Science.gov

Sample records for alpha1 proteinase inhibitor

  1. Ozone inactivation of human alpha 1-proteinase inhibitor

    SciTech Connect

    Johnson, D.A.

    1980-06-01

    Ozone decreased the trypsin, chymotrypsin, and elastase inhibitory activities of human alpha 1-proteinase inhibitor both in plasma and in solutions of the pure inhibitor. The total loss of porcine elastase inhibitory activity required 18 mol of ozone/mol of pure alpha 1-PI and approximately 850 mol of ozone/mol of alpha 1-PI in plasma. A corresponding loss of the ability to inhibit human leukocyte elastase was observed. Inactivated alpha 1-PI contains four residues of methionine sulfoxide, in addition to oxidized tryosine and tryptophan. Electrophoretic analysis demonstrated that the ozone-inactivated alpha 1-PI did not form normal complexes with serine proteinases. These findings suggest that the inhalation of ozone could inactivate alpha 1-PI on the airspace side of the lung to create a localized alpha 1-PI deficiency, which might contribute to the development of emphysema.

  2. 1-deoxynojirimycin impairs oligosaccharide processing of alpha 1-proteinase inhibitor and inhibits its secretion in primary cultures of rat hepatocytes.

    PubMed

    Gross, V; Andus, T; Tran-Thi, T A; Schwarz, R T; Decker, K; Heinrich, P C

    1983-10-25

    1-Deoxynojirimycin was found to inhibit oligosaccharide processing of rat alpha 1-proteinase inhibitor. In normal hepatocytes alpha 1-proteinase inhibitor was present in the cells as a 49,000 Mr high mannose type glycoprotein with oligosaccharide side chains having the composition Man9GlcNAc and Man8GlcNAc with the former in a higher proportion. Hepatocytes treated with 5 mM 1-deoxynojirimycin accumulated alpha 1-proteinase inhibitor as a 51,000 Mr glycoprotein with carbohydrate side chains of the high mannose type, containing glucose as measured by their sensitivity against alpha-glucosidase, the largest species being Glc3Man9GlcNAc. Conversion to complex oligosaccharides was inhibited by the drug. In addition, increasing concentrations of 1-deoxynojirimycin inhibited glycosylation resulting in the formation of some alpha 1-proteinase inhibitor with two instead of three oligosaccharide side chains. 5 mM 1-deoxynojirimycin inhibited the secretion of alpha 1-proteinase inhibitor by about 50%, whereas secretion of albumin was unaffected. The oligosaccharides of alpha 1-proteinase inhibitor secreted from 1-deoxynojirimycin-treated cells were characterized by their susceptibility to endoglucosaminidase H, incorporation of [3H]galactose, and [3H]fucose and concanavalin A-Sepharose chromatography. It was found that 1-deoxynojirimycin did not completely block oligosaccharide processing, resulting in the formation of alpha 1-proteinase inhibitor molecules carrying one or two complex type oligosaccharides. Only these alpha 1-proteinase inhibitor molecules processed to the complex type in one or two of their oligosaccharide chains were nearly exclusively secreted. This finding demonstrates the importance of oligosaccharide processing for the secretion of alpha 1-proteinase inhibitor. PMID:6226656

  3. Degradation of the human proteinase inhibitors alpha-1-antitrypsin and alpha-2-macroglobulin by Bacteroides gingivalis.

    PubMed Central

    Carlsson, J; Herrmann, B F; Höfling, J F; Sundqvist, G K

    1984-01-01

    Various strains of black-pigmented Bacteroides species were grown on horse blood agar and suspended in human serum. After various times of incubation the effect of the bacteria on the serum was evaluated by polyacrylamide gel electrophoresis and "rocket" immunoelectrophoresis. The formation of trichloroacetic acid-soluble material in the suspensions and the capacity of the treated sera to inhibit the activity of trypsin were also determined. The two tested strains of Bacteroides gingivalis (W83, H185) degraded most serum proteins, including the plasma proteinase inhibitors alpha-1-antitrypsin and alpha-2-macroglobulin. They did not, however, degrade alpha-1-antichymotrypsin. Bacteroides intermedius NCTC 9336, Bacteroides asaccharolyticus NCTC 9337, and an asaccharolytic oral strain different from B. gingivalis (BN11a-f) did not degrade the plasma proteinase inhibitors. These strains were, however, able to inactivate the capacity of serum to inhibit the activity of trypsin. Images PMID:6198282

  4. A lymphokine regulates expression of alpha-1-proteinase inhibitor in human monocytes and macrophages.

    PubMed Central

    Takemura, S; Rossing, T H; Perlmutter, D H

    1986-01-01

    Biosynthesis and secretion of alpha-1-proteinase inhibitor (alpha 1 PI) has been demonstrated in primary cultures of human mononuclear phagocytes, making it possible to study regulation of alpha 1 PI in normal (PiMM) and homozygous-deficient (PiZZ) individuals. In this study, expression of alpha 1 PI by blood monocytes, bronchoalveolar, and breast milk macrophages decreased during 1 wk in culture whereas expression of other secreted proteins increased. The addition of crude supernatants from mitogen-stimulated peripheral blood mononuclear cells to confluent monolayers of mononuclear phagocytes after 1 wk in culture resulted in a 2- to 2.5-fold increase in alpha 1 PI expression. The increase in alpha 1 PI expression was dose- and time-dependent, and involved a mechanism acting at a pretranslational level as shown by an increase in specific messenger RNA content corresponding to the increase in synthesis and secretion of alpha 1 PI. Although alpha 1 PI was expressed in native form and in forms complexed with serine protease by monocytes early in culture, it was expressed in its native form alone when monocytes were incubated with the lymphokine after 1 wk in culture. The regulating factor had the characteristics of a polypeptide and was derived from T lymphocytes, but it was not interferon-alpha, -beta, -gamma, or interleukin 2. This lymphokine also stimulated synthesis of alpha 1 PI in monocytes of homozygous-deficient PiZZ individuals, but had minimal effect on secretion, thereby increasing the intracellular accumulation of the inhibitor and exaggerating the defect in secretion of alpha 1 PI in these individuals. Regulation of mononuclear phagocyte alpha 1 PI expression by a lymphokine provides a model for further analysis of the effect of enhanced synthesis on a defect in posttranslational processing/secretion and for analysis of differential regulation of protease and inhibitor expressed in the same cells. Images PMID:3485658

  5. INHALED ALPHA1-PROTEINASE INHIBITOR THERAPY IN PATIENTS WITH CYSTIC FIBROSIS

    PubMed Central

    Gaggar, Amit; Chen, Junliang; Chmiel, James F; Dorkin, Henry L; Flume, Patrick A; Griffin, Rhonda; Nichols, David; Donaldson, Scott H

    2016-01-01

    Background Inhaled alpha1-proteinase inhibitor (PI) is known to reduce neutrophil elastase burden in some patients with CF. This phase 2a study was designed to test inhaled Alpha-1 HC, a new aerosolized alpha1-PI formulation, in CF patients. Methods We performed a randomized, double-blind, placebo-controlled study and evaluated the safety of 100 or 200 mg of inhaled Alpha-1 HC once daily for 3 weeks in subjects with CF. Thirty adult subjects were randomized in a 2:1 ratio to receive Alpha-1 HC or placebo. Results Drug delivery was confirmed by a dose-dependent increase in the sputum alpha1-PI. Seven (20.0%) of the 35 adverse events in the 100-mg dose group, 3 (13.0%) of 23 in the 200-mg dose group, and 4 (14.3%) of 28 in the placebo group were drug-related in these subjects. One serious adverse event occurred in 1 subject within each group. Conclusions Alpha-1 HC inhalation was safe and well tolerated. PMID:26321218

  6. Secretion of high-mannose-type alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein by primary cultures of rat hepatocytes in the presence of the mannosidase I inhibitor 1-deoxymannojirimycin.

    PubMed

    Gross, V; Steube, K; Tran-Thi, T A; McDowell, W; Schwarz, R T; Decker, K; Gerok, W; Heinrich, P C

    1985-07-01

    Two different forms of alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein were found in primary cultures of rat hepatocytes. After a 2.5-h labeling period with [35S]methionine the high-mannose-type precursor of alpha 1-proteinase inhibitor (Mr 49000) and alpha 1-acid glycoprotein (Mr 39 000) and the mature-complex-type alpha 1-proteinase inhibitor (Mr 54 000) and alpha 1-acid glycoprotein (Mr 43 000-60 000) could be immunoprecipitated from the cells, but only the complex-type forms of the two glycoproteins were secreted into the hepatocyte media. When hepatocytes were incubated with the mannosidase I inhibitor 1-deoxymannojirimycin at a concentration of 4 mM, the 49 000-Mr form of alpha 1-proteinase inhibitor and the 39 000-Mr form of alpha 1-acid glycoprotein could be detected in the cells as well as in their media. Neither the secretion of alpha 1-proteinase inhibitor nor that of alpha 1-acid glycoprotein was impaired by 1-deoxymannojirimycin. While alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by control cells, were resistant to endoglucosaminidase H, alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by hepatocytes treated with 4 mM 1-deoxymannojirimycin, could be deglycosylated by endoglucosaminidase H. When the [3H]mannose-labeled oligosaccharides of alpha 1-proteinase inhibitor, secreted by 1-deoxymannojirimycin-treated hepatocytes, were cleaved off by endoglucosaminidase H and analyzed by Bio-Gel P-4 chromatography, they eluted at the position of Man9GlcNAc, indicating that mannosidase I had been efficiently inhibited. 1-Deoxymannojirimycin did not inhibit the synthesis or the cotranslational N-glycosylation of alpha 1-proteinase inhibitor or alpha 1-acid glycoprotein. PMID:3160588

  7. Alpha 1-proteinase inhibitor is more sensitive to inactivation by cigarette smoke than is leukocyte elastase

    SciTech Connect

    Janoff, A.; Dearing, R.

    1982-10-01

    Aqueous solutions of gas phase cigarette smoke were incubated with pure human leukocyte elastase or with crude human leukocyte granule extract, and the effects on enzyme activity were determined using a synthetic amide substrate. Simultaneously, the same smoke solutions were incubated with 10% human serum under identical conditions, and the effects on serum inhibition of purified or crude leukocyte elastase were similarly measured. In addition, aqueous solutions of unfractionated cigarette smoke were incubated with leukocyte elastase or serum, and the abilities of the smoke-treated enzyme to digest elastin and of the smoke-treated serum to inhibit elastin digestion were determined. Both experimental protocols showed that serum elastase-inhibiting capacity (primarily caused by alpha 1-proteinase inhibitor) is more susceptible to inactivation by aqueous solutions of cigarette smoke than is leukocyte elastase, suggesting that elastase inhibition (rather than elastase activity) may be predominantly suppressed by cigarette smoke inhalation in vivo.

  8. Serum concentrations of canine alpha(1)-proteinase inhibitor in cobalamin-deficient Yorkshire Terrier dogs.

    PubMed

    Grützner, Niels; Heilmann, Romy M; Bridges, Cory S; Suchodolski, Jan S; Steiner, Jörg M

    2013-05-01

    Fecal canine alpha1-proteinase inhibitor (cα1-PI) concentration has been reported to be increased in dogs with protein-losing enteropathy due to the loss of cα1-PI into the gastrointestinal tract. A chronic loss of cα1-PI may theoretically deplete serum cα1-PI, potentially altering the proteinase-to-proteinase inhibitor balance. Protein-losing enteropathy has been reported to occur frequently in certain dog breeds such as Yorkshire Terriers and to be associated with hypocobalaminemia. The objective was to compare serum cα1-PI concentrations in Yorkshire Terriers with and without cobalamin (COB) deficiency. Serum samples from 52 COB-deficient and 69 normocobalaminemic Yorkshire Terriers, which had been submitted to the Gastrointestinal Laboratory (2008-2011; College Station, TX), were included retrospectively. Serum cα1-PI concentrations were measured using an in-house radioimmunoassay and compared between Yorkshire Terriers with and without COB deficiency using a Mann-Whitney U test. A Fisher exact test was used to evaluate whether a decreased serum cα1-PI concentration is associated with COB deficiency in Yorkshire Terriers. Serum cα1-PI concentrations were significantly lower in COB-deficient Yorkshire Terriers (median: 1,016 mg/l, range: 315-3,945 mg/l) than in normocobalaminemic Yorkshire Terriers (median: 1,665 mg/l, range: 900-2,970 mg/l; P < 0.0001). One-fourth (n = 13) of the COB-deficient Yorkshire Terriers had a serum cα1-PI concentration below the lower limit of the reference interval (<732 mg/l), and COB deficiency was associated with decreased serum cα1-PI concentrations (P < 0.0001). In the current study, serum cα1-PI concentrations are significantly lower in COB-deficient Yorkshire Terriers when compared to normocobalaminemic Yorkshire Terriers. Further studies are needed to determine the functional and potential prognostic implications of serum cα1-PI concentrations in dogs with gastrointestinal disease.

  9. Effects of a caffeine-free Cola nitida nuts extract on elastase/alpha-1-proteinase inhibitor balance.

    PubMed

    Daels-Rakotoarison, Dominique A; Kouakou, Gisèle; Gressier, Bernard; Dine, Thierry; Brunet, Claude; Luyckx, Michel; Bailleul, François; Trotin, Francis

    2003-11-01

    In an infection, polymorphonuclear neutrophils (PMN) become activated and they produce oxidizing compounds and elastase in the extracellular medium. Alpha-1-proteinase inhibitor (alpha1PI), a protease inhibitor which is inactivated by oxidants, is the main endogenous inhibitor of elastase helping to limit excessive elastase activity. This study evaluates the ability of a plant extract, Cola nitida nuts, to protect alpha1PI from inactivation by oxidizing compounds as reactive oxygen species. On the one hand, we have evaluated the direct effect of cola nut extract on neutrophil elastase, and on the H(2)O(2) and myeloperoxidase (MPO)-H(2)O(2) system via cell-free systems. Results showed that cola nut extract scavenges H(2)O(2) and therefore protects alpha1PI from HOCl which is produced from the MPO-H(2)O(2) system. Experiments also showed that cola extract has the capacity to limit elastase activity. On the other hand, we have worked on cellular systems including isolated PMN with the aim to study the effect of cola extract on PMN metabolism. PMN were stimulated with PMA, calcium ionophore or fMLP. Each stimulant possesses its own stimulation pathway. According to the inhibitory concentration obtained at 50%, the results on cellular systems led to the conclusion that cola extract can reduce elastase liberation from PMN. It can then be concluded that cola nut extract can protect alpha1PI from inactivation, and has an effect both on elastase liberation and elastase activity. The cola nut extract effect is rather biased towards a reduction in elastase release, thus limiting the injurious effects caused by this enzyme.

  10. Different effects of the glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine on the glycosylation of rat alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein.

    PubMed

    Gross, V; Tran-Thi, T A; Schwarz, R T; Elbein, A D; Decker, K; Heinrich, P C

    1986-06-15

    The glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine were used to inhibit oligosaccharide processing in primary cultures of rat hepatocytes. Their effect on the glycosylation of alpha 1-proteinase inhibitor (alpha 1PI) and alpha 1-acid glycoprotein (alpha 1AGP) was studied. Of the three glucosidase inhibitors examined, 1-deoxynojirimycin inhibited not only oligosaccharide trimming but also glycosylation de novo of newly synthesized proteins, resulting in the formation of alpha 1PI with two and three (normally carrying three) and alpha 1AGP with two to five (normally carrying six) oligosaccharide side chains. In the presence of the glucosidase inhibitors, glucosylated high-mannose-type oligosaccharides accumulated. Whereas most of the endoglucosaminidase-H-sensitive oligosaccharides formed in the presence of 1-deoxynojirimycin contained only one glucose residue, N-methyl-1-deoxynojirimycin and castanospermine led mainly to the formation of oligosaccharides with three glucose residues. None of the three glucosidase inhibitors completely prevented the formation of complex-type oligosaccharides. Thus, in their presence, alpha 1PI and alpha 1AGP with a mixture of both high-mannose and complex-type oligosaccharides were secreted. PMID:2947571

  11. Different effects of the glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine on the glycosylation of rat alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein.

    PubMed Central

    Gross, V; Tran-Thi, T A; Schwarz, R T; Elbein, A D; Decker, K; Heinrich, P C

    1986-01-01

    The glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine were used to inhibit oligosaccharide processing in primary cultures of rat hepatocytes. Their effect on the glycosylation of alpha 1-proteinase inhibitor (alpha 1PI) and alpha 1-acid glycoprotein (alpha 1AGP) was studied. Of the three glucosidase inhibitors examined, 1-deoxynojirimycin inhibited not only oligosaccharide trimming but also glycosylation de novo of newly synthesized proteins, resulting in the formation of alpha 1PI with two and three (normally carrying three) and alpha 1AGP with two to five (normally carrying six) oligosaccharide side chains. In the presence of the glucosidase inhibitors, glucosylated high-mannose-type oligosaccharides accumulated. Whereas most of the endoglucosaminidase-H-sensitive oligosaccharides formed in the presence of 1-deoxynojirimycin contained only one glucose residue, N-methyl-1-deoxynojirimycin and castanospermine led mainly to the formation of oligosaccharides with three glucose residues. None of the three glucosidase inhibitors completely prevented the formation of complex-type oligosaccharides. Thus, in their presence, alpha 1PI and alpha 1AGP with a mixture of both high-mannose and complex-type oligosaccharides were secreted. Images Fig. 1. Fig. 2. Fig. 5. PMID:2947571

  12. Hypersensitivity Vasculitis with Leukocytoclastic Vasculitis Associated with Alpha-1-Proteinase Inhibitor

    PubMed Central

    Mwirigi, Nicola W.; Thomas, Charles F.

    2009-01-01

    Prolastin is a commercially available form of alpha-1-antitrypsin (AAT) that is derived from pooled human plasma and used for treatment of severe alpha-1-antitrypsin deficiency (AATD). We describe a patient with AATD who developed presumed hypersensitivity vasculitis (HV) following a Prolastin infusion. Hypersensitivity vasculitis (HV), or cutaneous vasculitis, is characterized by inflammation of the small vessels of the skin with resultant ischemia to the distally supplied areas. To our knowledge, this is the first reported case of presumed hypersensitivity vasculitis following Prolastin infusion. PMID:20204065

  13. Intravenous administration of alpha-1-proteinase inhibitor in patients of PiZ and PiM phenotype. Preliminary report

    SciTech Connect

    Moser, K.M.; Smith, R.M.; Spragg, R.G.; Tisi, G.M.

    1988-06-24

    Nine patients with moderate pulmonary emphysema, six of PiZ phenotype and three of PiM phenotype, have received a single intravenous infusion of alpha-1-proteinase inhibitor (human) (A1PI), in a dose of 60 mg/kg over a 30-minute period. They also received a tracer dose (300 microCi) of /sup 131/I-labeled A1PI. No active or passive immunization against hepatitis was given. No acute toxicity was observed. Compared with baseline data, significant elevations of serum A1PI (measured both antigenically and as anti-elastase activity) occurred, with a serum half-life approximating 110 hours. Bronchoalveolar lavage fluid, obtained 48 hours after infusion, reflected a significant increase in A1PI concentration versus baseline bronchoalveolar lavage fluid values. Serial gamma camera images of the lungs confirmed persistence of enhanced lung radioactivity for several days. Urinary desmosine excretion did not change following A1PI infusion. During the period of follow-up thus far, no patient has had chronic toxicity, results of liver function tests have been stable, and there has been no development of hepatitis B antigen or antibodies to hepatitis B surface or core antigens.

  14. Enhancement of ovalbumin-induced pulmonary eosinophilia by intranasal administration of alpha1-proteinase inhibitor type 2 antisense oligonucleotides.

    PubMed

    Sung, Ha-Na; Jeon, Chang-Hwan; Gill, Byoung-Chul; Kim, Hye-Rin; Cheong, Sun-Woo; Park, Joo-Hung

    2009-01-29

    To identify asthma-susceptibility genes, we did proteome analyses of the lung from control and ovalbumin-sensitized BALB/c mice. Among the 6 up-regulated proteins is alpha(1)-protease inhibitor (alpha(1)-PI) type 2, which is a member of the serine protease inhibitor superfamily of protease inhibitors that participate in a variety of physiological functions, including extracellular matrix remodeling and inflammation. The up-regulated expression of alpha(1)-PI type 2 was confirmed by real-time PCR. Then we examined mRNA expression of five members of the alpha(1)-PI family genes (alpha(1)-PI types 1-5) in several organs of BALB/c mice and found that in addition to the liver, all the organs tested also expressed different isoforms of alpha(1)-PI in a tissue-specific manner, albeit to a lesser extent compared with the liver. When a similar study was performed with C57BL/6 mice, which have been shown to be more susceptible to ovalbumin-induced asthma than BALB/c mice, a pair of remarkable differences between the mouse strains were revealed: (1) the magnitude of alpha(1)-PI type 2 mRNA in all the organs was much higher in BALB/c than in C57BL/6 mice and (2) alpha(1)-PI type 2 is the only isoform expressed in the lung of BALB/c, but not of C57BL/c mice. Using the antisense oligonucleotide technology to specifically down-regulate expression of alpha(1)-PI type 2, we demonstrated that pulmonary infiltration of eosinophils was significantly increased by intranasal administration of alpha(1)-PI type 2 antisense oligonucleotides in OVA-sensitized mice, suggesting that alpha(1)-PI type 2 may suppress the progress of asthma, probably by acting on neutrophil elastase, which can produce many of the pathological features of asthma.

  15. Determination of proteinase 3-alpha 1-antitrypsin complexes in inflammatory fluids.

    PubMed

    Dolman, K M; van de Wiel, B A; Kam, C M; Abbink, J J; Hack, C E; Sonnenberg, A; Powers, J C; von dem Borne, A E; Goldschmeding, R

    1992-12-14

    Physiological inhibitors were tested for their in vitro interaction with neutrophil proteinase 3 (PR3). The major plasma proteinase inhibitor of PR3 is alpha 1AT. We have developed a radioimmunoassay (RIA) for quantitative detection of PR3-alpha 1AT complexes formed in vivo in inflammatory exudates such as synovial fluid and plasma from patients with sepsis. Levels of PR3-alpha 1AT complexes correlated significantly with levels of human neutrophil elastase (HNE)-alpha 1AT complexes. Thus, in vivo alpha 1AT not only protects against excessive HNE activity, but also against excessive PR3 activity.

  16. Engineering D-helix of antithrombin in alpha-1-proteinase inhibitor confers antiinflammatory properties on the chimeric serpin.

    PubMed

    Yang, L; Dinarvand, P; Qureshi, S H; Rezaie, A R

    2014-07-01

    Antithrombin (AT) is a heparin-binding serpin in plasma which regulates the proteolytic activity of procoagulant proteases of the clotting cascade. In addition to being an anticoagulant, AT also exhibits antiinflammatory activities when it binds to cell surface heparan sulfate proteoglycans (HSPGs) on the endothelium via its basic residues of D-helix to elicit intracellular signalling responses. By contrast to AT, α1-proteinase inhibitor (α1-PI) is a non-heparin-binding serpin that exhibits very slow reactivity with coagulation proteases and possesses no HSPG-dependent antiinflammatory properties. To determine whether the antiinflammatory signaling specificity of AT can be transferred to α1-PI, we replaced the D-helix of human α1-PI with the corresponding sequence of human AT and expressed the chimeric serpin α1-PI/D-helix) in a bacterial expression system. High molecular weight heparin bound to α1-PI/D-helix and accelerated the inhibition of thrombin by the serpin mutant by a template mechanism reminiscent of the cofactor effect of heparin on inhibition of thrombin by AT. Like AT, α1-PI/D-helix exhibited antiinflammatory properties in both cellular and animal models. Thus, α1-PI/D-helix inhibited the barrier-disruptive effect of proinflammatory cytokines and inhibited the activation of nuclear factor-κB transcription factor in lipopolysaccharide-stimulated endothelial cells by a concentration-dependent manner. Furthermore, the chimeric serpin reduced lipopolysaccharide-mediated lethality, elicited a vascular protective effect and inhibited infiltration of activated leukocytes to the peritoneal cavity of mice in an HMGB1-mediated inflammatory model. These results suggest that grafting the D-helix of AT to α1-PI confers antiinflammatory properties on the serpin and that the chimeric serpin may have therapeutic utility for treating inflammatory disorders. PMID:24522239

  17. Biosynthesis and secretion of M- and Z-type alpha 1-proteinase inhibitor by human monocytes. Effect of inhibitors of glycosylation and of oligosaccharide processing on secretion and function.

    PubMed

    Gross, V; vom Berg, D; Kreuzkamp, J; Ganter, U; Bauer, J; Würtemberger, G; Schulz-Huotari, C; Beeser, H; Gerok, W

    1990-03-01

    The biosynthesis and secretion of M-type and Z-type alpha 1-antitrypsin was studied in human monocytes. In monocytes of PiMM individuals alpha 1-antitrypsin represented 0.08% of the newly synthesized proteins and 0.44% of the secreted proteins. Two molecular forms of alpha 1-antitrypsin could be identified: a 51-kDa intracellular form, susceptible to endoglucosaminidase H, thus representing the high-mannose type precursor form and a 56-kDa form resistant to endoglucosaminidase H which was secreted into the medium. Inhibition of de novo glycosylation by tunicamycin impaired the secretion of M-type alpha 1-antitrypsin by about 75% whereas inhibition of oligosaccharide processing by the mannosidase II inhibitor swainsonine did not alter the secretion of M-type alpha 1-antitrypsin. alpha 1-Antitrypsin secreted by human monocytes was functionally active as measured by complex formation with porcine pancreatic elastase. Even unglycosylated alpha 1-antitrypsin secreted by human monocytes treated with tunicamycin formed a complex with elastase. In monocytes of PiZZ individuals the secretion of alpha 1-antitrypsin was decreased. 72% of newly synthesized M-type alpha 1-antitrypsin, but only 35% of newly synthesized Z-type alpha 1-antitrypsin were secreted during a labeling period of 3 h with [35S]methionine. The 51-kDa form of Z-type alpha 1-antitrypsin accumulated intracellularly, whereas the 56-kDa form was secreted. Inhibition of oligosaccharide processing by swainsonine did not alter the decreased secretion of Z-type alpha 1-antitrypsin, whereas inhibition of de novo glycosylation by tunicamycin blocked the secretion of Z-type alpha 1-antitrypsin completely. PMID:2111144

  18. Elastase and alpha 1-protease inhibitor in burn wound exudates.

    PubMed

    Prager, M D; Herring, M; Germany, B; Baxter, C R

    1991-01-01

    By degrading antithrombin III, polymorphonuclear neutrophil (PMN) elastase can become a procoagulant. Because intravascular coagulation may accompany severe burn injury, this study examined burn wound exudates for PMN elastase and its physiologic inhibitor, plasma alpha 1-protease inhibitor (alpha 1-PI), as a step in evaluating their contributions to coagulopathy in patients with burns. Each of the nine exudates examined were inhibitory for PMN elastase. Chromatographic characterization of the inhibitor indicated that it was alpha 1-PI; its elution volume for four exudates was identical to that of pure alpha 1-PI. Confirmation of the inhibitor's identity was achieved by reaction of anti-alpha 1-PI antibody with each exudate and with inhibitory chromatographic fractions of exudates with the most inhibitory activity. Inhibitor potency, determined from dose-response curves against a standard PMN elastase activity, varied twentyfold among exudates. Only one exudate had catalytic activity with the PMN elastase substrate. Although this enzyme had elastase-like properties, it appeared to differ from PMN elastase. The presence of alpha 1-PI in the wound exudate suggests that this inhibitor may act to diminish fibrin formation from the level that might otherwise have been seen if excess elastase were free to degrade antithrombin III.

  19. Novel proteinase inhibitor promotes resistance to insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  20. Relevance of classic anti-neutrophil cytoplasmic autoantibody (C-ANCA)-mediated inhibition of proteinase 3-alpha 1-antitrypsin complexation to disease activity in Wegener's granulomatosis.

    PubMed

    Dolman, K M; Stegeman, C A; van de Wiel, B A; Hack, C E; von dem Borne, A E; Kallenberg, C G; Goldschmeding, R

    1993-09-01

    In the sera of patients with Wegener's granulomatosis (WG), C-ANCA can be detected that are directed against proteinase 3 (PR3). We have previously observed that C-ANCA interfere with PR3 proteolytic activity and with complexation of PR3 with its major physiologic inhibitor, alpha 1-antitrypsin (alpha 1AT). In the present study we investigated whether this inhibitory effect of C-ANCA on PR3-alpha 1AT complexation correlates with clinical activity of WG. Serial serum samples of eight consecutive patients with histologically proven relapses of WG were tested. At the moment of relapse all sera revealed inhibitory activity towards PR3-alpha 1AT complexation (median 22%, range 10-59%). Disease activity score (r = 0.87, P < 0.02) and C-reactive protein (CRP) levels (r = 0.66, P < 0.1) correlated with C-ANCA inhibition of PR3-alpha 1AT complexation, while they did not correlate with the C-ANCA titre detected by indirect immunofluorescence (IIF) nor with IgG anti-PR3 antibody level measured by ELISA. The inhibitory effect of C-ANCA on PR3-alpha 1AT complexation had risen significantly at the moment of relapse compared with values 3 months (P < 0.05) and 6 months (P < 0.01) before relapse. Eight patients with established WG and positive for C-ANCA but without clinical evidence of relapse served as controls. In this group no inhibitory effect of C-ANCA on PR3-alpha 1AT complexation was observed in 7/8 patients sera. Sera of one control patient contained moderate C-ANCA inhibitory activity towards PR3-alpha 1AT complexation, which remained at a constant level during the 6 months period of observation. Thus, disease activity in WG appears to be more closely related to C-ANCA inhibitory activity towards PR3-alpha 1AT complexation.

  1. Ozone effects on inhibitors of human neutrophil proteinases

    SciTech Connect

    Smith, C.E.; Stack, M.S.; Johnson, D.A.

    1987-02-15

    The effects of ozone on human alpha 1-proteinase inhibitor (A-1-PI), alpha 1-antichymotrypsin (A-1-Achy), bronchial leukocyte proteinase inhibitor (BLPI), and Eglin C were studied using in vitro exposures in phosphate-buffered solutions. Following ozone exposure, inhibitory activities against human neutrophil elastase (HNE) and/or cathepsin G (Cat G) were measured. Exposure of A-1-PI to 50 mol O3/mol protein resulted in a complete loss of HNE inhibitory activity, whereas A-1-Achy lost only 50% of its Cat G inhibitory activity and remained half active even after exposure to 250 mol of O3. At 40 mol O3/mol protein, BLPI lost 79% of its activity against HNE and 87% of its Cat G inhibitory activity. Eglin C, a leech-derived inhibitor, lost 81% of its HNE inhibitory activity and 92% of its ability to inhibit Cat G when exposed to 40 mol O3/mol. Amino acid analyses of ozone-exposed inhibitors showed destruction of Trp, Met, Tyr, and His with as little as 10 mol O3/mol protein, and higher levels of O3 resulted in more extensive oxidation of susceptible residues. The variable ozone susceptibility of the different amino acid residues in the four proteins indicated that oxidation was a function of protein structure, as well as the inherent susceptibility of particular amino acids. Exposure of A-1-PI and BLPI in the presence of the antioxidants, Trolox C (water soluble vitamin E) and ascorbic acid (vitamin C), showed that antioxidant vitamins may protect proteins from oxidative inactivation by ozone. Methionine-specific modification of BLPI reduced its HNE and Cat G inhibitory activities. Two moles of N-chlorosuccinimide per mole of BLPI methionine caused an 80% reduction in activity against Cat G, but only a 40% reduction in HNE inhibitory activity.

  2. A sycamore cell wall polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities.

    PubMed

    Ryan, C A; Bishop, P; Pearce, G

    1981-09-01

    A large pectic polysaccharide, called rhamnogalacturonan I, that is solubilized by a fungal endo-alpha-1,4-polygalacturonase from the purified walls of suspension-cultured sycamore cells possesses proteinase inhibitor-inducing activity similar to that of the proteinase inhibitor-inducing factor, a pectic-like oligosaccharide fraction isolated from tomato leaves. This suggests that the proteinase inhibitor-inducing activity resides in particular polysaccharide fragments which can be released when plant cell walls are exposed to appropriate enzyme degradation as a result of either wounding or pest attack.

  3. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  4. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor.

    PubMed

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar

    2013-08-01

    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops.

  5. Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor.

    PubMed Central

    Boudier, C; Bieth, J G

    1994-01-01

    N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not. PMID:7945266

  6. Isolation of alpha 1-protease inhibitor from human normal and malignant ovarian tissue.

    PubMed Central

    Bagdasarian, A; Wheeler, J; Stewart, G J; Ahmed, S S; Colman, R W

    1981-01-01

    Proteolytic enzymes are associated with normal and neoplastic tissues. Therefore protease inhibitors might also be involved in the control of cell function. alpha 1-protease antigen and antitryptic activity have been found in normal and neoplastic human ovarian homogenate. The inhibitor has been localized to ovarian stromal cells or tumor cells by immunoperoxidase staining. The protein was purified to apparent homogeneity as judged by alkaline gel and sodium dodecyl sulfate (SDS) gel electrophoresis. Immunochemical studies revealed antigenic similarity of plasma alpha 1-protease inhibitor by double immunodiffusion and similar mobility on immunoelectrophoresis and two-dimensional electroimmunodiffusion. The molecular weight was similar to that described for plasma alpha 1-protease inhibitor: 60,000 by gel filtration and 53,500 by SDS electrophoresis. Furthermore, the phenotypic pattern as determined by acid starch gel electrophoresis and immunoprecipitation was PiMM, which is the predominant genetic variant in normal plasma alpha 1-protease inhibitor. An inhibitor ws isolated and purified from an ovarian carcinoma that exhibited functional, immunochemical, and physical similarity to the normal ovarian alpha 1-protease inhibitor. alpha 1-protease inhibitor from normal and malignant ovaries competitively inhibited bovine pancreatic trypsin at incubation times of 5 min at 30 degrees C. Inhibition constant (Ki) values were calculated at 0.67 and 0.51 inhibitory units, respectively. The alpha 1-protease inhibitor in malignant cells may be a factor in the control of proliferation in this tissue. Since ovulation is in part a proteolytic event, the alpha 1-protease inhibitor in ovarian cells may play a role in the control of this specialized tissue. Persistance of this protein in malignant ovarian tissue may be a vestige of its differentiated origin. Images PMID:6161137

  7. Identification of monomeric alpha-macroglobulin proteinase inhibitors in birds, reptiles, amphibians and mammals, and purification and characterization of a monomeric alpha-macroglobulin proteinase inhibitor from the American bullfrog Rana catesbeiana.

    PubMed Central

    Rubenstein, D S; Thøgersen, I B; Pizzo, S V; Enghild, J J

    1993-01-01

    characterized by steric protection of the proteinase active site and by sensitivity to small primary amines. The frog monomeric alpha-macroglobulin is structurally and functionally similar to the well-characterized monomeric alpha-macroglobulin proteinase inhibitor rat alpha 1-inhibitor-3. Images Figure 1 Figure 2 Figure 3 Figure 6 PMID:7679897

  8. Identification of monomeric alpha-macroglobulin proteinase inhibitors in birds, reptiles, amphibians and mammals, and purification and characterization of a monomeric alpha-macroglobulin proteinase inhibitor from the American bullfrog Rana catesbeiana.

    PubMed

    Rubenstein, D S; Thøgersen, I B; Pizzo, S V; Enghild, J J

    1993-02-15

    characterized by steric protection of the proteinase active site and by sensitivity to small primary amines. The frog monomeric alpha-macroglobulin is structurally and functionally similar to the well-characterized monomeric alpha-macroglobulin proteinase inhibitor rat alpha 1-inhibitor-3.

  9. Silk gland-specific proteinase inhibitor serpin16 from the Bombyx mori shows cysteine proteinase inhibitory activity.

    PubMed

    Guo, Peng-Chao; Dong, Zhaoming; Xiao, Li; Li, Tao; Zhang, Yan; He, Huawei; Xia, Qingyou; Zhao, Ping

    2015-01-30

    Serpins (serine proteinase inhibitors) are widely distributed in different species and are well known for their inhibitory activities towards serine proteinases. Here, we report the functional characterization of Bombyx mori serpin16. Expression analysis showed that serpin16 was specifically expressed at high levels in the silk gland at both the transcriptional and translational levels. Moreover, homology modeling and multi-sequence alignment suggested that serpin16 had a canonical serpin fold, but it contained a unique reactive center loop, which was obviously shorter than that of typical serpins. Inhibitory activity analyses revealed that the target proteinase of serpin18 is a cysteine proteinase, rather than a serine proteinase. Furthermore, a Michaelis complex model of serpin16 with its target proteinase was constructed to explain the structural basis of how serpin16 recognizes the cysteine proteinase and its target specificity.

  10. Biochemical characterization of Acacia schweinfurthii serine proteinase inhibitor.

    PubMed

    Odei-Addo, Frank; Frost, Carminita; Smith, Nanette; Ogawa, Tomohisa; Muramoto, Koji; Oliva, Maria Luiza Vilela; Gráf, László; Naude, Ryno

    2014-10-01

    One of the many control mechanisms of serine proteinases is their specific inhibition by protein proteinase inhibitors. An extract of Acacia schweinfurthii was screened for potential serine proteinase inhibition. It was successfully purified to homogeneity by precipitating with 80% (v/v) acetone and sequential chromatographic steps, including ion-exchange, affinity purification and reversed-phase high performance liquid chromatography. Reducing sodium dodecyl sulphate polyacrylamide gel electrophoresis conditions revealed an inhibitor (ASTI) consisting of two polypeptide chains A and B of approximate molecular weights of 16 and 10 kDa, respectively, and under non-reducing conditions, 26 kDa was observed. The inhibitor was shown to inhibit bovine trypsin (Ki of 3.45 nM) at an approximate molar ratio of inhibitor:trypsin (1:1). The A- and B-chains revealed complete sequences of 140 and 40 amino acid residues, respectively. Sequence similarity (70%) was reported between ASTI A-chain and ACTI A-chain (Acacia confusa) using ClustalW. The B-chain produced a 76% sequence similarity between ASTI and Leucaena leucocephala trypsin inhibitor. PMID:24090421

  11. The murine Spi-2 proteinase inhibitor locus: a multigene family with a hypervariable reactive site domain.

    PubMed Central

    Inglis, J D; Hill, R E

    1991-01-01

    We have isolated 10 closely linked members of a proteinase inhibitor multigene family from the inbred mouse strain 129. These sequences, termed the Serine Proteinase Inhibitor 2 (Spi-2) genes, appear to have been derived from a common ancestor represented in man by the single copy alpha 1-antichymotrypsin gene. The genes are clustered on two cloned genomic DNA segments spanning 220 kb, and have at least partially retained the intragenic structure of the ancestral Spi-2 gene. Sequence analysis from the final coding exon indicates that most of the mouse genes may be competent to encode functional proteins, some with a predictable inhibitory spectrum, and several representing novel inhibitor types. An oligonucleotide probe designed to one reactive centre sequence enabled the isolation of the cognate expressed transcript from a liver cDNA library. However, whether expressed or not, the reactive centre regions of all the sequences have diverged at a rapid rate relative to structurally defined flanking sequences. The divergence is also appreciably greater than that occurring in an adjacent non-coding sequence. This phenomenon has established novel potential inhibitory specificities, while maintaining a functional inhibitor structure. PMID:1991447

  12. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects.

    PubMed

    Vilcinskas, Andreas

    2010-01-01

    Virulence is thought to coevolve as a result of reciprocal selection between pathogens and their hosts. This paper focuses on coevolution between microbial proteinases operating as virulence factors and host defense molecules of insects. Owing to shorter generation times and smaller genomes, microbes exhibit a high evolutionary adaptability in comparison with their hosts. Indeed, the latter can only compete with pathogens if they evolve mechanisms providing a comparable genetic plasticity. Gene or domain duplication and shuffling by recombination is the driving force behind the countermeasures in host defense effectors. Recent literature provides evidence for both diversifications of fungal proteinases involved in pathogenesis and expansion host proteinase inhibitors subsets contributing to insect innate immunity. For example, the pathogen-associated spectrum of proteolytic enzymes encompasses thermolysin-like metalloproteinases that putatively promoted the evolution of corresponding host inhibitors of these virulence factors which complement the insect repertoire of antimicrobial defense molecules. Beyond mutual diversification of effector molecules coevolution resulted also in sophisticated molecular adaptations of host insects such as sensing and feedback-loop regulation of microbial metalloproteinases and corresponding countermeasures of pathogens providing evasion of host immunity induced by these virulence factors.

  13. [Activity of elastase-like proteinases and their inhibitors in indigent nearly healthy residents in various biogeochemical conditions of the Chuvash ASSR].

    PubMed

    Stepanov, R V; Platonova, L V; Suslikov, V L; Paskhina, T S

    1991-01-01

    A proteinase-inhibitory balance of blood (elastase-like activity, alpha 1-proteinase inhibitor and alpha 2-macroglobulin activities) was studied in practically healthy inhabitants of the Chuvash ASSR two subregions--Sura river basin and Cubninocivil region, which are distinctly dissimilar in all the biogeochemical parameters involving macro- and microtrace compositions. The higher activity of elastase-like proteinases and decreased content of alpha 1-proteinase inhibitor were detected in practically healthy inhabitants of the river Sura basin, where high incidence of myocardial infarction was found, as compared with those of the Cubninocivil people. The similar alterations in the proteinase-inhibitory balance were observed in blood of experimental animals maintained on a diet containing fresh water from these subregions. The data obtained suggest that there exists causative relationship between biogeochemical parameters and development of imbalance in the proteinase-inhibitor system in practically healthy inhabitants of the river Sura basin. This imbalance is considered as a pathogenetic factor responsible for development of atherosclerosis.

  14. Design and synthesis of procollagen C-proteinase inhibitors.

    PubMed

    Turtle, Eric; Chow, Nicholas; Yang, Charles; Sosa, Sergio; Bauer, Udo; Brenner, Mitch; Solow-Cordero, David; Ho, Wen-Bin

    2012-12-15

    Non-peptidic inhibitors of procollagen C-proteinase (PCP) were designed from substrate leads. Compounds were optimized for potency and selectivity, with N-substituted aryl sulfonamide hydroxamates having the best combination of these properties. Compounds 89 and 60 have IC(50) values of 10 and 80 nM, respectively, against PCP; excellent selectivity over MMP's 1, 2, and 9; and activity in cell-based collagen deposition assays.

  15. Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores.

    PubMed

    Ryan, C A

    1989-01-01

    Recent evidence indicates that the presence of serine proteinase inhibitors in plant leaves can reduce predation by insects. Plants can now be transformed with proteinase inhibitor genes with strong promoters to express the inhibitor proteins in relatively high levels at specific times. Inhibitors having variable specificities against digestive proteinases of insects and pathogens can now be assessed for their possible role(s) in natural plant defense and for their potential usefulness in protecting crop plants against herbivores.

  16. Cationic inhibitors of serine proteinases from buckwheat seeds.

    PubMed

    Tsybina, T A; Dunaevsky, Y E; Musolyamov, A K; Egorov, T A; Belozersky, M A

    2001-09-01

    Preparations of low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat (Fagopyrum esculentum) seeds by chromatography of seed extract on trypsin-Sepharose 4B, Mono-Q, and Mono-S ion exchangers (FPLC regime). Their molecular masses, determined by mass spectrometry, were 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c), and 6031 daltons (BWI-4c). All of the inhibitors possess high pH- and thermal stability in the pH range 2-12. In addition to trypsin, BWI-3c and BWI-4c inhibited chymotrypsin and subtilisin-like bacterial proteases. The N-terminal sequences of all of the inhibitors were determined: BWI-1c (23 residues), BWI-2c (33 residues), BWI-3c (18 residues), and BWI-4c (20 residues). In their physicochemical properties and N-terminal amino acid sequences, the buckwheat seed trypsin inhibitors BWI-3c and BWI-4c appear to belong to potato proteinase inhibitor I family. PMID:11703172

  17. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana.

    PubMed

    Pariani, Sebastián; Contreras, Marisol; Rossi, Franco R; Sander, Valeria; Corigliano, Mariana G; Simón, Francisco; Busi, María V; Gomez-Casati, Diego F; Pieckenstain, Fernando L; Duschak, Vilma G; Clemente, Marina

    2016-04-01

    Many different types of serine proteinase inhibitors have been involved in several kinds of plant physiological processes, including defense mechanisms against phytopathogens. Kazal-type serine proteinase inhibitors, which are included in the serine proteinase inhibitor family, are present in several organisms. These proteins play a regulatory role in processes that involve serine proteinases like trypsin, chymotrypsin, thrombin, elastase and/or subtilisin. In the present work, we characterized two putative Kazal-type serine proteinase inhibitors from Arabidopsis thaliana, which have a single putative Kazal-type domain. The expression of these inhibitors is transiently induced in response to leaf infection by Botrytis cinerea, suggesting that they play some role in defense against pathogens. We also evaluated the inhibitory specificity of one of the Kazal-type serine proteinase inhibitors, which resulted to be induced during the local response to B. cinerea infection. The recombinant Kazal-type serine proteinase inhibitor displayed high specificity for elastase and subtilisin, but low specificity for trypsin, suggesting differences in its selectivity. In addition, this inhibitor exhibited a strong antifungal activity inhibiting the germination rate of B. cinerea conidia in vitro. Due to the important role of proteinase inhibitors in plant protection against pathogens and pests, the information about Kazal-type proteinase inhibitors described in the present work could contribute to improving current methods for plant protection against pathogens.

  18. Biosynthesis and regulation of rat alpha 1-inhibitor3, a negative acute-phase reactant of the macroglobulin family.

    PubMed Central

    Geiger, T; Lamri, Y; Tran-Thi, T A; Gauthier, F; Feldmann, G; Decker, K; Heinrich, P C

    1987-01-01

    The biosynthesis of rat alpha 1-inhibitor3, a negative acute-phase reactant specifically found in rodents, was studied in vitro in a cell-free translation system from rabbit reticulocytes, in rat hepatocyte primary cultures and in vivo by immunocytochemistry using normal and turpentine-injected rats. By sucrose-gradient centrifugation and subsequent translation of the fractionated RNA in vitro it was found that the mRNA coding for alpha 1-inhibitor3 exhibited a size of about 28S. For the alpha 1-inhibitor3 translated in vitro an apparent Mr of 155,000 was determined. A continuous decrease in the level of alpha 1-inhibitor3 in serum during experimental inflammation induced by turpentine injection was demonstrated by means of quantitative 'rocket' immunoelectrophoresis. This result agrees with the observation by immunocytochemistry of a drastic decrease in alpha 1-inhibitor3 levels in hepatocytes 24 h after turpentine injection. At that time alpha 1-inhibitor3 is mainly located in the Golgi apparatus, whereas it is also present in the membranes of the rough and smooth endoplasmic reticulum when normal liver is used. All hepatocytes, but no other hepatic cells, contain alpha 1-inhibitor3. When hepatocyte primary cultures were labelled with [35S]methionine and alpha 1-inhibitor3 was immunoprecipitated from the hepatocyte medium and the supernatant of homogenized cells, two different forms of alpha 1-inhibitor3 were found. The intracellular form of alpha 1-inhibitor3, with an apparent Mr of 173,000, is characterized by oligosaccharide side chains of the high-mannose type. The form of alpha 1-inhibitor3 in the medium exhibited an Mr of 186,000 and carried carbohydrate side chains of the complex type. After labelling hepatocytes with radioactive sugars, [3H]mannose was found in both forms of alpha 1-inhibitor3, whereas [3H]fucose and [3H]galactose were incorporated only into the form found in the medium. In the presence of tunicamycin an unglycosylated alpha 1-inhibitor3

  19. An electroblotting, two-step procedure for the detection of proteinases and the study of proteinase/inhibitor complexes in gelatin-containing polyacrylamide gels.

    PubMed

    Visal-Shah, S; Vrain, T C; Yelle, T C; Nguyen-Quoc, B; Michaud, D

    2001-08-01

    A two-step gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE) procedure was devised for the detection of proteinases and the study of proteinase/inhibitor interactions in complex biological extracts. The proteins are first resolved by sodium dodecyl sulfate (SDS)-PAGE under reducing or nonreducing conditions, and electrotransferred into a 0.75 mm-thick accompanying polyacrylamide slab gel containing 0.1% w/v porcine gelatin. The active proteinase bands are developed by a gelatin proteolysis step in the accompanying gel in the presence or absence of diagnostic proteinase inhibitors, allowing the assessment of proteinase classes and the visual discrimination of inhibitor-'sensitive' and -'insensitive' proteinases in complex extracts. Alternatively, protein extracts are preincubated with specific reversible inhibitors before electrophoresis, allowing a rapid discrimination of strong and weak interactions implicating proteinases and reversible inhibitors. In comparison with the standard gelatin/PAGE procedure, that involves copolymerization of gelatin with acrylamide in the resolving gel, this new procedure simplifies proteinase patterns, avoids overestimation of proteinase numbers in complex extracts, and allows in certain conditions the estimation of proteinase molecular weights. Stem bromelain (EC 3.4.22.32), bovine trypsin (EC 3.4.21.4), papain (EC 3.4.22.2), and the extracellular (digestive) cysteine proteinases of five herbivorous pests are used as model enzymes to illustrate the usefulness of this approach in detecting proteinases and in studying their interactions with specific proteinaceous inhibitors potentially useful in biotechnology.

  20. Differential inhibition of Helicoverpa armigera gut proteinases by proteinase inhibitors of pigeonpea (Cajanus cajan) and its wild relatives.

    PubMed

    Chougule, Nanasaheb P; Hivrale, Vandana K; Chhabda, Pavanjeet J; Giri, Ashok P; Kachole, Manvendra S

    2003-10-01

    The seeds of 36 pigeonpea [Cajanus cajan (L) Millsp.] cultivars, resistant and susceptible to pests and pathogens and 17 of its wild relatives were analysed for inhibitors of trypsin, chymotrypsin, and insect gut proteinases to identify potential inhibitors of insect (Helicoverpa armigera) gut enzymes. Proteinase inhibitors (PIs) of pigeonpea cultivars showed total inhibition of trypsin and chymotrypsin, and moderate inhibition potential towards H. armigera proteinases (HGP). PIs of wild relatives exhibited stronger inhibition of HGP, which was up to 87% by Rhynchosia PIs. Electrophoretic detection of HGPI proteins and inhibition of HGP isoforms by few pigeonpea wild relative PIs supported our enzyme inhibitor assay results. Present results indicate that PIs exhibit wide range of genetic diversity in the wild relatives of pigeonpea whereas pigeonpea cultivars (resistant as well as susceptible to pests and pathogens) are homogeneous. The potent HGPIs identified in this study need further exploration for their use in strengthening pigeonpea defence against H. armigera.

  1. Proteinases and their inhibitors in cells and tissues.

    PubMed

    Rappay, G

    1989-01-01

    A large body of evidence has been assembled to indicate the substantial importance of proteolytic processes in various physiological functions. It has recently become clear too that endo-acting peptide bond hydrolases provisionally characterized and classified at present as serine, cysteine, aspartic and metallo together with unknown catalytic mechanism proteinases sometimes act in cascades. They are controlled by natural proteinase inhibitors present in cells and body fluids. In the first part of the present monograph the author was concerned to present an overview on the morphological and physiological approach to localization, surveying reaction principles and methods suitable for visualization of proteolytic enzymes and their natural and synthetic inhibitors. In the second part the roles played by proteinases have been summarized from the point of view of cell biology. The selection of earlier and recent data reviewed on the involvement of proteolysis in the behavior of individual cells reveals that enzymes, whether they be exogeneous or intrinsic, can be effective and sensitive modulators of cellular growth and morphology. There exists a close correlation between malignant growth and degradation of cells. It appears likely that as yet unknown or at least so far inadequately characterized factors that influence the survival or the death of cells may turn out to be proteinases. The causal role of extracellular proteolysis in cancer cell metastases, in stopping cancer cell growth and in cytolysis remains for further investigated. Ovulation, fertilization and implantation are basic biological functions in which proteolytic enzymes play a key role. The emergence of new approaches in reproductive biology and a growing factual basis will inevitably necessitate a reevaluation of present knowledge of proteolytic processes involved. The molecular aspects of intracellular protein catabolism have been discussed in terms of the inhibition of lysosomal and/or non

  2. Yeast Mutants Deficient in Er-Associated Degradation of the Z Variant of Alpha-1-Protease Inhibitor

    PubMed Central

    McCracken, A. A.; Karpichey, I. V.; Ernaga, J. E.; Werner, E. D.; Dillin, A. G.; Courchesne, W. E.

    1996-01-01

    Saccharomyces cerevisiae mutants deficient in degradation of alpha-1-proteinase inhibitor Z (A1PiZ) have been isolated and genetically characterized. Wild-type yeast expressing A1PiZ synthesize an ER form of this protein that is rapidly degraded by an intracellular proteolytic process known as ER-associated protein degradation (ERAD). The mutant strains were identified after treatment with EMS using a colony blot immunoassay to detect colonies that accumulated high levels of A1PiZ. A total of 120,000 colonies were screened and 30 putative mutants were identified. The level of A1PiZ accumulation in these mutants, measured by ELISA, ranged from two to 11 times that of A1PiZ in the parent strain. Further studies demonstrated that the increased levels of A1PiZ in most of the mutant strains was not the result of defective secretion or elevated A1PiZ mRNA. Pulse chase experiments indicated that A1PiZ was stabilized in several strains, evidence that these mutants are defective in ER-associated protein degradation. Genetic analyses revealed that most of the mutations were recessive, ~30% of the mutants characterized conformed to simple Mendelian inheritance, and at least seven complementation groups were identified. PMID:8978025

  3. Alpha-2-macroglobulin functions as an inhibitor of fibrinolytic, clotting, and neutrophilic proteinases in sepsis: studies using a baboon model.

    PubMed

    de Boer, J P; Creasey, A A; Chang, A; Abbink, J J; Roem, D; Eerenberg, A J; Hack, C E; Taylor, F B

    1993-12-01

    Alpha-2-macroglobulin (alpha 2M) may function as a proteinase inhibitor in vivo. Levels of this protein are decreased in sepsis, but the reason these levels are low is unknown. Therefore, we analyzed the behavior of alpha 2M in a baboon model for sepsis. Upon challenge with a lethal (4 baboons) or a sublethal (10 baboons) dose of Escherichia coli, levels of inactivated alpha 2M (i alpha 2M) steadily increased, the changes being more pronounced in the animals that received the lethal dose. The rise in i alpha 2M significantly correlated with the increase of thrombin-antithrombin III, plasmin-alpha 2-antiplasmin, and, to a lesser extent, with that of elastase-alpha 1-antitrypsin complexes, raising the question of involvement of fibrinolytic, clotting, and neutrophilic proteinases in the inactivation of alpha 2M. Experiments with chromogenic substrates confirmed that thrombin, plasmin, elastase, and cathepsin G indeed had formed complexes with alpha 2M. Changes in alpha 2M similar to those observed in the animals that received E. coli occurred in baboons challenged with Staphylococcus aureus, indicating that alpha 2M formed complexes with the proteinases just mentioned in gram-positive sepsis as well. We conclude that alpha 2M in this baboon model for sepsis is inactivated by formation of complexes with proteinases, derived from activated neutrophils and from fibrinolytic and coagulation cascades. We suggest that similar mechanisms may account for the decreased alpha 2M levels in clinical sepsis.

  4. Alpha-2-macroglobulin functions as an inhibitor of fibrinolytic, clotting, and neutrophilic proteinases in sepsis: studies using a baboon model.

    PubMed Central

    de Boer, J P; Creasey, A A; Chang, A; Abbink, J J; Roem, D; Eerenberg, A J; Hack, C E; Taylor, F B

    1993-01-01

    Alpha-2-macroglobulin (alpha 2M) may function as a proteinase inhibitor in vivo. Levels of this protein are decreased in sepsis, but the reason these levels are low is unknown. Therefore, we analyzed the behavior of alpha 2M in a baboon model for sepsis. Upon challenge with a lethal (4 baboons) or a sublethal (10 baboons) dose of Escherichia coli, levels of inactivated alpha 2M (i alpha 2M) steadily increased, the changes being more pronounced in the animals that received the lethal dose. The rise in i alpha 2M significantly correlated with the increase of thrombin-antithrombin III, plasmin-alpha 2-antiplasmin, and, to a lesser extent, with that of elastase-alpha 1-antitrypsin complexes, raising the question of involvement of fibrinolytic, clotting, and neutrophilic proteinases in the inactivation of alpha 2M. Experiments with chromogenic substrates confirmed that thrombin, plasmin, elastase, and cathepsin G indeed had formed complexes with alpha 2M. Changes in alpha 2M similar to those observed in the animals that received E. coli occurred in baboons challenged with Staphylococcus aureus, indicating that alpha 2M formed complexes with the proteinases just mentioned in gram-positive sepsis as well. We conclude that alpha 2M in this baboon model for sepsis is inactivated by formation of complexes with proteinases, derived from activated neutrophils and from fibrinolytic and coagulation cascades. We suggest that similar mechanisms may account for the decreased alpha 2M levels in clinical sepsis. PMID:7693593

  5. Gelatinases and serine proteinase inhibitors of seminal plasma and the reproductive tract of turkey (Meleagris gallopavo).

    PubMed

    Kotłowska, M; Kowalski, R; Glogowski, J; Jankowski, J; Ciereszko, A

    2005-04-01

    This study examined proteolytic enzymes and serine proteinase inhibitors in turkey seminal plasma with relation to their distribution within the reproductive tract and to yellow semen syndrome (YSS). Proteases of blood plasma, extracts from the reproductive tract, and seminal plasma were analyzed by gelatin zymography. We found a clear regional distribution of proteolytic enzymes in the turkey reproductive tract. Each part was characterized by a unique profile of serine proteolytic enzymes of molecular weights ranging from 29 to 88 kDa. The ductus deferens was found to be a site of very intense proteolytic activity. Two metalloproteases of 58 and 66 kDa were detected in all parts of the reproductive tract and seminal plasma. Using electrophoretic methods for detection of anti-trypsin activity, we found three serine proteinase inhibitors in turkey seminal plasma. Two inhibitors were found in the testis and epididymis and a third in the ductus deferens and seminal plasma. Blood plasma was characterized by the presence of two metalloproteinases and one serine proteinase inhibitor (of low migration rate) that were also detected in the reproductive tract. Amidase and anti-trypsin activities (expressed per gram of protein) differed for yellow and white seminal plasma. We concluded that turkey seminal plasma contains metalloproteases, serine proteinases, and serine proteinase inhibitors. The metalloproteases and one proteinase inhibitor are related to blood proteinases but the other two inhibitors and serine proteinases seem to be unique for the reproductive tract.

  6. Differential Inhibition of Helicoverpa armigera (Hubner) Gut Proteinases by Proteinase Inhibitors of Okra and It's Wild Relatives

    PubMed Central

    Udamale, Shilpa K.; Moharil, M. P.; Ugale, T. B.; Mankar, J. M.

    2013-01-01

    The seeds of ten genotypes and twenty-nine wild relatives of okra were analysed for the presence of trypsin, chymotrypsin, and Helicoverpa gut proteinases (HGPs) inhibitors (HGPIs), with the aim to identify potent inhibitors of H. armigera gut proteinases. Proteinase inhibitors (PIs) obtained from wild relatives of okra exhibited stronger inhibition of HGPs than the genotypes of okra. In in vitro inhibitory assay against HGPs, A. tuberculatus 90396 and 90515 showed high tryptic inhibitory (71.8% and 69.2%), chymotryptic inhibitory (68.5% and 66.2%), and Helicoverpa gut proteinase activity (70.2% and 68.2%). In electrophoretic profile showed the same variation in the number of trypsin inhibitors (TIs), chymotrypsin Inhibitors (CIs), and HGPIs isoforms with different intensities, whereas genotypes of okra mostly showed monomorphic profile. Maximum eight HGPIs isoforms were found in A. tuberculatus (90396 and 90515). In bioassay studies, significant reduction in weight of H. armigera larvae was found, when larvae fed on PIs obtained from A. tuberculatus (90396 and 90515). Thus, the result of the present investigation indicates that further exploration of PIs obtained from A. tuberculatus (90396 and 90515) will be helpful for developing PIs-based insect resistance management strategies. PMID:25937977

  7. Human plasma alpha-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment.

    PubMed Central

    Gounaris, A D; Brown, M A; Barrett, A J

    1984-01-01

    Human plasma alpha-cysteine proteinase inhibitor (alpha CPI) was purified by a two-stage method: affinity chromatography on S-carboxymethyl-papain-Sepharose, and high-resolution anion-exchange chromatography. The protein was obtained as a form of Mr about 64 000 and material of higher Mr (about 100 000). In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with reduction, both forms showed a major component of Mr 64 000. An antiserum was raised against alpha CPI, and 'rocket' immunoassays showed the mean concentration in sera from 19 individuals to be 35.9 mg/dl. Both low-Mr and high-Mr forms of alpha CPI were confirmed to be sialoglycoproteins by the decrease in electrophoretic mobility after treatment with neuraminidase. alpha CPI was shown immunologically to be distinct from antithrombin III and alpha 1-antichymotrypsin, two serine proteinase inhibitors from plasma with somewhat similar Mr values. alpha CPI was also distinct from cystatins A and B, the two intracellular low-Mr cysteine proteinase inhibitors from human liver. Complexes of alpha CPI with papain were detectable in immunoelectrophoresis, but dissociated to free enzyme and intact inhibitor in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The stoichiometry of binding of papain was close to 1:1 for both low-Mr and high-Mr forms. alpha CPI was found to be a tight-binding inhibitor of papain and human cathepsins H and L (Ki 34 pM, 1.1 nM and 62 pM respectively). By contrast, inhibition of cathepsin B was much weaker, Ki being about 35 microM. Dipeptidyl peptidase I also was weakly inhibited. Digestion of alpha CPI with bromelain gave rise to an inhibitory fragment of Mr about 22 000, which was isolated. Images Fig. 2. Fig. 3. Fig. 4. PMID:6548132

  8. Triacontanol negatively modulates the jasmonic acid-stimulated proteinase inhibitors in tomato (Lycopersicon esculentum).

    PubMed

    Ramanarayan, Krishnamurthy; Swamy, Gangadharamurthy Sivakumar

    2004-04-01

    Triacontanol (TRIA), a long chain aliphatic alcohol (C30H61OH) reverses the effect of jasmonic acid (JA) in inducing proteinase inhibitors (PIs) in tomato leaves. Porcine pancreas trypsin and Spodoptera litura gut proteinases were inhibited in the presence of leaf proteins treated with JA, and TRIA partially reverses this effect. Spodoptera litura larvae fed with tomato leaves treated with JA were reduced in body weight and TRIA is able to partially reverse this JA-induced effect. These results reflect the partial reversal effect of TRIA in down regulating the JA-induced production of proteinase inhibitors.

  9. Purification and partial characterization of α1-proteinase inhibitor in the common marmoset (Callithrix jacchus)

    PubMed Central

    Parambeth, Joseph Cyrus; Suchodolski, Jan S.; Steiner, Jörg M.

    2015-01-01

    Fecal alpha1-proteinase inhibitor (α1-PI) concentration has been to diagnose enteric protein loss in dogs and cats. Chronic lymphocytic enteritis is commonly seen in the marmoset (C. jaccus) and is characterized by hypoalbuminemia. As a prelude to immunoassay development for detecting enteric protein loss, marmoset serum α1-PI was purified using immunoaffinity chromatography and ceramic hydroxyapatite chromatography. Partial characterization was performed by reducing gel electrophoresis and enzyme inhibitory assays. Protein identity was confirmed with peptide mass fingerprinting and N-terminal amino acid sequencing. Molecular mass, relative molecular mass, and isoelectric point for marmoset α1-PI were 54 kDa, 51677, and 4.8-5.4, respectively. Trypsin, chymotrypsin, and elastase inhibitory activity were observed. N-terminal amino acid sequence for marmoset α1-PI was EDPQGDAAQKMDTSHH. In conclusion, marmoset α1-PI was successfully purified from serum with an overall yield of 12% using a rapid and efficient method. Purified marmoset α1-PI has characteristics similar to those of α1-PI reported for other species. PMID:25745866

  10. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes.

    PubMed

    Olson, S T; Bock, P E; Kvassman, J; Shore, J D; Lawrence, D A; Ginsburg, D; Björk, I

    1995-12-15

    The contribution of a covalent bond to the stability of complexes of serine proteinases with inhibitors of the serpin family was evaluated by comparing the affinities of beta-trypsin and the catalytic serine-modified derivative, beta-anhydrotrypsin, for several serpin and non-serpin (Kunitz) inhibitors. Kinetic analyses showed that anhydrotrypsin had little or no ability to compete with trypsin for binding to alpha 1-proteinase inhibitor (alpha 1PI), plasminogen activator inhibitor 1 (PAI-1), antithrombin (AT), or AT-heparin complex when present at up to a 100-fold molar excess over trypsin. By contrast, equimolar levels of anhydrotrypsin blocked trypsin binding to non-serpin inhibitors. Equilibrium binding studies of inhibitor-enzyme interactions monitored by inhibitor displacement of the fluorescence probe, p-aminobenzamidine, from the enzyme active site, confirmed that the binding of serpins to anhydrotrypsin was undetectable in the case of alpha 1PI or AT (KI > 10(-5) M), of low affinity in the case of AT-heparin complex (KI 7-9 x 10(-6) M), and of moderate affinity in the case of PAI-1 (KI 2 x 10(-7) M). This contrasted with the stoichiometric high affinity binding of the serpins to trypsin as well as of the non-serpin inhibitors to both trypsin and anhydrotrypsin. Maximal KI values for serpin-trypsin interactions of 1 to 8 x 10(-11) M, obtained from kinetic analyses of association and dissociation rate constants, indicated that the affinity of serpins for trypsin was minimally 4 to 6 orders of magnitude greater than that of anhydrotrypsin. Anhydrotrypsin, unlike trypsin, failed to induce the characteristic fluorescence changes in a P9 Ser-->Cys PAI-1 variant labeled with a nitrobenzofuran fluorescent probe (NBD) which were shown previously to report the serpin conformational change associated with active enzyme binding. These results demonstrate that a covalent interaction involving the proteinase catalytic serine contributes a major fraction of the binding

  11. Cloning of a serine proteinase inhibitor from bovine brain: expression in the brain and characterization of its target proteinases.

    PubMed

    Nakaya, N; Nishibori, M; Kawabata, M; Saeki, K

    1996-12-01

    A cDNA encoding of the serine proteinase inhibitor (serpin), B-43, was cloned from the cDNA library of the bovine brain. It encoded 378 amino acids, and the MW of the protein was estimated to be 42.6 kDa, which is consistent with that of the native B-43 purified from the bovine brain. The homology search revealed that B-43 belongs to the ovalbumin branch of the serpin superfamily. Among them, B-43 was most homologous to human placental thrombin inhibitor (PI-6) and its murine counterpart, with the amino acid identity of 76% and 71%, respectively. Northern blot analysis showed that the size of the transcript was 1.4 kb, and that the expression of B-43 in the bovine brain varied depending on the brain regions, i.e. a lower level of expression was observed in the cerebral cortex and the hippocampus compared to the level of expression that was observed in the medulla oblongata. [35S]-labeled B-43 protein was synthesized in vitro by using a rabbit reticulocyte lysate system, which formed complexes with proteinases such as thrombin, trypsin, alpha-chymotrypsin, and 7S nerve growth factor (NGF), but not with urokinase or plasmin. These results, together with the immunohistochemical localization of B-43 in astrocytes and in some neurons which was observed in the previous study suggest that B-43 may be involved in the regulation of serine proteinases present in the brain or extravasated from the blood.

  12. Clearance of human native, proteinase-complexed, and proteolytically inactivated C1-inhibitor in rats.

    PubMed

    de Smet, B J; de Boer, J P; Agterberg, J; Rigter, G; Bleeker, W K; Hack, C E

    1993-01-01

    C1-inhibitor is the only known inhibitor of the classical pathway of complement and the major inhibitor of the contact pathway of coagulation. Like other serine proteinase inhibitors, C1-inhibitor can exist in three conformations, ie, the native, the proteinase-complexed, and the proteolytically inactivated form. Here we studied the plasma elimination kinetics of these three forms of human C1-inhibitor in rats. The clearance of the complexed form of C1-inhibitor appeared to be the most rapid and depended in part on the proteinase involved (observed plasma t1/2 was 20 minutes for C1s-C1-inhibitor, 32 minutes for kallikrein-C1-inhibitor, and 47 minutes for beta XIIa-C1-inhibitor), whereas that of native C1-inhibitor was the slowest (observed plasma t1/2 4.5 hours). Inactivated C1-inhibitor was cleared with an apparent plasma t1/2 of 1.6 hours. Thus, the short plasma t1/2 of complexed relative to native C1-inhibitor explains why in patients only low concentrations of C1-inhibitor complexes may be observed despite activation of the contact and/or complement systems.

  13. Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination

    PubMed Central

    2012-01-01

    Background Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases. Results Two cysteine proteinase (CP) and four cysteine proteinase inhibitor (CPI) gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels. Conclusions Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is likely to play a strong role

  14. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid.

    PubMed Central

    Doares, S. H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C. A.

    1995-01-01

    Salicylic acid (SA) and acetylsalicylic acid (ASA), previously shown to inhibit proteinase inhibitor synthesis induced by wounding, oligouronides (H.M. Doherty, R.R. Selvendran, D.J. Bowles [1988] Physiol Mol Plant Pathol 33: 377-384), and linolenic acid (H. Pena-Cortes, T. Albrecht, S. Prat, E.W. Weiler, L. Willmitzer [1993] Planta 191: 123-128), are shown here to be potent inhibitors of systemin-induced and jasmonic acid (JA)-induced synthesis of proteinase inhibitor mRNAs and proteins. The inhibition by SA and ASA of proteinase inhibitor synthesis induced by systemin and JA, as well as by wounding and oligosaccharide elicitors, provides further evidence that both oligosaccharide and polypeptide inducer molecules utilize the octadecanoid pathway to signal the activation of proteinase inhibitor genes. Tomato (Lycopersicon esculentum) leaves were pulse labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the inhibitory effects of SA are shown to be specific for the synthesis of a small number of JA-inducible proteins that includes the proteinase inhibitors. Previous results have shown that SA inhibits the conversion of 13S-hydroperoxy linolenic acid to 12-oxo-phytodienoic acid, thereby inhibiting the signaling pathway by blocking synthesis of JA. Here we report that the inhibition of synthesis of proteinase inhibitor proteins and mRNAs by SA in both light and darkness also occurs at a step in the signal transduction pathway, after JA synthesis but preceding transcription of the inhibitor genes. PMID:12228577

  15. Limited proteolysis by macrophage elastase inactivities human. cap alpha. /sub 1/-proteinase inhibitor

    SciTech Connect

    Banda, M.J.; Clark, E.J.; Werb, Z.

    1980-12-01

    Ever since the initial description of ..cap alpha../sub 1/-proteinase inhibitor (..cap alpha../sub 1/PI), the role of this plasma glycoprotein and its allelic polymorphism in disease and in healthy physiology has been the subject of much investigation, ..cap alpha../sub 1/PI inactivates a number of serine proteinases, including granulocyte elastase, and thus affords protection from the connective tissue degradation mediated by this class of proteinases. Because an imbalance in the ratio between ..cap alpha../sub 1/PI and proteinase may contribute to the development of destructive lung diseases, proteinases have been implicated in the pathogenesis of pulmonary emphysema. Both macrophages and polymorphonuclear leukocytes have been implicated in disruption of the ..cap alpha../sub 1/PI-proteinase balance. In this report, a new mechanism for alteration of the ..cap alpha../sub 1/PI-proteinase balance is demonstrated. It was found that the purified form of macrophage elastase catalytically degrades and inactivates ..cap alpha../sub 1/PI so that it no longer inhibits the elastinolytic activity of granulocyte elastase.

  16. Production, purification and characterisation of recombinant Fahsin, a novel antistasin-type proteinase inhibitor.

    PubMed

    de Bruin, Eric C; Roem, Dorina; Bulder, Ingrid; Dieker, Miranda; Voerman, Gerard; Hack, C Erik

    2005-11-01

    Serine proteinases from inflammatory cells, including polymorphonuclear neutrophils, are involved in various inflammatory disorders, like pulmonary emphysema and rheumatoid arthritis. Inhibitors of these serine proteinases are potential drug candidates for the treatment of these disorders, since they prevent the unrestricted proteolysis. This study describes a novel specific antistasin-type inhibitor of neutrophil serine proteinases, we called Fahsin. This inhibitor was purified from the Nile leech Limnatis nilotica, sequenced and heterologously expressed using a synthetic gene in the methylotrophic yeast Pichia pastoris, yielding 0.5 g(-l) of the protein in the culture medium. Recombinant Fahsin was purified to homogeneity and characterised by N-terminal amino acid sequencing and mass spectrometry. Inhibition-kinetic analysis showed that recombinant Fahsin is a fast, tight-binding inhibitor of human neutrophil elastase with inhibition constant in the nanomolar range. Furthermore, recombinant Fahsin was, in contrast to various other neutrophil elastase inhibitors, insensitive to chemical oxidation and biological oxidation via myeloperoxidase-generated free oxygen radicals. Thus, Fahsin constitutes a novel member of a still expanding family of naturally occurring inhibitors of serine proteinases with potential therapeutic use for treatment of human diseases.

  17. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    PubMed Central

    Sigle, Leah Theresa; Ramalho-Ortigão, Marcelo

    2013-01-01

    Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania. PMID:24037187

  18. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.

    PubMed

    Smigocki, Ann C; Ivic-Haymes, Snezana; Li, Haiyan; Savić, Jelena

    2013-01-01

    Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI) was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  19. A low-molecular-weight inhibitor of the neutral proteinase from rat intestinal smooth muscle.

    PubMed Central

    Carney, I T; Curtis, C G; Kay, J K; Birket, N

    1980-01-01

    1. Rat intestinal smooth muscle was shown to contain endogenous inhibitory activity towards the neutral trypsin-like muscle proteinase described previously [Beynon & Kay (1978) Biochem. J. 173, 291--298]. 2. Comtamination of the muscle tissue by mucosal, blood and pancreatic inhibitors was shown to be unlikely. 3. The inhibitory activity was resolved into high- and low-molecular-weight components. 4. The low-molecular-weight component was purified to homogeneity. It has a molecular weight of approx. 9000 and was stable over the pH range 3--11. 5. It inhibited the muscle proteinase competitively (Ki congruent to t microM), but had no effect on any of the other proteinases tested. 6. Leupeptin also inhibited the muscle proteinase competitively (Ki congruent to 0.3 microM), whereas the low-molecular weight proteins gastrin, glucagon and insulin B-chain had very little effect. 7. A role for a weakly binding inhibitor in modulating the influence of the neutral proteinase on intracellular protein degradation is considered. Images Fig. 4. PMID:7396824

  20. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  1. Solution structure of the squash aspartic acid proteinase inhibitor (SQAPI) and mutational analysis of pepsin inhibition.

    PubMed

    Headey, Stephen J; Macaskill, Ursula K; Wright, Michele A; Claridge, Jolyon K; Edwards, Patrick J B; Farley, Peter C; Christeller, John T; Laing, William A; Pascal, Steven M

    2010-08-27

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel beta-sheet gripping an alpha-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S' side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp(32)-Asp(215) diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin.

  2. Effects of E-64, a cysteine proteinase inhibitor, on cowpea weevil growth, development, and fecundity

    SciTech Connect

    Murdock, L.L.; Shade, R.E.; Pomeroy, M.A.

    1988-06-01

    E-64, a specific inhibitor of cysteine proteinases, was incorporated into artificial seeds at low levels (0.01-0.25% by weight). It prolonged developmental time and increased mortality of the larval cowpea weevil, Callosobruchus maculatus (F.), in direct proportion to its concentration in the artificial seeds. The fecundity of females emerging from the artificial seeds was significantly decreased by E-64 concentrations of 0.06% and higher. These observations are compatible with the hypothesis that the midgut cysteine proteinase in C. maculatus is essential for normal growth and development.

  3. Successive Use of Non-Host Plant Proteinase Inhibitors Required for Effective Inhibition of Helicoverpa armigera Gut Proteinases and Larval Growth1

    PubMed Central

    Harsulkar, Abhay M.; Giri, Ashok P.; Patankar, Aparna G.; Gupta, Vidya S.; Sainani, Mohini N.; Ranjekar, Prabhakar K.; Deshpande, Vasanti V.

    1999-01-01

    We report on the efficacy of proteinase inhibitors (PIs) from three host plants (chickpea [Cicer arietinum], pigeonpea [Cajanus cajan], and cotton [Gossypium arboreum]) and three non-host (groundnut [Arachis hypogea], winged bean [Psophocarpus tetragonolobus], and potato [Solanum tuberosum]) in retarding the growth of Helicoverpa armigera larvae, a devastating pest of important crop plants. Enzyme assays and electrophoretic analysis of interaction of H. armigera gut proteinases (HGPs) with PIs revealed that non-host PIs inhibited HGP activity efficiently whereas host PIs were ineffective. In the electrophoretic assay, trypsin inhibitor activity bands were detected in all of the host and non-host plants, but HGP inhibitor activity bands were present only in non-host plants (except cotton in the host plant group). H. armigera larvae reared on a diet containing non-host PIs showed growth retardation, a reduction in total and trypsin-like proteinase activity, and the production of inhibitor-insensitive proteinases. Electrophoretic analysis of PI-induced HGP showed differential regulation of proteinase isoforms. Interestingly, HGP activity induced in response to dietary potato PI-II was inhibited by winged bean PIs. The optimized combination of potato PI-II and winged bean PIs identified in the present study and their proposed successive use has potential in developing H. armigera-resistant transgenic plants. PMID:10517841

  4. Inhibition of proteolytic activity of poliovirus and rhinovirus 2A proteinases by elastase-specific inhibitors.

    PubMed Central

    Molla, A; Hellen, C U; Wimmer, E

    1993-01-01

    A polyprotein cleavage assay has been developed to assay the proteolytic activities in vitro of the 2A proteinases encoded by poliovirus and human rhinovirus 14, which are representative members of the Enterovirus and Rhinovirus genera of picornaviruses, respectively. The elastase-specific substrate-based inhibitors elastatinal and methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone (MPCMK) inhibited both 2A proteinases in vitro. The electrophoretic mobilities of both 2A proteinases were reduced upon incubation with elastatinal, whereas the mobility of a Cys-109-->Ala poliovirus 2Apro mutant was unchanged, an observation suggesting that this inhibitor may have formed a covalent bond with the active-site Cys-109 nucleophile. Iodoacetamide, calpain inhibitor 1, and antipain inhibited poliovirus 2Apro. MPCMK caused a reduction in the yields of the enteroviruses poliovirus type 1 and coxsackievirus A21 and of human rhinovirus 2 in infected HeLa cells but did not affect the growth of encephalomyocarditis virus, a picornavirus of the Cardiovirus genus. MPCMK abrogated the shutoff of host cell protein synthesis that is induced by enterovirus and rhinovirus infection and reduced the synthesis of virus-encoded polypeptides in infected cells. These results indicate that the determinants of substrate recognition by 2A proteinases resemble those of pancreatic and leukocyte elastases. These results may be relevant to the development of broad-range chemotherapeutic agents against entero- and rhinoviruses. Images PMID:8392608

  5. The granzyme B inhibitor proteinase inhibitor 9 (PI9) is expressed by human mast cells.

    PubMed

    Bladergroen, Bellinda A; Strik, Merel C M; Wolbink, Angela M; Wouters, Dorine; Broekhuizen, Roel; Kummer, J Alain; Hack, C Erik

    2005-04-01

    The activity of granzyme B, a main effector molecule of cytotoxic T lymphocytes (CTL) and natural killer cells, is regulated by the human intracellular serpin proteinase inhibitor 9 (PI9). This inhibitor is particularly expressed by CTL and dendritic cells, in which it serves to protect these cells against endogenous and locally released granzyme B. Moreover, PI9 expression by neoplastic cells may constitute one of the mechanisms for tumors to escape immune surveillance. Here we show that PI9 is also expressed by human mast cells. In immunohistochemical studies using a PI9-specific monoclonal antibody, strong cytoplasmic staining for PI9 was found in normal mast cells in various tissues throughout the body. In addition, in 80% of all cases of cutaneous and systemic mastocytosis tested the majority of the mast cells expressed PI9. As an in vitro model for PI9 expression by mast cells, we studied expression by the human mast cell line HMC-1. Stimulation of HMC-1 with PMA and the calcium ionophore A23187 resulted in a marked increase of PI9 expression. Thus, PI9 is expressed by activated mast cells. We suggest that this expression serves to protect these cells against apoptosis induced by granzyme B released during initiation of the local inflammatory response.

  6. A chimeric mini-trypsin inhibitor derived from the oil rape proteinase inhibitor type III.

    PubMed

    Trovato, M; Maras, B; Polticelli, F; Costantino, P; Ascenzi, P

    2000-09-01

    The design of chimeric proteins is a major field of interest in structural biology and biotechnology. The successful design of the chimeric protein composed by the minimized reactive site domain of the low-molecular-mass trypsin inhibitor from Brassica napus (var. oleifera) seed (Ser3-Lys35; mini-RTI-III) and murine dihydrofolate reductase (DHFR) is reported here. The DHFR-mini-RTI-III chimeric protein was expressed in Escherichia coli, purified by metal-chelate affinity chromatography and oxidatively refolded. The affinity of the purified and refolded DHFR-mini-RTI-III for bovine trypsin (K = 5.0 x 10(-10) M) was closely similar to that determined for native RTI-III (K = 2.9 x 10(-10) M), at pH 8.2 and 22.0 degrees C. DHFR-mini-RTI-III may be regarded as a tool in structure-function studies and for developing multifunctional and multidomain proteinase inhibitors.

  7. Primary structure of a cysteine proteinase inhibitor from the fruit of avocado (Persea americana Mill).

    PubMed

    Kimura, M; Ikeda, T; Fukumoto, D; Yamasaki, N; Yonekura, M

    1995-12-01

    The complete amino acid sequence of a proteinaceous cysteine proteinase inhibitor from the fruit of avocado (avocado cystatin) is presented. The protein consists of 100 amino acid residues and has a molecular mass of 11,300 Da. Comparison of this sequence with sequences of plant cysteine proteinase inhibitors (phytocystatins), including oryzacystatins I and II from rice seeds, cowpea cystatin, and corn cystatin, showed that the avocado cystatin molecule has 60% and 54% residues identical with the two forms of the rice seed proteins, oryzacystatins I and II, respectively, and 64% and 63% with the cowpea and corn proteins, respectively. The totally conserved sequence, Gln-Val-Val-Ala-Gly, among several of the animal cystatins as well as phytocystatins, is at positions 47-51 in the avocado cystatin molecule.

  8. [Inhibitors of acrosomal proteinase as antifertility agents. A problem of acrosomal membrane permeability (author's transl)].

    PubMed

    Schill, W B; Feifel, M; Fritz, H; Hammerstein, J

    1982-01-01

    In vitro studies were performed to investigate the accessibility of acrosin to various proteinase inhibitors inside the intact acrosome of testicular, ejaculated, and uterine human spermatozoa. As test system, the gelatin plate assay was used. For this assay, it was shown formerly that a correlation exists between the size of the digested lysis areas (halo formation) and acrosin activity estimated with synthetic substrates. In addition, saturation of the gelatin substrate membranes with acrosin inhibitors including highly specific ones before application of spermatozoa completely prevented halo formation indicating that the gelatinolytic activity of human spermatozoa is caused exclusively by acrosin. When human spermatozoa were incubated with various acrosin inhibitors (concentration: 1 mmol/1) prior to application to the gelatine membrane, reduction of halo formation could not be observed, however. This result indicates that most of the tested acrosin inhibitors (9 naturally occurring protein inhibitors, 2 microbial peptide inhibitors, 19 synthetic inhibitors) were unable to penetrate the acrosomal membranes of testicular, ejaculated, and uterine human spermatozoa. Only 2 inhibitors caused moderate to complete inhibition of the gelatinolytic activity of the spermatozoa if applied in concentrations between 1-10 mmol/l: the proteinase inhibitor aprotinin and the synthetic inhibitor NPGB (4-nitrophenyl 4-guanidinobenzoate). Obviously, human acrosomal membranes seem to be especially impenetrable to proteins, polypeptides, and synthetic agents. Those acrosin inhibitors penetrating the human sperm head membranes are either too toxic or the local concentration necessary for effective acrosin inhibition in vivo cannot be achieved within the male or female genital tract secretions. Therefore, acrosin inhitibors cannot be used for human contraception at present. Thus, it is mandatory to continue the search for suitable acrosin inhibitors with low toxicity easily penetrating

  9. Alpha-1 antitrypsin reduces ovariectomy-induced bone loss in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha-1antitrypsin (AAT) is a multifunctional protein with proteinase inhibitor and anti-inflammatory activities. Recent studies showed that AAT has therapeutic effect for diseases associated with inflammation, such as type 1 diabetes and arthritis. Proinflammatory cytokines are primary mediators of...

  10. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  11. Isolation, characterization and cDNA sequencing of a Kazal family proteinase inhibitor from seminal plasma of turkey (Meleagris gallopavo).

    PubMed

    Słowińska, Mariola; Olczak, Mariusz; Wojtczak, Mariola; Glogowski, Jan; Jankowski, Jan; Watorek, Wiesław; Amarowicz, Ryszard; Ciereszko, Andrzej

    2008-06-01

    The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.

  12. A Sulfhydryl Reagent Modulates Systemic Signaling for Wound-Induced and Systemin-Induced Proteinase Inhibitor Synthesis.

    PubMed Central

    Narvaez-Vasquez, J.; Orozco-Cardenas, M. L.; Ryan, C. A.

    1994-01-01

    The sulfhydryl group reagent p-chloromecuribenzene sulfonic acid (PCMBS), an established inhibitor of active apoplastic phloem loading of sucrose in several plant species, is shown to be a powerful inhibitor of wound-induced and systemin-induced activation of proteinase inhibitor synthesis and accumulation in leaves of tomato plants (Lycopersicon esculentum cv Castlemart). PCMBS, supplied to young tomato plants through their cut stems, blocks accumulation of proteinase inhibitors in leaves in response to wounding. The application of systemin directly to fresh wounds enhances systemic accumulation of proteinase inhibitors to levels higher than wounding alone. Placed on fresh wounds, PCMBS severely inhibits systemic induction of proteinase inhibitors, in both the presence and absence of exogenous systemin. PCMBS inhibition can be reversed by cysteine, dithiothreitol, and glutathione. Radiolabeled systemin placed on fresh wounds is readily transported from the wounded leaves to upper leaves. However, in the presence of PCMBS, radiolabeled systemin is not transported away from wound sites. Induction of proteinase inhibitor I synthesis by oligouronides (degree of polymerization [almost equal to] 20), linolenic acid, or methyl jasmonate was not inhibited by PCMBS. The cumulative data support a possible role for sulfhydryl groups in mediating the translocation of systemin from wound sites to distal receptor sites in tomato plants and further support a role for systemin as a systemic wound signal. PMID:12232239

  13. Competitive inhibition of nitric oxide synthase by p-aminobenzamidine, a serine proteinase inhibitor.

    PubMed

    Venturini, G; Menegatti, E; Ascenzi, P

    1997-03-01

    p-Aminobenzamidine competitively inhibits bovine trypsin, human and bovine thrombin, and human plasmin, all of which act on substrates containing preferentially the L-arginyl side chain at their P1 position. Considering the structural and functional similarity between p-aminobenzamidine and the L-arginyl side chain in trypsin-like serine proteinases, we investigated the interaction of p-aminobenzamidine with mouse brain nitric oxide synthase (NOS), which uses L-arginine as the substrate for generating NO and L-citrulline. p-Aminobenzamidine is a competitive NOS inhibitor (Ki = 1.2 x 10(-4) M, at pH 7.5 and 37.0 degrees C), but not an NO precursor. Therefore, p-aminobenzamidine affects the NO production and the trypsin-like serine proteinase action. PMID:9125158

  14. A trypsin-like proteinase in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae): purification, characterization, and host plant inhibitors.

    PubMed

    Ranjbar, Mina; Zibaee, Arash; Sendi, Jalal Jalali

    2014-01-01

    A trypsin-like proteinase was purified and characterized in the midgut of Ectomyelois ceratoniae. A purification process that used Sepharyl G-100 and DEAE-cellulose fast flow chromatographies revealed a proteinase with specific activity of 66.7 μmol/min/mg protein, recovery of 27.04 and purification fold of 23.35. Molecular weight of the purified protein was found to be 35.8 kDa. Optimal pH and temperature were obtained 9 and 20°C for the purified trypsin proteinase, respectively. The purified enzyme was significantly inhibited by PMSF, TLCK, and SBTI as specific inhibitors of trypsins in which TLCK showed the highest inhibitory effect. Trypsin proteinase inhibitors were extracted from four varieties of pomegranate including Brait, Torsh-Sabz, May-Khosh, and Shirin by ion exchange chromatography. It was found that fractions 17-20 of Brait; fractions 18 and 21-26 of Torsh-Sabz; fractions 1-7, 11-17, and 19-21 of May-Khosh and fraction 8 for Shirin showed presence of trypsin inhibitor in these host. Comparison of their inhibitory effects on the purified trypsin proteinase of E. ceratoniae demonstrated that fractions from May-khosh variety had the highest effect on the enzyme among other extracted fractions. Characterization of serine proteinases of insects mainly trypsins is one of the promising methods to decrease population and damages via extracting their inhibitors and providing resistant varieties.

  15. In Vitro Processing of Tomato Proteinase Inhibitor I by Barley Microsomal Membranes

    PubMed Central

    Osteryoung, Katherine W.; Sticher, Liliane; Jones, Russell L.; Bennett, Alan B.

    1992-01-01

    A plant-derived in vitro system for the study of cotranslational processing of plant endomembrane proteins has been developed and used to investigate cotranslational proteolytic processing of tomato proteinase inhibitor I. Translation of the inhibitor I precursor in wheat germ lysate supplemented with barley aleurone microsomal membranes resulted in cotranslational import of the protein into microsomal vesicles and cleavage of the signal sequence. NH2-terminal sequence analysis of the translocated inhibitor I processing intermediate showed that the signal sequence was cleaved between Ala23 and Arg24 of the precursor protein. Parallel experiments using dog pancreas microsomal membranes indicated an identical site of cleavage, suggesting that the substrate determinants for signal sequence processing are conserved across kingdoms. The plant-derived processing system used for this study may be valuable for analysis of cotranslational processing of other plant preproteins and for characterizing the components of the cotranslational import machinery in plants. ImagesFigure 1 PMID:16668894

  16. Proteinases involved in the degradation of trypsin inhibitor in germinating mung beans.

    PubMed

    Wilson, K A; Tan-Wilson, A L

    1983-01-01

    The mung bean (Vigna radiata (L.) Wilczek) trypsin inhibitor (MBTI) is rapidly modified by limited proteolysis during the early stages of seedling growth. Using an electrophoretic assay that separates the unmodified inhibitor (MBTI-F) and the first two modified species (MBTI-E and -C), a pH optimum of approximately 4 was found for the modification reaction. The inhibitor modifying activity is initially low in ungerminated seeds, with the reaction F leads to E being the primary reaction catalyzed. Activity catalyzing the production of MBTI-C appears on the first day of germination. This activity (F leads to E leads to C) increases up to 6 days after inhibition, at which time the cotyledons begin to abscise. The activity converting MBTI-F and -E to MBTI-C was strongly inhibited by phenylmethylsulfonyl fluoride (3.3 mM) but only weakly by iodoacetate (9 mM) and not at all by pepstatin A (9 microM), leupeptin (18 microM), or EDTA (5 mM). These results suggest the involvement of proteinases other than the major endopeptidase of the germinating seed, vicilin peptidohydrolase. This conclusion is further supported by gel filtration of the extracts of cotyledons on Sephacryl S-200. At least three proteinases are present in germinated cotyledons capable of modifying MBTI-F to MBTI-C and/or -E. All are distinguishable from vicilin peptidohydrolase on the basis of their molecular weight and inhibition by low molecular weight organic reagents.

  17. Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): molecular characterization and transcriptional response upon immune stimulation.

    PubMed

    Wickramaarachchi, W D Niroshana; De Zoysa, Mahanama; Whang, Ilson; Wan, Qiang; Lee, Jehee

    2013-09-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. Proteinase inhibitors play a key role in regulating the activity of the respective proteinases. Among serine proteinase inhibitors, kazal-type proteinase inhibitors (KPIs) are widely found in mammals, avians, and a variety of invertebrates. In this study, we describe the identification of a kazal-type serine proteinase inhibitor (Ab-KPI) from the disk abalone, Haliotis discus discus, which is presumably involved in innate immunity. The full-length cDNA of Ab-KPI includes 600 bp nucleotides with an open reading frame (ORF) encoding a polypeptide of 143 amino acids. The deduced amino acid sequence of Ab-KPI contains a putative 17-amino acid signal peptide and two tandem kazal domains with high similarity to other kazal-type SPIs. Each kazal domain consists of reactive site (P1) residue containing a leucine (L), and a threonine (T) located in the second amino acid position after the second conserved cysteine of each domain. Temporal expression of Ab-KPI was assessed by real time quantitative PCR in hemocytes and mantle tissue following bacterial and viral hemorrhagic septicemia virus (VHSV) challenge, and tissue injury. At 6 h post-bacterial and -VHSV challenge, Ab-KPI expression in hemocytes was increased 14-fold and 4-fold, respectively, compared to control samples. The highest up-regulations upon tissue injury were shown at 9 h and 12 h in hemocytes and mantle, respectively. The transcriptional modulation of Ab-KPI following bacterial and viral challenges and tissue injury indicates that it might be involved in immune defense as well as wound healing process in abalone.

  18. Purification, crystallization and preliminary crystallographic studies of a Kunitz-type proteinase inhibitor from tamarind (Tamarindus indica) seeds.

    PubMed

    Patil, Dipak N; Chaudhry, Anshul; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra

    2009-07-01

    A Kunitz-type proteinase inhibitor has been purified from tamarind (Tamarindus indica) seeds. SDS-PAGE analysis of a purified sample showed a homogeneous band corresponding to a molecular weight of 21 kDa. The protein was identified as a Kunitz-type proteinase inhibitor based on N-terminal amino-acid sequence analysis. It was crystallized by the vapour-diffusion method using PEG 6000. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 37.2, b = 77.1, c = 129.1 A. Diffraction data were collected to a resolution of 2.7 A. Preliminary crystallographic analysis indicated the presence of one proteinase inhibitor molecule in the asymmetric unit, with a solvent content of 44%.

  19. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field

    PubMed Central

    Dunse, K. M.; Stevens, J. A.; Lay, F. T.; Gaspar, Y. M.; Heath, R. L.; Anderson, M. A.

    2010-01-01

    Potato type I and II serine protease inhibitors are produced by solanaceous plants as a defense mechanism against insects and microbes. Nicotiana alata proteinase inhibitor (NaPI) is a multidomain potato type II inhibitor (pin II) that is produced at high levels in the female reproductive tissues of the ornamental tobacco, Nicotiana alata. The individual inhibitory domains of NaPI target the major classes of digestive enzymes, trypsin and chymotrypsin, in the gut of lepidopteran larval pests. Although consumption of NaPI dramatically reduced the growth and development of a major insect pest, Helicoverpa punctigera, we discovered that surviving larvae had high levels of chymotrypsin activity resistant to inhibition by NaPI. We found a potato type I inhibitor, Solanum tuberosum potato type I inhibitor (StPin1A), was a strong inhibitor of the NaPI-resistant chymotrypsin activity. The combined inhibitory effect of NaPI and StPin1A on H. armigera larval growth in the laboratory was reflected in the increased yield of cotton bolls in field trials of transgenic plants expressing both inhibitors. Better crop protection thus is achieved using combinations of inhibitors in which one class of proteinase inhibitor is used to match the genetic capacity of an insect to adapt to a second class of proteinase inhibitor. PMID:20696895

  20. Isolation, characterization and antifungal activity of proteinase inhibitors from Capsicum chinense Jacq. Seeds.

    PubMed

    Dias, Germana Bueno; Gomes, Valdirene Moreira; Pereira, Umberto Zottich; Ribeiro, Suzanna F Ferreira; Carvalho, André O; Rodrigues, Rosana; Machado, Olga L Tavares; Fernandes, Kátia Valevski Sales; Ferreira, André Teixeira S; Perales, Jonas; Da Cunha, Maura

    2013-01-01

    Capsicum species belong to the Solanaceae family and have great social, economic and agronomical significance. The present research presents data on the isolation and characterization of Capsicum chinense Jacq. peptides which were scrutinized in relation to their toxicity towards a diverse set of yeast species. The protein extract was separated with C18 reverse-phase chromatography in high performance liquid chromatography, resulting in three different peptide enriched fractions (PEFs) termed PEF1, PEF2 and PEF3. Tricine-SDS-PAGE of the PEF2 revealed peptides with molecular masses of approximately 5.0 and 8.5 kDa. These PEFs also exhibited strong antifungal activity against different yeasts. In the presence of the PEF2, Candida tropicalis exhibited morphological changes, including cellular agglomeration and formation of pseudohyphae. Determined N-terminal sequences of PEF2 and PEF3 were proven to be highly homologous to serine proteinase inhibitors, when analysed by comparative database sequence tools. For this reason were performed protease inhibitory activity assay. The PEFs displayed high inhibitory activity against trypsin and low inhibitory activity against chymotrypsin. PEF2 and PEF3 were considerably unsusceptible to a broad interval of pH and temperatures. Due to the myriad of application of Proteinase inhibitors (PIs) in fields ranging from plant protection against pathogens and pests to medicine such as in cancer and virus replication inhibition, the discovery of new PIs with new properties are of great interest.

  1. Protein digestion in cereal aphids (Sitobion avenae) as a target for plant defence by endogenous proteinase inhibitors.

    PubMed

    Pyati, Prashant; Bandani, Ali R; Fitches, Elaine; Gatehouse, John A

    2011-07-01

    Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins.

  2. Hepatocyte growth factor activator is a potential target proteinase for Kazal-type inhibitor in turkey (Meleagris gallopavo) seminal plasma.

    PubMed

    Słowińska, Mariola; Bukowska, Joanna; Hejmej, Anna; Bilińska, Barbara; Kozłowski, Krzysztof; Jankowski, Jan; Ciereszko, Andrzej

    2015-08-01

    A peculiar characteristic of turkey seminal plasma is the increased activity of serine proteinases. It is of interest if the single-domain Kazal-type inhibitor controls the activity of turkey seminal plasma proteinases. Pure preparations of the Kazal-type inhibitor and anti-Kazal-type inhibitor monospecific immunoglobulin Gs were used as ligands in affinity chromatography for proteinase isolation from turkey seminal plasma. Gene expression and the immunohistochemical detection of the single-domain Kazal-type inhibitor in the reproductive tract of turkey toms are described. The hepatocyte growth factor activator (HGFA) was identified in the binding fraction in affinity chromatography. Hepatocyte growth factor activator activity was inhibited by the Kazal-type inhibitor in a dose-dependent manner. This protease was a primary physiological target for the single-domain Kazal-type inhibitor. Numerous proteoforms of HGFA were present in turkey seminal plasma, and phosphorylation was the primary posttranslational modification of HGFA. In addition to HGFA, acrosin was a target proteinase for the single-domain Kazal-type inhibitor. In seminal plasma, acrosin was present only in complexes with the Kazal-type inhibitor and was not present as a free enzyme. The single-domain Kazal-type inhibitor was specific for the reproductive tract. The germ cell-specific expression of Kazal-type inhibitors in the testis indicated an important function in spermatogenesis; secretion by the epithelial cells of the epididymis and the ductus deferens indicated that the Kazal-type inhibitor was an important factor involved in the changes in sperm membranes during maturation and in the maintenance of the microenvironment in which sperm maturation occurred and sperm was stored. The role of HGFA in these processes remains to be established.

  3. Effects of pH on the association between the inhibitor cystatin and the proteinase chymopapain.

    PubMed

    Reyes-Espinosa, Francisco; Arroyo-Reyna, Alfonso; Garcia-Gutierrez, Ponciano; Serratos, Iris N; Zubillaga, Rafael A

    2014-01-01

    Cysteine proteinases are involved in many aspects of physiological regulation. In humans, some cathepsins have shown another function in addition to their role as lysosomal proteases in intracellular protein degradation; they have been implicated in the pathogenesis of several heart and blood vessel diseases and in cancer development. In this work, we present a fluorometric and computational study of the binding of one representative plant cysteine proteinase, chymopapain, to one of the most studied inhibitors of these proteinases: chicken cystatin. The binding equilibrium constant, Kb, was determined in the pH range between 3.5 and 10.0, revealing a maximum in the affinity at pH 9.0. We constructed an atomic model for the chymopapain-cystatin dimer by docking the individual 3D protein structures; subsequently, the model was refined using a 100 ns NPT molecular dynamics simulation in explicit water. Upon scrutiny of this model, we identified 14 ionizing residues at the interface of the complex using a cutoff distance of 5.0 Å. Using the pKa values predicted with PROPKA and a modified proton-linkage model, we performed a regression analysis on our data to obtain the composite pKavalues for three isoacidic residues. We also calculated the electrostatic component of the binding energy (ΔGb,elec) at different pH values using an implicit solvent model and APBS software. The pH profile of this calculated energy compares well with the experimentally obtained binding energy, ΔGb. We propose that the residues that form an interchain ionic pair, Lys139A from chymopapain and Glu19B from cystatin, as well as Tyr61A and Tyr67A from chymopapain are the main residues responsible for the observed pH dependence in the chymopapain- cystatin affinity.

  4. Effects of pH on the association between the inhibitor cystatin and the proteinase chymopapain.

    PubMed

    Reyes-Espinosa, Francisco; Arroyo-Reyna, Alfonso; Garcia-Gutierrez, Ponciano; Serratos, Iris N; Zubillaga, Rafael A

    2014-01-01

    Cysteine proteinases are involved in many aspects of physiological regulation. In humans, some cathepsins have shown another function in addition to their role as lysosomal proteases in intracellular protein degradation; they have been implicated in the pathogenesis of several heart and blood vessel diseases and in cancer development. In this work, we present a fluorometric and computational study of the binding of one representative plant cysteine proteinase, chymopapain, to one of the most studied inhibitors of these proteinases: chicken cystatin. The binding equilibrium constant, Kb, was determined in the pH range between 3.5 and 10.0, revealing a maximum in the affinity at pH 9.0. We constructed an atomic model for the chymopapain-cystatin dimer by docking the individual 3D protein structures; subsequently, the model was refined using a 100 ns NPT molecular dynamics simulation in explicit water. Upon scrutiny of this model, we identified 14 ionizing residues at the interface of the complex using a cutoff distance of 5.0 Å. Using the pKa values predicted with PROPKA and a modified proton-linkage model, we performed a regression analysis on our data to obtain the composite pKavalues for three isoacidic residues. We also calculated the electrostatic component of the binding energy (ΔGb,elec) at different pH values using an implicit solvent model and APBS software. The pH profile of this calculated energy compares well with the experimentally obtained binding energy, ΔGb. We propose that the residues that form an interchain ionic pair, Lys139A from chymopapain and Glu19B from cystatin, as well as Tyr61A and Tyr67A from chymopapain are the main residues responsible for the observed pH dependence in the chymopapain- cystatin affinity. PMID:25426863

  5. Regulation of factor IXa in vitro in human and mouse plasma and in vivo in the mouse. Role of the endothelium and the plasma proteinase inhibitors

    SciTech Connect

    Fuchs, H.E.; Trapp, H.G.; Griffith, M.J.; Roberts, H.R.; Pizzo, S.V.

    1984-06-01

    The regulation of human Factor IXa was studied in vitro in human and mouse plasma and in vivo in the mouse. In human plasma, approximately 60% of the /sup 125/I-Factor IXa was bound to antithrombin III (ATIII) by 2 h, with no binding to alpha 2-macroglobulin or alpha 1-proteinase inhibitor, as assessed by gel electrophoresis and IgG- antiproteinase inhibitor-Sepharose beads. In the presence of heparin, virtually 100% of the /sup 125/I-Factor IXa was bound to ATIII by 1 min. The distribution of /sup 125/I-Factor IXa in mouse plasma was similar. The clearance of /sup 125/I-Factor IXa was rapid (50% clearance in 2 min) and biphasic and was inhibited by large molar excesses of ATIII-thrombin and alpha 1-proteinase inhibitor-trypsin, but not alpha 2-macro-globulin-trypsin; it was also inhibited by large molar excesses of diisopropylphosphoryl - (DIP-) Factor Xa, DIP-thrombin, and Factor IX, but not by prothrombin or Factor X. The clearance of Factor IX was also rapid (50% clearance in 2.5 min) and was inhibited by a large molar excess of Factor IX, but not by large molar excesses of Factor X, prothrombin, DIP-Factor Xa, or DIP-thrombin. Electrophoresis and IgG- antiproteinase inhibitor-Sepharose bead studies confirmed that by 2 min after injection into the murine circulation, 60% of the /sup 125/I-Factor IXa was bound to ATIII. Organ distribution studies with /sup 125/I-Factor IXa demonstrated that most of the radioactivity was in the liver. These studies suggest that Factor IXa binds to at least two classes of binding sites on endothelial cells. One site apparently recognizes both Factors IX and IXa, but not Factor X, Factor Xa, prothrombin, or thrombin. The other site recognizes thrombin, Factor Xa, and Factor IXa, but not the zymogen forms of these clotting factors. After this binding, Factor IXa is bound to ATIII and the complex is cleared from the circulation by hepatocytes.

  6. Functional Characterization of Cucumis metuliferus Proteinase Inhibitor Gene (CmSPI) in Potyviruses Resistance.

    PubMed

    Lin, Chia-Wei; Su, Mei-Hsiu; Lin, Yu-Tsung; Chung, Chien-Hung; Ku, Hsin-Mei

    2015-07-01

    Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa) that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi) with an inter-space hairpin RNA (ihpRNA) construct was introduced into a PRSV-resistant C. metuliferus line. CmSPI was down-regulated in CmSPI RNAi transgenic lines in which synchronously PRSV symptoms were evident at 21 day post inoculation. Alternatively, heterogeneous expression of CmSPI in Nicotiana benthamiana was also conducted and showed that CmSPI can provide resistance to Potato virus Y, another member of Potyvirus, in transgenic N. benthamiana lines. This study demonstrated that CmSPI plays an important role in resistant function against potyviruses in C. metuliferus and N. benthamiana. PMID:26184285

  7. Functional Characterization of Cucumis metuliferus Proteinase Inhibitor Gene (CmSPI) in Potyviruses Resistance

    PubMed Central

    Lin, Chia-Wei; Su, Mei-Hsiu; Lin, Yu-Tsung; Chung, Chien-Hung; Ku, Hsin-Mei

    2015-01-01

    Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa) that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi) with an inter-space hairpin RNA (ihpRNA) construct was introduced into a PRSV-resistant C. metuliferus line. CmSPI was down-regulated in CmSPI RNAi transgenic lines in which synchronously PRSV symptoms were evident at 21 day post inoculation. Alternatively, heterogeneous expression of CmSPI in Nicotiana benthamiana was also conducted and showed that CmSPI can provide resistance to Potato virus Y, another member of Potyvirus, in transgenic N. benthamiana lines. This study demonstrated that CmSPI plays an important role in resistant function against potyviruses in C. metuliferus and N. benthamiana. PMID:26184285

  8. Effects of cysteine proteinase inhibitors scN and E-64 on southern corn rootworm larval development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southern corn rootworm (SCRW) can be a serious pest of peanut pods. A laboratory bioassay was developed to test feeding cysteine proteinase inhibitors soyacystatin N (scN) and E-64 against southern corn rootworm reared on artificial diet to determine the effects on larvae development and mortal...

  9. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  10. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  11. alpha(1)-Microglobulin: a yellow-brown lipocalin.

    PubMed

    Akerström, B; Lögdberg, L; Berggård, T; Osmark, P; Lindqvist, A

    2000-10-18

    alpha(1)-Microglobulin, also called protein HC, is a lipocalin with immunosuppressive properties. The protein has been found in a number of vertebrate species including frogs and fish. This review summarizes the present knowledge of its structure, biosynthesis, tissue distribution and immunoregulatory properties. alpha(1)-Microglobulin has a yellow-brown color and is size and charge heterogeneous. This is caused by an array of small chromophore prosthetic groups, attached to amino acid residues at the entrance of the lipocalin pocket. A gene in the lipocalin cluster encodes alpha(1)-microglobulin together with a Kunitz-type proteinase inhibitor, bikunin. The gene is translated into the alpha(1)-microglobulin-bikunin precursor, which is subsequently cleaved and the two proteins secreted to the blood separately. alpha(1)-Microglobulin is found in blood and in connective tissue in most organs. It is most abundant at interfaces between the cells of the body and the environment, such as in lungs, intestine, kidneys and placenta. alpha(1)-Microglobulin inhibits immunological functions of white blood cells in vitro, and its distribution is consistent with an anti-inflammatory and protective role in vivo.

  12. [Effect of proteinaceous proteinase inhibitors from potato tubers on the growth and development of phytopathogenic microorganisms].

    PubMed

    Revina, T A; Gerasimova, N G; Kladnitskaia, G V; Chalenko, G I; Valueva, T A

    2008-01-01

    We studied the effect of two proteins, PSPI-21 and PKSI, on the growth and development of phytopathogenic microorganisms (Phytophthora infestans oomycete and Fusarium culmorum fungus). Both proteins were isolated from potato tubers (Solanum tuberosum L., cv. Istrinskii) and served as inhibitors of serine proteinases. These proteins differed in the ability to inhibit growth of Phytophthora infestans oomycete and Fusarium culmorum fungus. PSPI-21 was the most potent in modulating the growth of oomycete mycelium. PKSI primarily affected the growth of the fungal mycelium. The proteins under study induced complete destruction of oomycete zoospores and partial destruction of fungal macroconidia. Our results suggest that these proteins are involved in the protection of potato plants from phytopathogenic microorganisms.

  13. Antifeedant effects of proteinase inhibitors on feeding behaviors of adult western corn rootworm (Diabrotica virgifera virgifera).

    PubMed

    Kim, Jae Hak; Mullin, Christopher A

    2003-04-01

    Low-molecular-weight peptidyl proteinase inhibitors (PIs) including leupeptin, calpain inhibitor I, and calpeptin were found to be potent antifeedants for adult western corn rootworm (WCR) against the phagostimulation of cucurbitacin B (Cuc B) or a corn pollen extract (CPE). Leupeptin was the strongest (ED50 = 0.36 and 0.55 nmol/disk for Cuc B and CPE, respectively) among PIs tested with an antifeedant potency much stronger than the steroid progesterone (ED50 = 2.29 and 5.05 nmol/disk for Cuc B and CPE, respectively), but slightly less than the reference alkaloid, strychnine (ED50 = 0.17 and 0.37 nmol/disk for Cuc B and CPE, respectively). All active PIs contain a di- or tripeptidyl aldehyde moiety, indicating that PIs exert their antifeedant effects by covalent interaction with putative sulfhydryl (SH) groups on taste receptors as do these PIs with cysteine proteinases. However, opposite inhibition potency against Cuc B versus CPE by two thiol-group reducing agents, DTT and L-cysteine, and the results with other cysteine-modifying reagents obscure the net functional role of SH groups at WCR taste chemoreceptors. Surprisingly, the model phagostimulant for diabroticites, Cuc B, was more easily counteracted by these feeding deterrents than the stimulants present in CPE. Three-dimensional structure-antifeedant relationships for the PIs suggest that a novel taste chemoreception mechanism exists for these peptidyl aldehydes or that they fit partially into a strychnine binding pocket on protein chemoreceptors. Favorable economic benefit may be achieved if PIs are discovered to be useful in adult WCR control, since both pre- and postingestive sites would be targeted. PMID:12775144

  14. Inactivation of α1-proteinase inhibitor by Candida albicans aspartic proteases favors the epithelial and endothelial cell colonization in the presence of neutrophil extracellular traps.

    PubMed

    Gogol, Mariusz; Ostrowska, Dominika; Klaga, Kinga; Bochenska, Oliwia; Wolak, Natalia; Aoki, Wataru; Ueda, Mitsuyoshi; Kozik, Andrzej; Rapala-Kozik, Maria

    2016-01-01

    Candida albicans, a causative agent of opportunistic fungal infections in immunocompromised patients, uses ten secreted aspartic proteases (SAPs) to deregulate the homeostasis of the host organism on many levels. One of these deregulation mechanisms involves a SAP-dependent disturbance of the control over proteolytic enzymes of the host by a system of dedicated proteinase inhibitors, with one important example being the neutrophil elastase and alpha1-proteinase inhibitor (A1PI). In this study, we found that soluble SAPs 1-4 and the cell membrane-anchored SAP9 efficiently cleaved A1PI, with the major cleavage points located at the C-terminal part of A1PI in a close vicinity to the reactive-site loop that plays a critical role in the inhibition mechanism. Elastase is released by neutrophils to the environment during fungal infection through two major processes, a degranulation or formation of neutrophil extracellular traps (NET). Both, free and NET-embedded elastase forms, were found to be controlled by A1PI. A local acidosis, resulting from the neutrophil activity at the infection sites, favors A1PI degradation by SAPs. The deregulation of NET-connected elastase affected a NET-dependent damage of epithelial and endothelial cells, resulting in the increased susceptibility of these host cells to candidal colonization. Moreover, the SAP-catalyzed cleavage of A1PI was found to decrease its binding affinity to a proinflammatory cytokine, interleukin-8. The findings presented here suggest a novel strategy used by C. albicans for the colonization of host tissues and overcoming the host defense. PMID:26641639

  15. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. PMID:20069636

  16. Solution structure of PMP-C: a new fold in the group of small serine proteinase inhibitors.

    PubMed

    Mer, G; Hietter, H; Kellenberger, C; Renatus, M; Luu, B; Lefèvre, J F

    1996-04-26

    The solution structure and the disulfide pairings of a 36-residue proteinase inhibitor isolated from the insect Locusta migratoria have been determined using NMR spectroscopy and simulated annealing calculations. The peptide, termed PMP-C, was previously shown to inhibit bovine alpha-chymotrypsin as well as human leukocyte elastase, and was also found to block high-voltage-activated Ca2+ currents in rat sensory neurones. PMP-C has a prolate ellipsoid shape and adopts a tertiary fold hitherto unobserved in the large group of small "canonical" proteinase inhibitors. The over-all fold consists mainly of three strands arranged in a right-handed twisted, antiparallel, beta-sheet that demarcates a cavity, together with a linear amino-terminal segment oriented almost perpendicular to the three strands of the beta-sheet. Inside the cavity a phenyl ring constitutes the centre of a hydrophobic core. The proteinase binding loop is located in the carboxy-terminal part of the molecule, between two cysteine residues involved in disulfide bridges. Its conformation resembles that found in other small canonical proteinase inhibitors. A comparison of PMP-C structure with the recently published solution structure of the related peptide PMP-D2 shows that the most significant differences are complementary changes involved in the stabilization of similar folds. This comparison led us to review the structure of PMP-D2 and to identify two salt bridges in PMP-D2.

  17. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase.

    PubMed

    Fook, J M S L L; Macedo, L L P; Moura, G E D D; Teixeira, F M; Oliveira, A S; Queiroz, A F S; Sales, M P

    2005-05-01

    Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.

  18. Single-Step Purification and Characterization of A Recombinant Serine Proteinase Inhibitor from Transgenic Plants.

    PubMed

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Amla, D V

    2016-05-01

    Expression of recombinant therapeutic proteins in transgenic plants has a tremendous impact on safe and economical production of biomolecules for biopharmaceutical industry. The major limitation in their production is downstream processing of recombinant protein to obtain higher yield and purity of the final product. In this study, a simple and rapid process has been developed for purification of therapeutic recombinant α1-proteinase inhibitor (rα1-PI) from transgenic tomato plants, which is an abundant serine protease inhibitor in human serum and chiefly inhibits the activity of neutrophil elastase in lungs. We have expressed rα1-PI with modified synthetic gene in transgenic tomato plants at a very high level (≃3.2 % of total soluble protein). The heterologous protein was extracted with (NH4)2SO4 precipitation, followed by chromatographic separation on different matrices. However, only immunoaffinity chromatography resulted into homogenous preparation of rα1-PI with 54 % recovery. The plant-purified rα1-PI showed molecular mass and structural conformation comparable to native serum α1-PI, as shown by mass spectrometry and optical spectroscopy. The results of elastase inhibition assay revealed biological activity of the purified rα1-PI protein. This work demonstrates a simple and efficient one-step purification of rα1-PI from transgenic plants, which is an essential prerequisite for further therapeutic development.

  19. Single-Step Purification and Characterization of A Recombinant Serine Proteinase Inhibitor from Transgenic Plants.

    PubMed

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Amla, D V

    2016-05-01

    Expression of recombinant therapeutic proteins in transgenic plants has a tremendous impact on safe and economical production of biomolecules for biopharmaceutical industry. The major limitation in their production is downstream processing of recombinant protein to obtain higher yield and purity of the final product. In this study, a simple and rapid process has been developed for purification of therapeutic recombinant α1-proteinase inhibitor (rα1-PI) from transgenic tomato plants, which is an abundant serine protease inhibitor in human serum and chiefly inhibits the activity of neutrophil elastase in lungs. We have expressed rα1-PI with modified synthetic gene in transgenic tomato plants at a very high level (≃3.2 % of total soluble protein). The heterologous protein was extracted with (NH4)2SO4 precipitation, followed by chromatographic separation on different matrices. However, only immunoaffinity chromatography resulted into homogenous preparation of rα1-PI with 54 % recovery. The plant-purified rα1-PI showed molecular mass and structural conformation comparable to native serum α1-PI, as shown by mass spectrometry and optical spectroscopy. The results of elastase inhibition assay revealed biological activity of the purified rα1-PI protein. This work demonstrates a simple and efficient one-step purification of rα1-PI from transgenic plants, which is an essential prerequisite for further therapeutic development. PMID:26852026

  20. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    PubMed

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology. PMID:21418020

  1. Granzyme activity in the inflamed lung is not controlled by endogenous serine proteinase inhibitors.

    PubMed

    Tremblay, G M; Wolbink, A M; Cormier, Y; Hack, C E

    2000-10-01

    Numerous lung diseases, such as hypersensitivity pneumonitis (HP), are characterized by the presence of activated alveolar CTL and NK cells. Since these cells produce granzymes, granzyme A and B levels in bronchoalveolar lavage (BAL) fluids from 14 normal subjects and 12 patients with HP were measured by ELISA. Median (range) BAL granzyme A and B levels were 4 (0-37) and 0 (0-6) pg/ml in normal subjects. BAL granzyme levels were significantly higher in HP patients, being at 74 (0-1,889) and 10 (0-78) pg/ml for granzymes A and B, respectively. In vitro, neither of the three main serine protease inhibitors of the lung, namely alpha1-antitrypsin, secretory leukocyte protease inhibitor, and elafin, showed any effect on granzyme A or B activity. In addition, granzyme A was shown to be fully active in BAL fluids. Hence, these data show that granzyme activity may be poorly controlled by protease inhibitors in inflamed tissues. Thus, granzymes could contribute to tissue remodeling and inflammation characterizing HP.

  2. An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants.

    PubMed

    Rivard, Daniel; Anguenot, Raphaël; Brunelle, France; Le, Van Quy; Vézina, Louis-Philippe; Trépanier, Sonia; Michaud, Dominique

    2006-05-01

    Proteolytic degradation represents a significant barrier to the efficient production of several recombinant proteins in plants, both in vivo during their expression and in vitro during their recovery from source tissues. Here, we describe a strategy to protect recombinant proteins during the recovery process, based on the coexpression of a heterologous proteinase inhibitor acting as a 'mouse trap' against the host proteases during extraction. After confirming the importance of trypsin- and chymotrypsin-like activities in crude protein extracts of potato (Solanum tuberosum L.) leaves, transgenic lines of potato expressing either tomato cathepsin D inhibitor (CDI) or bovine aprotinin, both active against trypsin and chymotrypsin, were generated by Agrobacterium tumefaciens-mediated genetic transformation. Leaf crude protein extracts from CDI-expressing lines, showing decreased levels of cathepsin D-like and ribulose 1,5-bisphosphate carboxylase/oxygenase hydrolysing activities in vitro, conducted decreased turnover rates of the selection marker protein neomycin phosphotransferase II (NPTII) relative to the turnover rates measured for transgenic lines expressing only the marker protein. A similar stabilizing effect on NPTII was observed in leaf protein extracts from plant lines coexpressing bovine aprotinin, confirming the ability of ectopically expressed broad-spectrum serine proteinase inhibitors to reproduce the protein-stabilizing effect of low-molecular-weight proteinase inhibitors generally added to protein extraction media.

  3. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... Liver Disease Information > Alpha-1 Antitrypsin Deficiency Alpha-1 Antitrypsin Deficiency Explore this section to learn more about alpha-1 antitrypsin deficiency, including a description of the disorder ...

  4. Conformational changes of ovine α-1-proteinase inhibitor: The influence of heparin binding

    NASA Astrophysics Data System (ADS)

    Gupta, Vivek Kumar; Gowda, Lalitha R.

    2008-11-01

    α-1-Proteinase inhibitor (α-1-PI), the archetypal serpin causes rapid, irreversible stoichiometric inhibition of redundant circulating serine proteases and is associated with emphysema, inflammatory response and maintenance of protease-inhibitor equilibrium in vascular and peri-vascular spaces. A homogenous preparation of heparin octasaccharide binds to ovine and human α-1-PI and enhances their protease inhibitory activity phenomenally. Size-exclusion chromatography and dynamic light scattering experiments reveal that ovine α-1-PI undergoes a decrease in the Stokes' radius upon heparin binding. A strong binding; characterizes this α-1-PI-heparin interaction as revealed by the binding constant ( Kα) 1.98 ± 0.2 × 10 -6 M and 2.1 ± 0.2 × 10 -6 M determined by fluorescence spectroscopy and equilibrium dialysis, respectively. The stoichiometry of heparin binding to ovine α-1-PI was 1.1 ± 0.2:1. The Stern-Volmer constants ( Ksv) for heparin activated ovine and human α-1-PI were found to be 5.13 × 10 -6 M and 5.67 × 10 -6 M, respectively, significantly higher than the native inhibitors. FTIR and CD spectroscopy project the systematic structural reorientations that α-1-PI undergoes upon heparin binding characterized by a decrease in α-helical content and a concomitant increase in β-turn and random coil elements. It is likely that these conformational changes result in the movement of the α-1-PI reactive site loop into an extended structure that is better poised to combat the cognate protease and accelerate the inhibition.

  5. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    PubMed

    Björklund, H V; Johansson, T R; Rinne, A

    1997-07-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor. PMID:9188644

  6. Molecular interactions between an insect predator and its herbivore prey on transgenic potato expressing a cysteine proteinase inhibitor from rice.

    PubMed

    Bouchard, Edith; Michaud, Dominique; Cloutier, Conrad

    2003-09-01

    Transgenic plants expressing resistance to herbivorous insects may represent a safe and sustainable pest control alternative if they do not interfere with the natural enemies of target pests. Here we examined interactions between oryzacystatin I (OCI), a proteinase inhibitor from rice genetically engineered into potato (Solanum tuberosum cv. Kennebec, line K52) to increase resistance to insect herbivory, and the insect predator Perillus bioculatus. This stinkbug is a relatively specialized predator of caterpillars and leaf-beetle larvae, and may also include plant sap in its predominantly carnivorous diet. One of its preferred prey is Colorado potato beetle (Leptinotarsa decemlineata), a major target of insect resistance development for potato field crops. Gelatin/sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that a major fraction of proteinase (gelatinase) activity in P. bioculatus extracts is OCI-sensitive. Among five gelatinolytic bands detected, the slowest-moving one (proteinase I) was inhibited strongly by purified OCI expressed in Escherichia coli or by OCI-transgenic potato extracts, while three other proteinases were partly sensitive to these treatments. There was also evidence of slight inhibition of proteinase I by untransformed potato foliage, suggesting the presence of a natural inhibitor related to OCI at low level in potato foliage. Interestingly, only about 50% of the maximum potential activity of proteinase I was recovered in extracts of P. bioculatus feeding on L. decemlineata larval prey on a diet of OCI-potato foliage, indicating that the predator was sensitive to OCI in the midgut of its prey. However, P. bioculatus on OCI-prey survived, grew and developed normally, indicating ability to compensate prey-mediated exposure to the OCI inhibitor. Confinement of P. bioculatus to potato foliage provided no evidence that potato plant-derived nutrition is a viable alternative to predation, restriction to potato foliage

  7. Evolution of proteinase inhibitor defenses in North American allopolyploid species of Nicotiana.

    PubMed

    Wu, Jianqiang; Hettenhausen, Christian; Baldwin, Ian T

    2006-09-01

    We studied the jasmonate (JA)-elicited trypsin-proteinase inhibitor (TPI) anti-herbivore defense system in North American Nicotiana to understand how complex polygenetic traits evolve after allopolyploidy speciation. N. quadrivalvis (Nq) and N. clevelandii (Nc) are allotetraploid descendant species of the ancestors of the diploid species N. attenuata (Na) and N. obtusifolia (No). From cDNA, intron and promoter sequence analyses, and Southern blotting, we deduced that only the maternally derived No TPI genes were retained in the tetraploid genomes (Nq, Nc), whereas the sequences of the paternal Na ancestor were deleted. The number of TPI repeats in different Nicotiana taxa was independent of phylogenetic associations. In Na, TPI activity and mRNA transcript accumulation as well as JA levels increased dramatically above wound-induced levels when the oral secretions (OS) from Manduca sexta larvae were introduced into wounds. This OS-mediated amplification of defense signaling and downstream response was also found in the tetraploid genomes but was absent from No; in No, OS treatment suppresses TPI mRNA accumulation and activity and does not increase JA accumulation. Hence, the tetraploids retained components of Na's signaling system, but lost Na's TPI genes and used No's TPI genes to retain a functional TPI defense system, underscoring the genomic flexibility that enables complex polygenic traits to be retained in allopolyploid species.

  8. Use of Recombinant Entamoeba histolytica Cysteine Proteinase 1 To Identify a Potent Inhibitor of Amebic Invasion in a Human Colonic Model▿

    PubMed Central

    Meléndez-López, Samuel G.; Herdman, Scott; Hirata, Ken; Choi, Min-Ho; Choe, Youngchool; Craik, Charles; Caffrey, Conor R.; Hansell, Elisabeth; Chávez-Munguía, Bibiana; Chen, Yen Ting; Roush, William R.; McKerrow, James; Eckmann, Lars; Guo, Jianhua; Stanley, Samuel L.; Reed, Sharon L.

    2007-01-01

    Cysteine proteinases are key virulence factors of the protozoan parasite Entamoeba histolytica. We have shown that cysteine proteinases play a central role in tissue invasion and disruption of host defenses by digesting components of the extracellular matrix, immunoglobulins, complement, and cytokines. Analysis of the E. histolytica genome project has revealed more than 40 genes encoding cysteine proteinases. We have focused on E. histolytica cysteine proteinase 1 (EhCP1) because it is one of two cysteine proteinases unique to invasive E. histolytica and is highly expressed and released. Recombinant EhCP1 was expressed in Escherichia coli and refolded to an active enzyme with a pH optimum of 6.0. We used positional-scanning synthetic tetrapeptide combinatorial libraries to map the specificity of the P1 to P4 subsites of the active site cleft. Arginine was strongly preferred at P2, an unusual specificity among clan CA proteinases. A new vinyl sulfone inhibitor, WRR483, was synthesized based on this specificity to target EhCP1. Recombinant EhCP1 cleaved key components of the host immune system, C3, immunoglobulin G, and pro-interleukin-18, in a time- and dose-dependent manner. EhCP1 localized to large cytoplasmic vesicles, distinct from the sites of other proteinases. To gain insight into the role of secreted cysteine proteinases in amebic invasion, we tested the effect of the vinyl sulfone cysteine proteinase inhibitors K11777 and WRR483 on invasion of human colonic xenografts. The resultant dramatic inhibition of invasion by both inhibitors in this human colonic model of amebiasis strongly suggests a significant role of secreted amebic proteinases, such as EhCP1, in the pathogenesis of amebiasis. PMID:17513563

  9. Structural and functional characterization of proteinase inhibitors from seeds of Cajanus cajan (cv. ICP 7118).

    PubMed

    Swathi, Marri; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Kannan, Monica; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2014-10-01

    Proteinase inhibitors (C11PI) from mature dry seeds of Cajanus cajan (cv. ICP 7118) were purified by chromatography which resulted in 87-fold purification and 7.9% yield. SDS-PAGE, matrix assisted laser desorption ionization time-of-flight (MALDI-TOF/TOF) mass spectrum and two-dimensional (2-D) gel electrophoresis together resolved that C11PI possessed molecular mass of 8385.682 Da and existed as isoinhibitors. However, several of these isoinhibitors exhibited self association tendency to form small oligomers. All the isoinhibitors resolved in Native-PAGE and 2-D gel electrophoresis showed inhibitory activity against bovine pancreatic trypsin and chymotrypsin as well as Achaea janata midgut trypsin-like proteases (AjPs), a devastating pest of castor plant. Partial sequences of isoinhibitor (pI 6.0) obtained from MALDI-TOF/TOF analysis and N-terminal sequencing showed 100% homology to Bowman-Birk Inhibitors (BBIs) of leguminous plants. C11PI showed non-competitive inhibition against trypsin and chymotrypsin. A marginal loss (<15%) in C11PI activity against trypsin at 80 (°)C and basic pH (12.0) was associated with concurrent changes in its far-UV CD spectra. Further, in vitro assays demonstrated that C11PI possessed significant inhibitory potential (IC50 of 78 ng) against AjPs. On the other hand, in vivo leaf coating assays demonstrated that C11PI caused significant mortality rate with concomitant reduction in body weight of both larvae and pupae, prolonged the duration of transition from larva to pupa along with formation of abnormal larval-pupal and pupal-adult intermediates. Being smaller peptides, it is possible to express C11PI in castor to protect them against its devastating pest A. janata. PMID:25093261

  10. Effects of soybean proteinase inhibitors on development of the soil mite Scheloribates praeincisus (Acari: Oribatida).

    PubMed

    Simões, R A; Silva-Filho, M C; Moura, D S; Delalibera, I

    2008-03-01

    Proteinase inhibitors (PI) are present in plant tissues, especially in seeds, and act as a defense mechanism against herbivores and pathogens. Serine PI from soybean such as Bowman-Birk (BBPI) and Kunitz have been used to enhance resistance of sugarcane varieties to the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), the major pest of this crop. The use of these genetically-modified plants (GM) expressing PI requires knowledge of its sustainability and environmental safety, determining the stability of the introduced characteristic and its effects on non-target organisms. The objective of this study was to evaluate direct effects of ingestion of semi-purified and purified soybean PI and GM sugarcane plants on the soil-dwelling mite Scheloribates praeincisus (Berlese) (Acari: Oribatida). This mite is abundant in agricultural soils and participates in the process of organic matter decomposition; for this reason it will be exposed to PI by feeding on GM plant debris. Eggs of S. praeincisus were isolated and after larvae emerged, immatures were fed milled sugarcane leaves added to semi-purified or purified PI (Kunitz and BBPI) or immatures were fed GM sugarcane varieties expressing Kunitz and BBPI type PI or the untransformed near isogenic parental line variety as a control. Developmental time (larva-adult) and survival of S. praeincisus was evaluated. Neither Kunitz nor BBPI affected S. praeincisus survival. On the other hand, ingestion of semi-purified and purified Kunitz inhibitor diminished duration of S. praeincisus immature stages. Ingestion of GM senescent leaves did not have an effect on S. praeincisus immature developmental time and survival, compared to ingestion of leaves from the isogenic parental plants. These results indicate that cultivation of these transgenic sugarcane plants is safe for the non-target species S. praeincisus.

  11. N-terminal extension of the yeast IA3 aspartic proteinase inhibitor relaxes the strict intrinsic selectivity.

    PubMed

    Winterburn, Tim J; Phylip, Lowri H; Bur, Daniel; Wyatt, David M; Berry, Colin; Kay, John

    2007-07-01

    Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein. PMID:17608726

  12. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa).

    PubMed

    Popovic, Milica; Andjelkovic, Uros; Burazer, Lidija; Lindner, Buko; Petersen, Arnd; Gavrovic-Jankulovic, Marija

    2013-10-01

    Plant proteinase inhibitors are considered important defense molecules against insect and pathogen attack. The cysteine proteinase inhibitor (CPI) from green kiwifruit (Actinidia deliciosa) belongs to the cystatin family and shows potent antifungal activity (in vitro and in vivo). However, the low abundance of this molecule in fruit (6μg/g of fresh fruit) seems to limit further investigations on the interaction between phytocystatin and photopathogenic fungi. In this paper the cDNA of the kiwi CPI was expressed in Escherichia coli. Fifteen N-terminal amino acids were identified by Edman degradation, and 77% of the rCPI primary structure was confirmed by mass fingerprint. The structural homology of recombinant CPI (rCPI) to its natural counterpart has been clearly demonstrated in immunological assays (immunoblot and ELISA inhibition). Biological activity of rCPI was demonstrated in inhibition assay with cysteine proteinase papain (EC50 2.78nM). In addition, rCPI reveals antifungal properties toward pathogenic fungi (Alternaria radicina and Botrytis cinerea), which designates it as an interesting model protein for the exploration of plant phytocystatins - pathogen interactions. Understanding the molecular mechanisms of natural plant resistance could lead to the development of ecologically safe fungicides for controlling post-harvest diseases and maintaining food quality.

  13. Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family

    PubMed Central

    Li, Xiu-Qing; Zhang, Tieling; Donnelly, Danielle

    2011-01-01

    Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution. PMID:21494600

  14. The M358R variant of α(1)-proteinase inhibitor inhibits coagulation factor VIIa.

    PubMed

    Sheffield, William P; Bhakta, Varsha

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg-Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg-Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10(2) M(-1)sec(-1). We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. PMID:26797521

  15. Allogeneic lymphocyte stimulation in rabbits: induction of a low MW inhibitor for trypsin and for a concurrently induced alpha-macroglobulin-proteinase complex.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1985-01-01

    We have shown previously that the i.v. inoculation of allogeneic lymph node cells in rabbits induces the appearance in the serum of an alpha M-serine proteinase complex which behaves in an Ig-turnover assay as any polyclonal B-cell activator (PBA), and that this PBA activity is due to the enzyme. Here, we show that the allogeneic stimulation also induces the appearance in the low molecular weight fraction of the serum (1000-110,000 MW) of an inhibitor which blocks the PBA activity of the complex without affecting the PBA activity of LPS or dextran sulphate. The inhibitor blocked the ability of the enzyme associated with alpha M to degrade Chromozym TRY, a low MW trypsin substrate. The inhibitor also blocked the enzymatic activity of trypsin for large as well as for low MW substrates. Thus, allogeneic stimulation in vivo results in the production, not only of an alpha M-proteinase complex, but also of an inhibitor for this proteinase as well as for trypsin. The appearance of the inhibitor, along with the alpha M-serine proteinase complex as a result of allogeneic stimulation in rabbits, is of interest since a similar alpha M-serine proteinase complex and inhibitor may appear in the serum of patients with rheumatoid arthritis. PMID:2410355

  16. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.

    PubMed

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca

    2014-04-01

    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants.

  17. Proteinase treatment of intact hepatic mitochondria has differential effects on inhibition of carnitine palmitoyltransferase by different inhibitors.

    PubMed Central

    Kashfi, K; Cook, G A

    1992-01-01

    Proteolysis of intact mitochondria by Nagarse (subtilisin BPN') and papain resulted in limited loss of activity of the outer-membrane carnitine palmitoyltransferase, but much greater loss of sensitivity to inhibition by malonyl-CoA. In contrast with a previous report [Murthy & Pande (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 378-382], we found that trypsin had no effect on malonyl-CoA sensitivity. Even when 80% of activity was destroyed by trypsin, there was no difference in the malonyl-CoA sensitivity of the enzyme remaining. Trypsin caused release of the intermembrane-space enzyme adenylate kinase, indicating loss of integrity of the mitochondrial outer membrane, whereas Nagarse and papain caused no release of that enzyme. Citrate synthase was not released by any of the three proteinases, indicating no damage to the mitochondrial inner membrane. When we examined the effects of proteolysis on the inhibition of carnitine palmitoyltransferase by a wide variety of inhibitors having different mechanisms of inhibition, we found differential proteolytic effects that were specific for those inhibitors (malonyl-CoA and hydroxyphenylglyoxylate) that have their inhibitory potencies diminished by changes in physiological state. Both of those inhibitors protected carnitine palmitoyltransferase from the effects of proteolysis, but did not inhibit the proteinases directly. Inhibition by two other inhibitors (DL-2-bromopalmitoyl-CoA and N-benzyladriamycin 14-valerate) was not altered by proteinase treatment, even when most of the enzyme activity had been destroyed. Inhibition by glyburide, which is minimally affected by physiological state, was affected only to a slight extent at the highest concentration of trypsin tested. Proteolysis by Nagarse appeared to produce loss of co-operativity in malonyl-CoA inhibition. The effects of proteolysis are discussed and compared with changes in Ki occurring with changing physiological states. PMID:1554374

  18. The primary structure and characterization of carbohydrate chains of the extracellular glycoprotein proteinase inhibitor from latex of Carica papaya.

    PubMed

    Odani, S; Yokokawa, Y; Takeda, H; Abe, S; Odani, S

    1996-10-01

    A secretory proteinase inhibitor was isolated from the latex of green fruits of papaya (Carica papaya). The protein exhibited stoichiometric inhibition of bovine trypsin and alpha-chymotrypsin by the same site or overlapping binding sites. The complete covalent structure consisting of 184 amino acids and two disulfide bonds was determined by protein analysis. During the structural analysis, a procedure was established to separate very hydrophilic peptides by reverse-phase HPLC. The result revealed that the latex protein belongs to an extensively diverse plant protein family that includes inhibitors of serine, cysteine and aspartic proteases, a taste-modifying protein, wound responsive proteins, storage proteins, amylase inhibitors and even an oxidoreductase. In this superfamily, the latex proteinase inhibitor is most similar to the curious protein, miraculin, which makes sour food taste sweet. Two carbohydrate chains, each probably composed of (mannose)5, (xylose)1, (fucose)0-2, and (N-acetylglucosamine)2 residues, were attached to asparagine 84 and 90. Mass-spectrometric and compositional analysis suggested that they may represent a new class of plant xylose-containing carbohydrate chains with five mannose residues.

  19. The primary structure and characterization of carbohydrate chains of the extracellular glycoprotein proteinase inhibitor from latex of Carica papaya.

    PubMed

    Odani, S; Yokokawa, Y; Takeda, H; Abe, S; Odani, S

    1996-10-01

    A secretory proteinase inhibitor was isolated from the latex of green fruits of papaya (Carica papaya). The protein exhibited stoichiometric inhibition of bovine trypsin and alpha-chymotrypsin by the same site or overlapping binding sites. The complete covalent structure consisting of 184 amino acids and two disulfide bonds was determined by protein analysis. During the structural analysis, a procedure was established to separate very hydrophilic peptides by reverse-phase HPLC. The result revealed that the latex protein belongs to an extensively diverse plant protein family that includes inhibitors of serine, cysteine and aspartic proteases, a taste-modifying protein, wound responsive proteins, storage proteins, amylase inhibitors and even an oxidoreductase. In this superfamily, the latex proteinase inhibitor is most similar to the curious protein, miraculin, which makes sour food taste sweet. Two carbohydrate chains, each probably composed of (mannose)5, (xylose)1, (fucose)0-2, and (N-acetylglucosamine)2 residues, were attached to asparagine 84 and 90. Mass-spectrometric and compositional analysis suggested that they may represent a new class of plant xylose-containing carbohydrate chains with five mannose residues. PMID:8898891

  20. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    PubMed

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  1. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    PubMed

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  2. The Role of the Proteinase Inhibitor Ovorubin in Apple Snail Eggs Resembles Plant Embryo Defense against Predation

    PubMed Central

    Dreon, Marcos Sebastián; Ituarte, Santiago; Heras, Horacio

    2010-01-01

    Background Fieldwork has thoroughly established that most eggs are intensely predated. Among the few exceptions are the aerial egg clutches from the aquatic snail Pomacea canaliculata which have virtually no predators. Its defenses are advertised by the pigmented ovorubin perivitellin providing a conspicuous reddish coloration. The nature of the defense however, was not clear, except for a screening for defenses that identified a neurotoxic perivitellin with lethal effect on rodents. Ovorubin is a proteinase inhibitor (PI) whose role to protect against pathogens was taken for granted, according to the prevailing assumption. Through biochemical, biophysical and feeding experiments we studied the proteinase inhibitor function of ovorubin in egg defenses. Methodology/Principal Findings Mass spectrometry sequencing indicated ovorubin belongs to the Kunitz-type serine proteinase inhibitor family. It specifically binds trypsin as determined by small angle X-ray scattering (SAXS) and cross-linking studies but, in contrast to the classical assumption, it does not prevent bacterial growth. Ovorubin was found extremely resistant to in vitro gastrointestinal proteolysis. Moreover feeding studies showed that ovorubin ingestion diminishes growth rate in rats indicating that this highly stable PI is capable of surviving passage through the gastrointestinal tract in a biologically active form. Conclusions To our knowledge, this is the first direct evidence of the interaction of an egg PI with a digestive protease of potential predators, limiting predator's ability to digest egg nutrients. This role has not been reported in the animal kingdom but it is similar to plant defenses against herbivory. Further, this would be the only defense model with no trade-offs between conspicuousness and noxiousness by encoding into the same molecule both the aposematic warning signal and an antinutritive/antidigestive defense. These defenses, combined with a neurotoxin and probably unpalatable

  3. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Alpha-1 Antitrypsin Deficiency? Alpha-1 antitrypsin (an-tee-TRIP-sin) deficiency, or AAT ... as it relates to lung disease. Overview Alpha-1 antitrypsin, also called AAT, is a protein made ...

  4. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate.

    PubMed Central

    Botella, M A; Xu, Y; Prabha, T N; Zhao, Y; Narasimhan, M L; Wilson, K A; Nielsen, S S; Bressan, R A; Hasegawa, P M

    1996-01-01

    Three cysteine proteinase inhibitor cDNA clones (pL1, pR1, and pN2) have been isolated from a soybean (Glycine max L. Merr.) embryo library. The proteins encoded by the clones are between 60 and 70% identical and contain the consensus QxVxG motif and W residue in the appropriate spatial context for interaction with the cysteine proteinase papain. L1, R1, and N2 mRNAs were differentially expressed in different organs of plants (juvenile and mature) and seedlings, although N2 mRNA was constitutive only in flowers. R1 and N2 transcripts were induced by wounding or methyl jasmonate (M-JA) treatment in local and systemic leaves coincident with increased papain inhibitory activity, indicating a role for R1 and N2 in plant defense. The L1 transcript was constitutively expressed in leaves and was induced slightly by M-JA treatment in roots. Unlike the chymotrypsin/trypsin proteinase inhibitor II gene (H. Peña-Cortés, J. Fisahn, L. Willmitzer [1995] Proc Natl Acad Sci USA 92: 4106-4113), expression of the soybean genes was only marginally induced by abscisic acid and only in certain tissues. Norbornadiene, a competitive inhibitor of ethylene binding, abolished the wounding or M-JA induction of R1 and N2 mRNAs but not the accumulation of the wound-inducible vspA transcript. Presumably, ethylene binding to its receptor is involved in the wound inducibility of R1 and N2 but not vspA mRNAs. Bacterial recombinant L1 and R1 proteins, expressed as glutathione S-transferase fusion proteins, exhibited substantial inhibitory activities against vicilin peptidohydrolase, the major thiol endopeptidase in mung bean seedlings. Recombinant R1 protein had much greater cysteine proteinase inhibitor activity than recombinant L1 protein, consistent with the wound inducibility of the R1 gene and its presumed role in plant defense. PMID:8938418

  5. Kinetic analysis of a general model of activation of aspartic proteinase zymogens involving a reversible inhibitor. I. Kinetic analysis.

    PubMed

    Muñoz-López, A; Sotos-Lomas, A; Arribas, E; Masia-Perez, J; Garcia-Molina, F; García-Moreno, M; Varon, R

    2007-04-01

    Starting from a simple general reaction mechanism of activation of aspartic proteinases zymogens involving a uni- and a bimolecular simultaneous activation route and a reversible inhibition step, the time course equation of the zymogen, inhibitor and activated enzyme concentrations have been derived. Likewise, expressions for the time required for any reaction progress and the corresponding mean activation rates as well as the half-life of the global zymogen activation have been derived. An experimental design and kinetic data analysis is suggested to estimate the kinetic parameters involved in the reaction mechanism proposed.

  6. The squash aspartic proteinase inhibitor SQAPI is widely present in the cucurbitales, comprises a small multigene family, and is a member of the phytocystatin family.

    PubMed

    Christeller, John T; Farley, Peter C; Marshall, Richelle K; Anandan, Ananda; Wright, Michele M; Newcomb, Richard D; Laing, William A

    2006-12-01

    The squash (Cucurbita maxima) phloem exudate-expressed aspartic proteinase inhibitor (SQAPI) is a novel aspartic acid proteinase inhibitor, constituting a fifth family of aspartic proteinase inhibitors. However, a comparison of the SQAPI sequence to the phytocystatin (a cysteine proteinase inhibitor) family sequences showed approximately 30% identity. Modeling SQAPI onto the structure of oryzacystatin gave an excellent fit; regions identified as proteinase binding loops in cystatin coincided with regions of SQAPI identified as hypervariable, and tryptophan fluorescence changes were also consistent with a cystatin structure. We show that SQAPI exists as a small gene family. Characterization of mRNA and clone walking of genomic DNA (gDNA) produced 10 different but highly homologous SQAPI genes from Cucurbita maxima and the small family size was confirmed by Southern blotting, where evidence for at least five loci was obtained. Using primers designed from squash sequences, PCR of gDNA showed the presence of SQAPI genes in other members of the Cucurbitaceae and in representative members of Coriariaceae, Corynocarpaceae, and Begoniaceae. Thus, at least four of seven families of the order Cucurbitales possess member species with SQAPI genes, covering approximately 99% of the species in this order. A phylogenetic analysis of these Cucurbitales SQAPI genes indicated not only that SQAPI was present in the Cucurbitales ancestor but also that gene duplication has occurred during evolution of the order. Phytocystatins are widespread throughout the plant kingdom, suggesting that SQAPI has evolved recently from a phytocystatin ancestor. This appears to be the first instance of a cystatin being recruited as a proteinase inhibitor of another proteinase family.

  7. A family of potato genes that encode Kunitz-type proteinase inhibitors: structural comparisons and differential expression.

    PubMed

    Ishikawa, A; Ohta, S; Matsuoka, K; Hattori, T; Nakamura, K

    1994-03-01

    Potato tubers contain a complex group of proteins of 20 to 24 kDa that exhibit homology to Kunitz-type proteinase inhibitors. We isolated three cDNAs and two genomic clones that encode members of the potato Kunitz-type proteinase inhibitor (PKPI) family. Comparison of the structures of these and other cloned genes indicated that genes of the PKPI family can be classified into three major homology groups, namely, A, B and C. The PKPI-A and -B genes exhibit higher homology to one another than to the PKPI-C genes. Determination of the N-terminal amino acid sequences of 18 polypeptides from the complex group of 20- to 24-kDa proteins that had been separated by column chromatography and subsequently gel electrophoresis revealed three different sequences that corresponded to PKPI-A, -B, and -C. PKPI-A genes include those coding for a cathepsin D inhibitor, while PKPI-B and -C genes include those coding for trypsin and/or chymotrypsin inhibitors and a subtilisin inhibitor. Precursors to PKPIs are synthesized with an N-terminal extra peptide that appears to contain, in addition to the signal peptide, a short propeptide with a highly conserved Asn-Pro-Ile-Xxx-Leu-Pro motif that is identical to the potential vacuolar-sorting determinant in the N-terminal propeptide of a precursor to sporamin of sweet potato. Expression of the PKPI-A and -B genes is differentially regulated: PKPI-A mRNA but not PKPI-B mRNA were induced in leaves after wounding or upon treatment with methyl jasmonate. Nuclear genes for PKPI-A and -B do not contain introns, and the homology between the two types of gene extends only 72 bp upstream from the site of initiation of transcription.

  8. SDZ PRI 053, an orally bioavailable human immunodeficiency virus type 1 proteinase inhibitor containing the 2-aminobenzylstatine moiety.

    PubMed Central

    Billich, A; Fricker, G; Müller, I; Donatsch, P; Ettmayer, P; Gstach, H; Lehr, P; Peichl, P; Scholz, D; Rosenwirth, B

    1995-01-01

    A series of inhibitors of human immunodeficiency virus type 1 (HIV-1) proteinase containing the 2-aralkyl-amino-substituted statine moiety as a novel transition-state analog was synthesized, with the aim to obtain compounds which combine anti-HIV potency with oral bioavailability. The reduced-size 2-aminobenzylstatine derivative SDZ PRI 053, which contains 2-(S)-amino-3-(R)-hydroxyindane in place of an amino acid amide, is a potent and orally bioavailable inhibitor of HIV-1 replication. The antiviral activity of SDZ PRI 053 was demonstrated in various cell lines, in primary lymphocytes, and in primary monocytes, against laboratory strains as well as clinical HIV-1 isolates (50% effective dose = 0.028 to 0.15 microM). Cell proliferation was impaired only at 100- to 300-fold-higher concentrations. The mechanism of antiviral action of the proteinase inhibitor SDZ PRI 0.53 was demonstrated to be inhibition of gag precursor protein processing. The finding that the inhibitory potency of SDZ PRI 053 in chronic virus infection, determined by p24 release, was considerably lower than that in de novo infection may be explained by the fact that the virus particles produced in the presence of SDZ PRI 053 are about 50-fold less infectious than those from untreated cultures. Upon intravenous administration, half-lives in blood of 100 and 32 min in mice and rats, respectively, were measured. Oral bioavailability of SDZ PRI 053 in rodents was 20 to 60%, depending on the dose. In mice, rats, and dogs, the inhibitor levels after oral administration remained far above the concentrations needed to efficiently block HIV replication in vitro for a prolonged period. This compound is thus a promising candidate for clinical use in HIV disease. PMID:7492076

  9. Purification and characterization of a Bowman-Birk proteinase inhibitor from the seeds of black gram (Vigna mungo).

    PubMed

    Prasad, E R; Dutta-Gupta, A; Padmasree, K

    2010-03-01

    A proteinase inhibitor (BgPI) was purified from black gram, Vigna mungo (cv. TAU-1) seeds by using ammonium sulfate fractionation, followed by ion-exchange, affinity and gel-filtration chromatography. BgPI showed a single band in SDS-PAGE under non-reducing condition with an apparent molecular mass of approximately 8kDa correlating to the peak 8041.5Da in matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrum. BgPI existed in different isoinhibitor forms with pI values ranging from 4.3 to 6.0. The internal sequence "SIPPQCHCADIR" of a peak 1453.7 m/z, obtained from MALDI-TOF-TOF showed 100% similarity with Bowman-Birk inhibitor (BBI) family. BgPI exhibited non-competitive-type inhibitory activity against both bovine pancreatic trypsin (K(i) of 309.8nM) and chymotrypsin (K(i) of 10.7muM), however, with a molar ratio of 1:2 with trypsin. BgPI was stable up to a temperature of 80 degrees C and active over a wide pH range between 2 and 12. The temperature-induced conformational changes in secondary structure are reversed when BgPI was cooled from 90 to 25 degrees C. Further, upon reduction with dithiothreitol, BgPI lost both its inhibitory activity as well as secondary structural conformation. Lysine residue(s) present in the reactive site of BgPI play an important role in inhibiting the bovine trypsin activity. The present study provides detailed biochemical characteristic features of a BBI type serine proteinase inhibitor isolated from V. mungo.

  10. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers?

    PubMed

    Sugawara, Hiroaki; Shibuya, Kenichi; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Senescence of carnation petals is accompanied by autocatalytic ethylene production and wilting of the petals; the former is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes and the latter is related to the expression of a cysteine proteinase (CPase) gene. CPase is probably responsible for the degradation of proteins, leading to the decomposition of cell components and resultant cell death during the senescence of petals. The carnation plant also has a gene for the CPase inhibitor (DC-CPIn) that is expressed abundantly in petals at the full opening stage of flowers. In the present study, DC-CPIn cDNA was cloned and expressed in E. coli. The recombinant DC-CPIn protein completely inhibited the activities of a proteinase (CPase) extracted from carnation petals and papain. Northern blot analysis showed that the mRNA for CPase (DC-CP1) accumulated in large amounts, whereas that for DC-CPIn disappeared, corresponding to the onset of petal wilting in flowers undergoing natural senescence and exogenous ethylene-induced senescence. Based on these findings, a role of DC-CPIn in the regulation of petal wilting is suggested; DC-CPIn acts as a suppressor of petal wilting, which probably functions to fine-tune petal wilting in contrast to coarse tuning, the up-regulation of CPase activity by gene expression.

  11. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.

    PubMed

    Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica

    2015-08-01

    Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato. PMID:25820664

  12. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.

    PubMed

    Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica

    2015-08-01

    Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato.

  13. Alpha-1 Antitrypsin Test

    MedlinePlus

    ... measures the level of the protein AAT in blood. Alpha-1 antitrypsin phenotype testing evaluates the amount and type of AAT being produced and compares it to normal patterns. Alpha-1 antitrypsin genotype testing ( DNA testing) can ...

  14. Alpha-1 antitrypsin test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003715.htm Alpha-1 antitrypsin test To use the sharing features on this page, please enable JavaScript. Alpha-1 antitrypsin is a laboratory test to measure the ...

  15. Molecular cloning, characterization and expression of a novel serine proteinase inhibitor gene in bay scallops (Argopecten irradians, Lamarck 1819).

    PubMed

    Zhu, Ling; Song, Linsheng; Chang, Yaqing; Xu, Wei; Wu, Longtao

    2006-03-01

    Serine protease inhibitors, critical regulators of endogenous proteases, are found in all multicellular organisms and play crucial roles in host physiological and immunological effector mechanisms. The first mollusk serine proteinase inhibitor (designated AISPI) cDNA was obtained from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the scallop serine protease inhibitor was 1020 bp, consisting of a 5'-terminal untranslated region (UTR) of 39 bp, a 3'-terminal UTR of 147 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 834 bp. The AISPI cDNA encoded a polypeptide of 278 amino acids with a putative signal peptide of 22 amino acids and a mature protein of 256 amino acids. The deduced amino-acid sequence of AISPI contained six tandem and homologous domains similar to that of Kazal-type serine protease inhibitors, including the conserved sequence C-X(7)-C-X(6)-Y-X(3)-C-X(2,3)-C and six cysteine residues responsible for the formation of disulfide bridges, indicating that the AISPI protein from bay scallop should be a member of the Kazal-type serine protease inhibitor family. The temporal expression of AISPI was measured by semi-quantitative RT-PCR after injury or bacterial challenge. After the adductor muscle was wounded or injected with Vibrio anguillarum, the expression of AISPI mRNA in hemolymph was up-regulated and reached the maximum level at 8 and 16 h, respectively, and then progressively dropped back to the original level. The results indicated that AISPI could play an important role in injury healing and immune response in mollusks as it could be induced by injury and bacterial challenge. PMID:16005644

  16. Basis for the Specificity and Activation of the Serpin Protein Z-dependent Proteinase Inhibitor (ZPI) as an Inhibitor of Membrane-associated Factor Xa

    SciTech Connect

    Huang, Xin; Dementiev, Alexey; Olson, Steven T.; Gettins, Peter G.W.

    2012-12-13

    The serpin ZPI is a protein Z (PZ)-dependent specific inhibitor of membrane-associated factor Xa (fXa) despite having an unfavorable P1 Tyr. PZ accelerates the inhibition reaction {approx}2000-fold in the presence of phospholipid and Ca{sup 2+}. To elucidate the role of PZ, we determined the x-ray structure of Gla-domainless PZ (PZ{sub {Delta}GD}) complexed with protein Z-dependent proteinase inhibitor (ZPI). The PZ pseudocatalytic domain bound ZPI at a novel site through ionic and polar interactions. Mutation of four ZPI contact residues eliminated PZ binding and membrane-dependent PZ acceleration of fXa inhibition. Modeling of the ternary Michaelis complex implicated ZPI residues Glu-313 and Glu-383 in fXa binding. Mutagenesis established that only Glu-313 is important, contributing {approx}5-10-fold to rate acceleration of fXa and fXIa inhibition. Limited conformational change in ZPI resulted from PZ binding, which contributed only {approx}2-fold to rate enhancement. Instead, template bridging from membrane association, together with previously demonstrated interaction of the fXa and ZPI Gla domains, resulted in an additional {approx}1000-fold rate enhancement. To understand why ZPI has P1 tyrosine, we examined a P1 Arg variant. This reacted at a diffusion-limited rate with fXa, even without PZ, and predominantly as substrate, reflecting both rapid acylation and deacylation. P1 tyrosine thus ensures that reaction with fXa or most other arginine-specific proteinases is insignificant unless PZ binds and localizes ZPI and fXa on the membrane, where the combined effects of Gla-Gla interaction, template bridging, and interaction of fXa with Glu-313 overcome the unfavorability of P1 Tyr and ensure a high rate of reaction as an inhibitor.

  17. Synthesis and structure-activity relationships of a series of penicillin-derived HIV proteinase inhibitors containing a stereochemically unique peptide isostere.

    PubMed

    Holmes, D S; Bethell, R C; Cammack, N; Clemens, I R; Kitchin, J; McMeekin, P; Mo, C L; Orr, D C; Patel, B; Paternoster, I L

    1993-10-15

    A series of HIV-1 proteinase inhibitors was synthesized based upon a single penicillin derived thiazolidine moiety. Reaction of the C-4 carboxyl group with (R)-phenylalaninol gave amide 10 which was a moderately potent inhibitor of HIV-1 proteinase (IC50 = 0.15 microM). Further modifications based on molecular modeling studies led to compound 48 which contained a stereochemically unique statine-based isostere. This was a potent competitive inhibitor (Ki = 0.25 nM) with antiviral activity against HIV-1 in vitro (5 microM). Neither modification to the benzyl group in an attempt to improve interaction with the S2' pocket, nor introduction of a hydrogen bond donating group to interact with residue Gly48' resulted in improved inhibitory or antiviral activity. PMID:8230099

  18. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease.

    PubMed

    Korkmaz, Brice; Lesner, Adam; Guarino, Carla; Wysocka, Magdalena; Kellenberger, Christine; Watier, Hervé; Specks, Ulrich; Gauthier, Francis; Jenne, Dieter E

    2016-07-01

    Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future. PMID:27329045

  19. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease.

    PubMed

    Korkmaz, Brice; Lesner, Adam; Guarino, Carla; Wysocka, Magdalena; Kellenberger, Christine; Watier, Hervé; Specks, Ulrich; Gauthier, Francis; Jenne, Dieter E

    2016-07-01

    Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future.

  20. Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease.

    PubMed

    Cantú, M D; Mariano, A G; Palma, M S; Carrilho, E; Wulff, N A

    2008-10-01

    Citrus sudden death (CSD) is a disease of unknown etiology that greatly affects sweet oranges grafted on Rangpur lime rootstock, the most important rootstock in Brazilian citriculture. We performed a proteomic analysis to generate information related to this plant pathogen interaction. Protein profiles from healthy, CSD-affected and CSD-tolerant stem barks, were generated using two-dimensional gel electrophoresis. The protein spots were well distributed over a pI range of 3.26 to 9.97 and a molecular weight (MW) range from 7.1 to 120 kDa. The patterns of expressed proteins on 2-DE gels made it possible to distinguish healthy barks from CSD-affected barks. Protein spots with MW around 30 kDa and pI values ranging from 4.5 to 5.2 were down-regulated in the CSD-affected root-stock bark. This set of protein spots was identified as chitinases. Another set of proteins, ranging in pI from 6.1 to 9.6 with an MW of about 20 kDa, were also suppressed in CSD-affected rootstock bark; these were identified as miraculin-like proteins, potential trypsin inhibitors. Down-regulation of chitinases and proteinase inhibitors in CSD-affected plants is relevant since chitinases are well-known pathogenesis-related protein, and their activity against plant pathogens is largely accepted. PMID:18943454

  1. Isolation and primary structure of proteinase inhibitors from Erythrina variegata (Linn.) var. Orientalis seeds.

    PubMed

    Kouzuma, Y; Suetake, M; Kimura, M; Yamasaki, N

    1992-11-01

    The Kunitz-type trypsin inhibitors, ETIa and ETIb, and chymotrypsin inhibitor ECI were isolated from the seeds of Erythrina variegata. The proteins were extracted from a defatted meal of seeds with 10 mM phosphate buffer, pH 7.2, containing 0.15 M NaCl, and purified by DEAE-cellulose and Q-Sepharose column chromatographies. The stoichiometry of trypsin inhibitors with trypsin was estimated to be 1:1, while that of chymotrypsin inhibitor with chymotrypsin was 1:2, judging from the titration patterns of their inhibitory activities. The complete amino acids of the two trypsin inhibitors were sequenced by protein chemical methods. The proteins ETIa and ETIb consist of 172 and 176 amino acid residues and have M(r) 19,242 and M(r) 19,783, respectively, and share 112 identical amino acid residues, which is 65% identity. They show structural features characteristic of the Kunitz-type trypsin inhibitor (i.e., identical residues at about 45% with soybean trypsin inhibitor STI). Furthermore, the trypsin inhibitors show a significant homology to the storage proteins, sporamin, in sweet potato and the taste-modifying protein, miraculin, in miracle fruit, having about 30% identical residues. PMID:1369077

  2. Intestinal transmission of macromolecules (BSA and FITC-dextran) in the neonatal pig: enhancing effect of colostrum, proteins and proteinase inhibitors.

    PubMed

    Weström, B R; Ohlsson, B G; Svendsen, J; Tagesson, C; Karlsson, B W

    1985-01-01

    The effects of colostrum and constituents/factors in colostrum which may influence intestinal macromolecular transmission in the newborn preclosure pig were investigated. Unsuckled piglets were given, by use of a stomach tube, bovine serum albumin (BSA) and fluorescein-isothiocyanate (FITC)-labelled dextran 70,000 (FITC-D) as markers together with colostrum or the factors under study. The serum levels of BSA and FITC-D 4 h after feeding were then determined as a measure of the transfer. It was found that the two colostrums tested, bovine and especially porcine, markedly enhanced the transmission of both BSA and FITC-D. Furthermore, increasing amounts of the model proteins, BSA and bovine IgG (50-200 mg/ml), significantly increased the transfer of FITC-D, whereas unlabelled dextran 70,000 given in similar amounts did not. Proteinase inhibitors obtained from sow colostrum or soy bean also enhanced the transmission of both BSA and FITC-D while the inactive inhibitors, given as trypsin-inhibitor complexes, had no effect. On the other hand, addition of a proteinase, porcine trypsin, significantly decreased the transmission of FITC-D. These findings indicate that the intestinal transmission of macromolecules in the preclosure piglet is governed by the amount of protein available in the intestine. Therefore, feeding colostrum with a high protein content and proteinase inhibitors is likely to favour efficient intestinal transmission, although other colostrum factors may also be of importance.

  3. Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach.

    PubMed

    Ajmal, Mohammad Rehan; Abdelhameed, Ali Saber; Alam, Parvez; Khan, Rizwan Hasan

    2016-04-15

    In the current study we have investigated the interaction of newly approved kinase inhibitors namely Cabozantinib (CBZ) and Tofacitinib (TFB) with human Alpha-1 acid glycoprotein (AAG) under simulated physiological conditions using fluorescence quenching measurements, circular dichroism, dynamic light scattering and molecular docking methods. CBZ and TFB binds to AAG with significant affinity and the calculated binding constant for the drugs lie in the order of 10(4). With the increase in temperature the binding constant values decreased for both CBZ and TFB. The fluorescence resonance energy transfer (FRET) from AAG to CBZ and TFB suggested the fluorescence intensity of AAG was quenched by the two studied drugs via the formation of a non-fluorescent complex in the static manner. The molecular distance r value calculated from FRET is around 2 nm for both drugs, fluorescence spectroscopy data was employed for the study of thermodynamic parameters, standard Gibbs free energy change at 300 K was calculated as -5.234 kcal mol(-1) for CBZ-AAG interaction and -6.237 kcal mol(-1) for TFB-AAG interaction, standard enthalpy change and standard entropy change for CBZ-AAG interaction are -9.553 kcal mol(-1) and -14.618 cal mol(-1) K(-1) respectively while for AAG-TFB interaction, standard enthalpy and standard entropy change was calculated as 4.019 kcal mol(-1) and 7.206 cal mol(-1) K(-1) respectively. Protein binding of the two drugs caused the tertiary structure alterations. Dynamic light scattering measurements demonstrated the reduction in the hydrodynamic radii of the protein. Furthermore molecular docking results suggested the Hydrophobic interaction and hydrogen bonding were the interactive forces in the binding process of CBZ to AAG while in case of TFB only hydrophobic interactions were found to be involved, overlap of the binding site for two studied drugs on the AAG molecule was revealed by docking results.

  4. Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach.

    PubMed

    Ajmal, Mohammad Rehan; Abdelhameed, Ali Saber; Alam, Parvez; Khan, Rizwan Hasan

    2016-04-15

    In the current study we have investigated the interaction of newly approved kinase inhibitors namely Cabozantinib (CBZ) and Tofacitinib (TFB) with human Alpha-1 acid glycoprotein (AAG) under simulated physiological conditions using fluorescence quenching measurements, circular dichroism, dynamic light scattering and molecular docking methods. CBZ and TFB binds to AAG with significant affinity and the calculated binding constant for the drugs lie in the order of 10(4). With the increase in temperature the binding constant values decreased for both CBZ and TFB. The fluorescence resonance energy transfer (FRET) from AAG to CBZ and TFB suggested the fluorescence intensity of AAG was quenched by the two studied drugs via the formation of a non-fluorescent complex in the static manner. The molecular distance r value calculated from FRET is around 2 nm for both drugs, fluorescence spectroscopy data was employed for the study of thermodynamic parameters, standard Gibbs free energy change at 300 K was calculated as -5.234 kcal mol(-1) for CBZ-AAG interaction and -6.237 kcal mol(-1) for TFB-AAG interaction, standard enthalpy change and standard entropy change for CBZ-AAG interaction are -9.553 kcal mol(-1) and -14.618 cal mol(-1) K(-1) respectively while for AAG-TFB interaction, standard enthalpy and standard entropy change was calculated as 4.019 kcal mol(-1) and 7.206 cal mol(-1) K(-1) respectively. Protein binding of the two drugs caused the tertiary structure alterations. Dynamic light scattering measurements demonstrated the reduction in the hydrodynamic radii of the protein. Furthermore molecular docking results suggested the Hydrophobic interaction and hydrogen bonding were the interactive forces in the binding process of CBZ to AAG while in case of TFB only hydrophobic interactions were found to be involved, overlap of the binding site for two studied drugs on the AAG molecule was revealed by docking results. PMID:26851488

  5. Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach

    NASA Astrophysics Data System (ADS)

    Ajmal, Mohammad Rehan; Abdelhameed, Ali Saber; Alam, Parvez; Khan, Rizwan Hasan

    2016-04-01

    In the current study we have investigated the interaction of newly approved kinase inhibitors namely Cabozantinib (CBZ) and Tofacitinib (TFB) with human Alpha-1 acid glycoprotein (AAG) under simulated physiological conditions using fluorescence quenching measurements, circular dichroism, dynamic light scattering and molecular docking methods. CBZ and TFB binds to AAG with significant affinity and the calculated binding constant for the drugs lie in the order of 104. With the increase in temperature the binding constant values decreased for both CBZ and TFB. The fluorescence resonance energy transfer (FRET) from AAG to CBZ and TFB suggested the fluorescence intensity of AAG was quenched by the two studied drugs via the formation of a non-fluorescent complex in the static manner. The molecular distance r value calculated from FRET is around 2 nm for both drugs, fluorescence spectroscopy data was employed for the study of thermodynamic parameters, standard Gibbs free energy change at 300K was calculated as - 5.234 kcal mol- 1 for CBZ-AAG interaction and - 6.237 kcal mol- 1 for TFB-AAG interaction, standard enthalpy change and standard entropy change for CBZ-AAG interaction are - 9.553 kcal mol- 1 and - 14.618 cal mol- 1K- 1 respectively while for AAG-TFB interaction, standard enthalpy and standard entropy change was calculated as 4.019 kcal mol- 1 and 7.206 cal mol- 1K- 1 respectively. Protein binding of the two drugs caused the tertiary structure alterations. Dynamic light scattering measurements demonstrated the reduction in the hydrodynamic radii of the protein. Furthermore molecular docking results suggested the Hydrophobic interaction and hydrogen bonding were the interactive forces in the binding process of CBZ to AAG while in case of TFB only hydrophobic interactions were found to be involved, overlap of the binding site for two studied drugs on the AAG molecule was revealed by docking results.

  6. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice.

    PubMed

    Martins-Olivera, Bruno Tadeu; Almeida-Reis, Rafael; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto Dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Righetti, Renato Fraga; Tibério, Iolanda de Fátima Lopes Calvo

    2016-01-01

    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment. PMID:27528793

  7. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice.

    PubMed

    Martins-Olivera, Bruno Tadeu; Almeida-Reis, Rafael; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto Dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Righetti, Renato Fraga; Tibério, Iolanda de Fátima Lopes Calvo

    2016-01-01

    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.

  8. Abscisic Acid Mediates Wound Induction but Not Developmental-Specific Expression of the Proteinase Inhibitor II Gene Family.

    PubMed Central

    Pena-Cortes, H; Willmitzer, L; Sanchez-Serrano, JJ

    1991-01-01

    The expression of the potato and tomato proteinase inhibitor II (pin2) gene family is subject to both developmental and environmental control, being constitutively expressed in potato tubers while only being present in the foliage of the potato or tomato plants after mechanical damage. There is evidence that the phytohormone abscisic acid (ABA) is involved in this wound induction of pin2 gene expression. This paper describes experiments that demonstrate that ABA is able to induce the expression of the pin2 gene family, both locally and systemically, at physiological concentrations. The significance of the ABA involvement in the pin2 induction upon wounding has been further strengthened by analyzing the expression of a pin2 promoter-[beta]-glucuronidase gene fusion in transgenic ABA-deficient mutant potato plants. We have analyzed the developmental regulation of pin2 gene expression in wild-type and ABA-deficient potato and tomato plants. The pin2 mRNA level is identical in mutant and wild-type parental Solanum phureja tubers. In addition, evidence is presented for pin2 also being constitutively expressed at certain stages in the development of both tomato and potato flowers. Again, the ABA deficiency appears to have little influence in this tissue-specific expression in the mutants. These results suggest the action of separate pathways for the developmental and environmental regulation of pin2 gene expression. PMID:12324624

  9. Expression, purification and characterization of recombinant human serine proteinase inhibitor Kazal-type 6 (SPINK6) in Pichia pastoris.

    PubMed

    Lu, Hairong; Huang, Jinjiang; Li, Guodong; Ge, Kuikui; Wu, Hongyu; Huang, Qingshan

    2012-03-01

    Human serine proteinase inhibitor Kazal-type 6 (SPINK6) belongs to the medically important SPINK family. Malfunctions of SPINK members are linked to many diseases, including pancreatitis, skin barrier defects, and cancer. SPINK6 has been shown to selectively inhibit Kallikrein-related peptidases (KLKs) in human skin. As a SPINK protein, it contains a typical Kazal domain, which requires three intramolecular disulfide bonds for correct folding and activity. Preparation of functional protein is a prerequisite for studying this important human factor. Here, we report the successful generation of tagless SPINK6 using a yeast expression system. The recombinant protein was secreted and purified by cation exchange and size-exclusion chromatography. The protein identity was confirmed by MALDI-TOF MS and N-terminal sequencing. Pichia pastoris-derived recombinant human SPINK6 (rhSPINK6) showed higher inhibitory activity against Kallikrein-related peptidase 14 (KLK14) (K(i)=0.16 nM) than previously reported Escherichia coli-derived rhSPINK6 (K(i)=0.5 nM). This protein also exhibited moderate inhibition of bovine trypsin (K(i)=33 nM), while previous E. coli-derived rhSPINK6 did not. The results indicate that P. pastoris is a better system to generate active rhSPINK6, warranting further studies on this medically important SPINK family candidate.

  10. Cysteine proteinase inhibitor Act d 4 is a functional allergen contributing to the clinical symptoms of kiwifruit allergy.

    PubMed

    Popovic, Milica M; Milovanovic, Mina; Burazer, Lidija; Vuckovic, Olga; Hoffmann-Sommergruber, Karin; Knulst, Andre C; Lindner, Buko; Petersen, Arnd; Jankov, Ratko; Gavrovic-Jankulovic, Marija

    2010-03-01

    Kiwifruit has become a frequent cause of fruit allergy in the recent years. The molecular basis of type I hypersensitivity to kiwifruit is attributed to 11 IUIS allergens, with Act d 1, Act d 2 and Act d 5 characterized in extenso. Evaluation of the allergenic properties of Act d 4, a cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa) was performed in this study. Identity of the purified glycoprotein was determined by Edman degradation and by mass fingerprint whereby more than 90% of the primary structure of the mature kiwifruit cystatin was confirmed. Using MALDI TOF analysis, molecular masses of 10902.5 and 11055.2 Da were detected for Act d 4, respectively. Positive skin prick reactivity with Act d 4 was induced in three kiwifruit allergic patients, as well as the upregulation of CD63 and CD203c molecules in the basophile activation assay. The IgE reactivity was detected in dot blot analysis while Western blot analysis was negative using sera from six kiwifruit patients, suggesting the presence of conformational IgE epitopes on the Act d 4 molecule. As activator of effector cells in type I hypersensitivity Act d 4 is a functional allergen contributing to the clinical symptoms of kiwifruit allergy.

  11. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice

    PubMed Central

    Martins-Olivera, Bruno Tadeu; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda

    2016-01-01

    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment. PMID:27528793

  12. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction.

    PubMed Central

    Stubbs, M T; Laber, B; Bode, W; Huber, R; Jerala, R; Lenarcic, B; Turk, V

    1990-01-01

    A stoichiometric complex of human stefin B and carboxymethylated papain has been crystallized in a trigonal crystal form. Data to 2.37 A resolution were collected using the area detector diffractometer FAST. The crystal structure of the complex has been solved by Patterson search techniques using papain as search model. Starting from the structure of chicken cystatin, the stefin structure was elucidated through cycles of model building and crystallographic refinement. The current crystallographic R factor is 0.19. Like cystatin, the stefin molecule consists of a five stranded beta-sheet wrapped around a five turn alpha-helix, but with an additional carboxy terminal strand running along the convex side of the sheet. Topological equivalence of stefin and cystatin reveal the previous sequence alignment to be incorrect in part, through deletion of the intermediate helix. The conserved residues form a tripartite wedge, which slots into the papain active site as proposed through consideration of the tertiary structures of the individual components (Bode et al., 1988). The main interactions are provided by the amino terminal 'trunk' (occupying the 'unprimed' subsites of the enzyme), and by the first hairpin loop, containing the highly conserved QVVAG sequence, with minor contributions from the second hairpin loop. The carboxyl terminus of stefin provides an additional interaction region with respect to cystatin. The interaction is dominated by hydrophobic contacts. Inhibition by the cysteine proteinase inhibitors is fundamentally different to that observed for the serine proteinase inhibitors. Images Fig. 5. Fig. 6. Fig. 8. PMID:2347312

  13. Immunohistochemical demonstration of alpha 1-antichymotrypsin and alpha 1-antitrypsin in salivary gland pleomorphic adenomas of children.

    PubMed

    Takahashi, H; Fujita, S; Tsuda, N; Tezuka, F; Okabe, H

    1990-09-01

    Twenty-five benign pleomorphic adenomas of salivary glands in children were studied with immunohistochemical techniques in order to characterize the cell types comprising the epithelial and so-called "mesenchymal" regions of the tumors. The antisera against alpha 1-antichymotrypsin (alpha 1-ACT) and alpha 1-antitrypsin (alpha 1-AT) were used to stain in normal salivary gland tissue as well as in pleomorphic adenoma. In normal salivary glands, alpha 1-ACT was localized to the intercalated duct and serous acinar cells. On the other hand, there was positive staining for alpha 1-AT in the intercalated and striated duct cells. Twenty-five cases (100%) of pleomorphic adenomas in children displayed positivity to alpha 1-ACT staining and 22 cases (88%) showed a positive staining for alpha 1-AT. alpha 1-ACT staining was particularly intense in chondrocyte-like cells of 20 cases (80%), in inner tubular cells of 16 (64%) and cyst-lining cells of 12 (52%). The limited number of tumor cells which were called plasmatoid or hyaline cells and squamous epithelial cells, were positive for alpha 1-ACT. None of the outer tubular cells and hyalinous material was positively stained for alpha 1-ACT. A strong positive reaction for alpha 1-AT was observed in chondrocyte-like cells of 15 cases (60%). Inner tubular cells were positive for alpha 1-AT in 12 cases (48%), plasmatoid or hyaline cells in 10 (40%) and cyst-lining cells in 8 (35%). Squamous epithelial cells, clear cells, secretory product and hyalinous material were positive for alpha 1-AT in some cases. Chondroid matrix and myxoid stroma had no reaction with both antibodies. The biological role of alpha 1-ACT and alpha 1-AT with a wide immunohistochemical distribution in pleomorphic adenomas of children may be associated with a self regulating mechanism which inhibits degradation by tissue proteinases.

  14. Molecular cloning of a novel multidomain Kunitz-type proteinase inhibitor from the hookworm Ancylostoma caninum.

    PubMed

    Hawdon, John M; Datu, Bennett; Crowell, Melissa

    2003-04-01

    Degenerate oligonucleotide primers derived from conserved serine protease inhibitors were used to amplify a 90-base pair (bp) amplicon from an Ancylostoma caninum adult-stage complementary deoxyribonucleic acid (cDNA) library by polymerase chain reaction (PCR). The amplicon was labeled and used as a probe to screen the library, and a 2,300-bp cDNA clone was identified. The 5' end of the molecule was obtained from adult cDNA by 5'-RACE. The complete sequence named A. caninum Kunitz-type protease inhibitor (Ac-kpi-1) was 2,371 bp and encoded a 759-amino acid open reading frame. The deduced amino acid sequence had a calculated molecular weight of 84,886 Da and contained an amino terminal signal peptide, suggesting that the protein is secreted. Analysis of the predicted protein sequence indicates 12 highly conserved Kunitz-type serine protease inhibitor domains connected by short, conserved spacers. On the basis of sequence analysis, the first 11 domains are predicted to be active serine protease inhibitors based on the P1 amino acid. Domains 5-8 have identical amino acid sequences, and the remaining domains are 38-88% identical. Domain 12 lacks several of the conserved cysteine residues and has an atypical amino acid in the P1 position, suggesting that it is nonfunctional. Reverse transcriptase-PCR indicated that the Ac-kpi-1 messenger ribonucleic acid is present in egg, L1, L3, and adult stages but is most abundant in the adult stage. Ac-KPI-1 is most similar in domain architecture to several extracellular matrix proteins involved in cellular remodeling during insect development. In addition, there are 44 nematode proteins containing one or more Kunitz domains in GenBank, including several with multiple domains.

  15. Overexpression of a Weed (Solanum americanum) Proteinase Inhibitor in Transgenic Tobacco Results in Increased Glandular Trichome Density and Enhanced Resistance to Helicoverpa armigera and Spodoptera litura

    PubMed Central

    Luo, Ming; Wang, Zhaoyu; Li, Huapeng; Xia, Kuai-Fei; Cai, Yinpeng; Xu, Zeng-Fu

    2009-01-01

    In this study we produced transgenic tobacco plants by overexpressing a serine proteinase inhibitor gene, SaPIN2a, from the American black nightshade Solanum americanum under the control of the CaMV 35S promoter using Agrobacterium tumefaciens-mediated transformation. SaPIN2a was properly transcribed and translated as indicated by Northern blot and Western blot analyses. Functional integrity of SaPIN2a in transgenic plants was confirmed by proteinase inhibitory activity assay. Bioassays for insect resistance showed that SaPIN2a-overexpressing transgenic tobacco plants were more resistant to cotton bollworm (Helicoverpa armigera) and tobacco cutworm (Spodoptera litura) larvae, two devastating pests of important crop plants, than the control plants. Interestingly, overexpression of SaPIN2a in transgenic tobacco plants resulted in a significant increase in glandular trichome density and a promotion of trichome branching, which could also provide an additional resistance mechanism in transgenic plants against insect pests. Therefore, SaPIN2a could be used as an alternative proteinase inhibitor for the production of insect-resistant transgenic plants. PMID:19468345

  16. Effect of swainsonine on the processing of the asparagine-linked carbohydrate chains of alpha 1-antitrypsin in rat hepatocytes. Evidence for the formation of hybrid oligosaccharides.

    PubMed

    Gross, V; Tran-Thi, T A; Vosbeck, K; Heinrich, P C

    1983-03-25

    The biosynthesis of the proteinase inhibitor alpha 1-antitrypsin has been studied in rat hepatocyte primary cultures. Newly synthesized alpha 1-antitrypsin was found in hepatocytes as a glycoprotein of an apparent molecular weight of 49,000 carrying oligosaccharide side chains of the high mannose type. In the hepatocyte medium a secreted alpha 1-antitrypsin of an apparent molecular weight of 54,000 could be identified as a glycoprotein with carbohydrate chains of the complex type. Pulse-chase experiments revealed a precursor-product relationship for the two forms of alpha 1-antitrypsin. When the hepatocytes were treated with swainsonine, an intracellular form of alpha 1-antitrypsin with an apparent molecular weight of 49,000 indistinguishable from that of control cells was found. However, the alpha 1-antitrypsin secreted from swainsonine-treated hepatocytes was different from that present in control media. It was characterized by a lower apparent molecular weight (51,000), a higher amount of [3H]mannose incorporation, half as much incorporation of [3H]galactose, and the same amount of [3H]fucose incorporation compared to alpha 1-antitrypsin of control media. In contrast to the 54,000 complex type alpha 1-antitrypsin from control media the 51,000 alpha 1-antitrypsin from the medium of swainsonine-treated cells was found to be susceptible to the action of endoglucosaminidase H, even when fucose was attached to the proximal GlcNAc residue. alpha 1-Antitrypsin secreted from swainsonine-treated cells combines features usually associated with either high mannose or complex type oligosaccharides and therefore represents a hybrid structure. In spite of its effect on the carbohydrate part of alpha 1-antitrypsin swainsonine did not impair the secretion of the incompletely processed glycoprotein. PMID:6403522

  17. The expression of a mammalian proteinase inhibitor, bovine spleen trypsin inhibitor in tobacco and its effects on Helicoverpa armigera larvae.

    PubMed

    Christeller, John T; Burgess, Elisabeth P J; Mett, Valentina; Gatehouse, Heather S; Markwick, Ngaire P; Murray, Colleen; Malone, Louise A; Wright, Michelle A; Philip, Bruce A; Watt, Dianne; Gatehouse, Laurence N; Lövei, Gábor L; Shannon, April L; Phung, Margaret M; Watson, Lynn M; Laing, William A

    2002-04-01

    The cDNA for bovine spleen trypsin inhibitor (SI), a homologue of bovine pancreatic trypsin inhibitor (BPTI), including the natural mammalian presequence was expressed in tobacco using Agrobacterium tumefaciens-mediated transformation. Stable expression required the N-terminal targeting signal presequence although subcellular localization was not proven. SI was found to exist as two forms, one coinciding with authentic BPTI on western blots and the second marginally larger due to retention of the C-terminal peptide. Both were retained on a trypsin-agarose affinity gel and had inhibitory activity. Newly emergent leaves contained predominantly the large form whereas senescent leaves had little except the fully processed form present. Intermediate-aged leaves showed a gradual change indicating that a slow processing of the inhibitor peptide was occurring. The stability of SI was shown by the presence of protein at high levels in completely senescent leaves. Modifications to the cDNA (3' and 5' changes and minor codon changes) resulted in a 20-fold variation in expression. Expression of modified SI in transgenic tobacco leaves at 0.5% total soluble protein reduced both survival and growth of Helicoverpa armigera larvae feeding on leaves from the late first instar. In larvae surviving for 8 days, midgut trypsin activity was reduced in SI-tobacco fed larvae, while chymotrypsin activity was increased. Activities of leucine aminopeptidase and elastase-like chymotrypsin remained unaltered. The use of SI as an insect resistance factor is discussed.

  18. Variation of proteins and proteinases in Entamoeba histolytica lysates containing a protease inhibitor.

    PubMed

    López-Revilla, R; Jiménez-Delgadillo, B; Canto-Ortiz, L; Chávez-Dueñas, L

    1992-01-01

    Sodium dodecyl sulfate (SDS)-lysates of E. histolytica trophozoites were analyzed by electrophoresis in simple and gelatin-containing ("substrate") SDS-polyacrylamide gels. In simple gels, boiled lysates with para hydroxymercuribenzoate (pHMB) had a complex pattern of apparently undegraded proteins; boiled lysates without pHMB showed a major 30 kDa and four minor (43, 46, 63 and 117 kDa) proteins, whereas unheated lysates displayed only the 117 kDa protein. Using substrate gels no gelatinases were detected in heated lysates; unheated lysates without pHMB showed a major 30 kDa and three minor (33, 46 and 68 kDa) gelatinases, whereas those with pHMB presented a major 56 kDa and two minor (70 and 105 kDa) gelatinases. Three caseinase peaks were separated by Sephadex G-75 chromatography from unheated lysates: peak I contained 46, 56 and 117 kDa pHMB-sensitive gelatinases and peaks II and III contained smaller pHMB-resistant caseinases. We conclude that proteins remaining in lysates after SDS-induced proteolysis appear to be mainly proteases relatively resistant to self-digestion whose type and amount changes with the conditions of lysis and the presence of inhibitors; this is exemplified by the finding of the major gelatinase of lysates with pHMB being larger (56 kDa) than in lysates lacking the inhibitor (30 kDa). PMID:1340329

  19. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    PubMed Central

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-01-01

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  20. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGES

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-03-23

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemicalmore » data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  1. The response to epidermal growth factor of human maxillary tumor cells in terms of tumor growth, invasion and expression of proteinase inhibitors.

    PubMed

    Mizoguchi, H; Komiyama, S; Matsui, K; Hamanaka, R; Ono, M; Kiue, A; Kobayashi, M; Shimizu, N; Welgus, H G; Kuwano, M

    1991-11-11

    Three cancer cell lines, IMC-2, IMC-3 and IMC-4, were established from a single tumor of a patient with maxillary cancer. We examined responses to epidermal growth factor (EGF) of these 3 cell lines with regard to cell growth and tumor invasion. The growth rate of IMC-2 in nude mice was markedly faster than that of the IMC-3 and IMC-4 cell lines. Assay for invasion through fibrin gels showed significantly enhanced invasive capacity of IMC-2 cells in response to EGF, but no change for IMC-3 and IMC-4 cells. We examined response to EGF of IMC-2 cells with regard to expression of a growth-related oncogene (c-fos), proteinases and their inhibitors. Expression of c-fos was transiently increased in IMC-2 cells at rates comparable to those seen in the 2 other lines in the presence of EGF. There was no apparent effect of EGF on the expression of urokinase-type plasminogen activator and 72-kDa type-IV collagenase in IMC-2 cells. In contrast, EGF specifically enhanced the expression of plasminogen activator inhibitor-I (PAI-I) and tissue inhibitor of metalloproteinases-I (TIMP-I) in IMC-2 cells. Our data suggest that proteinase inhibitors or other related factors may play an important role in tumor growth and invasion in response to EGF.

  2. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus

    SciTech Connect

    Lima, Cassia A.; Sasaki, Sergio D.; Tanaka, Aparecida S. . E-mail: Tanaka.bioq@epm.br

    2006-08-18

    The bovine tick Rhipicephalus (Boophilus) microplus is a blood-sucking animal, which is responsible for Babesia spp and Anaplasma marginale transmission for cattle. From a B. microplus fat body cDNA library, 465 selected clones were sequenced randomly and resulted in 60 Contigs. An open reading frame (ORF) contains 98 amino acids named Bmcystatin, due to 70% amino acid identity to a classical type 1 cystatin from Ixodes scapularis tick (GenBank Accession No. DQ066227). The Bmcystatin amino acid sequence analysis showed two cysteine residues, theoretical pI of 5.92 and M{sub r} of 11kDa. Bmcystatin gene was cloned in pET 26b vector and the protein expressed using bacteria Escherichia coli BL21 SI. Recombinant Bmcystatin (rBmcystatin) purified by affinity chromatography on Ni-NTA-agarose column and ionic exchange chromatography on HiTrap Q column presented molecular mass of 11kDa, by SDS-PAGE and the N-terminal amino acid sequenced revealed unprocessed N-terminal containing part of pelB signal sequence. Purified rBmcystatin showed to be a C1 cysteine peptidase inhibitor with K{sub i} value of 0.1 and 0.6nM for human cathepsin L and VTDCE (vitellin degrading cysteine endopeptidase), respectively. The rBmcystatin expression analyzed by semi-quantitative RT-PCR confirmed the amplification of a specific DNA sequence (294bp) in the fat body and ovary cDNA preparation. On the other hand, a protein band was detected in the fat body, ovary, and the salivary gland extracts using anti-Bmcystatin antibody by Western blot. The present results suggest a possible role of Bmcystatin in the ovary, even though the gene was cloned from the fat body, which could be another site of this protein synthesis.

  3. Intrahepatic lymphocyte expression of dipeptidyl peptidase I-processed granzyme B and perforin induces hepatocyte expression of serine proteinase inhibitor 6 (Serpinb9/SPI-6).

    PubMed

    Stout-Delgado, Heather W; Getachew, Yonas; Miller, Bonnie C; Thiele, Dwain L

    2007-11-15

    Human proteinase inhibitor 9 (PI-9/serpinB9) and the murine ortholog, serine proteinase inhibitor 6 (SPI-6/serpinb9) are members of a family of intracellular serine proteinase inhibitors (serpins). PI-9 and SPI-6 expression in immune-privileged cells, APCs, and CTLs protects these cells against the actions of granzyme B, and when expressed in tumor cells or virally infected hepatocytes, confers resistance to killing by CTL and NK cells. The present studies were designed to assess the existence of any correlation between granzyme B activity in intrahepatic lymphocytes and induction of hepatic SPI-6 expression. To this end, SPI-6, PI-9, and serpinB9 homolog expression was examined in response to IFN-alpha treatment and during in vivo adenoviral infection of the liver. SPI-6 mRNA expression increased 10- to 100-fold in the liver after IFN-alpha stimulation and during the course of viral infection, whereas no significant up-regulation of SPI-8 and <5-fold increases in other PI-9/serpinB9 homolog mRNAs was observed. Increased SPI-6 gene expression during viral infection correlated with influxes of NK cells and CTL. Moreover, IFN-alpha-induced up-regulation of hepatocyte SPI-6 mRNA expression was not observed in NK cell-depleted mice. Additional experiments using genetically altered mice either deficient in perforin or unable to process or express granzyme B indicated that SPI-6 is selectively up-regulated in hepatocytes in response to infiltration of the liver by NK cells that express perforin and enzymatically active granzyme B.

  4. A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants.

    PubMed

    Maheswaran, Gowri; Pridmore, Lucinda; Franz, Peter; Anderson, Marilyn A

    2007-06-01

    Insecticidal proteins are a potential resource to enhance resistance to insect pests in transgenic plants. Here, we describe the generation and analysis of the apple cultivar 'Royal Gala' transgenic for Nicotiana alata (N. alata) proteinase inhibitor (PI) and the impact of this PI on the growth and development of the Epiphyas postvittiana (light-brown apple moth). A cDNA clone encoding a proteinase inhibitor precursor from N. alata (Na-PI) under the control of either a double 35S promoter or a promoter from a ribulose-1,5-bisphosphate carboxylase small sub-unit gene (rbcS-E9 promoter) was stably incorporated into 'Royal Gala' apple using Agrobacterium-mediated transformation. A 40.3 kDa Na-PI precursor protein was expressed and correctly processed into 6-kDa proteinase inhibitors in the leaves of transgenic apple lines. The 6-kDa polypeptides accumulated to levels of 0.05 and 0.1% of the total soluble protein under the control of the rbc-E9 promoter and the double 35S promoter, respectively. Light-brown apple moth larvae fed with apple leaves expressing Na-PI had significantly reduced body weight after 7 days of feeding and female pupae were 19-28% smaller than controls. In addition, morphological changes such as pupal cases attached to the wing, deformed wings, deformed body shape, and pupal cases and curled wings attached to a deformed body were observed in adults that developed from larvae fed with apple leaves expressing Na-PI, when compared to larvae fed with the non-transformed apple leaves.

  5. Papain labelled with fluorescent thiol-specific reagents as a probe for characterization of interactions between cysteine proteinases and their protein inhibitors by competitive titrations.

    PubMed

    Lindahl, P; Raub-Segall, E; Olson, S T; Björk, I

    1991-06-01

    Papain was labelled by attachment of the fluorescent groups 2-(4'-acetamidoanilino)naphthalene-6-sulphonic acid (AANS) or N-(acetylaminoethyl)-8-naphthylamine-1-sulphonic acid (AEDANS) to the active-site cysteine residue, with the aim of using the labelled papains as probes in competitive titrations of unlabelled cysteine proteinases with their inhibitors. The interaction between the labelled papains and cystatins was accompanied by an increase in fluorescence emission of up to 38-fold for AANS-papain and approximately 3.5-fold for AEDANS-papain. Fluorescence titrations gave dissociation equilibrium constants of 3.1 and 0.6 microM for the binding of chicken cystatin and recombinant human cystatin C respectively to AANS-papain and of 11.9 microM for the binding of chicken cystatin to AEDANS-papain. The kinetics of interaction of chicken cystatin with AANS-papain showed an unusual biphasic dependence of the observed pseudo-first-order rate constant on inhibitor concentration, consistent with the reaction occurring via both pathways of a general two-step binding mechanism. AANS-papain was selected as the most suitable probe for competitive titrations of unlabelled active or inactivated cysteine proteinases with inhibitors. This technique, which provides stoichiometries and dissociation constants for the interaction between unlabelled enzyme and inhibitor, allows monitoring of the interactions by a large fluorescent signal in a wavelength region where the interacting proteins do not contribute to the observed fluorescence. Such competitive titrations of active papain or actinidin with chicken cystatin or recombinant human cystatin C all gave inhibitor/enzyme stoichiometries of close to 1.0. A dissociation constant of 1.8 microM for the reaction of chicken cystatin with a papain derivative, S-[N-(3-carboxypropyl)succinimidyl]-papain, was also determined by the same technique. These results show the usefulness of the fluorescent papains for the characterization of

  6. Effects of the terminal sire type and sex on pork muscle cathepsins (B, B+L and H), cysteine proteinase inhibitors and lipolytic enzyme activities.

    PubMed

    Armero, E; Barbosa, J A; Toldra, F; Baselga, M; Pla, M

    1999-02-01

    Pork muscle cathepsins (B, B+L, and H), cysteine proteinase inhibitors and lipolytic enzyme activities were measured in the offspring of five different genetic sire types: Danish Duroc (DU), Dutch Large White (LW(D)), English Large White (LW(E)), Belgian Landrace × Landrace (BL×LR) and Belgian Landrace (BL). Cathepsin B and B+L activities were higher for LW(E) and LW(D) sires than for BL×LR and BL. Cathepsin H activity showed an opposite evolution, being higher for BL and BL×LR sires than for DU, LW(D) and LW(E). Cysteine proteinase inhibitor activity was higher for LW(E) sires than for DU and BL. In lipolytic enzymes, BL sires had a lower acid lipase activity than DU and LW(E) sires and also a lower neutral esterase activity than LW(E) and LW(D) sires. Significant differences between sexes were found for cathepsin H activity only, being higher for females. PMID:22061703

  7. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance.

    PubMed

    Zhang, Xinxin; Liu, Shenkui; Takano, Tetsuo

    2008-09-01

    Two cysteine proteinase inhibitors (cystatins) from Arabidopsis thaliana, designated AtCYSa and AtCYSb, were characterized. Recombinant GST-AtCYSa and GST-AtCYSb were expressed in Escherichia coli and purified. They inhibit the catalytic activity of papain, which is generally taken as evidence for cysteine proteinase inhibitor function. Northern blot analyses showed that the expressions of AtCYSa and AtCYSb gene in Arabidopsis cells and seedlings were strongly induced by multiple abiotic stresses from high salt, drought, oxidant, and cold. Interestingly, the promoter region of AtCYSa gene contains a dehydration-responsive element (DRE) and an abscisic acid (ABA)-responsive element (ABRE), which identifies it as a DREB1A and AREB target gene. Under normal conditions, AtCYSa was expressed in 35S: DREB1A and 35S: AREB1 plants at a higher level than in WT plants, while AtCYSa gene was expressed in 35S: DREB2A plants at the same level as in WT plants. Under stress conditions (salt, drought and cold), AtCYSa was expressed more in all three transgenic plants than in WT plants. Over-expression of AtCYSa and AtCYSb in transgenic yeast and Arabidopsis plants increased the resistance to high salt, drought, oxidative, and cold stresses. Taken together, these data raise the possibility of using AtCYSa and AtCYSb to genetically improve environmental stresses tolerance in plants.

  8. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2.

    PubMed

    Nilges, M; Gronenborn, A M; Brünger, A T; Clore, G M

    1988-04-01

    An automated method, based on the principle of simulated annealing, is presented for determining the three-dimensional structures of proteins on the basis of short (less than 5 A) interproton distance data derived from nuclear Overhauser enhancement (NOE) measurements. The method makes use of Newton's equations of motion to increase temporarily the temperature of the system in order to search for the global minimum region of a target function comprising purely geometric restraints. These consist of interproton distances supplemented by bond lengths, bond angles, planes and soft van der Waals repulsion terms. The latter replace the dihedral, van der Waals, electrostatic and hydrogen-bonding potentials of the empirical energy function used in molecular dynamics simulations. The method presented involves the implementation of a number of innovations over our previous restrained molecular dynamics approach [Clore, G.M., Brünger, A.T., Karplus, M. and Gronenborn, A.M. (1986) J. Mol. Biol., 191, 523-551]. These include the development of a new effective potential for the interproton distance restraints whose functional form is dependent on the magnitude of the difference between calculated and target values, and the design and implementation of robust and fully automatic protocol. The method is tested on three systems: the model system crambin (46 residues) using X-ray structure derived interproton distance restraints, and potato carboxypeptidase inhibitor (CPI; 39 residues) and barley serine proteinase inhibitor 2 (BSPI-2; 64 residues) using experimentally derived interproton distance restraints. Calculations were carried out starting from the extended strands which had atomic r.m.s. differences of 57, 38 and 33 A with respect to the crystal structures of BSPI-2, crambin and CPI respectively. Unbiased sampling of the conformational space consistent with the restraints was achieved by varying the random number seed used to assign the initial velocities. This ensures

  9. [Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis].

    PubMed

    Dunaevskiĭ, Ia E; Gruban', T N; Beliakova, G A; Belozerskiĭ, M A

    2006-01-01

    The presence of proteins in the culture liquid of filamentous fungi under study was found to induce the secretion of proteinases. The inhibitory analysis of the major extracellular proteinases of the saprotrophic fungus Trichoderma harzianum and the phytopathogenic fungus Alternaria alternata showed that they both belong to the group of serine proteinases. The substrate specificity of these proteinases and their sensitivity to inhibitors suggest that the enzyme of T. harzianum is a subtilisin-like proteinase and the enzyme of A. alternata is a trypsin-like proteinase. This difference between the proteinases may reflect the physiological difference between their producers (saprotroph and phytopathogen). PMID:17205798

  10. [Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis].

    PubMed

    Dunaevskiĭ, Ia E; Gruban', T N; Beliakova, G A; Belozerskiĭ, M A

    2006-01-01

    The presence of proteins in the culture liquid of filamentous fungi under study was found to induce the secretion of proteinases. The inhibitory analysis of the major extracellular proteinases of the saprotrophic fungus Trichoderma harzianum and the phytopathogenic fungus Alternaria alternata showed that they both belong to the group of serine proteinases. The substrate specificity of these proteinases and their sensitivity to inhibitors suggest that the enzyme of T. harzianum is a subtilisin-like proteinase and the enzyme of A. alternata is a trypsin-like proteinase. This difference between the proteinases may reflect the physiological difference between their producers (saprotroph and phytopathogen).

  11. [Uniform method for determining the alpha 1-antitrypsin and alpha 2-macroglobulin activity in human blood serum (plasma)].

    PubMed

    Nartikova, V F; Paskhina, T S

    1979-01-01

    A modified spectrophotometric method is developed for simultaneous estimation of alpha 1-antitrypsin and alpha 2-macroglobulin in human blood serum (plasma); the method is based on dissimilar interaction of these inhibitors with trypsin in the systems with a low molecular substrate N-alpha-benzoyl-l-arginine ethyl ester. alpha 1-Antitrypsin was estimated by inhibition of the arginine esterase activity of trypsin in a mixture containing human blood serum diluted 50-fold. alpha 2-Macroglobulin was estimated by maintained arginine esterase activity of the trypsin-alpha 2-macroglobulin complex, formed after interaction of an excess of trypsin with blood serum, diluted 10-fold and after subsequent inactivation of free, unbound with alpha 2-macroglobulin, trypsin by treatment with the soy bean inhibitor of trypsin. alpha 1-Antitrypsin and alpha 2-macrog-obulin were estimated by means of the method described in blood serum of healthy persons and in patients with burns or with carcinoma of pancreas. The method enables to estimate two main inhibitors of blood plasma proteinases in a small volume of blood serum (0.1 ml) very rapidly and specifically using commercially available substrate; the method might be recommended for routine clinical analysis.

  12. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera

    PubMed Central

    Swathi, Marri; Mishra, Prashant K.; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2016-01-01

    Proteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI) activity than trypsin inhibitor (TI) activity. Analysis of CpPI 63 using two-dimensional (2-D) electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6 and 58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs). The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6) of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs) as well as miraculin-like proteins (MLPs). Further, modification of lysine residue(s) lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus. PMID:27656149

  13. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera

    PubMed Central

    Swathi, Marri; Mishra, Prashant K.; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2016-01-01

    Proteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI) activity than trypsin inhibitor (TI) activity. Analysis of CpPI 63 using two-dimensional (2-D) electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6 and 58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs). The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6) of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs) as well as miraculin-like proteins (MLPs). Further, modification of lysine residue(s) lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus.

  14. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera.

    PubMed

    Swathi, Marri; Mishra, Prashant K; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2016-01-01

    Proteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI) activity than trypsin inhibitor (TI) activity. Analysis of CpPI 63 using two-dimensional (2-D) electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6 and 58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs). The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6) of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs) as well as miraculin-like proteins (MLPs). Further, modification of lysine residue(s) lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus. PMID:27656149

  15. 8-NH2-boldine, an antagonist of alpha1A and alpha1B adrenoceptors without affinity for the alpha1D subtype: structural requirements for aporphines at alpha1-adrenoceptor subtypes.

    PubMed

    Ivorra, M Dolores; Valiente, Miguel; Martínez, Sonia; Madrero, Yolanda; Noguera, M Antonia; Cassels, Bruce K; Sobarzo, Eduardo M; D'Ocon, Pilar

    2005-10-01

    Structure-activity analysis of 21 aporphine derivatives was performed by examining their affinities for cloned human alpha (1A), alpha (1B) and alpha (1D) adrenoceptors (AR) using membranes prepared from rat-1 fibroblasts stably expressing each alpha (1)-AR subtype. All the compounds tested competed for [ (125)I]-HEAT binding with steep and monophasic curves. The most interesting compound was 8-NH (2)-boldine, which retains the selective affinity for alpha(1A)-AR (pKi = 6.37 +/- 0.21) vs. alpha(1B)-AR (pKi = 5.53 +/- 0.11) exhibited by 1,2,9,10-tetraoxygenated aporphines, but shows low affinity for alpha(1D)-AR (pKi < 2.5). Binding studies on native adrenoceptors present in rat cerebral cortex confirms the results obtained for human cloned alpha (1)-AR subtypes. The compounds selective for the alpha (1A) subtype discriminate two binding sites in rat cerebral cortex confirming a mixed population of alpha (1A)- and alpha (1B)-AR in this tissue. All compounds are more selective as inhibitors of [ (3)H]-prazosin binding than of [ (3)H]-diltiazem binding to rat cerebral cortical membranes. A close relationship was found between affinities obtained for cloned alpha (1A)-AR and inhibitory potencies on noradrenaline-induced contraction or inositol phosphate accumulation in tail artery, confirming that there is a homogeneous functional population of alpha(1A)-AR in this vessel. On the contrary, a poor correlation seems to exist between the affinity of 8-NH (2)-boldine for cloned alpha (1D)-AR and its potency as an inhibitor of noradrenaline-induced contraction or inositol phosphate accumulation in rat aorta, which confirms that a heterogeneous population of alpha (1)-AR mediates the adrenergic response in this vessel.

  16. Active Trafficking of Alpha 1 Antitrypsin across the Lung Endothelium

    PubMed Central

    Lockett, Angelia D.; Brown, Mary Beth; Santos-Falcon, Nieves; Rush, Natalia I.; Oueini, Houssam; Oberle, Amber J.; Bolanis, Esther; Fragoso, Miryam A.; Petrusca, Daniela N.; Serban, Karina A.; Schweitzer, Kelly S.; Presson Jr., Robert G.

    2014-01-01

    The homeostatic lung protective effects of alpha-1 antitrypsin (A1AT) may require the transport of circulating proteinase inhibitor across an intact lung endothelial barrier. We hypothesized that uninjured pulmonary endothelial cells transport A1AT to lung epithelial cells. Purified human A1AT was rapidly taken up by confluent primary rat pulmonary endothelial cell monolayers, was secreted extracellularly, both apically and basolaterally, and was taken up by adjacent rat lung epithelial cells co-cultured on polarized transwells. Similarly, polarized primary human lung epithelial cells took up basolaterally-, but not apically-supplied A1AT, followed by apical secretion. Evidence of A1AT transcytosis across lung microcirculation was confirmed in vivo by two-photon intravital microscopy in mice. Time-lapse confocal microscopy indicated that A1AT co-localized with Golgi in the endothelium whilst inhibition of the classical secretory pathway with tunicamycin significantly increased intracellular retention of A1AT. However, inhibition of Golgi secretion promoted non-classical A1AT secretion, associated with microparticle release. Polymerized A1AT or A1AT supplied to endothelial cells exposed to soluble cigarette smoke extract had decreased transcytosis. These results suggest previously unappreciated pathways of A1AT bidirectional uptake and secretion from lung endothelial cells towards the alveolar epithelium and airspaces. A1AT trafficking may determine its functional bioavailablity in the lung, which could be impaired in individuals exposed to smoking or in those with A1AT deficiency. PMID:24743137

  17. Evaluation of in vitro and in vivo effects of semipurified proteinase inhibitors from Theobroma seeds on midgut protease activity of Lepidopteran pest insects.

    PubMed

    Paulillo, Luis Cesar Maffei Sartini; Sebbenn, Alexandre Magno; de Carvalho Derbyshire, Maria Tereza Vitral; Góes-Neto, Aristóteles; de Paula Brotto, Marco Aurélio; Figueira, Antonio

    2012-09-01

    We have characterized in vitro and in vivo effects of trypsin inhibitors from Theobroma seeds on the activity of trypsin- and chymotrypsin-like proteins from Lepidopteran pest insects. The action of semipurified trypsin inhibitors from Theobroma was evaluated by the inhibition of bovine trypsin and chymotrypsin activities determined by the hydrolysis of N-Benzoyl-DL-Arginine-p-Nitroanilide (BAPA) and N-Succinyl-Ala-Ala-Pho-Phe p-Nitroanilide (S-(Ala)2ProPhe-pNA). Proteinase inhibitor activities from Theobroma cacao and T. obovatum seeds were the most effective in inhibiting trypsin-like proteins, whereas those from T. obovatum and T. sylvestre were the most efficient against chymotrypsin-like proteins. All larvae midgut extracts showed trypsin-like proteolytic activities, and the putative trypsin inhibitors from Theobroma seeds significantly inhibited purified bovine trypsin. With respect to the influence of Theobroma trypsin inhibitors on intact insects, the inclusion of T. cacao extracts in artificial diets of velvet bean caterpillars (Anticarsia gemmatalis) and sugarcane borer (Diatraea saccharalis) produced a significant increase in the percentage of adult deformation, which is directly related to both the survival rate of the insects and oviposition.

  18. Adaptation of the behaviour of an aspartic proteinase inhibitor by relocation of a lysine residue by one helical turn.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Berry, Colin; Bur, Daniel; Kay, John

    2006-08-01

    In addition to self-inhibition of aspartic proteinase zymogens by their intrinsic proparts, the activity of certain members of this enzyme family can be modulated through active-site occupation by extrinsic polypeptides such as the small IA3 protein from Saccharomyces cerevisiae. The unprecedented mechanism by which IA3 helicates to inhibit its sole target aspartic proteinase locates an i, i+4 pair of charged residues (Lys18+Asp22) on an otherwise-hydrophobic face of the amphipathic helix. The nature of these residues is not crucial for effective inhibition, but re-location of the lysine residue by one turn (+4 residues) in the helical IA3 positions its side chain in the mutant IA3-proteinase complex in an orientation essentially identical to that of the key lysine residue in zymogen proparts. The binding of the extrinsic mutant IA3 shows pH dependence reminiscent of that required for the release of intrinsic zymogen proparts so that activation can occur. PMID:16895485

  19. Molecular characterization, expression and function analysis of a five-domain Kazal-type serine proteinase inhibitor from pearl oyster Pinctada fucata.

    PubMed

    Zhang, Dianchang; Ma, Jianjun; Jiang, Shigui

    2014-03-01

    Serine proteinase inhibitors represent an expanding superfamily of endogenous inhibitors that are regulate proteolytic events and involved in a variety of physiological and immunological processes. A five-domain Kazal-type serine proteinase inhibitor (poKSPI) was identified and characterized from pearl oyster Pinctada fucata based on expressed sequence tag (EST) analysis. The full-length cDNA was 737 bp with an open reading frame (ORF) 660 bp encoding a 219 amino acid protein a theoretical molecular weight (Mw) of 23.3 kDa and an isoelectric point (pI) of 8.40. A putative signal peptide of 19 amino acid residues and five tandem Kazal domains were identified. Four of the Kazal domains had the highly conserved motif sequences with six cysteine residues responsible for the formation of disulfide bridges. The deduced amino acid sequence of the poKSPI shared high homology with KSPIs from Hirudo medicinalis. The poKSPI mRNA could be detected in all examined tissues, the expression level of the poKSPI mRNA was the highest in mantle and gonad, while the lowest in haemocyte and intestine. After LPS challenge, the expression level of the poKSPI mRNA in digestive gland was significantly up-regulated at 4 h post-challenge and reached the peak at 12 h post-challenge, which was 4.23-fold higher than control group; the expression level of the poKSPI mRNA in gill was also significantly up-regulated at 8 and 12 h post-challenge, which were 4.48 and 2.26-fold higher than control group. After Vibrio alginolyticus challenge, the expression levels of the poKSPI mRNA in digestive gland were significantly up-regulated at 8, 12, 48 and 72 h post-challenge, which were 1.70, 1.79, 3.89 and 5.69-fold higher than control group, respectively; the expression level of the poKSPI mRNA in gill was significantly up-regulated at 24 h post-challenge, which was 5.30-fold higher than control group. The recombinant poKSPI protein could inhibit chymotrypsin and trypsin activities in dose

  20. Characterization of a cDNA encoding cysteine proteinase inhibitor from Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower buds.

    PubMed

    Lim, C O; Lee, S I; Chung, W S; Park, S H; Hwang, I; Cho, M J

    1996-01-01

    A cDNA encoding a new phytocystatin isotype named BCPI-1 was isolated from a cDNA library of Chinese cabbage flower buds. The BCPI-1 clone encodes 199 amino acids resulting in a protein much larger than other known phytocystatins. BCPI-1 has an unusually long C-terminus. A BCPI-1 fusion protein expressed in Escherichia coli strongly inhibits the enzymatic activity of papain, a cysteine proteinase. Genomic Southern blot analysis revealed that the BCPI gene is a member of a small multi-gene family in Chinese cabbage. Northern blot analysis showed that it is differentially expressed in the flower bud, leaf and root.

  1. Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests

    PubMed Central

    Royo, Joaquín; León, José; Vancanneyt, Guy; Albar, Juan Pablo; Rosahl, Sabine; Ortego, Félix; Castañera, Pedro; Sánchez-Serrano, José J.

    1999-01-01

    De novo jasmonic acid (JA) synthesis is required for wound-induced expression of proteinase inhibitors and other defense genes in potato and tomato. The first step in JA biosynthesis involves lipoxygenase (LOX) introducing molecular oxygen at the C-13 position of linolenic acid. We previously have shown that, in potato, at least two gene families code for 13-LOX proteins. We have now produced transgenic potato plants devoid of one specific 13-LOX isoform (LOX-H3) through antisense-mediated depletion of its mRNA. LOX-H3 depletion largely abolishes accumulation of proteinase inhibitors on wounding, indicating that this specific LOX plays an instrumental role in the regulation of wound-induced gene expression. As a consequence, weight gain of Colorado potato beetles fed on antisense plants is significantly larger than those fed on wild-type plants. The poorer performance of LOX-H3-deficient plants toward herbivory is more evident with a polyphagous insect; larvae of beet armyworm reared on the antisense lines have up to 57% higher weight than those fed on nontransformed plants. LOX-H3 thus appears to regulate gene activation in response to pest attack, and this inducible response is likely to be a major determinant for reducing performance of nonspecialized herbivores. However, the regulatory role of LOX-H3 is not caused by its involvement in the wound-induced increase of JA, as wild-type and LOX-H3 deficient plants have similar jasmonate levels after wounding. LOX-H3-deficient plants have higher tuber yields. The apparent effect of suppressing the inducible defensive response on plant vigor suggests that it may pose a penalty in plant fitness under nonstress situations. PMID:9927708

  2. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue

    PubMed Central

    Busot, Grethel Yanet; McClure, Bruce; Ibarra-Sánchez, Claudia Patricia; Jiménez-Durán, Karina; Vázquez-Santana, Sonia; Cruz-García, Felipe

    2008-01-01

    After landing on a wet stigma, pollen grains hydrate and germination generally occurs. However, there is no certainty of the pollen tube growth through the style to reach the ovary. The pistil is a gatekeeper that evolved in many species to recognize and reject the self-pollen, avoiding endogamy and encouraging cross-pollination. However, recognition is a complex process, and specific factors are needed. Here the isolation and characterization of a stigma-specific protein from N. alata, NaStEP (N. alata Stigma Expressed Protein), that is homologous to Kunitz-type proteinase inhibitors, are reported. Activity gel assays showed that NaStEP is not a functional serine proteinase inhibitor. Immunohistochemical and protein blot analyses revealed that NaStEP is detectable in stigmas of self-incompatible (SI) species N. alata, N. forgetiana, and N. bonariensis, but not in self-compatible (SC) species N. tabacum, N. plumbaginifolia, N. benthamiana, N. longiflora, and N. glauca. NaStEP contains the vacuolar targeting sequence NPIVL, and immunocytochemistry experiments showed vacuolar localization in unpollinated stigmas. After self-pollination or pollination with pollen from the SC species N. tabacum or N. plumbaginifolia, NaStEP was also found in the stigmatic exudate. The synthesis and presence in the stigmatic exudate of this protein was strongly induced in N. alata following incompatible pollination with N. tabacum pollen. The transfer of NaStEP to the stigmatic exudate was accompanied by perforation of the stigmatic cell wall, which appeared to release the vacuolar contents to the apoplastic space. The increase in NaStEP synthesis after pollination and its presence in the stigmatic exudates suggest that this protein may play a role in the early pollen–stigma interactions that regulate pollen tube growth in Nicotiana. PMID:18689443

  3. Using a Caesalpinia echinata Lam. protease inhibitor as a tool for studying the roles of neutrophil elastase, cathepsin G and proteinase 3 in pulmonary edema.

    PubMed

    Cruz-Silva, Ilana; Neuhof, Christiane; Gozzo, Andrezza Justino; Nunes, Viviane Abreu; Hirata, Izaura Yoshico; Sampaio, Misako Uemura; Figueiredo-Ribeiro, Rita de Cássia; Neuhof, Heinz; Araújo, Mariana da Silva

    2013-12-01

    Acute lung injury (ALI) is characterized by neutrophil infiltration and the release of proteases, mainly elastase (NE), cathepsin G (Cat G) and proteinase 3 (PR3), which can be controlled by specific endogenous inhibitors. However, inhibitors of these proteases have been isolated from different sources, including plants. For this study, CeEI, or Caesalpinia echinata elastase inhibitor, was purified from C. echinata (Brazil-wood) seeds after acetone fractionation, followed by ion exchange and reversed phase chromatographic steps. Characterization with SDS-PAGE, stability assays, amino acid sequencing and alignment with other protein sequences confirmed that CeEI is a member of the soybean Kunitz trypsin inhibitor family. Like other members of this family, CeEI is a 20 kDa monomeric protein; it is stable within a large pH and temperature range, with four cysteine residues forming two disulfide bridges, conserved amino acid residues and leucine-isoleucine residues in the reactive site. CeEI was able to inhibit NE and Cat G at a nanomolar range (with K(i)s of 1.9 and 3.6 nM, respectively) and inhibited PR3 within a micromolar range (K(i) 3.7 μM), leading to hydrolysis of specific synthetic substrates. In a lung edema model, CeEI reduced the lung weight and pulmonary artery pressure until 180 min after the injection of zymosan-activated polymorphonuclear neutrophils. In experiments performed in the presence of a Cat G and PR3, but not an NE inhibitor, lung edema was reduced only until 150 min and pulmonary artery pressure was similar to that of the control. These results confirm that NE action is crucial to edema establishment and progression. Additionally, CeEI appears to be a useful tool for studying the physiology of pulmonary edema and provides a template for molecular engineering and drug design for ALI therapy.

  4. Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: a role for inflammatory cells in tumor invasion and angiogenesis.

    PubMed

    Shamamian, P; Schwartz, J D; Pocock, B J; Monea, S; Whiting, D; Marcus, S G; Mignatti, P

    2001-11-01

    Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis. PMID:11598905

  5. A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene.

    PubMed Central

    Schneider, S S; Schick, C; Fish, K E; Miller, E; Pena, J C; Treter, S D; Hui, S M; Silverman, G A

    1995-01-01

    The squamous cell carcinoma antigen (SCCA) is a member of the ovalbumin family of serine proteinase inhibitors (serpins). A neutral form of the protein is found in normal and some malignant squamous cells, whereas an acidic form is detected exclusively in tumor cells and in the circulation of patients with squamous cell tumors. In this report, we describe the cloning of the SCCA gene from normal genomic DNA. Surprisingly, two genes were found. They were tandemly arrayed and flanked by two other closely related serpins, plasminogen activator inhibitor type 2 (PAI2) and maspin at 18q21.3. The genomic structure of the two genes, SCCA1 and SCCA2, was highly conserved. The predicted amino acid sequences were 92% identical and suggested that the neutral form of the protein was encoded by SCCA1 and the acidic form was encoded by SCCA2. Further characterization of the region should determine whether the differential expression of the SCCA genes plays a causal role in development of more aggressive squamous cell carcinomas. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7724531

  6. Activated recombinant adenovirus proteinases

    SciTech Connect

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  7. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  8. [Extracellular proteinases from the phytopathogenic fungus Fusarium culmorum].

    PubMed

    Ievleva, E V; Revina, T A; Kudriavtseva, N N; Sof'in, A V; Valueva, T A

    2006-01-01

    The growth of Fusarium culmorum fungus on a medium containing thermostable proteins from potato tubers was accompanied by the production of proteinases, exhibiting activity over a broad pH range (from 6.0-10.0). When studied by SDS-PAGE in the presence of beta-mercaptoethanol, extracellular proteinases were represented by at least five species with a molecular weight of 30-60 kDa. Inhibitor analysis and studies of enzyme activities with synthetic substrates demonstrated that the culture liquid of Fusarium culmorum contained serine proteinases of various classes. The amount of subtilisin-like proteinases was the highest. A near-complete inhibition of the enzymes was caused by proteinaceous proteinase inhibitors from potato tubers. These data suggest that proteinases of the phytopathogen Fusarium culmorum serve as a metabolic target for natural inhibitors of potato proteinases.

  9. Y27632, a Rho-activated kinase inhibitor, normalizes dysregulation in alpha1-adrenergic receptor-induced contraction of Lyon hypertensive rat artery smooth muscle

    PubMed Central

    Freitas, Maria Regina; Eto, Masumi; Kirkbride, Jason A; Schott, Christa; Sassard, Jean; Stoclet, Jean-Claude

    2010-01-01

    RhoA-activated kinase (ROK) is involved in disorders of smooth muscle contraction found in hypertension model animals and patients. We examined whether the α1-adrenergic receptor agonist-induced ROK signal is perturbed in resistance small mesentery artery (SMA) of Lyon genetically hypertensive (LH) rats, using a ROK antagonist, Y27632. Smooth muscle strips of SMA and aorta were isolated from LH and Lyon normotensive (LN) rats. After Ca2+-depletion and pre-treatment with phenylephrine (PE), smooth muscle contraction was induced by serial additions of CaCl2. In LH SMA Ca2+ permeated cells to a lesser extent as compared to LN SMA, while CaCl2-induced contraction of LH SMA was greater than that of LN SMA, indicating a higher ratio of force to Ca2+ in LH SMA contraction (Ca2+ sensitization). No hyper-contraction was observed in LH aorta tissues. Treatment of LH SMA with Y27632 restored both Ca2+ permeability and Ca2+-force relationship to levels seen for LN SMA. In response to PE stimulation, phosphorylation of CPI-17, a phosphorylation-dependent myosin phosphatase inhibitor protein, and MYPT1 at Thr853, the inhibitory phosphorylation site of the myosin phosphatase regulatory subunit, was increased in LN SMA, but remained unchanged in LH SMA. These results suggest that the disorder in ROK-dependent Ca2+ permeability and Ca2+-force relationship is responsible for LH SMA hyper-contraction. Unlike other hypertensive models, the ROK-induced hyper-contractility of LH SMA is independent of MYPT1 and CPI-17 phosphorylation, which suggests that ROK-mediated inhibition of myosin phosphatase does not affect SMA hyper-contractility in LH SMA cells. PMID:19298234

  10. Molecular characterization and mapping of murine genes encoding three members of the stefin family of cysteine proteinase inhibitors

    SciTech Connect

    Tsui, F.W.L.; Hingwo Tsui; Mok, S. Toronto Hospital, Ontario ); Mlinaric, I.; Siminovitch, K.A. Mount Sinai Hospital, Toronto, Ontario ); Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A. )

    1993-03-01

    Stefins or Type 1 cystatins belong to a large, evolutionarily conserved protein superfamily, the members of which inhibit the papain-like cysteine proteinases. The authors report here on the molecular cloning and chromosomal localization of three newly identified members of the murine stefin gene family. These genes, designated herein as mouse stefins 1, 2, and 3, were isolated on the basis of their relatively increased expression in moth-eaten viable compared to normal congenic mouse bone marrow cells. The open reading frames of the stefin cDNAs encode proteins of approximately 11.5 kDa that show between 50 and 92% identity to sequences of stefins isolated from various other species. Data from Southern analysis suggest that the murine stefin gene family encompasses at least 6 and possible 10-20 membranes, all of which appear to be clustered in the genome. Analysis of interspecific backcross mice indicates that the genes encoding the three mouse stefins all map to mouse chromosome 16, a localization that is consistent with the recent assignment of the human stefin A gene to a region of conserved homology between human chromosome 3q and the proximal region of mouse chromosome 16. 51 refs., 7 figs.

  11. Triangular gold nanoparticles conjugated with peptide ligands: a new class of inhibitor for Candida albicans secreted aspartyl proteinase.

    PubMed

    Jebali, Ali; Hajjar, Farzaneh Haji Esmaeil; Hekmatimoghaddam, Seyedhossein; Kazemi, Bahram; De La Fuente, Jesus M; Rashidi, Mohsen

    2014-08-15

    The aim of this study was to find the peptide ligands to inhibit Candida albicans secreted aspartyl proteinase 2 (Sap2). First, a ligand library, containing 300 different peptides, was constructed, and their interaction with Sap2 was separately calculated by molecular dynamic software. Second, 10 peptide ligands with the lowest intermolecular energy were selected. Then, triangular gold nanoparticles were synthesized, and separately conjugated with the peptide ligands. After synthesis, antifungal property and Sap inactivation of conjugated triangular gold nanoparticles, peptide ligands, and naked triangular gold nanoparticle were separately assessed, against thirty clinical isolates of C. albicans. In this study, we measured the uptake of conjugated and naked nanoparticles by atomic adsorption spectroscopy. This study showed that naked triangular gold nanoparticle and all conjugated triangular gold nanoparticles had high antifungal activity, but no peptide ligands had such activity. Of 300 peptide ligands, the peptide containing N-Cys-Lys-Lys-Arg-Met-Met-Lys-Ser-Met-Cys-C and its conjugate had the highest capability to inhibit Sap. Moreover, the uptake assay demonstrated that triangular gold nanoparticles conjugated with the peptide ligand had the highest uptake.

  12. Inhibitory effects of a Kunitz-type inhibitor from Pithecellobium dumosum (Benth) seeds against insect-pests' digestive proteinases.

    PubMed

    Rufino, Fabiola P S; Pedroso, Vanessa M A; Araujo, Jonalson N; França, Anderson F J; Rabêlo, Luciana M A; Migliolo, Ludovico; Kiyota, Sumika; Santos, Elizeu A; Franco, Octavio L; Oliveira, Adeliana S

    2013-02-01

    Pithecellobium dumosum is a tree belonging to the Mimosoideae subfamily that presents various previously characterized Kunitz-type inhibitors. The present study provides a novel Kunitz-trypsin inhibitor isoform purified from P. dumosum seeds. Purification procedure was performed by TCA precipitation followed by a trypsin-Sepharose chromatography and a further reversed-phase HPLC. Purified inhibitor (PdKI-4) showed enhanced inhibitory activity against bovine trypsin and chymotrypsin. Furthermore, PdKI-4 showed remarkable inhibitory activity against serine proteases from the coleopterans Callosobruchus maculatus and Zabrotes subfasciatus, and the lepidopterans Alabama argillacea and Telchin licus. However, PdKI-4 was unable to inhibit porcine pancreatic elastase, pineapple bromelain and Carica papaya papain. SDS-PAGE showed that PdKI-4 consisted of a single polypeptide chain with molecular mass of 21 kDa. Kinetic studies demonstrated that PdKI-4 is probably a competitive inhibitor with a Ki value of 5.7 × 10(-10) M for bovine trypsin. PdKI-4 also showed higher stability over a wide range of temperature (37-100 °C) and pH (2-12). N-termini sequence was obtained by Edman degradation showing higher identity with other Mimosoideae subfamily Kunitz-type inhibitor members. In summary, data here reported indicate the biotechnological potential of PdKI-4 for development of products against insect-pests.

  13. Detecting Alpha-1 Antitrypsin Deficiency.

    PubMed

    Stoller, James K

    2016-08-01

    Alpha-1 antitrypsin deficiency is a widely underrecognized condition, with evidence of persisting long diagnostic delays and patients' frequent need to see multiple physicians before initial diagnosis. Reasons for underrecognition include inadequate understanding of alpha-1 antitrypsin deficiency by physicians and allied health care providers; failure to implement available, guideline-based practice recommendations; and the belief that effective therapy is unavailable. Multiple studies have described both the results of screening and targeted detection of individuals with alpha-1 antitrypsin deficiency, with both varying strategies employed to identify at-risk individuals and varying results of testing. Also, various strategies to enhance detection of affected individuals have been examined, including use of the electronic medical record to prompt testing and empowerment of allied health providers, especially respiratory therapists, to promote testing for alpha-1 antitrypsin deficiency. Such efforts are likely to enhance detection with the expected result that the harmful effects of delayed diagnosis can be mitigated. PMID:27564667

  14. Trichocystatin-2 (TC-2): an endogenous inhibitor of cysteine proteinases in Trichomonas vaginalis is associated with TvCP39.

    PubMed

    Puente-Rivera, Jonathan; Ramón-Luing, Lucero de los Ángeles; Figueroa-Angulo, Elisa Elvira; Ortega-López, Jaime; Arroyo, Rossana

    2014-09-01

    The causal agent of trichomoniasis is a parasitic protist, Trichomonas vaginalis, which is rich in proteolytic activity, primarily carried out by cysteine proteases (CPs). Some CPs are known virulence factors. T. vaginalis also possesses three genes encoding endogenous cystatin-like CP inhibitors. The aim of this study was to identify and characterize one of these CP inhibitors. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), a cystatin-like peptidase inhibitor dubbed Trichocystatin-2 (TC-2) was identified in the T. vaginalis active degradome in association with TvCP39, a 39kDa CP involved in cytotoxicity. To characterize the TC-2 inhibitor, we cloned and expressed the tvicp-2 gene, purified the recombinant protein (TC-2r), and produced a specific polyclonal antibody (α-TC-2r). This antibody recognized a 10kDa protein band by western blotting. An indirect immunofluorescence assay (IFA) and cell fractionation assays using the α-TC-2r antibody showed that TC-2 was localized in the cytoplasm and lysosomes and that it colocalized with TvCP39. TC-2r showed inhibitory activity against papain, cathepsin-L, and TvCP39 in trichomonad extracts and live parasites but not legumain-like CPs. Live trichomonads treated with TC-2r showed reduced trichomonal cytotoxicity to HeLa cell monolayers in a TC-2r-concentration-dependent manner. In this study, we identified and characterized an endogenous cystatin-like inhibitor in T. vaginalis, TC-2, which is associated with TvCP39 and appears to regulate the cellular damage caused by T. vaginalis. PMID:25200185

  15. Trichocystatin-2 (TC-2): an endogenous inhibitor of cysteine proteinases in Trichomonas vaginalis is associated with TvCP39.

    PubMed

    Puente-Rivera, Jonathan; Ramón-Luing, Lucero de los Ángeles; Figueroa-Angulo, Elisa Elvira; Ortega-López, Jaime; Arroyo, Rossana

    2014-09-01

    The causal agent of trichomoniasis is a parasitic protist, Trichomonas vaginalis, which is rich in proteolytic activity, primarily carried out by cysteine proteases (CPs). Some CPs are known virulence factors. T. vaginalis also possesses three genes encoding endogenous cystatin-like CP inhibitors. The aim of this study was to identify and characterize one of these CP inhibitors. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), a cystatin-like peptidase inhibitor dubbed Trichocystatin-2 (TC-2) was identified in the T. vaginalis active degradome in association with TvCP39, a 39kDa CP involved in cytotoxicity. To characterize the TC-2 inhibitor, we cloned and expressed the tvicp-2 gene, purified the recombinant protein (TC-2r), and produced a specific polyclonal antibody (α-TC-2r). This antibody recognized a 10kDa protein band by western blotting. An indirect immunofluorescence assay (IFA) and cell fractionation assays using the α-TC-2r antibody showed that TC-2 was localized in the cytoplasm and lysosomes and that it colocalized with TvCP39. TC-2r showed inhibitory activity against papain, cathepsin-L, and TvCP39 in trichomonad extracts and live parasites but not legumain-like CPs. Live trichomonads treated with TC-2r showed reduced trichomonal cytotoxicity to HeLa cell monolayers in a TC-2r-concentration-dependent manner. In this study, we identified and characterized an endogenous cystatin-like inhibitor in T. vaginalis, TC-2, which is associated with TvCP39 and appears to regulate the cellular damage caused by T. vaginalis.

  16. The recombinant prepro region of TvCP4 is an inhibitor of cathepsin L-like cysteine proteinases of Trichomonas vaginalis that inhibits trichomonal haemolysis.

    PubMed

    Cárdenas-Guerra, Rosa Elena; Ortega-López, Jaime; Flores-Pucheta, Claudia Ivonne; Benítez-Cardoza, Claudia Guadalupe; Arroyo, Rossana

    2015-02-01

    Trichomonas vaginalis expresses multiple proteinases, mainly of the cysteine type (CPs). A cathepsin L-like 34kDa CP, designated TvCP4, is synthesized as a 305-amino-acid precursor protein. TvCP4 contains the prepro fragment and the catalytic triad that is typical of the papain-like CP family of clan CA. The aim of this work was to determine the function of the recombinant TvCP4 prepro region (ppTvCP4r) as a specific inhibitor of CPs. We cloned, expressed, and purified the recombinant TvCP4 prepro region. The conformation of the purified and refolded ppTvCP4r polypeptide was verified by circular dichroism spectroscopy and fluorescence emission spectra. The inhibitory effect of ppTvCP4r was tested on protease-resistant extracts from T. vaginalis using fluorogenic substrates for cathepsin L and legumain CPs. In 1-D zymograms, the inhibitory effect of ppTvCP4r on trichomonad CP proteolytic activity was observed in the ∼97, 65, 39, and 30 kDa regions. By using 2-D zymograms and mass spectrometry, several of the CPs inhibited by ppTvCP4r were identified. A clear reduction in the proteolytic activity of several cathepsin L-like protein spots (TvCP2, TvCP4, TvCP4-like, and TvCP39) was observed compared with the control zymogram. Moreover, pretreatment of live parasites with ppTvCP4r inhibited trichomonal haemolysis in a concentration dependent manner. These results confirm that the recombinant ppTvCP4 is a specific inhibitor of the proteolytic activity of cathepsin L-like T. vaginalis CPs that is useful for inhibiting virulence properties depending on clan CA papain-like CPs. PMID:25499446

  17. The recombinant prepro region of TvCP4 is an inhibitor of cathepsin L-like cysteine proteinases of Trichomonas vaginalis that inhibits trichomonal haemolysis.

    PubMed

    Cárdenas-Guerra, Rosa Elena; Ortega-López, Jaime; Flores-Pucheta, Claudia Ivonne; Benítez-Cardoza, Claudia Guadalupe; Arroyo, Rossana

    2015-02-01

    Trichomonas vaginalis expresses multiple proteinases, mainly of the cysteine type (CPs). A cathepsin L-like 34kDa CP, designated TvCP4, is synthesized as a 305-amino-acid precursor protein. TvCP4 contains the prepro fragment and the catalytic triad that is typical of the papain-like CP family of clan CA. The aim of this work was to determine the function of the recombinant TvCP4 prepro region (ppTvCP4r) as a specific inhibitor of CPs. We cloned, expressed, and purified the recombinant TvCP4 prepro region. The conformation of the purified and refolded ppTvCP4r polypeptide was verified by circular dichroism spectroscopy and fluorescence emission spectra. The inhibitory effect of ppTvCP4r was tested on protease-resistant extracts from T. vaginalis using fluorogenic substrates for cathepsin L and legumain CPs. In 1-D zymograms, the inhibitory effect of ppTvCP4r on trichomonad CP proteolytic activity was observed in the ∼97, 65, 39, and 30 kDa regions. By using 2-D zymograms and mass spectrometry, several of the CPs inhibited by ppTvCP4r were identified. A clear reduction in the proteolytic activity of several cathepsin L-like protein spots (TvCP2, TvCP4, TvCP4-like, and TvCP39) was observed compared with the control zymogram. Moreover, pretreatment of live parasites with ppTvCP4r inhibited trichomonal haemolysis in a concentration dependent manner. These results confirm that the recombinant ppTvCP4 is a specific inhibitor of the proteolytic activity of cathepsin L-like T. vaginalis CPs that is useful for inhibiting virulence properties depending on clan CA papain-like CPs.

  18. The 2.5 A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analysed in its complex with bovine alpha-chymotrypsin.

    PubMed Central

    Grütter, M G; Fendrich, G; Huber, R; Bode, W

    1988-01-01

    Orthorhombic crystals of the complex formed between bovine alpha-chymotrypsin and a recombinant human mucous proteinase inhibitor (SLPI) were grown. Data to 2.3 A resolution were collected on the area-detector diffractometer FAST. The crystal structure of the complex was solved by Patterson search techniques using chymotrypsin as a search model. A cyclic procedure of modeling and crystallographic refinement enabled the determination of the SLPI structure. The current crystallographic R-value is 0.19. SLPI has a boomerang-like shape with both wings comprising two well separated domains of similar architecture. In each domain the polypeptide chain is arranged like a stretched spiral. Two internal strands form a regular beta-hairpin loop which is accompanied by two external strands linked by the proteinase binding segment. The polypeptide segment of each domain is interconnected by four disulfide bridges with a connectivity pattern hitherto unobserved. The reactive site loop of the second domain has elastase and chymotrypsin binding properties. It contains the scissile peptide bond between Leu72I and Met73I and has a similar conformation to that observed in other serine proteinase protein inhibitors. Eight residues of this loop, two of the adjacent hairpin loop, the C-terminal segment and Trp30I are in direct contact with the cognate enzyme. The binding loop of the first domain (probably with anti-trypsin activity) is disordered due to proteolytic cleavage occurring in the course of crystallization. PMID:3366116

  19. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function.

    PubMed

    Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T

    2015-12-01

    The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis.

  20. A fast-acting elastase inhibitor in human monocytes

    PubMed Central

    1985-01-01

    A proteinase inhibitor active against neutrophil and pancreatic elastase was detected in extracts of cultured human monocytes and the human monocyte-like cell line U937. This component forms a covalent complex with the active site of elastase; the complex is stable in boiling sodium dodecyl sulfate solution, and is susceptible to nucleophilic cleavage. The activity of the elastase inhibitor is not detected in extracts of freshly isolated monocytes, but becomes detectable when the monocytes are allowed to mature in culture, with maximum levels occurring at 5-7 d. The monocyte inhibitor is fast- acting; its reaction with 125I-labeled elastase is complete in less than 1 min at 37 degrees C. Analysis by electrophoresis and studies using a heteroantiserum to alpha 1-proteinase inhibitor demonstrated that the elastase inhibitor of monocytes/U937 cells is not identical to alpha 1-proteinase inhibitor, the major elastase inhibitor of blood plasma. The extent of conversion of 125I-elastase to the 125I-elastase- inhibitor complex is proportional to the amount of U937 extract or cultured monocyte extract, indicating that this reaction can serve to quantify the elastase inhibitor. The elastase inhibitor is an abundant component in mature monocytes, with greater than or equal to 1.5 X 10(6) molecules/cell (greater than or equal to 12 micrograms per 10(8) cells, greater than 0.1% of total cell protein). Its mol wt is estimated at 50,000. Thus, the monocyte inhibitor should be classified as a putative regulator of neutrophil (and monocyte) elastase activity at inflammatory sites. This designation is based on the properties of the molecule, including its high concentration in maturing monocytes, its affinity for elastase, and its fast reaction with this enzyme. PMID:3906019

  1. Well-Known and Less Well-Known Functions of Alpha-1 Antitrypsin. Its Role in Chronic Obstructive Pulmonary Disease and Other Disease Developments.

    PubMed

    Janciauskiene, Sabina; Welte, Tobias

    2016-08-01

    Alpha-1 antitrypsin (A1AT) is an acute-phase protein, and is best known as an inhibitor of the serine proteases, specifically, neutrophil elastase, proteinase 3, and cathepsin G. The discovery of the connection between inherited A1AT deficiency and emphysema resulted in the concept of a proteinase-antiproteinase imbalance to explain the pathogenic mechanisms of chronic obstructive pulmonary disease, as well as the concomitant development of augmentation therapy with plasma-purified human A1AT. This proteinase-antiproteinase imbalance concept has been difficult to prove, as no single mechanism can account for the complex pathology of chronic obstructive pulmonary disease. New studies have begun to characterize A1AT as an antiinflammatory and an immunoregulatory protein, independent of its antiprotease activity. We recently found that A1AT binds to free fatty acids, and it is this form of A1AT that induces the expression and release of angiopoietin-like protein 4, a protein associated with dyslipidemia and inflammation. This latter finding further strengthens the idea that describing A1AT therapy as antiserine protease is perhaps an oversimplification. The preliminary findings suggest that A1AT could be used for the management of diseases not necessarily related to inherited A1ATD, and points toward a need for more detailed investigations into the relationships between the concentration, structure, and function of A1AT protein. PMID:27564662

  2. Differential subcellular targeting of recombinant human α₁-proteinase inhibitor influences yield, biological activity and in planta stability of the protein in transgenic tomato plants.

    PubMed

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Jain, G K; Amla, D V

    2012-11-01

    The response of protein accumulation site on yield, biological activity and in planta stability of therapeutic recombinant human proteinase inhibitor (α₁-PI) was analyzed via targeting to different subcellular locations, like endoplasmic reticulum (ER), apoplast, vacuole and cytosol in leaves of transgenic tomato plants. In situ localization of the recombinant α₁-PI protein in transgenic plant cells was monitored by immunohistochemical staining. Maximum accumulation of recombinant α₁-PI in T₀ and T₁ transgenic tomato plants was achieved from 1.5 to 3.2% of total soluble protein (TSP) by retention in ER lumen, followed by vacuole and apoplast, whereas cytosolic targeting resulted into degradation of the protein. The plant-derived recombinant α₁-PI showed biological activity for elastase inhibition, as monitored by residual porcine pancreatic elastase (PPE) activity assay and band-shift assay. Recombinant α₁-PI was purified from transgenic tomato plants with high yield, homogeneity and biological activity. Purified protein appeared as a single band of ∼48-50 kDa on SDS-PAGE with pI value ranging between 5.1 and 5.3. Results of mass spectrometry and optical spectroscopy of purified recombinant α₁-PI revealed the structural integrity of the recombinant protein comparable to native serum α₁-PI. Enzymatic deglycosylation and lectin-binding assays with the purified recombinant α₁-PI showed compartment-specific N-glycosylation of the protein targeted to ER, apoplast and vacuole. Conformational studies based on urea-induced denaturation and circular dichroism (CD) spectroscopy revealed relatively lower stability of the recombinant α₁-PI protein, compared to its serum counterpart. Pharmacokinetic evaluation of plant derived recombinant and human plasma-purified α₁-PI in rat, by intravenous route, revealed significantly faster plasma clearance and lower area under curve (AUC) of recombinant protein. Our data suggested significance of

  3. What Causes Alpha-1 Antitrypsin Deficiency?

    MedlinePlus

    ... from the NHLBI on Twitter. What Causes Alpha-1 Antitrypsin Deficiency? Alpha-1 antitrypsin (AAT) deficiency is an inherited disease. "Inherited" ... have AAT deficiency inherit two faulty AAT genes, one from each parent. These genes tell cells in ...

  4. How Is Alpha-1 Antitrypsin Deficiency Treated?

    MedlinePlus

    ... from the NHLBI on Twitter. How Is Alpha-1 Antitrypsin Deficiency Treated? Alpha-1 antitrypsin (AAT) deficiency has no cure, but its ... of these treatments are the same as the ones used for a lung disease called COPD (chronic ...

  5. Formation of a noncovalent serpin-proteinase complex involves no conformational change in the serpin. Use of 1H-15N HSQC NMR as a sensitive nonperturbing monitor of conformation.

    PubMed

    Peterson, F C; Gordon, N C; Gettins, P G

    2000-10-01

    A structural understanding of the nature and scope of serpin inhibition mechanisms has been limited by the inability so far to crystallize any serpin-proteinase complex. We describe here the application of [(1)H-(15)N]-HSQC NMR on uniformly and residue-selectively (15)N-labeled serpin alpha(1)-proteinase inhibitor (Pittsburgh variant with stabilizing mutations) to provide a nonperturbing and exquisitely sensitive means of probing the conformation of the serpin alone and in a noncovalent complex with inactive, serine 195-modified, bovine trypsin. The latter should be a good model both for the few examples of reversible serpin-proteinase complexes and for the initial Michaelis-like complex formed en route to irreversible covalent inhibition. Cleavage of the reactive center loop, with subsequent insertion into beta-sheet A, caused dramatic perturbation of most of the NMR cross-peaks. This was true for both the uniformly labeled and alanine-specifically labeled samples. The spectra of uniformly or leucine- or alanine-specifically labeled alpha(1)-proteinase inhibitor in noncovalent complex with unlabeled inactive trypsin gave almost no detectable chemical shift changes of cross-peaks, but some general increase in line width. Residue-specific assignments of the four alanines in the reactive center loop, at P12, P11, P9, and P4, allowed specific examination of the behavior of the reactive center loop. All four alanines showed higher mobility than the body of the serpin, consistent with a flexible reactive center loop, which remained flexible even in the noncovalent complex with proteinase. The three alanines near the hinge point for insertion showed almost no chemical shift perturbation upon noncovalent complex formation, while the alanine at P4 was perturbed, presumably by interaction with the active site of bound trypsin. Reporters from both the body of the serpin and the reactive center loop therefore indicate that noncovalent complex formation involves no

  6. The action of calcium channel blockers on recombinant L-type calcium channel alpha1-subunits.

    PubMed

    Morel, N; Buryi, V; Feron, O; Gomez, J P; Christen, M O; Godfraind, T

    1998-11-01

    1. CHO cells expressing the alpha(1C-a) subunit (cardiac isoform) and the alpha(1C-b) subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for alpha1C isoforms. 2. Inward current evoked by the transfected alpha1 subunit was recorded by the patch-clamp technique in the whole-cell configuration. 3. Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of alpha(1C-)b-subunit than of alpha(1C-a)-subunit. This difference was more marked at a holding potential of -100 mV than at -50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms. 4. Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on alpha(1C-a) than on alpha(1C-b) subunit at Vh of -100 mV and -50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages. 5. [3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the alpha(1C-b) than for the alpha(1C-a) subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the alpha(1C-a) subunit than for the alpha(1C-b) subunit. 6. These results indicate marked differences among Ca2+ channel blockers in their selectivity for the alpha(1C-a) and alpha(1C-b) subunits of the Ca2+ channel. PMID:9846638

  7. Multiple forms of calcium-dependent proteinase in crustacean muscle

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1986-01-01

    Four calcium-dependent proteinase (CDP) activities in lobster muscles have been resolved by high performance liquid chromatography. These activities differ in molecular weight and net charge. Though optimum activity occurred at high (5 and 10 mM) calcium at pH 6.8, the enzymes differ in activation at lower calcium concentrations. Only one of the CDPs is active at 100 ..mu..M calcium; none are active at 10 ..mu..M and below. Although all four CDPs are inhibited by the cysteine proteinase inhibitors leupeptin, E-64, and iodoacetamide, they show a differential response to the aspartic proteinase inhibitor pepstatin and the serine proteinase inhibitor PMSF. In contrast to CDPs from vertebrate tissues, crustacean muscles contain multiple forms that require calcium at millimolar levels. 17 refs., 6 figs.

  8. Delivery of Alpha-1 Antitrypsin to Airways.

    PubMed

    Griese, Matthias; Scheuch, Gerhard

    2016-08-01

    Treatment with exogenous alpha-1 antitrypsin (AAT), a potent serine protease inhibitor, was developed originally for chronic obstructive pulmonary disease associated with AAT deficiency; however, other lung conditions involving neutrophilic inflammation and proteolytic tissue injury related to neutrophil elastase and other serine proteases may also be considered for AAT therapy. These conditions include bronchiectasis caused by primary ciliary dyskinesia, cystic fibrosis, and other diseases associated with an increased free elastase activity in the airways. Inhaled AAT may be a viable option to counteract proteolytic tissue damage. This form of treatment requires efficient drug delivery to the targeted pulmonary compartment. Aerosol technology meeting this requirement is currently available and offers an alternative therapeutic approach to systemic AAT administration. To date, early studies in humans have shown biochemical efficacy and have established the safety of inhaled AAT. However, to bring aerosol AAT therapy to patients, large phase 3 protocols in carefully selected patient populations (i.e., subgroups of patients with AAT deficiency, cystic fibrosis, or other lung diseases with bronchiectasis) will be needed with clinical end points in addition to the measurement of proteolytic activity in the airway. The outcomes likely will have to include lung function, lung structure assessed by computed tomography imaging, disease exacerbations, health status, and mortality. PMID:27564672

  9. Different cysteine proteinases involved in bone resorption and osteoclast formation.

    PubMed

    Brage, M; Abrahamson, M; Lindström, V; Grubb, A; Lerner, U H

    2005-06-01

    Cysteine proteinases, especially cathepsin K, play an important role in osteoclastic degradation of bone matrix proteins and the process can, consequently, be significantly inhibited by cysteine proteinase inhibitors. We have recently reported that cystatin C and other cysteine proteinase inhibitors also reduce osteoclast formation. However, it is not known which cysteine proteinase(s) are involved in osteoclast differentiation. In the present study, we compared the relative potencies of cystatins C and D as inhibitors of bone resorption in cultured mouse calvariae, osteoclastogenesis in mouse bone marrow cultures, and cathepsin K activity. Inhibition of cathepsin K activity was assessed by determining equilibrium constants for inhibitor complexes in fluorogenic substrate assays. The data demonstrate that whereas human cystatins C and D are equipotent as inhibitors of bone resorption, cystatin D is 10-fold less potent as an inhibitor of osteoclastogenesis and 200-fold less potent as an inhibitor of cathepsin K activity. A recombinant human cystatin C variant with Gly substitutions for residues Arg8, Leu9, Val10, and Trp106 did not inhibit bone resorption, had 1,000-fold decreased inhibitory effect on cathepsin K activity compared to wildtype cystatin C, but was equipotent with wildtype cystatin C as an inhibitor of osteoclastogenesis. It is concluded that (i) different cysteine proteinases are likely to be involved in bone resorption and osteoclast formation, (ii) cathepsin K may not be an exclusive target enzyme in any of the two systems, and (iii) the enzyme(s) involved in osteoclastogenesis might not be a typical papain-like cysteine proteinase.

  10. Alpha-1 Antitrypsin Deficiency (Inherited Emphysema)

    MedlinePlus

    ... 1 protein in the blood with normal alpha-1 antitrypsin from healthy plasma donors. It is given in a vein (IV). The dose is adjusted based on body weight. This treatment is often given once a week. There are three ... the management of Alpha-1 related emphysema includes: • Exercise and a healthy lifestyle ...

  11. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.

    PubMed

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming

    2014-05-01

    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.

  12. Regulation of mitochondrial biogenesis. Occurrence of non-functioning components of the mitochondrial respiratory chain in Saccharomyces cerevisiae grown in the presence of proteinase inhibitors: evidence for proteolytic control over assembly of the respiratory chain.

    PubMed

    Galkin, A V; Tsoi, T V; Luzikov, V N

    1980-07-15

    Yeast was grown in glucose- or galactose-containing media without or with proteinase inhibitors, phenylmethanesulphonyl fluoride and pepstatin. Culture growth was practically not affected by these compounds. Yeast growth on glucose in the presence of either phenylmethanesulphonyl fluoride or pepstatin entails accumulation of cytochromes c, c1, b and aa3 to a 25--30% excess above the control by the stationary phase, while cell respiration is unaffected. During growth on galactose the maximal cytochrome content (per unit weight of biomass) is reached in the mid-exponential phase and then decreases by 30--40% towards the stationary phase, while cell respiration remains constant. Addition of phenylmethanesulphonyl fluoride or pepstatin in the mid-exponential phase blocks the decrease in cytochrome levels and has no effect on cell respiration. Mitochondrial populations isolated from stationary-phase control and phenylmethanesulphonyl fluoride-grown cells glucose cultures display identical succinate oxidase and partial-respiratory-chain activities, despite the differences in cytochrome contents. However, the activities of individual respiratory complexes measured after maximal activation are nearly proportional to the amounts of corresponding components. The same situation holds true for mitochondrial populations from mid-exponential-phase, stationary-phase control and stationary-phase inhibitor-grown cells of galactose cultures. The findings suggest that the 'surplus' respiratory-chain components do not participate in electron flow because of the lack of interaction with adjacent carriers.

  13. Alpha-1 Antitrypsin Deficiency: Beyond the Protease/Antiprotease Paradigm.

    PubMed

    Cosio, Manuel G; Bazzan, Erica; Rigobello, Chiara; Tinè, Mariaenrica; Turato, Graziella; Baraldo, Simonetta; Saetta, Marina

    2016-08-01

    From the discovery that alpha-1 antitrypsin (AAT) was an effective inhibitor of neutrophil elastase originated the classic paradigm of protease/antiprotease imbalance, linking lung destruction to the unopposed effect of proteases in patients with the deficiency. Notwithstanding its importance as an antiprotease, it has become evident that alpha-1 antitrypsin has important antiinflammatory and immune-regulatory activities, which may be critically involved in lung destruction. We review here recent evidence showing that, indeed, an important adaptive immune reaction is present in lungs with AAT deficiency, similar to the one seen in severe chronic obstructive pulmonary disease with normal AAT. On the basis of recent evidence from epidemiological, clinical, and pathogenetic studies, it is likely time to move on from the original protease/antiprotease hypothesis for the production of emphysema toward a more complex paradigm, involving the antiinflammatory and immune modulating functions of AAT. PMID:27564665

  14. Genetics Home Reference: alpha-1 antitrypsin deficiency

    MedlinePlus

    ... and genetic modifiers of emphysema risk. Thorax. 2004 Mar;59(3):259-64. Review. Citation on PubMed ... alpha}1-antitrypsin deficiency. Arch Intern Med. 2009 Mar 23;169(6):546-50. doi: 10.1001/ ...

  15. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  16. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  17. Tumor Necrosis Factor-α-induced Proteolytic Activation of Pro-matrix Metalloproteinase-9 by Human Skin Is Controlled by Down-regulating Tissue Inhibitor of Metalloproteinase-1 and Mediated by Tissue-associated Chymotrypsin-like Proteinase*

    PubMed Central

    Han, Yuan-Ping; Nien, Yih-Dar; Garner, Warren L.

    2008-01-01

    The proteolytic activation of pro-matrix metalloproteinase (MMP)-9 by conversion of the 92-kDa precursor into an 82-kDa active form has been observed in chronic wounds, tumor metastasis, and many inflammation-associated diseases, yet the mechanistic pathway to control this process has not been identified. In this report, we show that the massive expression and activation of MMP-9 in skin tissue from patients with chronically unhealed wounds could be reconstituted in vitro with cultured normal human skin by stimulation with transforming growth factor-β and tumor necrosis factor (TNF)-α. We dissected the mechanistic pathway for TNF-α induced activation of pro-MMP-9 in human skin. We found that proteolytic activation of pro-MMP-9 was mediated by a tissue-associated chymotrypsin-like proteinase, designated here as pro-MMP-9 activator (pM9A). This unidentified activator specifically converted pro-MMP-9 but not pro-MMP-2, another member of the gelatinase family. The tissue-bound pM9A was steadily expressed and not regulated by TNF-α, which indicated that the cytokine-mediated activation of pro-MMP-9 might be regulated at the inhibitor level. Indeed, the skin constantly secreted tissue inhibitor of metalloproteinase-1 at the basal state. TNF-α, but not transforming growth factor-β, down-regulated this inhibitor. The TNF-α-mediated activation of pro-MMP-9 was tightly associated with down-regulation of tissue inhibitor of metalloproteinase-1 in a dose-dependent manner. To establish this linkage, we demonstrate that the recombinant tissue inhibitor of metalloproteinase-1 could block the activation of pro-MMP-9 by either the intact skin or skin fractions. Thus, these studies suggest a novel regulation for the proteolytic activation of MMP-9 in human tissue, which is mediated by tissue-bound activator and controlled by down-regulation of a specific inhibitor. PMID:12004062

  18. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    SciTech Connect

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J

    1998-06-29

    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  19. High-Resolution structure of the stable plasminogen activator inhibitor type-1 variant 14-1B in its proteinase-cleaved form: A new tool for detailed interaction studies and modeling

    SciTech Connect

    Jensen, J.; Gettins, P.

    2008-10-22

    Wild-type plasminogen activator inhibitor type-1 (PAI-1) rapidly converts to the inactive latent state under conditions of physiological pH and temperature. For in vivo studies of active PAI-1 in cell culture and in vivo model systems, the 14-1B PAI-1 mutant (N150H-K154T-Q319L-M354I), with its stabilized active conformation, has thus become the PAI-1 of choice. As a consequence of the increased stability, the only two forms likely to be encountered are the active or the cleaved form, the latter either free or complexed with target proteinase. We hereby report the first structure of the stable 14-1B PAI-1 variant in its reactive center cleaved form, to a resolution of 2.0 {angstrom}. The >99% complete structure represents the highest resolved structure of free cleaved PAI-1. This high-resolution structure should be of great use for drug target development and for modeling protein-protein interactions such as those of PAI-1 with vitronectin.

  20. [Alpha-1 antitrypsin deficiency: diagnosis and treatment].

    PubMed

    Camelier, Aquiles A; Winter, Daniel Hugo; Jardim, José Roberto; Barboza, Carlos Eduardo Galvão; Cukier, Alberto; Miravitlles, Marc

    2008-07-01

    Alpha-1 antitrypsin deficiency is a recently identified genetic disease that occurs almost as frequently as cystic fibrosis. It is caused by various mutations in the SERPINA1 gene, and has numerous clinical implications. Alpha-1 antitrypsin is mainly produced in the liver and acts as an antiprotease. Its principal function is to inactivate neutrophil elastase, preventing tissue damage. The mutation most commonly associated with the clinical disease is the Z allele, which causes polymerization and accumulation within hepatocytes. The accumulation of and the consequent reduction in the serum levels of alpha-1 antitrypsin cause, respectively, liver and lung disease, the latter occurring mainly as early emphysema, predominantly in the lung bases. Diagnosis involves detection of low serum levels of alpha-1 antitrypsin as well as phenotypic confirmation. In addition to the standard treatment of chronic obstructive pulmonary disease, specific therapy consisting of infusion of purified alpha-1 antitrypsin is currently available. The clinical efficacy of this therapy, which appears to be safe, has yet to be definitively established, and its cost-effectiveness is also a controversial issue that is rarely addressed. Despite its importance, in Brazil, there are no epidemiological data on the prevalence of the disease or the frequency of occurrence of deficiency alleles. Underdiagnosis has also been a significant limitation to the study of the disease as well as to appropriate treatment of patients. It is hoped that the creation of the Alpha One International Registry will resolve these and other important issues. PMID:18695797

  1. Preliminary neutron and ultrahigh-resolution X-ray diffraction studies of the aspartic proteinase endothiapepsin cocrystallized with a gem-diol inhibitor

    SciTech Connect

    Tuan, Han-Fang; Erskine, Peter; Langan, Paul; Cooper, Jon; Coates, Leighton

    2007-12-01

    Three data sets have been collected on endothiapepsin complexed with the gem-diol inhibitor PD-135,040: a high-resolution synchrotron X-ray data set, a room-temperature X-ray data set and a neutron diffraction data set. Until recently, it has been impossible to grow large protein crystals of endothiapepsin with any gem-diol inhibitor that are suitable for neutron diffraction. Endothiapepsin has been cocrystallized with the gem-diol inhibitor PD-135,040 in a low solvent-content (39%) unit cell, which is unprecedented for this enzyme–inhibitor complex and enables ultrahigh-resolution (1.0 Å) X-ray diffraction data to be collected. This atomic resolution X-ray data set will be used to deduce the protonation states of the catalytic aspartate residues. A room-temperature neutron data set has also been collected for joint refinement with a room-temperature X-ray data set in order to locate the H/D atoms at the active site.

  2. Midgut proteinases of Sitotroga cerealella (Oliver) (Lepidoptera:Gelechiidae): Characterization and relationship to resistance in cereals

    SciTech Connect

    Wu, Lan.

    1989-01-01

    Midgut proteinases are vital to the insects which digest ingested food in the midgut. Insect midgut proteinases, therefore, have been considered as possible targets for the control of insect pests. Proteinaceous proteinase inhibitors are very attractive for their potential use in developing insect resistant plant varieties via genetic engineering. Sitotroga cerealella is one of the major storage pests of cereals, and no antibiotic resistance in wheat against this insect has been identified to date. A series of diagnostic inhibitors, thiol-reducing agents and a metal-ion chelator were used in the identification of proteinases in crude extracts from S. cerealella larval midguts with both protein and ester substrates. The partial inhibition of proteolytic activity in crude midgut extract toward ({sup 3}H)-methemoglobin by pepstatin A suggested the presence of another proteinase which was sensitive to pepstatin A. The optimum pH range for the proteolytic activity, however, indicated that the major midgut proteinases were not carboxyl proteinases. Two proteinases were successfully purified by a combination of fractionation with ammonium sulfate, gel permeation and anion exchange chromatography. Characterization of the enzymes with the purified enzyme preparations confirmed that the two major proteinases were serine endoproteinases with trypsin-like and chymotrypsin-like specificities respectively. Bioassays were conducted using the artificial seeds to test naturally occurring proteinaceous proteinase inhibitors of potential value. Soybean trypsin inhibitor and the Bowman-Birk proteinase inhibitor had adverse effects on the development of the insect. A predictive model was constructed to evaluate effects of seed resistance in conjunction with other control methods on S. cerealella population dynamics.

  3. Kinetic analysis of a general model of activation of aspartic proteinase zymogens involving a reversible inhibitor. II. Contribution of the uni- and bimolecular activation routes.

    PubMed

    Muñoz-López, A; Sotos-Lomas, A; Arribas, E; Escribano, J; Masia-Perez, J; Muñoz-Muñoz, J L; Varon, R

    2007-04-01

    From the kinetic study carried out in part I of this series (preceding article) an analysis quantifying the relative contribution to the global process of the uni- and bimolecular routes has been carried out. This analysis suggests a way to predict the time course of the relative contribution as well as the effect on this relative weight of the initial zymogen, inhibitor and activating enzyme concentrations.

  4. Controlled intracellular proteolysis during postpartal involution of the uterus: characterization and regulation of an alkaline proteinase.

    PubMed

    Roth, M; Hoechst, M; Afting, E G

    1981-01-01

    The postpartal involution of the uterus is predominantly due to cellular hypotrophy. This implies an intracellular proteolytic system which must be carefully controlled pre and post partum. We have characterized and partially purified a proteinase with an alkaline pH-optimum of activity and a proteinase inhibitor protein which inhibits this proteinase very strongly. The alkaline proteinase copurifies with the actomyosin complex of the uterine myometrium and degrades the actomyosin complex with a concomitant loss of its myosin-ATPase activity. The alkaline proteinase is a very labile enzyme, markedly sensitive to SH-group modifying agents and has very high molecular weight at the present state of purification. This proteolytic enzyme could specifically be separated from the main components of the actomyosin complex by extraction with low ionic strength phosphate buffers. The proteinase inhibitor protein may control the activity of this alkaline proteinase during pregnancy and involution. The inhibitor protein raises 15-fold during pregnancy, possibly blocks important steps of intracellular proteolysis and permits organ growth. The dramatic fall of the inhibitor protein activity after parturition, which precedes the loss of weight, could release the proteolytic system, including the alkaline proteinase, and permits controlled intracellular degradation.

  5. Multigene family for Bowman-Birk type proteinase inhibitors of wild soja and soybean: the presence of two BBI-A genes and pseudogenes.

    PubMed

    Deshimaru, Masanobu; Yoshimi, Shingo; Shioi, Seijiro; Terada, Shigeyuki

    2004-06-01

    Genes for Bowman-Birk type protease inhibitors (BBIs) of wild soja (Glycine soja) and soybean (Glycine max) comprise a multigene family. The organization of the genes for wild soja BBIs (wBBIs) was elucidated by an analysis of their cDNAs and the corresponding genomic sequences, and compared with the counterparts in the soybean. The cDNAs encoding three types of wild soja BBIs (wBBI-A, -C, and -D) were cloned. Two subtypes of cDNAs for wBBI-A, designated wBBI-A1 and -A2, were further identified. Similar subtypes (sBBI-A1 and -A2) were also found in the soybean genome. cDNA sequences for wBBIs were highly homologous to those for the respective soybean homologs. Phylogenetic analysis of these cDNAs demonstrated the evolutional proximity between these two leguminae strains.

  6. Recent advances in the discovery of alpha1-adrenoceptor agonists.

    PubMed

    Bishop, Michael J

    2007-01-01

    The alpha(1) adrenoceptors are three of nine well-characterized receptors that are activated by epinephrine and norepinephrine. Agonists acting at the alpha(1) adrenoceptors produce numerous physiological effects, and are used therapeutically for several indications. Many known alpha(1) adrenoceptor agonists are alpha(1A) selective, but the discovery of highly selective alpha(1B) and alpha(1D) adrenoceptor agonists has proven to be an extremely difficult goal to achieve. This review will focus on recent advances in the discovery, development and clinical utility of subtype-specific alpha(1) agonists as well as contributions to our understanding of agonist-receptor interactions.

  7. Co-factor activated recombinant adenovirus proteinases

    SciTech Connect

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  8. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  9. Alpha 1D- and alpha 1A-adrenoceptors mediate contraction in rat renal artery.

    PubMed

    Villalobos-Molina, R; López-Guerrero, J J; Ibarra, M

    1997-03-19

    To investigate the alpha 1-adrenoceptor subtype(s) mediating contraction in rat renal artery, we have compared the effect of the alpha 1-adrenoceptor antagonists, 5-methylurapidil, BMY 7378 (8-(2-(4-(2-methoxyphenyl)-1-piperazinyl) ethyl) 8-azaspiro (4.5) decane-7,9-dione 2HCl) and chloroethylclonidine on functional responses to noradrenaline. A clear blockade by chloroethylclonidine (10(-4) M) of noradrenaline-induced contraction was observed and, along with this effect. pKB values of 9.12 and 8.40 for BMY 7378 and 9.75 and 10.06 for 5-methylurapidil were obtained, indicating that the renal artery expresses the alpha 1D-adrenoceptor subtype as the one involved in contraction and not only the alpha 1A subtype as has been reported. PMID:9098691

  10. New immunocapture enzyme (ICE) assay for quantification of cancer procoagulant activity: studies of inhibitors.

    PubMed

    Mielicki, W P; Tagawa, M; Gordon, S G

    1994-04-01

    A new, sensitive and specific immunocapture enzyme (ICE) assay for quantitation of the enzymatic activity of cancer procoagulant (CP) has been developed. The assay had good reproducibility (inter- and intra-assay CV were 6.4% and 5.7% respectively) and was linear for concentrations of CP from 0.5 microgram/ml to 10 micrograms/ml (r2 = 0.995). Using this assay the inhibition of CP by iodoacetamide, mercuric chloride, E-64, leupeptin and antipain was demonstrated. There was no significant effect of cystatin and natural plasma proteinase inhibitors alpha 1-antitrypsin, alpha 1-antichymotrypsin, alpha 2-macroglobulin and antithrombin-III/heparin, on the activity of the CP.

  11. Molecular characterization of two kazal-type serine proteinase inhibitor genes in the surf clam Mesodesma donacium exposed to Vibrio anguillarum.

    PubMed

    Maldonado-Aguayo, Waleska; Núñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2013-06-01

    This study reports two kazal-type serine protease inhibitors (KPI) identified in a cDNA library from the surf clam Mesodesma donacium, and characterized through Rapid Amplification of cDNA Ends (RACE). The KPIs, denoted as MdSPI-1 and MdSPI-2, presented full sequences of 1139 bp and 781 bp respectively. MdSPI-1 had a 5'untranslated region (UTR) of 175 bp, a 3'UTR of 283 bp and an open reading frame (ORF) of 681 pb that encodes for 227 amino acids. MdSPI-2 showed a 5'UTR of 70 bp, a 3'UTR of 279 bp and an ORF of 432 bp that encodes for 144 amino acids. Both sequences presented two kazal-type tandem domains. Phylogenetic analysis of MdSPI-1 and MdSPI-2 shows a main clade composed by other bivalve species and closely related crustaceans. Real time PCR analysis showed that MdSPI-1 is mainly up-regulated in mantle, foot, gills and muscle tissues, while MdSPI-2 is expressed principally in foot tissue. Moreover, to evaluate the immune response of MdSPI-1 and MdSPI-2, infections with Vibrio anguillarum were performed. Herein, MdSPI-1 and MdSPI-2 transcription expression were significantly up-regulated at 2 and 8 h post-challenge. Our results suggest that MdSPI-1 and MdSPI-2 are important humoral factors of innate immunity in M. donacium. PMID:23528874

  12. Corticosteroid-binding globulin cleavage is paradoxically reduced in alpha-1 antitrypsin deficiency: Implications for cortisol homeostasis.

    PubMed

    Nenke, Marni A; Holmes, Mark; Rankin, Wayne; Lewis, John G; Torpy, David J

    2016-01-15

    High-affinity corticosteroid-binding globulin (haCBG) is cleaved by neutrophil elastase (NE) resulting in permanent transition to the low cortisol-binding affinity form (laCBG), thereby increasing cortisol availability at inflammatory sites. Alpha-1 antitrypsin (AAT) is the major inhibitor of NE. AAT deficiency (AATD) predisposes patients to early-onset emphysema due to increased proteolytic destruction from the inherent proteinase-antiproteinase imbalance. We hypothesized that AATD may result in increased CBG cleavage in vivo. We collected demographic data and blood samples from 10 patients with AATD and 28 healthy controls measuring total CBG and haCBG levels by parallel in-house ELISAs, as well as AAT, total and free cortisol levels. haCBG was higher (median [range]); 329 [210-551] vs. 250 [175-365] nmol/L; P<0.005, and laCBG lower; 174 [68-229] vs. 220 [119-348] nmol/L; P=0.016 in the AATD group, compared with controls. The ratio of haCBG:total CBG was also higher in AATD; 72 [53-83] vs. 54 [41-72] %; P=0.0001). There was a negative correlation between haCBG:total CBG and AAT levels (P<0.05, R=-0.64). Paradoxically, proteolytic cleavage of CBG was reduced in AATD, despite the recognized increase in NE activity. This implies that NE activity is not the mechanism for systemic CBG cleavage in basal, low inflammatory conditions. Relatively low levels of laCBG may have implications for cortisol action in AATD.

  13. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of {alpha}-1-antitrypsin

    SciTech Connect

    Shen Yuxian; Ballar, Petek; Fang, Shengyun . E-mail: fangs@umbi.umd.edu

    2006-11-03

    Deficiency of circulating {alpha}-1-antitrypsin (AAT) is the most widely recognized abnormality of a proteinase inhibitor that causes lung disease. AAT-deficiency is caused by mutations of the AAT gene that lead to AAT protein retention in the endoplasmic reticulum (ER). Moreover, the mutant AAT accumulated in the ER predisposes the homozygote to severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Despite the fact that mutant AAT protein is subject to ER-associated degradation (ERAD), yeast genetic studies have determined that the ubiquitination machinery, Hrd1/Der3p-cue1p-Ubc7/6p, which plays a prominent role in ERAD, is not involved in degradation of mutant AAT. Here we report that gp78, a ubiquitin ligase (E3) pairing with mammalian Ubc7 for ERAD, ubiquitinates and facilitates degradation of ATZ, the classic deficiency variant of AAT having a Z mutation (Glu 342 Lys). Unexpectedly, gp78 over-expression also significantly increases ATZ solubility. p97/VCP, an AAA ATPase essential for retrotranslocation of misfolded proteins from the ER during ERAD, is involved in gp78-mediated degradation of ATZ. Surprisingly, unlike other ERAD substrates that cause ER stress leading to apoptosis when accumulated in the ER, ATZ, in fact, increases cell proliferation when over-expressed in cells. This effect can be partially inhibited by gp78 over-expression. These data indicate that gp78 assumes multiple unique quality control roles over ATZ, including the facilitation of degradation and inhibition of aggregation of ATZ.

  14. alpha(1A)- and alpha(1B)-adrenergic receptors differentially modulate antidepressant-like behavior in the mouse.

    PubMed

    Doze, Van A; Handel, Evelyn M; Jensen, Kelly A; Darsie, Belle; Luger, Elizabeth J; Haselton, James R; Talbot, Jeffery N; Rorabaugh, Boyd R

    2009-08-18

    Tricyclic antidepressant (TCA) drugs are used for the treatment of chronic depression, obsessive-compulsive disorder (OCD), and anxiety-related disorders. Chronic use of TCA drugs increases the expression of alpha(1)-adrenergic receptors (alpha(1)-ARs). Yet, it is unclear whether increased alpha(1)-AR expression contributes to the antidepressant effects of these drugs or if this effect is unrelated to their therapeutic benefit. In this study, mice expressing constitutively active mutant alpha(1A)-ARs (CAM alpha(1A)-AR) or CAM alpha(1B)-ARs were used to examine the effects of alpha(1A)- and alpha(1B)-AR signaling on rodent behavioral models of depression, OCD, and anxiety. CAM alpha(1A)-AR mice, but not CAM alpha(1B)-AR mice, exhibited antidepressant-like behavior in the tail suspension test and forced swim test. This behavior was reversed by prazosin, a selective alpha(1)-AR inverse agonist, and mimicked by chronically treating wild type mice with cirazoline, an alpha(1A)-AR agonist. Marble burying behavior, commonly used to model OCD in rodents, was significantly decreased in CAM alpha(1A)-AR mice but not in CAM alpha(1B)-AR mice. In contrast, no significant differences in anxiety-related behavior were observed between wild type, CAM alpha(1A)-AR, and CAM alpha(1B)-AR animals in the elevated plus maze and light/dark box. This is the first study to demonstrate that alpha(1A)- and alpha(1B)-ARs differentially modulate antidepressant-like behavior in the mouse. These data suggest that alpha(1A)-ARs may be a useful therapeutic target for the treatment of depression.

  15. Gene Therapy for Alpha-1 Antitrypsin Deficiency Lung Disease.

    PubMed

    Chiuchiolo, Maria J; Crystal, Ronald G

    2016-08-01

    Alpha-1 antitrypsin (AAT) deficiency, characterized by low plasma levels of the serine protease inhibitor AAT, is associated with emphysema secondary to insufficient protection of the lung from neutrophil proteases. Although AAT augmentation therapy with purified AAT protein is efficacious, it requires weekly to monthly intravenous infusion of AAT purified from pooled human plasma, has the risk of viral contamination and allergic reactions, and is costly. As an alternative, gene therapy offers the advantage of single administration, eliminating the burden of protein infusion, and reduced risks and costs. The focus of this review is to describe the various strategies for AAT gene therapy for the pulmonary manifestations of AAT deficiency and the state of the art in bringing AAT gene therapy to the bedside. PMID:27564673

  16. Interference of Wegener's granulomatosis autoantibodies with neutrophil Proteinase 3 activity.

    PubMed

    van de Wiel, B A; Dolman, K M; van der Meer-Gerritsen, C H; Hack, C E; von dem Borne, A E; Goldschmeding, R

    1992-12-01

    Classic anti-neutrophil cytoplasmic autoantibodies (C-ANCA) are disease-specific markers of Wegener's granulomatosis (WG). The possible pathogenetic role of these autoantibodies, which are directed against Proteinase 3 (PR3), is not yet clear. We studied the effect of C-ANCA on PR3 proteolytic activity and on the complexation of PR3 with alpha 1-antitrypsin (alpha 1AT). C-ANCA IgG from eight patients with active WG significantly inhibited PR3 proteolytic activity, particularly towards elastin (median 84.2% inhibition). C-ANCA IgG significantly inhibited the complexation of PR3 with alpha 1AT (median 58.8% inhibition). Moreover, addition of purified PR3 to C-ANCA-positive sera from WG patients yielded less complexes with alpha 1AT (median 44.8%) compared with sera containing perinuclear anti-neutrophil cytoplasmic autoantibodies (P-ANCA) or ANCA-negative sera. These findings indicate the existence of a hitherto unknown property of C-ANCA, which may be of importance in the pathogenesis of WG.

  17. Proteinase 3: substrate specificity and possible pathogenetic effect of Wegener's granulomatosis autoantibodies (c-ANCA) by dysregulation of the enzyme.

    PubMed

    Dolman, K M; van de Wiel, B A; Kam, C M; Kerrigan, J E; Hack, C E; von dem Borne, A E; Powers, J C; Goldschmeding, R

    1993-01-01

    Reactivity of proteinase 3 (PR3) was tested against various amino acid and thioester substrates. The best substrate is Boc-Ala-Ala-Nva-SBzl with a kcat/Km value of 1.0 x 10(6) M-1.s-1. We also studied the effect of C-ANCA on PR3 proteolytic activity towards elastin and inactivation by alpha 1-antitrypsin (alpha 1AT). C-ANCA IgG from 8 patients with active Wegener's granulomatosis were tested and found to inhibit elastin degradation by PR3 and to prevent the inactivation of PR3 by alpha 1AT.

  18. Elastase-induced emphysema: retention of instilled proteinase in the rat

    SciTech Connect

    Sandhaus, R.A.; Janoff, A.

    1982-11-01

    Airway instillation of proteinases with the ability to degrade elastin has been used to produce disease in the rat analogous to human pulmonary emphysema. This study examined the retention, localization, and fate of endotracheally instilled elastase using /sup 125/I labeled enzyme and immunoperoxidase histochemistry. Porcine pancreatic elastase labeled with /sup 125/I was detected in rat lungs through 96 h after instillation; over half of the label was still present after 7 h. Similar results were obtained when elastase was reacted with a specific, catalytic site inactivator prior to instillation. Trypsin and denatured elastase, however, were cleared much more rapidly from the lung (less than half of the label present after 30 min). When lungs were homogenized after instillation of active elastase, the soluble fraction contained elastase bound to rat alpha1-antitrypsin. In addition, a small amount of label (less than 10%) appeared bound to insoluble components for extended periods of time. Using immunoperoxidase histochemistry, it was found that exogenous elastase was rapidly contained with pulmonary alveolar macrophages, as well as associated with alveolar septums and other parenchymal structures. Similar results were obtained with elastase from both porcine pancreas and human neutrophils. These results suggest that exogenous elastase in the rat, and perhaps endogenous elastolytic enzymes in humans, may have several fates in the lungs: complex formation with endogenous inhibitors, containment within the macrophage, and/or association with connective tissue targets.

  19. Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase.

    PubMed

    Panchenko, M V; Stetler-Stevenson, W G; Trubetskoy, O V; Gacheru, S N; Kagan, H M

    1996-03-22

    Lysyl oxidase is secreted from fibrogenic cells as a 50-kDa proenzyme that is proteolytically processed to the mature enzyme in the extracellular space. To characterize the secreted proteinase activity, a truncated, recombinant form of lysyl oxidase was prepared as a proteinase substrate containing the sequence of the propeptide cleavage region. The processing proteinase activity secreted by cultured fibrogenic cells resists inhibitors of serine or aspartyl proteinases as well as tissue inhibitor of matrix metalloproteinases-2 (MMP-2) but is completely inhibited by metal ion chelators. Known metalloproteinases were tested for their activity toward this substrate. Carboxyl-terminal procollagen proteinase (C-proteinase), MMP-2, and conditioned fibrogenic cell culture medium cleave the lysyl oxidase substrate to the size of the mature enzyme. The NH2-terminal sequence generated by arterial smooth muscle conditioned medium and the C-proteinase but not by MMP-2, i.e. Asp-Asp-Pro-Tyr, was identical to that previously identified in mature lysyl oxidase isolated from connective tissue. The C-proteinase activity against the model substrate was inhibited by a synthetic oligopeptide mimic of the cleavage sequence (Ac-Met-Val-Gly-Asp-Asp-Pro-Tyr-Asn-amide), whereas this peptide also inhibited the generation of lysyl oxidase activity in the medium of fetal rat lung fibroblasts in culture. In toto, these results identify a secreted metalloproteinase activity participating in the activation of prolysyl oxidase, identify inhibitors of the processing activity, and implicate procollagen C-proteinase in this role.

  20. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut.

    PubMed

    Elpidina, E N; Vinokurov, K S; Gromenko, V A; Rudenskaya, Y A; Dunaevsky, Y E; Zhuzhikov, D P

    2001-12-01

    Compartmentalization of proteinases, amylases, and pH in the midgut of Nauphoeta cinerea Oliv. (Blattoptera:Blaberidae) was studied in order to understand the organization of protein and starch digestion. Total proteolytic activity measured with azocasein was maximal at pH 11.5 both in anterior (AM) and posterior (PM) halves of the midgut, but the bulk of activity (67%) was found in PM. Total AM and PM preparations were fractionated on a Sephadex G-50 column and further analysed by means of activity electrophoresis and specific inhibitors and activators. The major activity in PM was classified as an unusual SH-dependent proteinase with M(r) 24,000 and pH optimum with synthetic substrate BApNA at 10.0. The enzyme was 43-fold activated in the presence of 1 mM DTT, insensitive to synthetic inhibitors of serine (PMSF, TLCK, TPCK) and cysteine (IAA, E-64) proteinases, strongly inhibited by STI, and displayed four active bands on zymograms. In PM, activities of trypsin-like, chymotrypsin-like, subtilisin-like, and cysteine proteinases were observed. Aspartic and metalloproteinases were not detected. In AM, activity of unusual SH-dependent proteinase also dominated and activity of chymotrypsin-like proteinase was observed, but their levels were much lower than in PM. Distribution of amylase activity, exhibiting an optimum at pH 6.0, was quite the opposite. The major part of it (67%) was located in AM. Treatment of amylase preparation with proteinases from AM and PM reduced amylase activity twofold. pH of the midgut contents was 6.0-7.2 in AM, 6.4-7.6 in the first and 8.8-9.3 in the second halves of PM. Thus, pH in AM is in good agreement with the optimal pH of amylase, located in this compartment, but the activity of proteinases, including the ability to degrade amylase, in such an environment is low. Active proteolysis takes place in the second half of PM, where pH of the gut is close to the optimal pH of proteinases.

  1. Digestive proteinases of the larger black flour beetle, Cynaeus angustus (Coleoptera: Tenebrionidae).

    PubMed

    Oppert, B; Walters, P; Zuercher, M

    2006-04-01

    Digestion in the larger black flour beetle, Cynaeus angustus (LeConte), was studied to identify new control methods for this pest of stored grains and grain products. The physiological pH of the larval gut, as measured with extracts in water, was approximately 6.1, and the pH for optimal hydrolysis of casein by gut extracts was 6.2 when buffers were reducing. However, under non-reducing conditions, hydrolysis of casein and synthetic serine proteinase substrates was optimal in alkaline buffer. Three major proteinase activities were observed in zymograms using casein or gelatin. Caseinolytic activity of C. angustus gut extracts was inhibited by inhibitors that target aspartic and serine proteinase classes, with minor inhibition by a cysteine proteinase inhibitor. In particular, soybean trypsin and trypsin/chymotrypsin inhibitors were most effective in reducing the in vitro caseinolytic activity of gut extracts. Based on these data, further studies are suggested on the effects of dietary soybean inhibitors of serine proteinases, singly and in combination with aspartic and cysteine proteinase inhibitors, on C. angustus larvae. Results from these studies can be used to develop new control strategies to prevent damage to grains and stored products by C. angustus and similar coleopteran pests.

  2. Effects of leupeptin on proteinase and germination of castor beans

    SciTech Connect

    Alpi, A.; Beevers, H.

    1981-10-01

    Leupeptin, tripeptide inhibitor of some proteinases, was shown previously to maintain the stability of several enzymes (isocitrate lyase, fumarase, and catalase) in crude extracts of castor bean endosperm. This reagent is now shown to inhibit the breakdown of water-soluble and crystalloid-storage proteins of the protein bodies isolated from castor beans by the SH-proteinase and it also inhibits the endopeptidase from mung beans. When suitably introduced into the endosperm of dry castor beans it strongly inhibits germination and seedling development. Application of leupeptin to endosperm halves removed from the seed prevents the normal development of enzymes concerned with gluconeogenesis from fat and drastically curtails sugar production. The results suggest that the SH-proteinase is intimately involved in the mobilization of storage proteins.

  3. Who Is at Risk for Alpha-1 Antitrypsin Deficiency?

    MedlinePlus

    ... on Twitter. Who Is at Risk for Alpha-1 Antitrypsin Deficiency? Alpha-1 antitrypsin (AAT) deficiency occurs in all ethnic groups. ... it doesn't mean that you'll develop one of the diseases related to the condition. Some ...

  4. Alpha 1-Antitrypsin Therapy Mitigated Ischemic Stroke Damage in Rats

    PubMed Central

    Moldthan, Huong L.; Hirko, Aaron C.; Thinschmidt, Jeffrey S.; Grant, Maria; Li, Zhimin; Peris, Joanna; Lu, Yuanqing; Elshikha, Ahmed; King, Michael A.; Hughes, Jeffrey A.; Song, Sihong

    2014-01-01

    Currently, the only effective therapy for acute ischemic stroke is the thrombolytic agent recombinant tissue plasminogen activator. α1-Antitrypsin, an endogenous inhibitor of serine proteinases and a primary acute phase protein with potent anti-inflammatory, anti-apoptotic, antimicrobial and cytoprotective activities, could be beneficial in stroke.. The goal of this study was to test whether α1-antitrypsin could improve ischemic stroke outcome in an established rat model. Middle cerebral artery occlusion was induced in male rats via intracranial microinjection of endothelin-1. Five to ten minutes following stroke induction rats received either intracranial or intravenous delivery of human α1-antitrypsin. Cylinder and vibrissae tests were used to evaluate sensorimotor function before and 72 hours after middle cerebral artery occlusion. Infarct volumes were examined via either 2,3,5-triphenyltetrazolium chloride assay or magnetic resonance imaging 72 hours after middle cerebral artery occlusion. Despite equivalent initial strokes, at 72 hours the infarct volumes of the human α1-antitrypsin treatment groups (local and systemic injection) were statistically significantly reduced by 83% and 63% (p<0.0001 and p < 0.05 respectively) compared with control rats. Human α1-antitrypsin significantly limited sensory motor systems deficits. Human α1-antitrypsin could be a potential novel therapeutic drug for the protection against neurodegeneration following ischemic stroke, but more studies are needed to investigate the protective mechanisms and efficacy in other animal models. PMID:24582784

  5. Digestive proteinases of yellow mealworm (Tenebrio molitor) larvae: purification and characterization of a trypsin-like proteinase.

    PubMed

    Tsybina, T A; Dunaevsky, Y E; Belozersky, M A; Zhuzhikov, D P; Oppert, B; Elpidina, E N

    2005-03-01

    A new trypsin-like proteinase was purified to homogeneity from the posterior midgut of Tenebrio molitor larvae by ion-exchange chromatography on DEAE-Sephadex A-50 and gel filtration on Superdex-75. The isolated enzyme had molecular mass of 25.5 kD and pI 7.4. The enzyme was also characterized by temperature optimum at 55 degrees C, pH optimum at 8.5, and K(m) value of 0.04 mM (for hydrolysis of Bz-Arg-pNA). According to inhibitor analysis the enzyme is a trypsin-like serine proteinase stable within the pH range of 5.0-9.5. The enzyme hydrolyzes peptide bonds formed by Arg or Lys residues in the P1 position with a preference for relatively long peptide substrates. The N-terminal amino acid sequence, IVGGSSISISSVPXQIXLQY, shares 50-72% identity with other insect trypsin-like proteinases, and 44-50% identity to mammalian trypsins. The isolated enzyme is sensitive to inhibition by plant proteinase inhibitors and it can serve as a suitable target for control of digestion in this stored product pest.

  6. Class specific inhibition of house dust mite proteinases which cleave cell adhesion, induce cell death and which increase the permeability of lung epithelium

    PubMed Central

    Winton, Helen L; Wan, Hong; Cannell, Mark B; Thompson, Philip J; Garrod, David R; Stewart, Geoffrey A; Robinson, Clive

    1998-01-01

    House dust mite (HDM) allergens with cysteine and serine proteinase activity are risk factors for allergic sensitization and asthma. A simple method to fractionate proteinase activity from HDM faecal pellets into cysteine and serine class activity is described. Both proteinase fractions increased the permeability of epithelial cell monolayers. The effects of the serine proteinase fraction were inhibited by 4-(2-aminoethyl)-benzenesulphonyl fluoride hydrochloride (AEBSF) and soybean trypsin inhibitor (SBTI). The effects of the cysteine proteinase fraction could be inhibited by E-64. No reciprocity of action was found. Treatment of epithelial monolayers with either proteinase fraction caused breakdown of tight junctions (TJs). AEBSF inhibited TJ breakdown caused by the serine proteinase fraction, whereas E-64 inhibited the cysteine proteinase fraction. Agarose gel electrophoresis revealed that the proteinases induced DNA cleavage which was inhibited by the matrix metalloproteinase inhibitor BB-250. Compound E-64 inhibited DNA fragmentation caused by the cysteine proteinase fraction, but was without effect on the serine proteinase fraction. Staining of proteinase-treated cells with annexin V (AV) and propidium iodide (PI) revealed a diversity of cellular responses. Some cells stained only with AV indicating early apoptosis, whilst others were dead and stained with both AV and PI. HDM proteinases exert profound effects on epithelial cells which will promote allergic sensitization; namely disruption of intercellular adhesion, increased paracellular permeability and initiation of cell death. Attenuation of these actions by proteinase inhibitors leads to the conclusion that compounds designed to be selective for the HDM enzymes may represent a novel therapy for asthma. PMID:9720772

  7. The Alpha-1A Adrenergic Receptor in the Rabbit Heart.

    PubMed

    Thomas, R Croft; Cowley, Patrick M; Singh, Abhishek; Myagmar, Bat-Erdene; Swigart, Philip M; Baker, Anthony J; Simpson, Paul C

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  8. The Alpha-1A Adrenergic Receptor in the Rabbit Heart

    PubMed Central

    Myagmar, Bat-Erdene; Swigart, Philip M.; Baker, Anthony J.; Simpson, Paul C.

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  9. Activation of Proteinase 3 Contributes to Nonalcoholic Fatty Liver Disease and Insulin Resistance

    PubMed Central

    Toonen, Erik JM; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine TN; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo AB

    2016-01-01

    Activation of inflammatory pathways is known to accompany development of obesity-induced nonalcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive proinflammatory mediators interleukin (IL)-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In this study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human α-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin-resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3-deficient mice showed strongly reduced levels of lipids in the liver after being fed a high-fat diet. Moreover, these mice were resistant to high–fat–diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1–/– mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with α-1 antitrypsin during the last 10 d of a 16-wk high-fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential. PMID:27261776

  10. Alpha-1 Antitrypsin Investigations Using Animal Models of Emphysema.

    PubMed

    Ni, Kevin; Serban, Karina A; Batra, Chanan; Petrache, Irina

    2016-08-01

    Animal models of disease help accelerate the translation of basic science discoveries to the bedside, because they permit experimental interrogation of mechanisms at relatively high throughput, while accounting for the complexity of an intact organism. From the groundbreaking observation of emphysema-like alveolar destruction after direct instillation of elastase in the lungs to the more clinically relevant model of airspace enlargement induced by chronic exposure to cigarette smoke, animal models have advanced our understanding of alpha-1 antitrypsin (AAT) function. Experimental in vivo models that, at least in part, replicate clinical human phenotypes facilitate the translation of mechanistic findings into individuals with chronic obstructive pulmonary disease and with AAT deficiency. In addition, unexpected findings of alveolar enlargement in various transgenic mice have led to novel hypotheses of emphysema development. Previous challenges in manipulating the AAT genes in mice can now be overcome with new transgenic approaches that will likely advance our understanding of functions of this essential, lung-protective serine protease inhibitor (serpin). PMID:27564666

  11. Alpha 1-adrenoceptors mediating contraction in arteries of normotensive and spontaneously hypertensive rats are of the alpha 1D or alpha 1A subtypes.

    PubMed

    Villalobos-Molina, R; Ibarra, M

    1996-03-18

    Alpha 1-Adrenoceptor subtypes mediating contraction in carotid, aorta, mesenteric and caudal arteries from both Wistar Kyoto (WKY) normotensive and spontaneously hypertensive (SHR) rats were investigated by using the alpha 1A-adrenoceptor agonist methoxamine and antagonized with selective, competitive antagonists WB-4101, 5-methyl urapidil or BMY 7378 (8-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-8-azaspiro(4,5)decane -7,9-dione dihydrochloride). Isometric tension changes were recorded after methoxamine addition to the arterial rings, and the effects of the antagonists determined. All the antagonists shifted to the right the concentration-response curve to methoxamine. pA2 values indicate that all arteries but caudal express the alpha 1D-adrenoceptor subtype, since BMY 7378 values were high in these arteries. Due to the high pA2 values for 5-methyl urapidil and WB-4101 and the low values for BMY 7378 we conclude that the tail artery expresses the alpha 1A and not the alpha 1B subtype. No differences were found between both strains of rats, suggesting that hypertension does not modify the alpha 1-adrenoceptors in conductance arteries. PMID:8846824

  12. Sensitive, hydrosoluble, macromolecular fluorogenic substrates for human immunodeficiency virus 1 proteinase.

    PubMed Central

    Anjuère, F; Monsigny, M; Lelièvre, Y; Mayer, R

    1993-01-01

    Hydrosoluble macromolecular fluorogenic substrates specific for the human immunodeficiency virus 1 (HIV-1) proteinase have been prepared. The fluoresceinyl peptide Ftc-epsilon-Ahx-Ser-Phe-Asn-Phe-Pro-Gln-Ile-Thr-(Gly)n, corresponding to the first cleavage site of HIV-1 gag-pol native precursor was linked to a water-soluble neutral (Lys)n derivative. The epsilon-aminohexanoyl residue (epsilon-Ahx) and the glycyl sequence were added in order to improve the stability of the substrate and the accessibility of the cleavage site to the HIV-1 proteinase respectively. This macro-molecular peptidic-substrate conjugate is significantly more water-soluble than the free peptide itself on a substrate molar concentration basis. The assay is based on the quantitative precipitation of the polymeric material by adding propan-2-ol whereas the fluorescent peptide moiety released upon proteolysis remains soluble in the supernatant. The proteinase activity is assessed by measuring the fluorescence of the supernatant. This assay allows the detection of a few fmol of HIV-1 proteinase, even in the presence of cell culture media, plasma or cell lysate and it gives accurate results within a large proteinase concentration range. The hydrosoluble macromolecular substrate is also suitable for determining the HIV-1 proteinase activity using 96-well microplates, allowing us to test accurately and rapidly numerous enzyme samples and/or the potency of new proteinase inhibitors. PMID:8489513

  13. Doxazosin inhibits proliferation and migration of human vascular smooth-muscle cells independent of alpha1-adrenergic receptor antagonism.

    PubMed

    Hu, Z W; Shi, X Y; Hoffman, B B

    1998-06-01

    Proliferation and migration of vascular smooth-muscle cells (VSMCs), stimulated by a variety of growth factors, play a critical role in the pathogenesis of vascular diseases. We found unexpectedly that doxazosin, an alpha1-adrenergic-receptor antagonist, inhibits serum-stimulated proliferation of cultured human VSMCs. Subsequent experiments systematically investigated inhibitory effects of doxazosin on mitogenesis stimulated in VSMCs by platelet-derived growth factor (PDGF), epidermal growth factor, and G protein-coupled receptor agonists thrombin and angiotensin II. Doxazosin attenuated the stimulation of DNA synthesis for each of these ligands with median inhibitory concentrations (IC50s) from 0.3 to 1 microM. PDGF-AB (1 nM) increased cell number; doxazosin inhibited this response by 70-80%. Prazosin, a related alpha1-receptor antagonist, had similar but less potent effects on inhibiting mitogenesis in these cells. Doxazosin and prazosin inhibited PDGF-AB-stimulated and insulin-like growth factor (IGF-I)-stimulated migration of VSMCs by approximately 40-50%. These effects of doxazosin were likely unrelated to alpha1-receptor blockade because pretreatment of cells with phenoxybenzamine, an irreversible alpha1 antagonist, did not change the capacity of doxazosin to inhibit of PDGF-stimulated mitogenesis. Also, doxazosin inhibited PDGF-stimulated DNA synthesis in NIH 3T3 cells, which do not express alpha1 receptors. These results suggest that doxazosin is a potent inhibitor of VSMC proliferation and migration through a mechanism unrelated to alpha1-receptor antagonism.

  14. Specificity of proteinase K at P2 to P3' sub-sites and its comparison to other serine proteases.

    PubMed

    Qasim, Mohammad A

    2014-01-01

    Specificity of the commercially important serine protease, proteinase K, has been investigated by measuring free energies of association of proteinase K with turkey ovomucoid third domain inhibitor variants at contact positions P2, P1, P1', P2', and P3'. Correlations of these values were run with similar values that have been obtained for six other serine proteases. Among the six proteases, subtilisin Carlsberg shows a near perfect correlation (Pearson Product correlation coefficient = 0.93 to 0.99) with proteinase K at all of these positions. Proteinase K has only 35% sequence identity with subtilisin Carlsberg, yet, the two enzymes are nearly identical in their specificity at P2 to P3' positions. With other serine proteases such as bovine chymotrypsin, human leukocyte elastase, porcine pancreatic elastase, Streptomyces griseus protease A and B, proteinase K showed relatively poor or no correlation.

  15. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  16. Adsorption of serum alpha-1-microglobulin onto biomaterials.

    PubMed

    Santin, M; Cannas, M; Wassall, M A; Denyer, S P

    1998-03-01

    The adsorption of alpha-1-microglobulin (alpha-1-m) from serum to the surface of polymers with different physicochemical properties was investigated. Enzyme-linked immunosorbent assay showed binding of this protein to the surface of polystyrene (PS), polyvinyl chloride (PVC) and a polyurethane, Chronoflex, after water washing, but only trace levels could be detected on two polymethacrylate derivatives, polymethyl methacrylate and poly(2-hydroxyethyl methacrylate). alpha-1-m was selectively desorbed from the five materials by sequential washes of serum-conditioned surfaces with isopropanol solutions at increasing concentrations. The presence of alpha-1-m in the washing supernatants was detected by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The relative binding strength of alpha-1-m to each surface was evaluated as the isopropanol (IsoPOH) concentration required to desorb the protein from that surface. Analysis of bound proteins by SDS-PAGE conclusively demonstrated the binding of a range of serum proteins, including alpha-1-m, to all polymer systems, but with varying binding strengths. The majority of protein was removed by water washing for the polymethacrylate polymers, while varying concentrations of IsoPOH were required to desorb proteins from PS, PVC and Chronoflex. There was a correlation between the hydrophobic nature of the material, determined by water contact angle measurements, and adsorption of alpha-1-m. Immunoblotting of isopropanol-eluted proteins by alpha-1-m antibodies showed the positive staining of a 29 kDa protein as well as selected bands within a molecular weight range of 40 200 kDa, suggesting the adsorption of this protein as both free and complexed forms. The ability of alpha-1-m to adsorb on to material surfaces and to participate in events relevant to the biocompatibility of a polymer, such as bacterial infection or inflammation control, suggests the need for further characterization of the properties of this

  17. Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells.

    PubMed Central

    Arroyo, R; Alderete, J F

    1989-01-01

    The role of cysteine proteinases in adherence of Trichomonas vaginalis NYH 286 to HeLa and human vaginal epithelial cells was evaluated. Only pretreatment of trichomonads, but not epithelial cells, with N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), an inhibitor of trichomonad cysteine proteinases, greatly diminished the ability of T. vaginalis to recognize and bind to epithelial cells. Leupeptin and L-1-tosylamide-2-phenylethyl chloromethyl ketone, other cysteine proteinase inhibitors, also decreased T. vaginalis cytadherence. Parasites incubated with TLCK and washed extensively still did not adhere to cells at levels equal to those seen for control trichomonads treated with phosphate-buffered saline or culture medium alone. Exposure of TLCK-treated organisms with other cysteine proteinases restored cytadherence levels, indicating that proteinase action on the parasite surface is prerequisite for host cell attachment. Concentrations of TLCK which inhibited cytadherence did not alter the metabolism of T. vaginalis, as determined by metabolic labeling of trichomonad proteins; the protein patterns of T. vaginalis in the presence and absence of TLCK were identical. Kinetics of TLCK-mediated inhibition of cytadherence of other T. vaginalis isolates with different levels of epithelial-cell parasitism were similar to the concentration-dependent inhibition seen for isolate NYH 286. Incubation of TLCK-treated, washed organisms in growth medium resulted in regeneration of adherence. Finally, treatment of T. vaginalis organisms with proteinase inhibitors for abrogation of cytadherence effectively rendered the trichomonads unable to kill host cells, which is consistent with the contact-dependent nature of host cytotoxicity. These data show for the first time the involvement of T. vaginalis cysteine proteinases in parasite attachment to human epithelial cells. These results have implications for future pharmacologic intervention at a key step in infection. PMID:2789190

  18. Influence of the technological parameters of ultrasonic nebulisation on the nebulisation quality of alpha1 protease inhibitor (alpha1PI).

    PubMed

    Flament, M P; Leterme, P; Gayot, A

    1999-11-01

    The principle of an ultrasonic nebuliser is based on the vibrations of a piezo-electric crystal driven by an alternating electrical field. These periodical vibrations are characterised by their frequency, their amplitude and their intensity which corresponds to the energy transmitted per surface unit. When the vibration intensity is sufficient, cavitation appears and generates droplets. Ventilation enables an airflow to cross the nebuliser and to expulse the aerosol droplets. For a given nebuliser, the vibration frequency of the piezo-electric crystal is fixed and is often in the range of 1-2.5 MHz. In most cases, an adjustment in vibration intensity is possible by modifying vibration amplitude. The ventilation level is adjustable. The influence of these two parameters on the efficiency of ultrasonic nebulisation is studied. The study was carried out with a protein solution that had to be administered into the lungs. The solution used presented a viscosity of 1.25 mPa and a surface tension of 53 mN/m. The integrity of the protein was checked which was submitted to different vibration conditions. Nebulisation efficiency was evaluated by determining droplet size, the percentage of drug nebulised and nebulisation time. An increase in vibration intensity does not modify the size of droplets emitted, but decreases nebulisation time and raises the quantity of protein nebulised, thus improving performance. On the other hand, an increase in ventilation increases the size of droplets emitted, decreases nebulisation time and the quantity of protein nebulised because more drug is lost on the walls of the nebuliser. High intensity associated with low ventilation favours drug delivery deep into the lungs.

  19. [Medical expulsive therapy facilitated by alpha 1 adrenoceptor antagonist].

    PubMed

    Itoh, Yasunori; Niimi, Kazuhiro; Hirose, Yasuhiko

    2011-10-01

    In 2002, speedy elimination of ureterolithiasis in the lower part of ureter was first reported with the alpha 1 blocker. Thereafter, there are a lot of reports including meta-analysis about tamsulosin. In 2011 EAU Guidelines on Urolithiasis, it is the most important to establish effective MET (medical expulsive therapy) to facilitate spontaneous stone passage. Alpha 1 blockers are the preferred agents for MET. As a basic evidence for MET, we reported that alpha 1a and 1d AR subtype mRNA was highly expressed in the human ureter and that alpha 1A AR is the main participant in the human ureteral contraction. It is published newly in Japanese Guidelines on Urolithiasis revised edition to schedule to be published soon. PMID:21960238

  20. The Role of Neutrophils in Alpha-1 Antitrypsin Deficiency.

    PubMed

    McCarthy, Cormac; Reeves, Emer P; McElvaney, Noel G

    2016-08-01

    Alpha-1 antitrypsin deficiency (AATD) is characterized by low levels of circulating alpha-1 antitrypsin and an increased risk for emphysema, liver disease, and panniculitis. The reduced levels of alpha-1 antitrypsin in AATD predispose the lung to unopposed proteolytic activity, predominantly from neutrophil-derived proteases, chiefly neutrophil elastase. This leads to emphysema. The mechanisms subtending the liver disease are less well understood, but are probably due to a "gain-of function" inflammatory process in the liver, stoked by intracellular retention of aberrantly folded alpha-1 antitrypsin. The panniculitis associated with AATD is most likely due to unopposed proteolytic activity in the skin. Although AATD has been traditionally viewed as a condition arising from a protease-antiprotease imbalance in the lung, it is increasingly recognized that AATD is an inflammatory disorder, both in the lung and in the extrapulmonary manifestations associated with the condition. This inflammation is predominantly neutrophil driven, and there are several alpha-1 antitrypsin-related mechanisms involved in potentiating this neutrophilic response. The rationale for AAT augmentation therapy in AATD is classically based on restoring the antiprotease balance in the lung, but its beneficial effects may also be exerted systemically, further exposing the pathogenesis of AATD-related disease and indicating a potential usage for alpha-1 antitrypsin in other inflammatory conditions. PMID:27564664

  1. alpha1-Adrenoceptors stimulate a Galphas protein and reduce the transient outward K+ current via a cAMP/PKA-mediated pathway in the rat heart.

    PubMed

    Gallego, Mónica; Setién, Raúl; Puebla, Lilian; Boyano-Adánez, María Del Carmen; Arilla, Eduardo; Casis, Oscar

    2005-03-01

    alpha(1)-Adrenoceptor stimulation prolongs the duration of the cardiac action potentials and leads to positive inotropic effects by inhibiting the transient outward K(+) current (I(to)). In the present study, we have examined the role of several protein kinases and the G protein involved in I(to) inhibition in response to alpha(1)-adrenoceptor stimulation in isolated adult rat ventricular myocytes. Our findings exclude the classic alpha(1)-adrenergic pathway: activation of the G protein G(alphaq), phospholipase C (PLC), and protein kinase C (PKC), because neither PLC, nor PKC, nor G(alphaq) blockade prevents the alpha(1)-induced I(to) reduction. To the contrary, the alpha(1)-adrenoceptor does not inhibit I(to) in the presence of protein kinase A (PKA), adenylyl cyclase, or G(alphas) inhibitors. In addition, PKA and adenylyl cyclase activation inhibit I(to) to the same extent as phenylephrine. Finally, we have shown a functional coupling between the alpha(1)-adrenoceptor and G(alphas) in a physiological system. Moreover, this coupling seems to be compartmentalized, because the alpha(1)-adrenoceptor increases cAMP levels only in intact cells, but not in isolated membranes, and the effect on I(to) disappears when the cytoskeleton is disrupted. We conclude that alpha(1)-adrenoceptor stimulation reduces the amplitude of the I(to) by activating a G(alphas) protein and the cAMP/PKA signaling cascade, which in turn leads to I(to) channel phosphorylation.

  2. A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity.

    PubMed

    Alvarez-Sánchez, M E; Avila-González, L; Becerril-García, C; Fattel-Facenda, L V; Ortega-López, J; Arroyo, R

    2000-04-01

    The goal of this study was to demonstrate the participation in cellular damage of a Trichomonas vaginalis proteinase with a molecular mass of 65 kDa (CP65). By two dimensional gelatin-gel electrophoresis of trichomonad proteins we detected four spots with proteolytic activity on the 65 kDa region, but only one, pI 7.2, binds to the HeLa cell surface. By indirect immunofluorescence, rabbit antibodies against this proteinase localized the CP65 on the plasma membrane and in the cytoplasm of T. vaginalis. Pretreatment of parasites with the specific anti-CP65 antibody reduced trichomonal cytotoxicity to HeLa cell monolayers. The specific cysteine proteinase inhibitor, L-3-carboxy-2, 3-trans-epoxypropionyl-leucylamido (4-guanidino) butane (E64) abrogated the proteinase activity and reduced cytotoxicity levels of T. vaginalis in cell culture monolayers, indicating that the trichomonad CP65 is a cysteine proteinase. Activity of the CP65 proteinase was optimal at pH 5.5 and 37 degrees C, conditions similar to those of patients with trichomonosis. Also, this proteinase degraded some of the proteins found in the vagina, i.e. collagen IV and fibronectin, but not laminin-1 or haemoglobin. Finally, immunoprecipitation assays showed that sera and vaginal washes from trichomonosis patient possess anti-CP65 antibodies. In conclusion, results presented in this work demonstrate that the CP65 is a surface cysteine proteinase involved in T. vaginalis cytotoxicity to HeLa cell monolayers, as a virulence factor. It is immunogenic during human infection and degrades some extracellular matrix proteins, i.e. collagen IV and fibronectin. PMID:10764610

  3. A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity.

    PubMed

    Alvarez-Sánchez, M E; Avila-González, L; Becerril-García, C; Fattel-Facenda, L V; Ortega-López, J; Arroyo, R

    2000-04-01

    The goal of this study was to demonstrate the participation in cellular damage of a Trichomonas vaginalis proteinase with a molecular mass of 65 kDa (CP65). By two dimensional gelatin-gel electrophoresis of trichomonad proteins we detected four spots with proteolytic activity on the 65 kDa region, but only one, pI 7.2, binds to the HeLa cell surface. By indirect immunofluorescence, rabbit antibodies against this proteinase localized the CP65 on the plasma membrane and in the cytoplasm of T. vaginalis. Pretreatment of parasites with the specific anti-CP65 antibody reduced trichomonal cytotoxicity to HeLa cell monolayers. The specific cysteine proteinase inhibitor, L-3-carboxy-2, 3-trans-epoxypropionyl-leucylamido (4-guanidino) butane (E64) abrogated the proteinase activity and reduced cytotoxicity levels of T. vaginalis in cell culture monolayers, indicating that the trichomonad CP65 is a cysteine proteinase. Activity of the CP65 proteinase was optimal at pH 5.5 and 37 degrees C, conditions similar to those of patients with trichomonosis. Also, this proteinase degraded some of the proteins found in the vagina, i.e. collagen IV and fibronectin, but not laminin-1 or haemoglobin. Finally, immunoprecipitation assays showed that sera and vaginal washes from trichomonosis patient possess anti-CP65 antibodies. In conclusion, results presented in this work demonstrate that the CP65 is a surface cysteine proteinase involved in T. vaginalis cytotoxicity to HeLa cell monolayers, as a virulence factor. It is immunogenic during human infection and degrades some extracellular matrix proteins, i.e. collagen IV and fibronectin.

  4. alpha(1)-Adrenoceptors augment thermal hyperalgesia in mildly burnt skin.

    PubMed

    Drummond, Peter D

    2009-03-01

    The effect of the alpha(1)-adrenoceptor agonist phenylephrine on sensitivity to heat was investigated at three sites of mild burn injury in the cutaneous forearm of 19 healthy participants. Two of the sites were pre-treated with the alpha(1)-antagonist terazosin, to determine whether the effect of phenylephrine was mediated by alpha(1)-adrenoceptors. Terazosin was administered before the burn injury at one site, and after the burn injury at the other site. In another 15 participants, the nociceptive effect of the alpha(2)-adrenoceptor agonist clonidine was investigated with and without prior treatment with the alpha(2)-antagonist rauwolscine. Drugs were introduced into the skin by iontophoresis, and burns were induced by heating the skin to 48 degrees C for 2min. Heat pain thresholds to a temperature ramp (0.5 degrees C/s), and heat pain ratings to a thermal stimulus (45 degrees C, 7s), were determined before and after the administration of each drug. Thermal hyperalgesia provoked by phenylephrine was inhibited by terazosin administered after the burn injury, but not by terazosin administered before the burn injury. However, neither alpha(2)-adrenoceptor stimulation nor blockade affected sensitivity to heat in the mildly burnt skin. These findings suggest that stimulation of cutaneous alpha(1)-adrenoceptors increased the excitability of heat-sensitized nociceptive afferents. As terazosin was more effective when administered in burnt skin, an inflammatory response induced by the burn injury may have facilitated access of adrenergic agents to alpha(1)-adrenoceptors.

  5. [Uroselectivity of alpha-1 antagonism in the treatment of benign prostatic hypertrophy: on the pharmacologic concept of the clinical approach].

    PubMed

    Jolliet, P; Bourin, M

    1998-01-01

    Benign prostatic hyperplasia is the most common cause of voiding dysfunction in men. It becomes symptomatic from the fifth decade of life and needs treatment in 50 per cent of patients. Hyperplastic prostatic tissue and the smooth involuntary sphincter have a high density of alpha 1-adrenoceptors, thus alpha 1-blockers can decrease sphincter tone and reduce the tension exerted by the prostatic muscular component. Attempts have been made to find alpha 1-antagonists that have a selective effect on the prostate (alfuzosin), are long acting (tamsulosin, terazosin, doxazosin) or present specificity on the alpha 1A prostatic adrenoceptors (tamsulosin), in order to maintain efficacy without affecting blood pressure. Finasteride, a 5 alpha-reductase inhibitor without hypotensive side-effect may be more effective in men with a predominantly glandular component to their benign hyperplasia or with very large prostate glands, but has a longer onset of action and produces more adverse sexual effects. Thus, alpha-1 antagonists can be considered as an appropriate treatment option in patients with troublesome symptoms of BPH and who have not developed serious complications indicating surgery.

  6. CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence.

    PubMed

    Mendoza-López, M R; Becerril-Garcia, C; Fattel-Facenda, L V; Avila-Gonzalez, L; Ruíz-Tachiquín, M E; Ortega-Lopez, J; Arroyo, R

    2000-09-01

    We describe here the participation of a Trichomonas vaginalis 30-kDa proteinase (CP30) with affinity to the HeLa cell surface in attachment of this parasite to host epithelial cells. The CP30 band is a cysteine proteinase because its activity was inhibited by E-64, a thiol proteinase inhibitor. In two-dimensional substrate gel electrophoresis of total extracts of the trichomonad isolate CNCD 147, three spots with proteolytic activity were detected in the 30-kDa region, in the pI range from 4.5 to 5.5. Two of the spots (pI 4.5 and 5.0) bound to the surfaces of fixed HeLa cells corresponding to the CP30 band. The immunoglobulin G fraction of the rabbit anti-CP30 antiserum that recognized a 30-kDa band by Western blotting and immunoprecipitated CP30 specifically inhibited trichomonal cytoadherence to HeLa cell monolayers in a concentration-dependent manner and reacted with CP30 at the parasite surface. CP30 degraded proteins found on the female urogenital tract, including fibronectin, collagen IV, and hemoglobin. Interestingly, CP30 digested fibronectin and collagen IV only at pH levels between 4.5 and 5.0. Moreover, trichomonosis patients whose diagnosis was confirmed by in vitro culture possessed antibody to CP30 in both sera and vaginal washes, and CP30 activity was found in vaginal washes. Our results suggest that surface CP30 is a cysteine proteinase necessary for trichomonal adherence to human epithelial cells. PMID:10948104

  7. CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence.

    PubMed

    Mendoza-López, M R; Becerril-Garcia, C; Fattel-Facenda, L V; Avila-Gonzalez, L; Ruíz-Tachiquín, M E; Ortega-Lopez, J; Arroyo, R

    2000-09-01

    We describe here the participation of a Trichomonas vaginalis 30-kDa proteinase (CP30) with affinity to the HeLa cell surface in attachment of this parasite to host epithelial cells. The CP30 band is a cysteine proteinase because its activity was inhibited by E-64, a thiol proteinase inhibitor. In two-dimensional substrate gel electrophoresis of total extracts of the trichomonad isolate CNCD 147, three spots with proteolytic activity were detected in the 30-kDa region, in the pI range from 4.5 to 5.5. Two of the spots (pI 4.5 and 5.0) bound to the surfaces of fixed HeLa cells corresponding to the CP30 band. The immunoglobulin G fraction of the rabbit anti-CP30 antiserum that recognized a 30-kDa band by Western blotting and immunoprecipitated CP30 specifically inhibited trichomonal cytoadherence to HeLa cell monolayers in a concentration-dependent manner and reacted with CP30 at the parasite surface. CP30 degraded proteins found on the female urogenital tract, including fibronectin, collagen IV, and hemoglobin. Interestingly, CP30 digested fibronectin and collagen IV only at pH levels between 4.5 and 5.0. Moreover, trichomonosis patients whose diagnosis was confirmed by in vitro culture possessed antibody to CP30 in both sera and vaginal washes, and CP30 activity was found in vaginal washes. Our results suggest that surface CP30 is a cysteine proteinase necessary for trichomonal adherence to human epithelial cells.

  8. CP30, a Cysteine Proteinase Involved in Trichomonas vaginalis Cytoadherence

    PubMed Central

    Mendoza-López, M. Remedios; Becerril-Garcia, Cecilia; Fattel-Facenda, Loriz V.; Avila-Gonzalez, Leticia; Ruíz-Tachiquín, Martha E.; Ortega-Lopez, Jaime; Arroyo, Rossana

    2000-01-01

    We describe here the participation of a Trichomonas vaginalis 30-kDa proteinase (CP30) with affinity to the HeLa cell surface in attachment of this parasite to host epithelial cells. The CP30 band is a cysteine proteinase because its activity was inhibited by E-64, a thiol proteinase inhibitor. In two-dimensional substrate gel electrophoresis of total extracts of the trichomonad isolate CNCD 147, three spots with proteolytic activity were detected in the 30-kDa region, in the pI range from 4.5 to 5.5. Two of the spots (pI 4.5 and 5.0) bound to the surfaces of fixed HeLa cells corresponding to the CP30 band. The immunoglobulin G fraction of the rabbit anti-CP30 antiserum that recognized a 30-kDa band by Western blotting and immunoprecipitated CP30 specifically inhibited trichomonal cytoadherence to HeLa cell monolayers in a concentration-dependent manner and reacted with CP30 at the parasite surface. CP30 degraded proteins found on the female urogenital tract, including fibronectin, collagen IV, and hemoglobin. Interestingly, CP30 digested fibronectin and collagen IV only at pH levels between 4.5 and 5.0. Moreover, trichomonosis patients whose diagnosis was confirmed by in vitro culture possessed antibody to CP30 in both sera and vaginal washes, and CP30 activity was found in vaginal washes. Our results suggest that surface CP30 is a cysteine proteinase necessary for trichomonal adherence to human epithelial cells. PMID:10948104

  9. The effects of SB 216469, an antagonist which discriminates between the alpha 1A-adrenoceptor and the human prostatic alpha 1-adrenoceptor.

    PubMed Central

    Chess-Williams, R.; Chapple, C. R.; Verfurth, F.; Noble, A. J.; Couldwell, C. J.; Michel, M. C.

    1996-01-01

    1. The affinity of the alpha 1-adrenoceptor antagonist SB 216469 (also known as REC 15/2739) has been determined at native and cloned alpha 1-adrenoceptor subtypes by radioligand binding and at functional alpha 1-adrenoceptor subtypes in isolated tissues. 2. In radioligand binding studies with [3H]-prazosin, SB 216469 had a high affinity at the alpha 1A-adrenoceptors of the rat cerebral cortex and kidney (9.5-9.8) but a lower affinity at the alpha 1B-adrenoceptors of the rat spleen and liver (7.7-8.2). 3. At cloned rat alpha 1-adrenoceptor subtypes transiently expressed in COS-1 cells and also at cloned human alpha 1-adrenoceptor subtypes stably transfected in Rat-1 cells, SB 216469 exhibited a high affinity at the alpha 1a-adrenoceptors (9.6-10.4) with a significantly lower affinity at the alpha 1b-adrenoceptor (8.0-8.4) and an intermediate affinity at the alpha 1d-adrenoceptor (8.7-9.2). 4. At functional alpha 1-adrenoceptors, SB 216469 had a similar pharmacological profile, with a high affinity at the alpha 1A-adrenoceptors of the rat vas deferens and anococcygeus muscle (pA2 = 9.5-10.0), a low affinity at the alpha 1B-adrenoceptors of the rat spleen (6.7) and guinea-pig aorta (8.0), and an intermediate affinity at the alpha 1D-adrenoceptors of the rat aorta (8.8). 5. Several recent studies have concluded that the alpha 1-adrenoceptor present in the human prostate has the pharmacological characteristics of the alpha 1A-adrenoceptor subtype. However, the affinity of SB 216469 at human prostatic alpha 1-adrenoceptors (pA2 = 8.1) determined in isolated tissue strips, was significantly lower than the values obtained at either the cloned alpha 1a-adrenoceptors (human, rat, bovine) or the native alpha 1A-adrenoceptors in radioligand binding and functional studies in the rat. 6. Our results with SB 216469, therefore, suggest that the alpha 1-adrenoceptor mediating contractile responses of the human prostate has properties which distinguish it from the cloned alpha 1a

  10. Synergistic alpha-1 and alpha-2 adrenergic stimulation of rat proximal nephron Na+/H+ exchange

    SciTech Connect

    Gesek, F.A.; Cragoe, E.J. Jr.; Strandhoy, J.W.

    1989-06-01

    Both alpha-1 and alpha-2 adrenoceptors have been localized to the renal cortex, with the majority of binding sites on the proximal tubule. Because the major regulator of Na+ uptake into the proximal tubule is the Na+/H+ exchanger, and because alpha-1 and alpha-2 adrenoceptors stimulate it in other tissues, we tested the hypothesis that both alpha adrenoceptor subtypes can increase Na+ uptake into the proximal nephron by stimulating the Na+/H+ antiporter. Enhancement of Na+ transport by agonists was studied in isolated rat proximal tubules by determining the uptake of 22Na that was suppressible by the Na+/H+ inhibitor, 5-(N-ethyl-N-isopropyl)amiloride (EIPA). The phorbol ester, phorbol-12-myristate-13-acetate, (0.1 microM), directly stimulated the antiporter through protein kinase C and increased EIPA-suppressible 22Na uptake 250% above control. The alpha-1 adrenoceptor agonists, cirazoline and phenylephrine, in addition to the mixed agonist, norepinephrine, maximally stimulated uptake by 226 to 232% at 1 microM concentrations. alpha-2 agonists produced a range of maximal stimulations at 1 microM from 65% with guanabenz to 251% with B-HT 933. Increases in 22Na uptake by agonists were inhibited by selective adrenergic antagonists and by EIPA. The drugs did not change the EIPA-resistant component of 22Na uptake. Inasmuch as the adrenoceptor subtypes likely stimulated Na+/H+ exchange by differing intracellular pathways impinging upon common transport steps, we examined whether simultaneous stimulation of both pathways was additive. Submaximal concentrations (5 nM each) of alpha-1 and alpha-2 adrenoceptor agonists in combination synergistically enhanced 22Na uptake to a level similar to 1 microM concentrations of adrenoceptor agonists alone or in combination.

  11. The cysteine proteinases of the pineapple plant.

    PubMed Central

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-01-01

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct. Images Fig. 4. Fig. 5. PMID:2327970

  12. The cysteine proteinases of the pineapple plant.

    PubMed

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-03-15

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct.

  13. [Ulysses retrotransposon aspartate proteinase (Drosophila virilis)].

    PubMed

    Volkov, D A; Savvateeva, L V; Dergousova, N I; Rumsh, L D

    2002-01-01

    Retrotransposones are mobile genetic elements occurring in genomes of bacteria, plants or animals. Retrotransposones were found to contain nucleotide sequences encoding proteins which are homological to retroviral aspartic proteinases. Our research has been focused on Ulysses which is mobile genetic element found in Drosophila virilis. We suggested a primary structure of Ulysses proteinase using comparative analysis of amino acid sequences of retroviral proteinases and proteinases from retrotransposones. The appropriate cDNA fragment has been cloned and expressed in E. coli. The purification of recombinant protein (12 kD) has been carried out by affinity chromatography using pepstatine-agarose. The obtained protein has proteolytic activity at optimum pH 5.5 like the majority of aspartic proteinases.

  14. Automated docking of {alpha}-(1,4)- and {alpha}-(1,6)-linked glucosyl trisaccharides in the glucoamylase active site

    SciTech Connect

    Countinho, P.M.; Reilly, P.J.; Dowd, M.K.

    1998-06-01

    Low-energy conformers of five {alpha}-(1,4)- and {alpha}-(1,6)-linked glucosyl trisaccharides were flexibly docked into the glucoamylase active site using AutoDock 2.2. To ensure that all significant conformational space was searched, the starting trisaccharide conformers for docking were all possible combinations of the corresponding disaccharide low-energy conformers. All docked trisaccharides occupied subsites {minus}1 and +1 in very similar modes to those of corresponding nonreducing-end disaccharides. For linear substrates, full binding at subsite +2 occurred only when the substrate reducing end was {alpha}-(1,4)-linked, with hydrogen-bonding with the hydroxy-methyl group being the only polar interaction there. Given the absence of other important interactions at this subsite, multiple substrate conformations are allowed. For the one docked branched substrate, steric hindrance in the {alpha}-(1,6)-glycosidic oxygen suggests that the active-site residues have to change position for hydrolysis to occur. Subsite +1 of the glucoamylase active site allows flexibility in binding but, at least in Aspergillus glucoamylases, subsite +2 selectively binds substrates {alpha}-(1,4)-linked between subsites +1 and +2. Enzyme engineering to limit substrate flexibility at subsite +2 could improve glucoamylase industrial properties.

  15. 21 CFR 866.5130 - Alpha-1-antitrypsin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the alpha-1-antitrypsin (a plasma protein) in serum, other body fluids, and tissues. The measurements... addition, alpha-1-antitrypsin deficiency has been associated with pulmonary emphysema. (b)...

  16. 21 CFR 866.5080 - Alpha-1-antichymotrypsin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... immunochemical techniques alpha-1-antichymotrypsin (a protein) in serum, other body fluids, and tissues. Alpha-1-antichymotrypsin helps protect tissues against proteolytic (protein-splitting) enzymes released during...

  17. Alpha 1-antitrypsin Pittsburgh (Met358-->Arg) inhibits the contact pathway of intrinsic coagulation and alters the release of human neutrophil elastase during simulated extracorporeal circulation.

    PubMed

    Wachtfogel, Y T; Bischoff, R; Bauer, R; Hack, C E; Nuijens, J H; Kucich, U; Niewiarowski, S; Edmunds, L H; Colman, R W

    1994-12-01

    Cardiopulmonary bypass prolongs bleeding time, increases postoperative blood loss, and triggers activation of plasma proteolytic enzyme systems and blood cells referred to as the "whole body inflammatory response". Contact of blood with synthetic surfaces leads to qualitative and quantitative alterations in platelets, neutrophils, contact and complement systems. Contact and complement pathway proteins both induce neutrophil activation. alpha 1-antitrypsin Pittsburgh (Met358-->Arg), a mutant of alpha 1-antitrypsin, is a potent inhibitor of plasma kallikrein and thrombin. We investigated whether this recombinant mutant protein inhibited platelet activation, as well as contact and/or complement-induced neutrophil activation during simulated extracorporeal circulation. Arg358 alpha 1-antitrypsin did not prevent the 34% drop in platelet count at 5 min of recirculation, did not block the 50% decrease in ADP-induced platelet aggregation at 120 min of recirculation, nor inhibit the release of 6.06 +/- 1.07 micrograms/ml beta-thromboglobulin at 120 min of recirculation suggesting that the inhibitor had little effect on platelet activation. However, Arg358 alpha 1-antitrypsin totally blocked kallikrein-C1-inhibitor complex formation but not C1-C1-inhibitor complex formation. Most importantly, Arg358 alpha 1-antitrypsin decreased the release of 1.11 +/- 0.16 micrograms/ml human neutrophil elastase by 43%. The attenuation of neutrophil activation in the absence of an effect on complement activation via the classical pathway, supports the concept that kallikrein is a major mediator of neutrophil degranulation during cardiopulmonary bypass.

  18. Functional analysis of {alpha}1,3/4-fucosyltransferase VI in human hepatocellular carcinoma cells

    SciTech Connect

    Guo, Qiya; Guo, Bin; Wang, Yingming; Wu, Jun; Jiang, Wenjun; Zhao, Shenan; Qiao, Shouyi; Wu, Yanhua

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Human FUT6 is up-regulated in HCC tissues. Black-Right-Pointing-Pointer Expression of FUT6 promotes G0/G1-S transition and cell growth. Black-Right-Pointing-Pointer FUT6 confers a growth advantage in vivo. Black-Right-Pointing-Pointer FUT6 suppresses p21 expression through modulating PI3K/Akt signaling. -- Abstract: The {alpha}1,3/4-fucosyltransferases (FUT) subfamily are key enzymes in cell surface antigen synthesis during various biological processes. A novel role of FUTs in tumorigenesis has been discovered recently, however, the underlying mechanism remains largely unknown. Here, we characterized FUT6, a member of {alpha}1,3/4-FUT subfamily, in human hepatocellular carcinoma (HCC). In HCC tissues, the expression levels of FUT6 and its catalytic product SLe{sup x} were significantly up-regulated. Overexpression of FUT6 in HCC cells enhanced S-phase cell population, promoted cell growth and colony formation ability. Moreover, subcutaneously injection of FUT6-overexpressing cells in nude mice promoted cell growth in vivo. In addition, elevating FUT6 expression markedly induced intracellular Akt phosphorylation, and suppressed the expression of the cyclin-dependent kinases inhibitor p21. Bath application of the PI3K inhibitor blocked FUT6-induced Akt phosphorylation, p21 suppression and cell proliferation. Our results suggest that FUT6 plays an important role in HCC growth by regulating the PI3K/Akt signaling pathway.

  19. Plasma elastase alpha 1-antitrypsin and lactoferrin in sepsis: evidence for neutrophils as mediators in fatal sepsis.

    PubMed

    Nuijens, J H; Abbink, J J; Wachtfogel, Y T; Colman, R W; Eerenberg, A J; Dors, D; Kamp, A J; Strack van Schijndel, R J; Thijs, L G; Hack, C E

    1992-02-01

    Increased vasopermeability and vasodilation, presumably the result of endothelial perturbation, are considered among the basic pathogenetic mechanisms in septic shock. Neutrophils have been implicated as a source for mediators in endothelial injury. We measured elastase-alpha 1-antitrypsin (alpha 1AT) complexes and lactoferrin as markers for release of neutrophil granule contents in plasma from patients with sepsis on admission to the Intensive Care Unit, and we delineated the relationship of neutrophil activation to other inflammatory parameters and to hemodynamic and biochemical parameters. Levels of elastase-alpha 1AT and lactoferrin significantly correlated with each other (r = 0.58; p less than 0.008), and were increased (greater than 3.33 and 5 nmol/L, respectively) in 96% and 71% of the patients, respectively. Lactoferrin, but not elastase-alpha 1AT, correlated with the number of white blood cells (r = 0.38; p = 0.008). Elastase-alpha 1 AT levels were significantly higher (p = 0.008), whereas white blood cell counts were lower (p = 0.015) in patients with shock when compared with patients without abnormal blood pressure. Both elastase-alpha 1AT and lactoferrin levels correlated with lactate levels (r = 0.33; p = 0.024 and r = 0.30; p = 0.04), suggesting a role for neutrophil activation in the pathogenesis of hypoxygenation. In addition, elastase-alpha 1AT correlated with the concentrations of interleukin 6 (IL-6) (r = 0.46; p = 0.001) and C3a (r = 0.38; p = 0.009), suggesting that cytokines and complement may contribute to the degranulation of neutrophils in sepsis. Elastase-alpha 1AT complexes were inversely related to C1-inhibitor (r = -0.33; p = 0.028) and to platelet numbers (r = -0.42; p = 0.003). Levels of elastase-alpha 1AT complexes in plasma appeared to be of prognostic significance; levels were higher in 27 patients who died than in 21 patients who survived (p = 0.01). The mortality in 27 patients with concentrations below 10 nM was 37%, whereas it

  20. Induction of a heparin-stimulated serine proteinase in sex accessory gland tumors of the Lobund-Wistar rat.

    PubMed

    Wilson, Michael J; Lind, Jeremy; Sinha, Akhouri A

    2015-08-01

    Induction of new proteinase activities that may process growth factors, modify cell surface receptors, cleave extracellular matrix proteins, etc. is considered fundamental in carcinogenesis. The purpose of this study was to characterize a novel proteinase activity induced in sex accessory gland cancers (about 70% in seminal vesicles) of adult male Lobund-Wistar rats by a single injection of N-nitroso-N-methylurea (NMU; 25mg/kg) followed by implanted testosterone propionate (45mg in silastic tubing every 2months) treatment for 10-14months. A 28kDa proteinase activity was detected in tumor extracts using SDS-gelatin gel zymography with incubations done without CaCl2. Its activity was stimulated 15 fold by heparin (optimal activity 1.5-3.0μg/lane) added to the tissue extract-SDS sample buffer prior to electrophoresis. No 28kDa heparin-stimulated proteinase (H-SP) was found in the dorsal, lateral and anterior (coagulating gland) prostate lobes or seminal vesicles of untreated adult rats, but there was a 26-30kDa Ca(2+)-independent proteinase activity in the ventral prostate that showed limited heparin stimulation. The 28kDa H-SP was completely inhibited by 1.0mM 4-(2-aminoethyl)benzenesulfonylfluoride (AESBF) indicating that it was a serine-type proteinase. Other types of proteinase inhibitors were without effect, including serine proteinase inhibitors benzamidine, tranexamic acid and ε-aminocaproic acid. Proteinase activities of about 28kDa were found with casein, fibrinogen or carboxymethylated transferrin as substrate, however, these activities were not stimulated by heparin. Similar levels of activities of the 28kDa H-SP were found in primary tumors and their metastases, but little/no activity was detected in serum, even from rats with large tumor volume and metastases. These data demonstrate overexpression of a heparin-stimulated 28kDa serine proteinase in the primary tumors of sex accessory gland cancers and their metastases. This proteinase either does not

  1. Deficiency of a alpha-1-antitrypsin influences systemic iron homeostasis

    EPA Science Inventory

    Abstract Background: There is evidence that proteases and anti-proteases participate in the iron homeostasis of cells and living systems. We tested the postulate that alpha-1 antitrypsin (A1AT) polymorphism and the consequent deficiency of this anti-protease in humans are asso...

  2. Alpha 1-antitrypsin and survival in hepatocellular carcinoma.

    PubMed Central

    Tzonou, A.; Sparos, L.; Kalapothaki, V.; Zavitsanos, X.; Rebelakos, A.; Trichopoulos, D.

    1990-01-01

    The association between serum levels of alpha 1-antitrypsin (alpha 1 AT) at the time of diagnosis and survival was studied in a group of 78 patients with confirmed hepatocellular carcinoma (HCC). All 78 patients were followed until the time of death, which occurred in all instances from HCC, with a median time of 6 months and a range of 1-117 months. Cox's proportional hazards model was utilised in the analysis controlling for sex, age, HBsAg status and logarithmically transformed values of alpha-fetoprotein (alpha-FP). Older patients and patients positive for HBsAg have suggestively higher fatality rates (0.05 less than P less than 0.10) whereas in these data sex and AFP levels were not important prognostic factors. Increased levels of serum at alpha 1AT at the time of diagnosis of HCC were statistically significantly (P less than 0.05) related with shorter survival, patients with higher serum alpha 1AT by 200 mg 100 ml-1 having an expected survival time shorter by about 25%. PMID:2153397

  3. Alpha1-adrenoceptors trigger the snake venom production cycle in secretory cells by activating phosphatidylinositol 4,5-bisphosphate hydrolysis and ERK signaling pathway.

    PubMed

    Kerchove, Celine M; Luna, Milene S A; Zablith, Mariana B; Lazari, Maria F M; Smaili, Soraya S; Yamanouye, Norma

    2008-08-01

    Loss of venom from the venom gland after biting or manual extraction leads to morphological changes in venom secreting cells and the start of a cycle of production of new venom. We have previously shown that stimulation of both alpha- and beta-adrenoceptors in the secretory cells of the venom gland is essential for the onset of the venom production cycle in Bothrops jararaca. We investigated the signaling pathway by which the alpha-adrenoceptor initiates the venom production cycle. Our results show that the alpha(1)-adrenoceptor subtype is present in venom gland of the snake. In quiescent cells, stimulation of alpha(1)-adrenoceptor with phenylephrine increased the total inositol phosphate concentration, and this effect was blocked by the phospholipase C inhibitor U73122. Phenylephrine mobilized Ca(2+) from thapsigargin-sensitive stores and increased protein kinase C activity. In addition, alpha(1)-adrenoceptor stimulation increased the activity of ERK 1/2, partially via protein kinase C. Using RT-PCR approach we obtained a partial sequence of a snake alpha(1)-adrenoceptor (260 bp) with higher identity with alpha(1D) and alpha(1B)-adrenoceptors from different species. These results suggest that alpha(1)-adrenoceptors in the venom secreting cells are probably coupled to a G(q) protein and trigger the venom production cycle by activating the phosphatidylinositol 4,5-bisphosphate and ERK signaling pathway.

  4. High-molecular-mass multicatalytic proteinase complexes produced by the nitrogen-fixing actinomycete Frankia strain BR.

    PubMed Central

    Benoist, P; Müller, A; Diem, H G; Schwencke, J

    1992-01-01

    A major-high-molecular mass proteinase and seven latent minor proteinases were found in cell extracts and in concentrates of culture medium from Frankia sp. strain BR after nondenaturing electrophoresis in mixed gelatin-polyacrylamide gels. All of these complexes showed multicatalytic properties. Their molecular masses and their sedimentation coefficients varied from 1,300 kDa (28S) to 270 kDa (12S). The electroeluted 1,300-kDa proteinase complex dissociated into 11 low-molecular-mass proteinases (40 to 19 kDa) after sodium dodecyl sulfate activation at 30 degrees C and electrophoresis under denaturing conditions. All of these electroeluted proteinases hydrolyzed N-carbobenzoxy-Pro-Ala-Gly-Pro-4-methoxy-beta- naphthylamide, D-Val-Leu-Arg-4-methoxy-beta-naphthylamide, and Boc-Val-Pro-Arg-4-methyl-7-coumarylamide, whereas Suc-Leu-Leu-Val-Tyr-4-methyl-7-coumarylamide was cleaved only by the six lower-molecular-mass proteinases (27.5 to 19 kDa). Examination by electron microscopy of uranyl acetate-stained, electroeluted 1,300- and 650-kDa intracellular and extracellular proteinase complexes showed ring-shaped and cylindrical particles (10 to 11 nm in diameter, 15 to 16 nm long) similar to those of eukaryotic prosomes and proteasomes. Polyclonal antibodies raised against rat skeletal muscle proteasomes cross-reacted with all of the high-molecular-mass proteinase complexes and, after denaturation of the electroeluted 1,300-kDa band, with polypeptides of 35 to 38, 65, and 90 kDa. Electrophoresis of the activated cell extracts under denaturing conditions revealed 11 to 17 gelatinases from 40 to 19 kDa, including the 11 proteinases of the 1,300-kDa proteinase complex. The inhibition pattern of these proteinases is complex. Thiol-reactive compounds and 1-10-phenanthroline strongly inhibited all of the proteinases, but inhibitors against serine-type proteinases were also effective for most of them. Images PMID:1537794

  5. [Application of alpha1-adrenoblockers in treatment of ureteral calculi].

    PubMed

    Dutov, V V; Popov, D V; Rumiantsev, A A; Pashchenko, V B

    2012-01-01

    The results of evaluation of the efficacy of alpha1-adrenoblockers in treatment of ureteral calculi are presented. Comparative, prospective, placebo-uncontrolled nonrandomized single-center study was performed, which included 118 patients with solitary diagnosed calculi in various parts of ureter. After the pain relief, all the patients underwent conservative therapy aimed at spontaneous discharge of concretions. The maximum duration of conservative treatment was 28 days. Ultrasound monitoring was performed every week in all patients. The control group of patients received only Drotaverinum 40 mg three times a day, and analgesics. The main group received alpha1-adrenoblocker tamsulosin at a standard dose of 0.4 mg once a day along with Drotaverinum and analgesics. The overall probability of a discharge of concrements localized in the distal ureter was significantly (P = 0.02) higher in the patients treated with alpha1-adrenoblockers. Treatment regimen in main group of patients allowed better control of pain during all periods of observation, even if the discharge of concretions was not registered. The overall probability of migration of concrements from the proximal to the distal ureter in main group of patients was 52% versus 32% in controls (P = 0.17). The frequency of adverse effects was comparable in both groups. Vertigo, postural hypotension, and weakness were significantly more frequent in the main group of patients. Univariate and multivariate analyses of the proportional hazards model have demonstrated that the administration of alpha1-adrenoblocker increased the likelihood of a discharge of concrement from the distal ureter. It is shown that the nature of the applied therapy has directly influence on the risk of an earlier discharge of concretions. Inclusion of alpha1-adrenoblockers in the treatment scheme increased the probability of discharge of concrements at 4.11 times.

  6. Key features determining the specificity of aspartic proteinase inhibition by the helix-forming IA3 polypeptide.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Bur, Daniel; Harrison, Rebecca J; Berry, Colin; Kay, John

    2007-03-01

    The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained. PMID:17145748

  7. Diisopropyl fluorophosphate labeling of sperm-associated proteinases

    SciTech Connect

    Odem, R.R.; Willand, J.L.; Polakoski, K.L. )

    1990-02-01

    Proteinase inhibitors have been shown to be capable of preventing various aspects of fertilization. Diisopropyl fluorophosphate (DFP) is an irreversible inhibitor of trypsin-like enzymes that is commercially available in a radiolabeled form. The experiments described herein were designed to determine if DFP would prevent sperm function in live, motile sperm and to identify the sperm proteins bound with DFP. DFP at 5 mM concentrations had no observable effect on sperm motility, but inhibited the penetration of zona-free hamster ova by human sperm (5.5%) compared to controls (33.5%). Acid extracts of motile sperm that had been incubated with radiolabeled DFP and collected by the swim-up procedure demonstrated the presence of radiolabeled DFP, and the autoradiography of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels of these extracts localized the uptake of radiolabeled DFP to proteins in the molecular weight region of the proacrosin-acrosin system. Acid-extracted proteinases from semen samples incubated with DFP demonstrated a concentration-dependent inhibition of both esterolytic hydrolysis of benzoyl-arginine ethyl ester on spectrophotometric analysis and proteolytic activity on gelatin SDS-PAGE zymography. DFP-labeled proteins were precipitated by highly specific antibodies to proacrosin. These results demonstrated that DFP is capable of inhibiting sperm function, and that it associates with the proacrosin-acrosin system in live motile sperm.

  8. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance.

    PubMed

    Simões, Isaura; Faro, Rosário; Bur, Daniel; Faro, Carlos

    2007-10-26

    The Arabidopsis thaliana constitutive disease resistance 1 (CDR1) gene product is an aspartic proteinase that has been implicated in disease resistance signaling (Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A., and Lamb, C. (2004) EMBO J. 23, 980-988). This apoplastic enzyme is a member of the group of "atypical" plant aspartic proteinases. As for other enzymes of this subtype, CDR1 has remained elusive until recently as a result of its unusual properties and localization. Here we report on the heterologous expression and characterization of recombinant CDR1, which displays unique enzymatic properties among plant aspartic proteinases. The highly restricted specificity requirements, insensitivity toward the typical aspartic proteinase inhibitor pepstatin A, an unusually high optimal pH of 6.0-6.5, proteinase activity without irreversible prosegment removal, and dependence of catalytic activity on formation of a homo-dimer are some of the unusual properties observed for recombinant CDR1. These findings unveil a pattern of unprecedented functional complexity for Arabidopsis CDR1 and are consistent with a highly specific and regulated biological function. PMID:17650510

  9. Molecular insights into mechanisms of lepidopteran serine proteinase resistance to natural plant defenses.

    PubMed

    Tamaki, Fábio K; Terra, Walter R

    2015-11-27

    Plants have a wide range of chemical defenses against predation, including substances that target digestive serine proteinases of herbivorous. Previous works demonstrated that lepidopteran insects have digestive serine proteinases resistant to plant proteinase inhibitors (PPIs) and ketone modifications, while coleopteran ones are sensitive to those plant defenses. This paper focuses on molecular aspects that lead lepidopteran serine proteinases to PPI and ketone modification resistance. Using biochemical experiments and computer 3D modeling we demonstrated that lepidopteran trypsins are more hydrophobic than coleopteran ones, a feature associated to trypsin oligomerization and decreased inhibition by PPI. Moreover, the determination of pKa values of chymotrypsin catalytic residues obtained by TPCK modification indicates that the environment around the active site of ketone-resistant and -sensitive chymotrypsins are different. Structural analysis using resistant and sensitive chymotrypsins data allowed us to point 2 hotspot regions around the active site that could explain the observed differences. Our set of results highlights features of serine proteinases important for understanding the resistance of insects to plant chemical defenses.

  10. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin.

    PubMed

    Oppert, B; Kramer, K J; Johnson, D; Upton, S J; Mcgaughey, W H

    1996-06-01

    The ability of proteinases in gut extracts of the Indianmeal moth, Plodia interpunctella, to hydrolyze Bacillus thuringiensis (Bt) protoxin, casein, and rho-nitroanilide substrates was investigated. A polyclonal antiserum to protoxin CryIA(c) was used in Western blots to demonstrate slower protoxin processing by gut enzymes from Bt subspecies entomocidus-resistant larvae than enzymes from susceptible or kurstaki-resistant strains. Enzymes from all three strains hydrolyzed N-alpha-benzoyl-L-arginine rho-nitroanilide, N-succinyl-ala-ala-pro-phenylalanine rho-nitroanilide, and N-succinyl-ala-ala-pro-leucine rho-nitroanilide. Zymograms and activity blots were used to estimate the apparent molecular masses, number of enzymes, and relative activities in each strain. Several serine proteinase inhibitors reduced gut enzyme activities, with two soybean trypsin inhibitors, two potato inhibitors, and chymostatin the most effective in preventing protoxin hydrolysis.

  11. Rationale and Design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis Study. Alpha-1 Protocol.

    PubMed

    Strange, Charlie; Senior, Robert M; Sciurba, Frank; O'Neal, Scott; Morris, Alison; Wisniewski, Stephen R; Bowler, Russell; Hochheiser, Harry S; Becich, Michael J; Zhang, Yingze; Leader, Joseph K; Methé, Barbara A; Kaminski, Naftali; Sandhaus, Robert A

    2015-10-01

    Severe deficiency of alpha-1 antitrypsin has a highly variable clinical presentation. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis α1 Study is a prospective, multicenter, cross-sectional study of adults older than age 35 years with PiZZ or PiMZ alpha-1 antitrypsin genotypes. It is designed to better understand if microbial factors influence this heterogeneity. Clinical symptoms, pulmonary function testing, computed chest tomography, exercise capacity, and bronchoalveolar lavage (BAL) will be used to define chronic obstructive pulmonary disease (COPD) phenotypes that can be studied with an integrated systems biology approach that includes plasma proteomics; mouth, BAL, and stool microbiome and virome analysis; and blood microRNA and blood mononuclear cell RNA and DNA profiling. We will rely on global genome, transcriptome, proteome, and metabolome datasets. Matched cohorts of PiZZ participants on or off alpha-1 antitrypsin augmentation therapy, PiMZ participants not on augmentation therapy, and control participants from the Subpopulations and Intermediate Outcome Measures in COPD Study who match on FEV1 and age will be compared. In the primary analysis, we will determine if the PiZZ individuals on augmentation therapy have a difference in lower respiratory tract microbes identified compared with matched PiZZ individuals who are not on augmentation therapy. By characterizing the microbiome in alpha-1 antitrypsin deficiency (AATD), we hope to define new phenotypes of COPD that explain some of the diversity of clinical presentations. As a unique genetic cause of COPD, AATD may inform typical COPD pathogenesis, and better understanding of it may illuminate the complex interplay between environment and genetics. Although the biologic approaches are hypothesis generating, the results may lead to development of novel biomarkers, better understanding of COPD phenotypes, and development of novel diagnostic and therapeutic trials in AATD and COPD

  12. Rationale and Design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis Study. Alpha-1 Protocol

    PubMed Central

    Senior, Robert M.; Sciurba, Frank; O’Neal, Scott; Morris, Alison; Wisniewski, Stephen R.; Bowler, Russell; Hochheiser, Harry S.; Becich, Michael J.; Zhang, Yingze; Leader, Joseph K.; Methé, Barbara A.; Kaminski, Naftali; Sandhaus, Robert A.

    2015-01-01

    Severe deficiency of alpha-1 antitrypsin has a highly variable clinical presentation. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis α1 Study is a prospective, multicenter, cross-sectional study of adults older than age 35 years with PiZZ or PiMZ alpha-1 antitrypsin genotypes. It is designed to better understand if microbial factors influence this heterogeneity. Clinical symptoms, pulmonary function testing, computed chest tomography, exercise capacity, and bronchoalveolar lavage (BAL) will be used to define chronic obstructive pulmonary disease (COPD) phenotypes that can be studied with an integrated systems biology approach that includes plasma proteomics; mouth, BAL, and stool microbiome and virome analysis; and blood microRNA and blood mononuclear cell RNA and DNA profiling. We will rely on global genome, transcriptome, proteome, and metabolome datasets. Matched cohorts of PiZZ participants on or off alpha-1 antitrypsin augmentation therapy, PiMZ participants not on augmentation therapy, and control participants from the Subpopulations and Intermediate Outcome Measures in COPD Study who match on FEV1 and age will be compared. In the primary analysis, we will determine if the PiZZ individuals on augmentation therapy have a difference in lower respiratory tract microbes identified compared with matched PiZZ individuals who are not on augmentation therapy. By characterizing the microbiome in alpha-1 antitrypsin deficiency (AATD), we hope to define new phenotypes of COPD that explain some of the diversity of clinical presentations. As a unique genetic cause of COPD, AATD may inform typical COPD pathogenesis, and better understanding of it may illuminate the complex interplay between environment and genetics. Although the biologic approaches are hypothesis generating, the results may lead to development of novel biomarkers, better understanding of COPD phenotypes, and development of novel diagnostic and therapeutic trials in AATD and COPD

  13. Rationale and Design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis Study. Alpha-1 Protocol.

    PubMed

    Strange, Charlie; Senior, Robert M; Sciurba, Frank; O'Neal, Scott; Morris, Alison; Wisniewski, Stephen R; Bowler, Russell; Hochheiser, Harry S; Becich, Michael J; Zhang, Yingze; Leader, Joseph K; Methé, Barbara A; Kaminski, Naftali; Sandhaus, Robert A

    2015-10-01

    Severe deficiency of alpha-1 antitrypsin has a highly variable clinical presentation. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis α1 Study is a prospective, multicenter, cross-sectional study of adults older than age 35 years with PiZZ or PiMZ alpha-1 antitrypsin genotypes. It is designed to better understand if microbial factors influence this heterogeneity. Clinical symptoms, pulmonary function testing, computed chest tomography, exercise capacity, and bronchoalveolar lavage (BAL) will be used to define chronic obstructive pulmonary disease (COPD) phenotypes that can be studied with an integrated systems biology approach that includes plasma proteomics; mouth, BAL, and stool microbiome and virome analysis; and blood microRNA and blood mononuclear cell RNA and DNA profiling. We will rely on global genome, transcriptome, proteome, and metabolome datasets. Matched cohorts of PiZZ participants on or off alpha-1 antitrypsin augmentation therapy, PiMZ participants not on augmentation therapy, and control participants from the Subpopulations and Intermediate Outcome Measures in COPD Study who match on FEV1 and age will be compared. In the primary analysis, we will determine if the PiZZ individuals on augmentation therapy have a difference in lower respiratory tract microbes identified compared with matched PiZZ individuals who are not on augmentation therapy. By characterizing the microbiome in alpha-1 antitrypsin deficiency (AATD), we hope to define new phenotypes of COPD that explain some of the diversity of clinical presentations. As a unique genetic cause of COPD, AATD may inform typical COPD pathogenesis, and better understanding of it may illuminate the complex interplay between environment and genetics. Although the biologic approaches are hypothesis generating, the results may lead to development of novel biomarkers, better understanding of COPD phenotypes, and development of novel diagnostic and therapeutic trials in AATD and COPD

  14. New Concepts in Alpha-1 Antitrypsin Deficiency Disease Mechanisms.

    PubMed

    Marciniak, Stefan J; Ordóñez, Adriana; Dickens, Jennifer A; Chambers, Joseph E; Patel, Vruti; Dominicus, Caia S; Malzer, Elke

    2016-08-01

    Alpha-1 antitrypsin deficiency is predominantly caused by point mutations that alter the protein's folding. These mutations fall into two broad categories: those that destabilize the protein dramatically and lead to its post-translational degradation and those that affect protein structure more subtly to promote protein polymerization within the endoplasmic reticulum (ER). This distinction is important because it determines the cell's response to each mutant. The severely misfolded mutants trigger an unfolded protein response (UPR) that promotes improved protein folding but can kill the cell in the chronic setting. In contrast, mutations that permit polymer formation fail to activate the UPR but instead promote a nuclear factor-κB-mediated ER overload response. The ability of polymers to increase a cell's sensitivity to ER stress likely explains apparent inconsistencies in the alpha-1 antitrypsin-signaling literature that have linked polymers with the UPR. In this review we discuss the use of mutant serpins to dissect each signaling pathway. PMID:27564663

  15. Biomarkers in Alpha-1 Antitrypsin Deficiency Chronic Obstructive Pulmonary Disease.

    PubMed

    Turino, Gerard M; Ma, Shuren; Cantor, Jerome O; Lin, Yong Y

    2016-08-01

    Biomarkers of pathogenesis in chronic obstructive pulmonary disease (COPD) can significantly accelerate drug development. In COPD related to alpha-1 antitrypsin deficiency, the role of neutrophil elastase and its inhibition by alpha-1 antitrypsin protein focused interest on elastin degradation and the development of pulmonary emphysema. Amino acids desmosine and isodesmosine are unique cross-links in mature elastin fibers and can serve as biomarkers of elastin degradation when measured in body fluids. This review gives a perspective on what has been learned by the earliest measurements of desmosine and isodesmosine followed by later studies using methods of increased sensitivity and specificity and the meaning for developing new therapies. Also included are brief statements on the biomarkers fibrinogen, CC-16, and Aa-Val-360 in COPD. PMID:27564670

  16. Oncodevelopmental and hormonal regulation of alpha 1-fetoprotein gene expression.

    PubMed

    Belanger, L; Baril, P; Guertin, M; Gingras, M C; Gourdeau, H; Anderson, A; Hamel, D; Boucher, J M

    1983-01-01

    The main features of the oncodevelopmental biology of alpha 1-fetoprotein (AFP) are reviewed. Progress made in the molecular biology of AFP gene regulation is discussed and we present our recent data on the mechanisms of AFP suppression by glucocorticoid hormones. The relationship between AFP gene transcription and cell replication is examined, and it is suggested that the degree of methylation of the AFP gene (or of co-methylated regulatory DNA sequences) conditions its response to hormones.

  17. A triticale water-deficit-inducible phytocystatin inhibits endogenous cysteine proteinases in vitro.

    PubMed

    Chojnacka, Magdalena; Szewińska, Joanna; Mielecki, Marcin; Nykiel, Małgorzata; Imai, Ryozo; Bielawski, Wiesław; Orzechowski, Sławomir

    2015-02-01

    Water-deficit is accompanied by an increase in proteolysis. Phytocystatins are plant inhibitors of cysteine proteinases that belong to the papain and legumain family. A cDNA encoding the protein inhibitor TrcC-8 was identified in the vegetative organs of triticale. In response to water-deficit, increases in the mRNA levels of TrcC-8 were observed in leaf and root tissues. Immunoblot analysis indicated that accumulation of the TrcC-8 protein occurred after 72h of water-deficit in the seedlings. Using recombinant protein, inhibitory activity of TrcC-8 against cysteine proteases from triticale and wheat tissues was analyzed. Under water-deficit conditions, there are increases in cysteine proteinase activities in both plant tissues. The cysteine proteinase activities were inhibited by addition of the recombinant TrcC-8 protein. These results suggest a potential role for the triticale phytocystatin in modulating cysteine proteinase activities during water-deficit conditions. PMID:25462979

  18. A triticale water-deficit-inducible phytocystatin inhibits endogenous cysteine proteinases in vitro.

    PubMed

    Chojnacka, Magdalena; Szewińska, Joanna; Mielecki, Marcin; Nykiel, Małgorzata; Imai, Ryozo; Bielawski, Wiesław; Orzechowski, Sławomir

    2015-02-01

    Water-deficit is accompanied by an increase in proteolysis. Phytocystatins are plant inhibitors of cysteine proteinases that belong to the papain and legumain family. A cDNA encoding the protein inhibitor TrcC-8 was identified in the vegetative organs of triticale. In response to water-deficit, increases in the mRNA levels of TrcC-8 were observed in leaf and root tissues. Immunoblot analysis indicated that accumulation of the TrcC-8 protein occurred after 72h of water-deficit in the seedlings. Using recombinant protein, inhibitory activity of TrcC-8 against cysteine proteases from triticale and wheat tissues was analyzed. Under water-deficit conditions, there are increases in cysteine proteinase activities in both plant tissues. The cysteine proteinase activities were inhibited by addition of the recombinant TrcC-8 protein. These results suggest a potential role for the triticale phytocystatin in modulating cysteine proteinase activities during water-deficit conditions.

  19. A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae.

    PubMed

    Elpidina, E N; Tsybina, T A; Dunaevsky, Y E; Belozersky, M A; Zhuzhikov, D P; Oppert, B

    2005-08-01

    A chymotrypsin-like proteinase was isolated from the posterior midgut of larvae of the yellow mealworm, Tenebrio molitor, by ion-exchange and gel filtration chromatography. The enzyme, TmC1, was purified to homogeneity as determined by SDS-PAGE and postelectrophoretic activity detection. TmC1 had a molecular mass of 23.0 kDa, pI of 8.4, a pH optimum of 9.5, and the optimal temperature for activity was 51 degrees C. The proteinase displayed high stability at temperatures below 43 degrees C and in the pH range 6.5-11.2, which is inclusive of the pH of the posterior and middle midgut. The enzyme hydrolyzed long chymotrypsin peptide substrates SucAAPFpNA, SucAAPLpNA and GlpAALpNA and did not hydrolyze short chymotrypsin substrates. Kinetic parameters of the enzymatic reaction demonstrated that the best substrate was SucAAPFpNA, with k(cat app) 36.5 s(-1) and K(m) 1.59 mM. However, the enzyme had a lower K(m) for SucAAPLpNA, 0.5 mM. Phenylmethylsulfonyl fluoride (PMSF) was an effective inhibitor of TmC1, and the proteinase was not inhibited by either tosyl-l-phenylalanine chloromethyl ketone (TPCK) or N(alpha)-tosyl-l-lysine chloromethyl ketone (TLCK). However, the activity of TmC1 was reduced with sulfhydryl reagents. Several plant and insect proteinaceous proteinase inhibitors were active against the purified enzyme, the most effective being Kunitz soybean trypsin inhibitor (STI). The N-terminal sequence of the enzyme was IISGSAASKGQFPWQ, which was up to 67% similar to other insect chymotrypsin-like proteinases and 47% similar to mammalian chymotrypsin A. The amino acid composition of TmC1 differed significantly from previously isolated T. molitor enzymes.

  20. Met 358 to Arg mutation of alpha 1-antitrypsin associated with protein C deficiency in a patient with mild bleeding tendency.

    PubMed Central

    Vidaud, D; Emmerich, J; Alhenc-Gelas, M; Yvart, J; Fiessinger, J N; Aiach, M

    1992-01-01

    The molecular defect responsible for a dramatic prolongation of all standard clotting tests discovered in a 15-yr-old boy has been identified. Initial investigations revealed the presence of an activated Factor X (Factor Xa) and thrombin inhibitor which copurified with alpha 1-antitrypsin (alpha 1-AT), thereby suggesting the occurrence of an alpha 1-AT variant similar to alpha 1-AT Pittsburgh. This was confirmed by dot-blot analysis and direct sequencing after amplification by the polymerase chain reaction. A G to T transition at nucleotide 10038 results in the substitution of Met to an Arg, converting alpha 1-AT into an Arg-Ser protease inhibitor (serpin) that inhibited thrombin and Factor Xa more effectively than antithrombin III. Surprisingly, there was no bleeding history in the proband. The common mutation Z, which may explain a reduced expression of the allele bearing the Arg 358 Met mutation, was not observed in the propositus' DNA. To exclude the presence of another mutation, the coding regions and intron/exon junctions were sequenced. No other mutation was found. Recently, the patient experienced his first hemorrhagic episode at the age of 17. The level of the abnormal inhibitor had increased twofold 2 mo before. The large decrease in protein C concentration may account for the mild bleeding tendency in this case, despite the presence of the alpha 1-AT Pittsburgh mutation. An abnormal protein C pattern was observed in patient's plasma, suggesting that the circulating deficiency might be due to a deleterious effect of the abnormal inhibitor on both intracellular processing and catabolism of protein C. Images PMID:1569192

  1. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition.

    PubMed

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson's trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson's and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling. PMID:27607429

  2. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition

    PubMed Central

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson’s trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson’s and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling. PMID:27607429

  3. Mechanisms of alpha 1-adrenergic vascular desensitization in conscious dogs

    NASA Technical Reports Server (NTRS)

    Kiuchi, K.; Vatner, D. E.; Uemura, N.; Bigaud, M.; Hasebe, N.; Hempel, D. M.; Graham, R. M.; Vatner, S. F.

    1992-01-01

    To investigate the mechanisms of alpha 1-adrenergic vascular desensitization, osmotic minipumps containing either saline (n = 9) or amidephrine mesylate (AMD) (n = 9), a selective alpha 1-adrenergic receptor agonist, were implanted subcutaneously in dogs with chronically implanted arterial and right atrial pressure catheters and aortic flow probes. After chronic alpha 1-adrenergic receptor stimulation, significant physiological desensitization to acute AMD challenges was observed, i.e., pressor and vasoconstrictor responses to the alpha 1-adrenergic agonist were significantly depressed (p < 0.01) compared with responses in the same dogs studied in the conscious state before pump implantation. However, physiological desensitization to acute challenges of the neurotransmitter norepinephrine (NE) (0.1 micrograms/kg per minute) in the presence of beta-adrenergic receptor blockade was not observed for either mean arterial pressure (MAP) (30 +/- 7 versus 28 +/- 5 mm Hg) or total peripheral resistance (TPR) (29.8 +/- 4.9 versus 28.9 +/- 7.3 mm Hg/l per minute). In the presence of beta-adrenergic receptor plus ganglionic blockade after AMD pump implantation, physiological desensitization to NE was unmasked since the control responses to NE (0.1 micrograms/kg per minute) before the AMD pumps were now greater (p < 0.01) than after chronic AMD administration for both MAP (66 +/- 5 versus 32 +/- 2 mm Hg) and TPR (42.6 +/- 10.3 versus 23.9 +/- 4.4 mm Hg/l per minute). In the presence of beta-adrenergic receptor, ganglionic, plus NE-uptake blockade after AMD pump implantation, desensitization was even more apparent, since NE (0.1 micrograms/kg per minute) induced even greater differences in MAP (33 +/- 5 versus 109 +/- 6 mm Hg) and TPR (28.1 +/- 1.8 versus 111.8 +/- 14.7 mm Hg/l per minute). The maximal force of contraction induced by NE in the presence or absence of endothelium was significantly decreased (p < 0.05) in vitro in mesenteric artery rings from AMD pump dogs

  4. Characterization and cloning of metallo-proteinase in the excretory/secretory products of the infective-stage larva of Trichinella spiralis.

    PubMed

    Lun, H M; Mak, C H; Ko, R C

    2003-05-01

    Inhibitor sensitivity assays using azocaesin and FTC-caesin as substrates showed that the excretory/secretory (E/S) products of the infective-stage larvae of Trichinella spiralis contained serine, metallo-, cysteine and aspartic proteinases. The activity of the metallo-proteinase was zinc ion dependent (within a range of ZnSO(4) concentrations). Gelatin-substrate gel electrophoresis revealed two bands of molecular mass 48 and 58 kDa which were sensitive to the metallo-proteinase inhibitor EDTA. The former peptide was probably a cleavage product of the latter. The authenticity of the 58 kDa metallo-proteinase as an E/S product was confirmed by immunoprecipitation. Using PCR and RACE reactions, a complete nucleotide sequence of the metallo-proteinase gene was obtained. It comprised 2,223 bp with an open reading frame encoding 604 amino acid residues. The 3' untranslated region consisted of 352 bp, including a polyadenylation signal AATAA. A consensus catalytic zinc-binding motif was present. The conserved domains suggest that the cloned metallo-proteinase belongs to the astacin family and occurs as a single copy gene with 11 introns and 10 exons. Cluster analysis showed that the sequence of the metallo-proteinase gene of T. spiralis resembles those of Caenorhabdites elegans and Strongyloides stercoralis. PMID:12743801

  5. Identification of neutrophil elastase as the proteinase in burn wound fluid responsible for degradation of fibronectin.

    PubMed

    Grinnell, F; Zhu, M

    1994-08-01

    To identify proteinases responsible for fibronectin degradation in the wound environment we studied wound fluid obtained from burn patients. Immunoblotting experiments showed that extensive degradation of fibronectin had occurred in some burn wound fluid samples, in which case intact fibronectin molecules were undetectable, and the largest fibronectin fragment was 116 kDa. The 116-kDa fragment as well as a smaller 90-kDa fragment contained the fibronectin cell binding domain. These burn-fluid samples degraded freshly added fibronectin. Activity of the fibronectin-degrading enzyme was blocked by a broad-spectrum serine proteinase inhibitor or by specific neutrophil elastase inhibitors but not by metalloproteinase inhibitors or inhibitors of trypsin-like or chymotrypsin-like serine proteinases. Enzyme activity also was neutralized by antibodies against human neutrophil elastase. Incubation of fibronectin with burn wound fluid or purified human neutrophil elastase generated similar fibronectin-degradation products. Finally, direct assay of burn-wound-fluid samples with a synthetic elastase substrate showed a correlation between fluid-phase elastase activity and fibronectin degradation. Based on these findings, we conclude that burn-wound-fluid elastase is responsible for extensive fibronectin degradation. Acute elevation of elastase did not appear to hinder normal wound repair.

  6. Green tea modulates alpha(1)-adrenergic stimulated glucose transport in cultured rat cardiomyocytes.

    PubMed

    Angeloni, Cristina; Maraldi, Tullia; Ghelli, Anna; Rugolo, Michela; Leoncini, Emanuela; Hakim, Gabriele; Hrelia, Silvana

    2007-09-01

    alpha1-Adrenergic stimulation triggers glucose transport in the heart through the translocation of glucose transporter (GLUT) 1 and GLUT4 to plasma membranes, mediated by protein kinase C (PKC) isoforms. Evidence is emerging that dietary polyphenolic compounds may act not only as antioxidants but also by modulating PKC-mediated signaling. This study evaluated the ability of a green tea extract (GTE) to modulate alpha1-adrenoceptor-mediated glucose transport in rat cardiomyocytes. GTE supplementation decreased phenylephrine (PhE)-stimulated glucose uptake and GLUT4 recruitment. PhE stimulation activated PKC alpha, beta, delta, and epsilon, while GTE supplementation decreased the translocation of beta and delta isoforms, but not alpha and epsilon, supporting the notion that GTE directly affects PKC activation and is a beta and delta isoform-selective PKC inhibitor. Due to reactive oxygen species (ROS) involvement in pathological heart alterations, the observation that GTE is able to both inhibit effects originated by some PKC isoforms and counteract ROS deleterious effects could be important in the prevention/counteraction of these diseases.

  7. Alpha1-adrenoreceptor in human hippocampus: binding and receptor subtype mRNA expression.

    PubMed

    Szot, Patricia; White, Sylvia S; Greenup, J Lynne; Leverenz, James B; Peskind, Elaine R; Raskind, Murray A

    2005-10-01

    Alpha1-adrenoreceptors (AR), of which three subtypes exist (alpha1A-, alpha1B- and alpha1D-AR) are G-protein-coupled receptors that mediate the actions of norepinephrine and epinephrine both peripherally and centrally. In the CNS, alpha1-ARs are found in the hippocampus where animal studies have shown the ability of alpha1-AR agents to modulate long-term potentiation and memory; however, the precise distribution of alpha1-AR expression and its subtypes in the human brain is unknown making functional comparisons difficult. In the human hippocampus, 3H-prazosin (alpha1-AR antagonist) labels only the dentate gyrus (molecular, granule and polymorphic layers) and the stratum lucidum of the CA3 homogeneously. Human alpha1A-AR mRNA in the hippocampus is observed only in the dentate gyrus granule cell layer, while alpha1D-AR mRNA expression is observed only in the pyramidal cell layers of CA1, CA2 and CA3, regions where 3H-prazosin did not bind. alpha1B-AR mRNA is not expressed at detectable levels in the human hippocampus. These results confirm a difference in hippocampal alpha1-AR localization between rat and humans and further describe a difference in the localization of the alpha1A- and alpha1D-AR mRNA subtype between rats and humans. PMID:16039007

  8. The picornaviral 3C proteinases: cysteine nucleophiles in serine proteinase folds.

    PubMed Central

    Malcolm, B. A.

    1995-01-01

    The 3C proteinases are a novel group of cysteine proteinases with a serine proteinase-like fold that are responsible for the bulk of polyprotein processing in the Picornaviridae. Because members of this viral family are to blame for several ongoing global pandemic problems (rhinovirus, hepatitis A virus) as well as sporadic outbreaks of more serious pathologies (poliovirus), there has been continuing interest over the last two decades in the development of antiviral therapies. The recent determination of the structure of two of the 3C proteinases by X-ray crystallography opens the door for the application of the latest advances in computer-assisted identification and design of anti-proteinase therapeutic/chemoprophylactic agents. PMID:8520469

  9. Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence.

    PubMed

    Jones, M L; Larsen, P B; Woodson, W R

    1995-06-01

    The senescence of carnation (Dianthus caryophyllus L.) flower petals is regulated by the phytohormone ethylene and is associated with considerable catabolic activity including the loss of protein. In this paper we present the molecular cloning of a cysteine proteinase and show that its expression is regulated by ethylene and associated with petal senescence. A 1600 bp cDNA was amplified by polymerase chain reaction using a 5'-specific primer and 3'-nonspecific primer designed to amplify a 1-aminocyclopropane-1-carboxylate synthase cDNA from reverse-transcribed stylar RNA. The nucleotide sequence of the cloned product (pDCCP1) was found to share significant homology to several cysteine proteinases rather than ACC synthase. A single open reading frame of 428 amino acids was shown to share significant homology with other plant cysteine proteinases including greater than 70% identity with a cysteine proteinase from Arabidopsis thaliana. Amino acids in the active site of cysteine proteinases were conserved in the pDCCP1 peptide. RNA gel blot analysis revealed that the expression of pDCCP1 increased substantially with the onset of ethylene production and senescence of petals. Increased pDCCP1 expression was also associated with ethylene production in other senescing floral organs including ovaries and styles. The pDCCP1 transcript accumulated in petals treated with exogenous ethylene within 3 h and treatment of flowers with 2,5-norbornadiene, an inhibitor of ethylene action, prevented the increase in pDCCP1 expression in petals. The temporal and spatial patterns of pDCCP1 expression suggests a role for cysteine proteinase in the loss of protein during floral senescence.

  10. Characterization of the binding activities of proteinase-adhesin complexes from Porphyromonas gingivalis.

    PubMed Central

    Pike, R N; Potempa, J; McGraw, W; Coetzer, T H; Travis, J

    1996-01-01

    Adhesins from oral bacteria perform an important function in colonizing target tissues within the dentogingival cavity. In Porphyromonas gingivalis certain of these adhesion proteins exist as a complex with either of two major proteinases referred to as gingipain R (arginine-specific gingipain) and gingipain K (lysine-specific gingipain) (R. N. Pike, W. T. McGraw, J. Potempa, and J. Travis, J. Biol. Chem. 269:406-411, 1994). With specific proteinase inhibitors, it was shown that hemagglutination by either proteinase-adhesin complex could occur independently of proteinase activity. Significantly, low concentrations of fibrinogen, fibronectin, and laminin inhibited hemagglutination, indicating that adherence to these proteins and not the hemagglutination activity was a primary property of the adhesin activity component of complexes. Binding studies with gingipain K and gingipain R suggest that interaction with fibrinogen is a major function of the adhesin domain, with dissociation constants for binding to fibrinogen being 4 and 8.5 nM, respectively. Specific association with fibronectin and laminin was also found. All bound proteins were degraded by the functional proteinase domain, with gingipain R being more active on laminin and fibronectin and gingipain K being more effective in the digestion of fibrinogen. Cumulatively, these data suggest that gingipain R and gingipain K, acting as proteinase-adhesin complexes, progressively attach to, degrade, and detach from target proteins. Since such complexes appear to be present on the surfaces of both vesicles and membranes of P. gingivalis, they may play an important role in the attachment of this bacterium to host cell surfaces. PMID:8631676

  11. Purification and properties of an alkaline proteinase of Fusarium culmorum.

    PubMed

    Pekkarinen, Anja I; Jones, Berne L; Niku-Paavola, Marja-Leena

    2002-02-01

    The disease Fusarium head blight (scab) causes severe problems for farmers and for the industries that use cereals. It is likely that the fungi that cause scab (Fusarium spp.) use various enzymes when they invade grains. We are studying enzymes that the fungi may use to hydrolyze grain proteins. To do this, Fusarium culmorum was grown in a gluten-containing medium from which an alkaline serine proteinase with a molecular mass of 28.7 kDa was purified by size-exclusion and cation exchange chromatographies. The enzyme was maximally active at pH 8.3-9.6 and 50 degrees C, but was unstable under these conditions. It hydrolyzed the synthetic substrates N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide and, to a lesser extent, N-succinyl-Ala-Ala-Pro-Leu p-nitroanilide. It was inhibited by phenylmethanesulfonyl fluoride and chymostatin, but not by soybean trypsin or Bowman-Birk inhibitors. Parts of the amino-acid sequence were up to 82% homologous with those of several fungal subtilisins. One of the active site amino acids was detected and it occupied the same relative position as in the other subtilisins. Therefore, on the basis of these characteristics, the proteinase is subtilisin-like. Purification of the enzyme was complicated by the fact that, when purified, it apparently underwent autolysis. The presence of extraneous protein stabilized the activity.

  12. The thiol proteinase inhibitor E-64-d ameliorates amyloid-β-induced reduction of sAPPα secretion by reversing ceramide-induced protein kinase C down-regulation in SH-SY5Y neuroblastoma cells.

    PubMed

    Tanabe, Fuminori; Nakajima, Tomoko; Ito, Masahiko

    2013-11-01

    In Alzheimer's disease (AD), enhancing α-secretase processing of amyloid precursor protein (APP) is an important pathway to decrease neurotoxic amyloid β (Aβ) secretion. The α-secretase is reported to be regulated by protein kinase C (PKC) and various endogenous proteins or cell surface receptors. In this report, we first examined whether Aβ reduces α-secretase activity, and showed that Aβ peptide 1-40 (0.001 and 0.01 μM) reduced the secretion of soluble amyloid precursor protein α (sAPPα) in carbachol-stimulated SH-SY5Y neuroblastoma cells. E-64-d (3 μM), which is a potent calpain inhibitor that prevents PKC degradation, ameliorated the Aβ-induced reduction of sAPPα secretion. In addition, we observed that Aβ significantly enhanced ceramide production by activating neutral sphingomyelinase. The cell-permeable ceramide analog, C2-ceramide (1 μg/mL), also reduced sAPPα secretion, and in addition, E-64-d eliminated the observed decrease of sAPPα secretion. C2-ceramide induced down-regulation of PKC-α, -β1, and -β2 isozymes in SH-SY5Y cells. These findings suggest that ceramide may play an important role in sAPPα processing by modulating PKC activity.

  13. Evaluation of the pharmacological selectivity profile of alpha 1 adrenoceptor antagonists at prostatic alpha 1 adrenoceptors: binding, functional and in vivo studies.

    PubMed Central

    Kenny, B. A.; Miller, A. M.; Williamson, I. J.; O'Connell, J.; Chalmers, D. H.; Naylor, A. M.

    1996-01-01

    1. The profile of a range of alpha 1 adrenoceptor antagonists was determined in vitro against cloned human alpha 1A, alpha 1B and alpha 1D adrenoceptors and against noradrenaline-mediated contractions of rat aorta and human prostate. The in vivo profile of compounds was determined in an anaesthetized dog model which allowed the simultaneous assessment of antagonist potency against phenylephrine-mediated increases in blood pressure and prostatic pressure. 2. The quinazoline antagonists, prazosin, doxazosin and alfuzosin displayed high affinity but were non selective for the three cloned human alpha 1 adrenoceptors. Indoramin and SNAP 1069 showed selectivity for alpha 1A and alpha 1B adrenoceptors relative to the alpha 1D subtype. Rec 15/2739, WB 4101, SL 89,0591, (+)- and (-)- tamsulosin showed selectivity for alpha 1A and alpha 1D adrenoceptors relative to the alpha 1B subtype. RS 17053 showed high affinity and selectivity for alpha 1A adrenoceptors (pKi 8.6) relative to alpha 1B (pKi = 7.3) and alpha 1D (pKi = 7.1) subtypes. 3. (+)-Tamsulosin, (-)-tamsulosin, SL 89,0591, Rec 15/2739, SNAP 1069 and RS 17053 appeared to act as competitive antagonists of noradrenaline-mediated contractions of rat aorta yielding pA2 affinity estimates which were similar to binding affinities at cloned human alpha 1D adrenoceptors. The following rank order was obtained: prazosin = (-)-tamsulosin > doxazosin > SL 89,0591 = (+)-tamsulosin > Rec 15/2739 > RS 17053 = SNAP 1069. 4. (-)-Tamsulosin was a very potent, insurmountable antagonist of noradrenaline-mediated contractions of human prostate, yielding an approximate pA2 estimate of 9.8 at 1 nM. The corresponding (+)-enantiomer was 30 fold weaker. SL 89,0591, SNAP 1069 and Rec 15/2739 yielded pA2 estimates which compared well with their alpha 1A binding affinities. The affinity estimate for prazosin on human prostate was lower than the corresponding binding affinity determined at alpha 1A adrenoceptors and RS 17053 was a very weak

  14. Production of monoclonal antibodies against inactivated alpha 1-antitrypsin. Cross-reactivity with complexed alpha 1-antitrypsin and application in an assay to determine inactivated and complexed alpha 1-antitrypsin in biological fluids.

    PubMed

    Abbink, J J; Kamp, A M; Swaak, A J; Hack, C E

    1991-10-25

    15 different monoclonal antibodies (mcAbs) have been raised against the cleaved (inactive) form of the serpin alpha 1-antitrypsin (AT). In initial experiments these mcAbs were analysed for their ability to bind the native and the cleaved form of this inhibitor: eight of the 15 mcAbs appeared to react predominantly with cleaved AT. Additional experiments with mixtures of purified native AT, AT complexed to neutrophilic elastase and inactivated AT revealed that all mAbs that preferentially reacted with inactivated AT also bound to complexed AT. Using two of the mcAbs against inactivated AT a quantitative and sensitive sandwich-type radioimmunoassay was developed to determine levels of proteolytically inactivated AT in biological fluids. With this assay increased levels of inactivated AT were found in synovial fluid from patients with rheumatoid arthritis corresponding to about 2.4% (range 0.3-11%) of total AT. Approximately 10% of this inactivated AT appeared to consist of AT complexed to neutrophil elastase. The mcAbs described here further illustrate the structural resemblance between the complexed and cleaved forms of AT. In addition, these mcAbs appear to be useful tools for the study of AT in human disease.

  15. Two novel asparaginyl endopeptidase-like cysteine proteinases from the protist Trichomonas vaginalis: their evolutionary relationship within the clan CD cysteine proteinases.

    PubMed

    León-Félix, Josefina; Ortega-López, Jaime; Orozco-Solís, Ricardo; Arroyo, Rossana

    2004-06-23

    Cysteine proteinases (CPs) are important virulence factors of the protozoan parasite Trichomonas vaginalis. A total of six genes coding for cathepsin L-like CPs belonging to clan CA have been identified in T. vaginalis. At least 23 distinct spots with proteolytic activity have been detected by two-dimensional (2-D) substrate gel electrophoresis from in vitro grown parasites; however, only few of them have been characterized. In this work, we detected six spots with proteolytic activity and molecular weights between 25 and 35 kDa. The six proteinases correspond to two distinct CP families: the papain-like family, represented by four spots with pIs between 4.5 and 5.5; and the legumain-like family represented by two spots with pI 6.3 and 6.5. Next, we obtained two cDNAs encoding for legumain-like CPs from T. vaginalis, which were named Tvlegu-1 and Tvlegu-2. The size of these cDNA clones were 1225 and 1364 bp, which encoded for 388 and 415 amino acids, respectively. Their putative translation products have molecular masses of 42.8 and 47.2 kDa, corresponding to inactive legumain-like CP precursors. The two sequences share approximately 40% identity at the amino acid level. These protein products can be classified within a branch of the legumain-like family in clan CD cysteine proteinases due to their sensitivity to specific proteinases inhibitors, their DNA sequences, and phylogenetic reconstruction. However, they do not correspond either to the typical asparaginyl endopeptidase or the glycosylphosphatidylinositol (GPI): protein transamidase subfamilies. These results suggest that the TVLEGU-1 and TVLEGU-2 peptidases are likely to be part of a new subfamily within the legumain-like family of clan CD cysteine proteinases. Furthermore, they could be one of the missing links between prokaryotic and eukaryotic CPs in clan CD enzymes.

  16. Alpha1-antichymotrypsin polymorphism in Japanese cases of Alzheimer's disease.

    PubMed

    Yoshizawa, T; Yamakawa-Kobayashi, K; Hamaguchi, H; Shoji, S

    1997-11-25

    We examined the possible involvement of alpha1-antichymotrypsin (ACT) polymorphism in the risk for Alzheimer's disease (AD) in a Japanese population. No differences between AD and control subjects have been shown in the genotype distributions and allele frequencies of ACT. No modification of the risk for AD was observed, either alone or in combination with the apolipoprotein epsilon4 (ApoE-4) allele. Our results from a Japanese population failed to confirm the previous data in which the ACT polymorphism was shown to affect the ApoE-4-associated risk for AD.

  17. Molecular characterization of the new defective P(brescia) alpha1-antitrypsin allele.

    PubMed

    Medicina, Daniela; Montani, Nadia; Fra, Anna M; Tiberio, Laura; Corda, Luciano; Miranda, Elena; Pezzini, Alessandro; Bonetti, Fausta; Ingrassia, Rosaria; Scabini, Roberta; Facchetti, Fabio; Schiaffonati, Luisa

    2009-08-01

    Alpha1-antitrypsin (alpha(1)AT) deficiency is a hereditary disorder associated with reduced alpha(1)AT serum level, predisposing adults to pulmonary emphysema. Among the known mutations of the alpha(1)AT gene (SERPINA1) causing alpha(1)AT deficiency, a few alleles, particularly the Z allele, may also predispose adults to liver disease. We have characterized a new defective alpha(1)AT allele (c.745G>C) coding for a mutant alpha(1)AT (Gly225Arg), named P(brescia). The P(brescia) alpha(1)AT allele was first identified in combination with the rare defective M(würzburg) allele in an 11-year-old boy showing significantly reduced serum alpha(1)AT level. Subsequently, the P(brescia) allele was found in the heterozygous state with the normal M or the defective Z allele in nine and three adults respectively. In cellular models of the disease, we show that the P(brescia) mutant is retained in the endoplasmic reticulum as ordered polymers and is secreted more slowly than the normal M alpha(1)AT. This behaviour recapitulates the abnormal cellular handling and fate of the Z alpha(1)AT and suggests that the mutation present in the P(brescia) alpha(1)AT causes a conformational change of the protein which, by favouring polymer formation, is etiologic to both severe alpha(1)AT deficiency in the plasma and toxic protein-overload in the liver.

  18. The contribution of the conserved hinge region residues of alpha1-antitrypsin to its reaction with elastase.

    PubMed

    Hopkins, P C; Stone, S R

    1995-12-01

    The hinge region of serpins is a conserved sequence of 8 amino acids located 7 residues away from the scissile bond at P8 to P15, on the edge of the protease-binding domain. In the inhibitory serpins the P8 to P12 residues of this motif are usually small side-chain amino acids, most commonly alanine. Each of these residues in alpha1-antitrypsin was mutated to a glutamate, and the effect of a hinge-region glutamic acid substitution was found. While substitutions at positions P10 and P12 affected the inhibitory characteristics of alpha1-antitrypsin, substitutions at positions P7, P8, P9, and P11 had no effect on inhibition. Thus, the conservation of residues with small side chains at the latter positions does not appear to be related to an essential function in the inhibitory mechanism. Following the glutamate substitution at P10, alpha1-antitrypsin remained a rapid inhibitor of elastase, but the elastase--serpin complex slowly broke down to yield active elastase and cleaved alpha1-antitrypsin. The glutamate substitution at P12 caused the resultant molecule (P12 Ala-->Glu) to become a partial substrate of elastase such that four moles of inhibitor were required to inhibit one mole of enzyme, and led to a 12-fold decrease in the association rate constant. The data could be interpreted in terms of the suicide substrate inhibition model for serpin-protease interactions and allowed a further refinement of the role of the hinge region in this process.

  19. Purification and some physico-chemical and enzymic properties of a calcium ion-activated neutral proteinase from rabbit skeletal muscle

    PubMed Central

    Azanza, Jean-Louis; Raymond, Jacques; Robin, Jean-Michel; Cottin, Patrick; Ducastaing, André

    1979-01-01

    Ca2+-activated neutral proteinase was purified from rabbit skeletal muscle by a method involving DEAE-Sephacel chromatography, affinity chromatography on organomercurial–Sepharose and gel filtration on Sephacryl S-200 and Sephadex G-150. The SDS (sodium dodecyl sulphate)/polyacrylamide-gel-electrophoresis data show that the purified enzyme contains only one polypeptide chain of mol.wt. 73000. The purification procedure used allowed us to eliminate a contaminant containing two components of mol.wt. about 30000 each. Whole casein or α1-casein were hydrolysed with a maximum rate at 30°C, pH7.5, and with 5mm-CaCl2, but myofibrils were found to be a very susceptible substrate for this proteinase. This activity is associated with the destruction of the Z-discs, which is caused by the solubilization of the Z-line proteins. The activity of the proteinase in vitro is not limited to the removal of Z-line. SDS/polyacrylamide-gel electrophoresis on larger plates showed the ability of the proteinase to degrade myofibrils more extensively than previously supposed. This proteolysis resulted in the production of a 30000-dalton component as well as in various other higher- and lower-molecular-weight peptide fragments. Troponin T, troponin I, α-tropomyosin, some high-molecular-weight proteins (M protein, heavy chain of myosin) and three unidentified proteins are degraded. Thus the number of proteinase-sensitive regions in the myofibrils is greater than as previously reported by Dayton, Goll, Zeece, Robson & Reville [(1976) Biochemistry 15, 2150–2158]. The Ca2+-activated neutral proteinase is not a chymotrypsin- or trypsin-like enzyme, but it reacted with all the classic thiol-proteinase inhibitors for cathepsin B, papain, bromelain and ficin. Thus the proteinase was proved to have an essential thiol group. Antipain and leupeptin are also inhibitors of the Ca2+-activated neutral proteinase. ImagesFig. 1.Fig. 2.Fig. 3. PMID:534501

  20. Proteinase K improves quantitative acylation studies.

    PubMed

    Fränzel, Benjamin; Fischer, Frank; Steegborn, Clemens; Wolters, Dirk Andreas

    2015-01-01

    Acetylation is a common PTM of proteins but is still challenging to analyze. Only few acetylome studies have been performed to tackle this issue. Yet, the detection of acetylated proteins in complex cell lysates remains to be improved. Here, we present a proteomic approach with proteinase K as a suitable protease to identify acetylated peptides quantitatively. We first optimized the digestion conditions using an artificial system of purified bovine histones to find the optimal protease. Subsequently, the capability of proteinase K was demonstrated in complex HEK293 cell lysates. Finally, SILAC in combination with MudPIT was used to show that quantification with proteinase K is possible. In this study, we identified a sheer number of 557 unique acetylated peptides originating from 633 acetylation sites.

  1. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of alpha-1-lipoprotein may aid in the diagnosis of Tangier disease (a hereditary disorder of fat metabolism)....

  2. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of alpha-1-lipoprotein may aid in the diagnosis of Tangier disease (a hereditary disorder of fat metabolism)....

  3. Randomized, Placebo-Controlled Trials in Alpha-1 Antitrypsin Deficiency.

    PubMed

    Sandhaus, Robert A

    2016-08-01

    Alpha-1 antitrypsin deficiency (AATD) is a condition caused by the inheritance of two mutated SERPINA1 gene alleles. Individuals with AATD are at increased risk of injury to the liver and lungs. The pulmonary manifestations include precocious onset of pulmonary emphysema and bronchiectasis. For nearly three decades, treatment has been available to individuals with emphysema caused by AATD, but this therapy-augmentation of plasma and tissue alpha-1 antitrypsin levels by intravenous administration of human plasma-derived protein-was approved by regulatory authorities based on its biochemical efficacy. This therapy appears to slow the progression of emphysema in patients with AATD. The medical, patient, and regulatory communities have sought assurance that this expensive therapy provides measurable clinical benefit. Documenting such benefit has been difficult because of the slow progression of the underlying lung disease in AATD, the rarity of this genetic condition, and the lack of direct quantitative measurements of emphysema progression. Over the past decade, quantitative computed tomography (CT) densitometry of the lungs has been found to correlate with severity and progression of emphysema. The recent publication of a well-powered, masked, placebo-controlled study using CT densitometry to evaluate the effectiveness of augmentation therapy at slowing the progression of emphysema has provided some assurance of the clinical efficacy of this therapy. PMID:27564674

  4. Astute, Assertive, and Alpha-1: Quantifying Empowerment in a Rare Genetic Community

    ERIC Educational Resources Information Center

    Finn, Symma

    2008-01-01

    We investigated empowerment in the Alpha-1 Antitrypsin Deficiency (Alpha-1) community, a rare, genetic disease network in the United States. The research was motivated by nine years of observations in the community. After observing what seemed to be a heightened amount of activism among Alpha-1 community members, I had hypothesized that this…

  5. Modeling the interactions between alpha(1)-adrenergic receptors and their antagonists.

    PubMed

    Du, Lupei; Li, Minyong

    2010-09-01

    As crucial members of the G-protein coupled receptor (GPCR) superfamily, alpha (1)-adrenergic receptors (alpha(1)-ARs) are recognized to intervene the actions of endogenous catecholamines such as norepinephrine and epinephrine. So far three distinct alpha(1)-AR subtypes, alpha(1A), alpha(1B) and alpha(1D), have been characterized by functional analysis, radio-ligand binding and molecular biology studies. The alpha(1)-ARs are of therapeutic interest because of their distinct and critical roles in many physiological processes, containing hypertension, benign prostatic hyperplasia, smooth muscle contraction, myocardial inotropy and chronotropy, and hepatic glucose metabolism. Accordingly, designing subtype-selective antagonists for each of the three alpha(1)-AR subtypes has been an enthusiastic region of medicinal research. Even though a large number of studies on GPCRs have been conducted, understanding of how known antagonists bind to alpha(1)-ARs still remains sketchy and has been a serious impediment to search for potent and subtype-selective alpha(1)-AR antagonists because of the lack of detailed experimental structural knowledge. This review deliberates the simulation of alpha(1)-ARs and their interactions with antagonists by using ligand-based (pharmacophore identification and QSAR modeling) and structure-based (comparative modeling and molecular docking) approaches. Combined with experimental data, these computational attempts could improve our understanding of the structural basis of antagonist binding and the molecular basis of receptor activation, thus offering a more reasonable approach in the design of drugs targeting alpha(1)-ARs.

  6. 21 CFR 866.5130 - Alpha-1-antitrypsin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5130 Alpha-1-antitrypsin immunological test system. (a) Identification. An alpha-1-antitrypsin... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alpha-1-antitrypsin immunological test system....

  7. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alpha-1-lipoprotein immuno-logical test...

  8. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alpha-1-lipoprotein immuno-logical test...

  9. Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue.

    PubMed

    Falanga, A; Gordon, S G

    1985-09-24

    Cancer procoagulant, a proteolytic procoagulant enzyme, has been purified from rabbit V2 carcinoma extracts by two procedures. In the first, the protein was purified by benzamidine--Sepharose affinity chromatography, gel filtration chromatography, and phenyl-Sepharose hydrophobic chromatography. Antiserum was raised against the purified protein and was used to prepare an immunoadsorbent column. In the second, tumor extracts were purified by immunoaffinity chromatography followed by p-(chloromercuri)benzoate affinity chromatography. The second procedure was substantially quicker and easier. The final product of both procedures was homogeneous on the basis of analytical sodium dodecyl sulfate--polyacrylamide gel electrophoresis and isoelectric focusing. The molecular weight was 68 000 and the isoelectric point 4.8. The proteinase activity of cancer procoagulant directly activated factor X, in the absence of factor VII, and was inhibited by 1 mM iodoacetamide and 0.1 mM mercury which are classic cysteine proteinase inhibitors. A carbohydrate analysis showed less than 1 mol of hexose or sialic acid/mol of protein. The amino acid analysis showed that serine (19.1%), glycine (18.77%), and glutamic acid (12.5%) were the prevalent amino acids. The amino acid composition of cancer procoagulant was substantially different than other known factor X activating proteinases or other cysteine proteinases including cathepsin B.

  10. Increased outer arm and core fucose residues on the N-glycans of mutated alpha-1 antitrypsin protein from alpha-1 antitrypsin deficient individuals.

    PubMed

    McCarthy, Cormac; Saldova, Radka; O'Brien, M Emmet; Bergin, David A; Carroll, Tomás P; Keenan, Joanne; Meleady, Paula; Henry, Michael; Clynes, Martin; Rudd, Pauline M; Reeves, Emer P; McElvaney, Noel G

    2014-02-01

    Alpha-1 antitrypsin (AAT) is the major physiological inhibitor of a range of serine proteases, and in the lung, it maintains a protease-antiprotease balance. AAT deficiency (AATD) is an autosomal co-dominant condition with the Z mutation being the most common cause. Individuals homozygous for Z (PiZZ) have low levels of circulating mutant Z-AAT protein leading to premature emphysematous lung disease. Extensive glycoanalysis has been performed on normal AAT (M-AAT) from healthy individuals and the importance of glycosylation in affecting the immune modulatory roles of AAT is documented. However, no glycoanalysis has been carried out on Z-AAT from deficient individuals to date. In this study, we investigate whether the glycans present on Z-AAT differ to those found on M-AAT from healthy controls. Plasma AAT was purified from 10 individuals: 5 AATD donors with the PiZZ phenotype and 5 PiMM healthy controls. Glycoanalysis was performed employing N-glycan release, exoglycosidase digestion and UPLC analysis. No difference in branched glycans was identified between AATD and healthy controls. However, a significant increase in both outer arm (α1-3) (p = 0.04) and core (α1-6) fucosylated glycans (p < 0.0001) was found on Z-AAT compared to M-AAT. This study has identified increased fucosylation on N-glycans of Z-AAT indicative of ongoing inflammation in AATD individuals with implications for early therapeutic intervention.

  11. Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence

    PubMed Central

    Kim, Won-Tae; Kong, Hyun-Hee; Ha, Young-Ran; Hong, Yeon-Chul; Jeong, Hae Jin; Yu, Hak Sun

    2006-01-01

    The pathogenic mechanism of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK) by Acanthamoeba has yet to be clarified. Protease has been recognized to play an important role in the pathogenesis of GAE and AK. In the present study, we have compared specific activity and cytopathic effects (CPE) of purified 33 kDa serine proteinases from Acanthamoeba strains with different degree of virulence (A. healyi OC-3A, A. lugdunensis KA/E2, and A. castellanii Neff). Trophozoites of the 3 strains revealed different degrees of CPE on human corneal epithelial (HCE) cells. The effect was remarkably reduced by adding phenylmethylsulfonylfluoride (PMSF), a serine proteinase inhibitor. This result indicated that PMSF-susceptible proteinase is the main component causing cytopathy to HCE cells by Acanthamoeba. The purified 33 kDa serine proteinase showed strong activity toward HCE cells and extracellular matrix proteins. The purified proteinase from OC-3A, the most virulent strain, demonstrated the highest enzyme activity compared to KA/E2, an ocular isolate, and Neff, a soil isolate. Polyclonal antibodies against the purified 33 kDa serine proteinase inhibit almost completely the proteolytic activity of culture supernatant of Acanthamoeba. In line with these results, the 33 kDa serine proteinase is suggested to play an important role in pathogenesis and to be the main component of virulence factor of Acanthamoeba. PMID:17170574

  12. Implication of alpha1-antichymotrypsin polymorphism in familial Alzheimer's disease.

    PubMed

    Nacmias, B; Marcon, G; Tedde, A; Forleo, P; Latorraca, S; Piacentini, S; Amaducci, L; Sorbi, S

    1998-03-13

    A common polymorphism in the alpha1-antichymotrypsin (ACT) gene has been shown to modify the Apolipoprotein E (ApoE) epsilon4-associated Alzheimer's disease (AD) risk identifying the combination of the ACT/AA and ApoE epsilon4/epsilon4 genotypes as a potential susceptibility marker for AD. Using the polymerase chain reaction, we analyzed the segregation of the ACT and ApoE polymorphisms in familial Alzheimer's disease (FAD) patients carrying mutations in Presenilin (PS) and APP genes and in both early onset (EO) and late onset (LO) FAD patients without known mutations. Our data suggest that ACT does not represent an additional risk factor for PS and APP mutated families. However, in LOFAD patients a high frequency of the combined ACT/AA and ApoE epsilon4/epsilon4 genotypes suggest that ACT may interact with ApoE and play a role in LOFAD. PMID:9572591

  13. Apolipoprotein E and alpha1-antichymotrypsin polymorphism in Alzheimer's disease.

    PubMed

    Nacmias, B; Tedde, A; Latorraca, S; Piacentini, S; Bracco, L; Amaducci, L; Guarnieri, B M; Petruzzi, C; Ortenzi, L; Sorbi, S

    1996-10-01

    A recent observation has shown that a common polymorphism in the alpha1-antichymotrypsin (ACT) gene modifies the apolipoprotein E (ApoE) epsilon4-associated Alzheimer's disease (AD) risk identifying the combination of the ACT/AA and ApoE epsilon4/epsilon4 genotypes as a potential susceptibility marker for AD. We analyzed the segregation of the ApoE and ACT polymorphism in sporadic and familial AD patients. In none of the sporadic AD patients did we find the combination of the ACT/AA and ApoE epsilon4/epsilon4 genotypes. The frequency of ApoE epsilon4/epsilon4 homozygosity in the AD sample resulted highest for the ACT/ TT genotype (17.6%). Our data fail to confirm any additional association with AD beyond the ApoE epsilon4 allele with any ACT genotype, suggesting that ACT does not represent an additional risk factor for AD. PMID:8871590

  14. alpha-1-antitrypsin in breast milk of healthy Nigerian mothers.

    PubMed

    Omeme, J A; Lantos, J D; Ihongbe, J C

    1981-01-01

    Alpha-1-antitryspin (x-1-AT) may play a possible role as effector of immunological stasis. This study examines the levels of this glycoprotein in 73 breast milk samples from 60 healthy Nigerian mothers. Levels of x-1-AT were measured by single radial immunodiffusion according to the method of Mancini. Serum protein was measured by Lowry's method, albumin by Doumas' method. Highest mean levels of x-1-AT were found in colostrum (25 mg/dl). The level was significantly higher compared to transitional milk (14.2 mg/dl) or mature milk (165 mg/dl) (p0.001). Breast milk contains substantial amounts of x-1-AT which is not destroyed by pasturization at 56 degrees Centigrade. The immunological protective properties of breast milk are ideal for newborn babies, particularly those who are low birthweight and are thus most susceptible to neonatal necrotizing enterocolitis.

  15. An ECLIPSE View of Alpha-1 Antitrypsin Deficiency.

    PubMed

    Lomas, David A

    2016-08-01

    Chronic obstructive pulmonary disease (COPD) is a multicomponent condition that is estimated to become the third leading cause of death in 2020. The ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study, funded by GlaxoSmithKline, is an observational study designed to define outcomes that can be used as endpoints in clinical trials in individuals with COPD. It allowed us to describe the heterogeneity of COPD, the stability of the exacerbation phenotype, and the factors associated with a progressive decline in lung function and the progression of emphysema on computed tomography scans. The cohort was also used to define genetic factors and biomarkers associated with COPD and disease progression. This review considers how the results from ECLIPSE can inform our understanding of the lung disease associated with alpha-1 antitrypsin deficiency. PMID:27564668

  16. Concerted regulation of inhibitory activity of alpha 1-antitrypsin by the native strain distributed throughout the molecule.

    PubMed

    Seo, Eun Joo; Lee, Cheolju; Yu, Myeong-Hee

    2002-04-19

    The native forms of common globular proteins are in their most stable state but the native forms of plasma serpins (serine protease inhibitors) show high energy state interactions. The high energy state strain of alpha(1)-antitrypsin, a prototype serpin, is distributed throughout the whole molecule, but the strain that regulates the function directly appears to be localized in the region where the reactive site loop is inserted during complex formation with a target protease. To examine the functional role of the strain at other regions of alpha(1)-antitrypsin, we increased the stability of the molecule greatly via combining various stabilizing single amino acid substitutions that did not affect the activity individually. The results showed that a substantial increase of stability, over 13 kcal mol(-1), affected the inhibitory activity with a correlation of 11% activity loss per kcal mol(-1). Addition of an activity affecting single residue substitution in the loop insertion region to these very stable substitutions caused a further activity decrease. The results suggest that the native strain of alpha(1)-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner. PMID:11834734

  17. Genetic diversity of the alpha-1-antitrypsin gene in Africans identified using a novel genotyping assay.

    PubMed

    Hayes, Vanessa M

    2003-07-01

    The highly polymorphic human alpha-1-antitrypsin (AAT) gene, more recently named SERPINA1, codes for the most abundant circulating plasma serine protease inhibitor, protease inhibitor 1 (PI). Most studies determining AAT haplotype frequencies have been restricted first by the limited accuracy of the phenotypic method used and secondly by the analysis of predominantly Caucasian populations. Limited studies have been performed on African-based populations. Here a new comprehensive assay for genotyping the entire coding region, including splice junctions, of the AAT gene was designed. This assay, based on denaturing gradient gel electrophoresis (DGGE), allows for the complete analysis of a single individual in two lanes on a gel. Application of the assay resulted in the identification of nine known AAT variants as well as 13 novel sequence variants, five of which are single nucleotide polymorphisms (SNPs), occurring exclusively in the African-based populations. This is the first comprehensive analysis of the genetic diversity of the AAT gene in a cohort from sub-Saharan Africa.

  18. Human cytomegalovirus maturational proteinase: expression in Escherichia coli, purification, and enzymatic characterization by using peptide substrate mimics of natural cleavage sites.

    PubMed Central

    Burck, P J; Berg, D H; Luk, T P; Sassmannshausen, L M; Wakulchik, M; Smith, D P; Hsiung, H M; Becker, G W; Gibson, W; Villarreal, E C

    1994-01-01

    The proteolytic processing of the human cytomegalovirus (HCMV) assembly protein, resulting in truncation of its C terminus, is an essential step in virion maturation. The proteinase responsible for this cleavage is the amino-terminal half of the protein encoded by the UL80a open reading fame. We have obtained high expression levels of this 256-amino-acid HCMV proteinase, assemblin, in Escherichia coli. In addition to the 28-kDa proteinase, a 15-kDa protein comprising the first 143 amino acids and a 13-kDa protein comprising the last 113 amino acids of the 28-kDa HCMV proteinase were present. Both the 28-kDa proteinase and the 15-kDa protein were purified by a two-step chromatographic procedure utilizing anion exchange in urea and dithiothreitol and size exclusion in NaSCN and dithiothreitol. Activation of the purified 28-kDa proteinase required denaturation in urea as well as complete reduction of all five cysteine residues in the molecule. Removal of the urea by dialysis with retention of the reducing agent yielded an active proteinase. Addition of glycerol to 50% enhanced the activity. The HCMV proteinase cleaved the peptides RGVVNASSRLAK and SYVKASVSPE, which are mimics of the maturational (M)- and release (R)-site sequences, respectively, in the UL80a-encoded protein. The cleavage site in the peptides was at the same Ala-Ser scissile bond as observed in the UL80a protein. The Km value for the cleavage of RGVVNASSRLAK (M-site mimic) by the proteinase was similar to that for SYVKASVSPE (R-site mimic), but the turnover (kcat) of the M-site peptide mimic substrate by the proteinase was six to eight times faster. The peptide homologs of the herpes simplex virus type 1 M- and R-site sequences in the UL26-encoded protein were also cleaved by the HCMV proteinase, although at rates slower than those for the HCMV substrates. The HCMV proteinase was inhibited by Zn2+ and by alkylating agents, but only at very high inhibitor concentrations. The purified 15-kDa protein

  19. A four-straight-line model for the proteinase-binding characteristics of human blood serum.

    PubMed Central

    Topping, R M; Seilman, S

    1979-01-01

    Kinetic evaluation of the capacity of human blood serum to form complexes with bovine trypsin generated partition profiles that may be approximated by a series of four intersecting straight lines. Such profiles are suggested to reflect the binding of trypsin to alpha 2-macroglobulin in a kinetically preferred mode (alpha-sites), followed by a subsidiary mode (beta-sites) and finally to alpha 1-antitrypsin. The form of the profile, in addition to revealing a hitherto unreported proteinase-binding capability of alpha 2-macroglobulin (beta-sites), also indicates that saturation of alpha-sites corresponds to a molar binding ratio of alpha 2-macroglobulin/trypsin of 1:2. Finally the profile provides, for certain pathological states, a clinically valuable characteristic. PMID:435247

  20. Proteinases in Naegleria Fowleri (strain NF3), a pathogenic amoeba: a preliminary study.

    PubMed

    Mat Amin, Nakisah

    2004-12-01

    Naegleria fowleri is a free-living amoeba, known as a causative agent for a fatal disease of the central nervous system (CNS) in man such as Primary amoebic meningoencephalitis (PAM). Factors contributing to its pathogenicity and its distribution in the environment have been investigated by previous researchers. In case of its pathogenicity, several enzymes such as phospolipase A and sphingomyelinase, have been proposed to probably act as aggressors in promoting PAM but no study so far have been conducted to investigate the presence of proteinase enzyme in this amoeba although a 56kDa cystein proteinase enzyme has been identified in Entamoeba histolytica as an important contributing factor in the amoeba's virulence. In this preliminary study, a pathogenic amoeba, Naegleria fowleri (strain NF3) was examined for the presence of proteinases. Samples of enzymes in this amoeba were analysed by electrophoresis using SDS-PAGE-gelatin gels. The results showed that this amoeba possesses at least two high molecular weight proteinases on gelatin gels; their apparent molecular weights are approximately 128 kDa and approximately 170 kDa. Band of approximately 128 kDa enzyme is membrane-associated and its activity is higher at alkaline pH compared with lower pH; at lower pH, its activity is greatly stimulated by DTT. The approximately 170 kDa band enzyme appears to be inactivated at pH 8.0, at lower ph its activity is higher and DTT-dependance. The activity of this enzyme is partially inhibited by inhibitor E-64 but markedly inhibited to antipain suggesting it belongs to the cysteine proteinase group.

  1. Induction of release and up-regulated gene expression of interleukin (IL)-8 in A549 cells by serine proteinases

    PubMed Central

    Wang, Haiyan; Zheng, Yanshan; He, Shaoheng

    2006-01-01

    Background Hypersecretion of cytokines and serine proteinases has been observed in asthma. Since protease-activated receptors (PARs) are receptors of several serine proteinases and airway epithelial cells are a major source of cytokines, the influence of serine proteinases and PARs on interleukin (IL)-8 secretion and gene expression in cultured A549 cells was examined. Results A549 cells express all four PARs at both protein and mRNA levels as assessed by flow cytometry, immunofluorescence microscopy and reverse transcription polymerase chain reaction (PCR). Thrombin, tryptase, elastase and trypsin induce a up to 8, 4.3, 4.4 and 5.1 fold increase in IL-8 release from A549 cells, respectively following 16 h incubation period. The thrombin, elastase and trypsin induced secretion of IL-8 can be abolished by their specific inhibitors. Agonist peptides of PAR-1, PAR-2 and PAR-4 stimulate up to 15.6, 6.6 and 3.5 fold increase in IL-8 secretion, respectively. Real time PCR shows that IL-8 mRNA is up-regulated by the serine proteinases tested and by agonist peptides of PAR-1 and PAR-2. Conclusion The proteinases, possibly through activation of PARs can stimulate IL-8 release from A549 cells, suggesting that they are likely to contribute to IL-8 related airway inflammatory disorders in man. PMID:16696869

  2. A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests.

    PubMed

    Pernas, M; Sánchez-Monge, R; Gómez, L; Salcedo, G

    1998-12-01

    Cystatin CsC, a cysteine proteinase inhibitor from chestnut (Castanea sativa) seeds, has been purified and characterized. Its full-length cDNA clone was isolated from an immature chestnut cotyledon library. The inhibitor was expressed in Escherichia coli and purified from bacterial extracts. Identity of both seed and recombinant cystatin was confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis, two-dimensional electrophoresis and N-terminal sequencing. CsC has a molecular mass of 11,275 Da and pI of 6.9. Its amino acid sequence includes all three motifs that are thought to be essential for inhibitory activity, and shows significant identity to other phytocystatins, especially that of cowpea (70%). Recombinant CsC inhibited papain (Ki 29 nM), ficin (Ki 65 nM), chymopapain (Ki 366 nM), and cathepsin B (Ki 473 nM). By contrast with most cystatins, it was also effective towards trypsin (Ki 3489 nM). CsC is active against digestive proteinases from the insect Tribolium castaneum and the mite Dermatophagoides farinae, two important agricultural pests. Its effects on the cysteine proteinase activity of two closely related mite species revealed the high specificity of the chestnut cystatin.

  3. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    PubMed Central

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-01-01

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros) of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized. PMID:26999188

  4. Biosynthesis and secretion of alpha 1 acute-phase globulin in primary cultures of rat hepatocytes.

    PubMed

    Bauer, J; Kurdowska, A; Tran-Thi, T A; Budek, W; Koj, A; Decker, K; Heinrich, P C

    1985-01-15

    Experimental inflammation in rats led to a sevenfold increase in serum levels of alpha 1 acute-phase globulin. This increase is correlated with elevated levels of translatable mRNA for alpha 1 acute-phase globulin in the liver. Biosynthesis and secretion of alpha 1 acute-phase globulin were studied in rat hepatocyte primary cultures. An intracellular form of alpha 1 acute-phase globulin with an apparent relative molecular mass of 63 500 and a secreted form of 68 000 were found. The intracellular form of alpha 1 acute-phase globulin could be deglycosylated by endoglucosaminidase H treatment indicating that its oligosaccharide chains were of the high-mannose type. The secreted form of alpha 1 acute-phase globulin was not sensitive to endoglucosaminidase H, but was susceptible to the action of sialidase reflecting carbohydrate side-chains of the complex type. Pulse-chase experiments revealed a precursor-product relationship for the high-mannose and the complex type alpha 1 acute-phase globulin. In the hepatocyte medium newly synthesized alpha 1 acute-phase globulin was detected 30 min after the pulse. Unglycosylated alpha 1 acute-phase globulin was found in the cells as well as in the medium when the transfer of oligosaccharide chains onto the polypeptide chains was blocked by tunicamycin. Tunicamycin led to a marked delay in alpha 1 acute-phase globulin secretion. PMID:2578391

  5. Role of alpha-1 adrenoceptor subtypes mediating constriction of the rabbit ear thermoregulatory microvasculature.

    PubMed

    Li, Z; Silver, W P; Koman, L A; Strandhoy, J W; Rosencrance, E; Gordon, S; Smith, T L

    2000-01-01

    An acute in vivo preparation of the microvasculature of the rabbit ear was used to evaluate the functional role of alpha1 (alpha1)-adrenoceptor subtypes in thermoregulatory microcirculation. The effect of alpha1-adrenoceptor subtype blockade on phenylephrine-induced vasoconstriction was assessed with the alpha1A, alpha1B, and alpha1D-adrenoceptor-selective antagonists 5-methyl-urapidil (10(-8) M), chloroethylclonidine (10(-5) M), and 8-[2-[4(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspirol[4.5]deca ne-7,9-dione dihydrochloride (BMY7378) (10(-6) M), respectively. The results demonstrated that pretreatment of the ear microvasculature with 5-methyl-urapidil or BMY7378 shifted the phenylephrine concentration-response curve rightward and significantly changed the log of the phenylephrine concentration, causing half-maximum stimulation (EC50) in arterioles (p < 0.05). BMY7378 shifted the phenylephrine concentration-response curve of the arteriovenous anastomoses about 100-fold rightward (p < 0.05). All three alpha1-adrenoceptor antagonists eliminated the vasoconstrictive effects of phenylephrine on venules. The results indicate that the ear microvasculature has a heterogenous distribution of alpha1-adrenoceptor subtypes. The alpha1A and alpha1D-adrenoceptor subtypes appear to have a greater influence on constrictive function in arterioles, whereas the alpha1D-adrenoceptor is the dominant constrictor of arteriovenous anastomoses. In general, the alpha1-adrenoceptor does not play a major vasoconstrictor role in venules. Chloroethylclonidine, an irreversible alpha1B-adrenoceptor antagonist, induced contractile responses in the ear microvasculature, probably due to its alpha2-adrenoceptor agonist effects. This study extended our understanding of the adrenergic receptor control mechanisms of a cutaneous thermoregulatory end organ characterized by two parallel perfusion circuits providing nutritional and thermoregulatory functions. PMID:10716292

  6. Purification and Characterization of a Keratinolytic Serine Proteinase from Streptomyces albidoflavus

    PubMed Central

    Bressollier, Philippe; Letourneau, François; Urdaci, Maria; Verneuil, Bernard

    1999-01-01

    Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70°C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K. PMID:10347045

  7. Modification of cystatin C activity by bacterial proteinases and neutrophil elastase in periodontitis.

    PubMed Central

    Abrahamson, M; Wikström, M; Potempa, J; Renvert, S; Hall, A

    1997-01-01

    AIM: To study the interaction between the human cysteine proteinase inhibitor, cystatin C, and proteinases of periodontitis associated bacteria. METHODS: Gingival crevicular fluid samples were collected from discrete periodontitis sites and their cystatin C content was estimated by enzyme linked immunosorbent assay (ELISA). The interaction between cystatin C and proteolytic enzymes from cultured strains of the gingival bacteria Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans was studied by measuring inhibition of enzyme activity against peptidyl substrates, by detection of break down patterns of solid phase coupled and soluble cystatin C, and by N-terminal sequence analysis of cystatin C products resulting from the interactions. RESULTS: Gingival crevicular fluid contained cystatin C at a concentration of approximately 15 nM. Cystatin C did not inhibit the principal thiol stimulated proteinase activity of P gingivalis. Instead, strains of P gingivalis and P intermedia, but not A actinomycetemcomitans, released cystatin C modifying proteinases. Extracts of five P gingivalis and five P intermedia strains all hydrolysed bonds in the N-terminal region of cystatin C at physiological pH values. The modified cystatin C resulting from incubation with one P gingivalis strain was isolated and found to lack the eight most N-terminal residues. The affinity of the modified inhibitor for cathepsin B was 20-fold lower (Ki 5 nM) than that of full length cystatin C. A 50 kDa thiol stimulated proteinase, gingipain R, was isolated from P gingivalis and shown to be responsible for the Arg8-bond hydrolysis in cystatin C. The cathepsin B inhibitory activity of cystatin C incubated with gingival crevicular fluid was rapidly abolished after Val10-bond cleavage by elastase from exudate neutrophils, but cleavage at the gingipain specific Arg8-bond was also demonstrated. CONCLUSIONS: The physiological control of cathepsin B activity is impeded in

  8. Diversity of digestive proteinases in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae.

    PubMed

    Vinokurov, K S; Elpidina, E N; Oppert, B; Prabhakar, S; Zhuzhikov, D P; Dunaevsky, Y E; Belozersky, M A

    2006-10-01

    The spectrum of Tenebrio molitor larval digestive proteinases was studied in the context of the spatial organization of protein digestion in the midgut. The pH of midgut contents increased from 5.2-5.6 to 7.8-8.2 from the anterior to the posterior. This pH gradient was reflected in the pH optima of the total proteolytic activity, 5.2 in the anterior and 9.0 in the posterior midgut. When measured at the pH and reducing conditions characteristic of each midgut section, 64% of the total proteolytic activity was in the anterior and 36% in the posterior midgut. In the anterior midgut, two-thirds of the total activity was due to cysteine proteinases, whereas the rest was from serine proteinases. In contrast, most (76%) of the proteolytic activity in the posterior midgut was from serine proteinases. Cysteine proteinases from the anterior were represented by a group of anionic fractions with similar electrophoretic mobility. Trypsin-like activity was predominant in the posterior midgut and was due to one cationic and three anionic proteinases. Chymotrypsin-like proteinases also were prominent in the posterior midgut and consisted of one cationic and four anionic proteinases, four with an extended binding site. Latent proteinase activity was detected in each midgut section. These data support a complex system of protein digestion, and the correlation of proteinase activity and pH indicates a physiological mechanism of enzyme regulation in the gut.

  9. Alpha 1 Antitrypsin Deficiency in Infants with Neonatal Cholestasis

    PubMed Central

    Monajemzadeh, Maryam; Shahsiah, Reza; Vasei, Mohammad; Tanzifi, Parin; Rezaei, Nima; Najafi, Mehri; Soleimanifar, Narjes; Eghbali, Maryam

    2013-01-01

    Objective Alpha1-antitrypsin deficiency (A1ATD) is the most important indication for liver transplantation in children. The gene frequencies vary in different ethnic groups. In the present study, we attempt to determine the frequencies of the most common defective alleles, Z and S, in Iranian children suffering from idiopathic neonatal cholestasis. Eighty-seven infants were typed for Z and S alleles. Methods In a single center study, 87 consecutive liver biopsies from infants with cholestasis were reviewed and patients with neonatal cholestasis enrolled in the study and cases with confirmed biliary tract atresia excluded. Formalin fixed paraffin embedded blocks were used for DNA extraction. AAT genotype was determined by polymerase chain reaction (PCR) assay and amplification of the two most common deficiency variants, S and Z alleles, and then sequencing of PCR products. Findings There were 48 (55.2%) males and 39 (44.8%) females, with a median age of 60 days. Out of 87 of the study subject, 2 (2.2%) were heterozygous for the S allele, and no ZZ, SS or MZ individual was found in the patients. No other polymorphism was found in the sequencing results. Conclusion In comparison to other populations, AAT deficiency seems not to be an important etiologic factor for neonatal cholestatic liver disease in Iran; however, further studies are recommended to estimate the true mutant gene frequencies. PMID:24800007

  10. Functional evidence equating the pharmacologically-defined alpha 1A- and cloned alpha 1C-adrenoceptor: studies in the isolated perfused kidney of rat.

    PubMed Central

    Blue, D. R.; Bonhaus, D. W.; Ford, A. P.; Pfister, J. R.; Sharif, N. A.; Shieh, I. A.; Vimont, R. L.; Williams, T. J.; Clarke, D. E.

    1995-01-01

    1. The present study characterizes and classifies alpha 1-adrenoceptor-mediated vasoconstriction in the isolated perfused kidney of rat using quantitative receptor pharmacology and compares the results to radioligand binding studies (made in cloned alpha 1-adrenoceptor subtypes, native alpha 1A-adrenoceptors in submaxillary gland of rat, and alpha 1A-adrenoceptors in several other tissues of rat). 2. Concentration-effect curves to noradrenaline in the presence of 5-methyl-urapidil were biphasic, indicating alpha 1-adrenoceptor heterogeneity. The alpha 1-adrenoceptor subtype mediating the first phase (low affinity for 5-methyl-urapidil) could not be 'isolated' for detailed pharmacological characterization but was defined by a sensitivity to inhibition by chloroethylclonidine and an inability of methoxamine to activate the site. Additionally, vasoconstriction mediated by this alpha 1-adrenoceptor subtype or subtypes was abolished by nitrendipine (1 microM), thereby allowing characterization of the second, high affinity site for 5-methyl-urapidil. 3. The following antagonists interacted competitively with noradrenaline at the alpha 1-adrenoceptor for which 5-methyl-urapidil exhibits high affinity (pKB value): WB 4101 (10.3) > prazosin (9.5) approximately HV 723 (9.3) approximately 5-methyl-urapidil (9.2) > phenotolamine (8.6) > spiperone (pA2 = 8.1) approximately oxymetazoline (7.9). In contrast, insurmountable antagonism was seen with S(+)- and R(-)-niguldipine, the S(+)-isomer being approximately 30 fold more potent than the R(-)-isomer. Receptor protection experiments indicated that S(+)-niguldipine interacted directly with alpha 1-adrenoceptors. Dehydroniguldipine acted as a competitive antagonist (pKB = 9.0). Thus, the results with antagonists define the alpha 1-adrenoceptor as an alpha 1A-adrenoceptor. 4. An agonist 'fingerprint' was constructed in the presence of nitrendipine to define further the alpha 1A-adrenoceptor. The following order and relativity of

  11. Molecular mechanisms of benzodiazepine-induced down-regulation of GABAA receptor alpha 1 subunit protein in rat cerebellar granule cells.

    PubMed Central

    Brown, M. J.; Bristow, D. R.

    1996-01-01

    1. Chronic benzodiazepine treatment of rat cerebellar granule cells induced a transient down-regulation of the gamma-aminobutyric acidA (GABAA) receptor alpha 1 subunit protein, that was dose-dependent (1 nM-1 microM) and prevented by the benzodiazepine antagonist flumazenil (1 microM). After 2 days of treatment with 1 microM flunitrazepam the alpha 1 subunit protein was reduced by 41% compared to untreated cells, which returned to, and remained at, control cell levels from 4-12 days of treatment. Chronic flunitrazepam treatment did not significantly alter the GABAA receptor alpha 6 subunit protein over the 2-12 day period. 2. GABA treatment for 2 days down-regulates the alpha 1 subunit protein in a dose-dependent (10 microM-1 mM) manner that was prevented by the selective GABAA receptor antagonist bicuculline (10 microM). At 10 microM and 1 mM GABA the reduction in alpha 1 subunit expression compared to controls was 31% and 66%, respectively. 3. The flunitrazepam-induced decrease in alpha 1 subunit protein is independent of GABA, which suggests that it involves a mechanism distinct from the GABA-dependent action of benzodiazepines on GABAA receptor channel activity. 4. Simultaneous treatment with flunitrazepam and GABA did not produce an additive down-regulation of alpha 1 subunit protein, but produced an effect of the same magnitude as that of flunitrazepam alone. This down-regulation induced by the combination of flunitrazepam and GABA was inhibited by flumazenil (78%), but unaffected by bicuculline. 5. The flunitrazepam-induced down-regulation of alpha 1 subunit protein at 2 days was completely reversed by the protein kinase inhibitor staurosporine (0.3 microM). 6. This study has shown that both flunitrazepam and GABA treatment, via their respective binding sites, caused a reduction in the expression of the GABAA receptor alpha 1 subunit protein; an effect mediated through the same neurochemical mechanism. The results also imply that the benzodiazepine effect

  12. Increase of mouse resistance to Candida albicans infection by thymosin alpha 1.

    PubMed Central

    Bistoni, F; Marconi, P; Frati, L; Bonmassar, E; Garaci, E

    1982-01-01

    Studies were carried out to assess the ability of thymosin alpha 1 to prolong the survival of mice challenged with Candida albicans. Two- to four-month-old mice were treated with graded doses of thymosin alpha 1 before, after, or before and after intravenous challenge with C. albicans. Significant resistance ot lethal infection was afforded by 100 micrograms of thymosin alpha 1 per kg given before or before and after challenge, whereas no protection was found in mice treated with thymosin alpha 1 administered at any dose level after inoculation. Pretreatment with thymosin alpha 1 also prevented the increased susceptibility to C. albicans infection of mice pretreated with cyclophosphamide on day -6. The results showed that thymosin alpha 1 was capable of protecting untreated or cyclophosphamide-pretreated mice from C. albicans infection at an optimal dose and schedule of administration. PMID:7085074

  13. Keratinolytic proteinase from Bacillus thuringiensis AD-12.

    PubMed

    Gegeckas, Audrius; Gudiukaitė, Renata; Citavicius, Donaldas

    2014-08-01

    A new isolated strain noted to produce a novel detergent-stable serine keratinolytic proteinase and identified as Bacillus thuringiensis AD-12. Native keratinolytic proteinase from B. thuringiensis (BtKER) was purified and characterized. The purified BtKER enzyme is a monomer with a molecular mass of 39kDa. Biochemical characterization assays revealed that the BtKER attained optimal activity at pH 7 and 30°C. Residual activity after 1h incubation at 50°C was higher than 80%. The enzyme was activated and stabilized by Mn(2+) and Li(+) metal ions but inactivated by organic solvents. Purified BtKER showed the highest substrate specificity toward keratin from wool>sodium caseinate>collagen>BSA>gelatin in descending order. BtKER is the first reported keratinolytic proteinase from B. thuringiensis and obtained results suggested that new characterized enzyme can be a powerful biocatalyst in peptide production associated to hydrolysis of keratinous and/or keratin-like waste.

  14. Systemic necrotizing vasculitides in severe alpha1-antitrypsin deficiency.

    PubMed

    Mazodier, P; Elzouki, A N; Segelmark, M; Eriksson, S

    1996-08-01

    We describe the clinical presentation and outcome in a series of eight patients with systemic necrotizing vasculitis and severe alpha1-antitrypsin (AAT) deficiency followed up at three Swedish hospitals during 1968-92. We also review six other cases reported in the literature during the same period. Diagnosis of severe AAT deficiency was based on the presence of the PiZZ phenotype, or low plasma total trypsin inhibitory capacity, or a low plasma AAT concentration (10-40% of the normal mean value) and presence of the PiSZ or PiFZ phenotype. The diagnosis of systemic vasculitis was biopsy-verified in all eight patients. Pretreatment laboratory findings, treatment protocol, and outcome were reviewed in each of the 14 patients. Of the eight patients in the Swedish series, six had systemic vasculitis of the microscopic polyangiitis form, one had Wegener's granulomatosis, and another had Henoch-Schönlein purpura. In the series as a whole (n = 14), median age at diagnosis was 48 years (range 44-84), the median number of affected organs was eight, and all 14 patients had skin involvement, and either renal or joint involvement (in most cases both); 71% (10/14) had emphysema; 57% (8/14) had hepatic abnormalities (two having cirrhosis, two fibrosis, and one multiple aneurysms in hepatic arteries); one patient who presented with acute ulcerative colitis developed manifest vasculitic syndrome three years later; and 64% (9/14) died, the major cause of death being renal failure. This syndrome, characterized by multiple organ involvement and fatal outcome, has been underdiagnosed. Physicians should be alert to the presence of the PiZ AAT deficiency gene in patients with systemic vasculitis, especially when the course is progressive or when the patient also has emphysema or cirrhosis. Awareness of those features may aid prompt recognition and enable early treatment.

  15. Effect of expectoration on inflammation in induced sputum in alpha-1-antitrypsin deficiency.

    PubMed

    Gompertz, Simon; Hill, Adam T; Bayley, Darren L; Stockley, Robert A

    2006-06-01

    It is unclear how chronic expectoration influences airway inflammation in patients with chronic lung disease. The aim of this study was to investigate factors influencing inflammation in induced sputum samples, including, in particular, chronic sputum production. Myeloperoxidase, interleukin-8, leukotriene B4 (LTB4), neutrophil elastase, secretory leukoprotease inhibitor (SLPI) and protein leakage were compared in induced sputum samples from 48 patients (36 with chronic expectoration) with COPD (with and without alpha-1-antitrypsin deficiency; AATD), 9 individuals with AATD but without lung disease and 14 healthy controls. There were no differences in inflammation in induced sputum samples from healthy control subjects and from AATD deficient patients with normal lung function but without chronic expectoration (P>0.05). Inflammation in induced sputum from AATD patients with airflow obstruction and chronic sputum expectoration was significantly greater than for similar patients who did not expectorate: Interleukin-8 (P<0.01), elastase activity (P=0.01), and protein leakage (P<0.01). The presence of spontaneous sputum expectoration in AATD patients with airflow obstruction was associated with increased neutrophilic airway inflammation in induced sputum samples. The presence of chronic expectoration in some patients will clearly complicate interpretation of studies employing sputum induction where this feature has not been identified.

  16. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    PubMed

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm. PMID:18641393

  17. [Alpha-1 Antitrypsin Affects U0126-Induced Cytotoxicity in Colon Cancer Cell Line (HCT116)].

    PubMed

    Ljujic, M; Mijatovic, S; Bulatovic, M Z; Mojic, M; Maksimovic-Ivanic, D; Radojkovic, D; Topic, A

    2016-01-01

    Alpha-1-antitrypsin (AAT), an acute phase protein, is the principal circulatory anti-protease. This multifunctional protein is encoded by the SERPINA1 gene. Although AAT was recognised as a potential tumour marker, its role in cancer biology remains unknown. Given that it has been demonstrated that AAT has an anti-apoptotic property against non-malignant cells, we aimed to investigate whether AAT affects apoptosis in a colon cancer cell line (HCT116). The presence of AAT in the HCT116 cell culture antagonized cytotoxicity of blockers of MEK1/2, PI3K/Akt pathways as well as NF-κB. The dominantly recovered cell viability was observed in the co-treatment with MEK1/2 inhibitor U0126. In addition, it was revealed that AAT almost completely abolished U0126-induced apoptosis through maintenance of the autophagy process. Our study revealed for the first time that the observed cyto-protection triggered by AAT was accompanied by sustained autophagy which opposed apoptosis. These results may contribute to understanding of the role of AAT in cancer development and evaluation of efficacy of cancer therapy.

  18. The simultaneous release by bone explants in culture and the parallel activation of procollagenase and of a latent neutral proteinase that degrades cartilage proteoglycans and denatured collagen.

    PubMed Central

    Vaes, G; Eeckhout, Y; Lenaers-Claeys, G; François-Gillet, C; Druetz, J E

    1978-01-01

    1. A latent neutral proteinase was found in culture media of mouse bone explants. Its accumulation during the cultures is closely parallel to that of procollagenase; both require the presence of heparin in the media. 2. Latent neutral proteinase was activated by several treatments of the media known to activate procollagenase, such as limited proteolysis by trypsin, chymotrypsin, plasmin or kallikrein, dialysis against 3 M-NaSCN at 4 degrees C and prolonged preincubation at 25 degrees C. Its activation often followed that of the procollagenase present in the same media. 3. Activation of neutral proteinase (as does that of procollagenase) by trypsin or plasmin involved two successive steps: the activation of a latent endogenous activator present in the media followed by the activation of neutral proteinase itself by that activator. 4. The proteinase degrades cartilage proteoglycans, denatured collagen (Azocoll) and casein at neutral pH; it is inhibited by EDTA, cysteine or serum. Collagenase is not inhibited by casein or Azocoll and is less resistant to heat or to trypsin than is the proteinase. Partial separation of the two enzymes was achieved by gel filtration of the media but not by fractional (NH4)2SO4 precipitation, by ion exchange or by affinity chromatography on Sepharose-collagen. These fractionations did not activate latent enzymes. 5. Trypsin activation decreases the molecular weight of both latent enzymes (60 000-70 000) by 20 000-30 000, as determined by gel filtration of media after removal of heparin. 6. The latency of both enzymes could be due either to a zymogen or to an enzyme-inhibitor complex. A thermostable inhibitor of both enzymes was found in some media. However, combinations of either enzyme with that inhibitor were not reactivated by trypsin, indicating that this inhibitor is unlikely to be the cause of the latency. PMID:208518

  19. Kinetics of the inhibition of neutrophil proteinases by recombinant elafin and pre-elafin (trappin-2) expressed in Pichia pastoris.

    PubMed

    Zani, Marie-Louise; Nobar, Shila M; Lacour, Sandrine A; Lemoine, Soazig; Boudier, Christian; Bieth, Joseph G; Moreau, Thierry

    2004-06-01

    Elafin and its precursor, trappin-2 or pre-elafin, are specific endogenous inhibitors of human neutrophil elastase and proteinase 3 but not of cathepsin G. Both inhibitors belong, together with secretory leukocyte protease inhibitor, to the chelonianin family of canonical protease inhibitors of serine proteases. A cDNA coding either elafin or its precursor, trappin-2, was fused in frame with yeast alpha-factor cDNA and expressed in the Pichia pastoris yeast expression system. Full-length elafin or full-length trappin-2 were secreted into the culture medium with high yield, indicating correct processing of the fusion proteins by the yeast KEX2 signal peptidase. Both recombinant inhibitors were purified to homogeneity from concentrated culture medium by one-step cationic exchange chromatography and characterized by N-terminal amino acid sequencing, Western blot and kinetic studies. Both recombinant elafin and trappin-2 were found to be fast-acting inhibitors of pancreatic elastase, neutrophil elastase and proteinase 3 with k(ass) values of 2-4 x 10(6) m(-1).s(-1), while dissociation rate constants k(diss) were found to be in the 10(-4) s(-1) range, indicating low reversibility of the complexes. The equilibrium dissociation constant K(i) for the interaction of both recombinant inhibitors with their target enzymes was either directly measured for pancreatic elastase or calculated from k(ass) and k(diss) values for neutrophil elastase and proteinase 3. K(i) values were found to be in the 10(-10) molar range and virtually identical for both inhibitors. Based on the kinetic parameters determined here, it may be concluded that both recombinant elafin and trappin-2 may act as potent anti-inflammatory molecules and may be of therapeutic potential in the treatment of various inflammatory lung diseases.

  20. Alpha-1 antitrypsin is markedly decreased following pulmonary F. tularensis challenge.

    PubMed

    Chambers, James P; Yu, Jieh-Juen; Jupelli, Madhulika; Weintraub, Susan T; Lopez-Ribot, Jose L; Valdes, James J; Arulanandam, Bernard P

    2011-01-01

    Neutrophils form the first line of defense during infection and are indispensable in this function. The neutrophil elastase is a key effector molecule of the innate immune system with potent antimicrobial activity against Gram-negative bacteria, spirochaetes, and fungi. However, the release of neutrophil elastase during bacterial infection must be checked otherwise its release in the extracellular milieu will result in damage to surrounding tissues. Alpha-1 antitrypsin is a small glycoprotein clade A serpine serine protease inhibitor and has been shown to increase in humans following bacterial and viral infection. Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of tularemia. Type A strains are the most virulent with an infectious dose as low as 10 colony forming units and a mortality rate of 30-60% among untreated cases of pneumonic tularemia. We report here significant reduction of this major inhibitor of the neutrophil elastase in plasma of F. tularensis LVS and F. tularensis (type A) SCHU S4 infected animals following pulmonary challenge. Associated with an imbalance of protease-antiprotease function at the alveolar level in lungs of infected animals, increased elastase activity was observed in lung lavage fluids accompanied by decrease lung function, i.e., loss of lung elastance with concomitant increase of pulmonary hysteresivity. Consistent with a competent acute phase response following F. tularensis LVS and F. tularensis (type A) SCHU S4 pulmonary challenge and proposed up-regulation of plasma haptoglobin during the course of the acute phase reaction, haptoglobin was observed significantly increased. These data suggest that unchecked neutrophil serine protease activity may arise from F. tularensis targeted reduction of plasma α(1)-antitrysin promoting lung tissue damage facilitating increased dissemination of this bacterium in infected animals. PMID:22919586

  1. Alpha-1 Antitrypsin is Markedly Decreased Following Pulmonary F. tularensis Challenge

    PubMed Central

    Chambers, James P.; Yu, Jieh-Juen; Jupelli, Madhulika; Weintraub, Susan T.; Lopez-Ribot, Jose L.; Valdes, James J.; Arulanandam, Bernard P.

    2011-01-01

    Neutrophils form the first line of defense during infection and are indispensable in this function. The neutrophil elastase is a key effector molecule of the innate immune system with potent antimicrobial activity against Gram-negative bacteria, spirochaetes, and fungi. However, the release of neutrophil elastase during bacterial infection must be checked otherwise its release in the extracellular milieu will result in damage to surrounding tissues. Alpha-1 antitrypsin is a small glycoprotein clade A serpine serine protease inhibitor and has been shown to increase in humans following bacterial and viral infection. Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of tularemia. Type A strains are the most virulent with an infectious dose as low as 10 colony forming units and a mortality rate of 30–60% among untreated cases of pneumonic tularemia. We report here significant reduction of this major inhibitor of the neutrophil elastase in plasma of F. tularensis LVS and F. tularensis (type A) SCHU S4 infected animals following pulmonary challenge. Associated with an imbalance of protease–antiprotease function at the alveolar level in lungs of infected animals, increased elastase activity was observed in lung lavage fluids accompanied by decrease lung function, i.e., loss of lung elastance with concomitant increase of pulmonary hysteresivity. Consistent with a competent acute phase response following F. tularensis LVS and F. tularensis (type A) SCHU S4 pulmonary challenge and proposed up-regulation of plasma haptoglobin during the course of the acute phase reaction, haptoglobin was observed significantly increased. These data suggest that unchecked neutrophil serine protease activity may arise from F. tularensis targeted reduction of plasma α1-antitrysin promoting lung tissue damage facilitating increased dissemination of this bacterium in infected animals. PMID:22919586

  2. Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species comparison with proteinase K and aqualysin I.

    PubMed

    Kristjánsson, M M; Magnússon, O T; Gudmundsson, H M; Alfredsson, G A; Matsuzawa, H

    1999-03-01

    An extracellular serine proteinase purified from cultures of a psychrotrophic Vibrio species (strain PA-44) belongs to the proteinase K family of the superfamily of subtilisin-like proteinases. The enzyme is secreted as a 47-kDa protein, but under mild heat treatment (30 min at 40 degrees C) undergoes autoproteolytic cleavage on the carboxyl-side of the molecule to give a proteinase with a molecular mass of about 36 kDa that apparently shares most of the enzymatic characteristics and the stability of the 47-kDa protein. In this study, selected enzymatic properties of the Vibrio proteinase were compared with those of the related proteinases, proteinase K and aqualysin I, as representative mesophilic and thermophilic enzymes, respectively. The catalytic efficiency (kcat/Km) for the amidase activity of the cold-adapted enzyme against succinyl-AAPF-p-nitroanilide was significantly higher than that of its mesophilic and thermophilic counterparts, especially when compared with aqualysin I. The stability of the Vibrio proteinase, both towards heat and denaturants, was found to be significantly lower than of either proteinase K or aqualysin I. One or more disulfide bonds in the psychrotrophic proteinase are important for the integrity of the active enzyme structure, as disulfide cleavage, either by reduction with dithiothreitol or by sulfitolysis, led to a loss in its activity. Under the same conditions, aqualysin I was also partially inactivated by dithiothreitol, but the activity of proteinase K was unaffected. The disulfides of either proteinase K or aqualysin I were not reactive towards sulfitolysis, except under denaturing conditions, while all disulfides of the Vibrio proteinase reacted in absence of a denaturant. The reactivity of the disulfides of the proteins as a function of denaturant concentration followed the order: Vibrio proteinase > proteinase K > aqualysin I. The same order of reactivity was also observed for the inactivation of the enzymes by H2O2

  3. Fibronectin-Degrading Activity of Trypanosoma cruzi Cysteine Proteinase Plays a Role in Host Cell Invasion

    PubMed Central

    Maeda, Fernando Yukio; Cortez, Cristian; Izidoro, Mario Augusto; Juliano, Luiz

    2014-01-01

    Trypanosoma cruzi, the agent of Chagas disease, binds to diverse extracellular matrix proteins. Such an ability prevails in the parasite forms that circulate in the bloodstream and contributes to host cell invasion. Whether this also applies to the insect-stage metacyclic trypomastigotes, the developmental forms that initiate infection in the mammalian host, is not clear. Using T. cruzi CL strain metacyclic forms, we investigated whether fibronectin bound to the parasites and affected target cell invasion. Fibronectin present in cell culture medium bound to metacyclic forms and was digested by cruzipain, the major T. cruzi cysteine proteinase. G strain, with negligible cruzipain activity, displayed a minimal fibronectin-degrading effect. Binding to fibronectin was mediated by gp82, the metacyclic stage-specific surface molecule implicated in parasite internalization. When exogenous fibronectin was present at concentrations higher than cruzipain can properly digest, or fibronectin expression was stimulated by treatment of epithelial HeLa cells with transforming growth factor beta, the parasite invasion was reduced. Treatment of HeLa cells with purified recombinant cruzipain increased parasite internalization, whereas the treatment of parasites with cysteine proteinase inhibitor had the opposite effect. Metacyclic trypomastigote entry into HeLa cells was not affected by anti-β1 integrin antibody but was inhibited by anti-fibronectin antibody. Overall, our results have indicated that the cysteine proteinase of T. cruzi metacyclic forms, through its fibronectin-degrading activity, is implicated in host cell invasion. PMID:25267835

  4. Corticosteroid-binding globulin, a structural basis for steroid transport and proteinase-triggered release.

    PubMed

    Klieber, Michael A; Underhill, Caroline; Hammond, Geoffrey L; Muller, Yves A

    2007-10-01

    Corticosteroid-binding globulin (CBG) is a serine proteinase inhibitor (serpin) family member that transports glucocorticoids in blood and regulates their access to target cells. The 1.9A crystal structure of rat CBG shows that its steroid-binding site resembles the thyroxin-binding site in the related serpin, thyroxin-binding globulin, and mutagenesis studies have confirmed the contributions of key residues that constitute the steroid-binding pocket. Unlike thyroxin-bound thyroxin-binding globulin, the cortisol-bound CBG displays an "active" serpin conformation with the proteinase-sensitive, reactive center loop (RCL) fully expelled from the regulatory beta-sheet A. Moreover, the CBG structure allows us to predict that complete insertion of the proteolytically cleaved RCL into the serpin fold occurs in concert with a displacement and unwinding of helix D that would disrupt the steroid-binding site. This allosteric coupling between RCL positioning and occupancy of the CBG steroid-binding site, which resembles the ligand (glycosamino-glycan)-dependent activation of the thrombin inhibitory serpins heparin cofactor II and anti-thrombin RCLs, ensures both optimal recognition of CBG by target proteinases and efficient release of steroid to sites of action.

  5. Activation of intracellular serine proteinase in Bacillus subtilis cells during sporulation.

    PubMed Central

    Burnett, T J; Shankweiler, G W; Hageman, J H

    1986-01-01

    Cells of Bacillus subtilis 168 (trpC2) growing and sporulating in a single chemically defined medium carried out intracellular protein degradation and increased their levels of intracellular serine protease-1 in a manner very similar to what had previously been reported for cells sporulating in nutrient broth. The results were interpreted to mean that these processes are intrinsic to sporulation rather than medium dependent. To determine the cause of these increases in specific activity of proteinases, we purified the protease, prepared rabbit immunoglobulins directed against it, and monitored changes in protease antigen levels by performing rocket immunoelectrophoresis. In cells sporulating in nutrient broth, the protease antigen levels increased about 7-fold, whereas the specific activity increased about 150-fold, for an activation of about 20-fold. In cells sporulating in the single chemically defined sporulation medium, the protease antigen increased about 10-fold, whereas the specific activity increased at least 400-fold, for an activation of about 40-fold. These results were interpreted to mean that a posttranslational event activated the protease in vivo; a previously described endogenous proteinase inhibitor was confirmed to be present in the strain used. Chloramphenicol added to the cultures inhibited both the increases in antigen levels and in the specific activity of the proteinase. PMID:3079745

  6. Several murine metastasizing tumors possess a cysteine proteinase with cancer procoagulant characteristics.

    PubMed

    Falanga, A; Bolognese Dalessandro, A P; Casali, B; Roncaglioni, M C; Donati, M B

    1987-06-15

    Cancer Procoagulant (CP), a cysteine proteinase which triggers blood coagulation by directly activating Factor X (FX) in the absence of Factor VII (F VII), has recently been isolated from rabbit V2 carcinoma and biochemically characterized. We have studied the procoagulant activity of tissue extracts from 4 murine experimental tumors in order to define whether or not a F VII-independent activity with cysteine proteinase characteristics was present. The tumors studied were: Lewis lung carcinoma (3LL), B16 melanoma (B16), JW sarcoma (JWS) and the M4 variant of the mFS6 fibrosarcoma (M4). Extracts from 3LL, B16 and JWS tumor initiated coagulation in both the presence and absence of F VII, their procoagulant activity was sensitive to iodoacetamide (1 mM) and mercury chloride (0.1 mM). The procoagulant of M4 extract was dependent on the presence of F VII and was not significantly affected by the cysteine proteinase inhibitors. An Ouchterlony double immunodiffusion study showed immunological cross-reactivity of all but M4 extracts to a polyclonal antibody to purified CP. The present study suggests that the procoagulant(s) present in the murine tumors 3LL, B16 and JWS are enzymatically and immunologically indistinguishable from cancer procoagulant of the rabbit V2 carcinoma.

  7. Ethylene regulates the expression of a cysteine proteinase gene during germination of chickpea (Cicer arietinum L.).

    PubMed

    Cervantes, E; Rodríguez, A; Nicolás, G

    1994-05-01

    Synthetic oligonucleotides corresponding to conserved regions of cysteine proteinases were used as primers in the RT-PCR amplification of a fragment of cDNA corresponding to a region of a cysteine proteinase gene expressed during germination of chickpea (cac for Cicer arietinum cysteine proteinase). The identity of the PCR-amplified fragment was confirmed by sequencing and the fragment used as a probe to investigate the pattern of cac gene expression during germination and its hormonal regulation. The corresponding transcript is undetected in the seed during embryogenesis and before imbibition, being detected 24 h after imbibition. Ablation of the embryonic axis before imbibition results in a dramatic decrease in the amount of transcript detected. Expression of the cac transcript in excised cotyledons is restored in the presence of aqueous extracts from embryonic axes and also by incubating the excised cotyledons in 1 mM ethephon. Experiments with various known inhibitors of ethylene action indicate that ethylene activates the expression of cac gene in the cotyledons of chickpea during normal germination.

  8. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-1-lipoprotein immuno-logical test system. 866.5580 Section 866.5580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An...

  9. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  10. 21 CFR 866.5130 - Alpha-1-antitrypsin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alpha-1-antitrypsin immunological test system. 866.5130 Section 866.5130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... the alpha-1-antitrypsin (a plasma protein) in serum, other body fluids, and tissues. The...

  11. Picornaviral 3C cysteine proteinases have a fold similar to the chymotrypsin-like serine proteinases

    SciTech Connect

    Allaire,M.; Chernaia, M.; Malcolm, B.; James, M.

    1994-01-01

    The picornavirus family includes several pathogens such as poliovirus, rhinovirus (the major cause of the common cold), hepatitis A virus and the foot-and-mouth disease virus. Picornaviral proteins are expressed by direct translation of the genomic RNA into a single, large polyprotein precursor. Proteolysis of the viral polyprotein into the mature proteins is assured by the viral 3C enzymes, which are cysteine proteinases. Here we report the X-ray crystal structure at 2.3 {angstrom} resolution of the 3C proteinase from hepatitis A virus (HAV-3C). The overall architecture of HAV-3C reveals a fold resembling that of the chymotrypsin family of serine proteinases, which is consistent with earlier predictions. Catalytic residues include Cys 172 as nucleophile and His 44 as general base. The 3C cleavage specificity for glutamine residues is defined primarily by His 191. The overall structure suggests that an inter-molecular (trans) cleavage releases 3C and that there is an active proteinase in the polyprotein.

  12. The embryo's cystatin C and F expression functions as a protective mechanism against the maternal proteinase cathepsin S in mice.

    PubMed

    Baston-Buest, D M; Schanz, A; Buest, S; Fischer, J C; Kruessel, J S; Hess, A P

    2010-04-01

    A successful implantation of a mammalian embryo into the maternal endometrium depends on a highly synchronized fetal-maternal dialogue involving chemokines, growth factors, and matrix-modifying enzymes. A growing body of evidence suggests an important role for proteinases playing a role in matrix degeneration and enhancing the embryo's invasive capacity and influencing the mother's immunological status in favor of the conceptus. This study focused on the expression of cathepsin S (CTSS) and its inhibitors in the murine fetal-maternal interface as well as the detection of the cellular sources of either proteinase and inhibitors. Nested RT-PCR for detection of embryonic mRNAs, immunohistochemistry of maternal and fetal tissues in B6C3F1 mice, and FACS analysis for determination of immunocompetent cell population were applied. This study shows that the cysteine proteinase CTSS is upregulated in the stroma of the implantation site, and that pregnancy induces an influx of CTSS-positive uterine natural killer cells. Compared to maternal tissues, the CTSS inhibitors cystatin F and C, but not the proteinase itself, are expressed in blastocysts. In conclusion, CTSS underlies a hormonal regulation in the maternal tissue and therewith most likely supports the embryonic implantation. The invading embryo regulates the depth of its own invasion through the expression of the cathepsin inhibitors and furthermore, interleukin-6 to activate CTSS in maternal tissues. Additionally, the observed decrease in CD3(+) cells leads to the hypothesis that cells of the cytotoxic T-cell group are down-regulated in the decidua to support the implantation and ensure the survival of the embryo.

  13. Distribution pattern and functional state of alpha 1-antichymotrypsin in plaques and vascular amyloid in Alzheimer's disease. A immunohistochemical study with monoclonal antibodies against native and inactivated alpha 1-antichymotrypsin.

    PubMed

    Rozemuller, J M; Abbink, J J; Kamp, A M; Stam, F C; Hack, C E; Eikelenboom, P

    1991-01-01

    Monoclonal antibodies (mAbs) were raised against inactivated alpha 1-antichymotrypsin (ACT) to study the presence and functional state of the serine protease inhibitor alpha 1-antichymotrypsin in cerebral amyloid deposits in Alzheimer's disease. A panel of seven different mAbs was obtained; six of them were directed against neoepitopes that are expressed on ACT after interaction with proteases (inactivated ACT) and one mAb was directed against an epitope that is exposed both on native and inactivated ACT. The mAbs against neoepitopes could discriminate native ACT from complexed and inactivated ACT in vitro as shown in binding experiments in the presence of either native or inactivated ACT. With the mAbs against ACT we found that: (a) besides classical congophilic plaques, amorphous noncongophilic beta/A4-positive plaques were stained; (b) amorphous and classical plaques reacted with both types of mAbs against ACT indicating that this ACT was either complexed to a protease or proteolytically inactivated; (c) vascular amyloid was not stained for ACT. The presence of ACT in amorphous and classical plaques and its absence in vascular amyloid may indicate differences in the proteolytic degradation of preamyloid into amyloid fibrils. Our study strongly suggests that ACT is biologically active in amyloid plaques from an early stage.

  14. Design, synthesis and inhibitory effect of pentapeptidyl chloromethyl ketones on proteinase K.

    PubMed

    Kore, Anilkumar R; Shanmugasundaram, Muthian

    2010-12-01

    The synthesis and proteolytic inhibitor function of new modified pentapeptide MeOSuc-AAAPF-CH(2)Cl 6 is described. The efficacy of 6 in inhibiting the proteolytic activity of proteinase K at a concentration of 0.10 mM allows a signal to be obtained for an exogenous target ('Xeno RNA') at 29 PCR cycles (i.e., Ct=29), whereas the control MeOSuc-AAAPV-CH₂Cl 1 requires a 7.5-fold higher concentration (0.75 mM) to produce the same Ct.

  15. The degree of branching in (alpha 1,4)-(alpha 1,6)-linked glucopolysaccharides is dependent on intrinsic properties of the branching enzymes.

    PubMed

    Tolmasky, D S; Krisman, C R

    1987-10-15

    1. Branching enzymes from rat and rabbit liver, as well as from potato and maize were prepared. They were almost free from contaminating glucan-degrading enzymes. 2. In 'sweet corn' maize, two separate fractions with (alpha 1,4)glucan: (alpha 1,4)glucan alpha 6-glycosyltransferase activities were obtained. One of them synthesized amylopectin, the branched component of starch, in the presence of phosphorylase and Glc1P, while the other fraction synthesized phytoglycogen. Furthermore, in a maize variety which does not accumulate phytoglycogen, only one fraction of branching activity was found, that formed amylopectin under the above-mentioned conditions. 3. Comparative analyses performed with native (alpha 1,4)-(alpha 1,6)glucopolysaccharides, and those synthesized in vitro with the branching enzyme from the same tissue, demonstrated a close similarity between both glucans. 4. It may be concluded that the branching enzyme is responsible for the specific degree of (alpha 1,6) branch linkages found in the native polysaccharide. PMID:2959476

  16. The degree of branching in (alpha 1,4)-(alpha 1,6)-linked glucopolysaccharides is dependent on intrinsic properties of the branching enzymes.

    PubMed

    Tolmasky, D S; Krisman, C R

    1987-10-15

    1. Branching enzymes from rat and rabbit liver, as well as from potato and maize were prepared. They were almost free from contaminating glucan-degrading enzymes. 2. In 'sweet corn' maize, two separate fractions with (alpha 1,4)glucan: (alpha 1,4)glucan alpha 6-glycosyltransferase activities were obtained. One of them synthesized amylopectin, the branched component of starch, in the presence of phosphorylase and Glc1P, while the other fraction synthesized phytoglycogen. Furthermore, in a maize variety which does not accumulate phytoglycogen, only one fraction of branching activity was found, that formed amylopectin under the above-mentioned conditions. 3. Comparative analyses performed with native (alpha 1,4)-(alpha 1,6)glucopolysaccharides, and those synthesized in vitro with the branching enzyme from the same tissue, demonstrated a close similarity between both glucans. 4. It may be concluded that the branching enzyme is responsible for the specific degree of (alpha 1,6) branch linkages found in the native polysaccharide.

  17. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    PubMed

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry.

  18. Contrasting signaling pathways of alpha1A- and alpha1B-adrenergic receptor subtype activation of phosphatidylinositol 3-kinase and Ras in transfected NIH3T3 cells.

    PubMed

    Hu, Z W; Shi, X Y; Lin, R Z; Hoffman, B B

    1999-01-01

    Activation of protein kinases is an important intermediate step in signaling pathways of many G protein-coupled receptors including alpha1-adrenergic receptors. The present study was designed to investigate the capacity of the three cloned subtypes of human alpha1-receptors, namely, alpha1A, alpha1B and alpha1D to activate phosphatidylinositol 3-kinase (PI 3-kinase) and p21ras in transfected NIH3T3 cells. Norepinephrine activated PI 3-kinase in cells expressing human alpha1A and alpha1B via pertussis toxin-insensitive G proteins; alpha1D-receptors did not detectably activate this kinase. Transient transfection of NIH 3T3 cells with the alpha-subunit of the G protein transducin (alpha(t)) a scavenger of betagamma-subunits released from activated G proteins, inhibited alpha1B-receptor but not alpha1A-receptor-stimulated PI 3-kinase activity. Stimulation of both alpha1A- and alpha1B-receptors activated p21ras and stimulated guanine nucleotide exchange on Ras protein. Overexpression of a dominant negative mutant of p21ras attenuated alpha1B-receptor but not alpha1A-receptor activation of PI 3-kinase. Overexpression of a dominant negative mutant of PI 3-kinase attenuated alpha1A- but not alpha1B-receptor-stimulated mitogen-activated protein kinase activity. These results demonstrate the capacity for heterologous signaling of the alpha1-adrenergic receptor subtypes in promoting cellular responses in NIH3T3 cells.

  19. Overexpression of laminin alpha1 chain in colonic cancer cells induces an increase in tumor growth.

    PubMed

    De Arcangelis, A; Lefebvre, O; Méchine-Neuville, A; Arnold, C; Klein, A; Rémy, L; Kedinger, M; Simon-Assmann, P

    2001-10-01

    Laminins represent a growing family of glycoproteins constituting the basement membrane. They are known to direct many biological processes. With respect to carcinogenesis, laminins play an important role in cell adhesion, mitogenesis, differentiation and even metastasis. To further study the biological significance of laminin-1 (composed of alpha1, beta1 and gamma1 chains) in intestinal cell differentiation or tumorigenesis, an alpha1-laminin expression vector was introduced into the HT29 colonic cancer cells, in which laminin alpha1 chain is not expressed. Upon transfection of the alpha1 chain, the alpha1beta1gamma1 trimer was found secreted in the media along with free alpha1 chain as assessed by immunoprecipitation. The presence of the laminin alpha1 chain did not significantly modify the levels of the other laminin chains nor the integrins expressed by the HT29 cells. In spite of similar growth properties with the control cells in vitro (plastic dish, soft agar), the laminin alpha1 transfectants showed a significantly increased tumor growth when injected in nude mice. Histologic and immunohistochemic examination of the laminin alpha1-expressing tumors points to an increased recruitment of the host stromal and vascular cells, without modification in the differentiation profile and invasion potential. In parallel, a clear accumulation of laminin-10 (alpha5beta1gamma1) at the carcinoma/stromal interface and a segregation of the integrin beta4 subunit at the basal pole of the cancer cells occurred, compared to control tumors. Overall, our observations emphasize the importance of laminin-1 as a chemoattractant of both stromal and vascular cells and in epithelial/stromal cell interactions for the organization of the basement membrane and segregation of integrins leading to an epithelial cell growth signal. Such a sequence of events is reminiscent of what occurs during development.

  20. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    SciTech Connect

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun; Xiao, Shaobo

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  1. Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase.

    PubMed Central

    Gottschalk, S; Waheed, A; Schmidt, B; Laidler, P; von Figura, K

    1989-01-01

    BHK cells expressing human lysosomal acid phosphatase (LAP) transport LAP to lysosomes as an integral membrane protein. In lysosomes LAP is released from the membrane by proteolytic processing, which involves at least two cleavages at the C terminus of LAP. The first cleavage is catalysed by a thiol proteinase at the outside of the lysosomal membrane and removes the bulk of the cytoplasmic tail of LAP. The second cleavage is catalysed by an aspartyl proteinase inside the lysosomes and releases the luminal part of LAP from the membrane-spanning domain. The first cleavage at the cytoplasmic side of the lysosomal membrane depends on acidification of lysosomes and the second cleavage inside the lysosomes depends on prior processing of the cytoplasmic tail. These results suggest that the cytoplasmic tail controls the conformation of the luminal portion of LAP and vice versa. Images PMID:2684640

  2. [Characterization of thermal denaturation process of proteinase K by spectrometry].

    PubMed

    Zhang, Qi-Bing; Na, Xin-Zhu; Yin, Zong-Ning

    2013-07-01

    The effect of different temperatures on the activity and conformational changes of proteinase K was studied. Methods Proteinase K was treated with different temperatures, then denatured natural substrate casein was used to assay enzyme activity, steady-state and time-resolved fluorescence spectroscopy was used to study tertiary structure, and circular dichroism was used to study secondary structure. Results show with the temperature rising from 25 to 65 degrees C, the enzyme activity and half-life of proteinase K dropped, maximum emission wavelength red shifted from 335 to 354 nm with fluorescence intensity decreasing. Synchronous fluorescence intensity of tryptophan residues decreased and that of tyrosine residues increased. Fluorescence lifetime of tryptophan residues reduced from 4. 427 1 to 4. 032 4 ns and the fraction of alpha-helix dropped. It was concluded that it is simple and accurate to use steady-state/time-resolved fluorescence spectroscopy and circular dichroism to investigate thermal stability of proteinase K. Thermal denaturation of proteinase K followed a three-state process. Fluorescence intensity of proteinase K was affected by fluorescence resonance energy transfer from tyrosine to tryptophan residues. The alpha-helix was the main structure to maintain conformational stability of enzyme active site of proteinase K.

  3. Association between alphas1-, beta- and kappa-casein loci in two Italian cattle breeds.

    PubMed

    Voglino, G F; Carignano

    1975-01-01

    The genetic polymorphism alphas1-, beta- and kappa-caseins was examined by gel electrophoresis in two Italian breeds, Valdostana and Piedmont. The results obtained from acid and basic migration show that the gene frequencies of the two breeds are very similar. Non independent assortment of genotypes among these milk protein loci was also studied. Results of analyses carried out on loci pairs showed that the genetic complex alphas1-CnB - beta-CnA2 was the most common in both breeds. In addition, the measure of linkage disequilibrium or gametic association (denoted delta) showed a close association between alphas1-Cn and beta-Cn, and between beta-Cn and kappa-Cn. No significant association was found between alphas1-Cn and kappa-Cn. This is in line with the model proposed by Grosclaude et al. (1973).

  4. What Are the Signs and Symptoms of Alpha-1 Antitrypsin Deficiency?

    MedlinePlus

    ... from the NHLBI on Twitter. What Are the Signs and Symptoms of Alpha-1 Antitrypsin Deficiency? The ... ability to be physically active, and wheezing. These signs and symptoms most often begin between the ages ...

  5. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    SciTech Connect

    Weiland, N.G.; Wise, P.M.

    1987-11-01

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silastic capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.

  6. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization

    PubMed Central

    Haq, Imran; Saleh, Aarash D.; Dron, Louis; Regan-Mochrie, Gemma L.; Motamedi-Shad, Neda; Hurst, John R.; Gooptu, Bibek

    2016-01-01

    Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate—and therefore polymerize—more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the “breach” region and “shutter” region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care. PMID:26091018

  7. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism.

    PubMed Central

    Leeb-Lundberg, L M; Cotecchia, S; Lomasney, J W; DeBernardis, J F; Lefkowitz, R J; Caron, M G

    1985-01-01

    DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. This turnover was measured by determining the 32P content of phosphatidylinositol and phosphatidic acid after prelabeling of the cellular ATP pool with 32Pi. These phorbol ester-treated cells also displayed a decrease in binding affinity of cellular alpha 1 receptors for agonists with no change in antagonist affinity. By using affinity chromatography on the affinity resin Affi-Gel-A55414, the alpha 1 receptors were purified approximately equal to 300-fold from control and phorbol ester-treated 32Pi-prelabeled cells. As assessed by NaDodSO4/polyacrylamide gel electrophoresis, the Mr 80,000 alpha 1-receptor ligand-binding subunit is a phosphopeptide containing 1.2 mol of phosphate per mol of alpha 1 receptor. After phorbol ester treatment this increased to 3.6 mol of phosphate per mol of alpha 1 receptor. The effect of phorbol esters on norepinephrine-stimulated inositol phospholipid turnover and alpha 1-receptor phosphorylation showed the same rapid time course with a t1/2 less than 2 min. These results indicate that calcium- and phospholipid-dependent protein kinase may play an important role in regulating the function of receptors that are coupled to the inositol phospholipid cycle by phosphorylating and deactivating them. Images PMID:2994039

  8. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization.

    PubMed

    Haq, Imran; Irving, James A; Saleh, Aarash D; Dron, Louis; Regan-Mochrie, Gemma L; Motamedi-Shad, Neda; Hurst, John R; Gooptu, Bibek; Lomas, David A

    2016-01-01

    Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate-and therefore polymerize-more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the "breach" region and "shutter" region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care.

  9. Effect of extracellular pH on recombinant alpha1beta2gamma2 and alpha1beta2 GABAA receptors.

    PubMed

    Mercik, Katarzyna; Pytel, Maria; Cherubini, Enrico; Mozrzymas, Jerzy W

    2006-08-01

    Recently, we have reported that extracellular protons allosterically modulated neuronal GABA(A) receptors [Mozrzymas, J.W., Zarnowska, E.D., Pytel, M., Mercik, K., 2003a. Modulation of GABA(A) receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of desensitiztion process. Journal of Neuroscience 23, 7981-7992]. However, GABAARs in neurons are heterogeneous and the effect of hydrogen ions depends on the receptor subtype. In particular, gamma2 subunit sets the receptor sensibility to several modulators including protons. However, the mechanisms whereby protons modulate gamma2-containing and gamma2-free GABAARs have not been fully elucidated. To this end, current responses to ultrafast GABA applications were recorded for alpha1beta2gamma2 and alpha1beta2 receptors at different pH values. For both receptor types, increase in pH induced a decrease in amplitudes of currents elicited by saturating [GABA] but this effect was stronger for alpha1beta2 receptors. In the case of alpha1beta2gamma2 receptors, protons strongly affected the current time course due to a down regulation of binding and desensitization rates. This effect was qualitatively similar to that described in neurons. Protons strongly influenced the amplitude of alpha1beta2 receptor-mediated currents but the effect on their kinetics was weak suggesting a predominant direct non-competitive inhibition with a minor allosteric modulation. In conclusion, we provide evidence that extracellular protons strongly affect GABAA receptors and that, depending on the presence of the gamma2 subunit, the modulatory mechanisms show profound quantitative and qualitative differences.

  10. The synthesis, kinetic characterization and application of biotinylated aminoacylchloromethanes for the detection of chymotrypsin and trypsin-like serine proteinases.

    PubMed Central

    Kay, G; Bailie, J R; Halliday, I M; Nelson, J; Walker, B

    1992-01-01

    The synthesis of two biotinylated affinity labels for chymotrypsin and trypsin-like serine proteinases is described, along with their kinetic characterization and application to the detection of these proteinases after PAGE and Western blotting. Thus the chloromethane analogues biotinylphenylalanylchloromethane (Bio-Phe-CH2Cl; reagent 1) and biotinylarginylchloromethane (Bio-Arg-CH2Cl, reagent 2), have been shown to be potent active-site-directed inactivators of chymotrypsin and trypsin respectively. The apparent overall second-order rate constants (kobs./[I]) for the inactivation of chymotrypsin and trypsin by reagent 1 (approximately 4.9 x 10(3) M-1.min-1) and reagent 2 (approximately 1.0 x 10(5) M-1.min-1) respectively are comparable with those obtained by other workers with simple urethane-protected analogues and demonstrates that the presence of the bulky biotinyl moiety is compatible with inhibitor effectiveness. Samples of chymotrypsin and trypsin that have been inactivated by reagents 1 and 2 respectively and which have been subjected to SDS/PAGE and Western blotting can be revealed with a streptavidin/alkaline phosphatase label. We can presently detect down to 20 ng of inactivated proteinase by using this system. The utility of the arginine derivative for the detection of the plasma trypsin-like proteinases plasmin and thrombin has also been demonstrated, thus holding out the possibility that this reagent may find general application as an active-site-directed label for this class of proteinase. Images Fig. 2. Fig. 3. Fig. 4. PMID:1575691

  11. Postnatal development of the alpha1 containing GABAA receptor subunit in rat hippocampus.

    PubMed

    Lopez-Tellez, Juan Felix; Vela, Jose; del Rio, Juan Carlos; Ramos, Blanca; Baglietto-Vargas, David; Santa-Maria, Consuelo; Ruano, Diego; Gutierrez, Antonia; Vitorica, Javier

    2004-01-31

    Here we have studied the developmental expression of alpha1 subunit of the GABAA receptor in comparison with the expression of alpha2 subunit and several GABAergic markers (parvalbumin (PV), calretinin (CR), somatostatin (SOM), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP)). The alpha1 expression (mRNA and protein) was low at birth and increased progressively until the adulthood. This expression pattern was similar to that observed for PV, opposite to that of CR (high at birth and decreased continuously until the adulthood) and differed from that observed for the alpha2 and neuropeptides (SOM, NPY and VIP) (in all cases, a clear peak in expression was observed at P10). We further investigated the expression of alpha1, PV and CR by immunohistochemistry. As expected, the alpha1 and the PV expression were low at birth and increased progressively until the adulthood. Both alpha1 and PV were co-expressed by the same interneuronal population, however, the maturation of the alpha1 subunit preceded to that of PV. Finally, we observed a gradient of maturation between the different fields of the hippocampus proper (CA2-3 preceded to CA1 and DG). This gradient could be related to the high expression of CR positive cells and fibers during the first 10 postnatal days, located principally in the stratum lacunosum moleculare of the CA2-3 layers.

  12. Purification and characterization of a new serine proteinase from Bacillus subtilis with specificity for amino acids at P1 and P2 positions.

    PubMed

    Yamagata, A; Yoshida, N; Noda, K; Ito, A

    1995-12-01

    A proteinase was purified 230-fold to apparent homogeneity from culture filtrates of Bacillus subtilis by a series of column chromatographies on DE52, DEAE-Toyopearl, Cellulofine GC200M, and Mono-Q, using Boc-Ala-Ala-Pro-Ser-pNA as a substrate. The molecular weight of the proteinase was estimated to be 42,000 by SDS-PAGE in the presence of 2-mercaptoethanol. Studies on the substrate specificity with peptide p-nitroanilides and natural peptides revealed that this proteinase preferentially hydrolyzed the peptide bond on the carboxyl-terminal side of either serine or alanine residues at the P1 position and hydrophobic bulky amino acids at P2. It was most active at pH 9.5 for the hydrolysis of Boc-Ala-Ala-Pro-Ser-pNA. The enzyme was inactivated by diisopropyl fluorophosphate (DFP), but not by tosyl-L-phenylalanine chloromethylketone (TPCK) or by EDTA. Based on the reactivity toward substrates and inhibitors, this enzyme differs from elastase- or subtilisin-like proteinase, hence it is a new type of proteinase with specificity for amino acids at P1 and P2 positions. PMID:8519806

  13. Molt cycle-associated changes in calcium-dependent proteinase activity that degrades actin and myosin in crustacean muscle

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1982-01-01

    The role of calcium-dependent proteinase (CDP) in the proecdysial atrophy of crustacean claw muscle has been investigated. During atrophy the molar ratio of actin to myosin heavy chain decreased 31%, confirming earlier ultrastructural observations that the ratio of thin:thick myofilaments declined from 9:1 to 6:1 (D.L. Mykles and D.M. Skinner, 1981, J. Ultrastruct. Res. 75, 314 to 325). The release of TCA-soluble material in muscle homogenates at neutral pH was stimulated by Ca/sup 2 +/ and completely inhibited by EGTA. The specific degradation of the major myofibrillar proteins (actin, myosin heavy and light chains, paramyosin, tropomyosin, troponin-T, and troponin-I) was demonstrated by SDS-polyacrylamide gel electrophoresis. Proteolytic activity was more than twofold greater in proecdysial muscle homogenates. Degradation of myofibrillar proteins was inhibited by EGTA, and the two inhibitors of crysteine proteinases, leupeptin, and antipain, but not pepstatin, an inhibitor of aspartic proteinases. Unlike CDPs from vertebrate muscle, the CDP(s) in crab claw muscle degrades actin and myosin in addition to other myofibrillar proteins.

  14. Synthesis of the core tetrasaccharide of Trypanosoma cruzi glycoinositolphospholipids: Manp(alpha1-->6)-Manp(alpha1-->4)-6-(2-aminoethylphosphonic acid)-GlcNp(alpha1-->6)-myo-Ins-1-PO4.

    PubMed

    Hederos, Markus; Konradsson, Peter

    2005-09-01

    [structure: see text] Synthesis of the core tetrasaccharide Manp(alpha1-->6)-Manp(alpha1-->4)-6-(2-aminoethylphosphonic acid)-GlcNp(alpha1-->6)-myo-Ins-1-PO4, found in glycoinositolphospholipids of Trypanosoma cruzi parasites, is described. The key building block, 6-O-(2-azido-3-O-benzyl-6-O-((2-benzyloxycarbonylaminoethyl)phosphonic acid benzyl ester)-2-deoxy-alpha-D-glucopyranosyl)-1-di-O-benzylphosphoryl-4,5-O-isopropylidene-2,3-O-(D-1,7,7-trimethyl[2,2,1]bicyclohept-6-ylidene)-D-myo-inositol, was synthesized using a partially protected glucosyl D-camphorinositolphosphate and a (2-benzyloxycarbonylaminoethyl)phosphonic acid derivative in a regioselective phosphonate esterfication. Elongation with ethyl 2-O-benzoyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzyl-1-alpha-D-thiomannopyranoside using dimethyl(methylthio)sulfonium trifluoromethanesulfonate gave a fully protected tetrasaccharide which was successfully deprotected subsequently with sodium methoxide, sodium in liquid ammonia, and aq hydrochloric acid to give title compound.

  15. [Inactivation of T4 phage in water environment using proteinase].

    PubMed

    Lü, Wen-zhou; Yang, Qing-xiang; Zhang, Yu; Yang, Min; Zhu, Chun-fang

    2004-09-01

    The inactivation effectiveness of proteinase to viruses was investigated by using T4 phage as a model virus. The results showed that the inactivation effectiveness of proteinase to T4 phage was obvious. In the optimum conditions and 67.5 u/mL concentration, the inactivation rate of proteinase K to T4 phage in sterilized water and in sewage achieved 99.4% and 49.4% respectively in an hour, and achieved >99.9% and 81.1% in three hours. The inactivation rate of the industrial proteinase 1398 to T4 phage in sterilized water achieved 74.4% in an hour. The effects of pH and temperature on the inactivation effectiveness was not evident.

  16. Substrate specificities of pepstatin-insensitive carboxyl proteinases from gram-negative bacteria.

    PubMed

    Ito, M; Dunn, B M; Oda, K

    1996-10-01

    Pseudomonas carboxyl proteinase (PCP), isolated from Pseudomonas sp. 101, and Xanthomonas carboxyl proteinase (XCP), isolated from Xanthomonas sp. T-22, are the first and second examples of unique carboxyl proteinases [EC 3.4.23.33] which are insensitive to aspartic proteinase inhibitors, such as pepstatin, diazoacetyl-DL-norleucine methylester, and 1,2-epoxy-3(p-nitrophenoxy)propane. The substrate specificities of PCP and XCP were studied using a series of synthetic chromogenic peptide substrates with the general structure, P5-P4-P3-P2-Phe-Nph-P2'-P3' (P5, P4, P3, P2, P2', P3': a variety of amino acids, Nph is p-nitro-L-phenylalanine, and the Phe-Nph bond is cleaved). PCP and XCP were shown to hydrolyze a synthetic substrate, Lys-Pro-Ala-Leu-Phe-Nph-Arg-Leu, most effectively among 28 substrates. The kinetic parameters of this peptide for PCP were Km = 6.3 microM, Kcat = 51.4 s-1, and kcat/Km = 8.16 microM-1.s-1. The kinetic parameters for XCP were Km = 3.6 microM, kcat = 52.2 s-1, and kcat/Km = 14.5 microM-1.s-1. PCP showed a stricter substrate specificity than XCP. That is, the specificity constant (kcat/Km) of each substrate for PCP was in general < 0.5 microM-1.s-1, but was drastically improved by the replacement of Lys by Leu at the P2 position. On the other hand, XCP showed a less stringent substrate specificity, with most of the peptides exhibiting reasonable kcat/Km values (> 1.0 microM-1.s-1). Thus it was found that the substrate specificities of PCP and XCP differ considerably, in spite of the high similarity in their primary structures. In addition, tyrostatin was found to be a competitive inhibitor for XCP, with a Ki value of 2.1 nM, as well as for PCP (Ki = 2.6 nM).

  17. Purification of human leucocyte DNA: proteinase K is not necessary.

    PubMed

    Douglas, A M; Georgalis, A M; Benton, L R; Canavan, K L; Atchison, B A

    1992-03-01

    A rapid nontoxic method for the purification of DNA from human leucocytes is described. Preliminary experiments which tested different methods of DNA purification indicated that digestion of proteins with proteinase K was unnecessary. This led to the development of a simple procedure involving lysis of the cells in SDS followed by extraction with 6 M NaCl. The method described overcomes the requirement for lengthy incubations in the presence of expensive proteinase K and subsequent extraction with toxic chemicals.

  18. Comparison of the antagonistic activity of tamsulosin and doxazosin at vascular alpha 1-adrenoceptors in humans.

    PubMed

    Harada, K; Ohmori, M; Fujimura, A

    1996-11-01

    alpha 1-Adrenoceptor blockers such as prazosin and doxazosin are used to treat hypertension as well as benign prostatic hyperplasia (BPH), whereas the new alpha 1-adrenoceptor blocker tamsulosin is used only for BPH and does not reduce blood pressure at the doses used to relax prostatic smooth muscle. In contrast to prazosin, tamsulosin has a higher affinity for prostatic than vascular alpha 1-adrenoceptors in vitro. The functional correlate of this observation in humans is the subject of this study. The alpha 1-adrenoceptor blockade by oral tamsulosin (0.2 mg), doxazosin (1 mg) or placebo on finger tip vascular and dorsal hand venous alpha 1-adrenoceptors stimulated by cold treatment (immersion in ice water) and the alpha 1-adrenoceptor agonist phenylephrine, was thus studied in a 3-way crossover study in eight, healthy, male adults. Finger tip vasoconstriction after cold stimulation was assessed by laser Doppler flowmetry. A linear variable differential transformer was used to assess the drug effect on phenylephrine-induced venoconstriction. All study parameters were assessed at around 2 and 3.5 h after oral intake of doxazosin and tamsulosin respectively. The drug plasma levels were not significantly different. No significant differences were found for blood pressure or heart rate in the three treatments in supine and erect position. The reduction in finger tip blood flow after cold stimulation was significantly smaller after doxazosin treatment (P < 0.01) than after tamsulosin or placebo, whereas there was no significant difference between tamsulosin and placebo treatments. The infusion rate of phenylephrine producing a half-maximum venoconstriction was significantly larger after doxazosin than after tamsulosin (P < 0.05) or placebo (P < 0.01), whereas there was again no significant difference between tamsulosin and placebo treatments. The data suggest that, at doses producing equal plasma levels after single oral doses in human subjects, the blocking activity

  19. The induction of proteinases in corn and soybean by anoxia

    SciTech Connect

    VanToai, T.; Hwang, Shihying )

    1989-04-01

    This study characterized the anaerobic changes in proteinase activities in corn and soybean roots and to investigate the possibility that these changes might contribute to the differential anaerobiosis tolerance of the two species. After 24 h of anoxia, crude protein extracts from H60 corn and Keller soybean root tips (10cm) were assayed for proteinase activities at pH range from 4.5 to 9.5. Turnover of aberrant proteins was studied in seedlings labelled with {sup 3}H-leucine for 12 h under: (a) puromycin (0.64 mM) in air, (b) ethanol (1%) in air, (c) nitrogen and (d) air. After the treatment, the labelled proteins remaining in roots were determined every 2 h for 6 h. In both corn and soybean, activities of alkali proteinases increased, and activities of acid proteinases declined under anoxia. Neutral proteinases increase in anoxic corn roots, but decline in anoxic soybean roots. The protein turnover rate in corn treated with puromycin, ethanol and nitrogen was much higher than in control roots. The protein turnover rate in soybean roots treated with puromycin, ethanol was similar to the rate of the control. The results indicated that: (a) anoxic corn can degrade aberrant proteins, but anoxic soybean cannot, (b) the degradation of aberrant proteins in anoxic corn is accomplished by neutral proteinases, and (c) the accumulation of aberrant proteins in soybean might contribute to the susceptibility of this species to anoxia.

  20. The effect of calciums on molecular motions of proteinase K.

    PubMed

    Liu, Shu-Qun; Tao, Yan; Meng, Zhao-Hui; Fu, Yun-Xin; Zhang, Ke-Qin

    2011-02-01

    The native serine protease proteinase K binds two calcium cations. It has been reported that Ca(2+) removal decreased the enzyme's thermal stability and to some extent the substrate affinity, but has discrepant effects on catalytic activity of the enzyme. Molecular dynamics simulations were performed on the Ca(2+)-bound and Ca(2+)-free proteases to investigate the mechanism by which the calciums affect the structural stability, molecular motions, and catalytic activity of proteinase K. Very similar structural properties were observed between these two forms of proteinase K during simulations; and several long-lived hydrogen bonds and salt bridges common to both forms of proteinase K were found to be crucial in maintaining the local conformations around these two Ca(2+) sites. Although Ca(2+) removal enhanced the overall flexibility of proteinase K, the flexibility in a limited number of segments surrounding the substrate-binding pockets decreased. The largest differences in the equilibrium structures of the two simulations indicate that, upon the removal of Ca(2+), the large concerted motion originating from the Ca1 site can transmit to the substrate-binding regions but not to the catalytic triad residues. In conjunction with the large overlap of the essential subspaces between the two simulations, these results not only provide insight into the dynamics of the underlying molecular mechanism responsible for the unchanged enzymatic activity as well as the decreased thermal stability and substrate affinity of proteinase K upon Ca(2+) removal, but also complement the experimentally determined structural and biochemical data.

  1. Ca(2+)-dependent inactivation of a cloned cardiac Ca2+ channel alpha 1 subunit (alpha 1C) expressed in Xenopus oocytes.

    PubMed Central

    Neely, A; Olcese, R; Wei, X; Birnbaumer, L; Stefani, E

    1994-01-01

    The alpha 1 subunit of cardiac Ca2+ channel, expressed alone or coexpressed with the corresponding beta subunit in Xenopus laevis oocytes, elicits rapidly inactivating Ca2+ currents. The inactivation has the following properties: 1) It is practically absent in external Ba2+; 2) it increases with Ca2+ current amplitudes; 3) it is faster at more negative potentials for comparable Ca2+ current amplitudes; 4) it is independent of channel density; and 5) it does not require the beta subunit. These findings indicate that the Ca2+ binding site responsible for inactivation is encoded in the alpha 1 subunit and suggest that it is located near the inner channel mouth but outside the membrane electric field. PMID:8075326

  2. The possible involvement of D-amino acids or their metabolites in Arabidopsis cysteine proteinase/cystatin N-dependent proteolytic pathway.

    PubMed

    Gholizadeh, A

    2015-01-01

    Cysteine proteinases and their inhibitors 'cystatins' play essential roles in plant growth and development. They are involved in various signaling pathways and in the response to wide ranges of biotic and abiotic environmental stresses. To investigate their possible influence from D-amino acids or their metabolism in vivo, Arabidopsis seedlings were allowed to grow under four physicochemically different D-amino acids including D-aspartate, D-serine, D-alanine and D-phenylalanine containing media. The reverse transcription polymerase chain reaction (R T-PCR) analysis of cysteine proteinase and cystatin gene expressions showed that the addition of D-amino acid to the plant growth media considerably induce the expression of proteinase transcript while decrease the expression level of inhibitor gene in the leaf and root tissues of the test plant in overall. Based on the obtained results the potential impact of D-amino acids or their metabolism on the activity of cysteine proteinase/cystatin-dependent proteolytic apparatus as well as their possible cooperation were predicted and discussed in the plant system.

  3. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells.

    PubMed Central

    Stefanovic, B; Hellerbrand, C; Holcik, M; Briendl, M; Aliebhaber, S; Brenner, D A

    1997-01-01

    The hepatic stellate cell (HSC) is the primary cell responsible for the dramatic increase in the synthesis of type I collagen in the cirrhotic liver. Quiescent HSCs contain a low level of collagen alpha1(I) mRNA, while activated HSCs contain about 60- to 70-fold more of this mRNA. The transcription rate of the collagen alpha1(I) gene is only two fold higher in activated HSCs than in quiescent HSCs. In assays using actinomycin D or 5,6-dichlorobenzimidazole riboside collagen alpha1(I) mRNA has estimated half-lives of 1.5 h in quiescent HSCs and 24 h in activated HSCs. Thus, this 16-fold change in mRNA stability is primarily responsible for the increase in collagen alpha1(I) mRNA steady-state level in activated HSCs. We have identified a novel RNA-protein interaction targeted to the C-rich sequence in the collagen alpha1(I) mRNA 3' untranslated region (UTR). This sequence is localized 24 nucleotides 3' to the stop codon. In transient transfection experiments, mutation of this sequence diminished accumulation of an mRNA transcribed from a collagen alpha1(I) minigene and in stable transfections decreased the half-life of collagen alpha1(I) minigene mRNA. Binding to the collagen alpha1(I) 3' UTR is present in cytoplasmic extracts of activated but not quiescent HSCs. It contains as a subunit alphaCP, which is also found in the complex involved in stabilization of alpha-globin mRNA. The auxiliary factors necessary to promote binding of alphaCP to the collagen 3' UTR are distinct from the factors necessary for binding to the alpha-globin sequence. Since alphaCP is expressed in both quiescent and activated HSCs, these auxiliary factors are responsible for the differentially expressed RNA-protein interaction at the collagen alpha1(I) mRNA 3' UTR. PMID:9271398

  4. DNA elements regulating alpha1-tubulin gene induction during regeneration of eukaryotic flagella.

    PubMed

    Periz, G; Keller, L R

    1997-07-01

    Eukaryotic flagella are complex organelles composed of more than 200 polypeptides. Little is known about the regulatory mechanisms governing synthesis of the flagellar protein subunits and their assembly into this complex organelle. The unicellular green alga Chlamydomonas reinhardtii is the premier experimental model system for studying such cellular processes. When acid shocked, C. reinhardtii excises its flagella, rapidly and coordinately activates transcription of a set of flagellar genes, and ultimately regenerates a new flagellar pair. To define functionally the regulatory sequences that govern induction of the set of genes after acid shock, we analyzed the alpha1-tubulin gene promoter. To simplify transcriptional analysis in vivo, we inserted the selectable marker gene ARG7 on the same plasmid with a tagged alpha1-tubulin gene and stably introduced it into C. reinhardtii cells. By deletion of various sequences, two promoter regions (-176 to -122 and -85 to -16) were identified as important for induction of the tagged alpha1-tubulin gene. Deleting the region between -176 and -122 from the transcription start site resulted in an induction level which was only 45 to 70% of that of the resident gene. Deleting the region upstream of -56 resulted in a complete loss of inducibility without affecting basal expression. The alpha1-tubulin promoter region from -85 to -16 conferred partial acid shock inducibility to an arylsulfatase (ARS) reporter gene. These results show that induction of the alpha1-tubulin gene after acid shock is a complex response that requires diverse sequence elements.

  5. DNA elements regulating alpha1-tubulin gene induction during regeneration of eukaryotic flagella.

    PubMed Central

    Periz, G; Keller, L R

    1997-01-01

    Eukaryotic flagella are complex organelles composed of more than 200 polypeptides. Little is known about the regulatory mechanisms governing synthesis of the flagellar protein subunits and their assembly into this complex organelle. The unicellular green alga Chlamydomonas reinhardtii is the premier experimental model system for studying such cellular processes. When acid shocked, C. reinhardtii excises its flagella, rapidly and coordinately activates transcription of a set of flagellar genes, and ultimately regenerates a new flagellar pair. To define functionally the regulatory sequences that govern induction of the set of genes after acid shock, we analyzed the alpha1-tubulin gene promoter. To simplify transcriptional analysis in vivo, we inserted the selectable marker gene ARG7 on the same plasmid with a tagged alpha1-tubulin gene and stably introduced it into C. reinhardtii cells. By deletion of various sequences, two promoter regions (-176 to -122 and -85 to -16) were identified as important for induction of the tagged alpha1-tubulin gene. Deleting the region between -176 and -122 from the transcription start site resulted in an induction level which was only 45 to 70% of that of the resident gene. Deleting the region upstream of -56 resulted in a complete loss of inducibility without affecting basal expression. The alpha1-tubulin promoter region from -85 to -16 conferred partial acid shock inducibility to an arylsulfatase (ARS) reporter gene. These results show that induction of the alpha1-tubulin gene after acid shock is a complex response that requires diverse sequence elements. PMID:9199320

  6. Effect of repeated treatment with tianeptine and fluoxetine on the central alpha(1)-adrenergic system.

    PubMed

    Rogóz, Z; Skuza, G; Dlaboga, D; Maj, J; Dziedzicka-Wasylewska, M

    2001-09-01

    Tianeptine (TIA) is an antidepressant drug which enhances the reuptake of serotonin but, in contrast to tricyclics, shows no affinity for neurotransmitter receptors. The present study was aimed at determining whether repeated TIA treatment induced adaptive changes in the alpha(1)-adrenergic system, similar to those reported by us earlier for tricyclic antidepressants. The experiments were carried out on male mice and rats. TIA was administered at a dose of 5 or 10mg/kg once or repeatedly (twice daily for 14 days) and fluoxetine (FLU), used as a reference compound, at a dose of 10mg/kg. The obtained results showed that TIA administered repeatedly potentiated the methoxamine- and phenylephrine (PHEN)-induced exploratory hyperactivity in rats and clonidine-induced aggressiveness in mice, the effects mediated by alpha(1)-adrenoceptors. TIA given repeatedly (but not acutely) increased the binding (B(max)) of alpha(1)-adrenergic receptors in cerebral cortex for [(3)H]prazosin. However, the ability of the alpha(1)-adrenoceptor agonist PHEN to compete for these sites was not significantly changed. The above results indicate that repeated TIA administration increases the responsiveness of the alpha(1)-adrenergic system (behavioural and biochemical changes). On the other hand, FLU did not affect any behavioural and biochemical changes in this system.

  7. Effect of alpha 1-adrenoceptor blockade on resting and hyperemic myocardial blood flow in normal humans.

    PubMed

    Lorenzoni, R; Rosen, S D; Camici, P G

    1996-10-01

    In the present study we aimed to assess the effect of alpha 1-adrenoceptor blockade on resting and hyperemic myocardial blood flow in normal humans. Myocardial blood flow, at baseline and after dipyridamole, was measured with positron emission tomography and 15O-labeled water in 11 normal volunteers at control and during alpha 1-blockade with doxazosin. Baseline myocardial blood flow during alpha 1-blockade was not different from control, whereas coronary resistance was significantly lower (73.48 +/- 18.31 vs. 89.84 +/- 27.96 mmHg.min.ml-1.g-1; P < 0.05). After dipyridamole, myocardial blood flow during alpha 1-blockade was significantly higher (3.50 +/- 0.75 vs. 2.58 +/- 0.54 ml.min-1.g-1; P < 0.01) and coronary resistance lower (25.30 +/- 7.37 vs. 33.89 +/- 7.04 mmHg.min.ml-1.g-1; P < 0.01) compared with control. In conclusion, in normal humans, dipyridamole-induced increase in myocardial blood flow is limited by alpha 1-mediated coronary vasoconstriction.

  8. Analysis of the endoplasmic reticular Ca2+ requirement for alpha1-antitrypsin processing and transport competence.

    PubMed Central

    Cooper, G R; Brostrom, C O; Brostrom, M A

    1997-01-01

    Depletion of Ca2+ sequestered within the endoplasmic reticulum (ER) of HepG2 hepatoma cells results in the luminal accumulation of immature alpha1-antitrypsin possessing Man8-9 GlcNAc2 oligosaccharide side chains. This study explores the basis for this arrest and describes consequent alterations in the size and rate of secretion of the complex endoglycosidase H-resistant form of the protein. Inhibition of glucosidase I and II with castanospermine or alpha-1,2-mannosidase with 1-deoxymannojirimycin produced altered ER processing intermediates that were rapidly secreted. Subsequent mobilization of ER Ca2+ stores resulted in the appearance and retention of slightly larger related forms of these intermediates. Retention of glycosylated intermediates was not ascribable to an association with alpha1,2-mannosidase or lectin-like chaperones, the intermediates were not degraded and all evidence of ER retention or size alterations produced by Ca2+ depletion was quickly reversed by Ca2+ restoration. Cells that were Ca2+ depleted for 2 h slowly secreted an abnormal slightly smaller complex oligosaccharide form of alpha1-antitrypsin at approximately the same rate as the non-glycosylated protein generated by treatment with tunicamycin. The hypothesis that Ca2+ affects the folding and ER transport competence of glycosylated forms of alpha1-antitrypsin is discussed. PMID:9271078

  9. De-phosphorylation of TR{alpha}-1 by p44/42 MAPK inhibition enhances T{sub 3}-mediated GLUT5 gene expression in the intestinal cell line Caco-2 cells

    SciTech Connect

    Mochizuki, Kazuki; Sakaguchi, Naomi; Takabe, Satsuki; Goda, Toshinao . E-mail: gouda@fns1.u-shizuoka-ken.ac.jp

    2007-08-10

    Thyroid hormone and p44/42 MAPK inactivation are important in intestinal differentiation. We demonstrated not only that treatment with p44/42 MAPK inhibitor U0126 in intestinal cell line Caco-2 cells reduced the phosphorylation of serine and threonine residues of TR{alpha}-1, but also that T{sub 3} and U0126 synergistically induced GLUT5 gene expression. EMSA demonstrated that the binding activity of TR{alpha}-1-RXR heterodimer on GLUT5-TRE in nuclear proteins of Caco-2 cells was synergistically enhanced by co-incubation in vitro with T{sub 3} and CIAP, which strongly de-phosphorylates proteins. ChIP and transfection assays revealed that co-treatment of T{sub 3} and U0126 induces TR{alpha}-1-RXR binding to GLUT5-TRE on the human GLUT5 enhancer region, and recruitment of the transcriptional complex in cells. These results suggest that inactivation of p44/42 MAPK enhances T{sub 3}-induced GLUT5 gene expression in Caco-2 cells through increasing TR{alpha}-1 transactivity and binding activity to the GLUT5-TRE, probably due to de-phosphorylation of TR{alpha}-1.

  10. Characterization of an exocellular serine-thiol proteinase activity in Paracoccidioides brasiliensis.

    PubMed

    Carmona, A K; Puccia, R; Oliveira, M C; Rodrigues, E G; Juliano, L; Travassos, L R

    1995-07-01

    An exocellular proteinase activity has been characterized in Paracoccidioides brasiliensis culture filtrates. Chromatographic analysis showed that the activity was eluted from an anion-exchange Resource Q column at 0.08-0.1 M NaCl, and by gel filtration near ovalbumin elution, in a single peak. Purification of the proteinase, however, was hampered by the low protein yield, in contrast to the high peptidase activity. Numerous chromogenic peptidyl p-nitroanilide derivatives and internally quenched fluorescent peptides, flanked by Abz (O-aminobenzoyl) and EDDnp (ethylenediaminedinitrophenyl), were tested as substrates. Cleavage was observed with Abz-MKRLTL-EDDnp, Abz-FRLVR-EDDnp, and Abz-PLGLLGR-EDDnp at Leu-Thr, Leu-Val and Leu-Leu/Leu-Gly bonds respectively as determined by isolation of the corresponding fragments by HPLC. Leucine at P1 seemed to be restrictive for the activity of the exocellular enzyme, but threonine (P'1) and leucine (P'2) in Abz-MKRLTL-EDDnp apparently were not essential. Also, a pair of alanines could substitute for lysine (P3) and arginine (P2) in this substrate, with a decrease in the Km values. The exocellular peptidase activity of P. brasiliensis had an optimum pH of > 9.0 and was irreversibly inhibited by PMSF, mercuric acetate and p-hydroxymercuribenzoate. Inhibition of the mercuriate compounds could be partially reversed by Cys/EDTA. E-64 [trans-epoxysuccinyl-L-leucylamido-(4-guanido)butene] was a weak and reversible inhibitor, whereas EDTA and pepstatin were not inhibitory. These results suggest that P. brasiliensis exocellular enzyme belongs to the subfamily of SH-containing serine proteinases.

  11. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer's disease brain, induces tau phosphorylation in neurons.

    PubMed

    Padmanabhan, Jaya; Levy, Monique; Dickson, Dennis W; Potter, Huntington

    2006-11-01

    Amyloid plaques and neurofibrillary tangles are key pathological features of Alzheimer's disease. Alzheimer's disease pathology is also characterized by neuroinflammation and neuronal degeneration, with the proteins associated with inflammatory responses being found in tight association with the plaques. One such protein is the serine protease inhibitor alpha-1-antichymotrypsin (ACT). ACT has been shown to promote Abeta polymerization in vitro and in vivo, and levels of ACT protein in plasma and cerebrospinal fluid from Alzheimer's patients have been found to correlate with progression of dementia. Here we investigated the possible involvement of ACT in tau phosphorylation and tangle formation. As was previously found for Alzheimer's disease, brains from patients with non-Alzheimer's tauopathies exhibited an enhanced expression of ACT, which correlated with the level of tau hyperphosphorylation. Transgenic mice expressing human ACT alone or ACT along with mutant human amyloid precursor protein (APP) showed a significant increase in tau phosphorylation, suggesting that this inflammatory protein can induce tau hyperphosphorylation. The increase in phosphorylation was observed at PHF-1 (P-Ser396/P-Thr404), P-Ser202 and P-Thr231 sites on tau, the P-tau epitopes that are associated with tangles in the patients. This result was further confirmed by the finding that addition of purified ACT induced the same Alzheimer's disease-related tau hyperphosphorylation in cortical neurons cultured in vitro. This correlated with an increase in extracellular signal regulated kinase (ERK) and glycogen synthase kinase-3 activation, indicating their involvement in ACT-induced tau phosphorylation. The ACT-treated neurons showed neurite loss and subsequently underwent apoptosis. Approximately 40-50% of neurons were TUNEL positive by 6 and at 24 h >70% of the neurons showed staining suggesting that ACT was inducing apoptosis in these neurons. These findings indicate that inappropriate

  12. Developing novel anthelmintics from plant cysteine proteinases

    PubMed Central

    Behnke, Jerzy M; Buttle, David J; Stepek, Gillian; Lowe, Ann; Duce, Ian R

    2008-01-01

    Intestinal helminth infections of livestock and humans are predominantly controlled by treatment with three classes of synthetic drugs, but some livestock nematodes have now developed resistance to all three classes and there are signs that human hookworms are becoming less responsive to the two classes (benzimidazoles and the nicotinic acetylcholine agonists) that are licensed for treatment of humans. New anthelmintics are urgently needed, and whilst development of new synthetic drugs is ongoing, it is slow and there are no signs yet that novel compounds operating through different modes of action, will be available on the market in the current decade. The development of naturally-occurring compounds as medicines for human use and for treatment of animals is fraught with problems. In this paper we review the current status of cysteine proteinases from fruits and protective plant latices as novel anthelmintics, we consider some of the problems inherent in taking laboratory findings and those derived from folk-medicine to the market and we suggest that there is a wealth of new compounds still to be discovered that could be harvested to benefit humans and livestock. PMID:18761736

  13. Practical and theoretical characterization of Inga laurina Kunitz inhibitor on the control of Homalinotus coriaceus.

    PubMed

    Macedo, Maria Lígia Rodrigues; Freire, Maria das Graças Machado; Franco, Octávio Luiz; Migliolo, Ludovico; de Oliveira, Caio Fernando Ramalho

    2011-02-01

    Digestive endoprotease activities of the coconut palm weevil, Homalinotus coriaceus (Coleoptera: Curculionidae), were characterized based on the ability of gut extracts to hydrolyze specific synthetic substrates, optimal pH, and hydrolysis sensitivity to protease inhibitors. Trypsin-like proteinases were major enzymes for H. coriaceus, with minor activity by chymotrypsin proteinases. More importantly, gut proteinases of H. coriaceus were inhibited by trypsin inhibitor from Inga laurina seeds. In addition, a serine proteinase inhibitor from I. laurina seeds demonstrated significant reduction of growth of H. coriaceus larvae after feeding on inhibitor incorporated artificial diets. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. We have constructed a three-dimensional model of the trypsin inhibitor complexed with trypsin. The model was built based on its comparative homology with soybean trypsin inhibitor. Trypsin inhibitor of I. laurina shows structural features characteristic of the Kunitz type trypsin inhibitor. In summary, these findings contribute to the development of biotechnological tools such as transgenic plants with enhanced resistance to insect pests. PMID:21094272

  14. Alpha-1 adrenergic receptors in the medial preoptic area are involved in the induction of sleep.

    PubMed

    Kumar, Velayudhan Mohan; Vetrivelan, Ramalingam; Mallick, Hruda Nanda

    2006-08-01

    This paper reviews the recent studies that led to the conclusion that the noradrenergic neurons projecting to the medial preoptic area (mPOA) are hypnogenic and that they mediate this action through alpha(1) adrenergic receptors. Microinjection of noradrenaline (NA) into the mPOA induced arousal. Studies using alpha(2) adrenergic drugs showed that the arousal induced by intrapreoptic injection of NA was due to its action on presynaptic alpha(2) adrenergic receptors. A combination of lesion and chemical stimulation techniques demonstrated that when NA acted on the postsynaptic alpha(1 )receptors in the mPOA, it induced sleep. Intrapreoptic injection of alpha(1) agonist, methoxamine could induce sleep, when the hypothermia, which was simultaneously produced, was behaviorally compensated for by the animal. Increased arousal produced by the destruction of noradrenergic fibers in the mPOA further confirmed the hypnogenic role of these fibers.

  15. Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by Schistosoma mansoni Eggs

    PubMed Central

    Abdulla, Maha-Hamadien; Lim, Kee-Chong; McKerrow, James H.; Caffrey, Conor R.

    2011-01-01

    Background Eggs deposited in the liver of the mammalian host by the blood fluke parasite, Schistosoma mansoni, normally drive a T-helper-2 (Th2)-mediated granulomatous response in immune-competent mice. By contrast, in mice deprived of T-cells and incapable of producing granulomata, egg-secreted proteins (ESP) induce acute hepatic injury and death. Previous work has shown that one such ESP, the T2 ribonuclease known as omega-1, is hepatotoxic in vivo in that specific antisera to omega-1 prevent hepatocyte damage. Methodology/Principal Findings Using an in vitro culture system employing mouse primary hepatocytes and alanine transaminase (ALT) activity as a marker of heptocyte injury, we demonstrated that S. mansoni eggs, egg-secreted proteins (ESP), soluble-egg antigen (SEA), and omega-1 are directly hepatotoxic and in a dose-dependent manner. Depletion of omega-1 using a monoclonal antibody abolished the toxicity of pure omega-1 and diminished the toxicity in ESP and SEA by 47 and 33%, respectively. Anion exchange chromatography of ESP yielded one predominant hepatotoxic fraction. Proteomics of that fraction identified the presence of IPSE/alpha-1 (IL-4 inducing principle from S. mansoni eggs), a known activator of basophils and inducer of Th2-type responses. Pure recombinant IPSE/alpha-1 also displayed a dose-dependent hepatotoxicity in vitro. Monoclonal antibody depletion of IPSE/alpha-1 abolished the latter's toxicity and diminished the total toxicity of ESP and SEA by 32 and 35%, respectively. Combined depletion of omega-1 and IPSE/alpha-1 diminished hepatotoxicity of ESP and SEA by 60 and 58% respectively. Conclusions We identified IPSE/alpha-1 as a novel hepatotoxin and conclude that both IPSE/alpha-1 and omega-1 account for the majority of the hepatotoxicity secreted by S. mansoni eggs. PMID:22039561

  16. Rapid component I(Kr) of cardiac delayed rectifier potassium currents in guinea-pig is inhibited by alpha(1)-adrenoreceptor activation via protein kinase A and protein kinase C-dependent pathways.

    PubMed

    Wang, Sen; Xu, Dong-Jie; Cai, Jing-Bo; Huang, Yuan-Zhu; Zou, Jian-Gang; Cao, Ke-Jiang

    2009-04-17

    Ventricular tachyarrhythmias are often precipitated by physical or emotional stress, indicating a link between increased adrenergic stimulation and cardiac ion channel activity. Human ether-a-go-go related gene (hERG) potassium channels conduct the rapid component of delayed rectifier potassium current, I(kr), a crucial component for action potential repolarization. To evaluate the correlation between increased alpha(1)-adrenergic activity and the rapid component of cardiac I(kr), whole-cell patch-clamp recording was performed in isolated guinea-pig ventricular myocytes. Stimulation of alpha(1)-adrenoceptors using phenylephrine (0.1 nM-100 microM) reduced I(kr) current in a dose-dependent manner at 37 degrees C. Phenylephrine (0.1 microM) reduced I(kr) current to 66.83+/-3.16%. Chelerythrine (1 microM), a specific inhibitor of protein kinase C (PKC) completely inhibited the changes in I(kr) trigged by 0.1 microM phenylephrine. KT5720 (2.5 microM), a specific inhibitor of protein kinase A (PKA) partially inhibited the current decrease induced by 0.1 microM phenylephrine. Both chelerythrine and KT5720 drastically reduced the phenylephrine-induced effects, indicating possible involvement of PKC and PKA in the alpha(1)-adrenergic inhibition of I(kr). Our data suggest a link between I(kr) and the alpha(1)-adrenoceptor, involving activation of PKC and PKA in arrhythmogenesis.

  17. Aspartic proteinases in the digestive tract of marine decapod crustaceans.

    PubMed

    Navarrete del Toro, María de Los Angeles; García-Carreño, Fernando; López, Manuel Díaz; Celis-Guerrero, Laura; Saborowski, Reinhard

    2006-08-01

    Decapod crustaceans synthesize highly active proteolytic enzymes in the midgut gland and release at least a part of them into the stomach where they facilitate the first step in peptide hydrolysis. The most common proteinases in the gastric fluid characterized so far are serine proteinases, that is, trypsin and chymotrypsin. These enzymes show highest activities at neutral or slightly alkaline conditions. The presence of acid proteinases, as they prevail in vertebrates, has been discussed contradictorily yet in invertebrates. In this study, we show that acid aspartic proteinases appear in the gastric fluid of several decapods. Lobsters Homarus gammarus showed the highest activity with a maximum at pH 3. These activities were almost entirely inhibited by pepstatin A, which indicates a high share of aspartic proteinases. In other species (Panulirus interruptus, Cancer pagurus, Callinectes arcuatus and Callinectes bellicosus), proteolytic activities were present at acid conditions but were distinctly lower than in H. gammarus. Zymograms at pH 3 showed in each of the studied species at least one, but mostly two-four bands of activity. The apparent molecular weight of the enzymes ranged from 17.8 to 38.6 kDa. Two distinct bands were identified which were inhibited by pepstatin A. Acid aspartic proteinases may play an important role in the process of extracellular digestion in decapod crustaceans. Activities were significantly higher in clawed lobster than in spiny lobster and three species of brachyurans. Therefore, it may be suggested that the expression of acid proteinases is favored in certain groups and reduced in others. PMID:16788916

  18. Proteinase expression during differentiation of human osteoclasts in vitro.

    PubMed

    Blair, H C; Sidonio, R F; Friedberg, R C; Khan, N N; Dong, S S

    2000-06-12

    Osteoclasts are macrophage-derived polykaryons that degrade bone in an acidic extracellular space. This differentiation includes expression of proteinases and acid transport proteins, cell fusion, and bone attachment, but the sequence of events is unclear. We studied two proteins expressed at high levels only in the osteoclast, cathepsin K, a thiol proteinase, and tartrate-resistant acid phosphatase (TRAP), and compared this expression with acid transport and bone degradation. Osteoclastic differentiation was studied using human apheresis macrophages cocultured with MG63 osteosarcoma cells, which produce cytokines including RANKL and CSF-1 that mediate efficient osteoclast formation. Immunoreactive cathepsin K appeared at 3-5 days. Cathepsin K activity was seen on bone substrate but not within cells, and cathepsin K increased severalfold during further differentiation and multinucleation from 7 to 14 days. TRAP also appeared at 3-5 d, independently of cell fusion or bone attachment, and TRAP activity reached much higher levels in osteoclasts attached to bone fragments. Two proteinases that occur in the precursor macrophages, cathepsin B, a thiol proteinase related to cathepsin K, and an unrelated lysosomal aspartate proteinase, cathepsin D, were also studied to determine the specificity of the differentiation events. Cathepsin B occurred at all times, but increased two- to threefold in parallel with cathepsin K. Cathepsin D activity did not change with differentiation, and secreted activity was not significant. In situ acid transport measurements showed increased acid accumulation after 7 days either in cells on osteosarcoma matrix or attached to bone, but bone pit activity and maximal acid uptake required 10-14 days. We conclude that TRAP and thiol proteinase expression begin at essentially the same time, and precede cell fusion and bone attachment. However, major increases in acid secretion and proteinases expression continue during cell fusion and bone

  19. Adult Schistosoma mansoni express cathepsin L proteinase activity.

    PubMed

    Smith, A M; Dalton, J P; Clough, K A; Kilbane, C L; Harrop, S A; Hole, N; Brindley, P J

    1994-09-01

    This report presents the deduced amino acid sequence of a novel cathepsin L proteinase from Schistosoma mansoni, and describes cathepsin L-like activity in extracts of adult schistosomes. Using consensus primers specific for cysteine proteinases, gene fragments were amplified from adult S. mansoni cDNA by PCR and cloned. One of these fragments showed marked identity to Sm31, the cathepsin B cysteine proteinase of adult S. mansoni, whereas another differed from Sm31 and was employed as a probe to isolate two cDNAs from an adult S. mansoni gene library. Together these cDNAs encoded a novel preprocathepsin L of 319 amino acids; this zymogen is predicted to be processed in vivo into a mature, active cathepsin L proteinase of 215 amino acids. Closest homologies were with cathepsins L from rat, mouse, and chicken (46-47% identity). Southern hybridization analysis suggested that only one or a few copies of the gene was present per genome, demonstrated that its locus was distinct from that of Sm31, and that a homologous sequence was present in Schistosoma japonicum. Because these results indicated that schistosomes expressed a cathepsin L proteinase, extracts of adult S. mansoni were examined for acidic, cysteine proteinase activity. Based on rates of cleavage of peptidyl substrates employed to discriminate between classes of cysteine proteinases, namely cathepsin L (Z-phe-arg-AMC), cathepsin B (Z-arg-arg-AMC) and cathepsin H (Bz-arg-AMC), the extracts were found to contain vigorous cathepsin L-like activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide

    SciTech Connect

    Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.; Biegon, A. )

    1990-11-01

    In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measured by autoradiography.

  1. Trials and Tribulations: An Industry Perspective on Conducting Registrational Trials in Alpha-1 Antitrypsin Deficiency.

    PubMed

    Forshag, Mark S

    2016-08-01

    Registrational trials in rare and orphan diseases present complexities related to the identification of subjects, recruitment, logistical hurdles incumbent with far-flung study sites, and end points that are often less well defined than are those used in more common illnesses. Alpha-1 antitrypsin deficiency is an orphan disease of genetic origin that carries the additional challenges of variable penetration and slow disease progression. Registrational trials of augmentation therapy using plasma-derived alpha-1 antitrypsin carry all of the above-noted burdens, as well as competition from commercially available augmentation therapy in many countries. PMID:27564675

  2. Evidence for an age-dependent functional expression of alpha 1D-adrenoceptors in the rat vasculature.

    PubMed

    Ibarra, M; Terrón, J A; López-Guerrero, J J; Villalobos-Molina, R

    1997-03-19

    The role of the alpha 1-adrenoceptor subtypes, and their possible change with maturation, in alpha 1-adrenoceptor-induced pressor responses in the rat has not been established. Thus, the effects of the alpha 1D-, alpha 1A/1D- and alpha 1B/1D-adrenoceptor antagonists, BMY 7378 (8-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl) 8-azaspiro (4.5) decane-7,9-dione 2HCl), 5-methyl-urapidil and chloroethylclonidine, respectively, on the pressor responses induced by phenylephrine in 1- and 5-month-old pithed rats were investigated. The pressor responses induced by phenylephrine were competitively antagonized by both BMY 7378 and chloroethylclonidine in 5-month-old, but not in young immature animals; in marked contrast, 5-methylurapidil antagonized with similar potency the phenylephrine-induced pressor responses in animals of both ages. The present pharmacological data suggest that functional expression of alpha 1D-adrenoceptors in the rat resistance vessels increases with age; alpha 1A-, but not alpha 1B- or alpha 1D-adrenoceptors, seem to predominate in immature animals. These findings represent the first evidence that age-related changes in functional alpha 1-adrenoceptor subtypes occur in the systemic vasculature in vivo. PMID:9098690

  3. alpha1-Microglobulin as a promising marker of cadmium-induced tubular dysfunction, possibly better than beta2-microglobulin.

    PubMed

    Moriguchi, J; Ezaki, T; Tsukahara, T; Furuki, K; Fukui, Y; Okamoto, S; Ukai, H; Sakurai, H; Ikeda, M

    2004-03-14

    The purpose of the present study was to evaluate the validity of alpha1-microglobulin (alpha1-MG) in comparison with popularly used beta2-microglobulin (beta2-MG). A database on 8975 cases of never-smoking adult women was revisited; the data were based on spot urine samples from the women in 10 prefectures all over Japan. The validity of alpha1-MG was examined following essentially the same protocol as beta2-MG was examined in a previous study. Comparisons were made for alpha1-MG as observed (e.g. alpha1-MG(ob)), as corrected for creatinine (CR or cr) (e.g. alpha1-MGcr) and as corrected for a specific gravity (SG or sg) of 1.016 (e.g. alpha1-MGsg). A cut-off value of 5.0 mg alpha1-MG/g cr or l was deduced from 400 microg beta2-MG/g cr taking advantage of the regression equation between alpha1-MG and beta2-MG. The prevalence of alph1-microglobulinuria as corrected for a specific gravity of 1.016 (or alpha1-MGsg-uria in short) was essentially unchanged irrespective of SG, except for in very dense or very thin urine samples. alpha1-MGcr-uria prevalence decreased at higher CR. Comparison of the present observation with previous findings on beta2-MG-uria prevalence showed that the variation in prevalence of MG-uria as a function of urine density was smaller for alpha1-MGsg whereas it was substantially larger for beta2-MGcr, and thus it appeared prudent to consider alpha1-MGsg rather than beta2-MGcr as a marker of tubular dysfunction.

  4. Protons inhibit Cl- conductance by direct or allosteric interaction with the GABA-binding site in the rat recombinant alpha1beta2gamma2L and alpha1beta2 GABAA receptor.

    PubMed

    Wang, Ming-De; Rahman, Mozibur; Zhu, Di

    2005-12-28

    Functional roles of external pH on the Cl- conductance were examined on Xenopus oocytes expressing rat recombinant alpha1beta2gamma2L and alpha1beta2 GABAA receptors. Acidic pH inhibited GABA-response in a reversible and concentration-dependent manner, significantly increasing the EC50 without appreciably changing the slope or maximal currents induced by GABA in the alpha1beta2gamma2L and alpha1beta2 receptors. In contrast, protonation did not influence the pentobarbital-gated currents in the alpha1beta2gamma2L receptors, suggesting that protons do not modulate channel activity by directly affecting the channel gating process. Protons competitively inhibited the bicuculline-induced antagonism on GABA in the alpha1beta2gamma2L receptors. The data support the hypothesis that protons inhibit GABAA receptor function by direct or allosteric interaction with the GABA-binding site.

  5. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    SciTech Connect

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  6. Clearance of human factor XIa-inhibitor complexes in rats.

    PubMed

    Wuillemin, W A; Bleeker, W K; Agterberg, J; Rigter, G; ten Cate, H; Hack, C E

    1996-06-01

    The serpins C1 esterase inhibitor (C1Inh), antithrombin (AT), alpha 1-antitrypsin (alpha 1AT) and alpha 2-antiplasmin (alpha 2AP) are known inhibitors of coagulation factor XIa (FXIa). Although initial studies suggested alpha 1AT to be the main inhibitor of FXIa, we recently demonstrated C1Inh to be a predominant inhibitor of FXIa in vitro in human plasma. The present study was performed to investigate the plasma elimination kinetics of preformed human FXIa-FXIa inhibitor complexes injected in rats. The amounts of complexes remaining in circulation were measured using enzyme-linked immunosorbent assays. The plasma half-life time of clearance (t1/2) was 98 min for FXIa-alpha 1AT complexes, whereas it was considerably shorter, i.e. 19, 18 and 15 min for FXIa-C1Inh, FXIa-alpha 2AP and FXIa-AT complexes, respectively. Thus, due to this different plasma t1/2, preferentially FXIa-alpha 1AT complexes may be detected in clinical samples. Furthermore, measuring FXIa-FXIa inhibitor complexes in patient samples may not help to clarify the relative contribution of the individual serpins to inactivation of FXIa in vivo.

  7. Cathepsin G and alpha 1-antichymotrypsin in the local host reaction to loosening of total hip prostheses.

    PubMed

    Takagi, M; Konttinen, Y T; Santavirta, S; Kangaspunta, P; Suda, A; Rokkanen, P

    1995-01-01

    The tissue localization and content of the proteolytic enzyme cathepsin G and its inhibitor alpha 1-antichymotrypsin were studied in the local host reaction to loosening of total hip-replacement prostheses in eleven patients and were compared with those in samples of non-inflammatory tissue from the synovial capsule obtained during arthroscopies of the knee. Immunostaining demonstrated cellular localization of cathepsin G in 71 per cent of monocyte or macrophage-like cells and in 46 per cent of fibroblast-like cells in the samples of interface tissue between the bone and the loose acetabular component obtained at the time of the total hip replacements, and in 59 and 42 per cent, respectively, in the samples of pseudocapsular tissue obtained at the same time, whereas the synovial lining cells in the samples of non-inflammatory tissue from the synovial capsule revealed only a slight immunoreactivity to cathepsin G. Cathepsin-G activity was also measured with synthetic succinyl-alanine-alanine-proline-phenylalanine-paranitroanilide as a substrate, the degradation of which was monitored spectrophotometrically. In accordance with results from immunohistochemical studies, cathepsin-G activity was found in the samples of interface tissue (31.6 international units per liter) and the samples of pseudocapsular tissue (15.5 international units per liter) obtained during the total hip replacements, whereas the level of cathepsin-G was low in the samples of non-inflammatory synovial capsular tissue (2.5 international units per liter). Cathepsin-G activity in the samples of pseudosynovial fluid obtained at the time of the total hip replacements was low (2.4 international units per liter), although immunoblot analysis showed marked immunoreactive cathepsin G in the samples of pseudosynovial fluid. This low activity of cathepsin G might be explained by the presence of alpha 1-antichymotrypsin, which was detected by laser nephlometric immunoassay and immunoblot analysis. These

  8. Developing a rapid throughput screen for detection of nematicidal activity of plant cysteine proteinases: the role of Caenorhabditis elegans cystatins.

    PubMed

    Phiri, A M; De Pomerai, D; Buttle, D J; Behnke, J M B

    2014-02-01

    Plant cysteine proteinases (CPs) from papaya (Carica papaya) are capable of killing parasitic nematode worms in vitro and have been shown to possess anthelmintic effects in vivo. The acute damage reported in gastrointestinal parasites has not been found in free-living nematodes such as Caenorhabditis elegans nor among the free-living stages of parasitic nematodes. This apparent difference in susceptibility might be the result of active production of cysteine proteinase inhibitors (such as cystatins) by the free-living stages or species. To test this possibility, a supernatant extract of refined papaya latex (PLS) with known active enzyme content was used. The effect on wild-type (Bristol N2) and cystatin null mutant (cpi-1(-/-) and cpi-2(-/-)) C. elegans was concentration-, temperature- and time-dependent. Cysteine proteinases digested the worm cuticle leading to release of internal structures and consequent death. Both cystatin null mutant strains were highly susceptible to PLS attack irrespective of the temperature and concentration of exposure, whereas wild-type N2 worms were generally resistant but far more susceptible to attack at low temperatures. PLS was able to induce elevated cpi-1 and cpi-2 cystatin expression. We conclude that wild-type C. elegans deploy cystatins CPI-1 and CPI-2 to resist CP attack. The results suggest that the cpi-1 or cpi-2 null mutants (or a double mutant combination of the two) could provide a cheap and effective rapid throughput C. elegans-based assay for screening plant CP extracts for anthelmintic activity.

  9. Pulmonary emphysema and proteolysis. 1986

    SciTech Connect

    Taylor, J.C.; Mittman, C. )

    1987-01-01

    This book contains over 50 selections. Some of the titles are: Evaluation of Parenteral Administration of Recombinant DNA Produced Alpha-1-Antitrypsin to Primates; Properties of Mutant Forms of Alpha-1-Proteinase Inhibitor Prepared by Recombinant DNA Technology; Natural and Genetically Engineered Proteinase Inhibitors as Protective Agents against Connective Tissue Damage in an in Vitro System; and Structure, Genomic Organization and Tissue Distribution of Human Secretary Leukocyte-Protease Inhibitor (SLPI): A Potent Inhibitor of Neutrophil Elastase.

  10. Purification, characterization, and complete amino acid sequence of a trypsin inhibitor from amaranth (Amaranthus hypochondriacus) seeds.

    PubMed Central

    Valdes-Rodriguez, S; Segura-Nieto, M; Chagolla-Lopez, A; Verver y Vargas-Cortina, A; Martinez-Gallardo, N; Blanco-Labra, A

    1993-01-01

    A protein proteinase inhibitor was purified from a seed extract of amaranth (Amaranthus hypochondriacus) by precipitation with (NH4)2SO4, gel-filtration chromatography, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography. It is a 69-amino acid protein with a high content of valine, arginine, and glutamic acid, but lacking in methionine. The inhibitor has a relative molecular weight of 7400 and an isoelectric point of 7.5. It is a serine proteinase inhibitor that recognizes chymotrypsin, trypsin, and trypsin-like proteinase activities extracted from larvae of the insect Prostephanus truncatus. This inhibitor belongs to the potato-I inhibitor family, showing the closest homology (59.5%) with the Lycopersicum peruvianum trypsin inhibitor, and (51%) with the proteinase inhibitor 5 extracted from the seeds of Cucurbita maxima. The position of the lysine-aspartic acid residues present in the active site of the amaranth inhibitor are found in almost the same relative position as in the inhibitor from C. maxima. PMID:8290633

  11. A Monoclonal Antibody (MCPR3-7) Interfering with the Activity of Proteinase 3 by an Allosteric Mechanism*

    PubMed Central

    Hinkofer, Lisa C.; Seidel, Susanne A. I.; Korkmaz, Brice; Silva, Francisco; Hummel, Amber M.; Braun, Dieter; Jenne, Dieter E.; Specks, Ulrich

    2013-01-01

    Proteinase 3 (PR3) is an abundant serine protease of neutrophil granules and a major target of autoantibodies (PR3 anti-neutrophil cytoplasmic antibodies) in granulomatosis with polyangiitis. Some of the PR3 synthesized by promyelocytes in the bone marrow escapes the targeting to granules and occurs on the plasma membrane of naive and primed neutrophils. This membrane-associated PR3 antigen may represent pro-PR3, mature PR3, or both forms. To discriminate between mature PR3 and its inactive zymogen, which have different conformations, we generated and identified a monoclonal antibody called MCPR3-7. It bound much better to pro-PR3 than to mature PR3. This monoclonal antibody greatly reduced the catalytic activity of mature PR3 toward extended peptide substrates. Using diverse techniques and multiple recombinant PR3 variants, we characterized its binding properties and found that MCPR3-7 preferentially bound to the so-called activation domain of the zymogen and changed the conformation of mature PR3, resulting in impaired catalysis and inactivation by α1-proteinase inhibitor (α1-antitrypsin). Noncovalent as well as covalent complexation between PR3 and α1-proteinase inhibitor was delayed in the presence of MCPR3-7, but cleavage of certain thioester and paranitroanilide substrates with small residues in the P1 position was not inhibited. We conclude that MCPR3-7 reduces PR3 activity by an allosteric mechanism affecting the S1′ pocket and further prime side interactions with substrates. In addition, MCPR3-7 prevents binding of PR3 to cellular membranes. Inhibitory antibodies targeting the activation domain of PR3 could be exploited as highly selective inhibitors of PR3, scavengers, and clearers of the PR3 autoantigen in granulomatosis with polyangiitis. PMID:23902773

  12. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alpha-1-glycoproteins immunological test system. 866.5420 Section 866.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... diabetes. (b) Classification. Class I (general controls). The device is exempt from the...

  13. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alpha-1-glycoproteins immunological test system. 866.5420 Section 866.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... diabetes. (b) Classification. Class I (general controls). The device is exempt from the...

  14. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-1-glycoproteins immunological test system. 866.5420 Section 866.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... diabetes. (b) Classification. Class I (general controls). The device is exempt from the...

  15. Proinflammatory cytokines and elastase-alpha-1-antitrypsin in Argentine hemorrhagic fever.

    PubMed

    Marta, R F; Montero, V S; Hack, C E; Sturk, A; Maiztegui, J I; Molinas, F C

    1999-01-01

    Argentine hemorrhagic fever (AHF) is a disease caused by Junin virus. In the acute phase, patients present hematologic and neurologic involvement with high levels of interferon-alpha and tumor necrosis factor-alpha (TNF-alpha. Nineteen patients with a confirmed diagnosis of AHF were studied: six severe, four moderate and nine mild cases. Serum levels of interleukin-6 (IL-6), IL-6 soluble receptor (IL-6sR), IL-8, IL-10, and elastase-alpha1-antitrypsin complex (E-alpha 1AT) were assayed by ELISAs. Levels of IL-6, IL-8, and IL-10 were high in nine, 12, and 13 patients, respectively, while levels of IL-6sR were high in two patients and low in one patient. Seven patients had increased levels of E-alpha1AT. Significant correlations were found between levels of both IL-8 and IL-10 with those of TNF-alpha as well as between IL-8 and E-alpha 1AT. These data demonstrate activation of pro-inflammatory and anti-inflammatory cytokine pathways, and statistical analysis showed differences among the clinical forms of illness. This study shows that IL-8 plays an essential role in neutrophil activation in AHF patients as demonstrated in other infectious diseases.

  16. Alpha 1-acid glycoprotein has immunomodulatory effects in neonatal swine adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha 1-acid glycoprotein (AGP) is the most abundant protein in serum of neonatal swine. This protein functions as an immunomodulator in the pig. Recent work has demonstrated that adipose tissue can express AGP mRNA, as well as numerous cytokine mRNA. The present study was designed to determine i...

  17. Regulation of alpha-1 acid glycoprotein synthesis by porcine hepatocytes in monolayer culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha 1-acid glycoprotein (AGP, ORM-1) is a highly glycosylated mammalian acute phase protein, which is synthesized primarily in the liver and represents the major serum protein in newborn pigs. Recent data have suggested that the pig is unique in that AGP is a negative acute phase protein in this ...

  18. Responsiveness of alpha 1 and beta 1 cochlear Na, K-ATPase isoforms to thyroid hormone.

    PubMed

    Zuo, J; Rarey, K E

    1996-05-01

    The effects of thyroid hormone on Na, K-ATPase subunit isoforms under euthyroid (EUTH), hypothyroid (HYPO) and hyperthyroid (HYPER) states were investigated via immunocytochemistry and the use of polyclonal antibodies specific to each isoform (alpha 1, alpha 2, alpha 3 and beta 1, beta 2). In HYPO animals, there was a distinct decrease in Na, K-ATPase alpha 1 isoform immunoreactivity in the stria vascularis (SV), spiral ganglion (SG) cells, spiral limbus (SLi) and cochlear nerve (CN) as compared with that in EUTH animals by the 17th day of the experiment. Immunostaining of the alpha 1 isoform increased in HYPER animals as compared with that in HYPO animals, and reached a level comparable to that in EUTH animals after 2 days of triiodothyronine (T3) treatment. Levels of alpha 2, alpha 3 and beta 2 isoforms did not appear to be affected by T3 administration. By the 19th day of a low I2 diet, the immunoreactive intensity of the beta 1 isoform was reduced in cochlear tissues of HYPO animals as compared with that in EUTH animals. The immunoreactivity of the beta 1 isoform increased after treatment with T3 for 4 days and was comparable with levels in EUTH animals. These data indicate that alpha 1 and beta 1 isoforms within specific cochlear regions of the adult rat are responsive to thyroid hormone.

  19. 21 CFR 866.5080 - Alpha-1-antichymotrypsin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-1-antichymotrypsin immunological test system. 866.5080 Section 866.5080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  20. 21 CFR 866.5130 - Alpha-1-antitrypsin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alpha-1-antitrypsin immunological test system. 866.5130 Section 866.5130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  1. 21 CFR 866.5080 - Alpha-1-antichymotrypsin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alpha-1-antichymotrypsin immunological test system. 866.5080 Section 866.5080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  2. 21 CFR 866.5080 - Alpha-1-antichymotrypsin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alpha-1-antichymotrypsin immunological test system. 866.5080 Section 866.5080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  3. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alpha-1-glycoproteins immunological test system. 866.5420 Section 866.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  4. 21 CFR 866.5130 - Alpha-1-antitrypsin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alpha-1-antitrypsin immunological test system. 866.5130 Section 866.5130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  5. 21 CFR 866.5420 - Alpha-1-glycoproteins immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alpha-1-glycoproteins immunological test system. 866.5420 Section 866.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  6. 21 CFR 866.5080 - Alpha-1-antichymotrypsin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alpha-1-antichymotrypsin immunological test system. 866.5080 Section 866.5080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  7. The pharmacology of spontaneously open alpha 1 beta 3 epsilon GABA A receptor-ionophores.

    PubMed

    Maksay, Gábor; Thompson, Sally A; Wafford, Keith A

    2003-06-01

    Human alpha(1)beta(3) epsilon GABA(A) receptors were expressed in Xenopus oocytes and examined using the conventional two-electrode voltage-clamp technique and compared to alpha(1)beta(3)gamma(2) receptors. The effects of several GABA(A) agonists were studied, and the allosteric modulation of the channel by a number of GABAergic modulators investigated. The presence of the epsilon subunit increased the potency and efficacy of direct activation by partial GABA(A) agonists (piperidine-4-sulphonic acid and thio-4-PIOL), pentobarbital and neuro-steroids. Direct activation by 3-hydroxylated neurosteroids was restricted to 3alpha epimers, while chirality at C5 was indifferent. The 3beta-sulfate esters of pregnenolone and dehydroepiandrosterone inhibited the spontaneous currents with efficacies higher, while bicuculline methiodide and SR 95531 did so lower than picrotoxin and TBPS. Furosemide, fipronil, triphenylcyanoborate and Zn(2+) blocked the spontaneous currents of alpha(1)beta(3) epsilon receptors with different efficacies. Flunitrazepam and 4'-chlorodiazepam inhibited the spontaneous currents with micromolar potencies. In conclusion, spontaneously active alpha(1)beta(3) epsilon GABA(A) receptors can be potentiated and blocked by GABAergic agents within a broad range of efficacy.

  8. Mice lacking alpha 1 (IX) collagen develop noninflammatory degenerative joint disease.

    PubMed Central

    Fässler, R; Schnegelsberg, P N; Dausman, J; Shinya, T; Muragaki, Y; McCarthy, M T; Olsen, B R; Jaenisch, R

    1994-01-01

    Type IX collagen is a nonfibrillar collagen composed of three gene products, alpha 1(IX), alpha 2(IX), and alpha 3(IX). Type IX molecules are localized on the surface of type II-containing fibrils and consist of two arms, a long arm that is crosslinked to type II collagen and a short arm that projects into the perifibrillar space. In hyaline cartilage, the alpha 1(IX) collagen transcript encodes a polypeptide with a large N-terminal globular domain (NC4), whereas in many other tissues an alternative transcript encodes an alpha 1(IX) chain with a truncated NC4 domain. It has been proposed that type IX molecules are involved in the interaction of fibrils with each other or with other components of the extracellular matrix. To test this hypothesis, we have generated a mouse strain lacking both isoforms of the alpha 1(IX) chain. Homozygous mutant mice are viable and show no detectable abnormalities at birth but develop a severe degenerative joint disease resembling human osteoarthritis. Images PMID:8197187

  9. Characterization of Peptides from Capsicum annuum Hybrid Seeds with Inhibitory Activity Against α-Amylase, Serine Proteinases and Fungi.

    PubMed

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Ribeiro, Suzanna F F; Rodrigues, Rosana; Perales, Jonas; Teixeira-Ferreira, André; Carvalho, André O; Fernandes, Katia Valevski S; Gomes, Valdirene M

    2015-04-01

    Over the last several years, the activity of antimicrobial peptides (AMPs), isolated from plant species, against different microorganisms has been demonstrated. More recently, some of these AMPs have been described as potent inhibitors of α-amylases and serine proteinases from insects and mammals. The aim of this work was to obtain AMPs from protein extracts of a hybrid Capsicum (Ikeda × UENF 1381) seeds and to evaluate their microbial and enzyme inhibitory activities. Initially, proteins were extracted from the Capsicum hybrid seeds in buffer (sodium phosphate pH 5.4,) and precipitated with ammonium sulfate (90% saturated). Extract of hybrid seeds was subjected to size exclusion chromatography, and three fractions were obtained: S1, S2 and S3. The amino acid sequence, obtained by mass spectrometry, of the 6 kDa peptide from the S3 fraction, named HyPep, showed 100% identity with PSI-1.2, a serine protease inhibitor isolated from C. annuum seeds, however the bifunctionality of this inhibitor against two enzymes is being shown for the first time in this work. The S3 fraction showed the highest antifungal activity, inhibiting all the yeast strains tested, and it also exhibited inhibitory activity against human salivary and Callosobruchus maculatus α-amylases as well as serine proteinases.

  10. Role of alpha1-blockade in congenital long QT syndrome: investigation by exercise stress test.

    PubMed

    Furushima, H; Chinushi, M; Washizuka, T; Aizawa, Y

    2001-07-01

    Beta-blockade is widely reported to reduce the incidence of syncope in 75-80% of patients with congenital long QT syndrome (LQTS). However, despite full-dose beta-blockade, 20-25% of patients continue to have syncopal episodes and remain at high risk for sudden cardiac death. In some patients refractory to beta-blockade, the recurrence of arrhythmias is successfully prevented by left stellate ganglionectomy, and also by labetalol, a nonselective beta-blockade with alpha1-blocking action. These observations suggest that not only beta-adrenoceptors, but also alpha1-adrenoceptors, play an important pathogenic role, especially under sympathetic stimulation, in LQTS. The clinical effects of alpha1-blockade in congenital LQTS were investigated in 8 patients with familial or sporadic LQTS. Two measurements of the QT interval were taken, from the QRS onset to the T wave offset (QT) and from the QRS onset to the peak of the T wave (QTp). Using the Bruce protocol, an exercise test was performed after administration of beta-blockade alone and again after administration of alpha1-blockade. The following were compared: (1) Bazzet-corrected QT (QTc) and QTp (QTpc) intervals in the supine and standing position before exercise and in the early recovery phase after exercise; and (2) the slopes (reflecting the dynamic change in the QT interval during exercise) of the QT interval to heart rate were obtained from the linear regression during the exercise test. In the supine position before exercise, there was no change in the QTc before or after the addition of alpha1-blockade (498+/-23 vs 486+/-23 ms [NS]). However, in the upright position before exercise and in the early recovery phase after exercise, QTc was significantly shortened from 523+/-21 to 483+/-22ms (p<0.01), and from 521+/-30 to 490+/-39ms (p<0.01), respectively, by alpha1-blockade. The QTpc was unchanged in any situation. Consequently, QTc-QTpc was significantly shortened by alpha1-blockade in the upright position

  11. Neutrophil Elastase and Proteinase-3 Trigger G Protein-biased Signaling through Proteinase-activated Receptor-1 (PAR1)*

    PubMed Central

    Mihara, Koichiro; Ramachandran, Rithwik; Renaux, Bernard; Saifeddine, Mahmoud; Hollenberg, Morley D.

    2013-01-01

    Neutrophil proteinases released at sites of inflammation can affect tissue function by either activating or disarming signal transduction mediated by proteinase-activated receptors (PARs). Because PAR1 is expressed at sites where abundant neutrophil infiltration occurs, we hypothesized that neutrophil-derived enzymes might also regulate PAR1 signaling. We report here that both neutrophil elastase and proteinase-3 cleave the human PAR1 N terminus at sites distinct from the thrombin cleavage site. This cleavage results in a disarming of thrombin-activated calcium signaling through PAR1. However, the distinct non-canonical tethered ligands unmasked by neutrophil elastase and proteinase-3, as well as synthetic peptides with sequences derived from these novel exposed tethered ligands, selectively stimulated PAR1-mediated mitogen-activated protein kinase activation. This signaling was blocked by pertussis toxin, implicating a Gαi-triggered signal pathway. We conclude that neutrophil proteinases trigger biased PAR1 signaling and we describe a novel set of tethered ligands that are distinct from the classical tethered ligand revealed by thrombin. We further demonstrate the function of this biased signaling in regulating endothelial cell barrier integrity. PMID:24052258

  12. Involvement of gibberellins in expression of a cysteine proteinase (SH-EP) in cotyledons of Vigna mungo seedlings.

    PubMed

    Taneyama, M; Okamoto, T; Yamane, H; Minamikawa, T

    2001-11-01

    The expression of a papain-type proteinase, designated SH-EP, in cotyledons of Vigna mungo seedlings has been shown to require some factors in the embryonic axes. Gibberellin A1 (GA(1)) and GA(20) were identified by GC-MS in embryonic axes of V. mungo seedlings. The level of accumulation of SH-EP in cotyledons of V. mungo seedlings was greatly reduced by treatment of the seeds with uniconazole-P, an inhibitor for GA biosynthesis. The reduced level of accumulation of SH-EP in cotyledons by uniconazole-P was recovered by exogenous application of GA(1) and GA(20) to the seedlings.

  13. Possible dopaminergic stimulation of locus coeruleus alpha1-adrenoceptors involved in behavioral activation.

    PubMed

    Lin, Yan; Quartermain, David; Dunn, Adrian J; Weinshenker, David; Stone, Eric A

    2008-07-01

    alpha(1)-Adrenoceptors of the locus coeruleus (LC) have been implicated in behavioral activation in novel surroundings, but the endogenous agonist that activates these receptors has not been established. In addition to the canonical activation of alpha(1)-receptors by norepinephrine (NE), there is evidence that dopamine (DA) may also activate certain brain alpha(1)-receptors. This study examined the contribution of DA to exploratory activity in a novel cage by determining the effect of infusion of various dopaminergic and adrenergic drugs into the mouse LC. It was found that the D2/D3 agonist, quinpirole, which selectively blocks the release of CNS DA, produced a dose-dependent and virtually complete abolition of exploration and all movement in the novel cage test. The quinpirole-induced inactivity was significantly attenuated by coinfusion of DA but not by the D1 agonist, SKF38390. Furthermore, the DA attenuation of quinpirole inactivity was blocked by coinfusion of the alpha(1)-adrenergic receptor antagonist, terazosin, but not by the D1 receptor antagonist, SCH23390. LC infusions of either quinpirole or terazosin also produced profound inactivity in DA-beta-hydroxylase knockout (Dbh -/-) mice that lack NE, indicating that their behavioral effects were not due to an alteration of the release or action of LC NE. Measurement of endogenous DA, NE, and 5HT and their metabolites in the LC during exposure to the novel cage indicated an increase in the turnover of DA and NE but not 5HT. These results indicate that DA is a candidate as an endogenous agonist for behaviorally activating LC alpha(1)-receptors and may play a role in the activation of this nucleus by novel surroundings. PMID:18435418

  14. Cervical mucins carry alpha(1,2)fucosylated glycans that partly protect from experimental vaginal candidiasis.

    PubMed

    Domino, Steven E; Hurd, Elizabeth A; Thomsson, Kristina A; Karnak, David M; Holmén Larsson, Jessica M; Thomsson, Elisabeth; Bäckström, Malin; Hansson, Gunnar C

    2009-12-01

    Cervical mucins are glycosylated proteins that form a protective cervical mucus. To understand the role of mucin glycans in Candida albicans infection, oligosaccharides from mouse cervical mucins were analyzed by liquid chromatography-mass spectrometry. Cervical mucins carry multiple alpha(1-2)fucosylated glycans, but alpha(1,2)fucosyltransferase Fut2-null mice are devoid of these epitopes. Epithelial cells in vaginal lavages from Fut2-null mice lacked Ulex europaeus agglutinin-1 (UEA-I) staining for alpha(1-2)fucosylated glycans. Hysterectomy to remove cervical mucus eliminated UEA-I and acid mucin staining in vaginal epithelial cells from wild type mice indicating the cervix as the source of UEA-I positive epithelial cells. To assess binding of alpha(1-2) fucosylated glycans on C. albicans infection, an in vitro adhesion assay was performed with vaginal epithelial cells from wild type and Fut2-null mice. Vaginal epithelial cells from Fut2-null mice were found to bind increased numbers of C. albicans compared to vaginal epithelial cells obtained from wild type mice. Hysterectomy lessened the difference between Fut2-null and wild type mice in binding of C. ablicans in vitro and susceptibility to experimental C. albicans vaginitis in vivo. We generated a recombinant fucosylated MUC1 glycanpolymer to test whether the relative protection of wild type mice compared to Fut2-null mice could be mimicked with exogenous mucin. While a small portion of the recombinant MUC1 epitopes displayed alpha(1-2)fucosylated glycans, the predominant epitopes were sialylated due to endogenous sialyltransferases in the cultured cells. Intravaginal instillation of recombinant MUC1 glycanpolymer partially reduced experimental yeast vaginitis suggesting that a large glycanpolymer, with different glycan epitopes, may affect fungal burden.

  15. The lipocalin alpha1-microglobulin protects erythroid K562 cells against oxidative damage induced by heme and reactive oxygen species.

    PubMed

    Olsson, Magnus G; Olofsson, Tor; Tapper, Hans; Akerstrom, Bo

    2008-08-01

    Alpha(1)-microglobulin is a 26 kDa plasma and tissue glycoprotein that belongs to the lipocalin protein superfamily. Recent reports show that it is a reductase and radical scavenger and that it binds heme and has heme-degrading properties. This study has investigated the protective effects of alpha(1)-microglobulin against oxidation by heme and reactive oxygen species in the human erythroid cell line, K562. The results show that alpha(1)-microglobulin prevents intracellular oxidation and up-regulation of heme oxygenase-1 induced by heme, hydrogen peroxide and Fenton reaction-generated hydroxyl radicals in the culture medium. It also reduces the cytosol of non-oxidized cells. Endogeneous expression of alpha(1)-microglobulin was up-regulated by these oxidants and silencing of the alpha(1)-microglobulin expression increased the cytosol oxidation. alpha(1)-microglobulin also inhibited cell death caused by heme and cleared cells from bound heme. Binding of heme to alpha(1)-microglobulin increased the radical reductase activity of the protein as compared to the apo-protein. Finally, alpha(1)-microglobulin was localized mainly at the cell surface both when administered exogeneously and in non-treated cells. The results suggest that alpha(1)-microglobulin is involved in the defence against oxidative cellular injury caused by haemoglobin and heme and that the protein may employ both heme-scavenging and one-electron reduction of radicals to achieve this.

  16. Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation.

    PubMed

    Jensen, Brian C; OʼConnell, Timothy D; Simpson, Paul C

    2014-04-01

    Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.

  17. Inhibition of human ether-a-go-go-related gene potassium channels by alpha 1-adrenoceptor antagonists prazosin, doxazosin, and terazosin.

    PubMed

    Thomas, Dierk; Wimmer, Anna-Britt; Wu, Kezhong; Hammerling, Bettina C; Ficker, Eckhard K; Kuryshev, Yuri A; Kiehn, Johann; Katus, Hugo A; Schoels, Wolfgang; Karle, Christoph A

    2004-05-01

    Human ether-a-go-go-related gene (HERG) potassium channels are expressed in multiple tissues including the heart and adenocarcinomas. In cardiomyocytes, HERG encodes the alpha-subunit underlying the rapid component of the delayed rectifier potassium current, I(Kr), and pharmacological reduction of HERG currents may cause acquired long QT syndrome. In addition, HERG currents have been shown to be involved in the regulation of cell proliferation and apoptosis. Selective alpha 1-adrenoceptor antagonists are commonly used in the treatment of hypertension and benign prostatic hyperplasia. Recently, doxazosin has been associated with an increased risk of heart failure. Moreover, quinazoline-derived alpha 1-inhibitors induce apoptosis in cardiomyocytes and prostate tumor cells independently of alpha1-adrenoceptor blockade. To assess the action of the effects of prazosin, doxazosin, and terazosin on HERG currents, we investigated their acute electrophysiological effects on cloned HERG potassium channels heterologously expressed in Xenopus oocytes and HEK 293 cells.Prazosin, doxazosin, and terazosin blocked HERG currents in Xenopus oocytes with IC(50) values of 10.1, 18.2, and 113.2 microM respectively, whereas the IC(50) values for HERG channel inhibition in human HEK 293 cells were 1.57 microM, 585.1 nM, and 17.7 microM. Detailed biophysical studies revealed that inhibition by the prototype alpha 1-blocker prazosin occurred in closed, open, and inactivated channels. Analysis of the voltage-dependence of block displayed a reduction of inhibition at positive membrane potentials. Frequency-dependence was not observed. Prazosin caused a negative shift in the voltage-dependence of both activation (-3.8 mV) and inactivation (-9.4 mV). The S6 mutations Y652A and F656A partially attenuated (Y652A) or abolished (F656A) HERG current blockade, indicating that prazosin binds to a common drug receptor within the pore-S6 region. In conclusion, this study demonstrates that HERG

  18. Pregnancy zone protein, a proteinase-binding macroglobulin. Interactions with proteinases and methylamine.

    PubMed

    Christensen, U; Simonsen, M; Harrit, N; Sottrup-Jensen, L

    1989-11-28

    Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein, strongly related to alpha 2-macroglobulin (alpha 2M). Its properties and its reactions with a number of enzymes, particularly chymotrypsin, and with methylamine have been investigated. It is concluded that native PZP molecules are dimers of disulfide-bridged 180-kDa subunits and that proteinase binding results in covalent 1:1 (tetrameric)PZP-enzyme complexes. Native PZP is unstable, and storage should be avoided, but when kept unfrozen at 0 degree C most PZP preparations stay native 1-3 months. The reaction of PZP with chymotrypsin involves (i) proteolysis of bait regions, (ii) cleavage of beta-cysteinyl-gamma-glutamyl thiol ester groups, (iii) some change of the conformation and quaternary structure of PZP, and (iv) the formation of covalent 1:1 chymotrypsin-PZP(tetramer) complexes in which chymotrypsin is active but shows less activity than free chymotrypsin. The emission spectra of intrinsic fluorescence show significant differences between the PZP-chymotrypsin complex and its native components, whereas no differences are observed between methylamine-reacted PZP and native PZP. Methylamine reacts with the beta-cysteinyl-gamma-glutamyl thiol ester groups of PZP in a second-order process with k = (13.6 +/- 0.5) M-1 s-1, pH 7.6, 25 degrees C. The reaction product is PZP(dimers); no PZP(tetramers) are formed. The proteinase-binding specificity of PZP is far more restricted than that of alpha 2M. Certain chymotrypsin-like and trypsin-like enzymes are bound much less efficiently than is chymotrypsin itself.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Novel variants of SERPIN1A gene: Interplay between alpha1-antitrypsin deficiency and chronic obstructive pulmonary disease.

    PubMed

    Bashir, Arif; Shah, Naveed Nazir; Hazari, Younis Mohammad; Habib, Mudasir; Bashir, Samirul; Hilal, Nazia; Banday, Mariam; Asrafuzzaman, Syed; Fazili, Khalid Majid

    2016-08-01

    Alpha1-antitrypsin (AAT) is one of the major circulating anti-protease whose levels in circulation are raised during excessive amount of proteases, especially neutrophil elastase (NE) released during the course of inflammation. Proteolytic attack of NE on peripheral organs, more exclusively on lung parenchyma has severe consequence that may precipitate pulmonary emphysema. Normally, human body has its own molecular and physiological mechanisms to synthesize and regulate the production of anti-protease like AAT to mitigate the extent of inflammatory damage. AAT coded by serine-protease inhibitor (SERPINA1) is predominantly expressed in hepatocytes and to some extent by macrophages, monocytes, lung tissue etc. The observation that persons with AAT deficiency developed chronic obstructive pulmonary disease (COPD) and early-onset of emphysema proposed a role for pathways connecting AAT in pathogenesis. Extensive studies have been done till now to bridge a connection between numerous genetic polymorphisms of SERPINA1 gene and the early onset of COPD. Here in this review, we have comprehensively discussed some of the variants of SERPINA1 gene discovered till date and their association with the exacerbation of obstructive pulmonary disease. PMID:27492524

  20. Serendipity in discovery of proteasome inhibitors.

    PubMed

    Dunn, Derek; Iqbal, Mohamed; Husten, Jean; Ator, Mark A; Chatterjee, Sankar

    2012-05-15

    Among its various catalytic activities, the 'chymotrypsin-like' activity of the proteasome, a large multicatalytic proteinase complex has emerged as the focus of drug discovery efforts in cancer therapy. Herein, a series of first generation (2S, 3R)-2-amino-3-hydroxybutyric acid derived proteasome inhibitors that were discovered serendipitously en route to original goal of generating a series of sterically constrained oxazoline derivatives has been reported. PMID:22503349

  1. Serine proteinases from barley malt may degrade beta-amylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley seed proteinases are critically important to seed germination and malting in that they generate amino acids from seed N reserves, supporting embryo growth during germination and yeast fermentation during brewing. However, relatively little is known regarding the endogenous protein substrate ...

  2. Up-regulation of alpha1-microglobulin by hemoglobin and reactive oxygen species in hepatoma and blood cell lines.

    PubMed

    Olsson, Magnus G; Allhorn, Maria; Olofsson, Tor; Akerström, Bo

    2007-03-15

    alpha(1)-Microglobulin is a 26-kDa glycoprotein synthesized in the liver, sec