power supply. The power sources and the system must be able to supply the following power loads in probable... source of power is required, after any failure or malfunction in any one power supply system...

  11. Restrictive loads powered by separate or by common electrical sources

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.

    1989-01-01

    In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.

  12. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the

  13. 46 CFR 129.315 - Power sources for OSVs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs. (a) The requirements of... 46 Shipping 4 2014-10-01 2014-10-01 false Power sources for OSVs. 129.315 Section 129.315 Shipping... subpart 111.10 of this chapter. (b) If a generator provides electrical power for any system identified as...

  14. 46 CFR 161.013-9 - Independent power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent power source. 161.013-9 Section 161.013-9...: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Electric Distress Light for Boats § 161.013-9 Independent power source. (a) Each independent power source must be capable of powering the light so that it meets the...

  15. 49 CFR 193.2613 - Auxiliary power sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... test must take into account the power needed to start up and simultaneously operate equipment that... 49 Transportation 3 2011-10-01 2011-10-01 false Auxiliary power sources. 193.2613 Section 193.2613...: FEDERAL SAFETY STANDARDS Maintenance § 193.2613 Auxiliary power sources. Each auxiliary power source must...

  16. The Railgun and Its Power Source,

    DTIC Science & Technology

    1987-06-01

    34railguns") and to investigate in detail a power source which seemed especially suited to them. Background Figure I shows the principle of the raligun. x ...from the integral of J x B through the volume where the current crosses between the rails, and where J is the current density and B is the magnetic...force is yielded by: 3 F - - (1.2) x ax where W denotes energy and the partial derivative notation indicates that the portion of the energy change

  17. History of power sources in endoscopic surgery.

    PubMed

    Sutton, Christopher; Abbott, Jason

    2013-01-01

    The history of energy sources used in surgery is inextricably linked to the history of electricity. Milestones include identification of safe electrical waveforms that can be used in the human body, patient isolation to prevent alternate-site burns, bipolar energy sources to negate capacitance injuries, laser energy, and the combination vessel sealing devices commonly used today. Engineering efforts to eliminate many of the hazards of electrosurgery are critical to how we practice modern gynecologic surgery. The introduction of bipolar instruments, increasing the safety of monopolar electrosurgery by not using hybrid trocars, and introduction of active shielding of the instruments from stray radiofrequency energy using intelligent secondary conductors have led to the re-emergence of electrosurgery as the universal surgical energy source. The low ongoing costs and the presence of electrosurgical generators in all hospitals readily enables electrosurgery to be the mainstay. Expensive lasers are confined to specialized centers, where they continue to be used, but for a long while filled a gap created by complications of electrosurgery. Sophisticated power sources continue to be introduced and include the ultrasonic scalpel, plasma surgery, and various devices for sealing vessels, all of which have advantages and disadvantages that are recognized as they begin to be subjected to scientific validation in randomized trials. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.

  18. 46 CFR 112.05-5 - Emergency power source.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with § 112.05-1(c). Table 112.05-5(a) Size of vessel and service Type of emergency power source or... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...

  19. 46 CFR 112.05-5 - Emergency power source.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with § 112.05-1(c). Table 112.05-5(a) Size of vessel and service Type of emergency power source or... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...

  20. 46 CFR 112.05-5 - Emergency power source.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... with § 112.05-1(c). Table 112.05-5(a) Size of vessel and service Type of emergency power source or... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...

  1. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... generators which supply both ship's service and propulsion power do not need additional ship's service... 46 Shipping 4 2010-10-01 2010-10-01 false Power requirements, generating sources. 111.10-4 Section...

  2. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... generators which supply both ship's service and propulsion power do not need additional ship's service... 46 Shipping 4 2011-10-01 2011-10-01 false Power requirements, generating sources. 111.10-4 Section...

  3. High Pressure Microwave Powered UV Light Sources

    NASA Astrophysics Data System (ADS)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  4. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...

  5. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...

  6. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...

  7. Research on power source structure optimization for East China Power Grid

    NASA Astrophysics Data System (ADS)

    Xu, Lingjun; Sang, Da; Zhang, Jianping; Tang, Chunyi; Xu, Da

    2017-05-01

    The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.

  8. High Power Helicon Plasma Source for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is developing a high power helicon plasma source. The high power nature and pulsed neutral gas make this source unique compared to traditional helicon source. These properties produce a plasma flow along the magnetic field lines, and therefore allow the source to be decoupled from the reaction chamber. Neutral gas can be injected downstream, which allows for precision control of the ion-neutral ratio at the surface of the sample. Although operated at high power, the source has demonstrated very low impurity production. This source has applications to nanoparticle productions, surface modification, and ionized physical vapor deposition.

  9. Advanced Power Sources for Space Missions

    DTIC Science & Technology

    1989-01-01

    Range indicate that extremely high power levels hav- ing fast time-ramping capabilities must be provided during the tests. Only highly efficient prime...system efficiency results from advantages in thermal storage versus battery storage and from the increased conversion efficiency of a solar-dynamic... thermal manage- ment, power flow, and voltage levels, and may be in the same power range already experienced in the very- high -power radar and fusion

  10. 46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...

  11. 46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...

  12. 46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...

  13. 46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...

  14. 46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...

  15. 49 CFR 193.2445 - Sources of power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Equipment Vaporization Equipment § 193.2445 Sources of power. (a) Electrical...

  16. A portable high power microwave source with permanent magnets

    SciTech Connect

    Li, Wei; Zhang, Jun; Li, Zhi-qiang

    A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.

  17. Intelligent power management in a vehicular system with multiple power sources

    NASA Astrophysics Data System (ADS)

    Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul

    This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.

  18. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power source capacity and distribution. (a) Each installation whose functioning is required for type...

  19. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power source capacity and distribution. (a) Each installation whose functioning is required for type...

  20. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power source capacity and distribution. (a) Each installation whose functioning is required for type...

  1. 46 CFR 112.05-5 - Emergency power source.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... generator must be either a diesel engine or a gas turbine. [CGD 74-125A, 47 FR 15267, Apr. 8, 1982, as... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...

  2. 46 CFR 112.05-5 - Emergency power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... generator must be either a diesel engine or a gas turbine. [CGD 74-125A, 47 FR 15267, Apr. 8, 1982, as... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...

  3. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  4. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  5. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  6. 49 CFR 193.2915 - Alternative power sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Alternative power sources. 193.2915 Section 193.2915 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... GAS FACILITIES: FEDERAL SAFETY STANDARDS Security § 193.2915 Alternative power sources. An alternative...

  7. Evolution of power sources for implantable cardioverter defibrillators

    NASA Astrophysics Data System (ADS)

    Crespi, Ann M.; Somdahl, Sonja K.; Schmidt, Craig L.; Skarstad, Paul M.

    The evolution of seven generations of power sources for implantable cardioverter defibrillators (ICD) is presented. The packaging efficiency of the power sources has steadily increased, resulting in smaller, lighter batteries while maintaining the required electrical characteristics. The main areas for improvement were reduction of headspace volume, reduction of separator volume, and a change from a two-cell battery to a single cell.

  8. Exploring the Power of Heterogeneous Information Sources

    DTIC Science & Technology

    2011-01-01

    Individual movies are classified as being of one or more of 18 genres , such as Comedy and Thriller , which can be treated as binary vectors. 2) User... genres , from different sources, in different formats, and with different types of representation. Many interesting patterns cannot be extracted from a...provide better web services or help film distributors in decision making, we need to conduct integrative analysis of all the information sources. For

  9. Assessment of alternative power sources for mobile mining machinery

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.; Tomazic, W. A.; Evans, D. G.; Klann, J. L.

    1981-01-01

    Alternative mobile power sources for mining applications were assessed. A wide variety of heat engines and energy systems was examined as potential alternatives to presently used power systems. The present mobile power systems are electrical trailing cable, electrical battery, and diesel - with diesel being largely limited in the United States to noncoal mines. Each candidate power source was evaluated for the following requirements: (1) ability to achieve the duty cycle; (2) ability to meet Government regulations; (3) availability (production readiness); (4) market availability; and (5) packaging capability. Screening reduced the list of candidates to the following power sources: diesel, stirling, gas turbine, rankine (steam), advanced electric (batteries), mechanical energy storage (flywheel), and use of hydrogen evolved from metal hydrides. This list of candidates is divided into two classes of alternative power sources for mining applications, heat engines and energy storage systems.

  10. Assessment of alternative power sources for mobile mining machinery

    NASA Astrophysics Data System (ADS)

    Cairelli, J. E.; Tomazic, W. A.; Evans, D. G.; Klann, J. L.

    1981-12-01

    Alternative mobile power sources for mining applications were assessed. A wide variety of heat engines and energy systems was examined as potential alternatives to presently used power systems. The present mobile power systems are electrical trailing cable, electrical battery, and diesel - with diesel being largely limited in the United States to noncoal mines. Each candidate power source was evaluated for the following requirements: (1) ability to achieve the duty cycle; (2) ability to meet Government regulations; (3) availability (production readiness); (4) market availability; and (5) packaging capability. Screening reduced the list of candidates to the following power sources: diesel, stirling, gas turbine, rankine (steam), advanced electric (batteries), mechanical energy storage (flywheel), and use of hydrogen evolved from metal hydrides. This list of candidates is divided into two classes of alternative power sources for mining applications, heat engines and energy storage systems.

  11. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    NASA Astrophysics Data System (ADS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  12. 46 CFR 112.01-15 - Temporary emergency power source.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Temporary emergency power source. 112.01-15 Section 112.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-15...

  13. 46 CFR 112.01-20 - Final emergency power source.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Final emergency power source. 112.01-20 Section 112.01-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-20 Final emergency...

  14. 46 CFR 112.01-15 - Temporary emergency power source.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Temporary emergency power source. 112.01-15 Section 112.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-15...

  15. 46 CFR 112.01-20 - Final emergency power source.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Final emergency power source. 112.01-20 Section 112.01-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-20 Final emergency...

  16. 46 CFR 112.01-20 - Final emergency power source.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Final emergency power source. 112.01-20 Section 112.01-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-20 Final emergency...

  17. 46 CFR 112.01-20 - Final emergency power source.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Final emergency power source. 112.01-20 Section 112.01-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-20 Final emergency...

  18. 46 CFR 112.01-15 - Temporary emergency power source.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Temporary emergency power source. 112.01-15 Section 112.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-15...

  19. 46 CFR 112.01-15 - Temporary emergency power source.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Temporary emergency power source. 112.01-15 Section 112.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-15...

  20. 46 CFR 112.01-15 - Temporary emergency power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Temporary emergency power source. 112.01-15 Section 112.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-15...

  1. 46 CFR 112.01-20 - Final emergency power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Final emergency power source. 112.01-20 Section 112.01-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-20 Final emergency...

  2. Piezoelectric-based hybrid reserve power sources for munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Kwok, P.

    2017-04-01

    Reserve power sources are used extensively in munitions and other devices, such as emergency devices or remote sensors that need to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries sometimes require more than 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources are needed to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper, the development of a hybrid reserve power source that is constructed by integration of a piezoelectric-based energy harvesting device with a reserve battery to provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.

  3. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  4. Agent-based power sharing scheme for active hybrid power sources

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  5. Power source selection for neutral particle beam systems

    NASA Astrophysics Data System (ADS)

    Silverman, Sidney W.; Chi, John W. H.; Hill, Gregory

    Space based neutral particle beams (NPB) are being considered for use as an SDI weapon as well as a mid-course discriminator. These systems require a radio frequency (RF) power source. Five types of amplifiers were considered for the RF power source: the klystron, the klystrode, the tetrode, the cross field amplifier, and the solid state amplifier. A number of different types of power source systems (nuclear and non-nuclear) were considered for integration with these amplifiers. The most attractive amplifier power system concepts were identified through comparative evaluations that took into account the total masses of integrated amplifier power source systems as well as a number of other factors that consisted of development cost, technology risk, vulnerability, survivability, reliability, and impacts on spacecraft stabilization. These concepts are described and conclusions drawn.

  6. Power source for wireless sensors in pipes

    NASA Astrophysics Data System (ADS)

    Keddis, Sherif; Schwesinger, Norbert

    2016-04-01

    In this paper, we present investigations on wireless sensors for fluid control inside a pipe. Autarkic sensors are in the technical trend. They are typically connected with a transceiver unit for data transmission. Sensors usually need a lower amount of energy than data transceivers. Therefore, they are commonly supplied via wires or batteries with electricity. With common technologies, this request leads to high requirements on tightness in liquids since poor sealing could easily lead to failures. Replacement of batteries inside pipes is complicated and almost accompanied by a flow interruption. The application of energy harvesters as power supply is therefore a good alternative. In our studies we used flexible piezoelectric energy harvesters of PVDF (Poly-Vinylidene-Di-Fluoride). All harvesting units consist of piezoelectric PVDF-foils as active layers and Aluminum-foils as electrodes. The layers were stacked alternating on each other and wound to a spool. A LDPE-film wraps the spool and prevents the inflow of liquids. The device has following parameters:

  7. No. of windings: 4 in air, 4, 5, 7 in water
  8. Dimensions: 15 mm Ø 22mm
  9. Materials: PDVF: 25μm Aluminimum: 6μm, LDPE: 25μm
  10. A ring shaped bluff body was placed inside the pipe to induce turbulence in the fluid stream. As the harvesters have been arranged downstream of the bluff body, they were forced to oscillate independent of the media. In each case, deformation of the active layers led to a polarization and a separation of electrical charges. Experiments were carried out in a wind channel as well as in a water pipe. In air, the spool oscillates with a frequency of about 30Hz, at a wind speed of about 7m/s. A -Voltage of about 4V (peak-peak) was measured. This delivers in case of power adjustment, power values of about 0.54μW. In water, the velocity of the fluid was limited to nearly one tenth. Oscillation starts only at a water speed above 0.6m/s. The average oscillation

  11. Simulation of transvertron high power microwave sources

    NASA Astrophysics Data System (ADS)

    Sullivan, Donald J.; Walsh, John E.; Arman, M. Joseph; Godfrey, Brendan B.

    1989-07-01

    The transvertron oscillator or amplifier is a new and efficient type of intense relativistic electron-beam-driven microwave radiation source. In the m = 0 axisymmetric version, it consists of single or multiple cylindrical cavities driven at one of the TM(0np) resonances by a high-voltage, low-impedance electron beam. There is no applied magnetic field, and the oscillatory transverse motion acquired by the axially-injected electron beam is an essential part of the drive mechanism. The transvertron theory was systematically tested for a wide range of parameters and two possible applications. The simulations were designed to verify the theoretical predictions, assess the transvertron as a possible source of intense microwave radiation, and study its potential as a microwave amplifier. Numerical results agree well in all regards with the analytical theory. Simulations were carried out in two dimensions using CCUBE, with the exception of radial loading cases, where the three-dimensional code SOS was required.

  12. High Power Local Oscillator Sources for 1-2 THz

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Thomas, Bertrand; Lin, Robert; Maestrini, Alain; Ward, John; Schlecht, Erich; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Maiwald, Frank

    2010-01-01

    Recent results from the Heterodyne Instrument for Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore the current status of tunable local oscillator sources beyond HIFI and provide demonstration of how power combining of GaAs Schottky diodes can be used to increase both power and upper operating frequency for heterodyne receivers. Availability of power levels greater than 1 watt in the W-band now makes it possible to design a 1900 GHz source with more than 100 microwatts of expected output power.

  13. High-Power Laser Source Evaluation

    DTIC Science & Technology

    1998-07-01

    uniform:«»! had been:taped. A sample beam profile at the receiver Zerodur Au-coated mirror 20 cm diameter f/6 Diode laser Diode bars 1 21 m beam...amplifiers and mirrors . This is of concern to the NIF Project and the use of unconverted 1.06 p.m light to produce these x-ray sources might require...they may result in DSWA Final Report - 34 NWET ANNUAL REPORT - QDV-99-0001 undesirable conditions at the turning mirrors or ghosts in the up-beam

  14. High power LED standard light sources for photometric applications

    NASA Astrophysics Data System (ADS)

    Ivashin, Evgeniy; Ogarev, Sergey; Khlevnoy, Boris; Shirokov, Stanislav; Dobroserdov, Dmitry; Sapritsky, Victor

    2018-02-01

    High power LED light sources have been developed as possible new VNIIOFI standard sources for luminous intensity, luminous flux and colour measurements. Stability, repeatability and spatial uniformity of the sources were investigated and demonstrated high accuracy and homogeneity. The paper describes different tests on one of the manufactured sources. In the future, these LED light sources are planned to be used as standard luminous flux sources to transfer the units of luminous intensity and luminous flux from gonio-spectrometer to sphere-spectrometer.

  15. The Origin of Powerful Radio Sources

    NASA Astrophysics Data System (ADS)

    Wilson, A. S.; Colbert, E. J. M.

    1995-05-01

    Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.

  16. Nuclear power sources in outer space. [spacecraft propulsion legal aspects

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1978-01-01

    Legal problems associated with nuclear power sources in space are discussed with particular reference to the Cosmos 954 incident. Deliberations of the Legal and Scientific and Technical Subcommittees on the Peaceful Uses of Outer Space on this subject are discussed.

  17. High power pulsed sources based on fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  18. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  19. Alternative Radioisotopes for Heat and Power Sources

    NASA Astrophysics Data System (ADS)

    Tinsley, T.; Sarsfield, M.; Rice, T.

    Production of 238Pu requires considerable facilities including a nuclear reactor and reprocessing plants that are very expensive to build and operate. Thus, a more economical alternative is very attractive to the industry. There are many alternative radioisotopes that exist but few that satisfy the criteria of performance, availability and cost to produce. Any alternative to 238Pu must exist in a chemical form that is compatible with the materials required to safely encapsulate the heat source at the high temperatures of operation and potential launch failure scenarios. The chemical form must also have suitable thermal properties to ensure maximum energy conversion efficiencies when integrated into radioisotope thermoelectric generators over the required mission durations. In addition, the radiation dose must be low enough for operators during production and not so prohibitive that excessive shielding mass is required on the space craft. This paper will focus on the preferred European alternative of 241Am, and the issues that will need to be addressed.

  20. Tritium power source for long-lived sensors

    NASA Astrophysics Data System (ADS)

    Litz, M. S.; Katsis, D. C.; Russo, J. A.; Carroll, J. J.

    2014-06-01

    A tritium-based indirect converting photovoltaic (PV) power source has been designed and prototyped as a long-lived (~15 years) power source for sensor networks. Tritium is a biologically benign beta emitter and low-cost isotope acquired from commercial vendors for this purpose. The power source combines tritium encapsulated with a radioluminescent phosphor coupled to a commercial PV cell. The tritium, phosphor, and PV components are packaged inside a BA5590-style military-model enclosure. The package has been approved by the nuclear regulatory commission (NRC) for use by DOD. The power source is designed to produce 100μW electrical power for an unattended radiation sensor (scintillator and avalanche photodiode) that can detect a 20 μCi source of 137Cs at three meters. This beta emitting indirect photon conversion design is presented as step towards the development of practical, logistically acceptable, lowcost long-lived compact power sources for unattended sensor applications in battlefield awareness and environmental detection.

  21. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  22. High power green lasers for gamma source

    NASA Astrophysics Data System (ADS)

    Durand, Magali; Sevillano, Pierre; Alexaline, Olivier; Sangla, Damien; Casanova, Alexis; Aubourg, Adrien; Saci, Abdelhak; Courjaud, Antoine

    2018-02-01

    A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750 x 500 x 150 mm), which allows a pulse-pulse stability of 0.1 % rms, and a long-term stability of 1,9 % over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 4.4 ps. As for the regenerative amplifier a long-term stability of 1.9 % over 30 hours was achieved in an environment with +/-1°C temperature fluctuations The compression and Second Harmonics Generation Stages have allowed the conversion of 150 mJ of uncompressed infrared beam into 60 mJ at 515 nm.

  23. High power lasers for gamma source

    NASA Astrophysics Data System (ADS)

    Durand, Magali; Sangla, Damien; Trophème, Benoit; Sevillano, Pierre; Casanova, Alexis; Caillon, Laurianne; Courjaud, Antoine

    2017-02-01

    A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 3.5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750x500x150 cm), which allows a pulse-pulse stability of 0.1% rms, and a long-term stability of 1,9% over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 3.5 ps.

  24. Events as power source: wireless sustainable corrosion monitoring.

    PubMed

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  1. Optical arc sensor using energy harvesting power source

    SciTech Connect

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arcmore » energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.« less

  2. Optical arc sensor using energy harvesting power source

    NASA Astrophysics Data System (ADS)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  3. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    NASA Technical Reports Server (NTRS)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  4. A smart repetitive-rate wideband high power microwave source

    SciTech Connect

    Li, Wei; Zhang, Jun; Qian, Bao-liang

    2016-01-15

    A smart repetitive-rate wideband High Power Microwave (HPM) source based on the A6 Magnetron with Diffraction Output is described in this paper. The length of the HPM source is 30 cm and its weight is 35 kg. Computer simulations show that the source can produce microwave with central frequency of 1.91 GHz and bandwidth of about 11%. Experimental measurements show that the output microwave power from the source reaches in maximum 110 MW when the input electric power from the pulsed driver is ∼500 MW, which gives the power conversion efficiency 22%. Central frequency of the output HPM in the experiment is 1.94 GHz withmore » the bandwidth ranging from 1.82 GHz to 2.02 GHz. The jitter of the output HPM power is lower than 3 dB when the source operates in the repetition mode with 50 Hz rate.« less

  5. Development and Demonstration of a 25 Watt Thermophotovoltaic Power Source for a Hybrid Power System

    NASA Technical Reports Server (NTRS)

    Doyle, Edward; Shukla, Kailash; Metcalfe, Christopher

    2001-01-01

    The development of a propane-fueled, 25 W thermophotovoltaic (TPV) power source for use in a hybrid power system is described. The TPV power source uses a platinum emitting surface with an anti-reflective coating to radiate to gallium antimonide photocells, which converts the radiation to electric power. The development program started with the design and fabrication of an engineering prototype system. This was used as a component development vehicle to develop the technologies for the various components. A 25 W demonstration prototype was then designed and fabricated using the most advanced component approaches. The designs and test results from this development program are discussed.

  6. Balancing Green Power; How to deal with variable energy sources

    NASA Astrophysics Data System (ADS)

    Elliott, David

    2016-04-01

    Renewable energy sources are large but some are variable and intermittent. The wide-scale use of renewable energy sources for energy supply will require the adoption of ways to compensate for their variability. This book reviews the technical options looking at their pros and cons and how they might work together to support a reliable and sustainable energy system. This is a rapidly advancing area of research and practice and Balancing Green Power offers an ideal introduction to the field.

  7. Compact Power Conditioning and RF Systems for a High Power RF Source

    DTIC Science & Technology

    2008-12-01

    RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system

  8. Optical Power Source Derived from Engine Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    1999-01-01

    An optical power source is disclosed that collects the spectra of the light emissions created in a combustion chamber to provide its optical output signals that serve the needs of optical networks. The light spectra is collected by a collection ring serving as an optical waveguide.

  9. Mathematical Modeling Of A Nuclear/Thermionic Power Source

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Ewell, Richard C.

    1992-01-01

    Report discusses mathematical modeling to predict performance and lifetime of spacecraft power source that is integrated combination of nuclear-fission reactor and thermionic converters. Details of nuclear reaction, thermal conditions in core, and thermionic performance combined with model of swelling of fuel.

  10. High School Principals as Leaders: Styles and Sources of Power

    ERIC Educational Resources Information Center

    Brinia, Vasiliki; Papantoniou, Eva

    2016-01-01

    Purpose: The purpose of this paper is to present the characteristics of leadership (style adopted, sources of power exercised and factors affecting leadership) of high school principals in Greece. Design/Methodology/Approach: In total, 235 school principals were surveyed using questionnaires. These questionnaires assessed how often they adopted…

  11. 46 CFR 28.870 - Emergency source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (a) The following electrical loads must be connected to an independent emergency source of power capable of supplying all connected loads continuously for at least three hours: (1) Navigation lights; (2... ventilated compartment. The batteries must be protected from falling objects; (4) Each battery tray must be...

  12. Power source evaluation capabilities at Sandia National Laboratories

    SciTech Connect

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  13. 8. FACING NORTH, LOOKING UP TAILRACE TOWARD WATER POWER SOURCE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. FACING NORTH, LOOKING UP TAILRACE TOWARD WATER POWER SOURCE. PENSTOCK RUNS LEFT TO RIGHT. HOOD OR IRON DRAINAGE TUBE FROM TURBINE WHEELS IN VIEW. CONDUIT VISIBLE UNDER PENSTOCK IS PART OF WASTE WATER DRAINAGE SYSTEM. MILL NO. 1 IS NEARER VIEWER; MILL NO. 2 IN BACKGROUND. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  14. 49 CFR 193.2613 - Auxiliary power sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Auxiliary power sources. 193.2613 Section 193.2613 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  15. Controllable Bidirectional dc Power Sources For Large Loads

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1995-01-01

    System redesigned for greater efficiency, durability, and controllability. Modern electronically controlled dc power sources proposed to supply currents to six electromagnets used to position aerodynamic test model in wind tunnel. Six-phase bridge rectifier supplies load with large current at voltage of commanded magnitude and polarity. Current-feedback circuit includes current-limiting feature giving some protection against overload.

  16. Investigation of a high power electromagnetic pulse source.

    PubMed

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.

  17. Space radioisotope power source requirements update and technology status

    SciTech Connect

    Mondt, J.F.

    1998-07-01

    The requirements for a space advanced radioisotope power source are based on potential deep space missions being investigated for the NASA Advanced Space Systems Development Program. Since deep space missions have not been approved, updating requirements is a continuos parallel process of designing the spacecraft and the science instruments to accomplish the potential missions and developing the power source technology to meet changing requirements. There are at least two potential missions, Pluto/Kuiper Express and Europa Orbiter, which may require space advanced radioisotope power sources. The Europa Orbiter has been selected as the preferred first potential mission. However the final decisionmore » will depend on the technology readiness of all the subsystems and the project must be able to switch to Pluto Kuiper Express as the first mission as late as the beginning of fiscal year 2000. Therefore the requirements for the power source will cover both potential missions. As the deep space spacecraft design evolves to meet the science requirements and the Alkali Metal Thermal to Electric (AMTEC) technology matures the advanced radioisotope power source design requirements are updated The AMTEC technology developed to date uses stainless steel for the sodium containment material. The higher efficiency required for the space power system dictates that the AMTEC technology must operate at a higher temperature than possible with stainless steel. Therefore refractory materials have been selected as the baseline material for the AMTEC cell. These refractory materials are Nb1Zr for the hot side and Nb1Zr or Nb10Hf1Ti for the cold side. These materials were selected so the AMTEC cell can operate at 1150K to 1350K hot side temperature and 600K to 700K cold side temperature and meet the present power and mass requirements using four to six general purpose heat source modules as the heat source. The new containment materials and brazes will be evaluated as to lifetime

  18. Power supply system for negative ion source at IPR

    NASA Astrophysics Data System (ADS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  19. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  20. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  1. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  2. Americium As A Potential Power Source For Space Missions

    NASA Astrophysics Data System (ADS)

    Cordingley, Leon; Rice, Tom; Sarsfield, Mark J.; Stephenson, Keith; Tinsley, Tim

    2011-10-01

    Electrical power sources used in outer planet missions are a key enabling technology for data acquisition and communications. Power sources generate electricity from the thermal energy from alpha decay of the radioisotope 238Pu via thermoelectric conversion. Production of 238Pu requires specialist facilities including a nuclear reactor and reprocessing plants that are expensive to build and operate, so naturally, a more economical alternative is attractive to the industry. Within Europe 241Am is a feasible alternative to 238Pu that can provide a heat source for radioisotope thermoelectric generators (RTGs) and radioisotope heating units (RHUs). Whilst there are implications associated with the differences between 238Pu and 241Am, these technological challenges are surmountable.

  3. Power combination of a self-coherent high power microwave source

    SciTech Connect

    Yan, Xiaolu, E-mail: yanxl-dut@163.com; Zhang, Xiaoping; Li, Yangmei

    2015-09-15

    In our previous work, generating two phase-locked high power microwaves (HPMs) in a single self-coherent HPM device has been demonstrated. In this paper, after optimizing the structure of the previous self-coherent source, we design a power combiner with a folded phase-adjustment waveguide to realize power combination between its two sub-sources. Further particle-in-cell simulation of the combined source shows that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, a combined output microwave with 3.59 GW and 9.72 GHz is generated. The impedance of the combined device is 36 Ω and the total power conversion efficiency is 28%.

  4. GaP betavoltaic cells as a power source

    NASA Technical Reports Server (NTRS)

    Pool, F. S.; Stella, Paul M.; Anspaugh, B.

    1991-01-01

    Maximum power output for the GaP cells of this study was found to be on the order of 1 microW. This resulted from exposure to 200 and 40 KeV electrons at a flux of 2 x 10(exp 9) electrons/sq cm/s, equivalent to a 54 mCurie source. The efficiencies of the cells ranged from 5 to 9 percent for 200 and 40 KeV electrons respectively. The lower efficiency at higher energy is due to a substantial fraction of energy deposition in the substrate, further than a diffusion length from the depletion region of the cell. Radiation damage was clearly observed in GaP after exposure to 200 KeV electrons at a fluence of 2 x 10(exp 12) electrons/sq cm. No discernable damage was observed after exposure to 40 KeV electrons at the same fluence. Analysis indicates that a GaP betavoltaic system would not be practical if limited to low energy beta sources. The power available would be too low even in the ideal case. By utilizing high activity beta sources, such as Sr-90/Y-90, it may be possible to achieve performance that could be suitable for some space power applications. However, to utilize such a source the problem of radiation damage in the beta cell material must be overcome.

  5. Power Control of New Wind Power Generation System with Induction Generator Excited by Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori

    This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.

  6. Low power energy harvesting and storage techniques from ambient human powered energy sources

    NASA Astrophysics Data System (ADS)

    Yildiz, Faruk

    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide

  7. US Army Research Laboratory power sources R and D programs

    SciTech Connect

    Christopher, H.A.; Gilman, S.; Hamlen, R.P.

    1993-05-01

    The development and application of new electronic technologies over the recent past has resulted in a major evolution of new electronic battlefield equipment. The need for lighter-weight and more cost effective power sources with higher power/energy density capability is critical to the successful development and deployment of these new, high performance battlefield devices. The current status and thrust of the Army Research Laboratory's (ARL's) battery and fuel cell R and D programs that support these new and emerging applications will be reviewed. Major technical barriers will be identified along with the corresponding proposed approaches to solving these anticipated problems.

  8. High-power picosecond fiber source for coherent Raman microscopy

    PubMed Central

    Kieu, Khanh; Saar, Brian G.; Holtom, Gary R.; Xie, X. Sunney; Wise, Frank W.

    2011-01-01

    We report a high-power picosecond fiber pump laser system for coherent Raman microscopy (CRM). The fiber laser system generates 3.5 ps pulses with 6 W average power at 1030 nm. Frequency doubling yields more than 2 W of green light, which can be used to pump an optical parametric oscillator to produce the pump and the Stokes beams for CRM. Detailed performance data on the laser and the various wavelength conversion steps are discussed, together with representative CRM images of fresh animal tissue obtained with the new source. PMID:19571996

  9. Sub-Shot Noise Power Source for Microelectronics

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan; Mansour, Kamjou

    2011-01-01

    Low-current, high-impedance microelectronic devices can be affected by electric current shot noise more than they are affected by Nyquist noise, even at room temperature. An approach to implementing a sub-shot noise current source for powering such devices is based on direct conversion of amplitude-squeezed light to photocurrent. The phenomenon of optical squeezing allows for the optical measurements below the fundamental shot noise limit, which would be impossible in the domain of classical optics. This becomes possible by affecting the statistical properties of photons in an optical mode, which can be considered as a case of information encoding. Once encoded, the information describing the photon (or any other elementary excitations) statistics can be also transmitted. In fact, it is such information transduction from optics to an electronics circuit, via photoelectric effect, that has allowed the observation of the optical squeezing. It is very difficult, if not technically impossible, to directly measure the statistical distribution of optical photons except at extremely low light level. The photoelectric current, on the other hand, can be easily analyzed using RF spectrum analyzers. Once it was observed that the photocurrent noise generated by a tested light source in question is below the shot noise limit (e.g. produced by a coherent light beam), it was concluded that the light source in question possess the property of amplitude squeezing. The main novelty of this technology is to turn this well-known information transduction approach around. Instead of studying the statistical property of an optical mode by measuring the photoelectron statistics, an amplitude-squeezed light source and a high-efficiency linear photodiode are used to generate photocurrent with sub-Poissonian electron statistics. By powering microelectronic devices with this current source, their performance can be improved, especially their noise parameters. Therefore, a room-temperature sub

  10. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot

  11. Power conversion and control methods for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  12. Power Transmission From The ITER Model Negative Ion Source

    SciTech Connect

    Boilson, D.; Esch, H. P. L. de; Grand, C.

    2007-08-10

    In Cadarache development on negative ion sources is being carried out on the KAMABOKO III ion source on the MANTIS test bed. This is a model of the ion source designed for the neutral beam injectors of ITER. This ion source has been developed in collaboration with JAERI, Japan, who also designed and supplied the ion source. Its target performance is to accelerate a D- beam, with a current density of 200 A/m2 and <1 electron extracted per accelerated D- ion, at a source filling pressure of 0.3 Pa. For ITER a continuous ion beam must be assured for pulsemore » lengths of 1000 s, but beams of up to 3,600 s are also envisaged. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter. During long pulse operation ({<=}1000 s) it was found that the current density of both D- and H- beams, measured at the calorimeter was lower than expected and that a large discrepancy existed between the accelerated currents measured electrically and those transmitted to the calorimeter. The possibility that this discrepancy arose because the accelerated current included electrons (which would not be able to reach the calorimeter) was investigated and subsequently eliminated. Further studies have shown that the fraction of the electrical current reaching the calorimeter varies with the pulse length, which led to the suggestion that one or more of the accelerator grids were distorting due to the incident power during operation, leading to a progressive deterioration in the beam quality.. New extraction and acceleration grids have been designed and installed, which should have a better tolerance to thermal loads than those previously used. This paper describes the measurements of the power transmission and distribution using these grids.« less

  13. Scoping Calculations of Power Sources for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1994-01-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to make scoping calculations for mission analysis.

  14. High power narrow-band fiber-based ASE source.

    PubMed

    Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A

    2011-02-28

    In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.

  15. A Subtle Source of Power: The Effect of Having an Expectation on Anticipated Interpersonal Power

    PubMed Central

    BALDWIN, AUSTIN S.; KIVINIEMI, MARC T.; SNYDER, MARK

    2009-01-01

    In 2 studies, the authors tested the hypothesis that having information about another person can be a source of power in interpersonal interactions. In Study 1, the authors randomized participants to receive an expectation about an interaction partner, and the expectation provided an informational advantage for some participants but not for others. Participants with an advantage reported higher perceptions of power than did those who had information that did not confer an advantage; however, the effect was isolated to feelings of informational power. In Study 2, the authors examined whether the effect extended to different types of power when the information did not provide an explicit advantage. In this case, participants who received a more ambiguous expectation reported more diffuse feelings of power. The authors discuss implications for understanding the dynamics of power in social interactions. PMID:19245049

  16. Model predictive direct power control for active power decoupled single-phase quasi- Z -source inverter

    DOE PAGES

    Liu, Yushan; Ge, Baoming; Abu-Rub, Haitham; ...

    2016-06-14

    In this study, the active power filter (APF) that consists of a half-bridge leg and an ac capacitor is integrated in the single-phase quasi-Z-source inverter (qZSI) in this paper to avoid the second harmonic power flowing into the dc side. The capacitor of APF buffers the second harmonic power of the load, and the ac capacitor allows highly pulsating ac voltage, so that the capacitances of both dc and ac sides can be small. A model predictive direct power control (DPC) is further proposed to achieve the purpose of this newtopology through predicting the capacitor voltage of APF at eachmore » sampling period and ensuring the APF power to track the second harmonic power of single-phase qZSI. Simulation and experimental results verify the model predictive DPC for the APF-integrated single-phase qZSI.« less

  17. Model predictive direct power control for active power decoupled single-phase quasi- Z -source inverter

    SciTech Connect

    Liu, Yushan; Ge, Baoming; Abu-Rub, Haitham

    In this study, the active power filter (APF) that consists of a half-bridge leg and an ac capacitor is integrated in the single-phase quasi-Z-source inverter (qZSI) in this paper to avoid the second harmonic power flowing into the dc side. The capacitor of APF buffers the second harmonic power of the load, and the ac capacitor allows highly pulsating ac voltage, so that the capacitances of both dc and ac sides can be small. A model predictive direct power control (DPC) is further proposed to achieve the purpose of this newtopology through predicting the capacitor voltage of APF at eachmore » sampling period and ensuring the APF power to track the second harmonic power of single-phase qZSI. Simulation and experimental results verify the model predictive DPC for the APF-integrated single-phase qZSI.« less

  18. TPV power source development for an unmanned undersea vehicle

    SciTech Connect

    Holmquist, G.A.

    The thermophotovoltaic (TPV) generation of electrical power promises efficiencies that are exploitable for military and commercial applications. TPV offers a combination of unique characteristics as a power source for military Unmanned Undersea Vehicles. In civilian applications TPV technology offers the potential for lightweight, rugged, and reliable power systems that can be environmentally benign. These systems can use a variety of fuels and can be scaled up in size. TPV is truly a dual use technology in which the United States appears to have a technical lead. The focus of the current Quantum program is the maturation of the technology andmore » the demonstration of a 10 kilowatt generator. Preliminary results of this project are presented.« less

  19. Increasing EUV source efficiency via recycling of radiation power

    NASA Astrophysics Data System (ADS)

    Hassanein, Ahmed; Sizyuk, Valeryi; Sizyuk, Tatyana; Johnson, Kenneth C.

    2018-03-01

    EUV source power is critical for advanced lithography, for achieving economical throughput performance and also for minimizing stochastic patterning effects. Power conversion efficiency can be increased by recycling plasma-scattered laser radiation and other out-of-band radiation back to the plasma via retroreflective optics. Radiation both within and outside of the collector light path can potentially be recycled. For recycling within the collector path, the system uses a diffractive collection mirror that concomitantly filters all laser and out-of-band radiation out of the EUV output. In this paper we review the optical design concept for power recycling and present preliminary plasma-physics simulation results showing a potential gain of 60% in EUV conversion efficiency.

  20. Isotope heat source simulator for testing of space power systems

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Smith, R. B.

    1973-01-01

    A reliable isotope heat source simulator was designed for use in a Brayton power system. This simulator is composed of an electrically heated tungsten wire which is wound around a boron nitride core and enclosed in a graphite jacket. Simulator testing was performed at the expected operating temperature of the Brayton power system. Endurance testing for 5012 hours was followed by cycling the simulator temperature. The integrity of this simulator was maintained throughout testing. Alumina beads served as a diffusion barrier to prevent interaction between the tungsten heater and boron nitride core. The simulator was designed to maintain a surface temperature of 1311 to 1366 K (1900 to 2000 F) with a power input of approximately 400 watts. The design concept and the materials used in the simulator make possible man different geometries. This flexibility increases its potential use.

  1. Ion heating and flows in a high power helicon source

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Rémy; Plyushchev, Gennady; Scime, Earl E.

    2017-06-01

    We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions.

  2. Ion Heating and Flows in a High Power Helicon Source

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Remy; Plyushchev, Gennady; Thompson, Derek

    2017-10-01

    We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). RAID is equipped with a high power helicon source. Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.

  3. High Power Light Gas Helicon Plasma Source For VASMIR

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  4. Evaluation of a Silicon 90Sr Betavoltaic Power Source.

    PubMed

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90 Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90 Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  5. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    PubMed Central

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-01-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles. PMID:27905521

  6. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    NASA Astrophysics Data System (ADS)

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  7. 46 CFR 129.315 - Power sources for OSVs of 100 or more gross tons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs... 46 Shipping 4 2013-10-01 2013-10-01 false Power sources for OSVs of 100 or more gross tons. 129....10 of this chapter. (b) If a generator provides electrical power for any system identified as a vital...

  8. 46 CFR 129.315 - Power sources for OSVs of 100 or more gross tons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs... 46 Shipping 4 2011-10-01 2011-10-01 false Power sources for OSVs of 100 or more gross tons. 129....10 of this chapter. (b) If a generator provides electrical power for any system identified as a vital...

  9. 46 CFR 129.315 - Power sources for OSVs of 100 or more gross tons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs... 46 Shipping 4 2012-10-01 2012-10-01 false Power sources for OSVs of 100 or more gross tons. 129....10 of this chapter. (b) If a generator provides electrical power for any system identified as a vital...

  10. A low-power reversible alkali atom source

    NASA Astrophysics Data System (ADS)

    Kang, Songbai; Mott, Russell P.; Gilmore, Kevin A.; Sorenson, Logan D.; Rakher, Matthew T.; Donley, Elizabeth A.; Kitching, John; Roper, Christopher S.

    2017-06-01

    An electrically controllable, solid-state, reversible device for sourcing and sinking alkali vapor is presented. When placed inside an alkali vapor cell, both an increase and decrease in the rubidium vapor density by a factor of two are demonstrated through laser absorption spectroscopy on 10-15 s time scales. The device requires low voltage (5 V), low power (<3.4 mW peak power), and low energy (<10.7 mJ per 10 s pulse). The absence of oxygen emission during operation is shown through residual gas analysis, indicating that Rb is not lost through chemical reaction but rather by ion transport through the designed channel. This device is of interest for atomic physics experiments and, in particular, for portable cold-atom systems where dynamic control of alkali vapor density can enable advances in science and technology.

  11. Intrinsic borohydride fuel cell/battery hybrid power sources

    NASA Astrophysics Data System (ADS)

    Hong, Jian; Fang, Bin; Wang, Chunsheng; Currie, Kenneth

    The electrochemical oxidation behaviors of NaBH 4 on Zn, Zn-MH, and MH (metal-hydride) electrodes were investigated, and an intrinsic direct borohydride fuel cell (DBFC)/battery hybrid power source using MH (or Zn-MH) as the anode and MnO 2 as the cathode was tested. Borohydride cannot be effectively oxidized on Zn electrodes at the Zn oxidation potential because of the poor electrocatalytic ability of Zn for borohydride oxidation and the high overpotential, even though borohydride has the same oxidation potential of Zn in an alkaline solution. The borohydride can be electrochemically oxidized on Ni and MH electrodes through a 4e reaction at a high overpotential. Simply adding borohydride into an alkaline electrolyte of a Zn/air or MH/air battery can greatly increase the capacity, while an intrinsic DBFC/MH(or Zn)-MnO 2 battery can deliver a higher peak power than regular DBFCs.

  12. The Environment Friendly Power Source for Power Supply of Mobile Communication Base Stations

    NASA Astrophysics Data System (ADS)

    Rudenko, N. V.; Ershov, V. V.; Evstafiev, V. V.

    2017-05-01

    The article describes the technical proposals to improve environmental and resource characteristics of the autonomous power supply systems of mobile communication base stations based on renewable energy sources, while ensuring the required reliability and security of power supply. These include: the replacement of diesel-generator with clean energy source - an electrochemical generator based on hydrogen fuel cells; the use of wind turbines with a vertical axis; use of specialized batteries. Based on the analysis of the know technical solutions, the structural circuit diagram of the hybrid solar-wind-hydrogen power plant and the basic principles of the algorithm of its work were proposed. The implementation of these proposals will improve the environmental and resource characteristics.

  13. Power-Law Template for IR Point Source Clustering

    NASA Technical Reports Server (NTRS)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 < I < 2200), the Balloonborne Large-Aperture Submillimeter Telescope (BLAST; 250, 350 and 500 microns; 1000 < I < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  14. Power-Law Template for Infrared Point-Source Clustering

    NASA Technical Reports Server (NTRS)

    Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; hide

    2012-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx < l approx < 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 micron; 1000 approx < l approx < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  15. High Power, Millimeter-Wavelength, Coherent Radiation Sources.

    DTIC Science & Technology

    1986-09-25

    J . Murphy, Ph.D. (1982). 5. M. Abdelkarim , Ph.D. (1984). 6. T. Buller, Ph.D. (1985). a 7. B. Johnson, Ph.D. (1985). 8. E. Garate, Ph.D. (1985). 9. R...AD-A174 521 HIGH POWER KILL IMETER-WAVELENGTH COHERENTRAITO 1/ SOURCES(U) DARTMOUTH COLL HANOVER N H DEPT OF PHYSICS AND ASTRONOMY J E WALSH 25 SEP...82 - 1/31/86 -.: AIR F , 2 ..... . . T . ... ...... , 7 Approved for public release;"":" " ’n2. j ;’L’-’ ,- -"!d ,-d 12 l . 7. ... - ’ " + d. Chief

  16. A power transformer as a source of noise.

    PubMed

    Zawieska, Wiktor Marek

    2007-01-01

    This article presents selected results of analyses and simulations carried out as part of research performed at the Central Institute of Labor Protection - the National Research Institute (CIOP-PIB) in connection with the development of a system for active reduction of noise emitted by high power electricity transformers. This analysis covers the transformer as a source of noise as well as a mathematical description of the phenomenon of radiation of vibroacoustic energy through a transformer enclosure modeled as a vibrating rectangular plate. Also described is an acoustic model of the transformer in the form of an array of loudspeakers.

  17. Development and Use of the Galileo and Ulysses Power Sources

    SciTech Connect

    Bennett, Gary L; Hemler, Richard J; Schock, Alfred

    Paper presented at the 45th Congress of the International Astronautical Federation, October 1994. The Galileo mission to Jupiter and the Ulysses mission to explore the polar regions of the Sun required a new power source: the general-purpose heat source radioisotope thermoelectric generator (GPHS-RTG), the most powerful RTG yet flow. Four flight-qualified GPHS-RTGs were fabricated with one that is being used on Ulysses, two that are being used on Galileo and one that was a common spare (and is now available for the Cassini mission to Saturn). In addition, and Engineering Unit and a Qualification Unit were fabricated to qualify themore » design for space through rigorous ground tests. This paper summarizes the ground testing and performance predictions showing that the GPHS-RTGs have met and will continue to meet or exceed the performance requirements of the ongoing Galileo and Ulysses missions. There are two copies in the file.« less

  18. A combined source of electron bunches and microwave power

    NASA Astrophysics Data System (ADS)

    Xie, J. L.; Wang, F. Y.; Yang, X. P.; Shen, B.; Gu, W.; Zhang, L. W.

    2003-12-01

    In this article, the possibility of using a high power klystron amplifier simultaneously as a microwave power source as usual and an electron bunches source by extracting the spent beam with a magnet and also as an oscillator by feedback is investigated. The purpose of this study is to demonstrate the feasibility of constructing a very compact electron linear accelerator or for other applications of electron bunches. The feasibility of the idea was first examined by computer simulation of the electron motion in a 5 MW klystron and the characteristics of the klystron spent beam. Experimental study was then carried out by installing a radio frequency cavity and a Faraday cage in sequence at the exit end of a bending magnet located at the top of the klystron collector. The energy and current of the chopped spent electron beam can then be measured. By properly choosing the feedback circuit elements, the frequency stability of the klystron in oscillator mode was proved to be good enough for linac operation. According to the results presented in this article, it is evident that an extremely compact linac for research and education with better affordability can be constructed to promote the applications of linacs.

  19. Peak Source Power Associated with Positive Narrow Bipolar Lightning Pulses

    NASA Astrophysics Data System (ADS)

    Bandara, S. A.; Marshall, T. C.; Karunarathne, S.; Karunarathne, N. D.; Siedlecki, R. D., II; Stolzenburg, M.

    2017-12-01

    During the summer of 2016, we deployed a lightning sensor array in and around Oxford Mississippi, USA. The array system comprised seven lightning sensing stations in a network approximately covering an area of 30 km × 30 km. Each station is equipped with four sensors: Fast antenna (10 ms decay time), Slow antenna (1.0 s decay time)), field derivative sensor (dE/dt) and Log-RF antenna (bandwidth 187-192 MHz). We have observed 319 Positive NBPs and herein we report on comparisons of the NBP properties measured from the Fast antenna data with the Log-RF antenna data. These properties include 10-90% rise time, full width at half maximum, zero cross time, and range-normalized amplitude at 100 km. NBPs were categorized according to the fine structure of the electric field wave shapes into Types A-D, as in Karunarathne et al. [2015]. The source powers of NBPs in each category were determined using single station Log-RF data. Furthermore, we also categorized the NBPs in three other groups: initial event of an IC flash, isolated, and not-isolated (according to their spatiotemporal relationship with other lightning activity). We compared the source powers within each category. Karunarathne, S., T. C. Marshall, M. Stolzenburg, and N. Karunarathna (2015), Observations of positive narrow bipolar pulses, J. Geophys. Res. Atmos., 120, doi:10.1002/2015JD023150.

  20. Neutral particle dynamics in a high-power RF source

    SciTech Connect

    Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia.bg; Paunska, Ts.; Shivarova, A.

    2015-04-08

    Previous studies on the spatial discharge structure in the SPIDER source of negative hydrogen/deuterium ions carried out at low applied power are extended towards description of the discharge maintenance under the conditions of the actual rf power deposition of 100 kW planned for a single driver of the source. In addition to the expected higher electron density, the results show strong increase of the electron temperature and of the temperatures of the neutral species (hydrogen atoms and molecules). In the discussions, not only the spatial distribution of the plasma parameters but also that of the fluxes in the discharge (particlemore » and energy fluxes) is involved. The obtained results come in confirmation of basic concepts for low-pressure discharge maintenance: (i) mutually related electron density and temperature as a display of the generalized Schottky condition, (ii) discharge behavior governed by the fluxes, i.e. strong nonlocality in the discharge, and (iii) a non-ambipolarity in the discharge regime, which originates from shifted maxima of the electron density and temperature and shows evidence in a vortex electron flux and in a dc current in a rf discharge, the latter resulting from a shift in the positions of the maxima of the electron density and plasma potential.« less

  1. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    NASA Astrophysics Data System (ADS)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  2. Trimode Power Converter optimizes PV, diesel and battery energy sources

    NASA Astrophysics Data System (ADS)

    Osullivan, George; Bonn, Russell; Bower, Ward

    1994-12-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT's with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  3. Inertial electrostatic confinement as a power source for electric propulsion

    NASA Technical Reports Server (NTRS)

    Miley, George H.; Burton, R.; Javedani, J.; Yamamoto, Y.; Satsangi, A.; Gu, Y.; Heck, P.; Nebel, R.; Schulze, N.; Christensen, J.

    1993-01-01

    The potential use of an Inertial Electrostatic Confinement (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, in the present study, we consider an alternate approach, using the IEC to drive a conventional electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Present experiments at the U. of Illinois in small IEC devices (less than 60-cm. dia.) have demonstrated much of the basic physics underlying this concept, e.g. producing approximately 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status will be presented with a description of the overall propulsion system and estimated performance.

  4. Inertial electrostatic confinement as a power source for electric propulsion

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Burton, R.; Javedani, J.; Yamamoto, Y.; Satsangi, A; Gu, Y.; Heck, P.; Nebel, R.; Schulze, N.; Christensen, J.

    1993-01-01

    The potential use of an INERTIAL ELECTROSTATIC CONFINEMENT (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, an alternate approach is considered, using the IEC to drive a 'conventional' electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Experiments at the U. of Illinois in small IEC devices (is less than 60 cm. dia.) demonstrated much of the basic physics underlying this concept, e.g. producing 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status are presented with a description of the overall propulsion system and estimated performance.

  5. 46 CFR 112.20-10 - Diesel or gas turbine driven emergency power source.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Power Source § 112.20-10 Diesel or gas turbine driven emergency power source. Simultaneously with the operation of the transfer means under § 112.20-5, the diesel engine or gas turbine driving the final... 46 Shipping 4 2011-10-01 2011-10-01 false Diesel or gas turbine driven emergency power source. 112...

  6. 46 CFR 112.20-10 - Diesel or gas turbine driven emergency power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Power Source § 112.20-10 Diesel or gas turbine driven emergency power source. Simultaneously with the operation of the transfer means under § 112.20-5, the diesel engine or gas turbine driving the final... 46 Shipping 4 2010-10-01 2010-10-01 false Diesel or gas turbine driven emergency power source. 112...

  7. Electrochemical Energy Storage and Power Sources for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2007-01-01

    An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.

  8. Flexible and stretchable power sources for wearable electronics

    PubMed Central

    Zamarayeva, Alla M.; Ostfeld, Aminy E.; Wang, Michael; Duey, Jerica K.; Deckman, Igal; Lechêne, Balthazar P.; Davies, Greg; Steingart, Daniel A.; Arias, Ana Claudia

    2017-01-01

    Flexible and stretchable power sources represent a key technology for the realization of wearable electronics. Developing flexible and stretchable batteries with mechanical endurance that is on par with commercial standards and offer compliance while retaining safety remains a significant challenge. We present a unique approach that demonstrates mechanically robust, intrinsically safe silver-zinc batteries. This approach uses current collectors with enhanced mechanical design, such as helical springs and serpentines, as a structural support and backbone for all battery components. We show wire-shaped batteries based on helical band springs that are resilient to fatigue and retain electrochemical performance over 17,000 flexure cycles at a 0.5-cm bending radius. Serpentine-shaped batteries can be stretched with tunable degree and directionality while maintaining their specific capacity. Finally, the batteries are integrated, as a wearable device, with a photovoltaic module that enables recharging of the batteries. PMID:28630897

  9. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2013-10-01 2013-10-01 false Loads on systems without a temporary emergency power...

  10. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2014-10-01 2014-10-01 false Loads on systems without a temporary emergency power...

  11. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2012-10-01 2012-10-01 false Loads on systems without a temporary emergency power...

  12. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2011-10-01 2011-10-01 false Loads on systems without a temporary emergency power...

  13. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2010-10-01 2010-10-01 false Loads on systems without a temporary emergency power...

  14. local alternative sources for cogeneration combined heat and power system

    NASA Astrophysics Data System (ADS)

    Agll, Abdulhakim Amer

    Global demand for energy continues to grow while countries around the globe race to reduce their reliance on fossil fuels and greenhouse gas emissions by implementing policy measures and advancing technology. Sustainability has become an important issue in transportation and infrastructure development projects. While several agencies are trying to incorporate a range of sustainability measures in their goals and missions, only a few planning agencies have been able to implement these policies and they are far from perfect. The low rate of success in implementing sustainable policies is primarily due to incomplete understanding of the system and the interaction between various elements of the system. The conventional planning efforts focuses mainly on performance measures pertaining to the system and its impact on the environment but seldom on the social and economic impacts. The objective of this study is to use clean and alternative energy can be produced from many sources, and even use existing materials for energy generation. One such pathway is using wastewater, animal and organic waste, or landfills to create biogas for energy production. There are three tasks for this study. In topic one evaluated the energy saving that produced from combined hydrogen, heat, and power and mitigate greenhouse gas emissions by using local sustainable energy at the Missouri S&T campus to reduce energy consumption and fossil fuel usage. Second topic aimed to estimate energy recovery and power generation from alternative energy source by using Rankin steam cycle from municipal solid waste at Benghazi-Libya. And the last task is in progress. The results for topics one and two have been presented.

  15. Inexpensive, Low Power, Open-Source Data Logging hardware development

    NASA Astrophysics Data System (ADS)

    Sandell, C. T.; Schulz, B.; Wickert, A. D.

    2017-12-01

    Over the past six years, we have developed a suite of open-source, low-cost, and lightweight data loggers for scientific research. These loggers employ the popular and easy-to-use Arduino programming environment, but consist of custom hardware optimized for field research. They may be connected to a broad and expanding range of off-the-shelf sensors, with software support built in directly to the "ALog" library. Three main models exist: The ALog (for Autonomous or Arduino Logger) is the extreme low-power model for years-long deployments with only primary AA or D batteries. The ALog shield is a stripped-down ALog that nests with a standard Arduino board for prototyping or education. The TLog (for Telemetering Logger) contains an embedded radio with 500 m range and a GPS for communications and precision timekeeping. This enables meshed networks of loggers that can send their data back to an internet-connected "home base" logger for near-real-time field data retrieval. All boards feature feature a high-precision clock, full size SD card slot for high-volume data storage, large screw terminals to connect sensors, interrupts, SPI and I2C communication capability, and 3.3V/5V power outputs. The ALog and TLog have fourteen 16-bit analog inputs with a precision voltage reference for precise analog measurements. Their components are rated -40 to +85 degrees C, and they have been tested in harsh field conditions. These low-cost and open-source data loggers have enabled our research group to collect field data across North and South America on a limited budget, support student projects, and build toward better future scientific data systems.

  16. Material issues relating to high power spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Futakawa, M.

    2015-02-01

    Innovative researches using neutrons are being performed at the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), in which a mercury target system is installed for MW-class pulse spallation neutron sources. In order to produce neutrons by the spallation reaction, proton beams are injected into the mercury target. At the moment, when the intense proton beam hits the target, pressure waves are generated in mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel, leading to negative pressure that may cause cavitation along the vessel wall, i.e. on the interface between liquid and solid metals. On the other hand, the structural materials are subjected to irradiation damage due to protons and neutrons, very high cycle fatigue damages and so-called "liquid metal embrittlement". That is, the structural materials must be said to be exposed to the extremely severe environments. In the paper, research and development relating to the material issues in the high power spallation neutron sources that has been performed so far at J-PARC is summarized.

  17. A high-power synthesized ultrawideband radiation source

    NASA Astrophysics Data System (ADS)

    Efremov, A. M.; Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-09-01

    A high-power ultrawideband radiation source has been developed which is capable of synthesizing electromagnetic pulses with different frequency bands in free space. To this end, a new circuit design comprising a four-channel former of bipolar pulses of durations 2 and 3 ns has been elaborated and conditions for the stable operation of gas gaps of independent channels without external control pulses have been determined. Each element of the 2 × 2 array of combined antennas is driven from an individual channel of the pulse former. Antennas excited by pulses of the same duration are arranged diagonally. Two radiation synthesis modes have been examined: one aimed to attain ultimate field strength and the other aimed to attain an ultimate width of the radiation spectrum. The modes were changed by changing the time delay between the 2-ns and 3-ns pulses. For the first mode, radiation pulses with a frequency band of 0.2-0.8 GHz and an effective potential of 500 kV have been obtained. The synthesized radiation pulses produced in the second mode had an extended frequency band (0.1-1 GHz) and an effective potential of 220 kV. The pulse repetition frequency was 100 Hz.

  18. Helios Dynamics A Potential Future Power Source for the Greek Islands

    DTIC Science & Technology

    2007-06-01

    offer an apparent understanding of the capabilities of the emerging Photovoltaic Power Converter (PVPC) technology used in panels for electricity... powering method that uses fueled generators and the alternative option is photovoltaic panels with the Atira technology embedded. This analysis is... POWER SOURCE FOR THE GREEK ISLANDS ABSTRACT The use of Alternative Renewable Energy Sources is becoming an increasing possibility to

  19. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing either...

  20. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing either...

  1. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing either...

  2. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the ship...

  3. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the ship...

  4. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the ship...

  5. 30 CFR 57.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... source. 57.6404 Section 57.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be locked in the open position except when closed to fire the blast. (b) Lead wires shall not be connected...

  6. A Low-Power and Portable Biomedical Device for Respiratory Monitoring with a Stable Power Source

    PubMed Central

    Yang, Jiachen; Chen, Bobo; Zhou, Jianxiong; Lv, Zhihan

    2015-01-01

    Continuous respiratory monitoring is an important tool for clinical monitoring. Associated with the development of biomedical technology, it has become more and more important, especially in the measuring of gas flow and CO2 concentration, which can reflect the status of the patient. In this paper, a new type of biomedical device is presented, which uses low-power sensors with a piezoresistive silicon differential pressure sensor to measure gas flow and with a pyroelectric sensor to measure CO2 concentration simultaneously. For the portability of the biomedical device, the sensors and low-power measurement circuits are integrated together, and the airway tube also needs to be miniaturized. Circuits are designed to ensure the stability of the power source and to filter out the existing noise. Modulation technology is used to eliminate the fluctuations at the trough of the waveform of the CO2 concentration signal. Statistical analysis with the coefficient of variation was performed to find out the optimal driving voltage of the pressure transducer. Through targeted experiments, the biomedical device showed a high accuracy, with a measuring precision of 0.23 mmHg, and it worked continuously and stably, thus realizing the real-time monitoring of the status of patients. PMID:26270665

  7. The Naive Misuse of Power: Nonconscious Sources of Sexual Harassment.

    ERIC Educational Resources Information Center

    Bargh, John A.; Raymond, Paula

    1995-01-01

    Considers sexual harassment from the perspective of abuse of power, and discusses the possibility of having power within a situation that automatically and nonconsciously triggers a sexuality schema, just as racial or gender features automatically trigger stereotypes of that group. The possible origins of the automatic power/sex linkage and its…

  8. Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration: Hydro power flexibility for power systems

    SciTech Connect

    Huertas-Hernando, Daniel; Farahmand, Hossein; Holttinen, Hannele

    2016-06-20

    Hydro power is one of the most flexible sources of electricity production. Power systems with considerable amounts of flexible hydro power potentially offer easier integration of variable generation, e.g., wind and solar. However, there exist operational constraints to ensure mid-/long-term security of supply while keeping river flows and reservoirs levels within permitted limits. In order to properly assess the effective available hydro power flexibility and its value for storage, a detailed assessment of hydro power is essential. Due to the inherent uncertainty of the weather-dependent hydrological cycle, regulation constraints on the hydro system, and uncertainty of internal load as wellmore » as variable generation (wind and solar), this assessment is complex. Hence, it requires proper modeling of all the underlying interactions between hydro power and the power system, with a large share of other variable renewables. A summary of existing experience of wind integration in hydro-dominated power systems clearly points to strict simulation methodologies. Recommendations include requirements for techno-economic models to correctly assess strategies for hydro power and pumped storage dispatch. These models are based not only on seasonal water inflow variations but also on variable generation, and all these are in time horizons from very short term up to multiple years, depending on the studied system. Another important recommendation is to include a geographically detailed description of hydro power systems, rivers' flows, and reservoirs as well as grid topology and congestion.« less

  9. Open Source Initiative Powers Real-Time Data Streams

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Under an SBIR contract with Dryden Flight Research Center, Creare Inc. developed a data collection tool called the Ring Buffered Network Bus. The technology has now been released under an open source license and is hosted by the Open Source DataTurbine Initiative. DataTurbine allows anyone to stream live data from sensors, labs, cameras, ocean buoys, cell phones, and more.

  10. Wind Power: A Renewable Energy Source for Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.

  11. Solid-state Isotopic Power Source for Computer Memory Chips

    NASA Technical Reports Server (NTRS)

    Brown, Paul M.

    1993-01-01

    Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25 percent which is two to three times greater than the 6 to 8 percent capabilities of current thermoelectric systems. Radio isotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.

  12. A Power Source for Sunless Lunar Missions Using Lithium Combustion

    NASA Astrophysics Data System (ADS)

    Miller, T. F.; Paul, M. V.

    2016-11-01

    Some lunar exploration targets require non-solar power due to shading. Batteries provide very brief excursions into sunless areas. Undersea powerplants that burn metals have significantly higher specific energy than primary batteries and no exhaust.

  13. Utility aspects of space power: Load management versus source management

    NASA Technical Reports Server (NTRS)

    Walls, B.

    1995-01-01

    Electrical power, as an area of study, is relatively young as compared to language, chemistry, physics, mathematics, philosophy, metallurgy, textiles, transportation, or farming. Practically all of the technology that has enabled the huge, continent-spanning power grids that have become ubiquitous in developed countries was developed in the last 150 years. In fact, Tesla's advocacy of alternating current for transmission just won out in the beginning of this century. Despite the novelty of the field as a whole, space power applications are, of course, much newer. This paper looks at the history of space power, and compares it to its older sibling on earth, forming a basis for determining appropriate transitions of technology from the terrestrial realm to space applications.

  14. High Power Broadband Multispectral Source on a Hybrid Silicon Chip

    DTIC Science & Technology

    2017-03-14

    insulator (SONOI) waveguide platform are demonstrated and emit over 200 mW pulsed output power at room temperature. Improvements are made to the 1.5-µm...silicon-on-nitride-on- insulator (SONOI) waveguide platform are demonstrated and emit over 200 mW pulsed output power at room temperature. Improvements are...optical bandwidth of the erbium-doped-fiber-amplifier with densely-spaced frequency channels. To extend the spectral capacity of the Si-on- insulator

  15. Teacher Views on School Administrators' Organizational Power Sources and Their Change Management Behaviours

    ERIC Educational Resources Information Center

    Argon, Türkan; Dilekçi, Ümit

    2016-01-01

    This study aimed to determine school administrators' organizational power sources and change management behaviours based on Bolu central district primary and secondary school teachers' views. The study conducted with relational screening model reached 286 teachers. School Administrators' Organizational Power Sources Scale and Change Management…

  16. 46 CFR 129.315 - Power sources for OSVs of 100 or more gross tons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs... one set must be independent of the main propulsion plant. A generator not independent of the main propulsion plant must comply with § 111.10-4(d) of this chapter. With any one generating set stopped, the...

  17. Review of power sources for Alaska DOT & PF road weather information systems (RWIS) : phase I.

    DOT National Transportation Integrated Search

    2014-06-01

    This report documents the findings related to a review of power sources for six off-grid Road Weather Information Systems (RWIS) in : Alaska. Various power sources were reviewed as a means of reliably operating the off-grid RWIS sites throughout the ...

  18. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Segregation of spaces containing the emergency source of electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section...

  19. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Segregation of spaces containing the emergency source of electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the...

  20. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Segregation of spaces containing the emergency source of electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section...

  1. Liquid-fueled SOFC power sources for transportation

    NASA Astrophysics Data System (ADS)

    Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  2. Investigation of rf power absorption in the plasma of helicon ion source.

    PubMed

    Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V

    2008-02-01

    The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.

  3. Facilitating Constructive Alignment in Power Systems Engineering Education Using Free and Open-Source Software

    ERIC Educational Resources Information Center

    Vanfretti, L.; Milano, F.

    2012-01-01

    This paper describes how the use of free and open-source software (FOSS) can facilitate the application of constructive alignment theory in power systems engineering education by enabling the deep learning approach in power system analysis courses. With this aim, this paper describes the authors' approach in using the Power System Analysis Toolbox…

  4. High Power Light Gas Helicon Plasma Source for VASIMR

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  5. 7 CFR 1710.254 - Alternative sources of power.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... facilities constitute an effective and economical means of meeting the power requirements of the consumers. A... proposals on an economic, present-value basis, giving consideration to cost-effectiveness, reliability of service, the short-term and long-term financial viability of the supplier, and the financial risk to the...

  6. 7 CFR 1710.254 - Alternative sources of power.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities constitute an effective and economical means of meeting the power requirements of the consumers. A... proposals on an economic, present-value basis, giving consideration to cost-effectiveness, reliability of service, the short-term and long-term financial viability of the supplier, and the financial risk to the...

  7. 7 CFR 1710.254 - Alternative sources of power.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... facilities constitute an effective and economical means of meeting the power requirements of the consumers. A... proposals on an economic, present-value basis, giving consideration to cost-effectiveness, reliability of service, the short-term and long-term financial viability of the supplier, and the financial risk to the...

  8. 7 CFR 1710.254 - Alternative sources of power.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... facilities constitute an effective and economical means of meeting the power requirements of the consumers. A... proposals on an economic, present-value basis, giving consideration to cost-effectiveness, reliability of service, the short-term and long-term financial viability of the supplier, and the financial risk to the...

  9. 7 CFR 1710.254 - Alternative sources of power.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... facilities constitute an effective and economical means of meeting the power requirements of the consumers. A... proposals on an economic, present-value basis, giving consideration to cost-effectiveness, reliability of service, the short-term and long-term financial viability of the supplier, and the financial risk to the...

  10. 300-Watt Power Source Development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.

    2005-01-01

    This viewgraph presentation reviews the JPL program to develop a 300 Watt direct methanol fuel cell. The immediate use of the fuel cell is to power test instrumentation on armored vehicles. It reviews the challenges, the system design and the system demonstration.

  11. Pulsed Beamless High Power Microwave (HPM) Source with Integrated Antenna

    DTIC Science & Technology

    2013-06-01

    lengt ance matchin ces have bee ntenna. Thi self-containe 150-550 MH power of thi m with a puls MICRO ED ANTE tromagnetic eign Trade ltgilbers U z...nal at ith a igned, ng of ve the 0-550 a. The ed by dance lowed peak ically- tional efined 88. 330

  12. Science and Technology Text Mining: Electric Power Sources

    DTIC Science & Technology

    2004-04-01

    Transactions of Power Systems), Thermal Engineering (Applied Thermal Engineering, JSME International Journal Series B – Fluids Thermal Engineering...Renewables ( International Journal of Hydrogen Energy, Biomass and Bioenergy, Solar Energy), Electrochemistry (Solid State Ionics, Journal of the...pollutants, with balanced emphasis given to solar and biomass systems. The papers in International Journal of Energy Research focus on performance of total

  13. Secondary Power Source: High School Students as Participatory Researchers.

    ERIC Educational Resources Information Center

    Kelly, Deirdre M.

    Conditions that foster and hinder participatory research are examined, using examples from one such research project aimed at dropout reduction undertaken with students in a "last chance" high school. The 13 student researchers sometimes used racial, gender, and social class differences to gain power and display undemocratic behavior within the…

  14. Perceived Uncertainty Sources in Wind Power Plant Design

    SciTech Connect

    Damiani, Rick R

    This presentation for the Fourth Wind Energy Systems Engineering Workshop covers some of the uncertainties that still impact turbulent wind operation and how these affect design and structural reliability; identifies key sources and prioritization for R and D; and summarizes an analysis of current procedures, industry best practice, standards, and expert opinions.

  15. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...

  16. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...

  17. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...

  18. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...

  19. 46 CFR 28.375 - Emergency source of electrical power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...

  20. Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.

    NASA Technical Reports Server (NTRS)

    Wein, D.; Gorland, S. H.

    1973-01-01

    Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.

  1. Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT

    NASA Astrophysics Data System (ADS)

    Pop-Vadean, A.; Pop, P. P.; Latinovic, T.; Barz, C.; Lung, C.

    2017-05-01

    Harvesting energy from nonconventional sources in the environment has received increased attention over the past decade from researchers who study these alternative energy sources for low power applications. Although that energy harvested is small and in the order of milliwatt, it can provide enough power for wireless sensors and other low-power applications. In the environment there is a lot of wasted energy that can be converted into electricity to power the various circuits and represents a potentially cheap source of power. Energy harvesting is important because it offers an alternative power supply for electronic devices where is does not exist conventional energy sources. This technology applied in a wireless sensor network (WSN) and devices on the IoT, will eliminate the need for network-based energy and conventional batteries, will minimize maintenance costs, eliminate cables and batteries and is ecological. It has the same advantage in applications from remote locations, underwater, and other hard to reach places where conventional batteries and energy are not suitable. Energy harvesting will promote environmentally friendly technologies that will save energy, will reduce CO2 emissions, which makes this technology indispensable for achieving next-generation smart cities and sustainable society. In response to the challenges of energy, in this article we remind the basics of harvesting energy and we discuss the various applications of this technology where traditional batteries cannot be used.

  2. Powerful Radio Sources with Simbol-X: The Nucleus

    NASA Astrophysics Data System (ADS)

    Grandi, Paola

    2009-05-01

    The black holes in the hearts of bright elliptical galaxies are commonly observed to be associated with powerful relativistic jets. The mechanism by which material entering the accretion radius is converted into jet power remains the subject of much debate. At the same time, the interplay between the relativistic jet and the interstellar/intergalactic medium is the topic of intense discussions, being such knowledge essential for understanding the nature of the accretion process, galaxy formation and the growth of supermassive black holes. Simbol-X can play a fundamental role in addressing at least three important questions: I) the link between accretion and relativistic outflow at

  3. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics.

    PubMed

    Xu, Sheng; Hansen, Benjamin J; Wang, Zhong Lin

    2010-10-19

    Harvesting energy from irregular/random mechanical actions in variable and uncontrollable environments is an effective approach for powering wireless mobile electronics to meet a wide range of applications in our daily life. Piezoelectric nanowires are robust and can be stimulated by tiny physical motions/disturbances over a range of frequencies. Here, we demonstrate the first chemical epitaxial growth of PbZr(x)Ti(1-x)O(3) (PZT) nanowire arrays at 230 °C and their application as high-output energy converters. The nanogenerators fabricated using a single array of PZT nanowires produce a peak output voltage of ~0.7 V, current density of 4 μA cm(-2) and an average power density of 2.8 mW cm(-3). The alternating current output of the nanogenerator is rectified, and the harvested energy is stored and later used to light up a commercial laser diode. This work demonstrates the feasibility of using nanogenerators for powering mobile and even personal microelectronics.

  4. Voronoi Diagram Based Optimization of Dynamic Reactive Power Sources

    SciTech Connect

    Huang, Weihong; Sun, Kai; Qi, Junjian

    2015-01-01

    Dynamic var sources can effectively mitigate fault-induced delayed voltage recovery (FIDVR) issues or even voltage collapse. This paper proposes a new approach to optimization of the sizes of dynamic var sources at candidate locations by a Voronoi diagram based algorithm. It first disperses sample points of potential solutions in a searching space, evaluates a cost function at each point by barycentric interpolation for the subspaces around the point, and then constructs a Voronoi diagram about cost function values over the entire space. Accordingly, the final optimal solution can be obtained. Case studies on the WSCC 9-bus system and NPCC 140-busmore » system have validated that the new approach can quickly identify the boundary of feasible solutions in searching space and converge to the global optimal solution.« less

  5. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  6. Combustion-based power source for Venus surface missions

    NASA Astrophysics Data System (ADS)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  7. A miniature fuel reformer system for portable power sources

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  8. Alternate Hybrid Power Sources for Remote Site Applications.

    DTIC Science & Technology

    1981-02-01

    Fuel for remote LORAN-C sites is often acquired at higher costs in foreign spot markets . The effective fuel cost including the expense associated with...primary purpose of FPUP is to provide market support for manufacturers of solar cells and systems by encouraging federal agencies to utilize photo...supplied to them. 84 If 10,000 units were manufactured each year for the residential market with 10 kWh peak power and 25 kWh of usable energy stored in

  9. SEI power source alternatives for rovers and other multi-kWe distributed surface applications

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Kohout, L. L.; Mckissock, Barbara I.; Rodriguez, C. D.; Withrow, C. A.; Colozza, A.; Hanlon, James C.; Schmitz, Paul C.

    1991-01-01

    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

  10. Ear canal dynamic motion as a source of power for in-ear devices

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2013-02-01

    Ear canal deformation caused by temporomandibular joint (jaw joint) activity, also known as "ear canal dynamic motion," is introduced in this paper as a candidate source of power to possibly recharge hearing aid batteries. The geometrical deformation of the ear canal is quantified in 3D by laser scanning of different custom ear moulds. An experimental setup is proposed to measure the amount of power potentially available from this source. The results show that 9 mW of power is available from a 15 mm3 dynamic change in the ear canal volume. Finally, the dynamic motion and power capability of the ear canal are investigated in a group of 12 subjects.

  11. Wind power as an electrical energy source in Illinois

    NASA Astrophysics Data System (ADS)

    Wendland, W. M.

    1982-03-01

    A preliminary estimate of the total wind power available in Illinois was made using available historical data, and projections of cost savings due to the presence of wind-generated electricity were attempted. Wind data at 10 m height were considered from nine different sites in the state, with three years data nominally being included. Wind-speed frequency histograms were developed for day and night periods, using a power law function to extrapolate the 10 m readings to 20 m. Wind speeds over the whole state were found to average over 8 mph, the cut-in point for most wind turbines, for from 40-63% of the time. A maximum of 75% run-time was determined for daylight hours in April-May. A reference 1.8 kW windpowered generator was used in annual demand projections for a reference one family home, using the frequency histograms. The small generator was projected to fulfill from 25-53% of the annual load, and, based on various cost assumptions, exhibited paybacks taking from 14-27 yr.

  12. Comparison of Prime Movers Suitable for USMC Expeditionary Power Sources

    SciTech Connect

    Theiss, T J; Conklin, J. C.; Thomas, John F.

    2000-04-18

    This report documents the results of the ORNL investigation into prime movers that would be desirable for the construction of a power system suitable for the United States Marine Corps (USMC) expeditionary forces under Operational Maneuvers From The Sea (OMFTS) doctrine. Discrete power levels of {approx}1, 5, 15, and 30 kW are considered. The only requirement is that the prime mover consumes diesel fuel. A brief description is given for the prime movers to describe their basic scientific foundations and relative advantages and disadvantages. A list of key attributes developed by ORNL has been weighted by the USMC to indicatemore » the level of importance. A total of 14 different prime movers were scored by ORNL personnel in four size ranges (1,5, 15, & 30 kW) for their relative strength in each attribute area. The resulting weighted analysis was used to indicate which prime movers are likely to be suitable for USMC needs. No single engine or prime mover emerged as the clear-cut favorite but several engines scored as well or better than the diesel engine. At the higher load levels (15 & 30 kW), the results indicate that the open Brayton (gas turbine) is a relatively mature technology and likely a suitable choice to meet USMC needs. At the lower power levels, the situation is more difficult and the market alone is not likely to provide an optimum solution in the time frame desired (2010). Several prime movers should be considered for future developments and may be satisfactory; specifically, the Atkinson cycle, the open Brayton cycle (gas turbine), the 2-stroke diesel. The rotary diesel and the solid oxide fuel cell should be backup candidates. Of all these prime movers, the Atkinson cycle may well be the most suitable for this application but is an immature technology. Additional demonstrations of this engine will be conducted at ORNL. If this analysis is positive, then the performance of a generator set using this engine, the open Brayton and the 2-stroke diesel

  13. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  14. Method of producing stable metal oxides and chalcogenides and power source

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1996-10-22

    A method is described for making chemically and electrochemically stable oxides or other chalcogenides for use as cathodes for power source applications, and of making batteries comprising such materials. 6 figs.

  15. High peak power THz source for ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Liu, Shengguang

    2018-01-01

    Terahertz (THz) science and technology have already become the research highlight at present. In this paper, we put forward a device setup to carry out ultrafast fundamental research. A photocathode RF gun generates electron bunches with ˜MeV energy, ˜ps bunch width and about 25pC charge. The electron bunches inject the designed wiggler, the coherent radiation at THz spectrum emits from these bunches and increases rapidly until the saturation at ˜MW within a short wiggler. THz pulses can be used as pump to stimulate an ultra-short excitation in some kind of sample. Those electron bunches out of wiggler can be handled into bunches with ˜1pC change, small beam spot and energy spread to be probe. Because the pump and probe comes from the same electron source, synchronization between pump and probe is inherent. The whole facility can be compacted on a tabletop.

  16. Frequency power analyses of seismic sources on firn

    NASA Astrophysics Data System (ADS)

    Sanz, Christopher; Diez, Anja; Coen, Hofstede; Kristoffersen, Yngve; Mayer, Christoph; Lambrecht, Astrid; Miller, Heinz; Eisen, Olaf

    2013-04-01

    A great obstacle for seismic surveys on firn-covered ice masses is the ability of firn to strongly attenuate seismic energy and divert downward ray paths away from the vertical because of the velocity gradient. The standard way to overcome these limitations is the drilling of shotholes about 10-30 m deep. However, drilling of shotholes is a time and energy consuming task. Another possibility is to use vibroseismic sources at the surface and increase the signal-to-noise ratio by repeated stacking. However, compared to explosive charges, vibroseismic signals are bandlimited per se. As a third variant, we investigate the usage of ordered patterns of surface charges consisting of detonation cord. Previous applications of detonation cord only explored their general comparison to bulk explosives when deployed in a linear fashion, i.e. a single line. Our approach extends these results to other geometries, like fan- or comb-shaped patterns. These have two advantages: first, over the pattern area a locally plane wave is generated, limiting the spherical and velocity-gradient induced spreading of energy during propagation; second, the ratio between seismic wave speed of the firn and the detonation cord of typically about 1:5 causes the wave to propagate in an angle downward. When using large offsets like a snow streamer, it is possible to direct the refected energy towards the streamer, depending on offset range and reflector depth. We compare the different source types for several surveys conducted in Antarctica in terms of frequency spectra. Our results show that ordered patterns of detonation cord serve as suitable seismic surface charges, avoiding the need to drill shotholes. Moreover, an example of a short profile with patterned surface charges is presented. The technique can be of advantage for surveys in remote areas, which can only be accessed by aircrafts.

  17. RF Design of a High Average Beam-Power SRF Electron Source

    SciTech Connect

    Sipahi, Nihan; Biedron, Sandra; Gonin, Ivan

    2016-06-01

    There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.

  18. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    NASA Technical Reports Server (NTRS)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  19. 29 CFR 1919.22 - Requirements governing braking devices and power sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements governing braking devices and power sources. All types of winches and cranes shall be provided... winch, or electric cranes shall be equipped so that a failure of the electric power shall stop the... electric winches and cranes during the tests shall be taken from the vessel's circuits. Shore current may...

  20. 46 CFR 112.25-5 - Failure of power from the normal source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...

  1. 46 CFR 112.25-5 - Failure of power from the normal source.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...

  2. 46 CFR 112.25-5 - Failure of power from the normal source.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...

  3. 46 CFR 112.20-10 - Diesel or gas turbine driven emergency power source.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Diesel or gas turbine driven emergency power source. 112.20-10 Section 112.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary and a Final Emergency...

  4. 46 CFR 112.20-10 - Diesel or gas turbine driven emergency power source.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Diesel or gas turbine driven emergency power source. 112.20-10 Section 112.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary and a Final Emergency...

  5. 46 CFR 112.20-10 - Diesel or gas turbine driven emergency power source.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Diesel or gas turbine driven emergency power source. 112.20-10 Section 112.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary and a Final Emergency...

  6. 46 CFR 112.25-5 - Failure of power from the normal source.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...

  7. 46 CFR 112.25-5 - Failure of power from the normal source.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...

  8. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 190.05-15 Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the...

  9. Open Source, Crowd Source: Harnessing the Power of the People behind Our Libraries

    ERIC Educational Resources Information Center

    Trainor, Cindi

    2009-01-01

    Purpose: The purpose of this paper is to provide an insight into the use of Web 2.0 and Library 2.0 technologies so that librarians can combine open source software with user-generated content to create a richer discovery experience for their users. Design/methodology/approach: Following a description of the current state of integrated library…

  10. Mobile Electric Power Technologies for the Army of the Future: Engines, Power Source, and Electrical Aspects

    DTIC Science & Technology

    1988-01-01

    therefore should be developed. Hence, the committee reached the following conclusions: o The supply of electric power for the needs of Army 21 is of...critical importance to the mission of the Army. o Based on the committee’s observations, it appears that the Army does not recognize that high...require military research and development. The committee recommends: o The Army should integrate the needs for mobile electric power supDly. as dictated

  11. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel

    2017-06-01

    Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.

  12. A Method for Harmonic Sources Detection based on Harmonic Distortion Power Rate

    NASA Astrophysics Data System (ADS)

    Lin, Ruixing; Xu, Lin; Zheng, Xian

    2018-03-01

    Harmonic sources detection at the point of common coupling is an essential step for harmonic contribution determination and harmonic mitigation. The harmonic distortion power rate index is proposed for harmonic source location based on IEEE Std 1459-2010 in the paper. The method only based on harmonic distortion power is not suitable when the background harmonic is large. To solve this problem, a threshold is determined by the prior information, when the harmonic distortion power is larger than the threshold, the customer side is considered as the main harmonic source, otherwise, the utility side is. A simple model of public power system was built in MATLAB/Simulink and field test results of typical harmonic loads verified the effectiveness of proposed method.

  13. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  14. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  15. Acoustic power of a moving point source in a moving medium

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Sarris, I. I.

    1976-01-01

    The acoustic power output of a moving point-mass source in an acoustic medium which is in uniform motion and infinite in extent is examined. The acoustic medium is considered to be a homogeneous fluid having both zero viscosity and zero thermal conductivity. Two expressions for the acoustic power output are obtained based on a different definition cited in the literature for the average energy-flux vector in an acoustic medium in uniform motion. The acoustic power output of the source is found by integrating the component of acoustic intensity vector in the radial direction over the surface of an infinitely long cylinder which is within the medium and encloses the line of motion of the source. One of the power expressions is found to give unreasonable results even though the flow is uniform.

  16. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less

  17. Probabilistic power flow using improved Monte Carlo simulation method with correlated wind sources

    NASA Astrophysics Data System (ADS)

    Bie, Pei; Zhang, Buhan; Li, Hang; Deng, Weisi; Wu, Jiasi

    2017-01-01

    Probabilistic Power Flow (PPF) is a very useful tool for power system steady-state analysis. However, the correlation among different random injection power (like wind power) brings great difficulties to calculate PPF. Monte Carlo simulation (MCS) and analytical methods are two commonly used methods to solve PPF. MCS has high accuracy but is very time consuming. Analytical method like cumulants method (CM) has high computing efficiency but the cumulants calculating is not convenient when wind power output does not obey any typical distribution, especially when correlated wind sources are considered. In this paper, an Improved Monte Carlo simulation method (IMCS) is proposed. The joint empirical distribution is applied to model different wind power output. This method combines the advantages of both MCS and analytical method. It not only has high computing efficiency, but also can provide solutions with enough accuracy, which is very suitable for on-line analysis.

  18. Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM

    SciTech Connect

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  19. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    DTIC Science & Technology

    2010-09-01

    Figure 6.10 TE Module with Microtherm Added Around & Between Legs ............................................................... 57  Figure 6.11 Short... Microtherm ® insulation, 2.6 (W) of heater power was required to maintain a temperature of 400 ºC. This is an indication of the losses in the system...side of the module to the cold plate.  Pour in Microtherm to insulate the module.  Make sure to clean all insulation from the hot side electrodes

  20. Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources

    NASA Astrophysics Data System (ADS)

    Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.

    2016-12-01

    A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  1. High-Performance AC Power Source by Applying Robust Stability Control Technology for Precision Material Machining

    NASA Astrophysics Data System (ADS)

    Chang, En-Chih

    2018-02-01

    This paper presents a high-performance AC power source by applying robust stability control technology for precision material machining (PMM). The proposed technology associates the benefits of finite-time convergent sliding function (FTCSF) and firefly optimization algorithm (FOA). The FTCSF maintains the robustness of conventional sliding mode, and simultaneously speeds up the convergence speed of the system state. Unfortunately, when a highly nonlinear loading is applied, the chatter will occur. The chatter results in high total harmonic distortion (THD) output voltage of AC power source, and even deteriorates the stability of PMM. The FOA is therefore used to remove the chatter, and the FTCSF still preserves finite system-state convergence time. By combining FTCSF with FOA, the AC power source of PMM can yield good steady-state and transient performance. Experimental results are performed in support of the proposed technology.

  2. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    PubMed

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOEpatents

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  4. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    NASA Astrophysics Data System (ADS)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  5. Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

    NASA Astrophysics Data System (ADS)

    Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.

    2018-05-01

    Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

  6. Multi-source energy harvester to power sensing hardware on rotating structures

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander; Ouellette, Scott; Carlson, Clinton; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.

    2010-04-01

    The U.S. Department of Energy (DOE) proposes to meet 20% of the nation's energy needs through wind power by the year 2030. To accomplish this goal, the industry will need to produce larger (>100m diameter) turbines to increase efficiency and maximize energy production. It will be imperative to instrument the large composite structures with onboard sensing to provide structural health monitoring capabilities to understand the global response and integrity of these systems as they age. A critical component in the deployment of such a system will be a robust power source that can operate for the lifespan of the wind turbine. In this paper we consider the use of discrete, localized power sources that derive energy from the ambient (solar, thermal) or operational (kinetic) environment. This approach will rely on a multi-source configuration that scavenges energy from photovoltaic and piezoelectric transducers. Each harvester is first characterized individually in the laboratory and then they are combined through a multi-source power conditioner that is designed to combine the output of each harvester in series to power a small wireless sensor node that has active-sensing capabilities. The advantages/disadvantages of each approach are discussed, along with the proposed design for a field ready energy harvester that will be deployed on a small-scale 19.8m diameter wind turbine.

  7. Effect of Inverter Power Source Characteristics on Welding Stability and Heat Affected Zone Dimensions

    NASA Astrophysics Data System (ADS)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Mamadaliev, R. A.

    2018-01-01

    The paper presents results the research in the effect of power sources dynamic characteristics on stability of melting and electrode metal transfer to the weld pool shielded metal arc welding. It is proved that when applying inverter-type welding power sources, heat and mass transfer characteristics change, arc gap short-circuit time and drop generation time are reduced. This leads to reduction of weld pool heat content and contraction of the heat-affected zone by 36% in comparison the same parameters obtained using a diode rectifier.

  8. Alloying Elements Transition Into the Weld Metal When Using an Inventor Power Source

    NASA Astrophysics Data System (ADS)

    Mamadaliev, R. A.; Kuskov, V. N.; Popova, A. A.; Valuev, D. V.

    2016-04-01

    The temperature distribution over the surface of the welded 12Kh18N10T steel plates using the inventor power source ARC-200 has been calculated. In order to imitate multipass welding when conducting the thermal analysis the initial temperature was changed from 298K up to 798K in 100K increments. It has been determined that alloying elements transition into the weld metal depends on temperature. Using an inventor power source facilitates a uniform distribution of alloying elements along the length and height of the weld seam.

  9. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissionsmore » from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.« less

  10. Development of a Multi-bus, Multi-source Reconfigurable Stirling Radioisotope Power System Test Bed

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) has typically used Radioisotope Thermoelectric Generators (RTG) as their source of electric power for deep space missions. A more efficient and potentially more cost effective alternative to the RTG, the high efficiency 110 watt Stirling Radioisotope Generator 110 (SRG110) is being developed by the Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC) and NASA Glenn Research Center (GRC). The SRG110 consists of two Stirling convertors (Stirling Engine and Linear Alternator) in a dual-opposed configuration, and two General Purpose Heat Source (GPHS) modules. Although Stirling convertors have been successfully operated as a power source for the utility grid and as a stand-alone portable generator, demonstration of the technology required to interconnect two Stirling convertors for a spacecraft power system has not been attempted. NASA GRC is developing a Power System Test Bed (PSTB) to evaluate the performance of a Stirling convertor in an integrated electrical power system application. This paper will describe the status of the PSTB and on-going activities pertaining to the PSTB in the NASA Thermal-Energy Conversion Branch of the Power and On-Board Propulsion Technology Division.

  11. Micro/Nano Fabricated Solid-State Thermoelectric Generator Devices for Integrated High Voltage Power Sources

    NASA Astrophysics Data System (ADS)

    Fleurial, J.-P.; Ryan, M. A.; Snyder, G. J.; Huang, C.-K.; Whitacre, J. F.; Patel, J.; Lim, J.; Borshchevsky, A.

    2002-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Conventional power generators devices become inefficient in extreme environments (such as encountered in Mars, Venus or outer planet missions) and rechargeable energy storage devices can only be operated in a narrow temperature range thereby limiting mission duration. The planned development of much smaller spacecrafts incorporating a variety of micro/nanodevices and miniature vehicles will require novel, reliable power technologies. It is also expected that such micro power sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Advanced solid-state thermoelectric combined with radioisotope or waste heat sources and low profile energy storage devices are ideally suited for these applications. The Jet Propulsion Laboratory has been actively pursuing the development of thermoelectric micro/nanodevices that can be fabricated using a combination of electrochemical deposition and integrated circuit processing techniques. Some of the technical challenges associated with these micro/nanodevice concepts, their expected level of performance and experimental fabrication and testing results to date are presented and discussed.

  12. Application of sorption heat pumps for increasing of new power sources efficiency

    NASA Astrophysics Data System (ADS)

    Vasiliev, L.; Filatova, O.; Tsitovich, A.

    2010-07-01

    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  13. Development of a tactical high-power microwave source using the Plasma Electron Microwave Source (PEMS) concept

    NASA Astrophysics Data System (ADS)

    Dandl, R. A.; Guest, G. E.; Jory, H. R.

    1990-12-01

    The AMPHED facility was used to perform feasibility experiments to explore the generation of high-power microwave pulses from energy stored in a magnetic mirror plasma. The facility uses an open-ended magnetic mirror driven by pulsed or cw c- and x-band sources. Microwave horns were constructed to couple in the frequency range of 2.4 to 4 GHz to whistler waves in the plasma. Spontaneous bursts of microwave radiation in the range of 3 to 5 GHz were observed in the experiments. But the power levels were lower than expected for the whistler wave interaction. It is probable that the hot-electron energy densities achieved were not high enough to approach the threshold of the desired interaction.

  14. Conceptual Trade Study of General Purpose Heat Source Powered Stirling Converter Configurations

    NASA Technical Reports Server (NTRS)

    Turpin, J. B.

    2007-01-01

    This Technical Manual describes a parametric study of general purpose heat source (GPHS) powered Stirling converter configurations. This study was performed in support of MSFC s efforts to establish the capability to perform non-nuclear system level testing and integration of radioisotope power systems. Six different GPHS stack configurations at a total of three different power levels (80, 250, and 500 W(sub e) were analyzed. The thermal profiles of the integrated GPHS modules (for each configuration) were calculated to determine maximum temperatures for comparison to allowable material limits. Temperature profiles for off-nominal power conditions were also assessed in order to better understand how power demands from the Stirling engine impact the performance of a given configuration.

  15. Micro-Power Sources Enabling Robotic Outpost Based Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    West, W. C.; Whitacre, J. F.; Ratnakumar, B. V.; Brandon, E. J.; Studor, G. F.

    2001-01-01

    Robotic outpost based exploration represents a fundamental shift in mission design from conventional, single spacecraft missions towards a distributed risk approach with many miniaturized semi-autonomous robots and sensors. This approach can facilitate wide-area sampling and exploration, and may consist of a web of orbiters, landers, or penetrators. To meet the mass and volume constraints of deep space missions such as the Europa Ocean Science Station, the distributed units must be fully miniaturized to fully leverage the wide-area exploration approach. However, presently there is a dearth of available options for powering these miniaturized sensors and robots. This group is currently examining miniaturized, solid state batteries as candidates to meet the demand of applications requiring low power, mass, and volume micro-power sources. These applications may include powering microsensors, battery-backing rad-hard CMOS memory and providing momentary chip back-up power. Additional information is contained in the original extended abstract.

  16. Microlensing of an extended source by a power-law mass distribution

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Osmer, S. J.

    2007-03-01

    Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.

  17. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  18. Simulations as a Source of Learning: Using "StarPower" to Teach Ethical Leadership and Management

    ERIC Educational Resources Information Center

    Allen, Scott J.

    2008-01-01

    This research examines the use simulation, "StarPower," as an instrument to teach students about ethics in management and leadership. The paper begins with an overview of sources of learning in leadership and management development and later focuses specifically on the use of simulations. This is followed by a brief explanation of the…

  19. Relationship between School Administrators' Organizational Power Sources and Teachers' Organizational Citizenship Behaviors

    ERIC Educational Resources Information Center

    Altinkurt, Yahya; Yilmaz, Kursad

    2012-01-01

    The main purpose of the research was to determine correlation between school administrators' organizational power sources and teachers' organizational citizenship behaviors in primary schools. The research was a correlational survey model study. 275 participants were randomly chosen for the research. The data were collected by…

  20. The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.

    2017-08-01

    Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.

  1. Safety: Special Effects of Thermal Runaway Chapter Heading for Encyclopedia of Electrochemical Power Sources (PREPRINT)

    DTIC Science & Technology

    2007-11-09

    been following developments related to the recent lithium ion battery recalls and is preparing itself for revising its battery safety standard...manufacturer (OEM) Critical Components Committee. In October 2006, the IPC Lithium Ion Battery Subcommittee, that represents both the major...cover process requirements, quality control and assurance for lithium ion battery cells. Electric and Hybrid Electric Vehicle Power Source Testing In

  2. Spatial distribution of the RF power absorbed in a helicon plasma source

    NASA Astrophysics Data System (ADS)

    Aleksenko, O. V.; Miroshnichenko, V. I.; Mordik, S. N.

    2014-08-01

    The spatial distributions of the RF power absorbed by plasma electrons in an ion source operating in the helicon mode (ω ci < ω < ω ce < ω pe ) are studied numerically by using a simplified model of an RF plasma source in an external uniform magnetic field. The parameters of the source used in numerical simulations are determined by the necessity of the simultaneous excitation of two types of waves, helicons and Trivelpiece-Gould modes, for which the corresponding transparency diagrams are used. The numerical simulations are carried out for two values of the working gas (helium) pressure and two values of the discharge chamber length under the assumption that symmetric modes are excited. The parameters of the source correspond to those of the injector of the nuclear scanning microprobe operating at the Institute of Applied Physics, National Academy of Sciences of Ukraine. It is assumed that the mechanism of RF power absorption is based on the acceleration of plasma electrons in the field of a Trivelpiece-Gould mode, which is interrupted by pair collisions of plasma electrons with neutral atoms and ions of the working gas. The simulation results show that the total absorbed RF power at a fixed plasma density depends in a resonant manner on the magnetic field. The resonance is found to become smoother with increasing working gas pressure. The distributions of the absorbed RF power in the discharge chamber are presented. The achievable density of the extracted current is estimated using the Bohm criterion.

  3. Power Source Status Estimation and Drive Control Method for Autonomous Decentralized Hybrid Train

    NASA Astrophysics Data System (ADS)

    Furuya, Takemasa; Ogawa, Kenichi; Yamamoto, Takamitsu; Hasegawa, Hitoshi

    A hybrid control system has two main functions: power sharing and equipment protection. In this paper, we discuss the design, construction and testing of a drive control method for an autonomous decentralized hybrid train with 100-kW-class fuel cells (FC) and 36-kWh lithium-ion batteries (Li-Batt). The main objectives of this study are to identify the operation status of the power sources on the basis of the input voltage of the traction inverter and to estimate the maximum traction power control basis of the power-source status. The proposed control method is useful in preventing overload operation of the onboard power sources in an autonomous decentralized hybrid system that has a flexible main circuit configuration and a few control signal lines. Further, with this method, the initial cost of a hybrid system can be reduced and the retrofit design of the hybrid system can be simplified. The effectiveness of the proposed method is experimentally confirmed by using a real-scale hybrid train system.

  4. Test-retest reliability of resting-state magnetoencephalography power in sensor and source space.

    PubMed

    Martín-Buro, María Carmen; Garcés, Pilar; Maestú, Fernando

    2016-01-01

    Several studies have reported changes in spontaneous brain rhythms that could be used as clinical biomarkers or in the evaluation of neuropsychological and drug treatments in longitudinal studies using magnetoencephalography (MEG). There is an increasing necessity to use these measures in early diagnosis and pathology progression; however, there is a lack of studies addressing how reliable they are. Here, we provide the first test-retest reliability estimate of MEG power in resting-state at sensor and source space. In this study, we recorded 3 sessions of resting-state MEG activity from 24 healthy subjects with an interval of a week between each session. Power values were estimated at sensor and source space with beamforming for classical frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20 Hz), high beta (20-30 Hz), and gamma (30-45 Hz). Then, test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). We also evaluated the relation between source power and the within-subject variability. In general, ICC of theta, alpha, and low beta power was fairly high (ICC > 0.6) while in delta and gamma power was lower. In source space, fronto-posterior alpha, frontal beta, and medial temporal theta showed the most reliable profiles. Signal-to-noise ratio could be partially responsible for reliability as low signal intensity resulted in high within-subject variability, but also the inherent nature of some brain rhythms in resting-state might be driving these reliability patterns. In conclusion, our results described the reliability of MEG power estimates in each frequency band, which could be considered in disease characterization or clinical trials. © 2015 Wiley Periodicals, Inc.

  5. An electric-eel-inspired soft power source from stacked hydrogels

    NASA Astrophysics Data System (ADS)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  6. An electric-eel-inspired soft power source from stacked hydrogels.

    PubMed

    Schroeder, Thomas B H; Guha, Anirvan; Lamoureux, Aaron; VanRenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-13

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  7. A new topology of fuel cell hybrid power source for efficient operation and high reliability

    NASA Astrophysics Data System (ADS)

    Bizon, Nicu

    2011-03-01

    This paper analyzes a new fuel cell Hybrid Power Source (HPS) topology having the feature to mitigate the current ripple of the fuel cell inverter system. In the operation of the inverter system that is grid connected or supplies AC motors in vehicle application, the current ripple normally appears at the DC port of the fuel cell HPS. Consequently, if mitigation measures are not applied, this ripple is back propagated to the fuel cell stack. Other features of the proposed fuel cell HPS are the Maximum Power Point (MPP) tracking, high reliability in operation under sharp power pulses and improved energy efficiency in high power applications. This topology uses an inverter system directly powered from the appropriate fuel cell stack and a controlled buck current source as low power source used for ripple mitigation. The low frequency ripple mitigation is based on active control. The anti-ripple current is injected in HPS output node and this has the LF power spectrum almost the same with the inverter ripple. Consequently, the fuel cell current ripple is mitigated by the designed active control. The ripple mitigation performances are evaluated by indicators that are defined to measure the mitigation ratio of the low frequency harmonics. In this paper it is shown that good performances are obtained by using the hysteretic current control, but better if a dedicated nonlinear controller is used. Two ways to design the nonlinear control law are proposed. First is based on simulation trials that help to draw the characteristic of ripple mitigation ratio vs. fuel cell current ripple. The second is based on Fuzzy Logic Controller (FLC). The ripple factor is up to 1% in both cases.

  8. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-09-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  9. Absolute measurement of LDR brachytherapy source emitted power: Instrument design and initial measurements.

    PubMed

    Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A

    2016-02-01

    Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.

  10. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    NASA Technical Reports Server (NTRS)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  11. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications.

    PubMed

    Sortais, P; Lamy, T; Médard, J; Angot, J; Latrasse, L; Thuillier, T

    2010-02-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm(2) (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 microA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 pi mm mrad at 15 kV (1sigma) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams

  12. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study

    PubMed Central

    Castelnovo, Anna; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Boly, Melanie; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Methods: Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Results: Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1–4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Conclusions: Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes. Citation: Castelnovo A, Riedner BA, Smith RF, Tononi G, Boly M, Benca RM. Scalp and source power topography in sleepwalking and sleep terrors: a high-density EEG study. SLEEP 2016;39(10):1815–1825. PMID:27568805

  13. On the power output of some idealized source configurations with one or more characteristic dimensions

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1982-01-01

    The calculation of power output from a (finite) linear array of equidistant point sources is investigated with allowance for a relative phase shift and particular focus on the circumstances of small/large individual source separation. A key role is played by the estimates found for a twin parameter definite integral that involves the Fejer kernel functions, where N denotes a (positive) integer; these results also permit a quantitative accounting of energy partition between the principal and secondary lobes of the array pattern. Continuously distributed sources along a finite line segment or an open ended circular cylindrical shell are considered, and estimates for the relatively lower output in the latter configuration are made explicit when the shell radius is small compared to the wave length. A systematic reduction of diverse integrals which characterize the energy output from specific line and strip sources is investigated.

  14. Laser-driven powerful kHz hard x-ray source

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie

    2017-08-01

    A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.

  15. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    PubMed

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  16. Source selection problem of competitive power plants under government intervention: a game theory approach

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Reza; Hafezalkotob, Ashkan; Makui, Ahmad

    2014-06-01

    Pollution and environmental protection in the present century are extremely significant global problems. Power plants as the largest pollution emitting industry have been the cause of a great deal of scientific researches. The fuel or source type used to generate electricity by the power plants plays an important role in the amount of pollution produced. Governments should take visible actions to promote green fuel. These actions are often called the governmental financial interventions that include legislations such as green subsidiaries and taxes. In this paper, by considering the government role in the competition of two power plants, we propose a game theoretical model that will help the government to determine the optimal taxes and subsidies. The numerical examples demonstrate how government could intervene in a competitive market of electricity to achieve the environmental objectives and how power plants maximize their utilities in each energy source. The results also reveal that the government's taxes and subsidiaries effectively influence the selected fuel types of power plants in the competitive market.

  17. Experimental study on high-power all-fiber superfluorescent source operating near 980 nm

    NASA Astrophysics Data System (ADS)

    Ren, Yankun; Cao, Jianqiu; Ying, Hanyuan; Chen, Heng; Pan, Zhiyong; Du, Shaojun; Chen, Jinbao

    2018-07-01

    A high-power all-fiber superfluorescent source operating near 980 nm is experimentally studied with the help of a large-core distributed side-coupled cladding-pumped Yb-doped fiber. By optimizing the active fiber length and the angle cleaving of the output fiber facet, a 10 W all-fiber superfluorescent source operating near 980 nm is demonstrated for the first time, to the best of our knowledge. An 11.4 W combined 980 nm ASE power is obtained with a 9.3% slope efficiency and an 18 dB suppression of the ASE around 1030 nm. The output spectrum spans 973 nm to 982 nm with the 3 dB bandwidth around 3.5 nm. A 10.5 W output power with 13.1% slope efficiency is also obtained by changing the length of the active fiber. The variations of the output power and spectrum with the active fiber length and pump power are also investigated in the experiment.

  18. Multifunctional Voltage Source Inverter for Renewable Energy Integration and Power Quality Conditioning

    PubMed Central

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity. PMID:25177725

  19. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications

    NASA Astrophysics Data System (ADS)

    Vassiliev, Oleg N.; Kry, Stephen F.; Grosshans, David R.; Mohan, Radhe

    2018-03-01

    This study concerns calculation of the average electronic stopping power for photon and electron sources. It addresses two problems that have not yet been fully resolved. The first is defining the electron spectrum used for averaging in a way that is most suitable for radiobiological modeling. We define it as the spectrum of electrons entering the sensitive to radiation volume (SV) within the cell nucleus, at the moment they enter the SV. For this spectrum we derive a formula that combines linearly the fluence spectrum and the source spectrum. The latter is the distribution of initial energies of electrons produced by a source. Previous studies used either the fluence or source spectra, but not both, thereby neglecting a part of the complete spectrum. Our derived formula reduces to these two prior methods in the case of high and low energy sources, respectively. The second problem is extending electron spectra to low energies. Previous studies used an energy cut-off on the order of 1 keV. However, as we show, even for high energy sources, such as 60Co, electrons with energies below 1 keV contribute about 30% to the dose. In this study all the spectra were calculated with Geant4-DNA code and a cut-off energy of only 11 eV. We present formulas for calculating frequency- and dose-average stopping powers, numerical results for several important electron and photon sources, and tables with all the data needed to use our formulas for arbitrary electron and photon sources producing electrons with initial energies up to  ∼1 MeV.

  20. Investigation of the Statistics of Pure Tone Sound Power Injection from Low Frequency, Finite Sized Sources in a Reverberant Room

    NASA Technical Reports Server (NTRS)

    Smith, Wayne Farrior

    1973-01-01

    The effect of finite source size on the power statistics in a reverberant room for pure tone excitation was investigated. Theoretical results indicate that the standard deviation of low frequency, pure tone finite sources is always less than that predicted by point source theory and considerably less when the source dimension approaches one-half an acoustic wavelength or greater. A supporting experimental study was conducted utilizing an eight inch loudspeaker and a 30 inch loudspeaker at eleven source positions. The resulting standard deviation of sound power output of the smaller speaker is in excellent agreement with both the derived finite source theory and existing point source theory, if the theoretical data is adjusted to account for experimental incomplete spatial averaging. However, the standard deviation of sound power output of the larger speaker is measurably lower than point source theory indicates, but is in good agreement with the finite source theory.

  1. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  2. Evaluation of actuator energy storage and power sources for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.

    1993-01-01

    The objective of this evaluation is to determine an optimum energy storage/power source combination for electrical actuation systems for existing (Solid Rocket Booster (SRB), Shuttle) and future (Advanced Launch System (ALS), Shuttle Derivative) vehicles. Characteristic of these applications is the requirement for high power pulses (50-200 kW) for short times (milliseconds to seconds), coupled with longer-term base or 'housekeeping' requirements (5-16 kW). Specific study parameters (e.g., weight, volume, etc.) as stated in the proposal and specified in the Statement of Work (SOW) are included.

  3. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    PubMed

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data.

  4. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets

    PubMed Central

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players’ behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents’ behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data. PMID:26335705

  5. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  6. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  7. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  8. Investigation on Main Radiation Source at Operation Floor of Fukushima Daiichi Nuclear Power Station Unit 4

    NASA Astrophysics Data System (ADS)

    Hirayama, Hideo; Kondo, Kenjiro; Suzuki, Seishiro; Hamamoto, Shimpei; Iwanaga, Kohei

    2017-09-01

    Pulse height distributions were measured using a LaBr3 detector set in a 1 cm lead collimator to investigate main radiation source at the operation floor of Fukushima Daiichi Nuclear Power Station Unit 4. It was confirmed that main radiation source above the reactor well was Co-60 from the activated steam dryer in the DS pool (Dryer-Separator pool) and that at the standby area was Cs-134 and Cs-137 from contaminated buildings and debris at the lower floor. Full energy peak count rate of Co-60 was reduced about 1/3 by 12mm lead sheet placed on the floor of the fuel handling machine.

  9. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoling; Miley, George H.; Hora, Heinz

    2009-03-01

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  10. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    NASA Astrophysics Data System (ADS)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  11. Knowledge and networks – key sources of power in global health

    PubMed Central

    Hanefeld, Johanna; Walt, Gill

    2015-01-01

    Shiffman rightly raises questions about who exercises power in global health, suggesting power is a complex concept, and the way it is exercised is often opaque. Power that is not based on financial strength but on knowledge or experience, is difficult to estimate, and yet it may provide the legitimacy to make moral claims on what is, or ought to be, on global health agendas. Twenty years ago power was exercised in a much less complex health environment. The World Health Organization (WHO) was able to exert its authority as world health leader. The landscape today is very different. Financial resources for global health are being competed for by diverse organisations, and power is diffused and somewhat hidden in such a climate, where each organization has to establish and make its own moral claims loudly and publicly. We observe two ways which allow actors to capture moral authority in global health. One, through power based on scientific knowledge and two, through procedures in the policy process, most commonly associated with the notion of broad consultation and participation. We discuss these drawing on one particular framework provided by Bourdieu, who analyses the source of actor power by focusing on different sorts of capital. Different approaches or theories to understanding power will go some way to answering the challenge Shiffman throws to health policy analysts. We need to explore much more fully where power lies in global health, and how it is exercised in order to understand underlying health agendas and claims to legitimacy made by global health actors today. PMID:25674577

  12. Correlations of Power-law Spectral and QPO Features In Black Hole Candidate Sources

    NASA Technical Reports Server (NTRS)

    Fiorito, Ralph; Titarchuk, Lev

    2004-01-01

    Recent studies have shown that strong correlations are observed between low frequency QPO s and the spectral power law index for a number of black hole candidate sources (BHCs), when these sources exhibit quasi-steady hard x-ray emission states. The dominant long standing interpretation of QPO's is that they are produced in and are the signature of the thermal accretion disk. Paradoxically, strong QPO's are present even in the cases where the thermal component is negligible. We present a model which identifies the origin of the QPO's and relates them directly to the properties of a compact coronal region which is bounded by the adjustment from Kepleriaa to sub-Kelperian inflow into the BH, and is primarily responsible for the observed power law spectrum. The model also predicts the relationship between high and low frequency QPO's and shows how BH's can be unique identified from observations of the soft states of NS's and BHC's.

  13. Isotropy Constraints on Powerful Sources of Ultrahigh-energy Cosmic Rays at 1019 eV

    NASA Astrophysics Data System (ADS)

    Takami, Hajime; Murase, Kohta; Dermer, Charles D.

    2016-01-01

    Anisotropy in the arrival direction distribution of ultrahigh-energy cosmic rays (UHECRs) produced by powerful sources is numerically evaluated. We show that nondetection of significant anisotropy at ≈ {10}19 eV at present and in future experiments imposes general upper limits on UHECR proton luminosity of steady sources as a function of source redshifts. The upper limits constrain the existence of typical steady {10}19 eV UHECR sources in the local universe and limit their local density to ≳ {10}-3 Mpc {}-3, assuming average intergalactic magnetic fields less than {10}-9 G. This isotropy, being stronger than that measured at the highest energies, may indicate the transient generation of UHECRs. Our calculations are applied for extreme high-frequency-peaked BL Lacertae objects 1ES 0229+200, 1ES 1101-232, and 1ES 0347-121, to test the UHECR-induced cascade model, in which beamed UHECR protons generate TeV radiation in transit from sources. While the magnetic-field structure surrounding the sources affects the required absolute cosmic-ray luminosity of the blazars, the magnetic-field structure surrounding the Milky Way directly affects the observed anisotropy. If these magnetic fields are weak enough, significant UHECR anisotropy from these blazars is detectable by the Pierre Auger Observatory unless the maximum energy of UHECR protons is below 1019 eV. Furthermore, if these are the sources of UHECRs above 1019 eV, a local magnetic structure surrounding the Milky Way is needed to explain the observed isotropy at ˜ {10}19 eV, which may be incompatible with large magnetic structures around all galaxies for the UHECR-induced cascade model to work with reasonable jet powers.

  14. Science in 60 – A Clean, Renewable Power Source

    ScienceCinema

    Borup, Rod

    2018-06-12

    Fuel cells have long been one of the most tantalizing clean-energy solutions. They offer electricity from an abundant energy source—hydrogen. Compared to internal combustion engines, fuel cells are more than twice as efficient at converting fuel to power, but are currently dependent on costly platinum. Rod Borup and his team at Los Alamos National Lab are leading efforts to reduce the cost of fuel cells and are exploring alternatives that could eliminate platinum all together.

  15. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    PubMed

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  16. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    NASA Astrophysics Data System (ADS)

    Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.

  18. High-power multi-megahertz source of waveform-stabilized few-cycle light

    PubMed Central

    Pronin, O.; Seidel, M.; Lücking, F.; Brons, J.; Fedulova, E.; Trubetskov, M.; Pervak, V.; Apolonski, A.; Udem, Th.; Krausz, F.

    2015-01-01

    Waveform-stabilized laser pulses have revolutionized the exploration of the electronic structure and dynamics of matter by serving as the technological basis for frequency-comb and attosecond spectroscopy. Their primary sources, mode-locked titanium-doped sapphire lasers and erbium/ytterbium-doped fibre lasers, deliver pulses with several nanojoules energy, which is insufficient for many important applications. Here we present the waveform-stabilized light source that is scalable to microjoule energy levels at the full (megahertz) repetition rate of the laser oscillator. A diode-pumped Kerr-lens-mode-locked Yb:YAG thin-disk laser combined with extracavity pulse compression yields waveform-stabilized few-cycle pulses (7.7 fs, 2.2 cycles) with a pulse energy of 0.15 μJ and an average power of 6 W. The demonstrated concept is scalable to pulse energies of several microjoules and near-gigawatt peak powers. The generation of attosecond pulses at the full repetition rate of the oscillator comes into reach. The presented system could serve as a primary source for frequency combs in the mid infrared and vacuum UV with unprecedented high power levels. PMID:25939968

  19. Radiation force on absorbing targets and power measurements of a high intensity focused ultrasound (HIFU) source

    NASA Astrophysics Data System (ADS)

    Qian, Zuwen; Zhu, Zhemin; Ye, Shigong; Jiang, Wenhua; Zhu, Houqing; Yu, Jinshen

    2010-10-01

    Based on the analytic expressions for the radiated field of a circular concave piston given by Hasegawa et al., an integral for calculation of the radiation force on a plane absorbing target in a spherically focused field is derived. A general relation between acoustic power P and normal radiation force F n is obtained under the condition of kr ≫ 1. Numerical computation is carried out by using the symbolic computation program for practically focused sources and absorbing circular targets. The results show that, for a given source, there is a range of target positions where the radiation force is independent of the target’s position under the assumption that the contribution of the acoustic field behind the target to the radiation force can be neglected. The experiments are carried out and confirm that there is a range of target positions where the measured radiation force is basically independent of the target’s position even at high acoustic power (up to 700 W). It is believed that when the radiation force method is used to measure the acoustic power radiated from a focused source, the size of the target must be selected in such a way that no observable sound can be found in the region behind the target.

  20. Performances of a Compact, High-Power WB Source with Circular Polarization

    NASA Astrophysics Data System (ADS)

    Delmote, P.; Pinguet, S.; Bieth, F.

    This paper presents the design and the performances of an embedded high-power microwave (HPM) wideband source, developed and built at the French-German Research Institute of Saint-Louis. The system was intended for dual use, homeland security, and military applications. It is powered by a 400 kV compact Marx generator with specificities in coaxial design and low energy. The slow monopolar signal from the Marx is sharpened using a pulse-forming stage, made of a switching module pressurized with nitrogen, followed by a monopulse-to-monocycle converter. The duration and rise times of this signal could be adjusted by varying the pressure and space between electrodes. Repetitive operations were performed up to 100 Hz during 10 s without a gas flow. Two kinds of antennas can be connected to the source. The first one is a TEM horn, with an optional dielectric lens, that radiates a vertically polarized UWB short pulse. The second one is a nine-turn helix, working in Kraus monopolar axial mode and radiating a circularly polarized wideband signal along the main axis. A dedicated conical reflector increases its directivity and bandwidth. The whole source is designed to be embedded inside an aluminum trailer, powered by batteries and remote controlled through an optical fiber.

  1. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; Portnoff, Samuel; Spencer, M. G.

    2016-01-01

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P+N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH3x) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm2. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm2, fill factor of 0.86, and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 105-106 cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P+N junction structure can mitigate some of the negative effects.

  2. Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System

    NASA Astrophysics Data System (ADS)

    Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.

    2016-02-01

    The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.

  3. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    SciTech Connect

    Thomas, Christopher; Portnoff, Samuel; Spencer, M. G.

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P{sup +}N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH{sup 3}{sub x}) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm{sup 2}. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm{sup 2}, fill factor of 0.86,more » and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 10{sup 5}–10{sup 6 }cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P{sup +}N junction structure can mitigate some of the negative effects.« less

  4. A Consideration of Stable Operating Power Limits of HVDC System Composed of Voltage Source Converters

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroo; Takahashi, Choei; Kishibe, Hideto; Sato, Hiromichi

    The stable operating power limits of a small scale HVDC system composed of voltage source converters (VSC-HVDC system) are analyzed with a simple model. The VSC-HVDC system could operate where the AC system must be somewhat larger in capacity than the VSC-HVDC system capacity. The stable operating power limits were between one and two times the SCR (short circuit ratio). When the inverter of the VSC-HVDC system was operated with lead reactive (capacitive) power control conditions, the stable operating limits were increased through AC voltage stabilization. When the inverter was a STATCOM operation, it could operate regardless of the SCR but regions within allowable AC voltage variations.

  5. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  6. The advanced thermionic converter with microwave power as an auxiliary ionization source

    NASA Technical Reports Server (NTRS)

    Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.

    1978-01-01

    In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.

  7. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  8. Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-Fired Power Plants

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2005 through August 2005. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. This report highlights new data on road dust, vegetative detritus and motor vehicle emissions. For example, the results show significant differences in the composition in urban and rural road dust. A comparison of the organic of the fine particulate matter in the tunnel with the ambient provides clear evidence of the significant contribution of vehicle emissions to ambient PM. Themore » source profiles developed from this work are being used by the source-receptor modeling activities. The report presents results on the spatial distribution of PMF-factors. The results can be grouped into three different categories: regional sources, local sources, or potentially both regional and local sources. Examples of the regional sources are the sulfate and selenium PMF-factors which most likely-represent coal fired power plants. Examples of local sources are the specialty steel and lead factors. There is reasonable correspondence between these apportionments and data from the EPA TRI and AIRS emission inventories. Detailed comparisons between PMCAMx predictions and measurements by the STN and IMPROVE measurements in the Eastern US are presented. Comparisons were made for the major aerosol components and PM{sub 2.5} mass in July 2001, October 2001, January 2002, and April 2002. The results are encouraging with average fraction biases for most species less than 0.25. The improvement of the model performance during the last two years was mainly due to the comparison of the model predictions with the continuous measurements in the Pittsburgh Supersite. Major improvements have included the descriptions: of ammonia emissions (CMU inventory), night time nitrate chemistry, EC emissions and their

  9. Virtual welding equipment for simulation of GMAW processes with integration of power source regulation

    NASA Astrophysics Data System (ADS)

    Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander

    2011-06-01

    A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.

  10. Preliminary Analysis: Am-241 RHU/TEG Electric Power Source for Nanosatellites

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Young, David; Cunningham, Karen; Kim, Tony; Ambrosi, Richard M.; Williams, Hugo R.

    2014-01-01

    The Februay 2013 Space Works Commercial report indicates a strong increase in nano/microsatellite (1-50 kg) launch demand globally in future years. Nanosatellites (NanoSats) are small spacecraft in the 1-10 kg range, which present a simple, low-cost option for developing quickly-deployable satellites. CubeSats, a special category of NanoSats, are even being considered for interplanetary missions. However, the small dimensions of CubeSats and the limited mass of the NanoSat class in general place limits of capability on their electrical power systems (especially where typical power sources such as solar panels are considered) and stored energy reserves; restricting the power budget and overall functionality. For example, leveraging NanoSat clusters for computationally intensive problems that are solved collectively becomes more challenging with power related restrictions on communication and data-processing. Further, interplanetary missions that would take NanoSats far from the sun, make the use of solar panels less effective as a power source as their required area would become quite large. To overcome these limitations, americium 241 (Am-241) has been suggested as a low power source option. The Idaho National Laboratory, Center for Space Nuclear Research reports that: ? (Production) requires small quantities of isotope - 62.5 g of Pu-238; 250 g Am- 241 (for 5 We); Am-241 is available at around 1 kg/yr commercially; Am-241 produces 59 kev gammas which are stopped readily by tungsten so the radiation field is very low. Whereby, an Am-241 source could be placed in among the instruments and the waste heat used to heat the platform; and ? amounts of isotope are so low that launch approval may be easier, especially with tungsten encapsulation. As further reported, Am-241 has a half-life that is approximately five times greater than that of Pu- 238 and it has been determined that the neutron yield of a 241-AmO(sub 2) source is approximately an order of magnitude lower

  11. Testing a high-power LED based light source for hyperspectral imaging microscopy

    NASA Astrophysics Data System (ADS)

    Klomkaew, Phiwat; Mayes, Sam A.; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    Our lab has worked to develop high-speed hyperspectral imaging systems that scan the fluorescence excitation spectrum for biomedical imaging applications. Hyperspectral imaging can be used in remote sensing, medical imaging, reaction analysis, and other applications. Here, we describe the development of a hyperspectral imaging system that comprised an inverted Nikon Eclipse microscope, sCMOS camera, and a custom light source that utilized a series of high-power LEDs. LED selection was performed to achieve wavelengths of 350-590 nm. To reduce scattering, LEDs with low viewing angles were selected. LEDs were surface-mount soldered and powered by an RCD. We utilized 3D printed mounting brackets to assemble all circuit components. Spectraradiometric calibration was performed using a spectrometer (QE65000, Ocean Optics) and integrating sphere (FOIS-1, Ocean Optics). Optical output and LED driving current were measured over a range of illumination intensities. A normalization algorithm was used to calibrate and optimize the intensity of the light source. The highest illumination power was at 375 nm (3300 mW/cm2), while the lowest illumination power was at 515, 525, and 590 nm (5200 mW/cm2). Comparing the intensities supplied by each LED to the intensities measured at the microscope stage, we found there was a great loss in power output. Future work will focus on using two of the same LEDs to double the power and finding more LED and/or laser diodes and chips around the range. This custom hyperspectral imaging system could be used for the detection of cancer and the identification of biomolecules.

  12. On syntheses of the X-ray background with power-law sources

    NASA Technical Reports Server (NTRS)

    Dezotti, G.; Boldt, E. A.; Cavaliere, A.; Danese, L.; Franceschini, A.; Marshall, F. E.; Swank, J. H.; Szymkowiak, A. E.

    1981-01-01

    The conditions under which the combined emission from power law sources can mimic the X-ray background (XRB) spectrum in the 3-50 keV range are considered in view of HEAO 1 A-2 experiment measurements, and it is confirmed that a good fit may be obtained. The required spectral properties of the component sources differ, however, from those observed for local active galactic nuclei. Constraints are deduced for both the low luminosity extension and evolution of such local objects, and it is shown that any other class of sources contributing to the X-ray background must be characterized by an energy spectral index lower than about 0.4, which is the mean index of the XRB, and exhibit sleeper spectra at higher energies.

  13. Voltage source ac-to-dc converters for high-power transmitters

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  14. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  15. Terahertz quantum-cascade lasers as high-power and wideband, gapless sources for spectroscopy.

    PubMed

    Röben, Benjamin; Lü, Xiang; Hempel, Martin; Biermann, Klaus; Schrottke, Lutz; Grahn, Holger T

    2017-07-10

    Terahertz (THz) quantum-cascade lasers (QCLs) are powerful radiation sources for high-resolution and high-sensitivity spectroscopy with a discrete spectrum between 2 and 5 THz as well as a continuous coverage of several GHz. However, for many applications, a radiation source with a continuous coverage of a substantially larger frequency range is required. We employed a multi-mode THz QCL operated with a fast ramped injection current, which leads to a collective tuning of equally-spaced Fabry-Pérot laser modes exceeding their separation. A continuous coverage over 72 GHz at about 4.7 THz was achieved. We demonstrate that the QCL is superior to conventional sources used in Fourier transform infrared spectroscopy in terms of the signal-to-noise ratio as well as the dynamic range by one to two orders of magnitude. Our results pave the way for versatile THz spectroscopic systems with unprecedented resolution and sensitivity across a wide frequency range.

  16. On syntheses of the X-ray background with power-law sources

    NASA Astrophysics Data System (ADS)

    De Zotti, G.; Boldt, E. A.; Cavaliere, A.; Danese, L.; Franceschini, A.; Marshall, F. E.; Swank, J. H.; Szymkowiak, A. E.

    1981-08-01

    The conditions under which the combined emission from power law sources can mimic the X-ray background (XRB) spectrum in the 3-50 keV range are considered in view of HEAO 1 A-2 experiment measurements, and it is confirmed that a good fit may be obtained. The required spectral properties of the component sources differ, however, from those observed for local active galactic nuclei. Constraints are deduced for both the low luminosity extension and evolution of such local objects, and it is shown that any other class of sources contributing to the X-ray background must be characterized by an energy spectral index lower than about 0.4, which is the mean index of the XRB, and exhibit sleeper spectra at higher energies.

  17. Inexpensive, Low Power, Open-Source Data Logging in the Field

    NASA Astrophysics Data System (ADS)

    Sandell, C. T.; Wickert, A. D.

    2016-12-01

    Collecting a robust data set of environmental conditions with commercial equipment is often cost prohibitive. I present the ALog, a general-purpose, inexpensive, low-power, open-source data logger that has proven its durability on long-term deployments in the harsh conditions of high altitude glaciers and humid river deltas. The ALog was developed to fill the need for a capable, rugged, easy-to-use, inexpensive, open-source hardware targeted at long-term remote deployment in nearly any environment. Building on the popular Arduino platform, the hardware features a high-precision clock, full size SD card slot for high-volume data storage, screw terminals, six analog inputs, two digital inputs, one digital interrupt, 3.3V and 5V power outputs, and SPI and I2C communication capability. The design is focused on extremely low power consumption allowing the Alog to be deployed for years on a single set of common alkaline batteries. The power efficiency of the Alog eliminates the difficulties associated with field power collection including additional hardware and installation costs, dependence on weather conditions, possible equipment failure, and the transport of bulky/heavy equipment to a remote site. Battery power increases suitable data collection sites (too shaded for photovoltaics) and allows for low profile installation options (including underground). The ALog has gone through continuous development with over four years of successful data collection in hydrologic field research. Over this time, software support for a wide range of sensors has been made available such as ultrasonic rangefinders (for water level, snow accumulation and glacial melt), temperature sensors (air and groundwater), humidity sensors, pyranometers, inclinometers, rain gauges, soil moisture and water potential sensors, resistance-based tools to measure frost heave, and cameras that trigger on events. The software developed for use with the ALog allows simple integration of established

  18. Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source.

    PubMed

    Lee, Inyoung; Sode, Takashi; Loew, Noya; Tsugawa, Wakako; Lowe, Christopher Robin; Sode, Koji

    2017-07-15

    An ultimate goal for those engaged in research to develop implantable medical devices is to develop mechatronic implantable artificial organs such as artificial pancreas. Such devices would comprise at least a sensor module, an actuator module, and a controller module. For the development of optimal mechatronic implantable artificial organs, these modules should be self-powered and autonomously operated. In this study, we aimed to develop a microcontroller using the BioCapacitor principle. A direct electron transfer type glucose dehydrogenase was immobilized onto mesoporous carbon, and then deposited on the surface of a miniaturized Au electrode (7mm 2 ) to prepare a miniaturized enzyme anode. The enzyme fuel cell was connected with a 100 μF capacitor and a power boost converter as a charge pump. The voltage of the enzyme fuel cell was increased in a stepwise manner by the charge pump from 330mV to 3.1V, and the generated electricity was charged into a 100μF capacitor. The charge pump circuit was connected to an ultra-low-power microcontroller. Thus prepared BioCapacitor based circuit was able to operate an ultra-low-power microcontroller continuously, by running a program for 17h that turned on an LED every 60s. Our success in operating a microcontroller using glucose as the sole energy source indicated the probability of realizing implantable self-powered autonomously operated artificial organs, such as artificial pancreas. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    PubMed

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  20. Second law analysis of advanced power generation systems using variable temperature heat sources

    SciTech Connect

    Bliem, C.J.; Mines, G.L.

    1990-01-01

    Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discussesmore » the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.« less

  1. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study.

    PubMed

    Castelnovo, Anna; Riedner, Brady A; Smith, Richard F; Tononi, Giulio; Boly, Melanie; Benca, Ruth M

    2016-10-01

    To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1-4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes. © 2016 Associated Professional Sleep Societies, LLC.

  2. Single-event burnout hardening of planar power MOSFET with partially widened trench source

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Liu, Hainan; Cai, Xiaowu; Luo, Jiajun; Li, Bo; Li, Binhong; Wang, Lixin; Han, Zhengsheng

    2018-03-01

    We present a single-event burnout (SEB) hardened planar power MOSFET with partially widened trench sources by three-dimensional (3D) numerical simulation. The advantage of the proposed structure is that the work of the parasitic bipolar transistor inherited in the power MOSFET is suppressed effectively due to the elimination of the most sensitive region (P-well region below the N+ source). The simulation result shows that the proposed structure can enhance the SEB survivability significantly. The critical value of linear energy transfer (LET), which indicates the maximum deposited energy on the device without SEB behavior, increases from 0.06 to 0.7 pC/μm. The SEB threshold voltage increases to 120 V, which is 80% of the rated breakdown voltage. Meanwhile, the main parameter characteristics of the proposed structure remain similar with those of the conventional planar structure. Therefore, this structure offers a potential optimization path to planar power MOSFET with high SEB survivability for space and atmospheric applications. Project supported by the National Natural Science Foundation of China (Nos. 61404161, 61404068, 61404169).

  3. Investigation of alternate power source for Space Shuttle Orbiter hydraulic system

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.

    1993-01-01

    This investigation consists of a short-term feasibility study to determine whether or not an alternate electrical power source would trade favorably from a performance, reliability, safety, operation, and weight standpoint in replacing the current auxiliary power unit subsystems with its attendant components (water spray boiler, hydrazine fuel and tanks, feed and vent lines, controls, etc.), operating under current flight rules. Results of this feasibility study are used to develop recommendations for the next step (e.g., to determine if such an alternate electrical power source would show an advantage given that the current operational flight mode of the system could be modified in such a way as not to constrain the operational capability and safety of the vehicle). However, this next step is not within the scope of this investigation. This study does not include a cost analysis, nor does it include investigation of the integration aspects involved in such a trade, except in a qualitative sense for the determination of concept feasibility.

  4. Wearable Large-Scale Perovskite Solar-Power Source via Nanocellular Scaffold.

    PubMed

    Hu, Xiaotian; Huang, Zengqi; Zhou, Xue; Li, Pengwei; Wang, Yang; Huang, Zhandong; Su, Meng; Ren, Wanjie; Li, Fengyu; Li, Mingzhu; Chen, Yiwang; Song, Yanlin

    2017-11-01

    Dramatic advances in perovskite solar cells (PSCs) and the blossoming of wearable electronics have triggered tremendous demands for flexible solar-power sources. However, the fracturing of functional crystalline films and transmittance wastage from flexible substrates are critical challenges to approaching the high-performance PSCs with flexural endurance. In this work, a nanocellular scaffold is introduced to architect a mechanics buffer layer and optics resonant cavity. The nanocellular scaffold releases mechanical stresses during flexural experiences and significantly improves the crystalline quality of the perovskite films. The nanocellular optics resonant cavity optimizes light harvesting and charge transportation of devices. More importantly, these flexible PSCs, which demonstrate excellent performance and mechanical stability, are practically fabricated in modules as a wearable solar-power source. A power conversion efficiency of 12.32% for a flexible large-scale device (polyethylene terephthalate substrate, indium tin oxide-free, 1.01 cm 2 ) is achieved. This ingenious flexible structure will enable a new approach for development of wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  6. 46 CFR 120.312 - Power sources on vessels of more than 19.8 meters (65 feet) in length carrying more than 600...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5... 46 Shipping 4 2010-10-01 2010-10-01 false Power sources on vessels of more than 19.8 meters (65...

  7. 46 CFR 120.312 - Power sources on vessels of more than 19.8 meters (65 feet) in length carrying more than 600...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Power sources on vessels of more than 19.8 meters (65... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5...

  8. 46 CFR 120.312 - Power sources on vessels of more than 19.8 meters (65 feet) in length carrying more than 600...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Power sources on vessels of more than 19.8 meters (65... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5...

  9. 46 CFR 120.312 - Power sources on vessels of more than 19.8 meters (65 feet) in length carrying more than 600...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Power sources on vessels of more than 19.8 meters (65... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5...

  10. Institutional impediments to using alternative water sources in thermoelectric power plants.

    SciTech Connect

    Elcock, D.

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, minemore » pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and

  11. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    2017-05-30

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  12. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    SciTech Connect

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  13. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source.

    PubMed

    Johnson, J M; Reale, D V; Krile, J T; Garcia, R S; Cravey, W H; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-05-01

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  14. Third user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    2016-03-24

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less

  15. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source

    SciTech Connect

    Johnson, J. M., E-mail: jared.johnson@ttu.edu; Reale, D. V.; Garcia, R. S.

    2016-05-15

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  16. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect

    Zheng, B.; Weng, Y.W.

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature ofmore » 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)« less

  17. A Demo opto-electronic power source based on single-walled carbon nanotube sheets.

    PubMed

    Hu, Chunhua; Liu, Changhong; Chen, Luzhuo; Meng, Chuizhou; Fan, Shoushan

    2010-08-24

    It is known that single-walled carbon nanotubes (SWNTs) strongly absorb light, especially in the near-infrared (NIR) region, and convert it into heat. In fact, SWNTs also have considerable ability to convert heat into electricity. In this work, we show that SWNT sheets made from as-grown SWNT arrays display a large positive thermoelectric coefficient (p-type). We designed a simple SWNT device to convert illuminating NIR light directly into a notable voltage output, which was verified by experimental tests. Furthermore, by a simple functionalization step, the p- to n-type transition was conveniently achieved for the SWNT sheets. By integrating p- and n-type elements in series, we constructed a novel NIR opto-electronic power source, which outputs a large voltage that sums over the output of every single element. Additionally, the output of the demo device has shown a good linear relationship with NIR light power density, favorable for IR sensors.

  18. The vulnerabilities of the power-grid system: renewable microgrids as an alternative source of energy.

    PubMed

    Meyer, Victor; Myres, Charles; Bakshi, Nitin

    2010-03-01

    The objective of this paper is to analyse the vulnerabilities of current power-grid systems and to propose alternatives to using fossil fuel power generation and infrastructure solutions in the form of microgrids, particularly those from renewable energy sources. One of the key potential benefits of microgrids, apart from their inherent sustainability and ecological advantages, is increased resilience. The analysis is targeted towards the context of business process outsourcing in India. However, much of the research on vulnerabilities has been derived from the USA and as such many of the examples cite vulnerabilities in the USA and other developed economies. Nevertheless, the vulnerabilities noted are to a degree common to all grid systems, and so the analysis may be more broadly applicable.

  19. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    NASA Astrophysics Data System (ADS)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  20. A strategy for high specific power pyroelectric energy harvesting from a fluid source

    NASA Astrophysics Data System (ADS)

    Maheux, E.; Hrebtov, M. Yu.; Sukhorukov, G.; Kozyulin, N. N.; Bobrov, M. S.; Dobroselsky, K. G.; Chikishev, L. M.; Dulin, V. M.; Yudin, P. V.

    2017-12-01

    Conversion of waste heat into usable electricity is now one of the important strategies for saving natural resources and minimizing impact on the environment. In contrast to Seebeck devices, utilizing a temperature gradient, pyroelectric scavengers use temporal temperature oscillations. Here, optimal strategies for pyroelectric energy harvesting are theoretically investigated from the point of view of non-stationary heat exchange for the application-relevant case of harvesting with a pyroelectric lamella from a fluid heat source. It is shown that for a fixed lamella thickness by choosing appropriate phase shift between the temperature oscillations and the voltage on the pyroelectric lamella, one can effectively operate at high frequencies and achieve a two to three-fold increase in specific power with respect to the classical Olsen cycle. A further increase in specific power is achieved by thinning down the lamella. For devices with a thickness down to a few hundreds of nanometers, specific power linearly increases with the inverse thickness. Further scaling down of the device is hampered with the heat exchange in the boundary layer. Our simulations for a representative pyroelectric Pb(Zr0,5Ti0,5)O3 predict harvestable powers of the order of kW/kg for a device with a thickness in the range from 100 nm to 1 μm, operating at hundreds of Hz.

  1. Production of High Intracavity UV Power From a CW Laser Source

    NASA Technical Reports Server (NTRS)

    David, R. T.; Chyba, T. H.; Keppel, C. E.; Gaskell, D.; Ent, R.

    1998-01-01

    The goal of this research project is to create a prototype high power CW source of ultraviolet (UV) photons for photon-electron scattering at the Thomas Jefferson National Accelerator Facility (TJNAF), Hall B. The facility will use optical resonant cavities to produce a high photon flux. The technical approach will be to frequency-double the 514.5 mn light from an Argon-Ion Laser to create 0.1 to 1.0 watt in the UV. The produced UV power will be stored in a resonant cavity to generate an high intracavity UV power of 102 to 103 watts. The specific aim of this project is to first design and construct the low-Q doubling cavity and lock it to the Argon-Ion wavelength. Secondly, the existing 514.5 nm high-Q build-up cavity and its locking electronics will be modified to create high intracavity UV power. The entire system will then be characterized and evaluated for possible beam line use.

  2. Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source

    NASA Astrophysics Data System (ADS)

    Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang

    2015-03-01

    Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.

  3. Basis for the power supply reliability study of the 1 MW neutron source

    SciTech Connect

    McGhee, D.G.; Fathizadeh, M.

    1993-07-01

    The Intense Pulsed Neutron Source (IPNS) upgrade to 1 MW requires new power supply designs. This paper describes the tools and the methodology needed to assess the reliability of the power supplies. Both the design and operation of the power supplies in the synchrotron will be taken into account. To develop a reliability budget, the experiments to be conducted with this accelerator are reviewed, and data is collected on the number and duration of interruptions possible before an experiment is required to start over. Once the budget is established, several accelerators of this type will be examined. The budget ismore » allocated to the different accelerator systems based on their operating experience. The accelerator data is usually in terms of machine availability and system down time. It takes into account mean time to failure (MTTF), time to diagnose, time to repair or replace the failed components, and time to get the machine back online. These estimated times are used as baselines for the design. Even though we are in the early stage of design, available data can be analyzed to estimate the MTTF for the power supplies.« less

  4. Characteristics of a lithium-thionyl chloride battery as a memory back-up power source

    NASA Astrophysics Data System (ADS)

    Iwamaru, T.; Uetani, Y.

    An Li/SOCl 2 battery of R6 size (ER6C) has been evaluated as a memory back-up power source for CMOS RAM. The working voltage is 3.6 V and the discharge capacity is 1900 mA h on a 1OK-ohm load. The cell exhibits satisfactory working voltage and discharge capacity over the temperature range -40 °C to 85 °C. The discharge reaction mechanism has been elucidated. Cumulative self discharge during 10 years discharge at 20 μA is estimated to be 3.5%. No serious problems have been observed during abuse tests.

  5. An adaptable multiple power source for mass spectrometry and other scientific instruments.

    PubMed

    Lin, T-Y; Anderson, G A; Norheim, R V; Prost, S A; LaMarche, B L; Leach, F E; Auberry, K J; Smith, R D; Koppenaal, D W; Robinson, E W; Paša-Tolić, L

    2015-09-01

    An Adaptable Multiple Power Source (AMPS) system has been designed and constructed. The AMPS system can provide up to 16 direct current (DC) (±400 V; 5 mA), 4 radio frequency (RF) (two 500 VPP sinusoidal signals each, 0.5-5 MHz) channels, 2 high voltage sources (±6 kV), and one ∼40 W, 250 °C temperature-regulated heater. The system is controlled by a microcontroller, capable of communicating with its front panel or a computer. It can assign not only pre-saved fixed DC and RF signals but also profiled DC voltages. The AMPS system is capable of driving many mass spectrometry components and ancillary devices and can be adapted to other instrumentation/engineering projects.

  6. Toward Understanding the Fanaroff-Riley Dichotomy in Radio Source Morphology and Power

    NASA Astrophysics Data System (ADS)

    Baum, Stefi A.; Zirbel, Esther L.; O'Dea, Christopher P.

    1995-09-01

    of the total energy output from the AGNs into jet kinetic energy versus radiant energy than do FR 2 sources. If this interpretation is correct, then this suggests that there is a fundamental difference in the central engine and/or in the immediate "accretion region" around the engine in FR 1 and FR 2 radio galaxies. We note also the absence of FR 1 sources with nuclear broad line regions and suggest that the absence of the BLR is tied to the absence of the "isotropic" nuclear UV continuum source in FR 1 sources. We put forth the possibility that the FR 1/FR 2 dichotomy (i.e., the observed differences in the properties of low- and high-power radio sources) is due to qualitative differences in the structural properties of the central engines in these two types of sources. Following early work by Rees et al. (1982), we suggest the possibility that FR 1 sources are produced when the central engine is fed at a lower accretion rate, leading to the creation of a source in which the ratio of radiant to jet bulk kinetic energy is low, while FR 2 sources are produced when the central engine is fed at a higher accretion rate, causing the central engine to deposit a higher fraction of its energy in radiant energy. We further suggest the possibility that associated differences in the spin properties of the central black hole between FR 1 (lower spin) and FR 2 (higher spin) sources may be responsible for the different collimation properties and Mach numbers of the jets produced by these two types of radio-loud galaxies. This scenario, although currently clearly speculative, is nicely consistent with our current picture of the triggering, feeding, environments, and evolution of powerful radio galaxies. This model allows for evolution of these properties with time for example, the mass accretion rate and BH spin may decline with time causing an FR 2 radio source or quasar to evolve into a FR 1 radio source.

  7. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    NASA Astrophysics Data System (ADS)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  8. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    NASA Astrophysics Data System (ADS)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of

  9. Wavelength-agile high-power sources via four-wave mixing in higher-order fiber modes.

    PubMed

    Demas, J; Prabhakar, G; He, T; Ramachandran, S

    2017-04-03

    Frequency doubling of conventional fiber lasers in the near-infrared remains the most promising method for generating integrated high-peak-power lasers in the visible, while maintaining the benefits of a fiber geometry; but since the shortest wavelength power-scalable fiber laser sources are currently restricted to either the 10XX nm or 15XX nm wavelength ranges, accessing colors other than green or red remains a challenge with this schematic. Four-wave mixing using higher-order fiber modes allows for control of dispersion while maintaining large effective areas, thus enabling a power-scalable method to extend the bandwidth of near-infrared fiber lasers, and in turn, the bandwidth of potential high-power sources in the visible. Here, two parametric sources using the LP0,7 and LP0,6 modes of two step-index multi-mode fibers are presented. The output wavelengths for the sources are 880, 974, 1173, and 1347 nm with peak powers of 10.0, 16.2, 14.7, and 6.4 kW respectively, and ~300-ps pulse durations. The efficiencies of the sources are analyzed, along with a discussion of wavelength tuning and further power scaling, representing an advance in increasing the bandwidth of near-infrared lasers as a step towards high-peak-power sources at wavelengths across the visible spectrum.

  10. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber.

    PubMed

    Jain, D; Sidharthan, R; Moselund, P M; Yoo, S; Ho, D; Bang, O

    2016-11-14

    We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped fiber based master oscillator power amplifier. The effect of repetition frequency of pump source and length of germania-doped fiber has also been investigated. Further, germania doped fiber has been pumped by conventional supercontinuum source based on silica photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300 nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of germania doped fiber for mid-infrared supercontinuum generation. These measurements ensure the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source based on silica and germania fiber ever demonstrated to the date.

  11. Self-Healable, Stretchable, Transparent Triboelectric Nanogenerators as Soft Power Sources.

    PubMed

    Sun, Jiangman; Pu, Xiong; Liu, Mengmeng; Yu, Aifang; Du, Chunhua; Zhai, Junyi; Hu, Weiguo; Wang, Zhong Lin

    2018-06-04

    Despite the rapid advancements of soft electronics, developing compatible energy devices will be the next challenge for their viable applications. Here, we report an energy-harnessing triboelectric nanogenerator (TENG) as a soft electrical power source, which is simultaneously self-healable, stretchable, and transparent. The nanogenerator features a thin-film configuration with buckled Ag nanowires/poly(3,4-ethylenedioxythiophene) composite electrode sandwiched in room-temperature self-healable poly(dimethylsiloxane) (PDMS) elastomers. Dynamic imine bonds are introduced in PDMS networks for repairing mechanical damages (94% efficiency), while the mechanical recovery of the elastomer is imparted to the buckled electrode for electrical healing. By adjusting the buckling wavelength of the electrode, the stretchability and transparency of the soft TENG can be tuned. A TENG (∼50% stretchabitliy, ∼73% transmittance) can recover the electricity genearation (100% healing efficiency) even after accidental cutting. Finally, the conversion of biomechanical energies into electricity (∼100 V, 327 mW/m 2 ) is demonstrated by a skin-like soft TENG. Considering all these merits, this work suggests a potentially promising approach for next-generation soft power sources.

  12. Lifetime estimation of extreme-ultraviolet pellicle at 500 W source power by thermal stress analysis

    NASA Astrophysics Data System (ADS)

    Park, Eun-Sang; Ban, Chung-Hyun; Park, Jae-Hun; Oh, Hye-Keun

    2017-10-01

    The analysis of the thermal stress and the extreme-ultraviolet (EUV) pellicle is important since the pellicle could be easily damaged since the thickness of the pellicle is 50 nm thin due to 90% required EUV transmission. One of the solution is using a high emissivity metallic material on the both sides of the pellicle and it can lower the thermal stress. However, using a metallic coating on pellicle core which is usually consist of silicon group can decrease the EUV transmission compared to using a single core layer pellicle only. Therefore, we optimized thermal and optical properties of the pellicle and elect three types of the pellicle. In this paper we simulated our optimized pellicles with 500W source power. The result shows that the difference of the thermal stress is small for each case. Therefore, our result also shows that using a high emissivity coating is necessary since the cooling of the pellicle strongly depends on emissivity and it can lower the stress effectively even at high EUV source power.

  13. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    NASA Astrophysics Data System (ADS)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  14. The impact of a large penetration of intermittent sources on the power system operation and planning

    NASA Astrophysics Data System (ADS)

    Ausin, Juan Carlos

    This research investigated the impact on the power system of a large penetration of intermittent renewable sources, mainly wind and photovoltaic generation. Currently, electrical utilities deal with wind and PV plants as if they were sources of negative demand, that is to say, they have no control over the power output produced. In this way, the grid absorbs all the power fluctuation as if it were coming from a common load. With the level of wind penetration growing so quickly, there is growing concern amongst the utilities and the grid operators, as they will have to deal with a much higher level of fluctuation. In the same way, the potential cost reduction of PV technologies suggests that a similar development may be expected for solar production in the mid term. The first part of the research was focused on the issues that affect utility planning and reinforcement decision making. Although DG is located mainly on the distribution network, a large penetration may alter the flows, not only on the distribution lines, but also on the transmission system and through the transmission - distribution interfaces. The optimal capacity and production costs for the UK transmission network have been calculated for several combinations of load profiles and typical wind/PV output scenarios. A full economic analysis is developed, showing the benefits and disadvantages that a large penetration of these distributed generators may have on transmission system operator reinforcement strategies. Closely related to planning factors are institutional, revelatory, and economic considerations, such as transmission pricing, which may hamper the integration of renewable energy technologies into the electric utility industry. The second part of the research related to the impact of intermittent renewable energy technologies on the second by second, minute by minute, and half-hour by half-hour operations of power systems. If a large integration of these new generators partially replaces the

  15. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  16. An impact source localization technique for a nuclear power plant by using sensors of different types.

    PubMed

    Choi, Young-Chul; Park, Jin-Ho; Choi, Kyoung-Sik

    2011-01-01

    In a nuclear power plant, a loose part monitoring system (LPMS) provides information on the location and the mass of a loosened or detached metal impacted onto the inner surface of the primary pressure boundary. Typically, accelerometers are mounted on the surface of a reactor vessel to localize the impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of accelerometers is not sufficient to estimate the impact location precisely. In such a case, one of useful methods is to utilize other types of sensor that can measure the vibration of the reactor structure. For example, acoustic emission (AE) sensors are installed on the reactor structure to detect leakage or cracks on the primary pressure boundary. However, accelerometers and AE sensors have a different frequency range. The frequency of interest of AE sensors is higher than that of accelerometers. In this paper, we propose a method of impact source localization by using both accelerometer signals and AE signals, simultaneously. The main concept of impact location estimation is based on the arrival time difference of the impact stress wave between different sensor locations. However, it is difficult to find the arrival time difference between sensors, because the primary frequency ranges of accelerometers and AE sensors are different. To overcome the problem, we used phase delays of an envelope of impact signals. This is because the impact signals from the accelerometer and the AE sensor are similar in the whole shape (envelope). To verify the proposed method, we have performed experiments for a reactor mock-up model and a real nuclear power plant. The experimental results demonstrate that we can enhance the reliability and precision of the impact source localization. Therefore, if the proposed method is applied to a nuclear power plant, we can obtain the effect of additional installed sensors. Crown Copyright © 2010. Published by Elsevier Ltd. All

  17. Ocean Microbial Fuel Cell: Power Source and Research Tool for Studying Marine Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Reimers, C. E.; Girguis, P.; Westall, J. C.; Nielsen, M. E.

    2007-05-01

    Ocean microbial fuel cells (OMFCs) are devices capable of producing modest levels of electrical power. The cells are ultimately driven by the oxidation of marine organic matter at the anode and reduction of dissolved oxygen at the cathode, but microbial transformations and electrochemically active intermediates play important roles in the overall process of electricity generation. By separating the factors that affect the performance of OMFCs into components of an equivalent circuit and manipulating these factors in laboratory and field experiments, we are gaining new insight into how specific redox reactions, sources of organic matter, and mass transport at small and intermediate scales may enrich environments with certain groups of microorganisms that in turn regulate anaerobic organic matter degradation. This talk will illustrate these relationships with the results from at least four experiments in which either fresh plankton, or substrates within continental margin sediments, fuelled the OMFCs. In each example, reduced sulfur compounds were found to be major electron carriers to the fuel cell anode. These intermediates came from a variety of sources including sulfide generated from sulfate reduction in mixed solutions surrounding the electrode, sulfide generated distally but transported by pore-water diffusion and advection, iron monosulfides and pyrite present is a sediment matrix centimeters from the electrode, and sulfide or polysulfide produced within an electrode biofilm. To illustrate a practical application of an OMFC, we are currently constructing a benthic cell that will power a sonic receiver in a network of underwater sensors. The form of this OMFC resembles a benthic chamber with a footprint of one square meter. It should be capable of supplying electrical power and regulating its output for years to decades.

  18. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources

    SciTech Connect

    Reale, D. V., E-mail: david.reale@ttu.edu; Parson, J. M.; Neuber, A. A.

    2016-03-15

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV–55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructedmore » more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.« less

  19. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources.

    PubMed

    Reale, D V; Parson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-03-01

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.

  20. Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources

    NASA Technical Reports Server (NTRS)

    Bouwer, S. D.; Pap, J.; Donnelly, R. F.

    1990-01-01

    An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources.

  1. Mini-Brayton heat source assembly design study. Volume 1: Space shuttle mission. [feasibility of Brayton isotope power system design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conceptual design definitions of a heat source assembly for use in nominal 500 watt electrical (W(e)) 1200 W(e)and 2000 W(e) mini-Brayton isotope power systems are reported. The HSA is an independent package which maintains thermal and nuclear control of an isotope fueled heat source and transfers the thermal energy to a Brayton rotating unit turbine-alternator-compressor power conversion unit.

  2. Point-like neutron source based on high-current electron cyclotron resonance ion source with powerful millimeter wave plasma heating

    NASA Astrophysics Data System (ADS)

    Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.

    2018-01-01

    A possibility of an intense deuterium ion beam creation for a compact powerful point-like neutron source is discussed. The fusion takes place due to bombardment of deuterium (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ways of high-current and low emittance ion beam formation from the plasma of quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance discharge in an open magnetic trap sustained by powerful microwave radiation are investigated.

  3. An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments

    DOE PAGES

    Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; ...

    2015-09-18

    Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DCmore » voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.« less

  4. Knowledge Sources and Opinions of Prospective Social Studies Teachers about Possible Risk and Benefit Analysis: Nuclear Energy and Power Stations

    ERIC Educational Resources Information Center

    Yazici, Hakki; Bulut, Ramazan; Yazici, Sibel

    2016-01-01

    In this study, it was aimed to determine the trust status of prospective social studies teachers regarding various knowledge sources related to nuclear energy and power stations regarded as a controversial socio-scientific issue and their perceptions on the possible risks and benefits of nuclear energy and power stations. Target population of the…

  5. Present developments and status of electron sources for high power gyrotron tubes and free electron masers

    NASA Astrophysics Data System (ADS)

    Thumm, M.

    1997-02-01

    Gyrotron oscillators are mainly used as high power mm-wave sources for start-up, electron cyclotron heating (ECH) and diagnostics of magnetically confined plasmas for controlled thermonuclear fusion research. 140 GHz (110 GHz) gyrotrons with output power Pout = 0.55 MW (0.93 MW), pulse length τ = 3.0 s (2.0 s) and efficiency η = 40% (38%) are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver Pout = 40 kW with τ = 40 μs at frequencies up to 650 GHz ( η≥4%). Recently, gyrotron oscillators have also been successfully used in materials processing, for example sintering of high performance, structural and functional ceramics. Such technological applications require gyrotrons with f≥24 GHz, Pout = 10-100 kW, CW, η≥30%. This paper reports on recent achievements in the development of very high power mm-wave gyrotron oscillators for long pulse or CW operation. In addition a short overview of the present development status of gyrotrons for technological applications, gyroklystron amplifiers, gyro-TWT amplifiers, cyclotron autoresonance masers (CARMs) and free electron masers (FEMs) is given. The most impressive FEM output parameters are: Pout = 2GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and Pout = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). In gyro-devices, magnetron injection guns (MIGs) operating in the temperature limited current regime have thus far been used most successfully. Diode guns as well as triode guns with a modulating anode are employed. Tests of a MIG operated under space-charge limited conditions have been not very successful. Electrostatic CW FEMs are driven by thermionic Pierce guns whereas pulsed high power devices employ many types of accelerators as drivers for example pulse-line accelerators, microtrons and induction or rf linacs, using field and photo emission cathodes.

  6. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle

    NASA Astrophysics Data System (ADS)

    Hasvold, Øistein; Johansen, Kjell Håvard; Mollestad, Ole; Forseth, Sissel; Størkersen, Nils

    In 1993, The Norwegian Defence Research Establishment (FFI) demonstrated AUV-Demo, an unmanned (untethered) underwater vehicle (UUV), powered by a magnesium/dissolved oxygen seawater battery (SWB). This technology showed that an underwater range of at least 1000 nautical miles at a speed of 4 knots was possible, but also that the maximum hotel load this battery system could support was very limited. Most applications for UUV technology need more power over a shorter period of time. Seabed mapping using a multibeam echo sounder mounted on an UUV was identified as a viable application and the Hugin project was started in 1995 in cooperation with Norwegian industry. For this application, an endurance of 36 h at 4 knots was required. Development of the UUV hull and electronics system resulted in the UUV Hugin I. It carries a Ni/Cd battery of 3 kW h, allowing up to 6 h under-water endurance. In parallel, we developed a battery based on a combination of alkaline Al/air and SWB technology, using a circulating alkaline electrolyte, aluminium anodes and maintaining the oxidant concentration in the electrolyte by continuously adding hydrogen peroxide (HP) to the electrolyte. This concept resulted in a safe battery, working at ambient pressure (balanced) and with sufficient power and energy density to allow the UUV Hugin II to make a number of successive dives, each of up to 36 h duration and with only 1 h deck time between dives for HP refill and electrolyte exchange. After 100 h, an exchange of anodes takes place. The power source consists of a four-cell Al/HP battery, a DC/DC converter delivering 600 W at 30 V, circulation and dosing pumps and a battery control unit. Hugin II is now in routine use by the Norwegian Underwater Intervention AS (NUI) which operates the UUV for high-precision seabed mapping down to a water depth of 600 m.

  7. Preliminary experimental investigation of a complex dual-band high power microwave source

    SciTech Connect

    Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Li, Yangmei; Li, Zhiqiang

    2015-10-15

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by themore » dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.« less

  8. Preliminary experimental investigation of a complex dual-band high power microwave source.

    PubMed

    Zhang, Xiaoping; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang

    2015-10-01

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  9. Economic analysis of the final effluent limitations, new source performance standards and pretreatment standards for the steam electric power industry

    SciTech Connect

    Not Available

    This report presents the economic analysis of final effluent limitation guidelines, New Source Performance Standards, and pretreatment standards being promulgated for the steam-electric power plant point source category. It describes the costs of the final regulations, assesses the effects of these costs on the electric utility industry, and examines the cost-effectiveness of the regulations.

  10. 46 CFR 32.60-45 - Segregation of spaces containing the emergency source of electric power-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Segregation of spaces containing the emergency source of electric power-TB/ALL. 32.60-45 Section 32.60-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK... On or After July 1, 1951 § 32.60-45 Segregation of spaces containing the emergency source of electric...

  11. 46 CFR 32.60-45 - Segregation of spaces containing the emergency source of electric power-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Segregation of spaces containing the emergency source of electric power-TB/ALL. 32.60-45 Section 32.60-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK... On or After July 1, 1951 § 32.60-45 Segregation of spaces containing the emergency source of electric...

  12. High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon

    2016-10-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.

  13. Infrared Active Sm1-xndxnio3 Based Nano-Switchings For High Powers Laser Sources

    NASA Astrophysics Data System (ADS)

    Ngom, B. D.; Kana, J. B. Kana; Nemraoui, O.; Manyala, N.; Maaza, M.; Mdjoe, R.; Beye, A. C.

    2008-09-01

    This contribution was targeted to engineer novel thermochromic infrared nano-structured photonics. These smart optically tuneable materials are based on rare earth nickelates in the form of ReNiO3 where Re is bi-solution of rare earth metals of Samarium "Sm" and Neodynium "Nd." In addition to their Metal-Insulator tuneable transition temperature (MIT), these MIT oxide family exhibit a specific thermal stability and thus could be ideal to an ultimate optical limiting and other Non-Linear Optical properties for high power laser sources. This MIT thermochomic ReNiO3 system is novel in its nano-structured form and has not been investigated from nonlinear optical viewpoint. This contribution reports on the optimization of the synthesis of Sm1-xNdxNiO3 Nano-structures and investigation of their corresponding MIT electron dynamics.

  14. Actively coupled cavity ringdown spectroscopy with low-power broadband sources.

    PubMed

    Petermann, Christian; Fischer, Peer

    2011-05-23

    We demonstrate a coupling scheme for cavity enhanced absorption spectroscopy that makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband nonlaser light sources with spectral power densities of less than 30μW/nm. Although the acousto-optical element reduces the ultimate detection limit by introducing additional losses, it permits absorptivities to be measured with a high dynamic range, especially in lossy environments. Absorption measurements for the forbidden transition of gaseous oxygen in air at ∼760nm are presented using a low-coherence cw-superluminescent diode. The same setup was electronically configured to cover absorption losses from 1.8×10-8cm-1 to 7.5% per roundtrip. This could be of interest in process analytical applications.

  15. The safety review and approval process for space nuclear power sources

    SciTech Connect

    Bennett, G.L.

    1991-01-01

    Over the past 30 yr. the U.S. Government has evolved a process for the safety review and launch approval of nuclear power sources (NPSs) proposed for launch into space. This process, which involves a number of governmental agencies, ensures that the various postulated accident scenarios are considered, that the responses of the NPSs to the accident environments are assessed, and that appropriate elements of the Federal Government are involved in the launch approval. This process has worked very well in the successful launches of 37 radioisotope thermoelectric generators and 1 reactor by the United States since 1961. Particular attention willmore » be focused on the recent launch of the Galileo spacecraft. 19 refs., 12 figs., 4 tabs.« less

  16. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  17. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  18. REX, a 5-MV pulsed-power source for driving high-brightness electron beam diodes

    SciTech Connect

    Carlson, R.L.; Kauppila, T.J.; Ridlon, R.N.

    1991-01-01

    The Relativistic Electron-beam Experiment, or REX accelerator, is a pulsed-power source capable of driving a 100-ohm load at 5 MV, 50 kA, 45 ns (FWHM) with less than a 10-ns rise and 15-ns fall time. This paper describes the pulsed-power modifications, modelling, and extensive measurements on REX to allow it to drive high impedance (100s of ohms) diode loads with a shaped voltage pulse. A major component of REX is the 1.83-m-diam {times} 25.4-cm-thick Lucite insulator with embedded grading rings that separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. Amore » radially tailored, liquid-based resistor provides a stiff voltage source that is insensitive to small variations of the diode current and, in addition, optimizes the electric field stress across the vacuum side of the insulator. The high-current operation of REX employs both multichannel peaking and point-plane diverter switches. This mode reduces the prepulse to less than 2 kV and the postpulse to less than 5% of the energy delivered to the load. Pulse shaping for the present diode load is done through two L-C transmission line filters and a tapered, glycol-based line adjacent to the water PFL and output switch. This has allowed REX to drive a diode producing a 4-MV, 4.5-kA, 55-ns flat-top electron beam with a normalized Lapostolle emittance of 0.96 mm-rad corresponding to a beam brightness in excess of 4.4 {times} 10{sup 8} A/m{sup 2} {minus}rad{sup 2}. 6 refs., 13 figs.« less

  19. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  20. Micro solid oxide fuel cells: a new generation of micro-power sources for portable applications

    NASA Astrophysics Data System (ADS)

    Chiabrera, Francesco; Garbayo, Iñigo; Alayo, Nerea; Tarancón, Albert

    2017-06-01

    Portable electronic devices are already an indispensable part of our daily life; and their increasing number and demand for higher performance is becoming a challenge for the research community. In particular, a major concern is the way to efficiently power these energy-demanding devices, assuring long grid independency with high efficiency, sustainability and cheap production. In this context, technologies beyond Li-ion are receiving increasing attention, among which the development of micro solid oxide fuel cells (μSOFC) stands out. In particular, μSOFC provides a high energy density, high efficiency and opens the possibility to the use of different fuels, such as hydrocarbons. Yet, its high operating temperature has typically hindered its application as miniaturized portable device. Recent advances have however set a completely new range of lower operating temperatures, i.e. 350-450°C, as compared to the typical <900°C needed for classical bulk SOFC systems. In this work, a comprehensive review of the status of the technology is presented. The main achievements, as well as the most important challenges still pending are discussed, regarding (i.) the cell design and microfabrication, and (ii.) the integration of functional electrolyte and electrode materials. To conclude, the different strategies foreseen for a wide deployment of the technology as new portable power source are underlined.

  1. Toward realizing high power semiconductor terahertz laser sources at room temperature

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    2011-05-01

    The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (~ 36 meV) in this material system. With a much larger LO-phonon energy of ~ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths.

  2. High power microwave source with a three dimensional printed metamaterial slow-wave structure.

    PubMed

    French, David M; Shiffler, Don

    2016-05-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  3. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  4. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    SciTech Connect

    French, David M.; Shiffler, Don

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for buildingmore » these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.« less

  5. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    SciTech Connect

    Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less

  6. Source-drain burnout mechanism of GaAs power MESFETS: Three terminal effects

    NASA Astrophysics Data System (ADS)

    Takamiya, Saburo; Sonoda, Takuji; Yamanouchi, Masahide; Fujioka, Takashi; Kohno, Masaki

    1997-03-01

    Theoretical expressions for thermal and electrical feedback effects are derived. These limit the power capability of a power FET and lead a device to catastrophic breakdown (source-drain burnout) when the loop gain of the former reaches unity. Field emission of thermally excited electrons at the Schottky gate plays the key role in thermal feedback, while holes being impact ionized by the drain current play a similar role in the electrical feedback. Thermal feedback is dominant in a high temperature and low drain voltage area. Electrical feedback is dominant in a high drain voltage and low temperature area. In the first area, a high junction temperature is the main factor causing the thermal runaway of the device. In the second area, the electrcal feedback increases the drain current and the temperature and gives a trigger to the thermal feedback so that it reaches unity more easily. Both effects become significant in proportion to transconductance and gate bias resistance, and cause simultaneous runaway of the gate and drain currents. The expressions of the loop gains clearly indicate the safe operating conditions for a power FET. C-band 4 W (1 chip) and 16 W (4 chip) GaAs MESFETs were used as the experimental samples. With these devices the simultaneous runaway of the gate and the drain currents, apparent dependence of the three teminal breakdown voltage on the gate bias resistance in the region dominated by electrical feedback, the rapid increase of the field emitted current at the critical temperature and clear coincidence between the measured and calculated three terminal gate currents both in the thermal feedback dominant region, etc. are demonstrated. The theory explains the experimental results well.

  7. Investigation of a large power water-cooled microwave resonance window for application with the ECR ion source

    NASA Astrophysics Data System (ADS)

    Guo, Guo; Guo, Junwei; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu

    2017-06-01

    A large power water-cooled microwave resonance window used for the electron cyclotron resonance (ECR) ion source is investigated in this paper. The microwave characteristic simulation, thermal analysis, and structure design are deeply and successively carried out before fabrication. After the machining and welding of the components, the window is cold and hot tested. The application results demonstrate that when the input power is 2000 W, the reflected power is only 5 W. The vacuum is below 10-10 Pa, and the high power microwave operation can last 30 h continuously and reliably, which indicates that the design and assembling can achieve the high efficiency of the microwave transmission. Finally, the performance of the ECR ion source is enhanced by the improvement of the injected microwave power to the ECR plasma.

  8. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-01

    Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  9. Nitrate removal performance of Diaphorobacter nitroreducens using biodegradable plastics as the source of reducing power

    NASA Astrophysics Data System (ADS)

    Khan, S. T.; Nagao, Y.; Hiraishi, A.

    2015-02-01

    Strain NA10BT and other two strains of the denitrifying betaproteobacterium Diaphorobacter nitroreducens were studied for the performance of solid-phase denitrification (SPD) using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and some other biodegradable plastics as the source of reducing power in wastewater treatment. Sequencing-batch SPD reactors with these organisms and PHBV granules or flakes as the substrate exhibited good nitrate removal performance. Vial tests using cultures from these parent reactors showed higher nitrate removal rates with PHBV granules (ca. 20 mg-NO3-- N g-1 [dry wt cells] h-1) than with PHBV pellets and flakes. In continuous-flow SPD reactors using strain NA10BT and PHBV flakes, nitrate was not detected even at a loading rate of 21 mg-NO3-- N L-1 h-1. This corresponded to a nitrate removal rate of 47 mg-NO3-- N g-1 (dry wt cells) h-1. In the continuous-flow reactor, the transcription level of the phaZ gene, coding for PHB depolymerase, decreased with time, while that of the nosZ gene, involved in denitrificaiton, was relatively constant. These results suggest that the bioavailability of soluble metabolites as electron donor and carbon sources increases with time in the continuous-flow SPD process, thereby having much higher nitrate removal rates than the process with fresh PHBV as the substrate.

  10. Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions

    NASA Astrophysics Data System (ADS)

    Pantano, David R.; Hill, Dennis H.

    2005-02-01

    The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

  11. X-ray monochromators for high-power synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Hart, Michael

    1990-11-01

    Exact solutions to the problems of power flow from a line source of heat into a semicylinder and of uniform heat flow normal to a flat surface are discussed. These lead to bounds on feasible designs and the boundary layer problem can be placed in proper perspective. While finite element calculations are useful if the sample boundaries are predefined, they are much less help in establishing design principles. Previous work on hot beam X-ray crystal optics has emphasised the importance of coolant hydraulics and boundary layer heat transfer. Instead this paper emphasises the importance of the elastic response of crystals to thermal strainfields and the importance of maintaining the Darwin reflectivity. The conclusions of this design study are that the diffracting crystal region should be thin, but not very thin, similar in area to the hot beam footprint, part of a thin-walked buckling crystal box and remote from the support to which the crystal is rigidly clamped. Prototype 111 and 220 cooled silicon crystals tested at the National Synchrotron Light Source at Brookhaven have almost perfect rocking curves under a beam heat load of {1}/{3}kW.

  12. A high-power fiber-coupled semiconductor light source with low spatio-temporal coherence

    NASA Astrophysics Data System (ADS)

    Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Menke, Tim; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    Interference-induced distortions pose a significant challenge to a variety of experimental techniques, ranging from full-field imaging applications in biological research to the creation of optical potentials in quantum gas microscopy. Here, we present a design of a high-power, fiber-coupled semiconductor light source with low spatio-temporal coherence that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  13. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-09

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  14. Using Power as a Negative Cue: How Conspiracy Mentality Affects Epistemic Trust in Sources of Historical Knowledge.

    PubMed

    Imhoff, Roland; Lamberty, Pia; Klein, Olivier

    2018-04-01

    Classical theories of attitude change point to the positive effect of source expertise on perceived source credibility persuasion, but there is an ongoing societal debate on the increase in anti-elitist sentiments and conspiracy theories regarding the allegedly untrustworthy power elite. In one correlational ( N = 275) and three experimental studies ( N = 195, N = 464, N = 225), we tested the novel idea that people who endorse a conspiratorial mind-set (conspiracy mentality) indeed exhibit markedly different reactions to cues of epistemic authoritativeness than those who do not: Whereas the perceived credibility of powerful sources decreased with the recipients' conspiracy mentality, that of powerless sources increased independent of and incremental to other biases, such as the need to see the ingroup in particularly positive light. The discussion raises the question whether a certain extent of source-based bias is necessary for the social fabric of a highly complex society.

  15. PowerStep - Wastewater as source of biomass for renewable energy

    NASA Astrophysics Data System (ADS)

    Loderer, Christian; Lesjean, Boris; Krampe, Jörg

    2017-04-01

    at operating WWTP sites of different sizes (up to 350,000 pe) and involving various and representative state-of-the-art treatment processes, which underlines both the realistic nature of testing conditions and also the interest of associated partners and utilities in the innovative potential of the investigated technologies and concepts. Within the next three years the following goals should be achieved: • Breakthough innovation: the WWTP will be net energy producer. Wastewater as the last forgotten source of biomass for renewable energy. • No additional needs for power infrastructure, as WWTPs are already well connected in energy supply network and close to power demand (big cities). • First coordinated European project demonstrating energy positive WWTPs as cost effective combination of technological solutions. • Demonstration with first large-scale references: Best practices for next generation WWTPs integrated with global assessment. • Outstanding market and environment impact: Global yearly market value of up 30 Billion, energy cost savings for WWTP operators in Europe of at least €1.7 Billion per year and 5.9 Million tCO2 reduction per year.

  16. The low-frequency sound power measuring technique for an underwater source in a non-anechoic tank

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Ming; Tang, Rui; Li, Qi; Shang, Da-Jing

    2018-03-01

    In order to determine the radiated sound power of an underwater source below the Schroeder cut-off frequency in a non-anechoic tank, a low-frequency extension measuring technique is proposed. This technique is based on a unique relationship between the transmission characteristics of the enclosed field and those of the free field, which can be obtained as a correction term based on previous measurements of a known simple source. The radiated sound power of an unknown underwater source in the free field can thereby be obtained accurately from measurements in a non-anechoic tank. To verify the validity of the proposed technique, a mathematical model of the enclosed field is established using normal-mode theory, and the relationship between the transmission characteristics of the enclosed and free fields is obtained. The radiated sound power of an underwater transducer source is tested in a glass tank using the proposed low-frequency extension measuring technique. Compared with the free field, the radiated sound power level of the narrowband spectrum deviation is found to be less than 3 dB, and the 1/3 octave spectrum deviation is found to be less than 1 dB. The proposed testing technique can be used not only to extend the low-frequency applications of non-anechoic tanks, but also for measurement of radiated sound power from complicated sources in non-anechoic tanks.

  17. High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality.

    PubMed

    Ma, Pengfei; Huang, Long; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2016-01-25

    In this manuscript, a high power broadband superfluorescent source (SFS) with linear polarization and near-diffraction-limited beam quality is achieved based on an ytterbium-doped (Yb-doped), all fiberized and polarization-maintained master oscillator power amplifier (MOPA) configuration. The MOPA structure generates a linearly polarized output power of 1427 W with a slope efficiency of 80% and a full width at half maximum (FWHM) of 11 nm, which is power scaled by an order of magnitude compared with the previously reported SFSs with linear polarization. In the experiment, both the polarization extinction ratio (PER) and beam quality (M(2) factor) are degraded little during the power scaling process. At maximal output power, the PER and M(2) factor are measured to be 19.1dB and 1.14, respectively. The root-mean-square (RMS) and peak-vale (PV) values of the power fluctuation at maximal output power are just 0.48% and within 3%, respectively. Further power scaling of the whole system is limited by the available pump sources. To the best of our knowledge, this is the first demonstration of kilowatt level broadband SFS with linear polarization and near-diffraction-limited beam quality.

  18. High-power terahertz lasers with excellent beam quality for local oscillator sources

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin

    Many molecular species that compose the interstellar medium have strong spectral features in the 2-5 THz range, and heterodyne spectroscopy is required to obtain ~km/s velocity resolution to resolve their complicated lineshapes and disentangle them from the background. Understanding the kinetics and energetics within the gas clouds of the interstellar medium is critical to understanding star formation processes and validating theories of galactic evolution. Herschel Observatory's heterodyne HIFI instrument provided several years of high-spectral-resolution measurements of the interstellar medium, although only up to 1.9 THz. The next frontier for heterodyne spectroscopy is the 2-6 THz region. However, development of heterodyne receivers above 2 THz has been severely hindered by a lack of convenient coherent sources of sufficient power to serve as local oscillators (LOs). The recently developed quantum-cascade (QC) lasers are emerging as candidates for LOs in the 1.5-5 THz range. The current generation of single-mode THz QC-lasers can provide a few milliwatts of power in a directive beam, and will be sufficient to pump single pixels and small-format heterodyne arrays (~10 elements). This proposal looks beyond the state-of-the-art, to the development of large format heterodyne arrays which contain on the order of 100-1000 elements. LO powers on the order of 10-100 mW delivered in a high-quality Gaussian beam will be needed to pump the mixer array - not only because of the microwatt mixer power requirement, but to account for large anticipated losses in LO coupling and distribution. Large format heterodyne array instruments are attractive for a dramatic speedup of mapping of the interstellar medium, particularly on airborne platforms such as the Stratospheric Observatory for Infrared Astronomy (SOFIA), and on long duration balloon platforms such as the Stratospheric Terahertz Observatory (STO), where observation time is limited. The research goal of this proposal is

  19. Solid core dipoles and switching power supplies: lower cost light sources?

    NASA Astrophysics Data System (ADS)

    Benesch, J.; Philip, S.

    2015-05-01

    As a result of improvements in power semiconductors, moderate frequency switching supplies can now provide the hundreds of amps typically required by accelerators with zero-to-peak noise in the kHz region ~ 0.06% in current or voltage mode. Modeling was undertaken using a finite electromagnetic program to determine if eddy currents induced in the solid steel of CEBAF magnets and small supplemental additions would bring the error fields down to the 5ppm level needed for beam quality. The expected maximum field of the magnet under consideration is 0.85 T and the DC current required to produce that field is used in the calculations. An additional 0.1% current ripple is added to the DC current at discrete frequencies 360 Hz, 720 Hz or 7200 Hz. Over the region of the pole within 0.5% of the central integrated BdL the resulting AC field changes can be reduced to less than 1% of the 0.1% input ripple for all frequencies, and a sixth of that at 7200 Hz. Doubling the current, providing 1.5 T central field, yielded the same fractional reduction in ripple at the beam for the cases checked. A small dipole was measured at 60, 120, 360 and 720 Hz in two conditions and the results compared to the larger model for the latter two frequencies with surprisingly good agreement. For light sources with aluminum vacuum vessels and full energy linac injection, the combination of solid core dipoles and switching power supplies may result in significant cost savings. The work may also be used to guide retrofit of existing machines to reduce the level of ripple in the particle beam path.

  20. Solid core dipoles and switching power supplies: Lower cost light sources?

    SciTech Connect

    Benesch, Jay; Philip, Sarin

    As a result of improvements in power semiconductors, moderate frequency switching supplies can now provide the hundreds of amps typically required by accelerators with zero-to-peak noise in the kHz region ~ 0.06% in current or voltage mode. Modeling was undertaken using a finite electromagnetic program to determine if eddy currents induced in the solid steel of CEBAF magnets and small supplemental additions would bring the error fields down to the 5ppm level needed for beam quality. The expected maximum field of the magnet under consideration is 0.85 T and the DC current required to produce that field is used inmore » the calculations. An additional 0.1% current ripple is added to the DC current at discrete frequencies 360 Hz, 720 Hz or 7200 Hz. Over the region of the pole within 0.5% of the central integrated BdL the resulting AC field changes can be reduced to less than 1% of the 0.1% input ripple for all frequencies, and a sixth of that at 7200 Hz. Doubling the current, providing 1.5 T central field, yielded the same fractional reduction in ripple at the beam for the cases checked. A small dipole was measured at 60, 120, 360 and 720 Hz in two conditions and the results compared to the larger model for the latter two frequencies with surprisingly good agreement. Thus, for light sources with aluminum vacuum vessels and full energy linac injection, the combination of solid core dipoles and switching power supplies may result in significant cost savings.« less

  1. Source Space Estimation of Oscillatory Power and Brain Connectivity in Tinnitus

    PubMed Central

    Zobay, Oliver; Palmer, Alan R.; Hall, Deborah A.; Sereda, Magdalena; Adjamian, Peyman

    2015-01-01

    Tinnitus is the perception of an internally generated sound that is postulated to emerge as a result of structural and functional changes in the brain. However, the precise pathophysiology of tinnitus remains unknown. Llinas’ thalamocortical dysrhythmia model suggests that neural deafferentation due to hearing loss causes a dysregulation of coherent activity between thalamus and auditory cortex. This leads to a pathological coupling of theta and gamma oscillatory activity in the resting state, localised to the auditory cortex where normally alpha oscillations should occur. Numerous studies also suggest that tinnitus perception relies on the interplay between auditory and non-auditory brain areas. According to the Global Brain Model, a network of global fronto—parietal—cingulate areas is important in the generation and maintenance of the conscious perception of tinnitus. Thus, the distress experienced by many individuals with tinnitus is related to the top—down influence of this global network on auditory areas. In this magnetoencephalographic study, we compare resting-state oscillatory activity of tinnitus participants and normal-hearing controls to examine effects on spectral power as well as functional and effective connectivity. The analysis is based on beamformer source projection and an atlas-based region-of-interest approach. We find increased functional connectivity within the auditory cortices in the alpha band. A significant increase is also found for the effective connectivity from a global brain network to the auditory cortices in the alpha and beta bands. We do not find evidence of effects on spectral power. Overall, our results provide only limited support for the thalamocortical dysrhythmia and Global Brain models of tinnitus. PMID:25799178

  2. Experimental development of rod pinch diode radiographic source using modified KALI 1000 pulsed power system

    SciTech Connect

    Satyanarayana, N.; Basu, Shibaji; Rajawat, R.K., E-mail: satya_3026@yahoo.com

    2014-07-01

    This paper highlights the development of Rod Pinch (RP) diode for flash X-ray generation as intense radiographic source at BARC, Vizag. The typical RP diode employed used a small diameter (1-2 mm) anode rod extended through a cathode circular aperture (5-6 mm inner diameter). The diode chamber is maintained at 10{sup -5} Torr vacuum by a rotary backed diffusion pump. Experiments performed on a modified Kali 1000 Pulsed Power System (300 kV, 30 kA, 100 ns) were aimed at optimizing the source by maximizing the figure of merit (dose @ 1m in rad/spot diameter{sup 2} in mm{sup 2}) with minimizingmore » of the diode impedance. The typical electron beam parameters used in the experiments are 240-270 kV, 20-25 kA, 100 ns, with a few hundreds of kA/cm{sup 2} current density. The optimization resulted in a configuration with tungsten anode rod having dimensions of a 1.6 mm diameter, tapering extension length 5-25 mm beyond the graphite cathode aperture (Cathode disk ID = 5 mm, thickness = 3mm) to produce a radiation dose of 150-200 milli rad at 1 m distance having an estimated spot-size of 1-2 mm. The radiation emitted from a rod-pinch diode is measured using Thermoluminescence dosimeters (TLDs) at an angular interval of 15° on either side of the rod in horizontal and vertical plane. (author)« less

  3. Ground heat flux and power sources of low-enthalpy geothermal systems

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Blum, Philipp; Rivera, Jaime A.

    2015-04-01

    Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.

  4. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    NASA Astrophysics Data System (ADS)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  5. Effect of Different Solar Radiation Data Sources on the Variation of Techno-Economic Feasibility of PV Power System

    NASA Astrophysics Data System (ADS)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Aljaafar, A. A.; Kadhim, Mohammed; Sopian, K.

    2017-11-01

    The aim of this study is to evaluate the variation in techno-economic feasibility of PV power system under different data sources of solar radiation. HOMER simulation tool is used to predict the techno-economic feasibility parameters of PV power system in Baghdad city, Iraq located at (33.3128° N, 44.3615° E) as a case study. Four data sources of solar radiation, different annual capacity shortages percentage (0, 2.5, 5, and 7.5), and wide range of daily load profile (10-100 kWh/day) are implemented. The analyzed parameters of the techno-economic feasibility are COE (/kWh), PV array power capacity (kW), PV electrical production (kWh/year), No. of batteries and battery lifetime (year). The main results of the study revealed the followings: (1) solar radiation from different data sources caused observed to significant variation in the values of the techno-economic feasibility parameters; therefore, careful attention must be paid to ensure the use of an accurate solar input data; (2) Average solar radiation from different data sources can be recommended as a reasonable input data; (3) it is observed that as the size and of PV power system increases, the effect of different data sources of solar radiation increases and causes significant variation in the values of the techno-economic feasibility parameters.

  6. Using Medtronic's MAST Quadrant, Radiance, and Radiance X Illumination Systems with high-power light sources increases burn risk.

    PubMed

    2010-11-01

    Connecting the Medtronic MAST Quadrant Illumination System, Radiance Illumination System, or Radiance X Illumination System--all of which are specialized fiberoptic light cables used with the company's minimally invasive spinal products--to a high-power surgical light source significantly increases the risk of patient burns. Hospitals should ensure that the products are used only with 100 W light sources and 5 mm light cables, as prescribed in the product labeling.

  7. Implications for the UK of solar-power satellites /s.p.s/ as an energy source

    NASA Technical Reports Server (NTRS)

    Shelton, R. M.

    1980-01-01

    The solar power satellite concept which would make the sun's radiation available on earth as a source of energy, is discussed. Attention is given to the concept currently under evaluation in the USA, and also in Europe, though to a lesser extent. The advantages and problems associated with its adoption by the UK as a major source of electrical energy are discussed. The discussion covers topics such as sizing, reference system, and construction, costs, and problem areas.

  8. Beyond flexible batteries: aesthetically versatile, printed rechargeable power sources for smart electronics

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Young

    2017-05-01

    Forthcoming wearable/flexible electronics with compelling shape diversity and mobile usability have garnered significant attention as a kind of disruptive technology to drastically change our daily lives. From a power source point of view, conventional rechargeable batteries (represented by lithium-ion batteries) with fixed shapes and dimensions are generally fabricated by winding (or stacking) cell components (such as anodes, cathodes and separator membranes) and then packaging them with (cylindrical-/rectangular-shaped) metallic canisters or pouch films, finally followed by injection of liquid electrolytes. In particular, the use of liquid electrolytes gives rise to serious concerns in cell assembly, because they require strict packaging materials to avoid leakage problems and also separator membranes to prevent electrical contact between electrodes. For these reasons, the conventional cell assembly and materials have pushed the batteries to lack of variety in form factors, thus imposing formidable challenges on their integration into versatile-shaped electronic devices. Here, as a facile and efficient strategy to address the aforementioned longstanding challenge, we demonstrate a new class of printed solid-state Li-ion batteries and also all-inkjet-printed solid-state supercapacitors with exceptional shape conformability and aesthetic versatility which lie far beyond those achievable with conventional battery technologies.

  9. Dual-source dual-power electrospinning and characteristics of multifunctional scaffolds for bone tissue engineering.

    PubMed

    Wang, Chong; Wang, Min

    2012-10-01

    Electrospun tissue engineering scaffolds are attractive due to their distinctive advantages over other types of scaffolds. As both osteoinductivity and osteoconductivity play crucial roles in bone tissue engineering, scaffolds possessing both properties are desirable. In this investigation, novel bicomponent scaffolds were constructed via dual-source dual-power electrospinning (DSDPES). One scaffold component was emulsion electrospun poly(D,L-lactic acid) (PDLLA) nanofibers containing recombinant human bone morphogenetic protein (rhBMP-2), and the other scaffold component was electrospun calcium phosphate (Ca-P) particle/poly(lactic-co-glycolic acid) (PLGA) nanocomposite fibers. The mass ratio of rhBMP-2/PDLLA fibers to Ca-P/PLGA fibers in bicomponent scaffolds could be controlled in the DSDPES process by adjusting the number of syringes used to supply solutions for electrospinning. Through process optimization, both types of fibers could be evenly distributed in bicomponent scaffolds. The structure and properties of each type of fibers in the scaffolds were studied. The morphological and structural properties and wettability of scaffolds were assessed. The effects of emulsion composition for rhBMP-2/PDLLA fibers and mass ratio of fibrous components in bicomponent scaffolds on in vitro release of rhBMP-2 from scaffolds were investigated. In vitro degradation of scaffolds was also studied by monitoring their morphological changes, weight losses and decreases in average molecular weight of fiber matrix polymers.

  10. Researche of the Earth's crust structure with powerful vibrational controlled sources

    NASA Astrophysics Data System (ADS)

    Alekseev, A.; Glinsky, B.; Kovalevsky, V.

    2003-04-01

    The paper presents the results of experimental researches of the Earth's structure, geodynamic processes and physical phenomena carried out using vibrational sources in Institutes of Siberian Branch RAS. Powerful seismic vibrators are the large mechanical devises and are installed stationary on the vibroseismic test site near Novosibirsk (Russia). The vibro-DSS experiments were carried out on 100 km-long profile from Novosibirsk to Kuzbass region and on 620 km profile between Novosibirsk and Semipalatinsk test site. Specially developed field recording systems based on multichannel three component seismic arrays were used. It allowed us to observe the main crustal waves and waves refracted on Moho boundary. In the experiments on the 620 km profile the comparison of the seismic vibrator and special 100 tons calibration explosion wave fields was made. The possibility to detect small changes of wave velocities by vibroseismic methods were shown in the experiments on the setoff 356 and 430 km, where the relative variations of velocities of seismic waves about 10-5 - 10-6 caused by the Earth's tides deformations of the crust were defined. Some new physical phenomena connected with resonance mechanism of radiation of seismic energy in low-frequency range, the radiation of acoustic waves simultaneously with seismic waves and their interaction on long distances from vibrators were detected.

  11. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    PubMed

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  12. High-power single-stage thulium-doped superfluorescent fiber source

    NASA Astrophysics Data System (ADS)

    Hu, Z. Y.; Yan, P.; Liu, Q.; Ji, E. C.; Xiao, Q. R.; Gong, M. L.

    2015-01-01

    In this paper, we report a high-power thulium (Tm)-doped superfluorescent fiber source (SFS) in the 2-μm spectral region. The SFS is based on double angle-cleaved facet operation and uses a simple single-stage geometry. The copropagating amplified spontaneous emission (ASE) yields a maximum output of 20.7 W at a center wavelength of 1,960.7 nm, with a full width at half maximum (FWHM) of ~45 nm. The counterpropagating ASE yields a maximum output of 25.2 W at a center wavelength of 1,948.2 nm, with a FWHM of ~50 nm. The maximum combined output of the SFS is as much as 45.9 W, which corresponds to a slope efficiency of 38.9 %. In addition, a model of the ~2 μm SFS in Tm-doped silica fibers pumped at ~790 nm is developed, and the influence of fiber length and end-facet reflectivity on the ASE output performance and the parasitic lasing threshold are studied numerically.

  13. A Low Cost/Low Power Open Source Sensor System for Automated Tuberculosis Drug Susceptibility Testing

    PubMed Central

    Kim, Kyukwang; Kim, Hyeong Keun; Lim, Hwijoon; Myung, Hyun

    2016-01-01

    In this research an open source, low power sensor node was developed to check the growth of mycobacteria in a culture bottle with a nitrate reductase assay method for a drug susceptibility test. The sensor system reports the temperature and color sensor output frequency change of the culture bottle when the device is triggered. After the culture process is finished, a nitrite ion detecting solution based on a commercial nitrite ion detection kit is injected into the culture bottle by a syringe pump to check bacterial growth by the formation of a pigment by the reaction between the solution and the color sensor. Sensor status and NRA results are broadcasted via a Bluetooth low energy beacon. An Android application was developed to collect the broadcasted data, classify the status of cultured samples from multiple devices, and visualize the data for the end users, circumventing the need to examine each culture bottle manually during a long culture period. The authors expect that usage of the developed sensor will decrease the cost and required labor for handling large amounts of patient samples in local health centers in developing countries. All 3D-printerable hardware parts, a circuit diagram, and software are available online. PMID:27338406

  14. Assessment of Renewable Energy Sources & Municipal Solid Waste for Sustainable Power Generation in Nigeria

    NASA Astrophysics Data System (ADS)

    Aderoju, Olaide M.; Dias, Guerner A.; Echakraoui, Zhour

    2017-12-01

    The demand for Energy in most Sub-Saharan African countries has become unimaginable despite its high potential of natural and renewable resources. The deficit has impeded the regions’ economic growth and sustainability. Nigeria as a nation is blessed with fossil fuels, abundant sunlight, hydro, wind and many among others, but the energy output to its population (185 million) still remains less than 4000MW. Currently, the clamour for an alternative but renewable energy source is the demand of the globe but it is quite expensive to achieve the yield that meets the Nigeria demand. Hence, this study aims at identifying and mapping out various regions with renewable energy potentials. The study also considers municipal solid waste as a consistent and available resource for power generation. Furthermore, this study examines the drawbacks inhibiting the inability to harness these renewable, energy generating potentials in full capacity. The study will enable the authorities and other stakeholders to invest and plan on providing a sustainable energy for the people.

  15. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks

    NASA Astrophysics Data System (ADS)

    Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid

    2011-10-01

    In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the 'best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.

  16. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  17. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements.

    PubMed

    Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  18. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    SciTech Connect

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power aremore » studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.« less

  19. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    NASA Astrophysics Data System (ADS)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  20. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  1. Energy Sources (Energy/Power). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Lawrence, Allen; And Others

    This course guide for an energy sources course is one of four developed for the energy/power area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--graphic communications and production.) Part 1 provides such introductory information as a definition and…

  2. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  3. Knowledge and networks - key sources of power in global health: Comment on "Knowledge, moral claims and the exercise of power in global health".

    PubMed

    Hanefeld, Johanna; Walt, Gill

    2015-02-01

    Shiffman rightly raises questions about who exercises power in global health, suggesting power is a complex concept, and the way it is exercised is often opaque. Power that is not based on financial strength but on knowledge or experience, is difficult to estimate, and yet it may provide the legitimacy to make moral claims on what is, or ought to be, on global health agendas. Twenty years ago power was exercised in a much less complex health environment. The World Health Organization (WHO) was able to exert its authority as world health leader. The landscape today is very different. Financial resources for global health are being competed for by diverse organisations, and power is diffused and somewhat hidden in such a climate, where each organization has to establish and make its own moral claims loudly and publicly. We observe two ways which allow actors to capture moral authority in global health. One, through power based on scientific knowledge and two, through procedures in the policy process, most commonly associated with the notion of broad consultation and participation. We discuss these drawing on one particular framework provided by Bourdieu, who analyses the source of actor power by focusing on different sorts of capital. Different approaches or theories to understanding power will go some way to answering the challenge Shiffman throws to health policy analysts. We need to explore much more fully where power lies in global health, and how it is exercised in order to understand underlying health agendas and claims to legitimacy made by global health actors today.

  4. Fully utilizing high power diode lasers by synergizing diode laser light sources and beam shaping micro-optics

    NASA Astrophysics Data System (ADS)

    Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng

    2018-02-01

    High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.

  5. Low Cost, Open-Source, and Low-Power: But What to Do with the Data?

    NASA Astrophysics Data System (ADS)

    Horsburgh, J. S.; Aufdenkampe, A. K.; Arscott, D.; Damiano, S. G.; Hicks, S. D.

    2017-12-01

    There are now many ongoing efforts to develop low-cost, open-source, low-power sensors and datalogging solutions for environmental applications. Many of these have advanced to the point that high quality scientific measurements can be made using relatively inexpensive and increasingly off-the-shelf components. With the development of these innovative systems, however, comes the ability to generate large volumes of high-frequency monitoring data and the challenge of how to log, transmit, store, and share the resulting data. This presentation will focus on a new, web-based system http://data.envirodiy.org that was designed to enable citizen scientists to stream sensor data from a network of EnviroDIY Mayfly Arduino-based dataloggers. This system enables registration of new sensor nodes through a website. Once registered, any Internet connected device (e.g., cellular or WIFI) can then post data to the data.envirodiy.org website through a web service programming interface. Data are stored in a back-end data store that implements Version 2 of the Observations Data Model (ODM2). Live data can then be viewed and downloaded from the data.envirodiy.org website in a simple text format. While this system was purpose built to support an emerging network of Arduino-based sensor nodes deployed by citizen scientists in the Delaware River Basin, the architecture and components are generic and could be used by any Internet connected device capable of making measurements and formulating an HTTP POST request to send them to data.envirodiy.org.

  6. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    SciTech Connect

    Rupke, David S. N.; Veilleux, Sylvain, E-mail: drupke@gmail.com

    2013-05-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z < 0.06 using deep integral field spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) on Gemini North. We probe the neutral, ionized, and dusty gas phases using Na I D, strong emission lines ([O I], H{alpha}, and [N II]), and continuum colors, respectively. We separate outflow motions from those due to rotation and tidal perturbations, and find that all of themore » galaxies in our sample host high-velocity flows on kiloparsec scales. The properties of these outflows are consistent with multiphase (ionized, neutral, and dusty) collimated bipolar winds emerging along the minor axis of the nuclear disk to scales of 1-2 kpc. In two cases, these collimated winds take the form of bipolar superbubbles, identified by clear kinematic signatures. Less collimated (but still high-velocity) flows are also present on scales up to 5 kpc in most systems. The three galaxies in our sample with obscured QSOs host higher velocity outflows than those in the three galaxies with no evidence for an active galactic nucleus. The peak outflow velocity in each of the QSOs is in the range 1450-3350 km s{sup -1}, and the highest velocities (2000-3000 km s{sup -1}) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.« less

  7. Operational compatibility of 30-centimeter-diameter ion thruster with integrally regulated solar array power source

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1977-01-01

    System tests were performed in which Integrally Regulated Solar Arrays (IRSA's) were used to directly power the beam and accelerator loads of a 30-cm-diameter, electron bombardment, mercury ion thruster. The remaining thruster loads were supplied from conventional power-processing circuits. This combination of IRSA's and conventional circuits formed a hybrid power processor. Thruster performance was evaluated at 3/4- and 1-A beam currents with both the IRSA-hybrid and conventional power processors and was found to be identical for both systems. Power processing is significantly more efficient with the hybrid system. System dynamics and IRSA response to thruster arcs are also examined.

  8. Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source

    NASA Astrophysics Data System (ADS)

    Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.

  9. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system.

    PubMed

    Gong, Yanming; Radachowsky, Sage E; Wolf, Michael; Nielsen, Mark E; Girguis, Peter R; Reimers, Clare E

    2011-06-01

    Supported by the natural potential difference between anoxic sediment and oxic seawater, benthic microbial fuel cells (BMFCs) promise to be ideal power sources for certain low-power marine sensors and communication devices. In this study a chambered BMFC with a 0.25 m(2) footprint was used to power an acoustic modem interfaced with an oceanographic sensor that measures dissolved oxygen and temperature. The experiment was conducted in Yaquina Bay, Oregon over 50 days. Several improvements were made in the BMFC design and power management system based on lessons learned from earlier prototypes. The energy was harvested by a dynamic gain charge pump circuit that maintains a desired point on the BMFC's power curve and stores the energy in a 200 F supercapacitor. The system also used an ultralow power microcontroller and quartz clock to read the oxygen/temperature sensor hourly, store data with a time stamp, and perform daily polarizations. Data records were transmitted to the surface by the acoustic modem every 1-5 days after receiving an acoustic prompt from a surface hydrophone. After jump-starting energy production with supplemental macroalgae placed in the BMFC's anode chamber, the average power density of the BMFC adjusted to 44 mW/m(2) of seafloor area which is better than past demonstrations at this site. The highest power density was 158 mW/m(2), and the useful energy produced and stored was ≥ 1.7 times the energy required to operate the system.

  10. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOEpatents

    Tam, Shiu-Wing

    1997-01-01

    An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.

  11. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOEpatents

    Tam, S.W.

    1998-06-16

    An illumination source is disclosed comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.

  12. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOEpatents

    Tam, S.W.

    1997-02-25

    Disclosed is an illumination source comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.

  13. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOEpatents

    Tam, Shiu-Wing

    1998-01-01

    An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.

  14. Hybrid Design of Electric Power Generation Systems Including Renewable Sources of Energy

    ERIC Educational Resources Information Center

    Wang, Lingfeng; Singh, Chanan

    2008-01-01

    With the stricter environmental regulations and diminishing fossil-fuel reserves, there is now higher emphasis on exploiting various renewable sources of energy. These alternative sources of energy are usually environmentally friendly and emit no pollutants. However, the capital investments for those renewable sources of energy are normally high,…

  15. NASA Tech Briefs, July 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Airport Remote Tower Sensor Systems; Implantable Wireless MEMS Sensors for Medical Uses; Embedded Sensors for Measuring Surface Regression; Coordinating an Autonomous Earth-Observing Sensorweb; Range-Measuring Video Sensors; Stability Enhancement of Polymeric Sensing Films Using Fillers; Sensors for Using Times of Flight to Measure Flow Velocities; Receiver Would Control Phasing of a Phased-Array Antenna; Modern Design of Resonant Edge-Slot Array Antennas; Carbon-Nanotube Schottky Diodes; Simplified Optics and Controls for Laser Communications; Coherent Detection of High-Rate Optical PPM Signals; Multichannel Phase and Power Detector; Using Satellite Data in Weather Forecasting: I; Using Dissimilarity Metrics to Identify Interesting Designs; X-Windows PVT Widget Class; Shuttle Data Center File-Processing Tool in Java; Statistical Evaluation of Utilization of the ISS; Nanotube Dispersions Made With Charged Surfactant; Aerogels for Thermal Insulation of Thermoelectric Devices; Low-Density, Creep-Resistant Single-Crystal Superalloys; Excitations for Rapidly Estimating Flight-Control Parameters; Estimation of Stability and Control Derivatives of an F-15; Tool for Coupling a Torque Wrench to a Round Cable Connector; Ultrasonically Actuated Tools for Abrading Rock Surfaces; Active Struts With Variable Spring Stiffness and Damping; Multiaxis, Lightweight, Computer-Controlled Exercise System; Dehydrating and Sterilizing Wastes Using Supercritical CO2; Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium; Ice-Borehole Probe; Alpha-Voltaic Sources Using Diamond as Conversion Medium; White-Light Whispering-Gallery-Mode Optical Resonators; Controlling Attitude of a Solar-Sail Spacecraft Using Vanes; and Wire-Mesh-Based Sorber for Removing Contaminants from Air.

  16. Ft. McHenry tunnel study: Source profiles and mercury emissions from diesel and gasoline powered vehicles

    NASA Astrophysics Data System (ADS)

    Landis, Matthew S.; Lewis, Charles W.; Stevens, Robert K.; Keeler, Gerald J.; Dvonch, J. Timothy; Tremblay, Raphael T.

    During the fall of 1998, the US Environmental Protection Agency and the Florida Department of Environmental Protection sponsored a 7-day study at the Ft. McHenry tunnel in Baltimore, MD with the objective of obtaining PM 2.5 vehicle source profiles for use in atmospheric mercury source apportionment studies. PM 2.5 emission profiles from gasoline and diesel powered vehicles were developed from analysis of trace elements, polycyclic aromatic hydrocarbons (PAH), and condensed aliphatic hydrocarbons. PM 2.5 samples were collected using commercially available sampling systems and were extracted and analyzed using conventional well-established methods. Both inorganic and organic profiles were sufficiently unique to mathematically discriminate the contributions from each source type using a chemical mass balance source apportionment approach. However, only the organic source profiles provided unique PAH tracers (e.g., fluoranthene, pyrene, and chrysene) for diesel combustion that could be used to identify source contributions generated using multivariate statistical receptor modeling approaches. In addition, the study found significant emission of gaseous elemental mercury (Hg 0), divalent reactive gaseous mercury (RGM), and particulate mercury (Hg(p)) from gasoline but not from diesel powered motor vehicles. Fuel analysis supported the tunnel measurement results showing that total mercury content in all grades of gasoline (284±108 ng L -1) was substantially higher than total mercury content in diesel fuel (62±37 ng L -1) collected contemporaneously at local Baltimore retailers.

  17. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  18. Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors

    NASA Astrophysics Data System (ADS)

    Bicanic, Kristopher T.

    This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.

  19. Multi-Channel, Constant-Current Power Source for Aircraft Applications

    DTIC Science & Technology

    2017-03-01

    Special considerations impacting this design were minimizing volume, maintaining system power quality, and providing electrical fault protection...applications. Electrical loads, such as lighting, de-icing heaters, and actuators may be operated from this compact power conversion unit. Because of the...nature of aircraft systems, two of the most important design considerations are the maintenance of electrical power quality and minimization of weight

  20. Fundamental Materials Studies for Advanced High Power Microwave and Terahertz Vacuum Electronic Radiation Sources

    DTIC Science & Technology

    2014-12-10

    AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and...emission-barrier scandate cathodes and identify related, alternative cathode materials systems for advanced vacuum electronic cathodes for high power THz

  1. Photovoltaic energy converter as a chipscale high efficiency power source for implanted active microelectronic devices.

    PubMed

    Hwang, N-J; Patterson, W R; Song, Y-K; Atay, T; Nurmikko, A V

    2004-01-01

    We report the development of a microscale photovoltaic energy converter which has been designed and implemented to deliver power to CMOS-based microelectronic chips. The design targets the delivery of voltages on the order of 3V with power levels in excess of 10 mW. The geometry of the prototype device, which has been fabricated and tested, is specifically designed for coupling to an optical fiber, to facilitate remote power delivery in implantable component environment.

  2. Strategy of investment in electricity sources--Market value of a power plant and the electricity market

    NASA Astrophysics Data System (ADS)

    Bartnik, R.; Hnydiuk-Stefan, A.; Buryn, Z.

    2017-11-01

    This paper reports the results of the investment strategy analysis in different electricity sources. New methodology and theory of calculating the market value of the power plant and value of the electricity market supplied by it are presented. The financial gain forms the most important criteria in the assessment of an investment by an investor. An investment strategy has to involve a careful analysis of each considered project in order that the right decision and selection will be made while various components of the projects will be considered. The latter primarily includes the aspects of risk and uncertainty. Profitability of an investment in the electricity sources (as well as others) is offered by the measures applicable for the assessment of the economic effectiveness of an investment based on calculations e.g. power plant market value and the value of the electricity that is supplied by a power plant. The values of such measures decide on an investment strategy in the energy sources. This paper contains analysis of exemplary calculations results of power plant market value and the electricity market value supplied by it.

  3. A Multiagent Energy Management System for a Small Microgrid Equipped with Power Sources and Energy Storage Units

    NASA Astrophysics Data System (ADS)

    Radziszewska, Weronika; Nahorski, Zbigniew

    An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.

  4. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence.

    PubMed

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B; Pandey, Ashwini K; Roopesh, Bangalore N; Porjesz, Bernice

    2012-05-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. Copyright © 2011 Wiley-Liss, Inc.

  5. Topography, Power and Current Source Density of Theta Oscillations during Reward Processing as Markers for Alcohol Dependence

    PubMed Central

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B.; Pandey, Ashwini K.; Roopesh, Bangalore N.; Porjesz, Bernice

    2013-01-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task which involved outcomes of either loss or gain of an amount (10¢ or 50¢) that was bet. Event-related theta band (3.0–7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200–500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current Source Density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition as compared to controls who manifested stronger and focused midline sources. Further, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. PMID:21520344

  6. Mechanochemical activation and synthesis of nanomaterials for hydrogen storage and conversion in electrochemical power sources.

    PubMed

    Wronski, Zbigniew S; Varin, Robert A; Czujko, Tom

    2009-07-01

    In this study we discuss a process of mechanical activation employed in place of chemical or thermal activation to improve the mobility and reactivity of hydrogen atoms and ions in nanomaterials for energy applications: rechargeable batteries and hydrogen storage for fuel cell systems. Two materials are discussed. Both are used or intended for use in power sources. One is nickel hydroxide, Ni(OH)2, which converts to oxyhydroxide in the positive Ni electrode of rechargeable metal hydride batteries. The other is a complex hydride, Mg(AIH4)2, intended for use in reversible, solid-state hydrogen storage for fuel cells. The feature shared by these unlikely materials (hydroxide and hydride) is a sheet-like hexagonal crystal structure. The mechanical activation was conducted in high-energy ball mills. We discuss and demonstrate that the mechanical excitation of atoms and ions imparted on these powders stems from the same class of phenomena. These are (i) proliferation of structural defects, in particular stacking faults in a sheet-like structure of hexagonal crystals, and (ii) possible fragmentation of a faulted structure into a mosaic of layered nanocrystals. The hydrogen atoms bonded in such nanocrystals may be inserted and abstracted more easily from OH- hydroxyl group in Ni(OH)2 and AlH4- hydride complex in Mg(AlH4)2 during hydrogen charge and discharge reactions. However, the effects of mechanical excitation imparted on these powders are different. While the Ni(OH)2 powder is greatly activated for cycling in batteries, the Mg(AlH4)2 complex hydride phase is greatly destabilized for use in reversible hydrogen storage. Such a "synchronic" view of the structure-property relationship in respect to materials involved in hydrogen energy storage and conversion is supported in experiments employing X-ray diffraction (XRD), differential scanning calorimetry (DSC) and direct imaging of the structure with a high-resolution transmission-electron microscope (HREM), as well as in

  7. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.

    PubMed

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2012-12-15

    We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8  W over 77% of the tuning range together with >3  W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

  8. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    PubMed

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  9. Low pressure and high power rf sources for negative hydrogen ions for fusion applications (ITER neutral beam injection).

    PubMed

    Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D

    2008-02-01

    The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.

  10. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity.

    PubMed

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; Jarrahi, Mona

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-the-art photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means of a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1-4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on short-carrier-lifetime substrates.

  11. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity

    DOE PAGES

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; ...

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-theart photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means ofmore » a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1–4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on shortcarrier- lifetime substrates.« less

  12. rf power system for thrust measurements of a helicon plasma source.

    PubMed

    Kieckhafer, Alexander W; Walker, Mitchell L R

    2010-07-01

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.

  13. Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Jones, B. I.

    1987-01-01

    The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.

  14. rf power system for thrust measurements of a helicon plasma source

    SciTech Connect

    Kieckhafer, Alexander W.; Walker, Mitchell L. R.

    2010-07-15

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows goodmore » transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.« less

  15. Development of a plume-in-grid model for industrial point and volume sources: application to power plant and refinery sources in the Paris region

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Seigneur, C.; Duclaux, O.

    2014-04-01

    Plume-in-grid (PinG) models incorporating a host Eulerian model and a subgrid-scale model (usually a Gaussian plume or puff model) have been used for the simulations of stack emissions (e.g., fossil fuel-fired power plants and cement plants) for gaseous and particulate species such as nitrogen oxides (NOx), sulfur dioxide (SO2), particulate matter (PM) and mercury (Hg). Here, we describe the extension of a PinG model to study the impact of an oil refinery where volatile organic compound (VOC) emissions can be important. The model is based on a reactive PinG model for ozone (O3), which incorporates a three-dimensional (3-D) Eulerian model and a Gaussian puff model. The model is extended to treat PM, with treatments of aerosol chemistry, particle size distribution, and the formation of secondary aerosols, which are consistent in both the 3-D Eulerian host model and the Gaussian puff model. Furthermore, the PinG model is extended to include the treatment of volume sources to simulate fugitive VOC emissions. The new PinG model is evaluated over Greater Paris during July 2009. Model performance is satisfactory for O3, PM2.5 and most PM2.5 components. Two industrial sources, a coal-fired power plant and an oil refinery, are simulated with the PinG model. The characteristics of the sources (stack height and diameter, exhaust temperature and velocity) govern the surface concentrations of primary pollutants (NOx, SO2 and VOC). O3 concentrations are impacted differently near the power plant than near the refinery, because of the presence of VOC emissions at the latter. The formation of sulfate is influenced by both the dispersion of SO2 and the oxidant concentration; however, the former tends to dominate in the simulations presented here. The impact of PinG modeling on the formation of secondary organic aerosol (SOA) is small and results mostly from the effect of different oxidant concentrations on biogenic SOA formation. The investigation of the criteria for injecting

  16. Development of a plume-in-grid model for industrial point and volume sources: application to power plant and refinery sources in the Paris region

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Seigneur, C.; Duclaux, O.

    2013-11-01

    Plume-in-grid (PinG) models incorporating a host Eulerian model and a subgrid-scale model (usually a Gaussian plume or puff model) have been used for the simulations of stack emissions (e.g., fossil fuel-fired power plants and cement plants) for gaseous and particulate species such as nitrogen oxides (NOx), sulfur dioxide (SO2), particulate matter (PM) and mercury (Hg). Here, we describe the extension of a PinG model to study the impact of an oil refinery where volatile organic compound (VOC) emissions can be important. The model is based on a reactive PinG model for ozone (O3), which incorporates a three-dimensional (3-D) Eulerian model and a Gaussian puff model. The model is extended to treat PM, with treatments of aerosol chemistry, particle size distribution, and the formation of secondary aerosols, which are consistent in both the 3-D Eulerian host model and the Gaussian puff model. Furthermore, the PinG model is extended to include the treatment of volume sources to simulate fugitive VOC emissions. The new PinG model is evaluated over Greater Paris during July 2009. Model performance is satisfactory for O3, PM2.5 and most PM2.5 components. Two industrial sources, a coal-fired power plant and an oil refinery, are simulated with the PinG model. The characteristics of the sources (stack height and diameter, exhaust temperature and velocity) govern the surface concentrations of primary pollutants (NOx, SO2 and VOC). O3 concentrations are impacted differently near the power plant than near the refinery, because of the presence of VOC emissions at the latter. The formation of sulfate is influenced by both the dispersion of SO2 and the oxidant concentration; however, the former tends to dominate in the simulations presented here. The impact of PinG modeling on the formation of secondary organic aerosols (SOA) is small and results mostly from the effect of different oxidant concentrations on biogenic SOA formation. The investigation of the criteria for injecting

  17. Suitability and Economic Viability of Light Weight Mechanical Power Sources for Mechanizing Hill Farming

    NASA Astrophysics Data System (ADS)

    Vatsa, Dinesh Kumar; Singh, Sukhbir

    2017-06-01

    Farm power and equipment role was established in agriculture beyond doubt for sustainable development but hill farming is still facing shortage of farm power and matching equipment for timely and precisely operations. A study was carried out on performance evaluation of different light weight power tillers/weeders designated as P1, P2, P3 and P4 under dry and wet land conditions to meet out the demand of farm power for mechanizing hill agriculture, particularly under small and irregular shaped terraces having high vertical intervals where it is difficult to operate commercially available power tillers. Four power tillers in the horse power range of 3.0-7.0 hp manufactured and marketed by Indian firms were tested in silty-clay-loam soil at the HPKV farm, Palampur, India. The results showed that the depth of operation was less than 80 mm with P1, P2 as well as P3 power tiller after two passes of rotary at soil moisture content of 16.4% whereas, it was 102 mm with P4. The average effective field capacity was 0.055, 0.051, 0.042 and 0.060 ha/h under dry land conditions with P1, P2, P3 and P4, respectively whereas in wetland condition the capacity was 0.042, 0.038 and 0.05 with P1, P2, and P4, respectively. P3 power tiller could not be possible to test under wet land conditions due to less ground clearance of the engine. The cost of repair and maintenance was observed to be very high in case of P1, P2 and P3 power tillers due to the occurrence of frequent breakdowns. It was construed from the study that the power tillers up to 5 hp are not suitable for seed-bed preparation but it could be used as weeder for interculture operations in wide row spaced crops. However, P4 power tiller performed better than other models under different conditions. There was saving of 50-66% in time and 66-75% cost of operation observed with different makes of power tillers as compared to bullock ploughing.

  18. Measuring x-ray spectra of flash radiographic sources [PowerPoint

    SciTech Connect

    Gehring, Amanda Elizabeth; Espy, Michelle A.; Haines, Todd Joseph

    2015-11-02

    The x-ray spectra of flash radiographic sources are difficult to measure. The sources measured were Radiographic Integrated Test Stand-6 (370 rad at 1 m; 50 ns pulse) and Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) (550 rad at 1 m; 50 ns pulse). Features of the Compton spectrometer are described, and spectra are shown. Additional slides present data on instrumental calibration.

  19. On the Development of Fuel-Free Power Supply Sources on Pneumatic Energy Conversion Principles

    NASA Astrophysics Data System (ADS)

    Son, E. E.; Nikolaev, V. G.; Kudryashov, Yu. I.; Nikolaev, V. V.

    2017-12-01

    The article is devoted to the evaluation of capabilities and problems of creation of fuel-free power supply of isolated and autonomous Russian consumers of low (up to several hundreds kW) power based on the joint use of wind power plants and progressive systems of pneumatic accumulation and conversion of energy. The basic and functional schemes and component structure of the system prototype are developed and proposed, the evaluations of the expected technical and economic indicators of system are presented, and the ways of its further practical implementation are planned.

  20. Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials

    NASA Astrophysics Data System (ADS)

    Kolev, V. Z.; Duering, M. W.; Luther-Davies, B.; Rode, A. V.

    2006-12-01

    We propose a novel tuneable table-top optical source as an alternative to the free electron laser currently used for resonant infrared pulsed laser deposition of polymers. It is based on two-stage pulsed optical parametric amplification using MgO doped periodically poled lithium niobate crystals. Gain in excess of 106 in the first stage and pump depletion of 58% in the second stage were achieved when the system was pumped by a high-power Nd:YVO4 picosecond laser source at 1064 nm and seeded by a CW tuneable diode laser at 1530 nm. An average power of 2 W was generated at 3.5 µm corresponding to 1.3 µJ pulse energy.