Sample records for alpha1 subunit agonist

  1. Human alpha 7 acetylcholine receptor: cloning of the alpha 7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional alpha 7 homomers expressed in Xenopus oocytes.

    PubMed

    Peng, X; Katz, M; Gerzanich, V; Anand, R; Lindstrom, J

    1994-03-01

    The alpha-bungarotoxin-binding acetylcholine receptors from the human neuroblastoma cell line SH-SY5Y were found to cross-react with some monoclonal antibodies to alpha 7 subunits of nicotinic acetylcholine receptors from chicken brain. The human alpha 7 subunit cDNA from SH-SY5Y was cloned, revealing 94% amino acid sequence identity to rat alpha 7 subunits and 92% identity to chicken alpha 7 subunits. Native human alpha 7 receptors showed affinities for some ligands similar to those previously observed with native chicken alpha 7 receptors, but for other ligands there were large species-specific differences in binding affinity. These results paralleled properties of alpha 7 homomers expressed in Xenopus oocytes. Human alpha 7 homomers exhibited rapidly desensitizing, inwardly rectifying, agonist-induced, cation currents that triggered Ca(2+)-sensitive Cl- channels in the oocytes. A change in efficacy from partial agonist for chicken alpha 7 homomers to full agonist for human alpha 7 homomers was exhibited by 1,1-dimethyl-4-phenylpiperazinium. This result reveals a large species-specific pharmacological difference, despite small differences in alpha 7 sequences. This is important for understanding the effects of these drugs in humans and for identifying amino acids that may contribute to the acetylcholine binding site, for analysis by in vitro mutagenesis. These results also characterize properties of native alpha 7 receptors and alpha 7 homomers that will provide criteria for functional properties expected of structural subunits, when these can be identified, cloned, and coexpressed with alpha 7 subunits.

  2. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692

  3. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.

    PubMed

    Farroni, Jeffrey S; McCool, Brian A

    2004-08-09

    Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.

  4. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    PubMed

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  5. A dynamic alpha-beta inter-subunit agonist signaling complex is a novel feedback mechanism for regulating L-type Ca2+ channel opening.

    PubMed

    Zhang, Rong; Dzhura, Igor; Grueter, Chad E; Thiel, William; Colbran, Roger J; Anderson, Mark E

    2005-09-01

    L-type Ca2+ channels are macromolecular protein complexes in neurons and myocytes that open in response to cell membrane depolarization to supply Ca2+ for regulating gene transcription and vesicle secretion and triggering cell contraction. L-type Ca2+ channels include a pore-forming alpha and an auxiliary beta subunit, and alpha subunit openings are regulated by cellular Ca2+ through a mechanism involving the Ca2+-sensing protein calmodulin (CaM) and CaM binding motifs in the alpha subunit cytoplasmic C terminus. Here we show that these CaM binding motifs are "auto-agonists" that increase alpha subunit openings by binding the beta subunit. The CaM binding domains are necessary and sufficient for the alpha subunit C terminus to bind the beta subunit in vitro, and excess CaM blocks this interaction. Addition of CaM binding domains to native cardiac L-type Ca2+ channels in excised cell membrane patches increases openings, and this agonist effect is prevented by excess CaM. Recombinant LTCC openings are also increased by exogenous CaM binding domains by a mechanism requiring the beta subunit, and excess CaM blocks this effect. Thus, the bifunctional ability of the alpha subunit CaM binding motifs to competitively associate with the beta subunit or CaM provides a novel paradigm for feedback control of cellular Ca2+ entry.

  6. alpha 4 beta 2 subunit combination specific pharmacology of neuronal nicotinic acetylcholine receptors in N1E-115 neuroblastoma cells.

    PubMed

    Zwart, R; Abraham, D; Oortgiesen, M; Vijverberg, H P

    1994-08-22

    Pharmacological characteristics of native neuronal nicotinic acetylcholine receptor-mediated ion currents in mouse N1E-115 neuroblastoma cells have been investigated by superfusion of voltage clamped cells with known concentrations of the agonists acetylcholine, nicotine and cytisine, and the antagonists alpha-bungarotoxin and neuronal bungarotoxin. The sensitivity of the nicotinic acetylcholine receptor for agonists followed the agonist potency rank-order: nicotine approximately acetylcholine > cytisine. The EC50 values of acetylcholine and nicotine are 78 microM and 76 microM, respectively. Equal concentrations of acetylcholine and nicotine induce inward currents with approximately the same peak amplitude whereas cytisine induces much smaller inward currents. Acetylcholine-induced currents are unaffected by high concentrations of alpha-bungarotoxin. Conversely, at 10 and 90 nM neuronal bungarotoxin reduces the amplitude of the 1 mM acetylcholine-induced inward current to 47% and 11% of control values, respectively. Both the agonist potency rank-order and the differential sensitivity to snake toxins of nicotinic receptors in N1E-115 cells are consistent with the known pharmacological profile of alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes and distinct from those of all other nicotinic acetylcholine receptors of known functional subunit compositions. All data indicate that the native nicotinic acetylcholine receptor in N1E-115 cells is an assembly of alpha 4 and beta 2 subunits, the putative major subtype of nicotinic acetylcholine receptor in the brain.

  7. Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist.

    PubMed

    Chiara, David C; Trinidad, Jonathan C; Wang, Dong; Ziebell, Michael R; Sullivan, Deirdre; Cohen, Jonathan B

    2003-01-21

    [(3)H]4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine (TDBzcholine) was synthesized and used as a photoaffinity probe to map the orientation of an aromatic choline ester within the agonist binding sites of the Torpedo nicotinic acetylcholine receptor (nAChR). TDBzcholine acts as a nAChR competitive antagonist that binds at equilibrium with equal affinity to both agonist sites (K(D) approximately 10 microM). Upon UV irradiation (350 nm), nAChR-rich membranes equilibrated with [(3)H]TDBzcholine incorporate (3)H into the alpha, gamma, and delta subunits in an agonist-inhibitable manner. The specific residues labeled by [(3)H]TDBzcholine were determined by N-terminal sequence analysis of subunit fragments produced by enzymatic cleavage and purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high-performance liquid chromatography. For the alpha subunit, [(3)H]TDBzcholine photoincorporated into alphaCys-192, alphaCys-193, and alphaPro-194. For the gamma and delta subunits, [(3)H]TDBzcholine incorporated into homologous leucine residues, gammaLeu-109 and deltaLeu-111. The photolabeling of these amino acids suggests that when the antagonist TDBzcholine occupies the agonist binding sites, the Cys-192-193 disulfide and Pro-194 from the alpha subunit Segment C are oriented toward the agonist site and are in proximity to gammaLeu-109/deltaLeu-111 in Segment E, a conclusion consistent with the structure of the binding site in the molluscan acetylcholine binding protein, a soluble protein that is homologous to the nAChR extracellular domain.

  8. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  9. Contributions of Torpedo nicotinic acetylcholine receptor gamma Trp-55 and delta Trp-57 to agonist and competitive antagonist function.

    PubMed

    Xie, Y; Cohen, J B

    2001-01-26

    Results of affinity-labeling studies and mutational analyses provide evidence that the agonist binding sites of the nicotinic acetylcholine receptor (nAChR) are located at the alpha-gamma and alpha-delta subunit interfaces. For Torpedo nAChR, photoaffinity-labeling studies with the competitive antagonist d-[(3)H]tubocurarine (dTC) identified two tryptophans, gammaTrp-55 and deltaTrp-57, as the primary sites of photolabeling in the non-alpha subunits. To characterize the importance of gammaTrp-55 and deltaTrp-57 to the interactions of agonists and antagonists, Torpedo nAChRs were expressed in Xenopus oocytes, and equilibrium binding assays and electrophysiological recordings were used to examine the functional consequences when either or both tryptophans were mutated to leucine. Neither substitution altered the equilibrium binding of dTC. However, the deltaW57L and gammaW55L mutations decreased acetylcholine (ACh) binding affinity by 20- and 7,000-fold respectively. For the wild-type, gammaW55L, and deltaW57L nAChRs, the concentration dependence of channel activation was characterized by Hill coefficients of 1.8, 1.1, and 1.7. For the gammaW55L mutant, dTC binding at the alpha-gamma site acts not as a competitive antagonist but as a coactivator or partial agonist. These results establish that interactions with gamma Trp-55 of the Torpedo nAChR play a crucial role in agonist binding and in the agonist-induced conformational changes that lead to channel opening.

  10. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that modes were reduced. Based on our results, we propose that WT loop C has an important role in determining resting affinity, in part by making stable interactions with the complementary surface of the alphadelta binding pocket. We suggest a possible structural basis for the fluctuations caused by loop C perturbations and propose that at the alphadelta agonist binding site, both loop C and the complementary subunit surface can adopt alternative conformations and interact with each other with respect to the aromatic core, to cause the variations in affinity.

  11. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    PubMed

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  12. The reducing agent dithiothreitol (DTT) does not abolish the inhibitory nicotinic response recorded from rat dorsolateral septal neurons

    NASA Technical Reports Server (NTRS)

    Sorenson, E. M.; Gallagher, J. P.

    1993-01-01

    Previous intracellular recordings have demonstrated that dorsolateral septal nucleus (DLSN) neurons express a novel nicotinic receptor which produces a direct membrane hyperpolarization when activated by nicotinic agonists. Activation of the classical excitatory nicotinic receptors has been shown to require a disulfide bond involving the cysteines at positions 192 and 193 of the alpha subunits of the receptor. Reduction of this cystine bond with dithiothreitol (DTT) abolishes agonist activation of excitatory nicotinic receptors. We have now examined whether DTT treatment of the inhibitory nicotinic receptor on DLSN neurons also abolishes the inhibitory nicotinic response. We find that the inhibitory response persists after treatment of the neurons with 1 mM DTT, even if the reduction is followed by alkylation of the receptor with bromoacetylcholine to prevent possible reformation of disulfide bonds. This result suggests that the agonist binding site on the inhibitory nicotinic receptor does not require an intact disulfide bond, similar to the bond on the alpha subunit of the excitatory nicotinic receptor, for agonist activation of the receptor. Some of these results have been previously reported in abstract form.

  13. Differential activation of G-proteins by mu-opioid receptor agonists.

    PubMed

    Saidak, Zuzana; Blake-Palmer, Katherine; Hay, Debbie L; Northup, John K; Glass, Michelle

    2006-03-01

    We investigated the ability of the activated mu-opioid receptor (MOR) to differentiate between myristoylated G(alphai1) and G(alphaoA) type G(alpha) proteins, and the maximal activity of a range of synthetic and endogenous agonists to activate each G(alpha) protein. Membranes from HEK293 cells stably expressing transfected MOR were chaotrope extracted to denature endogenous G-proteins and reconstituted with specific purified G-proteins. The G(alpha) subunits were generated in bacteria and were demonstrated to be recognised equivalently to bovine brain purified G(alpha) protein by CB(1) cannabinoid receptors. The ability of agonists to catalyse the MOR-dependent GDP/[(35)S]GTP(gamma)S exchange was then compared for G(alphai1) and G(alphaoA). Activation of MOR by DAMGO produced a high-affinity saturable interaction for G(alphaoA) (K(m)=20+/-1 nM) but a low-affinity interaction with G(alphai1) (K(m)=116+/-12 nM). DAMGO, met-enkephalin and leucine-enkephalin displayed maximal G(alpha) activation among the agonists evaluated. Endomorphins 1 and 2, methadone and beta-endorphin activated both G(alpha) to more than 75% of the maximal response, whereas fentanyl partially activated both G-proteins. Buprenorphine and morphine demonstrated a statistically significant difference between the maximal activities between G(alphai1) and G(alphaoA). Interestingly, DAMGO, morphine, endomorphins 1 and 2, displayed significant differences in the potencies for the activation of the two G(alpha). Differences in maximal activity and potency, for G(alphai1) versus G(alphaoA), are both indicative of agonist selective activation of G-proteins in response to MOR activation. These findings may provide a starting point for the design of drugs that demonstrate greater selectivity between these two G-proteins and therefore produce a more limited range of effects.

  14. Nicotinic receptor abnormalities in the cerebellar cortex in autism.

    PubMed

    Lee, M; Martin-Ruiz, C; Graham, A; Court, J; Jaros, E; Perry, R; Iversen, P; Bauman, M; Perry, E

    2002-07-01

    Autism is a common developmental disorder associated with structural and inferred neurochemical abnormalities of the brain. Cerebellar abnormalities frequently have been identified, based on neuroimaging or neuropathology. Recently, the cholinergic neurotransmitter system has been implicated on the basis of nicotinic receptor loss in the cerebral cortex. Cerebellar cholinergic activities were therefore investigated in autopsy tissue from a series of autistic individuals. The presynaptic cholinergic enzyme, choline acetyltransferase, together with nicotinic and muscarinic receptor subtypes were compared in the cerebellum from age-matched mentally retarded autistic (eight), normal control (10) and non-autistic mentally retarded individuals (11). The nicotinic receptor binding the agonist epibatidine (the high affinity receptor subtype, consisting primarily of alpha3 and alpha4, together with beta2 receptor subunits) was significantly reduced by 40-50% in the granule cell, Purkinje and molecular layers in the autistic compared with the normal group (P < 0.05). There was an opposite increase (3-fold) in the nicotinic receptor binding alpha-bungarotoxin (to the alpha7 subunit) which reached significance in the granule cell layer (P < 0.05). These receptor changes were paralleled by a significant reduction (P < 0.05) and non-significant increase, respectively, of alpha4 and alpha7 receptor subunit immunoreactivity measured using western blotting. Immunohistochemically loss of alpha(4 )reactivity was apparent from Purkinje and the other cell layers, with increased alpha7 reactivity in the granule cell layer. There were no significant changes in choline acetyltransferase activity, or in muscarinic M1 and M2 receptor subtypes in autism. In the non-autistic mentally retarded group, the only significant abnormality was a reduction in epibatidine binding in the granule cell and Purkinje layers. In two autistic cases examined histologically, Purkinje cell loss was observed in multiple lobules throughout the vermis and hemispheres. This was more severe in one case with epilepsy, which also showed vermis folial malformation. The case with less severe Purkinje cell loss also showed cerebellar white matter thinning and demyelination. These findings indicate a loss of the cerebellar nicotinic alpha4 receptor subunit in autism which may relate to the loss of Purkinje cells, and a compensatory increase in the alpha7 subunit. It remains to be determined how these receptor abnormalities are involved in neurodevelopment in autism and what is the relationship to mental function. Since nicotinic receptor agonists enhance attentional function and also induce an elevation in the high affinity receptor, nicotinic therapy in autism may be worth considering.

  15. Differences in cholinergic responses from outer hair cells of rat and guinea pig.

    PubMed

    Chen, C; LeBlanc, C; Bobbin, R P

    1996-09-01

    A cholinergic receptor on outer hair cells (OHC) in guinea pig cochlea induces a K+ current when it is activated by acetylcholine and suberyldicholine but not by nicotine or muscarine (Bobbin, 1995). This unusual receptor may contain an alpha 9-subunit. However, the pharmacology of the alpha 9-subunit cloned from rat and expressed in Xenopus oocytes does not completely match that obtained for the ACh receptor in guinea pig OHCs. The response to 1,1-dimethyl-4-phenylpiperazinium (DMPP) is large in guinea pig OHCs and small in oocytes containing receptors of the alpha 9-subunit. Therefore, we compared the effects of cholinergic receptor agonists in rat and guinea pig OHCs using the whole-cell variant of the patch-clamp technique. ACh caused the largest outward K+ current in OHCs from both rat and guinea pig. Carbachol- and suberyldicholine-induced responses were similar in magnitude in OHCs of rat and guinea pig. However, DMPP produced a small response in OHCs from rat and a large response in OHCs from guinea pig. At a concentration of 100 microM, muscarine, oxotremorine M, nicotine and cytisine induced little response in guinea pig OHCs and none in rat OHCs. Results suggest that the ACh receptor on rat OHCs is similar to the alpha 9-subunit-containing receptor expressed in oocytes but different from the ACh receptor on guinea pig OHCs.

  16. Alpha1B-adrenoceptor signaling and cell motility: GTPase function of Gh/transglutaminase 2 inhibits cell migration through interaction with cytoplasmic tail of integrin alpha subunits.

    PubMed

    Kang, Sung Koo; Yi, Kye Sook; Kwon, Nyoun Soo; Park, Kwang-Hyun; Kim, Uh-Hyun; Baek, Kwang Jin; Im, Mie-Jae

    2004-08-27

    A multifunctional enzyme, G(h), is a GTP-binding protein that couples to the alpha(1B)-adrenoreceptor and stimulates phospholipase C-delta1 but also displays transglutaminase 2 (TG2) activity. G(h)/TG2 has been implicated to play a role in cell motility. In this study we have examined which function of G(h)/TG2 is involved in this cellular response and the molecular basis. Treatment of human aortic smooth muscle cell with epinephrine inhibits migration to fibronectin and vitronectin, and the inhibition is blocked by the alpha(1)-adrenoreceptor antagonist prazosin or chloroethylclonidine. Up-regulation or overexpression of G(h)/TG2 in human aortic smooth muscle cells, DDT1-MF2, or human embryonic kidney cells, HEK 293 cells, results in inhibition of the migratory activity, and stimulation of the alpha(1B)-adrenoreceptor with the alpha(1) agonist further augments the inhibition of migration of human aortic smooth muscle cells and DDT1-MF2. G(h)/TG2 is coimmunoprecipitated by an integrin alpha(5) antibody and binds to the cytoplasmic tail peptide of integrins alpha(5), alpha(v), and alpha(IIb) subunits in the presence of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS). Mutation of Lys-Arg residues in the GFFKR motif, present in the alpha(5)-tail, significantly reduces the binding of GTPgammaS-G(h)/TG2. Moreover, the motif-containing integrin alpha(5)-tail peptides block G(h)/TG2 coimmunoprecipitation and reverse the inhibition of the migratory activity of HEK 293 cells caused by overexpression G(h)/TG2. These results provide evidence that G(h) function initiates the modulation of cell motility via association of GTP-bound G(h)/TG2 with the GFFKR motif located in integrin alpha subunits.

  17. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The resultsmore » are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.« less

  18. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha

    PubMed Central

    Senior, Alan E.; Muharemagi, Alma; Wilke-Mounts, Susan

    2008-01-01

    Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, competent in nucleotide binding, and had normal N-terminal sequence. In F1-subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiment showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming, and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector. PMID:17176112

  19. Importance of agonists in alpha-adrenoceptor classification and localisation of alpha1-adrenoceptors in human prostate.

    PubMed

    McGrath, J C; Naghadeh, M A; Pediani, J D; Mackenzie, J F; Daly, C J

    1999-01-01

    alpha-Adrenoceptor blocker drugs are commonly used in the clinical (non-surgical) treatment of BPH. alpha1-adrenoceptors were originally sub-divided using agonists but, subsequently, were sub-divided using only antagonists in ligand-ligand interactions, which did not require agonists at all. Ultimately, proof that adrenoceptors are functional receptors for the natural ligands, noradrenaline and adrenaline, requires that agonists be used. The earlier excitement engendered by finding varying agonist potency series in different tissues has not been revisited to place it in the context of current concepts of alpha1-adrenoceptor subtypes. This review will consider the advantages and limitations of different agonists for the study of alpha1-adrenoceptor subtypes including 'extreme' examples where the archetypal alpha1-adrenoceptor agonist phenylephrine activates alpha2-adrenoceptors and others where UK14304, often the alpha2-adrenoceptor agonist of choice, activates alpha1-adrenoceptors. New work will also be presented showing the interaction between agonists and the fluorescent alpha1-adrenoceptor antagonist QAPB. This introduces the novel point of view of studying the displacement of antagonists by agonists. Possible errors in antagonist classification arising from complexity in the actions of agonists and the recently developed method of fluorescent ligand binding on isolated living human prostatic smooth muscle cells will be discussed.

  20. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells.

    PubMed

    Tsurutani, Junji; Castillo, S Sianna; Brognard, John; Granville, Courtney A; Zhang, Chunyu; Gills, Joell J; Sayyah, Jacqueline; Dennis, Phillip A

    2005-07-01

    Retrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnoses have lower response rates and shorter median survival compared with patients who stop smoking. To provide insight into the biologic basis for these clinical observations, we tested whether two tobacco components, nicotine or the tobacco-specific carcinogen, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), could activate the Akt pathway and increase lung cancer cell proliferation and survival. Nicotine or NNK, rapidly and potently, activated Akt in non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) cells. Nicotinic activation of Akt increased phosphorylation of multiple downstream substrates of Akt in a time-dependent manner, including GSK-3, FKHR, tuberin, mTOR and S6K1. Since nicotine or NNK bind to cell surface nicotinic acetylcholine receptors (nAchR), we used RT-PCR to assess expression of nine alpha and three beta nAchR subunits in five NSCLC cell lines and two types of primary lung epithelial cells. NSCLC cells express multiple nAchR subunits in a cell line-specific manner. Agonists of alpha3/alpha4 or alpha7 subunits activated Akt in a time-dependent manner, suggesting that tobacco components utilize these subunits to activate Akt. Cellular outcomes after nicotine or NNK administration were also assessed. Nicotine or NNK increased proliferation of NSCLC cells in an Akt-dependent manner that was closely linked with changes in cyclin D1 expression. Despite similar induction of proliferation, only nicotine decreased apoptosis caused by serum deprivation and/or chemotherapy. Protection conferred by nicotine was NFkappaB-dependent. Collectively, these results identify tobacco component-induced, Akt-dependent proliferation and NFkappaB-dependent survival as cellular processes that could underlie the detrimental effects of smoking in cancer patients.

  1. The morphological and chemical characteristics of striatal neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the rat.

    PubMed

    Waldvogel, H J; Kubota, Y; Trevallyan, S C; Kawaguchi, Y; Fritschy, J M; Mohler, H; Faull, R L

    1997-10-01

    The distribution, morphology and chemical characteristics of neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the striatum of the basal ganglia in the rat brain were investigated at the light, confocal and electron microscope levels using single, double and triple immunohistochemical labelling techniques. The results showed that alpha1-subunit immunoreactive neurons were sparsely distributed throughout the rat striatum. Double and triple labelling results showed that all the alpha1-subunit-immunoreactive neurons were positive for glutamate decarboxylase and immunoreactive for the beta2,3 and gamma2 subunits of the GABA(A) receptor. Three types of alpha1-subunit-immunoreactive neurons were identified in the striatum on the basis of cellular morphology and chemical characteristics. The most numerous alpha1-subunit-immunoreactive neurons were medium-sized, aspiny neurons with a widely branching dendritic tree. They were parvalbumin-negative and were located mainly in the dorsolateral regions of the striatum. Electron microscopy showed that these neurons had an indented nuclear membrane, typical of striatal interneurons, and were surrounded by small numbers of axon terminals which established alpha1-subunit-immunoreactive synaptic contacts with the soma and dendrites. These cells were classified as type 1 alpha1-subunit-immunoreactive neurons and comprised 75% of the total population of alpha1-subunit-immunoreactive neurons in the striatum. The remaining alpha1-subunit-immunoreactive neurons comprised of a heterogeneous population of large-sized neurons localized in the ventral and medial regions of the striatum. The most numerous large-sized cells were parvalbumin-negative, had two to three relatively short branching dendrites and were designated type 2 alpha1-subunit-immunoreactive neurons. Electron microscopy showed that the type 2 neurons were characterized by a highly convoluted nuclear membrane and were sparsely covered with small axon terminals. The type 2 neurons comprised 20% of the total population of alpha1-subunit-immunoreactive neurons. The remaining large-sized alpha1-immunoreactive cells were designated type 3 cells; they were positive for parvalbumin and were distinguished by long branching dendrites extending dorsally for 600-800 microm into the striatum. These neurons comprised 5% of the total population of alpha1-subunit-immunoreactive neurons and were surrounded by enkephalin-immunoreactive terminals. Electron microscopy showed that the alpha1-subunit type 3 neurons had an indented nuclear membrane and were densely covered with small axon terminals which established alpha1-subunit-immunoreactive symmetrical synaptic contacts with the soma and dendrites. These results provide a detailed characterization of the distribution, morphology and chemical characteristics of the alpha1-subunit-immunoreactive neurons in the rat striatum and suggest that the type 1 and type 2 neurons comprise of separate populations of striatal interneurons while the type 3 neurons may represent the large striatonigral projection neurons described by Bolam et al. [Bolam J. P., Somogyi P., Totterdell S. and Smith A. D. (1981) Neuroscience 6, 2141-2157.].

  2. Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress

    PubMed Central

    Klanker, Marianne; Groenink, Lucianne; Korte, S. Mechiel; Cook, James M.; Van Linn, Michael L.; Hopkins, Seth C.; Olivier, Berend

    2009-01-01

    Rationale The stress-induced hyperthermia (SIH) model is an anxiety model that uses the transient rise in body temperature in response to acute stress. Benzodiazepines produce anxiolytic as well as sedative side effects through nonselective binding to GABAA receptor subunits. The GABAA receptor α1 subunit is associated with sedation, whereas the GABAA receptor α2 and α3 subunits are involved in anxiolytic effects. Objectives We therefore examined the effects of (non) subunit-selective GABAA receptor agonists on temperature and locomotor responses to novel cage stress. Results Using telemetric monitoring of temperature and locomotor activity, we found that nonsubunit-selective GABAA receptor agonist diazepam as well as the α3 subunit-selective receptor agonist TP003 dose-dependently attenuated SIH and locomotor responses. Administration of GABAA receptor α1-selective agonist zolpidem resulted in profound hypothermia and locomotor sedation. The GABAA receptor α1-selective antagonist βCCt antagonized the hypothermia, but did not reverse the SIH response attenuation caused by diazepam and zolpidem. These results suggest an important regulating role for the α1 subunit in thermoregulation and sedation. Ligands of extrasynaptic GABAA receptors such as alcohol and nonbenzodiazepine THIP attenuated the SIH response only at high doses. Conclusions The present study confirms a putative role for the GABAA receptor α1 subunit in hypothermia and sedation and supports a role for α2/3 subunit GABAA receptor agonists in anxiety processes. In conclusion, we show that home cage temperature and locomotor responses to novel home cage stress provide an excellent tool to assess both anxiolytic and sedative effects of various (subunit-selective) GABAAergic compounds. PMID:19169673

  3. Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery.

    PubMed

    Knock, Greg A; Shaifta, Yasin; Snetkov, Vladimir A; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P T; Aaronson, Philip I

    2008-02-01

    We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F(2 alpha) (PGF(2 alpha)) in alpha-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF(2 alpha) were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF(2 alpha) enhanced phosphorylation of three srcFK proteins at tyr-416. In alpha-toxin-permeabilized IPAs, PGF(2 alpha) enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF(2 alpha) enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF(2 alpha)-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF(2 alpha) triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. srcFK are activated by PGF(2 alpha) in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1.

  4. Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure

    NASA Technical Reports Server (NTRS)

    Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.

    2004-01-01

    Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.

  5. Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes.

    PubMed

    Papke, Roger L; Wecker, Lynn; Stitzel, Jerry A

    2010-05-01

    Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric alpha7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-beta-erythroidine as selective antagonists in mouse models of alpha3beta4 and alpha4beta2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal alpha and beta subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse alpha5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse alpha4beta2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity.

  6. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma.

    PubMed

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J H; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-06-17

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

  7. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system.

    PubMed

    Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R

    2008-01-01

    The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.

  8. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively,more » of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.« less

  9. Specific antibodies against Go isoforms reveal the early expression of the Go2 alpha subunit and appearance of Go1 alpha during neuronal differentiation.

    PubMed

    Rouot, B; Charpentier, N; Chabbert, C; Carrette, J; Zumbihl, R; Bockaert, J; Homburger, V

    1992-02-01

    We have previously identified two isoforms of Go alpha in membranes of N1E-115 neuroblastoma cells, using an antibody raised against the purified Go alpha subunit; one isoform of the Go alpha subunit (pI 5.80) is present in undifferentiated cells, whereas a more acidic isoform (pI 5.55) appears during differentiation [J. Neurochem. 54:1310-1320 (1990)]. Recently, the Go alpha gene has been shown to encode, by alternative splicing, two polypeptides, Go1 alpha and Go2 alpha, which differ only in their carboxyl-terminal part. To determine unambiguously whether the two Go alpha subunits detected in neuroblastoma cells were actually the products of different mRNAs, rabbit polyclonal antibodies were generated against synthetic peptides (amino acids 291-302) of both sequences. Specificity of the two affinity-purified antipeptide antibodies was assessed on Western blots by comparing their immunoreactivities with those of other G alpha antibodies. On a blotted mixture of purified brain guanine nucleotide-binding proteins, the anti-alpha o1 and anti-alpha o2 peptide antibodies only recognized the 39-kDa Go alpha subunit. Furthermore, the immunological recognition of brain membranes from 15-day-old mouse fetuses by antipeptide antibodies could be specifically blocked by addition of the corresponding antigen. When membrane proteins from differentiated neuroblastoma cells and mouse fetus brain were blotted after two-dimensional gel electrophoresis, the anti-alpha o1 and anti-alpha o2 peptide antibodies labeled a 39-kDa subunit focused at a pI value of 5.55 or 5.80, respectively. Study of the ontogenesis of both Go alpha subunits revealed the predominance of Go2 alpha in the frontal cortex at day 15 of gestation. Thereafter, there was a progressive decline of the Go2 alpha polypeptide to a very low level, concomitant with an increase in the Go1 alpha protein, which plateaued about 15 days after birth to a level 8 times higher than at gestational day 15. Similarly, on neuroblastoma cells, the Go2 alpha subunit was almost exclusively present in undifferentiated cells, and differentiation induced the appearance of the Go1 alpha subunit, with a reduction in the amount of Go2 alpha polypeptide. Thus, the evolution of the two Go alpha subunits during cell differentiation, unambiguously identified with specific antibodies, suggests that neuronal differentiation is responsible for the on/off switch of the expression of the Go alpha isoforms and indicates that Go1 alpha, rather than Go2 alpha, is involved in neurotransmission.

  10. Alpha-2 adrenergic receptor-mediated inhibition of thermogenesis

    PubMed Central

    Madden, Christopher J.; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F.

    2013-01-01

    Alpha2-adrenergic receptor (α2-AR) agonists have been use as anti-hypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist, clonidine (1.2 nmol), into the rostral raphe pallidus (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist, idazoxan (6nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists, dexmedetomidine (25ug/kg, iv) or clonidine (100ug/kg, iv) inhibited shivering EMGs, BAT SNA and BAT thermogenesis effects that were reversed by nanoinjection of idazoxan (6nmol) into the rRPa. Dexmedetomidine (100µg/kg, ip) prevented and reversed lipopolysaccharide (10µg/kg ip)-evoked thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of VLM neurons expressing of the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially-lethal elevations in body temperature during excessive fever. PMID:23365239

  11. Pharmacological Validation of Candidate Causal Sleep Genes Identified in an N2 Cross

    PubMed Central

    Brunner, Joseph I.; Gotter, Anthony L.; Millstein, Joshua; Garson, Susan; Binns, Jacquelyn; Fox, Steven V.; Savitz, Alan T.; Yang, He S.; Fitzpatrick, Karrie; Zhou, Lili; Owens, Joseph R.; Webber, Andrea L.; Vitaterna, Martha H.; Kasarskis, Andrew; Uebele, Victor N.; Turek, Fred; Renger, John J.; Winrow, Christopher J.

    2013-01-01

    Despite the substantial impact of sleep disturbances on human health and the many years of study dedicated to understanding sleep pathologies, the underlying genetic mechanisms that govern sleep and wake largely remain unknown. Recently, we completed large scale genetic and gene expression analyses in a segregating inbred mouse cross and identified candidate causal genes that regulate the mammalian sleep-wake cycle, across multiple traits including total sleep time, amounts of REM, non-REM, sleep bout duration and sleep fragmentation. Here we describe a novel approach toward validating candidate causal genes, while also identifying potential targets for sleep-related indications. Select small molecule antagonists and agonists were used to interrogate candidate causal gene function in rodent sleep polysomnography assays to determine impact on overall sleep architecture and to evaluate alignment with associated sleep-wake traits. Significant effects on sleep architecture were observed in validation studies using compounds targeting the muscarinic acetylcholine receptor M3 subunit (Chrm3)(wake promotion), nicotinic acetylcholine receptor alpha4 subunit (Chrna4)(wake promotion), dopamine receptor D5 subunit (Drd5)(sleep induction), serotonin 1D receptor (Htr1d)(altered REM fragmentation), glucagon-like peptide-1 receptor (Glp1r)(light sleep promotion and reduction of deep sleep), and Calcium channel, voltage-dependent, T type, alpha 1I subunit (Cacna1i)(increased bout duration slow wave sleep). Taken together, these results show the complexity of genetic components that regulate sleep-wake traits and highlight the importance of evaluating this complex behavior at a systems level. Pharmacological validation of genetically identified putative targets provides a rapid alternative to generating knock out or transgenic animal models, and may ultimately lead towards new therapeutic opportunities. PMID:22091728

  12. Functional assessment of recombinant human alpha(2)-adrenoceptor subtypes with cytosensor microphysiometry.

    PubMed

    Pihlavisto, M; Scheinin, M

    1999-12-03

    We applied the Cytosensor Microphysiometry system to study the three human alpha(2)-adrenoceptor subtypes, alpha(2A), alpha(2B) and alpha(2C), expressed in Chinese hamster ovary (CHO) cells, and assessed its potential in the quantitative monitoring of agonist activity. The natural full agonist, (-)-noradrenaline, was used to define agonist efficacy. The imidazole derivative dexmedetomidine was a potent full agonist of all three receptor subtypes. The imidazolines clonidine and UK 14,304 (5-bromo-N-(4, 5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine) appeared to be partial agonists at alpha(2B)-adrenoceptors (E(max) approximately 60% of (-)-noradrenaline) but full agonists at alpha(2A)- and alpha(2C)-adrenoceptors. The responses mediated by all three alpha(2)-adrenoceptor subtypes were partly inhibited by the sodium-hydrogen (Na(+)/H(+)) exchange inhibitor, MIA (5-(N-methyl-N-isobutyl)-amiloride). The agonist responses were totally abolished by pretreatment with pertussis toxin in cells with alpha(2A)- and alpha(2C)-adrenoceptors, and partly abolished in cells with alpha(2B)-adrenoceptors. The residual signal in alpha(2B)-cells was sensitive to the intracellular Ca(2+)chelator, BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester). Cholera toxin (which acts on G(s)-proteins) had no effect on the agonist responses. The results suggest that the extracellular acidification responses mediated by all three human alpha(2)-adrenoceptor subtypes are dependent on Na(+)/H(+)exchange and G(i/o) pathways, and that alpha(2B)-adrenoceptors are capable of coupling to another, G(i/o)-independent and Ca(2+)-dependent signaling pathway.

  13. Control of yeast mating signal transduction by a mammalian. beta. sub 2 -adrenergic receptor and G sub s. alpha. subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, K.; Caron, M.G.; Lefkowitz, R.J.

    1990-10-05

    To facilitate functional and mechanistic studies of receptor-G protein interactions by expression of the human {beta}{sub 2}-adrenergic receptor (h{beta}-AR) has been expressed in Saccharomyces cerevisiae. This was achieved by placing a modified h{beta}-AR gene under control of the galactose-inducible GAL1 promoter. After induction by galactose, functional h{beta}-AR was expressed at a concentration several hundred times as great as that found in any human tissue. As determined from competitive ligand binding experiments, h{beta}-AR expressed in yeast displayed characteristic affinities, specificity, and stereoselectivity. Partial activation of the yeast pheromone response pathway by {beta}-adrenergic receptor agonists was achieved in cells coexpressing h{beta}-AR andmore » a mammalian G protein (G{sub s}) {alpha} subunit - demonstrating that these components can couple to each other and to downstream effectors when expressed in yeast. This in vivo reconstitution system provides a new approach for examining ligand binding and G protein coupling to cell surface receptors.« less

  14. Role of a guanine nucleotide-binding protein in. cap alpha. /sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornett, L.E.; Norris, J.S.

    1987-11-01

    In this study the mechanisms involved in ..cap alpha../sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization at the level of the plasma membrane were investigated. Stimulation of /sup 45/Ca/sup 2 +/ efflux from saponin-permeabilized DDT/sub 1/ MF-2 cells was observed with the addition of either the ..cap alpha../sub 1/-adrenergic agonist phenylephrine and guanosine-5'-triphosphate or the nonhydrolyzable guanine nucleotide guanylyl-imidodiphosphate. In the presence of (/sup 32/P) NAD, pertussis toxin was found to catalyze ADP-ribosylation of a M/sub r/ = 40,500 (n = 8) peptide in membranes prepared from DDT/sub 1/, MF-2 cells, possibly the ..cap alpha..-subunit of N/sub i/. However, stimulation ofmore » unidirectional /sup 45/Ca/sup 2 +/ efflux by phenylephrine was not affected by previous treatment of cells with 100 ng/ml pertussis toxin. These data suggest that the putative guanine nucleotide-binding protein which couples the ..cap alpha../sub 1/-adrenergic receptor to Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells is not a pertussis toxin substrate and may possibly be an additional member of guanine nucleotide binding protein family.« less

  15. 5-HT1A receptor blockade reverses GABAA receptor α3 subunit-mediated anxiolytic effects on stress-induced hyperthermia

    PubMed Central

    van Oorschot, Ruud; Korte, S. Mechiel; Olivier, Berend; Groenink, Lucianne

    2010-01-01

    Rationale Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABAA and the serotonin receptor system interact, a serotonergic component in the anxiolytic actions of benzodiazepines could be present. Objectives The main aim of the present study was to investigate whether the anxiolytic effects of (non-)selective α subunit GABAA receptor agonists could be reversed with 5-HT1A receptor blockade using the stress-induced hyperthermia (SIH) paradigm. Results The 5-HT1A receptor antagonist WAY-100635 (0.1–1 mg/kg) reversed the SIH-reducing effects of the non-α-subunit selective GABAA receptor agonist diazepam (1–4 mg/kg) and the GABAA receptor α3-subunit selective agonist TP003 (1 mg/kg), whereas WAY-100635 alone was without effect on the SIH response or basal body temperature. At the same time, co-administration of WAY-100635 with diazepam or TP003 reduced basal body temperature. WAY-100635 did not affect the SIH response when combined with the preferential α1-subunit GABAA receptor agonist zolpidem (10 mg/kg), although zolpidem markedly reduced basal body temperature. Conclusions The present study suggests an interaction between GABAA receptor α-subunits and 5-HT1A receptor activation in the SIH response. Specifically, our data indicate that benzodiazepines affect serotonergic signaling via GABAA receptor α3-subunits. Further understanding of the interactions between the GABAA and serotonin system in reaction to stress may be valuable in the search for novel anxiolytic drugs. PMID:20535452

  16. Reactivation of the chloroplast CF1-ATPase beta subunit by trace amounts of the CF1 alpha subunit suggests a chaperonin-like activity for CF1 alpha.

    PubMed

    Avni, A; Avital, S; Gromet-Elhanan, Z

    1991-04-25

    Incubation of tobacco and lettuce thylakoids with 2 M LiCl in the presence of MgATP removes the beta subunit from their CF1-ATPase (CF1 beta) together with varying amounts of the CF1 alpha subunit (CF1 alpha). These 2 M LiCl extracts, as with the one obtained from spinach thylakoids (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072), could form active hybrid ATPases when reconstituted into inactive beta-less Rhodospirillum rubrum chromatophores. Pure CF1 beta fractions that have been isolated from these extracts could not form such active hybrids by themselves, but could do so when supplemented with trace amounts (less than 5%) of CF1 alpha. A mitochondrial F1-ATPase alpha subunit was recently reported to be a heat-shock protein, having two amino acid sequences that show a highly conserved identity with sequences found in molecular chaperones (Luis, A. M., Alconada, A., and Cuezva, J. M. (1990) J. Biol. Chem. 265, 7713-7716). These sequences are also conserved in CF1 alpha isolated from various plants, but not in F1 beta subunits. The above described reactivation of CF1 beta by trace amounts of CF1 alpha could thus be due to a chaperonin-like function of CF1 alpha, which involves the correct, active folding of isolated pure CF1 beta.

  17. Inactivation of chloroplast H(+)-ATPase by modification of Lys beta 359, Lys alpha 176 and Lys alpha 266.

    PubMed

    Horbach, M; Meyer, H E; Bickel-Sandkötter, S

    1991-09-01

    Treatment of isolated, latent chloroplast ATPase with pyridoxal-5-phosphate (pyridoxal-P) in presence of Mg2+ causes inhibition of dithiothreitol-activated plus heat-activated ATP hydrolysis. The amount of [3H]pyridoxal-P bound to chloroplast coupling factor 1 (CF1) was estimated to run up to 6 +/- 1 pyridoxal-P/enzyme, almost equally distributed between the alpha- and beta-subunits. Inactivation, however, is complete after binding of 1.5-2 pyridoxal-P/CF1, suggesting that two covalently modified lysines prevent the activation of the enzyme. ADP as well as ATP in presence of Mg2+ protects the enzyme against inactivation and concomittantly prevents incorporation of a part of the 3H-labeled pyridoxal-P into beta- and alpha-subunits. Phosphate prevents labeling of the alpha-subunit, but has only a minor effect on protection against inactivation. The data indicate a binding site at the interface between the alpha- and beta-subunits. Cleavage of the pyridoxal-P-labeled subunits with cyanogen bromide followed by sequence analysis of the labeled peptides led to the detection of Lys beta 359, Lys alpha 176 and Lys alpha 266, which are closely related to proposed nucleotide-binding regions of the alpha- and beta-subunits.

  18. Construction and characterization of the hetero-oligomer of the group II chaperonin from the hyperthermophilic archaeon, Thermococcus sp. strain KS-1.

    PubMed

    Sahlan, Muhamad; Kanzaki, Taro; Yohda, Masafumi

    2009-05-01

    The hyperthermophilic archaeon Thermococcus sp. strain KS-1 (T. KS-1) expresses two different chaperonin subunits, alpha and beta, for the folding of its proteins. The composition of the subunits in the hexadecameric double ring changes with temperature. The content of the beta subunit significantly increases according to the increase in temperature. The homo-oligomer of the beta subunit, Cpn beta, is more thermostable than that of the alpha subunit, Cpn alpha. Since Cpn alpha and Cpn beta also have different protein folding activities and interactions with prefoldin, the hetero-oligomer is thought to exhibit different characteristics according to the content of subunits. The hetero-oligomer of the T. KS-1 chaperonin has not been studied, however, because the alpha and beta subunits form hetero-oligomers of varying compositions when they are expressed simultaneously. In this study, we characterized the T. KS-1 chaperonin hetero-oligomer, Cpn alphabeta, containing both alpha and beta in the alternate order, which was constructed by the expression of alpha and beta subunits in a coordinated fashion and protease digestion. Cpn alphabeta protected citrate synthase from thermal aggregation, promoted the folding of acid-denatured GFP in an ATP-dependent manner, and exhibited an ATP-dependent conformational change. The yield of refolded GFP generated by Cpn alphabeta was almost equivalent to that generated by Cpn beta but lower than that generated by Cpn alpha. In contrast, Cpn alphabeta exhibited almost the same level of thermal stability as Cpn alpha, which was lower than that of Cpn beta. The affinity of Cpn alphabeta to prefoldin was found to be between those of Cpn alpha and Cpn beta, as expected.

  19. Structural and molecular characterization of the prefoldin beta subunit from Thermococcus strain KS-1.

    PubMed

    Kida, Hiroshi; Sugano, Yuri; Iizuka, Ryo; Fujihashi, Masahiro; Yohda, Masafumi; Miki, Kunio

    2008-11-14

    Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of alpha and beta subunits and forms a "jellyfish-like" structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two alpha and two beta subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of alpha (alpha1 and alpha2) and beta subunits (beta1 and beta2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD beta1 subunit at 1.9 A resolution and its functional analysis. TsPFD beta1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The beta hairpin linkers of beta1 subunits assemble to form a beta barrel "body" around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the beta1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric beta1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD beta1 subunits act as molecular chaperones in living cells of some archaea.

  20. Integrin distributions in renal cell carcinomas of various grades of malignancy.

    PubMed Central

    Korhonen, M.; Laitinen, L.; Ylänne, J.; Koukoulis, G. K.; Quaranta, V.; Juusela, H.; Gould, V. E.; Virtanen, I.

    1992-01-01

    We studied 41 renal cell carcinomas, classified according to histologic grades G1 through G3, by indirect immunofluorescence microscopy using a panel of monoclonal antibodies (MAb) against various integrin subunits, and the basement membrane (BM) components laminin and collagen type IV. Selected cases also were immunostained using the avidin-biotin-complex method. The alpha 3 and beta 1 integrin subunits were detected in tumor cells of all the carcinomas. All G1 carcinomas, like normal tubular epithelial cells, expressed the alpha 6 subunit, whereas it was lacking in 20% and 40% of G2 and G3 carcinomas, respectively. Furthermore, when alpha 6 was expressed, a lack of basally polarized organization of the subunit, coupled with disorganization of the BM components, correlated with histologic grade. Another feature that appeared to characterize the more anaplastic tumors was their high level (80%) of the alpha v subunit expression as compared with its absence in the G1 carcinomas. Stromal myofibroblasts, identified by double-labeling with anti-myosin, were often characterized by the expression of the alpha 1, alpha 3, alpha 5 and beta 1 subunits. These results indicate that changes in integrin expression in renal cell carcinomas may be correlated with their degree of histologic malignancy. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1443050

  1. Structural Studies of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

  2. Functioning of the dimeric GABAB receptor extracellular domain revealed by glycan wedge scanning

    PubMed Central

    Rondard, Philippe; Huang, Siluo; Monnier, Carine; Tu, Haijun; Blanchard, Bertrand; Oueslati, Nadia; Malhaire, Fanny; Li, Ying; Trinquet, Eric; Labesse, Gilles; Pin, Jean-Philippe; Liu, Jianfeng

    2008-01-01

    The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABAB1 and GABAB2. GABAB1 binds agonists, whereas GABAB2 is required for trafficking GABAB1 to the cell surface, increasing agonist affinity to GABAB1, and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABAB1 VFT leads to GABAB2 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABAB VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABAB2, including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation. PMID:18388862

  3. Functional characterization of recombinant prefoldin complexes from a hyperthermophilic archaeon, Thermococcus sp. strain KS-1.

    PubMed

    Iizuka, Ryo; Sugano, Yuri; Ide, Naoki; Ohtaki, Akashi; Yoshida, Takao; Fujiwara, Shinsuke; Imanaka, Tadayuki; Yohda, Masafumi

    2008-03-28

    Prefoldin is a heterohexameric molecular chaperone complex that is found in the eukaryotic cytosol and also in archaea. It captures a nonnative protein and subsequently delivers it to a group II chaperonin for proper folding. Archaeal prefoldin is a heterocomplex containing two alpha subunits and four beta subunits with the structure of a double beta-barrel assembly, with six long coiled coils protruding from it like a jellyfish with six tentacles. We have studied the protein folding mechanism of group II chaperonin using those of Thermococcus sp. strain KS-1 (T. KS-1) because they exhibit high protein folding activity in vitro. We have also demonstrated functional cooperation between T. KS-1 chaperonins and prefoldin from Pyrococcus horikoshii OT3. Recent genome analysis has shown that Thermococcus kodakaraensis KOD1 contains two pairs of prefoldin subunit genes, correlating with the existence of two different chaperonin subunits. In this study, we characterized four different recombinant prefoldin complexes composed of two pairs of prefoldin subunits (alpha1, alpha2, beta1, and beta2) from T. KS-1. All of them (alpha1-beta1, alpha2-beta1, alpha1-beta2, and alpha2-beta2) exist as alpha(2)beta(4) heterohexamers and can protect several proteins from forming aggregates with different activities. We have also compared the collaborative activity between the prefoldin complexes and the cognate chaperonins. Prefoldin complexes containing the beta1 subunit interacted with the chaperonins more strongly than those with the beta2 subunit. The results suggest that Thermococcus spp. express different prefoldins for different substrates or conditions as chaperonins.

  4. Zolpidem generalization and antagonism in male and female cynomolgus monkeys trained to discriminate 1.0 or 2.0 g/kg ethanol.

    PubMed

    Helms, Christa M; Rogers, Laura S M; Waters, Courtney A; Grant, Kathleen A

    2008-07-01

    The subtypes of gamma-aminobutyric acid (GABA)(A) receptors mediating the discriminative stimulus effects of ethanol in nonhuman primates are not completely identified. The GABA(A) receptor positive modulator zolpidem has high, intermediate, and low activity at receptors containing alpha(1), alpha(2/3), and alpha(5) subunits, respectively, and partially generalizes from ethanol in several species. The partial inverse agonist Ro15-4513 has the greatest affinity for alpha(4/6)-containing receptors, higher affinity for alpha(5)- and lower, but equal, affinity for alpha(1)- and alpha(2/3)-, containing GABA(A) receptors, and antagonizes the discriminative stimulus effects of ethanol. This study assessed Ro15-4513 antagonism of the generalization of zolpidem from ethanol in male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) trained to discriminate 1.0 g/kg (n = 10) or 2.0 g/kg (n = 7) ethanol (i.g.) from water with a 30-minute pretreatment interval. Zolpidem (0.017 to 5.6 mg/kg, i.m.) completely generalized from ethanol (>or=80% of total session responses on the ethanol-appropriate lever) for 6/7 monkeys trained to discriminate 2.0 g/kg and 4/10 monkeys trained to discriminate 1.0 g/kg ethanol. Zolpidem partially generalized from 1.0 or 2.0 g/kg ethanol in 6/7 remaining monkeys. Ro15-4513 (0.003 to 0.30 mg/kg, i.m., 5-minute pretreatment) shifted the zolpidem dose-response curve to the right in all monkeys showing generalization. Analysis of apparent pK(B) from antagonism tests suggested that the discriminative stimulus effects of ethanol common with zolpidem are mediated by low-affinity Ro15-4513 binding sites. Main effects of sex and training dose indicated greater potency of Ro15-4513 in males and in monkeys trained to discriminate 1.0 g/kg ethanol. Ethanol and zolpidem share similar discriminative stimulus effects most likely through GABA(A) receptors that contain alpha(1) subunits, however, antagonism by Ro15-4513 of zolpidem generalization from the lower training dose of ethanol (1.0 g/kg) may involve additional zolpidem-sensitive GABA(A) receptor subtypes (e.g., alpha(2/3) and alpha(5)).

  5. An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice.

    PubMed

    Montgomery, Megan D; Chan, Trevor; Swigart, Philip M; Myagmar, Bat-Erdene; Dash, Rajesh; Simpson, Paul C

    2017-01-01

    Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35-40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies.

  6. Phosphorylation and regulation of a Gq/11-coupled receptor by casein kinase 1alpha.

    PubMed

    Budd, D C; McDonald, J E; Tobin, A B

    2000-06-30

    Agonist-mediated receptor phosphorylation by one or more of the members of the G-protein receptor kinase (GRK) family is an established model for G-protein-coupled receptor (GPCR) phosphorylation resulting in receptor desensitization. Our recent studies have, however, suggested that an alternative route to GPCR phosphorylation may be an operation involving casein kinase 1alpha (CK1alpha). In the current study we investigate the involvement of CK1alpha in the phosphorylation of the human m3-muscarinic receptor in intact cells. We show that expression of a catalytically inactive mutant of CK1alpha, designed to act in a dominant negative manner, inhibits agonist-mediated receptor phosphorylation by approximately 40% in COS-7 and HEK-293 cells. Furthermore, we present evidence that a peptide corresponding to the third intracellular loop of the m3-muscarinic receptor (Ser(345)-Leu(463)) is an inhibitor of CK1alpha due to its ability to both act as a pseudo-substrate for CK1alpha and form a high affinity complex with CK1alpha. Expression of this peptide was able to reduce both basal and agonist-mediated m3-muscarinic receptor phosphorylation in intact cells. These results support the notion that CK1alpha is able to mediate GPCR phosphorylation in an agonist-dependent manner and that this may provide a novel mechanism for GPCR phosphorylation. The functional role of phosphorylation was investigated using a mutant of the m3-muscarinic receptor that showed an approximately 80% reduction in agonist-mediated phosphorylation. Surprisingly, this mutant underwent agonist-mediated desensitization suggesting that, unlike many GPCRs, desensitization of the m3-muscarinic receptor is not mediated by receptor phosphorylation. The inositol (1,4, 5)-trisphosphate response did, however, appear to be dramatically potentiated in the phosphorylation-deficient mutant indicating that phosphorylation may instead control the magnitude of the initial inositol phosphate response.

  7. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, T.; Ui, M.

    1985-06-25

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased /sup 45/Ca/sup 2 +/ uptake into the cell monolayer, and (f) increased /sup 86/Rb/sup +/ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separatemore » effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca/sup 2 +/ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca/sup 2 +/-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca/sup 2 +/ gating.« less

  8. Maple syrup urine disease: The E1{beta} gene of human branched-chain {alpha}-ketoacid dehydrogenase complex has 11 rather than 10 exons, and the 3{prime} UTR in one of the two E1{beta} mRNAs arises from intronic sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.L.; Chuang, D.T.; Cox, R.P.

    1996-06-01

    Maple syrup urine disease (MSUD) or branched-chain ketoaciduria is caused by a deficiency in the mitochondrial branched-chain {alpha}-ketoacid dehydrogenase (BCKAD) complex. The clinical manifestations are characterized by accumulation of branched chain amino and {alpha}-ketoacids, which leads to severe cerebral edema with seizures, ketoacidosis, and mental retardation. The BCKAD complex comprises three catalytic components, i.e., a decarboxylase (E1) consisting of two E1{alpha} (M{sub r} = 46,000) and two E1{Beta} (M{sub r} = 37,500) subunits, a transacylase (E2) that contains 24 lipoic acid-bearing subunits, and a dehydrogenase (E3), which is a homodimeric flavoprotein. MSUD is genetically heterogeneous, since mutations in the E1{alpha}more » subunit (type IA MSUD), the E1{Beta} subunit (type IB), the E2 subunit (type II) and the E3 subunit (type III) have been described. The functional consequences of certain mutations in the BCKAD complex have been studied. 23 refs., 3 figs.« less

  9. Cloning and sequence analysis of a cDNA encoding the alpha-subunit of mouse beta-N-acetylhexosaminidase and comparison with the human enzyme.

    PubMed Central

    Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L

    1992-01-01

    cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046

  10. GTP analogues promote release of the alpha subunit of the guanine nucleotide binding protein, Gi2, from membranes of rat glioma C6 BU1 cells.

    PubMed Central

    Milligan, G; Mullaney, I; Unson, C G; Marshall, L; Spiegel, A M; McArdle, H

    1988-01-01

    The major pertussis-toxin-sensitive guanine nucleotide-binding protein of rat glioma C6 BU1 cells corresponded immunologically to Gi2. Antibodies which recognize the alpha subunit of this protein indicated that it has an apparent molecular mass of 40 kDa and a pI of 5.7. Incubation of membranes of these cells with guanosine 5'-[beta gamma-imido]triphosphate, or other analogues of GTP, caused release of this polypeptide from the membrane in a time-dependent manner. Analogues of GDP or of ATP did not mimic this effect. The GTP analogues similarly caused release of the alpha subunit of Gi2 from membranes of C6 cells in which this G-protein had been inactivated by pretreatment with pertussis toxin. The beta subunit was not released from the membrane under any of these conditions, indicating that the release process was a specific response to the dissociation of the G-protein after binding of the GTP analogue. Similar nucleotide profiles for release of the alpha subunits of forms of Gi were noted for membranes of both the neuroblastoma x glioma hybrid cell line NG108-15 and of human platelets. These data provide evidence that: (1) pertussis-toxin-sensitive G-proteins, in native membranes, do indeed dissociate into alpha and beta gamma subunits upon activation; (2) the alpha subunit of 'Gi-like' proteins need not always remain in intimate association with the plasma membrane; and (3) the alpha subunit of Gi2 can still dissociate from the beta/gamma subunits after pertussis-toxin-catalysed ADP-ribosylation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:3140801

  11. Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits.

    PubMed

    Ravindran, Arippa; Lao, Qi Zong; Harry, Jo Beth; Abrahimi, Parwiz; Kobrinsky, Evgeny; Soldatov, Nikolai M

    2008-06-10

    It is generally accepted that to generate calcium currents in response to depolarization, Ca(v)1.2 calcium channels require association of the pore-forming alpha(1C) subunit with accessory Ca(v)beta and alpha(2)delta subunits. A single calmodulin (CaM) molecule is tethered to the C-terminal alpha(1C)-LA/IQ region and mediates Ca2+-dependent inactivation of the channel. Ca(v)beta subunits are stably associated with the alpha(1C)-interaction domain site of the cytoplasmic linker between internal repeats I and II and also interact dynamically, in a Ca2+-dependent manner, with the alpha(1C)-IQ region. Here, we describe a surprising discovery that coexpression of exogenous CaM (CaM(ex)) with alpha(1C)/alpha(2)delta in COS1 cells in the absence of Ca(v)beta subunits stimulates the plasma membrane targeting of alpha(1C), facilitates calcium channel gating, and supports Ca2+-dependent inactivation. Neither real-time PCR with primers complementary to monkey Ca(v)beta subunits nor coimmunoprecipitation analysis with exogenous alpha(1C) revealed an induction of endogenous Ca(v)beta subunits that could be linked to the effect of CaM(ex). Coexpression of a calcium-insensitive CaM mutant CaM(1234) also facilitated gating of Ca(v)beta-free Ca(v)1.2 channels but did not support Ca2+-dependent inactivation. Our results show there is a functional matchup between CaM(ex) and Ca(v)beta subunits that, in the absence of Ca(v)beta, renders Ca2+ channel gating facilitated by CaM molecules other than the one tethered to LA/IQ to support Ca2+-dependent inactivation. Thus, coexpression of CaM(ex) creates conditions when the channel gating, voltage- and Ca2+-dependent inactivation, and plasma-membrane targeting occur in the absence of Ca(v)beta. We suggest that CaM(ex) affects specific Ca(v)beta-free conformations of the channel that are not available to endogenous CaM.

  12. Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice.

    PubMed

    Studer, Remo; von Boehmer, Lotta; Haenggi, Tatjana; Schweizer, Claude; Benke, Dietmar; Rudolph, Uwe; Fritschy, Jean-Marc

    2006-09-01

    Multiple GABAA-receptor subtypes are assembled from alpha, beta and gamma subunit variants. GABAA receptors containing the alpha3 subunit represent a minor population with a restricted distribution in the CNS. In addition, they predominate in monoaminergic neurons and in the nucleus reticularis thalami (nRT), suggesting a role in the regulation of cortical function and sleep. Mice with a targeted deletion of the alpha3 subunit gene (alpha3(0/0)) are viable and exhibit a subtle behavioural phenotype possibly related to dopaminergic hyperfunction. Here, we investigated immunohistochemically the consequences of the loss of alpha3 subunit for maturation of GABAA receptors and formation of GABAergic synapses in the nRT. Throughout postnatal development, the regional distribution of the alpha1, alpha2, or alpha5 subunit was unaltered in alpha3(0/0) mice and the prominent alpha3 subunit staining of nRT neurons in wildtype mice was not replaced. Subcellularly, as seen by double immunofluorescence, the alpha3 and gamma2 subunit were clustered at postsynaptic sites in the nRT of adult wildtype mice along with the scaffolding protein gephyrin. In alpha3(0/0) mice, gamma2 subunit clustering was disrupted and gephyrin formed large aggregates localized at the cell surface, but unrelated to postsynaptic sites, indicating that nRT neurons lack postsynaptic GABAA receptors in mutant mice. Furthermore, GABAergic terminals were enlarged and reduced in number, suggesting a partial deficit of GABAergic synapses. Therefore, GABAA receptors are required for gephyrin clustering and long-term synapse maintenance. The absence of GABAA-mediated transmission in the nRT may have a significant impact on the function of the thalamo-cortical loop of alpha3(0/0) mice.

  13. beta subunits influence the biophysical and pharmacological differences between P- and Q-type calcium currents expressed in a mammalian cell line.

    PubMed

    Moreno, H; Rudy, B; Llinás, R

    1997-12-09

    Human epithelial kidney cells (HEK) were prepared to coexpress alpha1A, alpha2delta with different beta calcium channel subunits and green fluorescence protein. To compare the calcium currents observed in these cells with the native neuronal currents, electrophysiological and pharmacological tools were used conjointly. Whole-cell current recordings of human epithelial kidney alpha1A-transfected cells showed small inactivating currents in 80 mM Ba2+ that were relatively insensitive to calcium blockers. Coexpression of alpha1A, betaIb, and alpha2delta produced a robust inactivating current detected in 10 mM Ba2+, reversibly blockable with low concentration of omega-agatoxin IVA (omega-Aga IVA) or synthetic funnel-web spider toxin (sFTX). Barium currents were also supported by alpha1A, beta2a, alpha2delta subunits, which demonstrated the slowest inactivation and were relatively insensitive to omega-Aga IVA and sFTX. Coexpression of beta3 with the same combination as above produced inactivating currents also insensitive to low concentration of omega-Aga IVA and sFTX. These data indicate that the combination alpha1A, betaIb, alpha2delta best resembles P-type channels given the rate of inactivation and the high sensitivity to omega-Aga IVA and sFTX. More importantly, the specificity of the channel blocker is highly influenced by the beta subunit associated with the alpha1A subunit.

  14. Partial agonist clonidine mediates alpha(2)-AR subtypes specific regulation of cAMP accumulation in adenylyl cyclase II transfected DDT1-MF2 cells.

    PubMed

    Limon-Boulez, I; Bouet-Alard, R; Gettys, T W; Lanier, S M; Maltier, J P; Legrand, C

    2001-02-01

    alpha2-Adrenergic receptor (alpha(2)-AR) activation in the pregnant rat myometrium at midterm potentiates beta(2)-AR stimulation of adenylyl cyclase (AC) via Gbetagamma regulation of the type II isoform of adenylyl cyclase. However, at term, alpha(2)-AR activation inhibits beta(2)-AR stimulation of AC. This phenomenon is associated with changes in alpha(2)-AR subtype expression (midterm alpha(2A/D)-AR > alpha(2B)-AR; term alpha(2B) >or =alpha(2A/D)-AR), without any change in ACII mRNA, suggesting that alpha(2A/D)- and alpha(2B)-AR differentially regulate beta(2)-cAMP production. To address this issue, we have stably expressed the same density of alpha(2A/D)- or alpha(2B)-AR with AC II in DDT1-MF2 cells. Clonidine (partial agonist) increased beta(2)-AR-stimulated cAMP production in alpha(2A/D)-AR-ACII transfectants but inhibited it in alpha(2B)-AR-ACII transfectants. In contrast, epinephrine (full agonist) enhanced beta(2)-stimulated ACII in both alpha(2A)- and alpha(2B)-ACII clonal cell lines. 4-Azidoanilido-[alpha-(32)P]GTP-labeling of activated G proteins indicated that, in alpha(2B)-AR transfectants, clonidine activated only Gi(2), whereas epinephrine, the full agonist, effectively coupled to Gi(2) and Gi(3). Thus, partial and full agonists selectively activate G proteins that lead to drug specific effects on effectors. Moreover, these data indicate that Gi(3) activation is required for potentiation of beta(2)-AR stimulation of AC by alpha(2A/D) and alpha(2B)-AR in DDT1-MF2 cells. This may reflect an issue of the amount of Gbetagamma released upon receptor activation and/or betagamma composition of Gi(3) versus Gi(2).

  15. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T.; Weintraub, B.D.

    1985-04-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing (/sup 14/C)alanine and (/sup 3/H) glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, (/supmore » 14/C)alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. (/sup 3/H)Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function.« less

  16. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.

    PubMed

    Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O

    1994-05-26

    Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.

  17. Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis.

    PubMed

    Germain, Mitchel; De Arcangelis, Adèle; Robinson, Stephen D; Baker, Marianne; Tavora, Bernardo; D'Amico, Gabriela; Silva, Rita; Kostourou, Vassiliki; Reynolds, Louise E; Watson, Alan; Jones, J Louise; Georges-Labouesse, Elisabeth; Hodivala-Dilke, Kairbaan

    2010-02-01

    Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo. Copyright 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Agonist- and subunit-dependent potentiation of glutamate receptors by a nootropic drug aniracetam.

    PubMed

    Tsuzuki, K; Takeuchi, T; Ozawa, S

    1992-11-01

    GluR1 and GluR2 cDNAs encoding non-NMDA subtypes of glutamate receptor were isolated from a rat brain cDNA library by Boulter et al. (Science, 249 (1990) 1033-1037). Functional receptors activated by kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and glutamate were expressed in Xenopus oocytes injected with GluR1, GluR2 or a mixture of GluR1 and GluR2 RNAs. In GluR1-expressed oocytes, 1 mM aniracetam potentiated AMPA-induced currents by 99 +/- 10% (mean +/- S.E.M., n = 5) and glutamate-induced currents by 140 +/- 8% (n = 4), but little affected kainate-induced currents. Aniracetam was effective from a concentration of 0.1 mM, and it exhibited more conspicuous effects with the increase of the dose. In oocytes injected with GluR1 plus GluR2 RNAs, aniracetam more markedly potentiated current responses to AMPA and glutamate than those in oocytes injected with GluR1 RNA alone. For example, 1 mM aniracetam potentiated AMPA-induced currents by 396 +/- 76% (n = 4) and glutamate-induced currents by 970 +/- 65% (n = 5) in oocytes injected with 10% GluR1 and 90% GluR2 RNAs. In these oocytes, however, the potentiation of kainate-induced currents by 1 mM aniracetam was only 8 +/- 5% (n = 4). Thus, we conclude that the potentiation of the AMPA/kainate receptor by aniracetam depends on both species of agonists and subunit composition of the receptor.

  19. Allyl m-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savechenkov, Pavel Y.; Zhang, Xi; Chiara, David C.

    2012-12-10

    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the {sup 3}H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC{sub 50} approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol inmore » human {alpha}1{beta}2/3{gamma}2L GABA{sub A} receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both {alpha}1 and {beta}3 subunits of human {alpha}1{beta}3 GABAA receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.« less

  20. Reverse-phase HPLC analysis of human alpha crystallin.

    PubMed

    Swamy, M S; Abraham, E C

    1991-03-01

    A rapid and highly sensitive reverse-phase HPLC (RP-HPLC) method was used to separate crystallin subunits from human alpha crystallin. Three distinct peaks were separated; by electrophoretic and immunological analyses the first and second peaks were identified as alpha B and alpha A respectively. On the other hand, peak 3 appeared to be a modified form of alpha crystallin. The ratio of alpha A and alpha B proteins was 3:1 in 1 day old lenses which gradually changed to 2:1 in 17 year old lenses and to 1:1 in the 50 and 82 year old whole lenses and 82 year old lens cortex, with a concomitant increase in the modified alpha, suggesting that alpha A subunits are relatively more involved in aggregation. Analysis of the 82 year old lens nucleus also supported this conclusion. The RP-HPLC analysis of the HMW aggregate fraction showed substantial enrichment of the modified alpha. The alpha A and alpha B subunits independently reassociated to form polymeric alpha crystallin whereas the modified alpha reassociated to form HMW aggregates as shown by molecular sieve HPLC. Hence it appears that the HMW aggregate peak was constituted by modified alpha crystallin. Only in the peak 3 material the 280 nm absorbance was about 2-fold higher than what was expected from the actual protein content. The data suggest that the changes induced by post-translational modifications may have some role in the formation of modified alpha. The present RP-HPLC method is useful in separating these modified alpha from the unmodified alpha A and alpha B subunits.

  1. The sodium pump alpha1 subunit as a potential target to combat apoptosis-resistant glioblastomas.

    PubMed

    Lefranc, Florence; Kiss, Robert

    2008-03-01

    To review the involvement of the ion transporter Na+/K+-ATPase (NaK) in the migration and proliferation of glioma cells. Preliminary studies indicate that NaK alpha1 subunits seem to be upregulated in a proportion of glioblastomas but not in normal brain tissues. The present review focuses on (1) the natural resistance of migrating malignant glioma cells to apoptosis, (2) autophagic cell death as an alternative to combat malignant gliomas, (3) the fact that reducing the levels of malignant glioma cell motility can restore proapoptotic drug sensitivity,and (4) on the observation that inhibiting the NaK activity reduces both glioma cell proliferation and migration. The natural ligands of the NaK are the cardiotonic steroids. A hemisynthetic derivative of 2"-oxovoruscharin (UNBS1450), a novel cardenolide, displays unique structural features, making its binding affinity to NaK alpha subunits (including alpha1) 10 to 100 times higher than that of other cardenolides. UNBS1450 markedly decreases intracellular ATP concentration in glioma cells, disorganizes the actin cytoskeleton, and leads to autophagic cell death in NaK alpha1 over-expressing glioma cells. Glioblastoma patients who do not respond to chemotherapy and whose tumors over-express NaK alpha1 subunits could benefit from a treatment using ligands with marked binding affinity for the NaK alpha1 subunit.

  2. Computer modeling of siRNA knockdown effects indicates an essential role of the Ca2+ channel alpha2delta-1 subunit in cardiac excitation-contraction coupling.

    PubMed

    Tuluc, Petronel; Kern, Georg; Obermair, Gerald J; Flucher, Bernhard E

    2007-06-26

    L-type Ca(2+) currents determine the shape of cardiac action potentials (AP) and the magnitude of the myoplasmic Ca(2+) signal, which regulates the contraction force. The auxiliary Ca(2+) channel subunits alpha(2)delta-1 and beta(2) are important regulators of membrane expression and current properties of the cardiac Ca(2+) channel (Ca(V)1.2). However, their role in cardiac excitation-contraction coupling is still elusive. Here we addressed this question by combining siRNA knockdown of the alpha(2)delta-1 subunit in a muscle expression system with simulation of APs and Ca(2+) transients by using a quantitative computer model of ventricular myocytes. Reconstitution of dysgenic muscle cells with Ca(V)1.2 (GFP-alpha(1C)) recapitulates key properties of cardiac excitation-contraction coupling. Concomitant depletion of the alpha(2)delta-1 subunit did not perturb membrane expression or targeting of the pore-forming GFP-alpha(1C) subunit into junctions between the outer membrane and the sarcoplasmic reticulum. However, alpha(2)delta-1 depletion shifted the voltage dependence of Ca(2+) current activation by 9 mV to more positive potentials, and it slowed down activation and inactivation kinetics approximately 2-fold. Computer modeling revealed that the altered voltage dependence and current kinetics exert opposing effects on the function of ventricular myocytes that in total cause a 60% prolongation of the AP and a 2-fold increase of the myoplasmic Ca(2+) concentration during each contraction. Thus, the Ca(2+) channel alpha(2)delta-1 subunit is not essential for normal Ca(2+) channel targeting in muscle but is a key determinant of normal excitation and contraction of cardiac muscle cells, and a reduction of alpha(2)delta-1 function is predicted to severely perturb normal heart function.

  3. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  4. Three cases of zolpidem dependence treated with fluoxetine: the serotonin hypothesis.

    PubMed

    Liappas, Ioannis A; Malitas, Petros N; Dimopoulos, Nikolaos P; Gitsa, Olympia E; Liappas, Alexandros I; Nikolaou, Chrisoula K; Christodoulou, Georgios N

    2003-04-01

    Zolpidem is an imidazopyridine hypnotic that is believed to act selectively at alpha(1) subunit-containing gamma-aminobutyric acid type A (GABA(A)) receptors and thus to have minimal abuse and dependence potential. We present three cases of zolpidem abuse and dependence in which the drug was used not for sedation but for stimulation and anxiolysis. All of the patients were treated with fluoxetine (a selective serotonin reuptake inhibitor) and managed to discontinue the abuse and remain abstinent from the drug. The efficacy of this kind of medication on the abuse of a GABAergic agonist, in this case dependence on zolpidem, leads to a serotonergic and GABAergic system interaction hypothesis.

  5. Atomic force microscopy of ionotropic receptors bearing subunit-specific tags provides a method for determining receptor architecture

    NASA Astrophysics Data System (ADS)

    Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael

    2003-08-01

    We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.

  6. A kinetic comparison of the processing and secretion of the alpha beta dimer and the uncombined alpha and beta subunits of chorionic gonadotropin synthesized by human choriocarcinoma cells.

    PubMed

    Peters, B P; Krzesicki, R F; Hartle, R J; Perini, F; Ruddon, R W

    1984-12-25

    Human choriocarcinoma cells (JAR) synthesize the alpha and beta subunits of the glycoprotein hormone chorionic gonadotropin (hCG) (R.W. Ruddon, C.A. Hanson, A. H. Bryan, G.J. Putterman, E.L. White, F. Perini, K. S. Meade, and P.H. Aldenderfer (1980) J. Biol. Chem. 255, 1000-1007). In addition to the hCG dimer (alpha beta), JAR cells secrete uncombined alpha and beta subunits into the culture medium (L.A. Cole, R.J. Hartle, J.A. Laferla, and R.W. Ruddon (1983) Endocrinology 113, 1176-1178). Pulse-chase studies with [35S]methionine or [3H]mannose were carried out in order to compare free alpha, free beta, and the alpha beta dimer with regard to the kinetics of synthesis, N-linked oligosaccharide processing, and secretion and to determine the kinetics of alpha-beta subunit combination. A panel of three antisera was used to immunoprecipitate directly the free subunits and the alpha beta dimer sequentially from the same cell lysates and culture media. The alpha subunit of hCG was synthesized in a slight molar excess (1.2-1.5-fold) over the beta subunit, and alpha beta dimer was rapidly formed by combination of the intracellular alpha and beta precursors. Dimer formation was already apparent in JAR cells following a 10-min biosynthetic labeling incubation with [35S]methionine. The combination of subunits ceased by 30 min of chase even though 51% of alpha and 44% of beta remained free within the cells. Combination of the alpha and beta precursors had occurred before their N-linked oligosaccharides were processed beyond the Man8GlcNAc2 structure. The initial trimming of glucosyl and mannosyl units from the high-mannose oligosaccharides of the hCG precursors occurred more rapidly for free alpha and CG-alpha than for free beta and CG-beta. JAR cells accumulated alpha precursors bearing mostly Man8GlcNAc2 units and beta precursors bearing Man8GlcNAc2 units that represent the substrates of the rate-limiting step in the secretory pathway. In spite of the fact that their N-linked oligosaccharides were trimmed at different rates, free alpha, free beta, and alpha beta dimer were all secreted into the medium at the same rate, with a half-time of 35 min. The secreted hCG forms were stable in the chase medium between 4 and 8h, indicating that extracellular degradation, combination of free subunits to form dimer, or dissociation of dimer to form free subunits did not occur.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    PubMed Central

    Matsuda, K; Buckingham, S D; Freeman, J C; Squire, M D; Baylis, H A; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine) were compared on both recombinant nicotinic AChRs by use of two-electrode, voltage-clamp electrophysiology. Imidacloprid alone of the 4 agonists behaved as a partial agonist on the α4β2 receptor; (+)-epibatidine, (−)-nicotine and acetylcholine were all full, or near full, agonists. Imidacloprid was also a partial agonist of the hybrid Drosophila SAD chicken β2 receptor, as was (−)-nicotine, whereas (+)-epibatidine and acetylcholine were full agonists. The EC50 of imidacloprid was decreased by replacing the chicken α4 subunit with the Drosophila SAD α subunit. This α subunit substitution also resulted in an increase in the EC50 for (+)-epibatidine, (−)-nicotine and acetylcholine. Thus, the Drosophila (SAD) α subunit contributes to the greater apparent affinity of imidacloprid for recombinant insect/vertebrate nicotinic AChRs. Imidacloprid acted as a weak antagonist of ACh-mediated responses mediated by SADβ2 hybrid receptors and as a weak potentiator of ACh responses mediated by α4β2 receptors. This suggests that imidacloprid has complex effects upon these recombinant receptors, determined at least in part by the α subunit. PMID:9504393

  8. Canonical and Novel Non-Canonical Cholinergic Agonists Inhibit ATP-Induced Release of Monocytic Interleukin-1β via Different Combinations of Nicotinic Acetylcholine Receptor Subunits α7, α9 and α10

    PubMed Central

    Zakrzewicz, Anna; Richter, Katrin; Agné, Alisa; Wilker, Sigrid; Siebers, Kathrin; Fink, Bijan; Krasteva-Christ, Gabriela; Althaus, Mike; Padberg, Winfried; Hone, Arik J.; McIntosh, J. Michael; Grau, Veronika

    2017-01-01

    Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1β (IL-1β) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1β by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1β release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1β. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopus laevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR. PMID:28725182

  9. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Dacosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-08-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state.

  10. cap alpha. /sub i/-3 cDNA encodes the. cap alpha. subunit of G/sub k/, the stimulatory G protein of receptor-regulated K/sup +/ channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codina, J.; Olate, J.; Abramowitz, J.

    1988-05-15

    cDNA cloning has identified the presence in the human genome of three genes encoding ..cap alpha.. subunits of pertussis toxin substrates, generically called G/sub i/. They are named ..cap alpha../sub i/-1, ..cap alpha../sub i/-2 and ..cap alpha../sub i/-3. However, none of these genes has been functionally identified with any of the ..cap alpha.. subunits of several possible G proteins, including pertussis toxin-sensitive G/sub p/'s, stimulatory to phospholipase C or A/sub 2/, G/sub i/, inhibitory to adenylyl cyclase, or G/sub k/, stimulatory to a type of K/sup +/ channels. The authors now report the nucleotide sequence and the complete predicted aminomore » acid sequence of human liver ..cap alpha../sub i/-3 and the partial amino acid sequence of proteolytic fragments of the ..cap alpha.. subunit of human erythrocyte G/sub k/. The amino acid sequence of the proteolytic fragment is uniquely encoded by the cDNA of ..cap alpha../sub i/-3, thus identifying it as ..cap alpha../sub k/. The probable identity of ..cap alpha../sub i/-1 with ..cap alpha../sub p/ and possible roles for ..cap alpha../sub i/-2, as well as additional roles for ..cap alpha../sub i/-1 and ..cap alpha../sub i/-3 (..cap alpha../sub k/) are discussed.« less

  11. Chaperones of F[subscript 1]-ATPase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludlam, Anthony; Brunzelle, Joseph; Pribyl, Thomas

    2009-09-25

    Mitochondrial F{sub 1}-ATPase contains a hexamer of alternating {alpha} and {beta} subunits. The assembly of this structure requires two specialized chaperones, Atp11p and Atp12p, that bind transiently to {beta} and {alpha}. In the absence of Atp11p and Atp12p, the hexamer is not formed, and {alpha} and {beta} precipitate as large insoluble aggregates. An early model for the mechanism of chaperone-mediated F{sub 1} assembly (Wang, Z. G., Sheluho, D., Gatti, D. L., and Ackerman, S. H. (2000) EMBO J. 19, 1486--1493) hypothesized that the chaperones themselves look very much like the {alpha} and {beta} subunits, and proposed an exchange of Atp11pmore » for {alpha} and of Atp12p for {beta}; the driving force for the exchange was expected to be a higher affinity of {alpha} and {beta} for each other than for the respective chaperone partners. One important feature of this model was the prediction that as long as Atp11p is bound to {beta} and Atp12p is bound to {alpha}, the two F{sub 1} subunits cannot interact at either the catalytic site or the noncatalytic site interface. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to {alpha} and {beta} prevents further interactions between these F1 subunits. However, Atp11p and Atp12p do not resemble {alpha} or {beta}, and it is instead the F{sub 1} {gamma} subunit that initiates the release of the chaperones from {alpha} and {beta} and their further assembly into the mature complex.« less

  12. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease.

    PubMed

    Gao, Lei; Tian, Mi; Zhao, Hong-Yun; Xu, Qian-Qian; Huang, Yu-Ming; Si, Qun-Cao; Tian, Qing; Wu, Qing-Ming; Hu, Xia-Min; Sun, Li-Bo; McClintock, Shawn M; Zeng, Yan

    2016-02-01

    We recently demonstrated that activation of tyrosine receptor kinase B (TrkB) by 7, 8-dihydroxyflavone (7, 8-DHF), the selective TrkB agonist, increased surface alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors (AMPARs) AMPA receptor subunit GluR1 (GluA1) subunit expression at the synapses of Fragile X Syndrome mutant mice. This present study investigated the effects of 7, 8-DHF on both memory function and synapse structure in relation to the synapse protein level of AMPARs in the Tg2576 Alzheimer's disease (AD) mouse model. The study found that chronic oral administration of 7, 8-DHF significantly improved spatial memory and minimized dendrite loss in the hippocampus of Tg2576 mice. A key feature of 7, 8-DHF action was the increased expression of both GluA1 and GluA2 at synapses. Interestingly, 7, 8-DHF had no effect on the attenuation of amyloid precursor protein or Aβ exhibiting in the Tg2576 AD brains, yet it activated the phosphorylation of TrkB receptors and its downstream signals including CaMKII, Akt, Erk1/2, and cAMP-response element-binding protein. Importantly, cyclotraxin B (a TrkB inhibitor), U0126 (a Ras-ERK pathway inhibitor), Wortmannin (an Akt phosphorylation inhibitor), and KN-93 (a CaMKII inhibitor) counteracted the enhanced expression and phosphorylation of AMPAR subunits induced by 7, 8-DHF. Collectively, our results demonstrated that 7, 8-DHF acted on TrkB and resolved learning and memory impairments in the absence of reduced amyloid in amyloid precursor protein transgenic mice partially through improved synaptic structure and enhanced synaptic AMPARs. The findings suggest that the application of 7, 8-DHF may be a promising new approach to improve cognitive abilities in AD. We provided extensive data demonstrating that 7, 8-dihydroflavone, the TrkB agonist, improved Tg2576 mice spatial memory. This improvement is correlated with a reversion to normal values of GluA1 and GluA2 AMPA receptor subunits and dendritic spines in CA1. This work suggests that 7, 8-DHF is a suitable drug to potentiate in vivo Tropomyosin receptor kinase B (TrkB) signaling in the Alzheimer's disease mice model. © 2015 International Society for Neurochemistry.

  13. Characteristics of concatemeric GABAA receptors containing α4/δ subunits expressed in Xenopus oocytes

    PubMed Central

    Shu, Hong-Jin; Bracamontes, John; Taylor, Amanda; Wu, Kyle; Eaton, Megan M; Akk, Gustav; Manion, Brad; Evers, Alex S; Krishnan, Kathiresan; Covey, Douglas F; Zorumski, Charles F; Steinbach, Joe Henry; Mennerick, Steven

    2012-01-01

    BACKGROUND AND PURPOSE GABAA receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABAA receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems. EXPERIMENTAL APPROACH We engineered concatemeric (fused) subunits to ensure δ and α4 subunit expression. We tested the pharmacology of the concatemeric receptors, compared with a common synaptic-like receptor subunit combination (α1 +β2 +γ2L), and with free-subunit α4/δ receptors, expressed in Xenopus oocytes. KEY RESULTS δ-β2 −α4 +β2-α4 cRNA co-injected into Xenopus oocytes resulted in GABA-gated currents with the expected pharmacological properties of α4/δ-containing receptors. Criteria included sensitivity to agonists of different efficacy, sensitivity to the allosteric activator pentobarbital, and modulation of agonist responses by DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide; a δ-selective positive modulator), furosemide, and Zn2+. We used the concatemers to examine neurosteroid sensitivity of extrasynaptic-like, δ-containing receptors. We found no qualitative differences between extrasynaptic-like receptors and synaptic-like receptors in the actions of either negative or positive neurosteroid modulators of receptor function. Quantitative differences were explained by the partial agonist effects of the natural agonist GABA and by a mildly increased sensitivity to low steroid concentrations. CONCLUSIONS AND IMPLICATIONS The neurosteroid structure-activity profile for α4/δ-containing extrasynaptic receptors is unlikely to differ from that of synaptic-like receptors such as α1/β2/γ2-containing receptors. PMID:21950777

  14. The mongoose acetylcholine receptor alpha-subunit: analysis of glycosylation and alpha-bungarotoxin binding.

    PubMed

    Asher, O; Jensen, B S; Lupu-Meiri, M; Oron, Y; Fuchs, S

    1998-04-17

    The mongoose AChR alpha-subunit has been cloned and shown to be highly homologous to other AChR alpha-subunits, with only six differences in amino acid residues at positions that are conserved in animal species that bind alpha-bungarotoxin (alpha-BTX). Four of these six substitutions cluster in the ligand binding site, and one of them, Asn-187, forms a consensus N-glycosylation site. The mongoose glycosylated alpha-subunit has a higher apparent molecular mass than that of the rat glycosylated alpha-subunit, probably resulting from the additional glycosylation at Asn-187 of the mongoose subunit. The in vitro translated mongoose alpha-subunit, in a glycosylated or non-glycosylated form, does not bind alpha-BTX, indicating that lack of alpha-BTX binding can be achieved also in the absence of glycosylation.

  15. Toll-Like Receptor 2 Mediates Cellular Activation by the B Subunits of Type II Heat-Labile Enterotoxins

    PubMed Central

    Hajishengallis, George; Tapping, Richard I.; Martin, Michael H.; Nawar, Hesham; Lyle, Elizabeth A.; Russell, Michael W.; Connell, Terry D.

    2005-01-01

    The type II heat-labile enterotoxins (LT-IIa and LT-IIb) of Escherichia coli have an AB5 subunit structure similar to that of cholera toxin (CT) and other type I enterotoxins, despite significant differences in the amino acid sequences of their B subunits and different ganglioside receptor specificities. LT-II holotoxins and their nontoxic B subunits display unique properties as immunological adjuvants distinct from those of CT and its B subunits. In contrast to type II holotoxins, the corresponding pentameric B subunits, LT-IIaB and LT-IIbB, stimulated cytokine release in both human and mouse cells dependent upon Toll-like receptor 2 (TLR2). Induction of interleukin-1β (IL-1β), IL-6, IL-8, or tumor necrosis factor alpha in human THP-1 cells by LT-IIaB or LT-IIbB was inhibited by anti-TLR2 but not by anti-TLR4 antibody. Furthermore, transient expression of TLR1 and TLR2 in human embryonic kidney 293 cells resulted in activation of a nuclear factor-κB-dependent luciferase gene in response to LT-IIaB or LT-IIbB. Moreover, peritoneal macrophages from TLR2-deficient mice failed to respond to LT-IIaB or LT-IIbB, in contrast to wild-type or TLR4-deficient cells. These results demonstrate that besides their established binding to gangliosides, the B subunits of type II enterotoxins also interact with TLR2. Although a ganglioside-nonbinding mutant (T34I) of LT-IIaB effectively induced cytokine release, a phenotypically similar point mutation (T13I) in LT-IIbB abrogated cytokine induction, suggesting a variable requirement for gangliosides as coreceptors in TLR2 agonist activity. TLR2-dependent activation of mononuclear cells by type II enterotoxin B subunits appears to be a novel mechanism whereby these molecules may exert their immunomodulatory and adjuvant activities. PMID:15731031

  16. A novel mutation in the alpha-helix 1 of the C subunit of the F(1)/F(0) ATPase responsible for optochin resistance of a Streptococcus pneumoniae clinical isolate.

    PubMed

    Cogné, N; Claverys, J; Denis, F; Martin, C

    2000-10-01

    Previously reported mutations involved in optochin resistance of Streptococcus pneumoniae clinical isolates changed residues 48, 49 or 50, in the transmembrane alpha-helix 2 of the F(1)/F(0) ATPase subunit. We report here an unusual mutation which changes the sequence of the transmembrane alpha-helix 1 of the AtpC subunit. This mutation involves a Gly to Ser substitution resulting from a G to A transition at codon 14 of the atpC gene.

  17. Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta.

    PubMed

    Tsuneki, H; Klink, R; Léna, C; Korn, H; Changeux, J P

    2000-07-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed in the midbrain ascending dopaminergic system, a target of many addictive drugs. Here we assessed the intracellular Ca2+ level by imaging fura-2-loaded cells in substantia nigra pars compacta in mouse brain slices, and we examined the influence on this level of prolonged exposures to nicotine using mice lacking the nAChR beta2-subunit. In control cells, superfusion with nicotine (10-100 microM) caused a long-lasting rise of intracellular Ca2+ level which depended on extracellular Ca2+. This nicotinic response was almost completely absent in beta2-/- mutant mice, leaving a small residual response to a high concentration (100 microM) of nicotine which was inhibited by the alpha7-subunit-selective antagonist, methyllycaconitine. Conversely, the alpha7-subunit-selective agonist choline (10 mM) caused a methyllycaconitine-sensitive increase in intracellular Ca2+ level both in wild-type and beta2-/- mutant mice. Nicotine-elicited Ca2+ mobilization was reduced by the Na+ channel blocker tetrodotoxin (TTX) and by T-type Ca2+ channel blocking agents, whereas the choline-elicited Ca2+ increase was insensitive to TTX. Neither nicotine nor choline produced Ca2+ increase following inhibition of the release of Ca2+ from intracellular stores by dantrolene. These results demonstrate that in nigral dopaminergic neurons, nicotine can elicit Ca2+ mobilization via activation of two distinct nAChR subtypes: that of beta2-subunit-containing nAChR followed by activation of Na+ channel and T-type Ca2+ channels, and/or activation of alpha7-subunit-containing nAChR. The Ca2+ influx due to nAChR activation is subsequently amplified by the recruitment of intracellular Ca2+ stores. This Ca2+ mobilization may possibly contribute to the long-term effects of nicotine on the dopaminergic system.

  18. Neuroblastoma differentiation involves the expression of two isoforms of the alpha-subunit of Go.

    PubMed

    Brabet, P; Pantaloni, C; Rodriguez, M; Martinez, J; Bockaert, J; Homburger, V

    1990-04-01

    The regulation of GTP-binding proteins (G proteins) was examined during the course of differentiation of neuroblastoma N1E-115 cells. N1E-115 cell membranes possess three Bordetella pertussis toxin (PTX) substrates assigned to alpha-subunits (G alpha) of Go (a G protein of unknown function) and "Gi (a G protein inhibitory to adenylate cyclase)-like" proteins and one substrate of Vibrio cholerae toxin corresponding to an alpha-subunit of Gs (a G protein stimulatory to adenylate cyclase). In undifferentiated cells, only one form of Go alpha was found, having a pI of 5.8 Go alpha content increased by approximately twofold from the undifferentiated state to 96 h of cell differentiation. This is mainly due to the appearance of another Go alpha form having a pI of 5.55. Both Go alpha isoforms have similar sizes on sodium dodecyl sulfate-polyacrylamide gels, are recognized by polyclonal antibodies to bovine brain Go alpha, are ADP-ribosylated by PTX, and are covalently myristylated in whole N1E-115 cells. In addition, immunofluorescent staining of N1E-115 cells with Go alpha antibodies revealed that association of Go alpha with the plasma membrane appears to coincide with the expression of the most acidic isoform and morphological cell differentiation. In contrast, the levels of both Gi alpha and Gs alpha did not significantly change, whereas that of the common beta-subunit increased by approximately 30% over the same period. These results demonstrate specific regulation of the expression of Go alpha during neuronal differentiation.

  19. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonistmore » (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.« less

  20. PWZ-029, A COMPOUND WITH MODERATE INVERSE AGONIST FUNCTIONAL SELECTIVITY AT GABAA RECEPTORS CONTAINING α5 SUBUNITS, IMPROVES PASSIVE, BUT NOT ACTIVE, AVOIDANCE LEARNING IN RATS

    PubMed Central

    Savić, Miroslav M.; Clayton, Terry; Furtmüller, Roman; Gavrilović, Ivana; Samardžić, Janko; Savić, Snežana; Huck, Sigismund; Sieghart, Werner; Cook, James M.

    2008-01-01

    Benzodiazepine (BZ) site ligands affect vigilance, anxiety, memory processes, muscle tone and epileptogenic propensity through modulation of neurotransmission at GABAA receptors containing α1, α2, α3 or α5 subunits, and may have numerous experimental and clinical applications. The ability of nonselective BZ site inverse agonists to enhance cognition, documented in animal models and human studies, is clinically not feasible due to potentially unacceptable psychomotor effects. Most investigations to date have proposed the α1 and/or α5 subunit-containing GABAA receptors as comprising the memory-modulating population of these receptors. The novel ligand PWZ-029, which we synthesised and characterized electrophysiologically, possesses in vitro binding selectivity and moderate inverse agonist functional selectivity at α5-containing GABAA receptors. This ligand has also been examined in rats in the passive and active avoidance, spontaneous locomotor activity, elevated plus maze and grip strength tests, primarily predictive of the effects on the memory acquisition, basal locomotor activity, anxiety level and muscle tone, respectively. The improvement of task learning was detected at the dose of 5 mg/kg in the passive, but not active avoidance test. The inverse agonist PWZ-029 had no effect on anxiety or muscle tone, whereas at higher doses (10 and 20 mg/kg) it decreased locomotor activity. This effect was antagonized by flumazenil and also by the lower (but not the higher) dose of an agonist (SH-053-R-CH3-2’F) selective for GABAA receptors containing the α5 subunit. The hypolocomotor effect of PWZ-029 was not antagonized by the antagonist β-CCt exhibiting a preferential affinity for α1-subunit containing receptors. These data suggest that moderate negative modulation at GABAA receptors containing the α5 subunit is a sufficient condition for eliciting enhanced encoding/consolidation of declarative memory, while the influence of higher doses of modulators at these receptors on motor activity shows an intricate pattern whose relevance and mechanism await to be defined. PMID:18394590

  1. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    PubMed

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  2. G(o) transduces GABAB-receptor modulation of N-type calcium channels in cultured dorsal root ganglion neurons.

    PubMed

    Menon-Johansson, A S; Berrow, N; Dolphin, A C

    1993-11-01

    High-voltage-activated (HVA) calcium channel currents (IBa) were recorded from acutely replated cultured dorsal root ganglion (DRG) neurons. IBa was irreversibly inhibited by 56.9 +/- 2.7% by 1 microM omega-conotoxin-GVIA (omega-CTx-GVIA), whereas the 1,4-dihydropyridine antagonist nicardipine was ineffective. The selective gamma-aminobutyric acidB (GABAB) agonist, (-)-baclofen (50 microM), inhibited the HVA IBa by 30.7 +/- 5.4%. Prior application of omega-CTx-GVIA completely occluded inhibition of the HVA IBa by (-)-baclofen, indicating that in this preparation (-)-baclofen inhibits N-type current. To investigate which G protein subtype was involved, cells were replated in the presence of anti-G protein antisera. Under these conditions the antibodies were shown to enter the cells through transient pores created during the replating procedure. Replating DRGs in the presence of anti-G(o) antiserum, raised against the C-terminal decapeptide of the G alpha o subunit, reduced (-)-baclofen inhibition of the HVA IBa, whereas replating DRGs in the presence of the anti-Gi antiserum did not. Using anti-G alpha o antisera (1:2000) and confocal laser microscopy, G alpha o localisation was investigated in both unreplated and replated neurons. G alpha o immunoreactivity was observed at the plasma membrane, neurites, attachment plaques and perinuclear region, and was particularly pronounced at points of cell-to-cell contact. The plasma membrane G alpha o immunoreactivity was completely blocked by preincubation with the immunising G alpha o undecapeptide (1 microgram.ml-1) for 1 h at 37 degrees C. A similar treatment also blocked recognition of G alpha o in brain membranes on immunoblots.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. The primary and subunit structure of a novel type killer toxin produced by a halotolerant yeast, Pichia farinosa.

    PubMed

    Suzuki, C; Nikkuni, S

    1994-01-28

    A halotolerant yeast, Pichia farinosa KK1 strain, produces a unique killer toxin termed SMK toxin (salt-mediated killer toxin) which shows its maximum killer activity in the presence of 2 M NaCl. The toxin consists of two distinct subunits, alpha and beta, which are tightly linked without a disulfide bond under acidic conditions, even in the presence of 6 M urea. Under neutral conditions, however, the alpha subunit precipitates, resulting in the dissociation of the subunits and the loss of killer activity. The nucleotide sequence of the SMK1 gene predicts a 222 amino acid preprotoxin with a typical signal sequence, the hydrophobic alpha, an interstitial gamma polypeptide with a putative glycosylation site, and the hydrophilic beta. Amino acid sequence analyses of peptide fragments including the carboxyl-terminal peptides fragments including the carboxyl-terminal peptides from each subunit suggest that the alpha and beta subunits consist of amino acid residues 19-81 and 146-222 of the preprotoxin, respectively, and the molecular weight of the mature alpha beta dimer is 14,214. The KEX2-like endopeptidase and KEX1-like carboxypeptidase may be involved in the stepwise processing of the SMK preprotoxin. The maturation process and the functions of the SMK toxin are compared with the K1 toxin of Saccharomyces cerevisiae.

  4. Agonist-stimulated cobalt uptake provides selective visualization of neurons expressing AMPA- or kainate-type glutamate receptors in the retina.

    PubMed

    Pourcho, Roberta G; Qin, Pu; Goebel, Dennis J; Fyk-Kolodziej, Bozena

    2002-12-16

    Fast-acting excitatory neurotransmission in the retina is mediated primarily by glutamate, acting at alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) -selective and kainate-selective receptors. To localize these sites of action, cat retinas were stimulated with either AMPA or kainate and processed for histochemical visualization of cobalt uptake through calcium-permeable channels. Treatment with both agonists resulted in staining of A- and B-type horizontal cells and several types of OFF cone bipolar cells; there was no evidence for staining of ON cone bipolar cells or rod bipolar cells. The subpopulations of OFF cone bipolar cells differed in their responses with two distinct types that stained heavily with cobalt after exposure to AMPA and three different types that were preferentially labeled after exposure to kainate. Although many amacrine and ganglion cells appeared to respond to both agonists, AII amacrine cells were stained after stimulation by AMPA but not by kainate. The OFF cone bipolar cells that exhibit AMPA-stimulated cobalt uptake were found to have a high level of correspondence with cells that show immunocytochemical staining for the AMPA-selective glutamate receptor subunits GluR1 and GluR2/3. Similarly, the cone bipolar cells exhibiting kainate-stimulated cobalt uptake resemble those that are immunoreactive for the kainate subunit GluR5. The results indicate that, whereas many retinal neurons express both AMPA and kainate receptors, AII amacrine cells and subpopulations of OFF cone bipolar cells are limited to the expression of either AMPA or kainate receptors. This differential expression may contribute to the unique character of transmission by these cell types. Copyright 2002 Wiley-Liss, Inc.

  5. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  6. Identification of functional domains within the alpha and beta subunits of beta-hexosaminidase A through the expression of alpha-beta fusion proteins.

    PubMed

    Tse, R; Wu, Y J; Vavougios, G; Hou, Y; Hinek, A; Mahuran, D J

    1996-08-20

    There are three human beta-hexosaminidase isozymes which are composed of all possible dimeric combinations of an alpha and/or a beta subunit; A (alpha beta), and B (beta beta), and S (alpha alpha). The amino acid sequences of the two subunits are 60% identical. The homology between the two chains varies with the middle > the carboxy-terminal > > the amino-terminal portions. Although dimerization is required for activity, each subunit contains its own active site and differs in its substrate specificity and thermal stability. The presence of the beta subunit in hexosaminidase A also influences the substrate specificity of the alpha subunit; e.g., in vivo only the A heterodimer can hydrolyze GM2 ganglioside. In this report, we localize functional regions in the two subunits by cellular expression of alpha/beta fusion proteins joined at adjacently aligned residues. First, a chimeric alpha/beta chain was made by replacing the least well-conserved amino-terminal section of the beta chain with the corresponding alpha section. The biochemical characteristics of this protein were nearly identical to hexosaminidase B. Therefore, the most dissimilar regions in the subunits are not responsible for their dissimilar biochemical properties. A second fusion protein was made that also included the more homologous middle section of the alpha chain. This protein expressed the substrate specificity unique to isozymes containing an alpha subunit (A and S). We conclude that the region responsible for the ability of the alpha subunit to bind negatively charged substrates is located within residues alpha 132-283. Interestingly, the remaining carboxy-terminal section from the beta chain, beta 316-556, was sufficient to allow this chimera to hydrolyze GM2 ganglioside with 10% the specific activity of heterodimeric hexosaminidase A. Thus, the carboxy-terminal section of each subunit is likely involved in subunit-subunit interactions.

  7. Molecular basis of maple syrup urine disease: Novel mutations at the E1[alpha] locus that impair E1([alpha][sub 2][beta][sub 2]) assembly or decrease steady-state E1[alpha] mRNA levels of branched-chain [alpha]-keto acid dehydrogenase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.L.; Fisher, C.R.; Chuang, D.T.

    1994-08-01

    The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertionmore » generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.« less

  8. Exercise increases the plasma membrane content of the Na+ -K+ pump and its mRNA in rat skeletal muscles.

    PubMed

    Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A

    1996-02-01

    Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.

  9. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits.

    PubMed

    Snyder, P M; Cheng, C; Prince, L S; Rogers, J C; Welsh, M J

    1998-01-09

    Members of the DEG/ENaC protein family form ion channels with diverse functions. DEG/ENaC subunits associate as hetero- and homomultimers to generate channels; however the stoichiometry of these complexes is unknown. To determine the subunit stoichiometry of the human epithelial Na+ channel (hENaC), we expressed the three wild-type hENaC subunits (alpha, beta, and gamma) with subunits containing mutations that alter channel inhibition by methanethiosulfonates. The data indicate that hENaC contains three alpha, three beta, and three gamma subunits. Sucrose gradient sedimentation of alphahENaC translated in vitro, as well as alpha-, beta-, and gammahENaC coexpressed in cells, was consistent with complexes containing nine subunits. FaNaCh and BNC1, two related DEG/ENaC channels, produced complexes of similar mass. Our results suggest a novel nine-subunit stoichiometry for the DEG/ENaC family of ion channels.

  10. The convulsive and electroencephalographic changes produced by nonpeptidic delta-opioid agonists in rats: comparison with pentylenetetrazol.

    PubMed

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2006-06-01

    delta-Opioid agonists produce convulsions and antidepressant-like effects in rats. It has been suggested that the antidepressant-like effects are produced through a convulsant mechanism of action either through overt convulsions or nonconvulsive seizures. This study evaluated the convulsive and seizurogenic effects of nonpeptidic delta-opioid agonists at doses that previously were reported to produce antidepressant-like effects. In addition, delta-opioid agonist-induced electroencephalographic (EEG) and behavioral changes were compared with those produced by the chemical convulsant pentylenetetrazol (PTZ). For these studies, EEG changes were recorded using a telemetry system before and after injections of the delta-opioid agonists [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenz (SNC80) and [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide [(+)-BW373U86]. Acute administration of nonpeptidic delta-opioid agonists produced bilateral ictal and paroxysmal spike and/or sharp wave discharges. delta-Opioid agonists produced brief changes in EEG recordings, and tolerance rapidly developed to these effects; however, PTZ produced longer-lasting EEG changes that were exacerbated after repeated administration. Studies with antiepileptic drugs demonstrated that compounds used to treat absence epilepsy blocked the convulsive effects of nonpeptidic delta-opioid agonists. Overall, these data suggest that delta-opioid agonist-induced EEG changes are not required for the antidepressant-like effects of these compounds and that neural circuitry involved in absence epilepsy may be related to delta-opioid agonist-induced convulsions. In terms of therapeutic development, these data suggest that it may be possible to develop delta-opioid agonists devoid of convulsive properties.

  11. Evaluation of the alpha-1 and alpha-2 adrenoceptor-mediated effects of a series of dimethoxy-substituted tolazoline derivatives in the cardiovascular system of the pithed rat.

    PubMed

    Ruffolo, R R; Messick, K

    1985-01-01

    The alpha-1 and alpha-2 adrenoceptor-mediated effects of a series of dimethoxy-substituted tolazoline derivatives were investigated in the cardiovascular system of the pithed rat. The 2,5- and 3,5-dimethoxy-substituted tolazoline derivatives produced vasopressor responses that were inhibited by the alpha-1 adrenoceptor antagonist, prazosin (0.1 mg/kg i.v.), and were not affected by the alpha-2 adrenoceptor antagonist, yohimbine (1 mg/kg i.v.), suggesting that these derivatives selectively activate postsynaptic vascular alpha-1 adrenoceptors. The 2,5- and 3,5-dimethoxy-substituted derivatives of tolazoline did not produce an alpha-2 adrenoceptor-mediated inhibition of neurogenic tachycardia in cord-stimulated pithed rats and were therefore presumed to be devoid of alpha-2 adrenoceptor agonist activity. In contrast, 2,3-dimethoxytolazoline produced a vasopressor effect that was inhibited by yohimbine but not by prazosin, suggesting selective activation of postsynaptic vascular alpha-2 adrenoceptors. Consistent with this observation is the fact that 2,3-dimethoxytolazoline elicited a dose-dependent, alpha-2 adrenoceptor-mediated inhibition of neurogenic tachycardia in cord-stimulated pithed rat. 3,4-Dimethoxytolazoline was a weak alpha-1 adrenoceptor agonist in the vasculature of the pithed rat and was devoid of agonist activity at alpha-2 adrenoceptors. However, 3,4-dimethoxytolazoline was found to be an alpha-2 adrenoceptor antagonist of similar potency as yohimbine. The results of the present study indicate that dimethoxy-substituted derivatives of tolazoline possess different activities and selectivities at alpha-1 and alpha-2 adrenoceptors depending upon the positions of substitution.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Assembly of the epithelial Na+ channel evaluated using sucrose gradient sedimentation analysis.

    PubMed

    Cheng, C; Prince, L S; Snyder, P M; Welsh, M J

    1998-08-28

    Three subunits, alpha, beta, and gamma, contribute to the formation of the epithelial Na+ channel. To investigate the oligomeric assembly of the channel complex, we used sucrose gradient sedimentation analysis to determine the sedimentation properties of individual subunits and heteromultimers comprised of multiple subunits. When the alpha subunit was expressed alone, it first formed an oligomeric complex with a sedimentation coefficient of 11 S, and then generated a higher order multimer of 25 S. In contrast, individual beta and gamma subunits predominately assembled into 11 S complexes. We obtained similar results with expression in cells and in vitro. When we co-expressed beta with alpha or with alpha plus gamma, the beta subunit assembled into a 25 S complex. Glycosylation of the alpha subunit was not required for assembly into a 25 S complex. We found that the alpha subunit formed intra-chain disulfide bonds. Although such bonds were not required to generate an oligomeric complex, under nonreducing conditions the alpha subunit formed a complex that migrated more homogeneously at 25 S. This suggests that intra-chain disulfide bonds may stabilize the complex. These data suggest that the epithelial Na+ channel subunits form high order oligomeric complexes and that the alpha subunit contains the information that facilitates such formation. Interestingly, the ability of the alpha, but not the beta or gamma, subunit to assemble into a 25 S homomeric complex correlates with the ability of these subunits to generate functional channels when expressed alone.

  13. Chimeras of the integrin beta subunit mid-region reveal regions required for heterodimer formation and for activation.

    PubMed

    Hyland, R H; Douglass, W A; Tan, S M; Law, S K

    2001-01-01

    A central region of the beta2 integrin subunit, RN (residues D300 to C459), was replaced by the equivalent sequences from beta1 and beta7 to give the chimeras beta2RN1 and beta2RN7. Whilst the former construct failed to form heterodimer at the cell surface with alphaL, the later of these could be expressed together with the alphaL subunit to form a variant LFA-1. Based on recent modelling work, the RN region consists of two parts, one is the C-terminal end of the putative A-domain (RB, residues D300 to A359), and the other the mid-region (BN, residues Y360 to C459). Chimeras exchanging the two component regions were made. Of the four resultant chimeras, only the beta2RB1 chimera failed to support LFA-1 expression. Thus the beta1 specific residues of this region affect the interaction with the alphaL subunit. Whereas the alphaL/beta2RB7 LFA-1 variant is wildtype like with respect to ICAM-1 adhesion, the alphaLbeta2BN1 and alphaLbeta2BN7, as well as the alphaLbeta2RN7, variants are more adhesive than the wildtype. These results suggest that an authentic beta2 mid-region is, in part, required for maintaining the LFA-1 in a resting state.

  14. Nicotinic acetylcholine receptor alpha5 subunits modulate oxotremorine-induced salivation and tremor.

    PubMed

    Wang, Ningshan; Orr-Urtreger, Avi; Chapman, Joab; Rabinowitz, Ruth; Korczyn, Amos D

    2004-07-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) are composed of 12 subunits (alpha2-alpha10 and beta2-beta4). alpha5 Subunits, expressed throughout the central nervous system (CNS) and the autonomic nervous system (ANS), possess unique pharmacological properties. The effects of oxotremorine (OXO) on autonomic functions and tremor were examined in mice lacking alpha5 nAChR subunits (alpha5-/-) and compared with those in wild-type (WT) control mice. The alpha5-/- mice showed significantly increased salivation and tremor responses to OXO. The hypothermia, bradycardia and defecation induced by OXO were of similar magnitudes in the two mouse strains. The enhanced OXO effects in alpha5-/- mice indicate inhibitory effects of alpha5 subunits in autonomic ganglia, and support the participation of these subunits in cholinergic transmission in autonomic ganglia.

  15. Further studies on the quaternary structure of yeast casein kinase II.

    PubMed

    Szyszka, R; Lopaczyński, W; Gałasiński, W; Grankowski, N; Gasior, E

    1986-01-01

    Casein kinase type II were isolated by the same procedure, from rat liver, human placenta, Querin carcinoma and yeast, and characterized. The mammalian enzymes were composed of three subunits alpha, alpha' and beta, whereas yeast kinase was composed of two subunits alpha and alpha'. It was shown that the catalytic activity, substrate and phosphate donor specificity, sensitivity to heparin and spermine were the same for all the kinases tested. The results give additional support to the suggestion [1] that the beta subunit is not required for optimal activity and specificity of yeast casein kinase II. The quaternary structure of the yeast enzyme of a molecular weight of approximately 150 000 is proposed as alpha2 alpha'2.

  16. Amino acid sequence of the human fibronectin receptor

    PubMed Central

    1987-01-01

    The amino acid sequence deduced from cDNA of the human placental fibronectin receptor is reported. The receptor is composed of two subunits: an alpha subunit of 1,008 amino acids which is processed into two polypeptides disulfide bonded to one another, and a beta subunit of 778 amino acids. Each subunit has near its COOH terminus a hydrophobic segment. This and other sequence features suggest a structure for the receptor in which the hydrophobic segments serve as transmembrane domains anchoring each subunit to the membrane and dividing each into a large ectodomain and a short cytoplasmic domain. The alpha subunit ectodomain has five sequence elements homologous to consensus Ca2+- binding sites of several calcium-binding proteins, and the beta subunit contains a fourfold repeat strikingly rich in cysteine. The alpha subunit sequence is 46% homologous to the alpha subunit of the vitronectin receptor. The beta subunit is 44% homologous to the human platelet adhesion receptor subunit IIIa and 47% homologous to a leukocyte adhesion receptor beta subunit. The high degree of homology (85%) of the beta subunit with one of the polypeptides of a chicken adhesion receptor complex referred to as integrin complex strongly suggests that the latter polypeptide is the chicken homologue of the fibronectin receptor beta subunit. These receptor subunit homologies define a superfamily of adhesion receptors. The availability of the entire protein sequence for the fibronectin receptor will facilitate studies on the functions of these receptors. PMID:2958481

  17. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    PubMed

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  18. Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells.

    PubMed

    Yuan, X J; Wang, J; Juhaszova, M; Golovina, V A; Rubin, L J

    1998-04-01

    K(+)-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role of different K+ currents in regulating [Ca2+]cyt and explored the molecular identification of voltage-gated K+ (KV)- and Ca(2+)-activated K+ (KCa)-channel genes expressed in pulmonary arterial smooth muscle cells (PASMC). Two kinetically distinct KV currents [IK(V)], a rapidly inactivating (A-type) and a noninactivating delayed rectifier, as well as a slowly activated KCa current [IK(Ca)] were identified. IK(V) was reversibly inhibited by 4-aminopyridine (5 mM), whereas IK(Ca) was significantly inhibited by charybdotoxin (10-20 nM). K+ channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. Five KV-channel alpha-subunit genes from the Shaker subfamily (KV1.1, KV1.2, KV1.4, KV1.5, and KV1.6), a KV-channel alpha-subunit gene from the Shab subfamily (KV2.1), a KV-channel modulatory alpha-subunit (KV9.3), and a KCa-channel alpha-subunit gene (rSlo), as well as three KV-channel beta-subunit genes (KV beta 1.1, KV beta 2, and KV beta 3) are expressed in PASMC. The data suggest that 1) native K+ channels in PASMC are encoded by multiple genes; 2) the delayed rectifier IK(V) may be generated by the KV1.1, KV1.2, KV1.5, KV1.6, KV2.1, and/or KV2.1/KV9.3 channels; 3) the A-type IK(V) may be generated by the KV1.4 channel and/or the delayed rectifier KV channels (KV1 subfamily) associated with beta-subunits; and 4) the IK(Ca) may be generated by the rSlo gene product. The function of the KV channels plays an important role in the regulation of membrane potential and [Ca2+]cyt in PASMC.

  19. Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP.

    PubMed

    Maurel, C; Kado, R T; Guern, J; Chrispeels, M J

    1995-07-03

    The vacuolar membrane protein alpha-TIP is a seed-specific protein of the Major Intrinsic Protein family. Expression of alpha-TIP in Xenopus oocytes conferred a 4- to 8-fold increase in the osmotic water permeability (Pf) of the oocyte plasma membrane, showing that alpha-TIP forms water channels and is thus a new aquaporin. alpha-TIP has three putative phosphorylation sites on the cytoplasmic side of the membrane (Ser7, Ser23 and Ser99), one of which (Ser7) has been shown to be phosphorylated. We present several lines of evidence that the activity of this aquaporin is regulated by phosphorylation. First, mutation of the putative phosphorylation sites in alpha-TIP (Ser7Ala, Ser23Ala and Ser99Ala) reduced the apparent water transport activity of alpha-TIP in oocytes, suggesting that phosphorylation of alpha-TIP occurs in the oocytes and participates in the control of water channel activity. Second, exposure of oocytes to the cAMP agonists 8-bromoadenosine 3',5'-cyclic monophosphate, forskolin and 3-isobutyl-1-methylxanthine, which stimulate endogenous protein kinase A (PKA), increased the water transport activity of alpha-TIP by 80-100% after 60 min. That the protein can be phosphorylated by PKA was demonstrated by phosphorylating alpha-TIP in isolated oocyte membranes with the bovine PKA catalytic subunit. Third, the integrity of the three sites at positions 7, 23 and 99 was necessary for the cAMP-dependent increase in the Pf of oocytes expressing alpha-TIP, as well as for in vitro phosphorylation of alpha-TIP. These findings demonstrate that the alpha-TIP water channel can be modulated via phosphorylation of Ser7, Ser23 and Ser99.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Effects of chronic exposure to an anabolic androgenic steroid cocktail on alpha5-receptor-mediated GABAergic transmission and neural signaling in the forebrain of female mice.

    PubMed

    Penatti, C A A; Costine, B A; Porter, D M; Henderson, L P

    2009-06-30

    Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone that are illicitly self-administered for enhancement of performance and body image, but which also have significant effects on the brain and on behavior. While the stereotypical AAS user is an adult male, AAS abuse in women is rapidly increasing, yet few studies have examined AAS effects in female subjects. We have assessed the effects in female mice of a combination of commonly abused AAS on neuronal activity and neurotransmission mediated by GABA type A (GABA(A)) receptors in the medial preoptic nucleus (MPN); a nexus in the circuits of the hypothalamus and forebrain that are critical for the expression of social behaviors known to be altered in AAS abuse. Our data indicate that chronic exposure to AAS resulted in androgen receptor (AR)-dependent upregulation of alpha(5), beta(3) and delta subunit mRNAs. Acute application of the alpha(5) subunit-selective inverse agonist, L-655,708 (L6), indicated that a significant fraction of the synaptic current is carried by alpha(5)-containing receptors and that AAS treatment may enhance expression of alpha(5)-containing receptors contributing to synaptic, but not tonic, currents in the MPN. AAS treatment also resulted in a significant decrease in action potential frequency in MPN neurons that was also correlated with an increased sensitivity to L-655,708. Our data demonstrate that chronic exposure to multiple AAS elicits significant changes in GABAergic transmission and neuronal activity that are likely to reflect changes in the expression of alpha(5)-containing synaptic receptors within the MPN.

  1. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-03-01

    1. Serotonin 5-HT(1B) receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5'-0-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding strategy, we characterised Galpha(i3) subunit activation by h5-HT(1B) receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. The agonists, 5-HT, alniditan and BMS181,101, stimulated Galpha(i3), whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT(1B) receptor ligand, S18127, modestly stimulated Galpha(i3) and reversed the actions of both 5-HT and methiothepin. S18127 (1 micro M) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. 3. Isotopic dilution experiments ([(35)S]GTPgammaS versus GTPgammaS) revealed high-affinity [(35)S]GTPgammaS binding to Galpha(i3) subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [(35)S]GTPgammaS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPgammaS for Galpha(i3) subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. 4. h5-HT(1B) receptor-mediated Galpha(i3) subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [(35)S]GTPgammaS binding, basal Galpha(i3) activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Galpha(i3) activation. 5. In conclusion, at h5-HT(1B) receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Galpha(i3), and its reversal by S18127, reveals constitutive activation of this Galpha subunit; (ii) constitutive Galpha(i3) activation can be quantified by isotopic dilution [(35)S]GTPgammaS binding and (iii) decreasing NaCl concentrations enhances Galpha(i3) activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Galpha(i3).

  2. Structure of the beta 2 homodimer of bacterial luciferase from Vibrio harveyi: X-ray analysis of a kinetic protein folding trap.

    PubMed Central

    Thoden, J. B.; Holden, H. M.; Fisher, A. J.; Sinclair, J. F.; Wesenberg, G.; Baldwin, T. O.; Rayment, I.

    1997-01-01

    Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the folding pathway, appears to constitute a kinetically trapped alternative to the heterodimeric enzyme (Sinclair JF, Ziegler MM, Baldwin TO. 1994. Kinetic partitioning during protein folding yields multiple native states. Nature Struct Biol 1: 320-326). Here we describe the X-ray crystal structure of the beta 2 homodimer of luciferase from V. harveyi determined and refined at 1.95 A resolution. Crystals employed in the investigational belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a = 58.8 A, b = 62.0 A, and c = 218.2 A and contained one dimer per asymmetric unit. Like that observed in the functional luciferase alpha beta heterodimer, the major tertiary structural motif of each beta subunit consists of an (alpha/beta)8 barrel (Fisher AJ, Raushel FM, Baldwin TO, Rayment I. 1995. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34: 6581-6586). The root-mean-square deviation of the alpha-carbon coordinates between the beta subunits of the hetero- and homodimers is 0.7 A. This high resolution X-ray analysis demonstrated that "domain" or "loop" swapping has not occurred upon formation of the beta 2 homodimer and thus the stability of the beta 2 species to denaturation cannot be explained in such simple terms. In fact, the subunit:subunit interfaces observed in both the beta 2 homodimer and alpha beta heterodimer are remarkably similar in hydrogen-bonding patterns and buried surface areas. PMID:9007973

  3. Interaction of the alpha-subunit of Escherichia coli RNA polymerase with DNA: rigid body nature of the protein-DNA contact.

    PubMed

    Heyduk, E; Baichoo, N; Heyduk, T

    2001-11-30

    The alpha-subunit of Escherichia coli RNA polymerase plays an important role in the activity of many promoters by providing a direct protein-DNA contact with a specific sequence (UP element) located upstream of the core promoter sequence. To obtain insight into the nature of thermodynamic forces involved in the formation of this protein-DNA contact, the binding of the alpha-subunit of E. coli RNA polymerase to a fluorochrome-labeled DNA fragment containing the rrnB P1 promoter UP element sequence was quantitatively studied using fluorescence polarization. The alpha dimer and DNA formed a 1:1 complex in solution. Complex formation at 25 degrees C was enthalpy-driven, the binding was accompanied by a net release of 1-2 ions, and no significant specific ion effects were observed. The van't Hoff plot of temperature dependence of binding was linear suggesting that the heat capacity change (Deltac(p)) was close to zero. Protein footprinting with hydroxyradicals showed that the protein did not change its conformation upon protein-DNA contact formation. No conformational changes in the DNA molecule were detected by CD spectroscopy upon protein-DNA complex formation. The thermodynamic characteristics of the binding together with the lack of significant conformational changes in the protein and in the DNA suggested that the alpha-subunit formed a rigid body-like contact with the DNA in which a tight complementary recognition interface between alpha-subunit and DNA was not formed.

  4. Molecular analysis and functional expression of the human type E neuronal Ca2+ channel alpha 1 subunit.

    PubMed

    Schneider, T; Wei, X; Olcese, R; Costantin, J L; Neely, A; Palade, P; Perez-Reyes, E; Qin, N; Zhou, J; Crawford, G D

    1994-01-01

    A human brain alpha 1 Ca2+ channel subunit was cloned and expressed in Xenopus laevis oocytes. The open reading frame, encoding 2,312 amino acids, has high homology to the marine ray doe-1, the rat E-type, and the rabbit brain BII alpha 1 subunits. The amino and carboxy termini of this human.E-type alpha 1 subunit (alpha 1E) are most similar to the rabbit BII-1 splice variant, the remainder being colinear with the BII alpha 1 with the exception of two insertions, one of 43 amino acids in the C-terminus and another of 7 amino acids, found also in the rat alpha 1E, between domains II and III. Two potential Ca2+ binding sites are predicted from its primary structure. The expression of inward Ba2+ currents reveals voltage-dependent activation and inactivation measured by the cut-open oocyte vaseline-gap technique, with kinetics that correspond to that of a high-voltage-activated neuronal Ca2+ channel, and pharmacologic properties that resemble those of some low-voltage-activated neuronal Ca2+ currents. The human alpha 1E currents are insensitive to omega-conotoxin-GVIA (1 microM), omega-agatoxin-IVA (200 nM), a synthetic funnel web spider toxin (FTX, 20 microM), and Bay-K8644 (0.5 microM); they are inhibited 20% by high concentrations of methoxyverapamil and diltiazem, 65% by 0.1% crude funnel web spider venom and 100% by Ni2+ (IC50 = 30 nM). Single-channel records show a complex activity pattern with several apparent conductance states, the largest having a conductance of 14 pS.

  5. h5-HT1B receptor-mediated constitutive Gαi3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT

    PubMed Central

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-01-01

    Serotonin 5-HT1B receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5′-0-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding strategy, we characterised Gαi3 subunit activation by h5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells. The agonists, 5-HT, alniditan and BMS181,101, stimulated Gαi3, whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT1B receptor ligand, S18127, modestly stimulated Gαi3 and reversed the actions of both 5-HT and methiothepin. S18127 (1 μM) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. Isotopic dilution experiments ([35S]GTPγS versus GTPγS) revealed high-affinity [35S]GTPγS binding to Gαi3 subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [35S]GTPγS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPγS for Gαi3 subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. h5-HT1B receptor-mediated Gαi3 subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [35S]GTPγS binding, basal Gαi3 activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Gαi3 activation. In conclusion, at h5-HT1B receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Gαi3, and its reversal by S18127, reveals constitutive activation of this Gα subunit; (ii) constitutive Gαi3 activation can be quantified by isotopic dilution [35S]GTPγS binding and (iii) decreasing NaCl concentrations enhances Gαi3 activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Gαi3. PMID:12684263

  6. Secondary reduction of alpha7B integrin in laminin alpha2 deficient congenital muscular dystrophy supports an additional transmembrane link in skeletal muscle.

    PubMed

    Cohn, R D; Mayer, U; Saher, G; Herrmann, R; van der Flier, A; Sonnenberg, A; Sorokin, L; Voit, T

    1999-03-01

    The integrins are a large family of heterodimeric transmembrane cellular receptors which mediate the association between the extracellular matrix (ECM) and cytoskeletal proteins. The alpha7beta1 integrin is a major laminin binding integrin in skeletal and cardiac muscle and is thought to be involved in myogenic differentiation and migration processes. The main binding partners of the alpha7 integrin are laminin-1 (alpha1-beta1-gamma1), laminin-2 (alpha2-beta1-gamma1) and laminin-4 (alpha2-beta2-gamma1). Targeted deletion of the gene for the alpha7 integrin subunit (ITGA7) in mice leads to a novel form of muscular dystrophy. In the present study we have investigated the expression of two alternative splice variants, the alpha7B and beta1D integrin subunits, in normal human skeletal muscle, as well as in various forms of muscular dystrophy. In normal human skeletal muscle the expression of the alpha7 integrin subunit appeared to be developmentally regulated: it was first detected at 2 years of age. In contrast, the beta1D integrin could be detected in immature and mature muscle in the sarcolemma of normal fetal skeletal muscle at 18 weeks gestation. The expression of alpha7B integrin was significantly reduced at the sarcolemma in six patients with laminin alpha2 chain deficient congenital muscular dystrophy (CMD) (age >2 years). However, this reduction was not correlated with the amount of laminin alpha2 chain expressed. In contrast, the expression of the laminin alpha2 chain was not altered in the skeletal muscle of the alpha7 knock-out mice. These data argue in favor that there is not a tight correlation between the expression of the alpha7 integrin subunit and that of the laminin alpha2 chain in either human or murine dystrophic muscle. Interestingly, in dystrophinopathies (Duchenne and Becker muscular dystrophy; DMD/BMD) expression of alpha7B was upregulated irrespective of the level of dystrophin expression as shown by a strong sarcolemmal staining pattern even in young boys (age <2 years). The expression of the beta1D integrin subunit was not altered in any of our patients with different types of muscular dystrophy. In contrast, sarcolemmal expression of beta1D integrin was significantly reduced in the alpha7 integrin knock-out mice, whereas the expression of the components of the DGC was not altered. The secondary loss of alpha7B in laminin alpha2 chain deficiency defines a biochemical change in the composition of the plasma membrane resulting from a primary protein deficiency in the basal lamina. These findings, in addition to the occurrence of a muscular dystrophy in alpha7 deficient mice, implies that the alpha7B integrin is an important laminin receptor within the plasma membrane which plays a significant role in skeletal muscle function and stability.

  7. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    PubMed Central

    Hou, Y.; Vavougios, G.; Hinek, A.; Wu, K. K.; Hechtman, P.; Kaplan, F.; Mahuran, D. J.

    1996-01-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8659543

  8. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Meisheng; Tran, V.T.; Fong, H.K.W.

    1991-05-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha}more » protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.« less

  9. STIM and Orai proteins and the non-capacitative ARC channels

    PubMed Central

    Shuttleworth, Trevor J.

    2012-01-01

    The ARC channel is a small conductance, highly Ca2+-selective ion channel whose activation is specifically dependent on low concentrations of arachidonic acid acting at an intracellular site. They are widely distributed in diverse cell types where they provide an alternative, store-independent pathway for agonist-activated Ca2+ entry. Although biophysically similar to the store-operated CRAC channels, these two conductances function under distinct conditions of agonist stimulation, with the ARC channels providing the predominant route of Ca2+ entry during the oscillatory signals generated at low agonist concentrations. Despite these differences in function, like the CRAC channel, activation of the ARC channels is dependent on STIM1, but it is the pool of STIM1 that constitutively resides in the plasma membrane that is responsible. Similarly, both channels are formed by Orai proteins but, whilst the CRAC channel pore is a tetrameric assembly of Orai1 subunits, the ARC channel pore is formed by a heteropentameric assembly of three Orai1 subunits and two Orai3 subunits. There is increasing evidence that the activity of these channels plays a critical role a variety of different cellular activities. PMID:22201777

  10. In vivo microdialysis of noradrenaline overflow: effects of alpha-adrenoceptor agonists and antagonists measured by cumulative concentration-response curves.

    PubMed Central

    van Veldhuizen, M. J.; Feenstra, M. G.; Heinsbroek, R. P.; Boer, G. J.

    1993-01-01

    1. The purpose of the present study was to compare the effects of several alpha-adrenoceptor agonists and antagonists on cerebral cortical overflow of endogenous noradrenaline (NA) in freely moving rats. One or two days after the implantation of transcerebral dialysis tubes in the frontoparietal cortex, extracellular NA levels were monitored on-line with high performance liquid chromatography and electrochemical detection. The drugs were applied locally via the dialysis membrane, and effects on NA overflow were determined in cumulative concentration-response curves. 2. The average basal cortical NA overflow of all experiments was 0.25 pg min-1. The alpha 2-adrenoceptor agonists caused a concentration-dependent decrease in NA levels. UK-14,304 was the most potent and B-HT 933 the least potent agonist. The maximal decrease in NA overflow was to 10-15% of control levels after UK-14,304 or moxonidine, to 30% after clonidine and to 50% after B-HT 933 administration. Continuous activation of the presynaptic alpha 2-adrenoceptor with 10(-6) M UK-14,304 caused a decrease in NA levels to 40-50% of basal levels. This decrease was reached within 1 h and remained stable for the entire 3 h measurement period. The alpha 1-adrenoceptor agonists, phenylephrine and methoxamine, induced an increase in NA levels to 225% and 300%, respectively, at a concentration of 10(-3) M. 3. Local application of alpha 2-adrenoceptor antagonists caused an increase in NA levels, with idazoxan being more potent than piperoxan. Yohimbine did not cause any significant change. 4. All drugs used in these in vivo experiments had in vitro recoveries across the dialysis membrane between 10 and 20%.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8102934

  11. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  12. Structural integration in hypoxia-inducible factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dalei; Potluri, Nalini; Lu, Jingping

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinctmore » pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.« less

  13. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    PubMed

    Hou, Y; Vavougios, G; Hinek, A; Wu, K K; Hechtman, P; Kaplan, F; Mahuran, D J

    1996-07-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site.

  14. Calcium/calmodulin-dependent kinase II phosphorylation of the GABAA receptor alpha1 subunit modulates benzodiazepine binding.

    PubMed

    Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J

    2002-09-01

    gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.

  15. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression.

    PubMed

    Sato, Takanobu; Kitahara, Kousuke; Susa, Takao; Kato, Takako; Kato, Yukio

    2006-10-01

    Recently, we have reported that a Prophet of Pit-1 homeodomain factor, Prop-1, is a novel transcription factor for the porcine follicle-stimulating hormone beta subunit (FSHbeta) gene. This study subsequently aimed to examine the role of Prop-1 in the gene expression of two other porcine gonadotropin subunits, pituitary glycoprotein hormone alpha subunit (alphaGSU), and luteinizing hormone beta subunit (LHbeta). A series of deletion mutants of the porcine alphaGSU (up to -1059 bp) and LHbeta (up to -1277 bp) promoters were constructed in the reporter vector, fused with the secreted alkaline phosphatase gene (pSEAP2-Basic). Transient transfection studies using GH3 cells were carried out to estimate the activation of the porcine alphaGSU and LHbeta promoters by Prop-1, which was found to activate the alphaGSU promoter of -1059/+12 bp up to 11.7-fold but not the LHbeta promoter. Electrophoretic mobility shift assay and DNase I footprinting analysis revealed that Prop-1 binds to six positions, -1038/-1026, -942/-928, -495/-479, -338/-326, -153/-146, and -131/-124 bp, that comprise the A/T cluster. Oligonucleotides of six Prop-1 binding sites were directly connected to the minimum promoter of alphaGSU, fused in the pSEAP2-Basic vector, followed by transfecting GH3 cells to determine the cis-acting activity. Finally, we concluded that at least five Prop-1 binding sites are the cis-acting elements for alphaGSU gene expression. The present results revealed a notable feature of the proximal region, where three Prop-1-binding sites are close to and/or overlap the pituitary glycoprotein hormone basal element, GATA-binding element, and junctional regulatory element. To our knowledge, this is the first demonstration of the role of Prop-1 in the regulation of alphaGSU gene expression. These results, taken together with our previous finding that Prop-1 is a transcription factor for FSHbeta gene, confirm that Prop-1 modulates the synthesis of FSH at the transcriptional level. On the other hand, the defects of Prop-1 are known to cause dwarfism and combined pituitary hormone deficiency accompanying hypogonadism. Accordingly, the present observations provide a novel view to understand the hypogonadism caused by Prop-1 defects at the molecular level through the regulatory mechanism of alphaGSU and FSHbeta gene expressions.

  16. Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha as a Novel Target for Bipolar Disorder and Other Neuropsychiatric Disorders.

    PubMed

    Nierenberg, Andrew A; Ghaznavi, Sharmin A; Sande Mathias, Isadora; Ellard, Kristen K; Janos, Jessica A; Sylvia, Louisa G

    2018-05-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) is a protein that regulates metabolism and inflammation by activating nuclear receptors, especially the family of peroxisome proliferator-activated receptors (PPARs). PGC-1 alpha and PPARs also regulate mitochondrial biogenesis, cellular energy production, thermogenesis, and lipid metabolism. Brain energy metabolism may also be regulated in part by the interaction between PGC-1 alpha and PPARs. Because neurodegenerative diseases (Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis) and bipolar disorder have been associated with dysregulated mitochondrial and brain energy metabolism, PGC-1 alpha may represent a potential drug target for these conditions. The purpose of this article is to review the physiology of PGC-1 alpha, PPARs, and the role of PPAR agonists to target PGC-1 alpha to treat neurodegenerative diseases and bipolar disorder. We also review clinical trials of repurposed antidiabetic thiazolidines and anti-triglyceride fibrates (PPAR agonists) for neurodegenerative diseases and bipolar disorder. PGC-1 alpha and PPARs are innovative potential targets for bipolar disorder and warrant future clinical trials. Copyright © 2018. Published by Elsevier Inc.

  17. Potent and selective agonists of alpha-melanotropin (alphaMSH) action at human melanocortin receptor 5; linear analogs of alpha-melanotropin.

    PubMed

    Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana

    2007-05-01

    Alpha-melanotropin, Ac-Ser(1)-Tyr-Ser-Met-Glu-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2)(1), is a non-selective endogenous agonist for the melanocortin receptor 5; the receptor present in various peripheral tissues and in the brain, cortex and cerebellum. Most of the synthetic analogs of alphaMSH, including a broadly used and more potent the NDP-alphaMSH peptide, Ac-Ser(1)-Tyr-Ser-Nle(4)-Glu-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2), are also not particularly selective for MC5R. To elucidate physiological functions of the melanocortin receptor 5 in rodents and humans, the receptor subtype selective research tools are needed. We report herein syntheses and pharmacological evaluation in vitro of several analogs of NDP-alphaMSH which are highly potent and specific agonists for the human MC5R. The new linear peptides, of structures and solubility properties similar to those of the endogenous ligand alphaMSH, are exemplified by compound 7, Ac-Ser(1)-Tyr-Ser-Met-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2) (Oic: octahydroindole-2-COOH, 4,4'-Bip: 4,4'-biphenylalanine, Pip: pipecolic acid), shortly NODBP-alphaMSH, which has an IC(50)=0.74 nM (binding assay) and EC(50)=0.41 (cAMP production assay) at hMC5R nM and greater than 3500-fold selectivity with respect to the melanocortin receptors 1b, 3 and 4. A shorter peptide derived from NODBP-alphaMSH: Ac-Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9) -NH(2) (17) was measured to be an agonist only 10-fold less potent at hMC5R than the full length parent peptide. In the structure of this smaller analog, the Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8) segment was found to be critical for high agonist potency, while the C-terminal Trp(9) residue was shown to be required for high hMC5R selectivity versus hMC1b,3,4R.

  18. A DFT approach to discriminate the antagonist and partial agonist activity of ligands binding to the NMDA receptor

    NASA Astrophysics Data System (ADS)

    Haslak, Zeynep Pinar; Bozkurt, Esra; Dutagaci, Bercem; De Proft, Frank; Aviyente, Viktorya; De Vleeschouwer, Freija

    2018-02-01

    The activation of N-methyl-D-aspartate receptors is found to be intimately associated with neurodegenerative diseases which make them promising therapeutic targets. Despite the significantly increasing multidisciplinary interests centred on this ionotropic channel, design of new ligands with intended functional activity remains a great challenge. In this article, a computational study based on density functional theory is presented to understand the structural factors of ligands determining their function as antagonists and partial agonists. With this aim, the GluN1 subunit is chosen as being one of the essential components in the activation mechanism, and quantum chemical calculations are implemented for 30 antagonists and 30 partial agonists known to bind to this subunit with different binding affinities. Several quantum chemical descriptors are investigated which might unlock the difference between antagonists and partial agonists.

  19. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    PubMed

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT1A receptors. This affected markedly the affinity ratios of certain compounds. For example, (+/-)-idazoxan was only 3.6-fold selective for h alpha2A versus h5-HT1A but 51-fold selective for r alpha2A versus r5-HT1A receptors. Conversely, yohimbine was tenfold selective for h alpha2A versus h5-HT1A adrenoceptors but 4.2-fold selective for r alpha2A versus r5-HT1A receptors. Nevertheless, both atipamezole and DMT were highly selective for both rat and human alpha2A versus rat or human 5-HT1A receptors. In conclusion, these data indicate that: (1) the agonist DMT and the antagonist atipamezole are the ligands of choice to distinguish alpha2-mediated from 5-HT1A-mediated actions, whilst several of the other compounds show only low or modest selectivity for alpha2A over 5-HT1A receptors; (2) caution should be exercised in experimental and clinical interpretation of the actions of traditionally employed alpha2 ligands, such as clonidine, yohimbine and (+/-)-idazoxan, which exhibit marked agonist activity at 5-HT1A receptors.

  20. A recombinant tail-less integrin beta 4 subunit disrupts hemidesmosomes, but does not suppress alpha 6 beta 4-mediated cell adhesion to laminins

    PubMed Central

    1995-01-01

    To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin. PMID:7721947

  1. Hydrogen bonds between the alpha and beta subunits of the F1-ATPase allow communication between the catalytic site and the interface of the beta catch loop and the gamma subunit.

    PubMed

    Boltz, Kathryn W; Frasch, Wayne D

    2006-09-19

    F(1)-ATPase mutations in Escherichia coli that changed the strength of hydrogen bonds between the alpha and beta subunits in a location that links the catalytic site to the interface between the beta catch loop and the gamma subunit were examined. Loss of the ability to form the hydrogen bonds involving alphaS337, betaD301, and alphaD335 lowered the k(cat) of ATPase and decreased its susceptibility to Mg(2+)-ADP-AlF(n) inhibition, while mutations that maintain or strengthen these bonds increased the susceptibility to Mg(2+)-ADP-AlF(n) inhibition and lowered the k(cat) of ATPase. These data suggest that hydrogen bonds connecting alphaS337 to betaD301 and betaR323 and connecting alphaD335 to alphaS337 are important to transition state stabilization and catalytic function that may result from the proper alignment of catalytic site residues betaR182 and alphaR376 through the VISIT sequence (alpha344-348). Mutations betaD301E, betaR323K, and alphaR282Q changed the rate-limiting step of the reaction as determined by an isokinetic plot. Hydrophobic mutations of betaR323 decreased the susceptibility to Mg(2+)-ADP-AlF(n)() inhibition and lowered the number of interactions required in the rate-limiting step yet did not affect the k(cat) of ATPase, suggesting that betaR323 is important to transition state formation. The decreased rate of ATP synthase-dependent growth and decreased level of lactate-dependent quenching observed with alphaD335, betaD301, and alphaE283 mutations suggest that these residues may be important to the formation of an alternative set of hydrogen bonds at the interface of the alpha and beta subunits that permits the release of intersubunit bonds upon the binding of ATP, allowing gamma rotation in the escapement mechanism.

  2. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract:more » Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) by 1.4-fold. Treatment of human adipocytes with fatty acids and tumor necrosis factor {alpha} (TNF{alpha}) induced insulin resistance and down-regulation of mitochondrial genes, which was restored by ANP treatment. These results show that ANP regulates lipid catabolism and enhances energy dissipation through AMPK activation in human adipocytes.« less

  3. The delta-opioid receptor agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] synergistically enhances the locomotor-activating effects of some psychomotor stimulants, but not direct dopamine agonists, in rats.

    PubMed

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2008-02-01

    The nonpeptidic delta-opioid agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] produces many stimulant-like behavioral effects in rodents and monkeys, such as locomotor stimulation, generalization to cocaine in discrimination procedures, and antiparkinsonian effects. Tolerance to the locomotor-stimulating effects of SNC80 develops after a single administration of SNC80 in rats; it is not known whether cross-tolerance develops to the effects of other stimulant compounds. In the initial studies to determine whether SNC80 produced cross-tolerance to other stimulant compounds, it was discovered that amphetamine-stimulated locomotor activity was greatly enhanced in SNC80-pretreated rats. This study evaluated acute cross-tolerance between delta-opioid agonists and other locomotor-stimulating drugs. Locomotor activity was measured in male Sprague-Dawley rats implanted with radiotransmitters, and activity levels were recorded in the home cage environment. Three-hour SNC80 pretreatment produced tolerance to further delta-opioid receptor stimulation but also augmented greatly amphetamine-stimulated locomotor activity in a dose-dependent manner. Pretreatments with other delta-opioid agonists, (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-hydroxybenzyl]-N,N-diethylbenzamide] and oxymorphindole (17-methyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'-indolomorphinan), also modified amphetamine-induced activity levels. SNC80 pretreatment enhanced the stimulatory effects of the dopamine/norepinephrine transporter ligands cocaine and nomifensine (1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinanmine maleate salt), but not the direct dopamine receptor agonists SKF81297 [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] and quinpirole [trans-(-)-(4alphaR)-4,4a, 5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline monohydrochloride]. In conclusion, SNC80 enhanced the locomotor-stimulating effects of monoamine transporter ligands suggesting that delta-opioid receptor activation might alter the functional activity of monoamine transporters or presynaptic monoamine terminals.

  4. A cross-linking study of the Ca2+, Mg2+-activated adenosine triphosphatase of Escherichia coli.

    PubMed

    Bragg, P D; Hou, C

    1980-05-01

    The solubilized Ca2+,Mg2+-activated adenosine triphosphatase of Escherichia coli is composed of five subunits designated alpha, beta, gamma, delta and epsilon in order of decreasing molecular weight. The subunit structure of the enzyme has been investigated by the use of the cleavable cross-linking agents dithiobis(succinimidyl propionate), methyl-4-mercaptobutyrimidate, dimethyl-3,3'-dithiobispropionimidate, disuccinimidyl tartarate, and cupric 1,10-phenanthrolinate. The products of cross-linking were analyzed by two different two-dimensional gel electrophoresis systems. The following cross-linked subunit dimers were observed: alpha 2, beta 2, alpha beta, alpha delta, beta gamma, beta delta, beta epsilon and gamma epsilon. These results, together with other published data, are discussed in relation to a model of the arrangement of the subunits in the ATPase molecule.

  5. Effect of adrenaline and alpha-agonists on net rate of liquid absorption from the pleural space of rabbits.

    PubMed

    Zocchi, L; Raffaini, A; Agostoni, E

    1997-05-01

    Indirect evidence supporting a solute-coupled liquid absorption from the pleural space of rabbits has recently been provided; moreover, the beta 2-adrenoceptor agonist terbutaline has been found to increase this absorption. In this study the effect of adrenaline and alpha-adrenoceptor agonists on net rate of liquid absorption (Jnet) from albumin Ringer hydrothoraces of various sizes has been determined in anaesthetized rabbits. In hydrothoraces with adrenaline (5 x 10(-6) M) the relationship between Jnet and volume of liquid injected was displaced upwards by 0.09 ml h-1 relative to that in control hydrothoraces (P < 0.01). This displacement did not occur with lower adrenaline concentrations or after pretreatment with the beta-blocker propranolol. Hence, this increase in Jnet is mediated by stimulation of beta-receptors. It seems to be caused by an increase in solute-coupled liquid absorption, since beta-agonists inhibit lymphatic activity while, at relatively high concentrations, they may increase active transport. Conversely, the strong stimulation of lymphatic alpha-receptors that should occur with adrenaline after beta-blockade may fail to increase lymphatic drainage, because it has been shown that the increase in contraction frequency of lymphatics may be balanced by the decrease in their stroke volume. Arterial blood pressure during the hydrothoraces with adrenaline was unchanged. In hydrothoraces with the alpha 2-agonist clonidine (5 x 10(-6) M; a less potent agent than adrenaline) the slope of the relationship between Jnet and volume injected increased by 26% (P < 0.01), while its origin did not change. This increase in slope did not occur with a lower clonidine concentration or after pretreatment with the alpha-blocker phentolamine. Hence, it is caused by stimulation of alpha 2-receptors, which probably lead to an increase in lymphatic drainage related to liquid load. In hydrothoraces with the alpha 1-agonist phenylephrine (5 x 10(-6) or 10(-7) M) Jnet was simlar to control values.

  6. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling

    NASA Astrophysics Data System (ADS)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  7. The Nicotinic Acetylcholine Receptors of the Parasitic Nematode Ascaris suum: Formation of Two Distinct Drug Targets by Varying the Relative Expression Levels of Two Subunits

    PubMed Central

    Williamson, Sally M.; Robertson, Alan P.; Brown, Laurence; Williams, Tracey; Woods, Debra J.; Martin, Richard J.; Sattelle, David B.; Wolstenholme, Adrian J.

    2009-01-01

    Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect ∼1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs) on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5∶1 (Asu-unc-38∶Asu-unc-29), nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1∶5 Asu-unc-38∶Asu-unc-29), levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the development of parasite-specific screens for future anthelmintics. PMID:19609360

  8. Purification and characterization of the glycoprotein hormone. cap alpha. -subunit-like material secreted by HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, G.S.; Rimerman, R.A.

    1988-08-23

    The protein secreted by HeLa cells that cross-reacts with antiserum developed against the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) has been purified approximately 30,000-fold from concentrated culture medium by organic solvent fractionation followed by ion exchange, gel filtration, and lectin affinity chromatography. The final preparation had a specific activity (by RIA) of 6.8 x 10/sup 5/ ng of ..cap alpha../mg of protein and appeared homogeneous by electrophoresis on reducing/denaturing polyacrylamide gels (SDS-PAGE). Amino acid analysis indicated that HeLa-..cap alpha.. had a composition very similar to that of the urinary hCG ..cap alpha..-subunit. However, comparison of hCG-..cap alpha.. and HeLa-..capmore » alpha.. demonstrated that the tumor-associated subunit was not identical with its normal counterpart. The purified tumor protein had an apparent molecular weight greater than that of the urinary ..cap alpha..-subunit when analyzed by SDS-PAGE, and this difference was even greater when a partially purified preparation was examined by an immunoblot technique (Western). Isoelectric focusing of the HeLa and hCG subunits demonstrated that the tumor protein had a lower pI. Immunoprecipitation and electrophoresis of ..cap alpha..-subunit from HeLa cultures labeled with (/sup 3/H)fucose indicated that the tumor subunit was fucosylated, whereas analysis of hCG-..cap alpha.. hydrosylates by HPLC confirmed previous reports that the placental subunit does not contain fucose. The results indicate that, regardless of whether or not a single ..cap alpha..-subunit gene is being expressed in both normal and neoplastic tissues, posttranslational modifications lead to a highly altered subunit in the tumor. The differences observed may be useful in diagnosing neoplastic vs hyperplastic conditions and may lend insight into the mechanism of ectopic hormone production by tumors.« less

  9. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper).

    PubMed

    Liu, Zewen; Williamson, Martin S; Lansdell, Stuart J; Denholm, Ian; Han, Zhaojun; Millar, Neil S

    2005-06-14

    Neonicotinoids, such as imidacloprid, are nicotinic acetylcholine receptor (nAChR) agonists with potent insecticidal activity. Since its introduction in the early 1990s, imidacloprid has become one of the most extensively used insecticides for both crop protection and animal health applications. As with other classes of insecticides, resistance to neonicotinoids is a significant threat and has been identified in several pest species, including the brown planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. In this study, radioligand binding experiments have been conducted with whole-body membranes prepared from imidacloprid-susceptible and imidacloprid-resistant strains of N. lugens. The results reveal a much higher level of [3H]imidacloprid-specific binding to the susceptible strain than to the resistant strain (16.7 +/- 1.0 and 0.34 +/- 0.21 fmol/mg of protein, respectively). With the aim of understanding the molecular basis of imidacloprid resistance, five nAChR subunits (Nlalpha1-Nlalpha4 and Nlbeta1) have been cloned from N. lugens.A comparison of nAChR subunit genes from imidacloprid-sensitive and imidacloprid-resistant populations has identified a single point mutation at a conserved position (Y151S) in two nAChR subunits, Nlalpha1 and Nlalpha3. A strong correlation between the frequency of the Y151S point mutation and the level of resistance to imidacloprid has been demonstrated by allele-specific PCR. By expression of hybrid nAChRs containing N. lugens alpha and rat beta2 subunits, evidence was obtained that demonstrates that mutation Y151S is responsible for a substantial reduction in specific [3H]imidacloprid binding. This study provides direct evidence for the occurrence of target-site resistance to a neonicotinoid insecticide.

  10. Reactive oxygen species are involved in regulating alpha1-adrenoceptor-activated vascular smooth muscle contraction.

    PubMed

    Tsai, Ming-Ho; Jiang, Meei Jyh

    2010-08-23

    Reactive oxygen species (ROS) were shown to mediate aberrant contractility in hypertension, yet the physiological roles of ROS in vascular smooth muscle contraction have remained elusive. This study aimed to examine whether ROS regulate alpha1-adrenoceptor-activated contraction by altering myosin phosphatase activities. Using endothelium-denuded rat tail artery (RTA) strips, effects of anti-oxidants on isometric force, ROS production, phosphorylation of the 20-kDa myosin light chain (MLC20), and myosin phosphatase stimulated by alpha1-adrenoceptor agonist phenylephrine were examined. An antioxidant, N-acetyl-L-cysteine (NAC), and two NADPH oxidase inhibitors, apocynin and VAS2870, dose-dependently inhibited contraction activated by phenylephrine. Phenylephrine stimulated superoxide anion production that was diminished by the pretreatment of apocynin, VAS2870, superoxide scavenger tiron or mitochondria inhibitor rotenone, but not by xanthine oxidase inhibitor allopurinol or cyclooxygenase inhibitor indomethacin. Concurrently, NADPH oxidase activity in RTA homogenates increased within 1 min upon phenylephrine stimulation, sustained for 10 min, and was abolished by the co-treatment with apocynin, but not allopurinol or rotenone. Phenylephrine-induced MLC20 phosphorylation was dose-dependently decreased by apocynin. Furthermore, apocynin inhibited phenylephrine-stimulated RhoA translocation to plasma membrane and phosphorylation of both myosin phosphatase regulatory subunit MYPT1Thr855 and myosin phosphatase inhibitor CPI-17Thr38. ROS, probably derived from NADPH oxidase and mitochondria, partially regulate alpha1-adrenoceptor-activated smooth muscle contraction by altering myosin phosphatase-mediated MLC20 phosphorylation through both RhoA/Rho kinase- and CPI-17-dependent pathways.

  11. Selective inhibition of alpha1B-adrenergic receptor expression and function using a phosphorothioate antisense oligodeoxynucleotide.

    PubMed

    Gonzalez-Cabrera, P J; Iversen, P L; Liu, M F; Scofield, M A; Jeffries, W B

    1998-06-01

    To investigate alpha1B-adrenoceptor function, we developed a phosphorothioate antisense oligodeoxynucleotide (AO) to inhibit the expression of the alpha1B-adrenoceptor subtype in DDT1 MF2 cells. We measured the cellular uptake of the AO and its effect on alpha1B-adrenoceptor mRNA expression, protein density, and coupling to phospholipase C. Cells treated with either a control oligodeoxynucleotide (CO) or medium alone served as control groups. Confocal microscopy demonstrated that DDT1 MF2 cells internalized carboxyfluorescein-labeled (FAM) AO within 30 min. Analysis of cellular lysates showed that approximately 50% of the intracellular FAM-AO was present as an intact 18-mer for up to 48 hr. Incubation of cells with AO for 48 hr decreased alpha1B-adrenoceptor density ([3H]prazosin Bmax) versus control groups by 12% (1 microM AO) and 72% (10 microM AO). In time course experiments, AO (10 microM) reduced alpha1B-adrenoceptor density by 28, 64, and 68% versus controls after 24, 48, and 72 hr of exposure, respectively. alpha1B-Adrenoceptor mRNA concentration (measured by RT-PCR) was reduced by 25% in cells treated for 48 hr with 10 microM AO versus controls. AO pretreatment (10 microM, 48 hr) reduced the maximum response to agonist-stimulated [3H]inositol phosphate accumulation. The maximal response of the full agonist norepinephrine was reduced by 30% after AO treatment, and by 73% for the partial agonist naphazoline. In contrast, AO did not affect histamine-stimulated total [3H]inositol phosphate accumulation. Thus, AO effectively reduced alpha1B-adrenoceptor subtype expression and function in vitro, suggesting a potential to selectively inhibit alpha1B-adrenoceptor function in vivo.

  12. Immunohistochemical analyses of alpha1 and alpha3 Na+/K+-ATPase subunit expression in medulloblastomas.

    PubMed

    Suñol, Mariona; Cusi, Victoria; Cruz, Ofelia; Kiss, Robert; Lefranc, Florence

    2011-03-01

    The levels of expression of the α1 and α3 subunits of the Na(+)/K(+)-ATPase (the NaK sodium pump) in medulloblastomas are unclear. This study investigated the expression of the NaK subunits using immunohistochemical methods in 29 medulloblastomas including 23 classic, three large-cell/anaplastic and three nodular/desmoplastic medulloblastomas, as well as in three atypical teratoid/rhabdoid tumors (AT/RTs). There was overexpression of the α1 or α3 NaK subunits in more than half of the medulloblastomas and atypical AT/RTs, with about one-third of these tumours displaying overexpression of both subunits. These preliminary data suggest that targeting these subunits in AT/RTs and medulloblastomas that overexpress these proteins may lead to therapeutic benefit. These findings warrant confirmation in larger numbers of patients than those used in this study. Moreover, it should be determined whether inhibition of the α1/α3 NaK subunits can be integrated into the risk stratification schemes already in use for medulloblastoma patients.

  13. The alpha subunit of the Saccharomyces cerevisiae oligosaccharyltransferase complex is essential for vegetative growth of yeast and is homologous to mammalian ribophorin I

    PubMed Central

    1995-01-01

    Oligosaccharyltransferase mediates the transfer of a preassembled high mannose oligosaccharide from a lipid-linked oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six nonidentical subunits (alpha-zeta), two of which are glycoproteins (alpha and beta). The beta and delta subunits of the oligosaccharyltransferase are encoded by the WBP1 and SWP1 genes. Here we describe the functional characterization of the OST1 gene that encodes the alpha subunit of the oligosaccharyltransferase. Protein sequence analysis revealed a significant sequence identity between the Saccharomyces cerevisiae Ost1 protein and ribophorin I, a previously identified subunit of the mammalian oligosaccharyltransferase. A disruption of the OST1 locus was not tolerated in haploid yeast showing that expression of the Ost1 protein is essential for vegetative growth of yeast. An analysis of a series of conditional ost1 mutants demonstrated that defects in the Ost1 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins at both the permissive and restrictive growth temperatures. Microsomal membranes isolated from ost1 mutant yeast showed marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Microsomal membranes isolated from the ost1 mutants contained elevated amounts of the Kar2 stress-response protein. PMID:7860628

  14. Perioperative use of selective alpha-2 agonists and antagonists in small animals

    PubMed Central

    2004-01-01

    Abstract Alpha-2 agonists are the only single class of anesthetic drugs that induce reliable, dose-dependent sedation, analgesia, and muscle relaxation in dogs and cats. Used at low doses, as adjuncts to injectable and inhalational anesthetics, selective alpha-2 agonists dramatically reduce the amount of anesthetic drug required to induce and maintain anesthesia. This reduction in anesthetic requirements is achieved without significant depression of pulmonary function and with limited effects on cardiovascular function. Selective alpha-2 agonists can also be used postoperatively to potentiate the analgesic effects of opioids and other drugs. Given the nearly ideal pharmacodynamic profile and reversibility of alpha-2 agonists, these drugs will play a central role in balanced approaches to anesthesia and the management of perioperative pain in healthy dogs and cats. PMID:15283516

  15. The Val{sup 192}Leu mutation in the {alpha}-subunit of {beta}-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Y.; Vavougios, G.; Hinek, A.

    1996-07-01

    Substitution mutations adversely affecting the {alpha}-subunit of {beta}-hexosaminidase A ({alpha}{beta}) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-{alpha} chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an {open_quotes}active-site{close_quotes} residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all {alpha}-specific activity. This biochemical phenotype is referred to as the {open_quotes}B1-variant form{close_quotes} of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and bothmore » subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, {alpha}-Val{sup 192}Leu. Chinese hamster ovary cells were permanently cotransfected with an {alpha}-cDNA-construct encoding the substitution and a mutant {beta}-cDNA ({beta}-Arg{sup 211}Lys), encoding a {beta}-subunit that is inactive but normal in all other respects. We were surprised to find that the Val{sup 192}Leu substitution produced a pro-{alpha} chain that did not form {alpha}-{beta} dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val{sup 192}Leu substitution does not specifically affect the {alpha}-active site. 23 refs., 4 figs., 2 tabs.« less

  16. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    PubMed

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-10-25

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1.

  17. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    PubMed Central

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-01-01

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1. Images PMID:7971267

  18. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently.

    PubMed

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir; Bock, Elisabeth

    2010-07-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cgamma (PLCgamma) were all required for neurite outgrowth from cerebellar granule neurons (CGNs) induced by FGF1 and FGL (an NCAM-derived peptide agonist of FGFR1). Like FGF1, FGL induced tyrosine phosphorylation of FGFR1, FRS2alpha, ShcA, and PLCgamma in a time- and dose-dependent manner. However, the activation of FRS2alpha by FGL was significantly lower than the activation by FGF1, indicating a differential signaling profile induced by NCAM compared with the cognate growth factor.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieneke, N.; Neuschaefer-Rube, F.; Bode, L.M.

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR{alpha} agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR{alpha} agonist could enhance the phenobarbital-dependentmore » acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR{alpha} agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR{alpha}-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR{alpha} ligands. The synergism of the PPAR{alpha} agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.« less

  20. In vivo mechanism-based inactivation of S-adenosylmethionine decarboxylases from Escherichia coli, Salmonella typhimurium, and Saccharomyces cerevisiae.

    PubMed

    Li, Y F; Hess, S; Pannell, L K; White Tabor, C; Tabor, H

    2001-09-11

    S-adenosylmethionine decarboxylase (AdoMetDC), a key enzyme in the biosynthesis of spermidine and spermine, is first synthesized as a proenzyme, which is cleaved posttranslationally to form alpha and beta subunits. The alpha subunit contains a covalently bound pyruvoyl group derived from serine that is essential for activity. With the use of an Escherichia coli overexpression system, we have purified AdoMetDCs encoded by the E. coli, Saccharomyces cerevisiae, and Salmonella typhimurium genes. Unexpectedly we found by mass spectrometry that these enzymes had been modified posttranslationally in vivo by a mechanism-based "suicide" inactivation. A large percentage of the alpha subunit of each enzyme had been modified in vivo to give peaks with masses m/z = 57 +/- 1 and m/z = 75 +/- 1 daltons higher than the parent peak. AdoMetDC activity decreased markedly during overexpression concurrently with the increase of the additional peaks for the alpha subunit. Sequencing of a tryptic fragment by tandem mass spectrometry showed that Cys-140 was modified with a +75 +/- 1 adduct, which is probably derived from the reaction product. Comparable modification of the alpha subunit was also observed in in vitro experiments after incubation with the substrate or with the reaction product, which is consistent with the in vitro alkylation of E. coli AdoMetDC reported by Diaz and Anton [Diaz, E. & Anton, D. L. (1991) Biochemistry 30, 4078-4081].

  1. Differential agonist sensitivity of glycine receptor α2 subunit splice variants

    PubMed Central

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-01-01

    The glycine receptor (GlyR) α2A and α2B splice variants differ by a dual, adjacent amino acid substitution from α2AV58,T59 to α2BI58,A59 in the N-terminal extracellular domain. Comparing the effects of the GlyR agonists, glycine, β-alanine and taurine, on the GlyR α2 isoforms, revealed a significant increase in potency for all three agonists at the α2B variant. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn2+, were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR α2A compared to GlyR α2B receptors. Coexpression of α2A or α2B subunits with the GlyR β subunit revealed that the higher agonist potencies observed with the α2B homomer were retained for the α2Bβ heteromer. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR α2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. The existence of a spasmodic mouse phenotype linked to a GlyR α1A52S mutation, the equivalent position to the source of the α2 splice variation, raises the possibility that the GlyR α2 splice variants may be responsible for distinct roles in neuronal function. PMID:15302677

  2. Marked differences between metalloproteases meprin A and B in substrate and peptide bond specificity.

    PubMed

    Bertenshaw, G P; Turk, B E; Hubbard, S J; Matters, G L; Bylander, J E; Crisman, J M; Cantley, L C; Bond, J S

    2001-04-20

    Meprin A and B are highly regulated, secreted, and cell-surface metalloendopeptidases that are abundantly expressed in the kidney and intestine. Meprin oligomers consist of evolutionarily related alpha and/or beta subunits. The work herein was carried out to identify bioactive peptides and proteins that are susceptible to hydrolysis by mouse meprins and kinetically characterize the hydrolysis. Gastrin-releasing peptide fragment 14-27 and gastrin 17, regulatory molecules of the gastrointestinal tract, were found to be the best peptide substrates for meprin A and B, respectively. Peptide libraries and a variety of naturally occurring peptides revealed that the meprin beta subunit has a clear preference for acidic amino acids in the P1 and P1' sites of substrates. The meprin alpha subunit selected for small (e.g. serine, alanine) or hydrophobic (e.g. phenylalanine) residues in the P1 and P1' sites, and proline was the most preferred amino acid at the P2' position. Thus, although the meprin alpha and beta subunits share 55% amino acid identity within the protease domain and are normally localized at the same tissue cell surfaces, they have very different substrate and peptide bond specificities indicating different functions. Homology models of the mouse meprin alpha and beta protease domains, based on the astacin crystal structure, revealed active site differences that can account for the marked differences in substrate specificity of the two subunits.

  3. Alpha2-adrenoceptor modulation of long-term potentiation elicited in vivo in rat occipital cortex.

    PubMed

    Mondaca, Mauricio; Hernández, Alejandro; Pérez, Hernán; Valladares, Luis; Sierralta, Walter; Fernández, Victor; Soto-Moyano, Rubén

    2004-09-24

    Pretreatment with the alpha(2)-adrenoceptor agonist clonidine (31.25, 62.5, or 125 microg/kg, i.p.) dose-dependently reduced long-term potentiation (LTP) elicited in vivo in the occipital cortex of anesthetized rats, whereas pretreatment with the alpha(2)-adrenoceptor antagonist yohimbine (0.133, 0.4, or 1.2 mg/kg, i.p.) increased neocortical LTP in a dose-dependent fashion. These effects could be related to the reported disruptive and facilitatory actions induced on memory formation by pretreatment with alpha(2)-adrenoceptor agonists and antagonists, respectively.

  4. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  5. Α2 GABAA receptor sub-units in the ventral hippocampus and α5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory.

    PubMed

    McEown, K; Treit, D

    2013-11-12

    Temporary neuronal inactivation of the ventral hippocampus with the GABAA agonist muscimol suppresses unconditioned fear behavior (anxiety) but inactivation of the dorsal hippocampus does not. On the other hand, inactivating the dorsal hippocampus disrupts fear memory, while inactivating the ventral hippocampus does not. Here we investigate the roles of hippocampal GABAA receptor sub-units in mediating these anxiolytic and amnesic effects of GABAA receptor agonists. We microinfused TPA023 (α2 agonist) or TB-21007 (inverse α5 agonist) into the dorsal or ventral hippocampus prior to testing rats in two animal models of anxiety: the elevated plus-maze and shock-probe burying test. Twenty-four hours later rats were re-tested in the shock-probe chamber with a non-electrified probe to assess their memory of the initial shock-probe experience (i.e., fear memory). We found that TPA023 was anxiolytic in the plus-maze and shock-probe burying tests when microinfused into the ventral hippocampus. However, TPA023 did not affect anxiety-related behavior when infused into the dorsal hippocampus. Conversely, we found that the α5 sub-unit inverse agonist TB-21007 impaired rats' memory of the initial shock-probe experience when infused into the dorsal hippocampus, but not when infused into the ventral hippocampus. This double dissociation suggests that α2 GABAA receptor sub-units in the ventral hippocampus mediate unconditioned fear or anxiety, while α5 GABAA receptor sub-units in the dorsal hippocampus mediate conditioned fear memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Functional integrins from normal and glycosylation-deficient baby hamster kidney cells. Terminal processing of asparagine-linked oligosaccharides is not correlated with fibronectin-binding activity.

    PubMed

    Koyama, T; Hughes, R C

    1992-12-25

    We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.

  7. The costo-uterine muscle of the rat contains a homogeneous population of beta-adrenoceptors.

    PubMed Central

    Hartley, M. L.; Pennefather, J. N.

    1985-01-01

    The effects of two selective beta-adrenoceptor antagonists on the inhibitory responses to some sympathomimetic amines of electrically-stimulated preparations of costo-uterine muscle, taken from virgin rats, have been examined quantitatively. pA2 values for the antagonist, atenolol (beta 1-selective) and ICI 118,551 (beta 2-selective) were obtained using as agonists, fenoterol (beta 2-selective agonist) and noradrenaline (alpha- and beta-adrenoceptor agonist, beta 1-selective); and in addition, with ICI 118,551 only, isoprenaline (beta-agonist, non-selective) and adrenaline (alpha- and beta-adrenoceptor agonist, beta 2-selective). Catecholamine uptake mechanisms and alpha-adrenoceptors were not blocked in any of these experiments. Atenolol competitively antagonized the effects of fenoterol and noradrenaline to a similar extent, the pA2 values being 5.4 and 5.7, respectively. ICI 118,551 competitively antagonized the effects of fenoterol, isoprenaline, adrenaline and noradrenaline to a similar extent; pA2 values ranged from 8.7 with noradrenaline to 9.1 with isoprenaline. These results extend our previous observations which indicated that the adrenoceptors mediating inhibition of electrically-evoked contractions of costo-uterine muscle of the virgin rat are homogeneous and of the beta 2-subtype. The potency of the beta 1-selective agonist RO 363 in producing inhibition of electrically-evoked contractions of this tissue was also examined. RO 363 was 200 times less potent than isoprenaline but was a full agonist. This indicates that there is efficient coupling between beta 2-adrenoceptor activation and tissue response in this non-innervated preparation. PMID:2858239

  8. Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear.

    PubMed

    Seebacher, T; Beitz, E; Kumagami, H; Wild, K; Ruppersberg, J P; Schultz, J E

    1999-01-01

    Membrane-bound guanylyl cyclases (GCs) are peptide hormone receptors whereas the cytosolic isoforms are receptors for nitric oxide. In the inner ear, the membrane-bound GCs may be involved in the regulation of fluid homeostasis and the cytosolic forms possibly play a role in signal processing and regulation of local blood flow. In this comprehensive study, we examined, qualitatively and quantitatively, the transcription pattern of all known GC isoforms in the inner ear from rat by RT-PCR. The tissues used were endolymphatic sac, stria vascularis, organ of Corti, organ of Corti outer hair cells, cochlear nerve, Reissner's membrane, vestibular dark cells, and vestibular sensory cells. We show that multiple particulate (GC-A, GC-B, GC-D, GC-E, GC-F and GC-G) and several subunits of the heterodimeric cytosolic GCs (alpha1, alpha2, beta1 and beta2) are expressed, albeit at highly different levels. GC-C was not found. GC-A and the soluble subunits alpha1 and beta1 were transcribed ubiquitously. GC-B was present in all tissues except stria vascularis, which contained GC-A and traces of GC-E and GC-G. GC-B was by far the predominant membrane-bound isoform in the organ of Corti (86%), Reissner's membrane (75%) and the vestibulum (80%). Surprisingly, GC-E, a retinal isoform, was detected in significant amounts in the cochlear nerve (8%) and in the organ of Corti (4%). Although the cytosolic GC is a heterodimer composed of an alpha and a beta subunit, the mRNA transcription of these subunits was not stoichiometric. Particularly in the vestibulum, the transcription of the beta1 subunits was at least four-fold higher than of the alpha1 subunit. The data are compatible with earlier suggestions that membrane receptor GCs may be involved in the control of inner ear electrolyte and fluid composition whereas NO-stimulated GC isoforms mainly participate in the regulation of blood flow and supporting cell physiology.

  9. Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio

    The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of themore » {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.« less

  10. Functional co-expression of two insect nicotinic receptor subunits (Nlalpha3 and Nlalpha8) reveals the effects of a resistance-associated mutation (Nlalpha3) on neonicotinoid insecticides.

    PubMed

    Yixi, Zhang; Liu, Zewen; Han, Zhaojun; Song, Feng; Yao, Xiangmei; Shao, Ying; Li, Jian; Millar, Neil S

    2009-09-01

    Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively to control a variety of insect pest species. Previously, we have identified a nAChR point mutation (Y151S) associated with insecticide resistance in the brown planthopper Nilaparvata lugens. Although this mutation has been identified in two different N. lugens nAChR subunits (Nlalpha1 and Nlalpha3) because of difficulties in heterologous expression of Nlalpha3; its influence on agonist potency has been examined only in Nlalpha1-containing nAChRs. Here we describe the cloning of a novel nAChR subunit from N. lugens (Nlalpha8), together with evidence for its co-assembly with Nlalpha3 in native and recombinant nAChRs. This has, for the first time, enabled the functional effects of the Nlalpha3(Y151S) mutation to be examined. The Nlalpha3(Y151S) mutation has little effect on agonist potency of acetylcholine but has a dramatic effect on neonicotinoid insecticides (reducing I(max) values and increasing EC(50) values). The apparent affinity of neonicotinoids was higher and the effect of the Y151S mutation on neonicotinoid agonist potency was more profound in Nlalpha3-containing, rather than Nlalpha1-containing nAChR. We conclude that Nlalpha3- and Nlalpha1-containing nAChRs may be representative of two distinct insect nAChR populations.

  11. ADP binding to TF1 and its subunits induces ultraviolet spectral changes.

    PubMed

    Hisabori, T; Yoshida, M; Sakurai, H

    1986-09-01

    Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.

  12. PPAR alpha and PPAR gamma coactivation rapidly induces Egr-1 in the nuclei of the dorsal and ventral urinary bladder and kidney pelvis urothelium of rats.

    PubMed

    Egerod, Frederikke Lihme; Svendsen, Jette Eldrup; Hinley, Jennifer; Southgate, Jennifer; Bartels, Annette; Brünner, Nils; Oleksiewicz, Martin B

    2009-12-01

    To facilitate studies of the rat bladder carcinogenicity of dual-acting PPAR alpha+gamma agonists, we previously identified the Egr-1 transcription factor as a candidate carcinogenicity biomarker and developed rat models based on coadministration of commercially available specific PPAR alpha and PPAR gamma agonists. Immunohistochemistry for Egr-1 with a rabbit monoclonal antibody demonstrated that male vehicle-treated rats exhibited minimal urothelial expression and specifically, no nuclear signal. In contrast, Egr-1 was induced in the nuclei of bladder, as well as kidney pelvis, urothelia within one day (2 doses) of oral dosing of rats with a combination of 8 mg/kg rosiglitazone and 200 mg/kg fenofibrate (specific PPAR gamma and PPAR alpha agonists, respectively). These findings were confirmed by Western blotting using a different Egr-1 antibody. Egr-1 was induced to similar levels in the dorsal and ventral bladder urothelium, arguing against involvement of urinary solids. Egr-1 induction sometimes occurred in a localized fashion, indicating physiological microheterogeneity in the urothelium. The rapid kinetics supported that Egr-1 induction occurred as a result of pharmacological activation of PPAR alpha and PPAR gamma, which are coexpressed at high levels in the rat urothelium. Finally, our demonstration of a nuclear localization supports that the Egr-1 induced by PPAR alpha and PPAR gamma coactivation in the rat urothelium may be biologically active.

  13. Distribution of alpha3, alpha5 and alpha(v) integrin subunits in mature and immature human oocytes.

    PubMed

    Capmany, G; Mart, M; Santaló, J; Bolton, V N

    1998-10-01

    The distribution of three integrin subunits, alpha3, alpha5 and alpha(v), in immature and mature human oocytes has been examined using immunofluorescence and confocal microscopy. The results demonstrate that both alpha5 and alpha(v) are present at the germinal vesicle stage, while alpha3 was only detected in oocytes after germinal vesicle breakdown, in metaphase I and II stage oocytes. The cortical concentration of integrin subunits alpha3 and alpha5 is consistent with their localization in the oolemma. In contrast, the homogeneous distribution of alpha(v) throughout the oocyte suggests the existence of cytoplasmic reservoirs of this protein in the oocyte.

  14. Integrin alpha 3 beta 1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells.

    PubMed

    Coopman, P J; Thomas, D M; Gehlsen, K R; Mueller, S C

    1996-11-01

    The mechanisms and receptors involved in phagocytosis by nonhematopoietic cells are not well understood. The involvement of the alpha 3 beta 1 integrin in phagocytosis of the extracellular matrix by human breast cancer cells was studied. The possible role of this integrin was suggested since alpha 3 and beta 1 but not alpha 2 subunits are concentrated at membrane sites where local degradation of fluorescently labeled gelatin occurs. Strikingly, anti-alpha 3 integrin monoclonal antibodies (mAbs) stimulate the phagocytosis of fluorescently labeled gelatin films, gelatin beads, and Matrigel films in a quantitative phagocytosis assay. Stimulation of the gelatin uptake by the anti-alpha 3 mAb is dose responsive, saturable, and time dependent. Antibodies against other integrin subunits have a lower stimulatory effect (anti-beta 1) or no significant effect (anti-alpha 2, -alpha 5, -alpha 6, and -alpha v) on gelatin phagocytosis. The synthetic HGD-6 human laminin peptide that binds specifically the alpha 3 beta 1 integrin, but not the scrambled HSGD-6 control peptide, also markedly stimulates gelatin uptake in a dose-responsive way. Furthermore, the stimulatory effects of the HGD-6 peptide and the anti-alpha 3 mAb are additive, suggesting that they might promote phagocytosis in different ways. Other laminin (YIGSR, IKVAV) and fibronectin (GRGDS) peptides have no effect on gelatin phagocytosis. Immunofluorescence shows that the alpha 3 and the beta 1, but not the alpha 2 integrin subunit, concentrate into patches on the cell surface after treatment with their respective mAbs. And, both gelatin and the alpha 3 beta 1 but not the alpha 2 beta 1 integrin are cointernalized and routed to acidic vesicles such as lysosomes. In conclusion, we demonstrate that human breast cancer cells locally degrade and phagocytose the extracellular matrix and show for the first time that the alpha 3 beta 1 integrin participates in this phagocytosis. We hypothesize that the anti-alpha 3 antibodies and the laminin peptide HGD-6 activate the alpha 3 beta 1 integrin, which results in a downstream signaling cascade stimulating phagocytosis.

  15. Two subunits of the 55 K porcine zona pellucida glycoprotein family are immunologically distinct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, M.G.; Yurewicz, E.C.; Sacco, A.G.

    1986-03-01

    The 55K glycoprotein family (ZP3) of the porcine zona pellucida is comprised of two subunits of 46 K and 45 K which can be resolved by endo-..beta..-galactosidase digestion of ZP3 followed by reversed phase HPLC on Vydac C4 resin. Gel electrophoresis revealed that the 46 K component (EBDG..cap alpha..) is approx. 95% pure and the 45 K component (EBGD..beta..) is 100% pure. In the present study, these two subunits were evaluated immunologically by RIA. Under similar reaction protocols (chloramine-T iodination procedure) comparable specific activities were obtained for EBGD..cap alpha.. (33.06 +/- 7.5 ..mu..ci/..mu..gm), EBGD..beta.. (30.45 +/- 1.6) and ZP3 (26.3more » +/- 1.3). Antibody (Ab) titration studies revealed that EBGD..cap alpha.. and ..beta.. are potent immunogens and /sup 125/I-EBGD..cap alpha.. showed minimal cross reactivity to EBGD..beta..-Ab (8% bound at 1:500 dilution), whereas, /sup 125/I-EBGD..beta.. showed a greater degree of cross reactivity to EBGD..cap alpha..-Ab (23% bound at 1:500 dilution). Maximum binding for the two labeled antigens against homologous Abs (1:500) was > 60%. Dose response studies revealed that in the /sup 125/I-EBGD..cap alpha.. vs EBGD..cap alpha.. -Ab system, the 50% intercept was 3.25 +/- 0.32 ng for EBGD..cap alpha.. and 472.43 +/- 30.26 ng for EBGD..beta.. (p < 0.01), whereas, in the /sup 125/I-EBGD..beta.. vs EBGD..beta..-Ab system the 50% intercept was 3.51 +/- 0.58 for EBGD..beta.. and 166.77 +/- 49.20 for EBGD..cap alpha.. (p < 0.01). No significant differences were observed in the slopes of the dose response curves. It is concluded that the two subunits of ZP3 possess distinct immunologic characteristics as evaluated by RIA.« less

  16. The PPARdelta agonist GW501516 suppresses interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibition.

    PubMed

    Kino, T; Rice, K C; Chrousos, G P

    2007-05-01

    Interleukin-6 and downstream liver effectors acute phase reactants are implicated in the systemic inflammatory reaction. Peroxisome proliferator-activated receptor delta (PPARdelta), which binds to and is activated by a variety of fatty acids, was recently shown to have anti-inflammatory actions. We examined the ability of the synthetic PPARdelta agonist GW501516 to suppress interleukin-6-induced expression of acute phase proteins in human hepatoma HepG2 cells and rat primary hepatocytes. Results GW501516 dose-dependently suppressed interleukin-6-induced mRNA expression of the acute phase protein alpha1-antichymotrypsin in HepG2 cells. The compound also suppressed interleukin-6-induced mRNA expression of alpha2-acid glycoprotein, beta-fibrinogen and alpha2-macroglobulin in and the secretion of C-reactive protein by rat primary hepatocytes. Depletion of the PPARdelta receptor, but not of PPARalpha or gamma, attenuated the suppressive effect of GW501516 on interleukin-6-induced alpha1-antichymotrypsin mRNA expression, indicating that PPARdelta specifically mediated this effect. Since interleukin-6 stimulates the transcriptional activity of the alpha1-antichymotrypsin promoter by activating the signal transducer and activator of transcription (STAT) 3, we examined functional interaction of this transcription factor and PPARdelta on this promoter. Overexpression of PPARdelta enhanced the suppressive effect of GW501516 on STAT3-activated transcriptional activity of the alpha1-antichymotrypsin promoter, while GW501516 suppressed interleukin-6-induced binding of this transcription factor to this promoter. These findings indicate that agonist-activated PPARdelta interferes with interleukin-6-induced acute phase reaction in the liver by inhibiting the transcriptional activity of STAT3. PPARdelta agonists might be useful for the suppression of systemic inflammatory reactions in which IL-6 plays a central role.

  17. The alpha subunit of the epithelial sodium channel in the mouse: developmental regulation of its expression.

    PubMed

    Dagenais, A; Kothary, R; Berthiaume, Y

    1997-09-01

    Sodium reabsorption by the amiloride-sensitive sodium channel of epithelial cells plays a crucial role in the management of ionic composition and fluid volume in the body. In the respiratory system, sodium transport is involved in the clearance of pulmonary edema and of liquid secreted during fetal life at birth. We have cloned a partial cDNA of the alpha subunit of the mouse amiloride-sensitive sodium channel (alpha mENaC). In the region of comparison, the mouse alpha subunit shows 92% identity at the DNA level and 95% identity at the amino acid level with the rat sequence. The kidneys, lungs, and distal colon are major sites of expression of a 3.5-kb alpha mENaC mRNA. During mouse development, alpha mENaC transcripts appear late during gestation (d 17.5) and are expressed continuously thereafter. In the distal colon, a short 1.2-kb mRNA deleted of the 5' part of the transcript is detected during gestation and is replaced gradually by the mature 3.5-kb transcript after birth. Alpha mENaC and alpha1 Na+-K+-ATPase mRNAs have an expression profile that is modulated similarly during development for a given tissue. The expression of alpha mENaC transcripts increases transiently in the lungs at birth (2.5-fold), as for alpha1 Na+-K+-ATPase mRNAs (1.5-fold), suggesting that the expression of several components of the sodium transport system is modulated in the lungs at that time. In the kidney, there is no significant increase of alpha mENaC and alpha1 Na+-K+-ATPase mRNAs in newborns.

  18. Species differences in the effects of prostanoids on MAP kinase phosphorylation, myosin light chain phosphorylation and contraction in bovine and cat iris sphincter smooth muscle.

    PubMed

    Kaddour-Djebbar, I; Ansari, H R; Akhtar, R A; Abdel-Latif, A A

    2005-01-01

    There is evidence from our own laboratory and that of others that EP-receptor ligands are strong contractile agonists in bovine iris sphincter and that FP-receptor agonists are strong contractile agonists in cat iris sphincter. Here, we have investigated the effects of prostaglandin (PG) receptor agonists of the FP-, EP-, TP- and DP-class on myosin light chain (MLC) phosphorylation, p42/p44 MAP kinase phosphorylation and contraction in the iris sphincter of bovine and cat. Using three signal transduction mechanism assays, namely MLC phosphorylation, MAP kinase phosphorylation and contraction, we demonstrated that in bovine iris sphincter the rank order of potency of the PG agonists in the contractile and MLC phosphorylation assays is as follows: E2>U46619>F2alpha>D2, and in cat F2alpha>D2>E2>U46619. In the MAP kinase assay, in bovine iris sphincter the rank order of potency is E2>F2alpha and in cat F2alpha>E2. These conclusions are supported by the following findings: (1) In the contractile assay, in the bovine sphincter the EC50s for PGF2alpha, PGE2, U46619 and PGD2 were found to be 1.4x10(-7), 5.0x10(-9), 9.0x10(-9) and 1.3x10(-6)M, respectively, and the corresponding values in the cat were 1.9x10(-8), 2.3x10(-7), 1.5x10(-6) and 6.9x10(-8)M, respectively. (2) In the MLC phophorylation assay, in the bovine sphincter PGF2alpha, PGE2, U46619 and PGD2 increased MLC phophorylation by 118%, 165%, 153% and 72%, respectively, and the corresponding values in cat were 175%, 99%, 90% and 95%, respectively. (3) In the MAP kinase assay, in the bovine iris sphincter PGF2alpha and PGE2, increased MAP kinase phosphorylation by 276% and 328%, respectively, and the corresponding values in cat were 308% and 245%, respectively. The data presented demonstrate pronounced species differences in the effects of the prostanoids on the MLC kinase signaling pathway in bovine and cat irides and furthermore confirm the existence of FP-receptors in that of the bovine.

  19. Three-dimensional structure of holo 3 alpha,20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family.

    PubMed Central

    Ghosh, D; Weeks, C M; Grochulski, P; Duax, W L; Erman, M; Rimsay, R L; Orr, J C

    1991-01-01

    The x-ray structure of a short-chain dehydrogenase, the bacterial holo 3 alpha,20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53), is described at 2.6 A resolution. This enzyme is active as a tetramer and crystallizes with four identical subunits in the asymmetric unit. It has the alpha/beta fold characteristic of the dinucleotide binding region. The fold of the rest of the subunit, the quaternary structure, and the nature of the cofactor-enzyme interactions are, however, significantly different from those observed in the long-chain dehydrogenases. The architecture of the postulated active site is consistent with the observed stereospecificity of the enzyme and the fact that the tetramer is the active form. There is only one cofactor and one substrate-binding site per subunit; the specificity for both 3 alpha- and 20 beta-ends of the steroid results from the binding of the steroid in two orientations near the same cofactor at the same catalytic site. Images PMID:1946424

  20. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule.

    PubMed Central

    Barrett, A J; Brown, M A; Sayers, C A

    1979-01-01

    alpha 2-Macroglobulin (alpha 2M) was isolated from human plasma by a four-step procedure: poly(ethylene glyco) fractionation, gel chromatography, euglobulin precipitation and immunoadsorption. No contaminants were detected in the final preparations by electrophoresis or immunoprecipitation. The protein ran as a single slow band in gel electrophoresis, and was designated 'S-alpha 2M'. S-alpha 2M bound about 2 mol of trypsin/mol. Treatment of S-alpha 2M with a proteinase or ammonium salts produced a form of the molecule more mobile in electrophoresis, and lacking proteinase-binding activity (F-alpha 2M). The electrophoretic mobility of the F-alpha 2M resulting from reaction with NH4+ salts was identical with that of proteinase complexes. We attribute the change in electrophoretic mobility of the alpha 2M to a conformation change, but there was no evidence of a change in pI or Strokes radius. Electrophoresis of S-alpha 2M in the presence of sodium dodecylsulphate gave results consistent with the view that the alpha 2M molecule is a tetramer of identical subunits, assembled as a non-covalent pair of disulphide-linked dimers. Some of the subunits seemed to be 'nicked' into two-thires-length and one-third-length chains, however. This was not apparent with F-alpha 2M produced by ammonium salts. F-alpha 2M produced by trypsin showed two new bands attributable to cleavage of the subunit polypeptide chain near the middle. Immunoassays of F-alpha 2M gave 'rockets' 12-29% lower than those with S-alpha 2M. The nature of the interactions between subunits in S-alpha 2M and F-alpha 2M was investigated by treating each form with glutaraldehyde before electrophoresis in the presence of sodium dodecyl sulphate. A much greater degree of cross-linking was observed with the F-alpha 2M, indicating that the subunits interact most closely in this form of the molecule. Exposure of S-alpha 2M to 3 M-urea or pH3 resulted in dissociation to the disulphide-bonded half-molecules; these did not show the proteinase-binding activity characteristic of the intact alpha 2M. F-alpha 2M was less easily dissociated than was S-alpha 2M. S-alpha 2M was readily dissociated to the quarter-subunits by mild reduction, with the formation of 3-4 new thiol groups per subunit. Inact reactive alpha 2M could then be regenerated in high yield by reoxidation of the subunits. F-alpha 2M formed by reaction with a proteinase or ammonium salts was not dissociated under the same conditions, although the interchain disulphide bonds were reduced. If the thiol groups of the quarter-subunits of S-alpha 2M were blocked by carboxymethylation, oxidative reassociation did not occur. Nevertheless treatment of these subunits with methylammonium salts or a proteinase caused the reassembly of half-molecules and intact (F-) tetramers. It is emphasized that F-alpha 2M does not have the properties of a denatured form of the protein... Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:91367

  1. Molecular characterization of cDNAs encoding G protein alpha and beta subunits and study of their temporal and spatial expression patterns in Nicotiana plumbaginifolia Viv.

    PubMed

    Kaydamov, C; Tewes, A; Adler, K; Manteuffel, R

    2000-04-25

    We have isolated cDNA sequences encoding alpha and beta subunits of potential G proteins from a cDNA library prepared from somatic embryos of Nicotiana plumbaginifolia Viv. at early developmental stages. The predicted NPGPA1 and NPGPB1 gene products are 75-98% identical to the known respective plant alpha and beta subunits. Southern hybridizations indicate that NPGPA1 is probably a single-copy gene, whereas at least two copies of NPGPB1 exist in the N. plumbaginifolia genome. Northern analyses reveal that both NPGPA1 and NPGPB1 mRNA are expressed in all embryogenic stages and plant tissues examined and their expression is obviously regulated by the plant hormone auxin. Immunohistological localization of NPGPalpha1 and NPGPbeta1 preferentially on plasma and endoplasmic reticulum membranes and their immunochemical detection exclusively in microsomal cell fractions implicate membrane association of both proteins. The temporal and spatial expression patterns of NPGPA1 and NPGPB1 show conformity as well as differences. This could account for not only cooperative, but also individual activities of both subunits during embryogenesis and plant development.

  2. Characterization and charge distribution of the asparagine-linked oligosaccharides on secreted mouse thyrotropin and free alpha-subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gesundheit, N.; Gyves, P.W.; DeCherney, G.S.

    1989-06-01

    Mouse hemipituitaries in vitro secrete TSH, composed of an alpha-beta heterodimer, as well as excess (free) alpha-subunits. By dual metabolic labeling with (35S)sulfate and (3H)mannose, we have characterized oligosaccharides from secreted TSH alpha, TSH beta, and free alpha-subunits released from the apoprotein by enzymatic deglycosylation. Oligosaccharides from each subunit displayed a distinct anion exchange HPLC profile due to a specific pattern of sialylation and sulfation. Six species were obtained from TSH alpha (with two glycosylation sites), including neutral oligosaccharides as well as those with one or two negative charges. For TSH beta (with one glycosylation site) at least eight oligosaccharidemore » species were noted, representing nearly every permutation of sialylation and sulfation; approximately 30% contained three or more negative charges. Analysis of (3H)mannose-labeled oligosaccharides on Concanavalin-A-agarose showed 85% binding for those from TSH alpha, 70% for free alpha, and 50% for those from TSH beta. These data demonstrate that oligosaccharides from secreted TSH beta were more sialylated and sulfated, consistent with a more complex branching pattern, than those from TSH alpha. Oligosaccharides from free alpha-subunit were more sialylated than those from TSH alpha, and the net negative charge was intermediate between those of TSH alpha and TSH beta. Although great microheterogeneity is present even at the single glycosylation site on the beta-subunit of secreted TSH, a pattern of sialylation and sulfation could be discerned.« less

  3. Na(+)-K (+) pump location and translocation during muscle contraction in rat skeletal muscle.

    PubMed

    Kristensen, Michael; Rasmussen, Martin Krøyer; Juel, Carsten

    2008-08-01

    Muscle contraction may up-regulate the number of Na(+)-K(+) pumps in the plasma membrane by translocation of subunits. Since there is still controversy about where this translocation takes place from and if it takes place at all, the present study used different techniques to characterize the translocation. Electrical stimulation and biotin labeling of rat muscle revealed a 40% and 18% increase in the amounts of the Na(+)-K(+) pump alpha(2) subunit and caveolin-3 (Cav-3), respectively, in the sarcolemma. Exercise induced a 36% and 19% increase in the relative amounts of the alpha(2) subunit and Cav-3, respectively, in an outer-membrane-enriched fraction and a 41% and 17% increase, respectively, in sarcolemma giant vesicles. The Na(+)-K(+) pump activity measured with the 3-O-MFPase assay was increased by 37% in giant vesicles from exercised rats. Immunoprecipitation with Cav-3 antibody showed that 17%, 11% and 14% of the alpha(1) subunits were associated with Cav-3 in soleus, extensor digitorum longus, and mixed muscles, respectively. For the alpha(2), the corresponding values were 17%, 5% and 16%. In conclusion; muscle contraction induces translocation of the alpha subunits, which is suggested to be caused partly by structural changes in caveolae and partly by translocation from an intracellular pool.

  4. In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR){alpha} and PPAR{gamma} and quantitative analysis of in vivo induction pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, Shinji; Matsuda, Tadashi; Kobayashi, Satoshi

    2006-12-15

    Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors and key regulators of lipid metabolism and cell differentiation. However, there have been few studies reporting on a variety of environmental chemicals, which may interact with these receptors. In the present study, we characterized mouse PPAR{alpha} and PPAR{gamma} agonistic activities of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 11 acid amides, 7 triazines, 8 ureas and 44 others) by in vitro reporter gene assays using CV-1 monkey kidney cells. Three of the 200 pesticides, diclofop-methyl, pyrethrins and imazalil, which have different chemical structures, showed PPAR{alpha}-mediatedmore » transcriptional activities in a dose-dependent manner. On the other hand, none of the 200 pesticides showed PPAR{gamma} agonistic activity at concentrations {<=} 10{sup -5} M. To investigate the in vivo effects of diclofop-methyl, pyrethrins and imazalil, we examined the gene expression of PPAR{alpha}-inducible cytochrome P450 4As (CYP4As) in the liver of female mice intraperitoneally injected with these compounds ({<=} 300 mg/kg). RT-PCR revealed significantly high induction levels of CYP4A10 and CYP4A14 mRNAs in diclofop-methyl- and pyrethrins-treated mice, whereas imazalil induced almost no gene expressions of CYP4As. In particular, diclofop-methyl induced as high levels of CYP4A mRNAs as WY-14643, a potent PPAR{alpha} agonist. Thus, most of the 200 pesticides tested do not activate PPAR{alpha} or PPAR{gamma} in in vitro assays, but only diclofop-methyl and pyrethrins induce PPAR{alpha} agonistic activity in vivo as well as in vitro.« less

  5. The alpha2-delta protein: an auxiliary subunit of voltage-dependent calcium channels as a recognized drug target.

    PubMed

    Thorpe, Andrew J; Offord, James

    2010-07-01

    Currently, there are two drugs on the market, gabapentin (Neurontin) and pregabalin (Lyrica), that are proposed to exert their therapeutic effect through binding to the alpha2-delta subunit of voltage-sensitive calcium channels. This activity was unexpected, as the alpha2-delta subunit had previously been considered not to be a pharmacological target. In this review, the role of the alpha2-delta subunits is discussed and the mechanism of action of the alpha2-delta ligands in vitro and in vivo is summarized. Finally, new insights into the mechanism of drugs that bind to this protein are discussed.

  6. Identification of a GTP-binding protein. cap alpha. subunit that lacks an apparent ADP-ribosylation site for pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, H.K.W.; Yoshimoto, K.K.; Eversole-Cire, P.

    1988-05-01

    Recent molecular cloning of cDNA for the ..cap alpha.. subunit of bovine transducin (a guanine nucleotide-binding regulatory protein, or G protein) has revealed the presence of two retinal-specific transducins, called T/sub r/ and T/sub c/, which are expressed in rod or cone photoreceptor cells. In a further study of G-protein diversity and signal transduction in the retina, the authors have identified a G-protein ..cap alpha.. subunit, which they refer to as G/sub z/..cap alpha.., by isolating a human retinal cDNA clone that cross-hybridizes at reduced stringency with bovine T/sub r/ ..cap alpha..-subunit cDNA. The deduced amino acid sequence of G/submore » z/..cap alpha.. is 41-67% identical with those of other known G-protein ..cap alpha.. subunits. However, the 355-residue G/sub z/..cap alpha.. lacks a consensus site for ADP-ribosylation by pertussis toxin, and its amino acid sequence varies within a number of regions that are strongly conserved among all of the other G-protein ..cap alpha.. subunits. They suggest that G/sub z/..cap alpha.., which appears to be highly expressed in neural tissues, represents a member of a subfamily of G proteins that mediate signal transduction in pertussis toxin-insensitive systems.« less

  7. Epidermal growth factor system is a physiological regulator of development of the mouse fetal submandibular gland and regulates expression of the alpha6-integrin subunit.

    PubMed

    Kashimata, M; Gresik, E W

    1997-02-01

    Epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) regulate branching morphogenesis of fetal mouse submandibular gland (SMG) rudiments in vitro. The EGF system (EGF, TGF-alpha, and their shared receptor, EGFR) also regulates expression of integrins and their ligands in the extracellular matrix. We show here that inhibition of EGFR tyrosine-kinase activity by a tyrphostin retards in vitro development of SMGs. Using total RNA isolated from pooled SMGs taken from intact mouse fetuses, mRNA transcripts for EGF, TGF-alpha, and EGFR were detected by reverse transcription-polymerase chain reaction (RT-PCR), and age-dependent variations in the levels of these mRNA were quantitatively determined by nuclease protection assays. These findings suggest that the EGF system is operative in the in vivo development of this gland. alpha6-Integrin subunit was localized by immunofluorescence at the basal surface of epithelial cells. Branching morphogenesis of cultured SMG rudiments was inhibited by anti-alpha6 antibodies. Synthesis of alpha6-subunit in cultured SMGs, detected by metabolic labeling and immunoprecipitation, was increased by EGF and drastically reduced by tyrphostin. RT-PCR revealed that mRNAs for alpha6- and beta1- and beta4-integrin subunits are expressed at all ages between embryonic day 13 and postnatal day 7. These findings suggest that 1) the EGF system is a physiologic regulator of development of fetal mouse SMG, and 2) one mechanism by which it acts may be by regulating expression of integrins, which in turn control interaction of epithelial cells with the extracellular matrix.

  8. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, M.P.; Wang, H.H.

    1990-02-06

    A photoactivatable analogue of phosphatidylserine, {sup 125}I-labeled 4-azidosalicylic acid-phosphatidylserine ({sup 125}I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchRmore » {alpha} subunit that incorporated {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the {alpha} subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic region M4. An 18.7-kDa fragment beginning at Ser-173 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the {alpha} subunit incorporated little or no detectable amount of probe.« less

  9. Low concentrations of ethanol do not affect radioligand binding to the delta-subunit-containing GABAA receptors in the rat brain.

    PubMed

    Mehta, Ashok K; Marutha Ravindran, C R; Ticku, Maharaj K

    2007-08-24

    In the present study, we investigated the co-localization pattern of the delta subunit with other subunits of GABA(A) receptors in the rat brain using immunoprecipitation and Western blotting techniques. Furthermore, we investigated whether low concentrations of ethanol affect the delta-subunit-containing GABA(A) receptor assemblies in the rat brain using radioligand binding to the rat brain membrane homogenates as well as to the immunoprecipitated receptor assemblies. Our results revealed that delta subunit is not co-localized with gamma(2) subunit but it is associated with the alpha(1), alpha(4) or alpha(6), beta(2) and/or beta(3) subunit(s) of GABA(A) receptors in the rat brain. Ethanol (1-50 mM) neither affected [(3)H]muscimol (3 nM) binding nor diazepam-insensitive [(3)H]Ro 15-4513 (2 nM) binding in the rat cerebellum and cerebral cortex membranes. However, a higher concentration of ethanol (500 mM) inhibited the binding of these radioligands to the GABA(A) receptors partially in the rat cerebellum and cerebral cortex. Similarly, ethanol (up to 50 mM) did not affect [(3)H]muscimol (15 nM) binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum and hippocampus but it inhibited the binding partially at a higher concentration (500 mM). These results suggest that the native delta-subunit-containing GABA(A) receptors do not play a major role in the pharmacology of clinically relevant low concentrations of ethanol.

  10. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  11. Cross-linking of hCG to luteal receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, T.H.; Ji, I.

    1985-01-01

    Photoaffinity labeling of the lutropin/choriogonadotropin (LH/hCG) receptor system on porcine granulosa cells has demonstrated that both the ..cap alpha.. and ..beta.. subunits of hCG directly photoaffinity label the hormone receptor. Three new bands appear on SDS-PAGE as a consequence of photoaffinity labeling by each subunit: the molecular weights of the three bands (106K, 88K, and 83K) produced by the subunit are larger by approximately 10K than those of the three bands (96K, 76K, and 73K) labeled by the ..cap alpha.. subunit. Although it could be a coincidence that the molecular weight of the ..beta.. subunit is approximately 10K larger thanmore » that of the ..cap alpha.. subunit, the similarity in these differences suggests the possibility that both the ..cap alpha.. and ..beta.. subunits have labeled the same polypeptides.« less

  12. Mineralocorticoid effects in the late gestation ovine fetal lung

    PubMed Central

    McCartney, Jarret; Richards, Elaine M.; Wood, Charles E.; Keller‐Wood, Maureen

    2014-01-01

    Abstract This study was designed to determine the effects of corticosteroids at MR in the late‐gestation fetal lung. Since both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) are expressed at relatively high levels in the fetal lung, endogenous corticosteroids may act at MR as well as GR in the preterm fetal lung. The GR agonist, betamethasone, the MR agonist, aldosterone, or both were infused intravenously for 48 h in ovine fetuses of approximately 130 days gestation. Effects on airway pressures during stepwise inflation of the in situ lung, expression of ENaC alpha (SCNN1A), ENaC beta (SCNN1B), and Na,K ATPase (ATP1A1), and elastin and collagen content were determined after the infusions. We found that aldosterone significantly reduced the airway pressure measured during the initial step in inflation of the lung, although aldosterone had no overall effect on lung compliance, nor did aldosterone induce expression of ENaCα, ENaCβ or Na,K ATPaseα1. Betamethasone significantly increased expression of the epithelial sodium channel (ENaC) subunit mRNAs, and collagen and elastin content in the lungs, although this dose of betamethasone also had no effect on lung compliance. There was no synergy between effects of the MR and GR agonists. Transcriptomic analysis suggested that although aldosterone did not alter genes in pathways related to epithelial sodium transport, aldosterone did alter genes in pathways involved in cell proliferation in the lungs. The results are consistent with corticosteroid‐induced fluid reabsorption at birth through GR rather than MR, but suggest that MR facilitates lung maturation, and may contribute to inflation with the first breaths via mechanisms distinct from known aldosterone effects in other epithelia. PMID:25347852

  13. Mixed nicotinic-muscarinic properties of the alpha9 nicotinic cholinergic receptor.

    PubMed

    Verbitsky, M; Rothlin, C V; Katz, E; Elgoyhen, A B

    2000-10-01

    The rat alpha9 nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus laevis oocytes and tested for its sensitivity to a wide variety of cholinergic compounds. Acetylcholine (ACh), carbachol, choline and methylcarbachol elicited agonist-evoked currents, giving maximal or near maximal responses. Both the nicotinic agonist suberyldicholine as well as the muscarinic agonists McN-A-343 and methylfurtrethonium behaved as weak partial agonists of the receptor. Most classical cholinergic compounds tested, being either nicotinic (nicotine, epibatidine, cytisine, methyllycaconitine, mecamylamine, dihydro-beta-erythroidine), or muscarinic (muscarine, atropine, gallamine, pilocarpine, bethanechol) agonists and antagonists, blocked the recombinant alpha9 receptor. Block by nicotine, epibatidine, cytisine, methyllycaconitine and atropine was overcome at high ACh concentrations, suggesting a competitive type of block. The present results indicate that alpha9 displays mixed nicotinic-muscarinic features that resemble the ones described for the cholinergic receptor of cochlear outer hair cells (OHCs). We suggest that alpha9 contains the structural determinants responsible for the pharmacological properties of the native receptor.

  14. Exogenous NO administration and alpha-adrenergic vasoconstriction in human limbs.

    PubMed

    Rosenmeier, Jaya B; Fritzlar, Sandy J; Dinenno, Frank A; Joyner, Michael J

    2003-12-01

    Nitric oxide (NO) is capable of blunting alpha-adrenergic vasoconstriction in contracting skeletal muscles of experimental animals (functional sympatholysis). We therefore tested the hypothesis that exogenous NO administration can blunt alpha-adrenergic vasoconstriction in resting human limbs by measuring forearm blood flow (FBF; Doppler ultrasound) and blood pressure in eight healthy males during brachial artery infusions of three alpha-adrenergic constrictors (tyramine, which evokes endogenous norepinephrine release; phenylephrine, an alpha1-agonist; and clonidine, an alpha2-agonist). To simulate exercise hyperemia, the vasoconstriction caused by the alpha-agonists was compared during adenosine-mediated (>50% NO independent) and sodium nitroprusside-mediated (SNP; NO donor) vasodilation of the forearm. Both adenosine and SNP increased FBF from approximately 35-40 to approximately 200-250 ml/min. All three alpha-adrenergic constrictor drugs caused marked reductions in FBF and calculated forearm vascular conductance (P < 0.05). The relative reductions in forearm vascular conductance caused by the alpha-adrenergic constrictors during SNP infusion were similar (tyramine, -74 +/- 3 vs. -65 +/- 2%; clonidine, -44 +/- 6 vs. -44 +/- 6%; P > 0.05) or slightly greater (phenylephrine, -47 +/- 6 vs. -33 +/- 6%; P < 0.05) compared with the responses during adenosine. In conclusion, these results indicate that exogenous NO sufficient to raise blood flow to levels simulating those seen during exercise does not blunt alpha-adrenergic vasoconstriction in the resting human forearm.

  15. Expression of CD73/ecto-5'-nucleotidase on human gingival fibroblasts and contribution to the inhibition of interleukin-1alpha-induced granulocyte-macrophage colony stimulating factor production.

    PubMed

    Nemoto, Eiji; Kunii, Ryotaro; Tada, Hiroyuki; Tsubahara, Taisuke; Ishihata, Hiroshi; Shimauchi, Hidetoshi

    2004-02-01

    CD73/5'-nucleotidase (5'-NT) is an ectoenzyme that participates in immune/inflammatory reactions. We examined the possible expression of CD73/5'-NT on human gingival fibroblasts (hGF), which are important to the immune/inflammatory system in periodontal tissue. We demonstrated that CD73/5'-NT was expressed on hGF by flow cytometry. We found that pre-treatment of hGF with 5'-AMP induced marked inhibition of granulocyte-macrophage colony-stimulating factor (GM-CSF) production from hGF upon stimulation with interleukin-1alpha (IL-1alpha) by enzyme-linked immunosorbent assay (ELISA). A specific inhibitor of 5'-NT, adenosine 5'-[alpha,beta-methylene] diphosphate blocked the inhibition of GM-CSF production, suggesting that adenosine converted from 5'-AMP acts on the inhibitory effects. The GM-CSF inhibition suggested that A3 receptor might be involved. The rank order of agonists was found to be (N6-benzyl-5'-N-ethylcarboxamidoadenosine) A3 receptor agonist > or = (2-chloroadenosine) non-selective agonist > (CGS-21680) A2A receptor agonist > adenosine > or = (N6-cyclohexyladenosine) A1 agonist. Further support for the main role of A3 receptor was the binding A3 antagonist [9-chloro-2-(2-furanyl)-5-([phenylacetyl]amino)[1,2,4]-triazolo[1,5-c]quinazdine] reversed the effect of adenosine, but no significant reverse was observed by A1 (1,3-dipropyl-8-cyclopentylxanthine), A2 [3,7-dimethyl-1-(2-propargyl)xanthine], A2A[8-(3-chlorostyryl)caffeine], and A2B (alloxazine) antagonists. The CD73/5'-NT expression was increased upon stimulation with gamma-interferon, but not other stimulants such as tumor necrosis factor-alpha, IL-4, lipopolysaccharide from Porphyromonas gingivalis and Escherichia coli, and fimbriae from P. gingivalis, and this increase was correlated with the enhanced GM-CSF inhibition by 5'-AMP but not adenosine. These findings suggested that CD73/5'-NT on hGF exerts an anti-inflammatory effects in periodontal disease by conversion from 5'-AMP to adenosine.

  16. Concordance between isolated cleft palate in mice and alterations within a region including the gene encoding the [beta][sub 3] subunit of the type A [gamma]-aminobutyric acid receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culiat, C.T.; Stubbs, L.; Nicholls, R.D.

    1993-06-01

    Genetic and molecular analyses of a number of radiation-induced deletion mutations of the pink-eyed dilution (p) locus in mouse chromosome 7 have identified a specific interval on the genetic map associated with a neonatally lethal mutation that results in cleft palate. This interval, closely linked and distal to p, and bracketed by the genes encoding the [alpha][sub 5] and [beta][sub 3] subunits of the type A [gamma]-aminobutyric acid receptor (Gabra5 and Gabrb3, respectively), contains a gene(s) (cp1; cleft palate 1) necessary for normal palate development. The cp1 interval extends from the distal breakpoint of the prenatally lethal p[sup 83FBFo] deletionmore » to the Gabrb3 locus. Among 20 p deletions tested, there was complete concordance between alterations at the Gabrb3 transcription unit and inability to complement the cleft-palate defect. These mapping data, along with previously described in vivo and in vitro teratological effects of [gamma]-aminobutyric acid or its agonists on palate development, suggest the possibility that a particular type A [gamma]-aminobutyric acid receptor that includes the [beta][sub 3] subunit may be necessary for normal palate development. The placement of the cp1 gene within a defined segment of the larger D15S12h (p)-D15S9h-1 interval in the mouse suggests that the highly homologous region of the human genome, 15q11-q13, be evaluated for a role(s) in human fetal facial development. 29 refs., 4 figs., 1 tab.« less

  17. Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation.

    PubMed

    Hub, Jochen S; Kubitzki, Marcus B; de Groot, Bert L

    2010-05-06

    We present molecular dynamics simulations of unliganded human hemoglobin (Hb) A under physiological conditions, starting from the R, R2, and T state. The simulations were carried out with protonated and deprotonated HC3 histidines His(beta)146, and they sum up to a total length of 5.6 micros. We observe spontaneous and reproducible T-->R quaternary transitions of the Hb tetramer and tertiary transitions of the alpha and beta subunits, as detected from principal component projections, from an RMSD measure, and from rigid body rotation analysis. The simulations reveal a marked asymmetry between the alpha and beta subunits. Using the mutual information as correlation measure, we find that the beta subunits are substantially more strongly linked to the quaternary transition than the alpha subunits. In addition, the tertiary populations of the alpha and beta subunits differ substantially, with the beta subunits showing a tendency towards R, and the alpha subunits showing a tendency towards T. Based on the simulation results, we present a transition pathway for coupled quaternary and tertiary transitions between the R and T conformations of Hb.

  18. Differential α4(+)/(−)β2 Agonist-binding Site Contributions to α4β2 Nicotinic Acetylcholine Receptor Function within and between Isoforms*

    PubMed Central

    Lucero, Linda M.; Weltzin, Maegan M.; Eaton, J. Brek; Cooper, John F.; Lindstrom, Jon M.; Lukas, Ronald J.; Whiteaker, Paul

    2016-01-01

    Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)3(β2)2 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(−)β2 agonist-binding sites. The LS isoform also contains a unique α4(+)/(−)α4 site with lower agonist affinity than the α4(+)/(−)β2 sites. However, the relative roles of the conserved α4(+)/(−)β2 agonist-binding sites in and between the isoforms have not been studied. We used a fully linked subunit concatemeric nAChR approach to express pure populations of HS or LS isoform α4β2*-nAChR. This approach also allowed us to mutate individual subunit interfaces, or combinations thereof, on each isoform background. We used this approach to systematically mutate a triplet of β2 subunit (−)-face E-loop residues to their non-conserved α4 subunit counterparts or vice versa (β2HQT and α4VFL, respectively). Mutant-nAChR constructs (and unmodified controls) were expressed in Xenopus oocytes. Acetylcholine concentration-response curves and maximum function were measured using two-electrode voltage clamp electrophysiology. Surface expression was measured with 125I-mAb 295 binding and was used to define function/nAChR. If the α4(+)/(−)β2 sites contribute equally to function, making identical β2HQT substitutions at either site should produce similar functional outcomes. Instead, highly differential outcomes within the HS isoform, and between the two isoforms, were observed. In contrast, α4VFL mutation effects were very similar in all positions of both isoforms. Our results indicate that the identity of subunits neighboring the otherwise equivalent α4(+)/(−)β2 agonist sites modifies their contributions to nAChR activation and that E-loop residues are an important contributor to this neighbor effect. PMID:26644472

  19. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  20. Alpha subunit of glycoprotein hormones in the sera of acromegalic patients and its mRNA in the tumors.

    PubMed

    Machiavelli, G A; Artese, R; Benencia, H; Bruno, O; Guerra, L; Basso, A; Burdman, J A

    1999-04-01

    Within a population of 16 pituitary adenomas we found high levels of glycoprotein alpha subunits in the sera of patients with somatotrophic tumors. This finding was correlated with the presence of mRNA alpha subunit in these tumors indicating the adenomas themselves as the origin of the circulating alpha-subunit. Synthesis of these two hormones, which are chemically very different, by the same tumor cells indicates a high degree of differentiation of these cells. We are unable at this time to conclusively correlate differentiation of these tumors aggressively.

  1. Mechanism of repression of the inhibin alpha-subunit gene by inducible 3',5'-cyclic adenosine monophosphate early repressor.

    PubMed

    Burkart, Anna D; Mukherjee, Abir; Mayo, Kelly E

    2006-03-01

    The rodent ovary is regulated throughout the reproductive cycle to maintain normal cyclicity. Ovarian follicular development is controlled by changes in gene expression in response to the gonadotropins FSH and LH. The inhibin alpha-subunit gene belongs to a group of genes that is positively regulated by FSH and negatively regulated by LH. Previous studies established an important role for inducible cAMP early repressor (ICER) in repression of alpha-inhibin. These current studies investigate the mechanisms of repression by ICER. It is not clear whether all four ICER isoforms expressed in the ovary can act as repressors of the inhibin alpha-subunit gene. EMSAs demonstrate binding of all isoforms to the inhibin alpha-subunit CRE (cAMP response element), and transfection studies demonstrate that all isoforms can repress the inhibin alpha-subunit gene. Repression by ICER is dependent on its binding to DNA as demonstrated by mutations to ICER's DNA-binding domain. These mutational studies also demonstrate that repression by ICER is not dependent on heterodimerization with CREB (CRE-binding protein). Competitive EMSAs show that ICER effectively competes with CREB for binding to the inhibin alpha CRE in vitro. Chromatin immunoprecipitation assays demonstrate a replacement of CREB dimers bound to the inhibin alpha CRE by ICER dimers in ovarian granulosa cells in response to LH signaling. Thus, there is a temporal association of transcription factors bound to the inhibin alpha-CRE controlling inhibin alpha-subunit gene expression.

  2. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36).

    PubMed

    Seo, H S; Kim, H Y; Jeong, J Y; Lee, S Y; Cho, M J; Bahk, J D

    1995-03-01

    A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein alpha subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein alpha subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein alpha subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 microM [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.

  3. Glycosylation and processing of high-mannose oligosaccharides of thyroid-stimulating hormone subunits: comparison to nonsecretory cell glycoproteins.

    PubMed

    Ronin, C; Stannard, B S; Rosenbloom, I L; Magner, J A; Weintraub, B D

    1984-09-25

    Thyroid-stimulating hormone (TSH) subunit glycosylation was compared to that of total cell glycoproteins in mouse thyrotropic tumors. Lipid-linked oligosaccharides, total cell glycoproteins, and TSH subunits were labeled with either [3H]mannose, [3H]galactose, or [3H]glucose in pulse and pulse-chase experiments. The various oligosaccharides were isolated respectively by lipid extraction and mild acid hydrolysis, by selective immunoprecipitation, or by acid precipitation followed by trypsin and endoglycosidase H treatment. The nature of the oligosaccharides was assessed by their migration in paper chromatography, their relative incorporation of different precursors, and also their resistance to alpha-mannosidase. At 60 min, lipid-linked oligosaccharides were found to be composed of Glc3-2Man9GlcNAc2, Man9-8GlcNAc2, and Man5GlcNAc2. At 10 or 60 min of labeling, total cell proteins contained Glc3Man9GlcNAc2, Glc1Man9GlcNAc2, Man9GlcNAc2, Glc1Man8GlcNAc2, Man8GlcNAc2, and Man7GlcNAc2. The largest oligosaccharide, Glc3Man9GlcNAc2, had an unusually long half-life of about 2 h. In contrast, no Glc3Man9GlcNAc2 was found either on TSH + alpha subunits or on free beta subunits isolated either by immunoprecipitation or by sodium dodecyl sulfate gel electrophoresis. Instead, primarily Man9GlcNAc2 was found after a 10-min pulse both on TSH + alpha subunits and on beta subunits. When the pulse was followed by a chase up to 2 h, there was a progressive increase in Man8GlcNAc2 in higher amounts on TSH + alpha-subunit carbohydrate chains than on beta subunits.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Coexpression of alpha and beta subunits of the rod cyclic GMP-gated channel restores native sensitivity to cyclic AMP: role of D604/N1201.

    PubMed Central

    Pagès, F; Ildefonse, M; Ragno, M; Crouzy, S; Bennett, N

    2000-01-01

    Coexpression of the betawt and alphawt subunits of the bovine rod channel restores two characteristics of the native channels: higher sensitivity to cAMP and potentiation of cGMP-induced currents by low cAMP concentrations. To test whether the increased sensitivity to cAMP is due to the uncharged nature of the asparagine residue (N1201) situated in place of aspartate D604 in the beta subunit as previously suggested (, Neuron. 15:619-625), we compared currents from wild-type (alphawt and alphawt/betawt) and from mutated channels (alphaD604N, alphaD604N/betawt, and alphawt/betaN1201D). The results show that the sensitivity to cAMP and cAMP potentiation is partly but not entirely determined by the charge of residue 1201 in the beta subunit. The D604N mutation in the alpha subunit and, to a lesser extent, coexpression of the betawt subunit with the alphawt subunit reduce the open probability for cGMP compared to that of the alphawt channel. Interpretation of the data with the MWC allosteric model (model of Monod, Wyman, Changeux;, J. Mol. Biol. 12:88-118) suggests that the D604N mutation in the alpha subunits and coassembly of alpha and beta subunits alter the free energy of gating by cAMP more than that of cAMP binding. PMID:10692312

  5. Developmentally-regulated sodium channel subunits are differentially sensitive to {alpha}-cyano containing pyrethroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meacham, Connie A.; Brodfuehrer, Peter D.; Watkins, Jennifer A.

    2008-09-15

    Juvenile rats have been reported to be more sensitive to the acute neurotoxic effects of the pyrethroid deltamethrin than adults. While toxicokinetic differences between juveniles and adults are documented, toxicodynamic differences have not been examined. Voltage-gated sodium channels, the primary targets of pyrethroids, are comprised of {alpha} and {beta} subunits, each of which have multiple isoforms that are expressed in a developmentally-regulated manner. To begin to test whether toxicodynamic differences could contribute to age-dependent deltamethrin toxicity, deltamethrin effects were examined on sodium currents in Xenopus laevis oocytes injected with different combinations of rat {alpha} (Na{sub v}1.2 or Na{sub v}1.3) andmore » {beta} ({beta}{sub 1} or {beta}{sub 3}) subunits. Deltamethrin induced tail currents in all isoform combinations and increased the percent of modified channels in a concentration-dependent manner. Effects of deltamethrin were dependent on subunit combination; Na{sub v}1.3-containing channels were modified to a greater extent than were Na{sub v}1.2-containing channels. In the presence of a {beta} subunit, deltamethrin effects were significantly greater, an effect most pronounced for Na{sub v}1.3 channels; Na{sub v}1.3/{beta}{sub 3} channels were more sensitive to deltamethrin than Na{sub v}1.2/{beta}{sub 1} channels. Na{sub v}1.3/{beta}{sub 3} channels are expressed embryonically, while the Na{sub v}1.2 and {beta}{sub 1} subunits predominate in adults, supporting the hypothesis for age-dependent toxicodynamic differences. Structure-activity relationships for sensitivity of these subunit combinations were examined for other pyrethroids. Permethrin and tetramethrin did not modify currents mediated by either subunit combination. Cypermethrin, {beta}-cyfluthrin, esfenvalerate and fenpropathrin all modified sodium channel function; effects were significantly greater on Na{sub v}1.3/{beta}{sub 3} than on Na{sub v}1.2/{beta}{sub 1} channels. These data demonstrate a greater sensitivity of Na{sub v}1.3 vs Na{sub v}1.2 channels to deltamethrin and other cyano-containing pyrethroids, particularly in the presence of a {beta} subunit.« less

  6. Four subunits that are shared by the three classes of RNA polymerase are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae.

    PubMed Central

    Shpakovski, G V; Acker, J; Wintzerith, M; Lacroix, J F; Thuriaux, P; Vigneron, M

    1995-01-01

    Four cDNAs encoding human polypeptides hRPB7.0, hRPB7.6, hRPB17, and hRPB14.4 (referred to as Hs10 alpha, Hs10 beta, Hs8, and Hs6, respectively), homologous to the ABC10 alpha, ABC10 beta, ABC14.5, and ABC23 RNA polymerase subunits (referred to as Sc10 alpha, Sc10 beta, Sc8, and Sc6, respectively) of Saccharomyces cerevisiae, were cloned and characterized for their ability to complement defective yeast mutants. Hs10 alpha and the corresponding Sp10 alpha of Schizosaccharomyces pombe can complement an S. cerevisiae mutant (rpc10-delta::HIS3) defective in Sc10 alpha. The peptide sequences are highly conserved in their carboxy-terminal halves, with an invariant motif CX2CX12RCX2CGXR corresponding to a canonical zinc-binding domain. Hs10 beta, Sc10 beta, and the N subunit of archaeal RNA polymerase are homologous. An invariant CX2CGXnCCR motif presumably forms an atypical zinc-binding domain. Hs10 beta, but not the archaeal subunit, complemented an S. cerevisiae mutant (rpb10-delta 1::HIS3) lacking Sc10 beta. Hs8 complemented a yeast mutant (rpb8-delta 1::LYS2) defective in the corresponding Sc8 subunit, although with a strong thermosensitive phenotype. Interspecific complementation also occurred with Hs6 and with the corresponding Dm6 cDNA of Drosophila melanogaster. Hs6 cDNA and the Sp6 cDNA of S. pombe are dosage-dependent suppressors of rpo21-4, a mutation generating a slowly growing yeast defective in the largest subunit of RNA polymerase II. Finally, a doubly chimeric S. cerevisiae strain bearing the Sp6 cDNA and the human Hs10 beta cDNA was also viable. No interspecific complementation was observed for the human hRPB25 (Hs5) homolog of the yeast ABC27 (Sc5) subunit. PMID:7651387

  7. Rates of processing of the high mannose oligosaccharide units at the three glycosylation sites of mouse thyrotropin and the two sites of free alpha-subunits.

    PubMed

    Miura, Y; Perkel, V S; Magner, J A

    1988-09-01

    We have determined the structures of high mannose (Man) oligosaccharide units at individual glycosylation sites of mouse TSH. Mouse thyrotropic tumor tissue was incubated with D-[2-3H]Man with or without [14C]tyrosine ([14C] Tyr) for 2, 3, or 6 h, and for a 3-h pulse followed by a 2-h chase. TSH heterodimers or free alpha-subunits were obtained from homogenates using specific antisera. After reduction and alkylation, subunits were treated with trypsin. The tryptic fragments were then loaded on a reverse phase HPLC column to separate tryptic fragments bearing labeled oligosaccharides. The N-linked oligosaccharides were released with endoglycosidase-H and analyzed by paper chromatography. Man9GlcNac2 and Man8GlcNac2 units predominated at each time point and at each specific glycosylation site, but the processing of high Man oligosaccharides differed at each glycosylation site. The processing at Asn23 of TSH beta-subunits was slower than that at Asn56 or Asn82 of alpha-subunits. The processing at Asn82 was slightly faster than that at Asn56 for both alpha-subunits of TSH heterodimers and free alpha-subunits. The present study demonstrates that the early processing of oligosaccharides differs at the individual glycosylation sites of TSH and free alpha-subunits, perhaps because of local conformational differences.

  8. A synthetic peptide derived from A1 module in CRD4 of human TNF receptor-1 inhibits binding and proinflammatory effect of human TNF-alpha.

    PubMed

    Cao, Yingnan; Wang, Zhaohe; Bu, Xianzhang; Tang, Shu; Mei, Zhengrong; Liu, Peiqing

    2009-06-01

    Tumour necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine, which has been shown to be a causative factor in rheumatoid arthritis, inflammatory bowel disease and septic shock. Proinflammatory effect of TNF-alpha is activated mainly through human TNF receptor-1 (TNF-R1). However, the role of the fourth cystein-rich domain (CRD4) of TNF-R1 extracellular portion in the interaction of TNF-alpha with TNF-R1 is still unclear. In the present study, binding activity of TNF-alpha to TNF-R1 and protein levels of IkappaB-alpha and nuclear transcription factor kappa B (NF-kappaB) p65 subunit in HeLa cells were measured using enzyme-linked immunosorbent assay (ELISA) and western-blot analysis. Pep 3 (LRENECVS) which was derived from the hydrophilic region of A1 module in CRD4 remarkably inhibited the binding of TNF-alpha to TNF-R1, and also reversed TNF-alpha-induced degradation of IkappaB-alpha and nuclear translocation of NF-kappaB p65 subunit in HeLa cells. Our results confirmed that the hydrophilic region of A1 module in CRD4 participated in the interaction of TNF-alpha with TNF-R1, and demonstrated the potential of small-molecule TNF-alpha extracellular inhibitors targeting at A1 module in CRD4 of TNF-R1 in suppressing proinflammatory effect of TNF-alpha.

  9. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (..cap alpha..Gs), assayed by radiolabeling in the presence of cholera toxin and (/sup 32/P)NAD/sup +/, increased upon differentiation as previously described by others. The amounts of ..cap alpha..Gi and ..cap alpha..Go assayed by radiolabeling in the presence of pertussis toxin and (/supmore » 32/P)NAD/sup +/ increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain ..cap alpha..Go and with one raised against the..beta..-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of ..cap alpha..Go and also demonstrate an increase in the amount of the ..beta..-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes.« less

  10. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation

    PubMed Central

    Fischer, Bradford D.; Teixeira, Laura P.; van Linn, Michael L.; Namjoshi, Ojas A.; Cook, James M.; Rowlett, James K.

    2013-01-01

    Rationale Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. Objective The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Methods Squirrel monkeys (n=6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1–10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032–1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist) and HZ-166 (0.1–10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem and HZ-166 were assessed with flumazenil (0.1–3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1–3.2 mg/kg and 0.32–10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Results Chlordiazepoxide, zolpidem and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCt and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCt and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. Conclusions These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine. PMID:23354533

  11. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation.

    PubMed

    Fischer, Bradford D; Teixeira, Laura P; van Linn, Michael L; Namjoshi, Ojas A; Cook, James M; Rowlett, James K

    2013-05-01

    Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Squirrel monkeys (n = 6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1-10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032-1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist), and HZ-166 (0.1-10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem, and HZ-166 were assessed with flumazenil (0.1-3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1-3.2 mg/kg and 0.32-10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Chlordiazepoxide, zolpidem, and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCT, and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCT and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine.

  12. Topographic antigenic determinants recognized by monoclonal antibodies on human choriogonadotropin beta-subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidart, J.M.; Troalen, F.; Salesse, R.

    1987-06-25

    We describe a first attempt to study the antibody-combining sites recognized by monoclonal antibodies raised against the beta-subunit of human choriogonadotropin (hCG). Two groups of antibodies were first defined by their ability to recognize only the free beta-subunit or the free and combined subunit. Antibodies FBT-11 and FBT-11-L bind only to hCG beta-subunit but not to hCG, whereas antibodies FBT-10 and D1E8 bind to both the beta-subunit and the hormone. In both cases, the antigenic determinants were localized to the core of the protein (residues 1-112), indicating the weak immunogenicity of the specific carboxyl-terminal extension of hCG-beta. Nine synthetic peptidesmore » spanning different regions of hCG-beta and lutropin-beta were assessed for their capacity to inhibit antibody binding. A synthetic peptide inclusive of the NH2-terminal region (residues 1-7) of the hCG beta-subunit was found to inhibit binding to the radiolabeled subunit of a monoclonal antibody specific for free hCG-beta (FBT-11). Further delineation of the antigenic site recognized by this antibody provided evidence for the involvement of fragment 82-92. Moreover, monoclonal antibody FBT-11 inhibited the recombination of hCG-beta to hCG-alpha, indicating that its antigenic determinant might be located nearby or in the hCG-beta portion interacting with the alpha-subunit. Binding of monoclonal antibody FBT-10, corresponding to the second antigenic determinant, was weakly inhibited by fragment 82-105 and did not impair the recombination of the hCG beta-subunit to the hCG alpha-subunit. Its combining site appeared to be located in a region of the intact native choriogonadotropin present at the surface of the hormone-receptor complex.« less

  13. Ada protein-RNA polymerase sigma subunit interaction and alpha subunit-promoter DNA interaction are necessary at different steps in transcription initiation at the Escherichia coli Ada and aidB promoters.

    PubMed

    Landini, P; Bown, J A; Volkert, M R; Busby, S J

    1998-05-22

    The methylated form of the Ada protein (meAda) binds the ada and aidB promoters between 60 and 40 base pairs upstream from the transcription start and activates transcription of the Escherichia coli ada and aidB genes. This region is also a binding site for the alpha subunit of RNA polymerase and resembles the rrnB P1 UP element in A/T content and location relative to the core promoter. In this report, we show that deletion of the C-terminal domain of the alpha subunit severely decreases meAda-independent binding of RNA polymerase to ada and aidB, affecting transcription initiation at these promoters. We provide evidence that meAda activates transcription by direct interaction with the C-terminal domain of RNA polymerase sigma70 subunit (amino acids 574-613). Several negatively charged residues in the sigma70 C-terminal domain are important for transcription activation by meAda; in particular, a glutamic acid to valine substitution at position 575 has a dramatic effect on meAda-dependent transcription. Based on these observations, we propose that the role of the alpha subunit at ada and aidB is to allow initial binding of RNA polymerase to the promoters. However, transcription initiation is dependent on meAda-sigma70 interaction.

  14. Functional capabilities of an N-formyl peptide receptor-G(alpha)(i)(2) fusion protein: assemblies with G proteins and arrestins.

    PubMed

    Shi, Mei; Bennett, Teresa A; Cimino, Daniel F; Maestas, Diane C; Foutz, Terry D; Gurevich, Vsevolod V; Sklar, Larry A; Prossnitz, Eric R

    2003-06-24

    G protein-coupled receptors (GPCRs) must constantly compete for interactions with G proteins, kinases, and arrestins. To evaluate the interactions of these proteins with GPCRs in greater detail, we generated a fusion protein between the N-formyl peptide receptor and the G(alpha)(i2) protein. The functional capabilities of this chimeric protein were determined both in vivo, in stably transfected U937 cells, and in vitro, using a novel reconstitution system of solubilized components. The chimeric protein exhibited a cellular ligand binding affinity indistinguishable from that of the wild-type receptor and existed as a complex, when solubilized, containing betagamma subunits, as demonstrated by sucrose density sedimentation. The chimeric protein mobilized intracellular calcium and desensitized normally in response to agonist. Furthermore, the chimeric receptor was internalized and recycled at rates similar to those of the wild-type FPR. Confocal fluorescence microscopy revealed that internalized chimeric receptors, as identified with fluorescent ligand, colocalized with arrestin, as well as G protein, unlike wild-type receptors. Soluble reconstitution experiments demonstrated that the chimeric receptor, even in the phosphorylated state, existed as a high ligand affinity G protein complex, in the absence of exogenous G protein. This interaction was only partially prevented through the addition of arrestins. Furthermore, our results demonstrate that the GTP-bound state of the G protein alpha subunit displays no detectable affinity for the receptor. Together, these results indicate that complex interactions exist between GPCRs, in their unphosphorylated and phosphorylated states, G proteins, and arrestins, which result in the highly regulated control of GPCR function.

  15. Rat nicotinic ACh receptor α7 and β2 subunits co-assemble to form functional heteromeric nicotinic receptor channels

    PubMed Central

    Khiroug, Serguei S; Harkness, Patricia C; Lamb, Patricia W; Sudweeks, Sterling N; Khiroug, Leonard; Millar, Neil S; Yakel, Jerrel L

    2002-01-01

    Rat hippocampal interneurons express diverse subtypes of functional nicotinic acetylcholine receptors (nAChRs), including α7-containing receptors that have properties unlike those expected for homomeric α7 nAChRs. We previously reported a strong correlation between expression of the α7 and of the β2 subunits in individual neurons. To explore whether co-assembly of the α7 and β2 subunits might occur, these subunits were co-expressed in Xenopus oocytes and the functional properties of heterologously expressed nAChRs were characterized by two-electrode voltage clamp. Co-expression of the β2 subunit, both wild-type and mutant forms, with the α7 subunit significantly slowed the rate of nAChR desensitization and altered the pharmacological properties. Whereas ACh, carbachol and choline were full or near-full agonists for homomeric α7 receptor channels, both carbachol and choline were only partial agonists in oocytes expressing both α7 and β2 subunits. In addition the EC50 values for all three agonists significantly increased when the β2 subunit was co-expressed with the α7 subunit. Co-expression with the β2 subunit did not result in any significant change in the current-voltage curve. Biochemical evidence for the co-assembly of the α7 and β2 subunits was obtained by co-immunoprecipitation of these subunits from transiently transfected human embryonic kidney (TSA201) cells. These data provide direct biophysical and molecular evidence that the nAChR α7 and β2 subunits co-assemble to form a functional heteromeric nAChR with functional and pharmacological properties different from those of homomeric α7 channels. This co-assembly may help to explain nAChR channel diversity in rat hippocampal interneurons, and perhaps in other areas of the nervous system. PMID:11956333

  16. The effect of various opiate receptor agonists on the seizure threshold in the rat. Is dynorphin an endogenous anticonvulsant?

    PubMed

    Przewłocka, B; Stala, L; Lasoń, W; Przewłocki, R

    1983-01-01

    The effects of various opiate receptor agonists on the seizure threshold after an intravenous infusion of pentylenetetrazol were investigated in rats. The mu- and epsilon-receptor agonists, morphine (20-40 micrograms) and beta-endorphin (5-10 micrograms) show proconvulsant properties towards clonic and tonic seizures. The delta-receptor agonist (D-Ala2,D-Leu5-enkephalin, DADL 5-40 micrograms) and alpha-neoendorphin (20-40 micrograms) show pro- and anticonvulsant properties towards clonic and tonic seizures, respectively. Anticonvulsant properties of DADL are possibly due to its action on the spinal cord, since after the intrathecal injection this effect is still observed. Similarities between DADL and alpha-neoendorphin suggest that they may act through the same receptor. The kappa-receptor agonist dynorphin A (5-20 micrograms) and its degradation-resistant analogue D-Arg-dynorphin1-13 (10 micrograms) show significant anticonvulsant properties. Our present results suggest that the kappa-receptor agonist dynorphin may act physiologically as an endogenous anticonvulsant, in contrast to other opioid peptides.

  17. Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development

    DTIC Science & Technology

    1991-11-26

    Mycobacterium tuberculosis, and M.leprae (66%) and mitochondrial protein p1 precursor of human and Chinese hamster cells (64%), and rubisco subunit binding...175) SAWG--DIgNIISDAP’KXVGRXgVITVK (202) 64% Rubisco subunit binding-protein alpha subunit of wheat (151) SAGN--OELIZGANADAIDOGPOVVLStE (178) 57

  18. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer's disease: implications in future therapy.

    PubMed

    Fisher, Abraham; Pittel, Zipora; Haring, Rachel; Bar-Ner, Nira; Kliger-Spatz, Michal; Natan, Niva; Egozi, Inbal; Sonego, Hagar; Marcovitch, Itzhak; Brandeis, Rachel

    2003-01-01

    M1 muscarinic receptors (M1 mAChRs) play a role in an apparent linkage of three major hallmarks of Alzheimer's disease (AD): beta-amyloid (Abeta) peptide; tau hyperphosphorylation and paired helical filaments (PHFs); and loss of cholinergic function conducive to cognitive impairments. We evaluated the M1 muscarinic agonists AF102B (Cevimeline, EVOXAC trade mark : prescribed for Sjøgren's syndrome), AF150(S), and AF267B on some of these hallmarks of AD. Activation of M1 mAChRs with these agonists leads, inter alia, to enhanced secretion of amyloid precursor protein (alpha-APP), (via alpha-secretase activation), to decreased Abeta (via gamma-secretase inhibition), and to inhibition of Abeta- and/or oxidative stress-induced cell death. In several animal models mimicking different aspects of AD, these drugs restored cognitive impairments, and in select cases induced a decrease in brain Abeta elevation, with a high safety margin, following po administration. Notably, in mice with small hippocampi, unlike rivastigmine and nicotine, AF150(S) and AF267B restored cognitive impairments also on escape latency in a Morris water maze paradigm, in reversal learning. Studies from other labs showed that AF102B and talsaclidine (another M1 agonist) decreased cerbrospinal fluid (CSF) Abeta in AD patients following chronic treatment, being the first reported drugs with such a profile. The clinical significance of these studies remains to be elucidated, yet based on in vivo (rabbits) and in vitro studies (cell cultures), our M1 agonists can decrease brain Abeta, owing to a novel and dual complementary effect (e.g., inhibition of gamma-secretase and activation of alpha-secretase). Remarkably, although M1 agonists can decrease CSF Abeta in AD patients, an increased AD-type pathology in Parkinson's disease was recently been associated with chronic antimuscarinic treatment. In another aspect, these agonists decreased tau hyperphosphorylation in vitro and in vivo. Notably, nicotinic agonists or cholinesterase inhibitors increased tau hyperphosphorylation. In summary, the M1 agonists tested are effective on cognition and behavior and show unique disease-modifying properties owing to beneficial effects on major hallmarks of AD. This may place such drugs in the first line of modern AD therapies (e.g., beta- or gamma-secretase inhibitors, vaccines against Abeta, statins, and inhibitors of tau hyperphosphorylation).

  19. Inhibitory function of adapter-related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, Yukiko; Department of Oral and Maxillofacial Surgery II, Osaka University, Osaka 565-0871; Kameoka, Masanori

    2008-03-30

    The transfection of human cells with siRNA against adapter-related protein complex 2 alpha 1 subunit (AP2{alpha}) was revealed to significantly up-regulate the replication of human immunodeficiency virus type 1 (HIV-1). This effect was confirmed by cell infection with vesicular stomatitis virus G protein-pseudotyped HIV-1 as well as CXCR4-tropic and CCR5-tropic HIV-1. Viral adsorption, viral entry and reverse transcription processes were not affected by cell transfection with siRNA against AP2{alpha}. In contrast, viral nuclear translocation as well as the integration process was significantly up-regulated in cells transfected with siRNA against AP2{alpha}. Confocal fluorescence microscopy revealed that a subpopulation of AP2{alpha} wasmore » not only localized in the cytoplasm but was also partly co-localized with lamin B, importin {beta} and Nup153, implying that AP2{alpha} negatively regulates HIV-1 replication in the process of nuclear translocation of viral DNA in the cytoplasm or the perinuclear region. We propose that AP2{alpha} may be a novel target for disrupting HIV-1 replication in the early stage of the viral life cycle.« less

  20. Decreased enzyme activity and contents of hepatic branched-chain alpha-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus.

    PubMed

    Bajotto, Gustavo; Murakami, Taro; Nagasaki, Masaru; Sato, Yuzo; Shimomura, Yoshiharu

    2009-10-01

    The mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC) is responsible for the committed step in branched-chain amino acid catabolism. In the present study, we examined BCKDC regulation in Otsuka Long-Evans Tokushima Fatty (OLETF) rats both before (8 weeks of age) and after (25 weeks of age) the onset of type 2 diabetes mellitus. Long-Evans Tokushima Otsuka (LETO) rats were used as controls. Plasma branched-chain amino acid and branched-chain alpha-keto acid concentrations were significantly increased in young and middle-aged OLETF rats. Although the hepatic complex was nearly 100% active in all animals, total BCKDC activity and protein abundance of E1alpha, E1beta, and E2 subunits were markedly lower in OLETF than in LETO rats at 8 and 25 weeks of age. In addition, hepatic BCKDC activity and protein amounts were significantly decreased in LETO rats aged 25 weeks than in LETO rats aged 8 weeks. In skeletal muscle, E1beta and E2 proteins were significantly reduced, whereas E1alpha tended to increase in OLETF rats. Taken together, these results suggest that (1) whole-body branched-chain alpha-keto acid oxidation capacity is extremely reduced in OLETF rats independently of diabetes development, (2) the aging process decreases BCKDC activity and protein abundance in the liver of normal rats, and (3) differential posttranscriptional regulation for the subunits of BCKDC may exist in skeletal muscle.

  1. Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling.

    PubMed

    Kang, Lianguo; Zhang, Xintian; Xie, Yan; Tu, Yaping; Wang, Dong; Liu, Zhenming; Wang, Zhao-Yi

    2010-04-01

    Accumulating evidence suggested that an orphan G protein-coupled receptor (GPR)30, mediates nongenomic responses to estrogen. The present study was performed to investigate the molecular mechanisms underlying GPR30 function. We found that knockdown of GPR30 expression in breast cancer SK-BR-3 cells down-regulated the expression levels of estrogen receptor (ER)-alpha36, a variant of ER-alpha. Introduction of a GPR30 expression vector into GPR30 nonexpressing cells induced endogenous ER-alpha36 expression, and cotransfection assay demonstrated that GPR30 activated the promoter activity of ER-alpha36 via an activator protein 1 binding site. Both 17beta-estradiol (E2) and G1, a compound reported to be a selective GPR30 agonist, increased the phosphorylation levels of the MAPK/ERK1/2 in SK-BR-3 cells, which could be blocked by an anti-ER-alpha36-specific antibody against its ligand-binding domain. G1 induced activities mediated by ER-alpha36, such as transcription activation activity of a VP16-ER-alpha36 fusion protein and activation of the MAPK/ERK1/2 in ER-alpha36-expressing cells. ER-alpha36-expressing cells, but not the nonexpressing cells, displayed high-affinity, specific E2 and G1 binding, and E2- and G1-induced intracellular Ca(2+) mobilization only in ER-alpha36 expressing cells. Taken together, our results demonstrated that previously reported activities of GPR30 in response to estrogen were through its ability to induce ER-alpha36 expression. The selective G protein-coupled receptor (GPR)30 agonist G1 actually interacts with ER-alpha36. Thus, the ER-alpha variant ER-alpha36, not GPR30, is involved in nongenomic estrogen signaling.

  2. Probing the Non-Canonical Interface for Agonist Interaction with an α5 Containing Nicotinic Acetylcholine Receptor*

    PubMed Central

    Marotta, Christopher B.; Dilworth, Crystal N.; Lester, Henry A.; Dougherty, Dennis A.

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) containing the α5 subunit are of interest because genome-wide association studies and candidate gene studies have identified polymorphisms in the α5 gene that are linked to an increased risk for nicotine dependence, lung cancer, and/or alcohol addiction. To probe the functional impact of an α5 subunit on nAChRs, a method to prepare a homogeneous population of α5-containing receptors must be developed. Here we use a gain of function (9') mutation to isolate populations of α5-containing nAChRs for characterization by electrophysiology. We find that the α5 subunit modulates nAChR rectification when co-assembled with α4 and β2 subunits. We also probe the α5–α4 interface for possible ligand binding interactions. We find that mutations expected to ablate an agonist binding site involving the α5 subunit have no impact on receptor function. The most straightforward interpretation of this observation is that agonists do not bind at the α5–α4 interface, in contrast to what has recently been demonstrated for the α4–α4 interface in related receptors. In addition, our mutational results suggest that the α5 subunit does not replace the α4 or β2 subunits and is relegated to occupying only the auxiliary position of the pentameric receptor. PMID:24144909

  3. Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.

    PubMed Central

    Bruno, S.; Bettati, S.; Manfredini, M.; Mozzarelli, A.; Bolognesi, M.; Deriu, D.; Rosano, C.; Tsuneshige, A.; Yonetani, T.; Henry, E. R.

    2000-01-01

    Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model. PMID:10794410

  4. 1H-cyclopentapyrimidine-2,4(1H,3H)-dione-related ionotropic glutamate receptors ligands. structure-activity relationships and identification of potent and Selective iGluR5 modulators.

    PubMed

    Butini, Stefania; Pickering, Darryl S; Morelli, Elena; Coccone, Salvatore Sanna; Trotta, Francesco; De Angelis, Meri; Guarino, Egeria; Fiorini, Isabella; Campiani, Giuseppe; Novellino, Ettore; Schousboe, Arne; Christensen, Jeppe K; Gemma, Sandra

    2008-10-23

    (S)-CPW399 ((S)-1) is a potent and excitotoxic AMPA receptor partial agonist. Modifying the cyclopentane ring of (S)-1, we developed two of the most potent and selective functional antagonists (5 and 7) for kainate receptor (KA-R) subunit iGluR5. Derivatives 5 and 7, with their unique pharmacological profile, may lead to a better understanding of the different roles and modes of action of iGluR1-5 subunits, paving the way for the synthesis of new potent, subunit selective iGluR5 modulators.

  5. Age- and sex-related characteristics of tonic GABA currents in the rat substantia nigra pars reticulata.

    PubMed

    Chudomel, O; Hasson, H; Bojar, M; Moshé, S L; Galanopoulou, A S

    2015-04-01

    Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved.

  6. Role of alpha2C-adrenoceptor subtype in spatial working memory as revealed by mice with targeted disruption of the alpha2C-adrenoceptor gene.

    PubMed

    Tanila, H; Mustonen, K; Sallinen, J; Scheinin, M; Riekkinen, P

    1999-02-01

    The role of the alpha2C-adrenoceptor subtype in mediating the beneficial effect of alpha2-adrenoceptor agonists on spatial working memory was studied in adult mice with targeted inactivation of the alpha2C-receptor gene (KO) and their wild-type controls (WT). A delayed alternation task was run in a T-maze with mixed delays varying from 20 s to 120 s. Dexmedetomidine, a specific but subtype nonselective alpha2-adrenoceptor agonist, dose-dependently decreased the total number of errors. The effect was strongest at the dose of 5 microg/kg (s.c.), and was observed similarly in KO and WT mice. KO mice performed inferior to WT mice due to a higher number of perseverative errors. Dexmedetomidine slowed initiation of the motor response in the start phase at lower doses in WT mice than in KO mice but no such difference was observed in the return phase of the task, suggesting involvement of alpha2C-adrenoceptors in the cognitive aspect of response preparation or in response sequence initiation. According to these findings, enhancement of spatial working memory is best achieved with alpha2-adrenoceptor agonists which have neither agonistic nor antagonistic effects at the alpha2C-adrenoceptor subtype.

  7. Use of a purified and functional recombinant calcium-channel beta4 subunit in surface-plasmon resonance studies.

    PubMed Central

    Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel

    2002-01-01

    Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102

  8. Integrative Approach for Computationally Inferring Interactions between the Alpha and Beta Subunits of the Calcium-Activated Potassium Channel (BK): a Docking Study

    PubMed Central

    González, Janneth; Gálvez, Angela; Morales, Ludis; Barreto, George E.; Capani, Francisco; Sierra, Omar; Torres, Yolima

    2013-01-01

    Three-dimensional models of the alpha- and beta-1 subunits of the calcium-activated potassium channel (BK) were predicted by threading modeling. A recursive approach comprising of sequence alignment and model building based on three templates was used to build these models, with the refinement of non-conserved regions carried out using threading techniques. The complex formed by the subunits was studied by means of docking techniques, using 3D models of the two subunits, and an approach based on rigid-body structures. Structural effects of the complex were analyzed with respect to hydrogen-bond interactions and binding-energy calculations. Potential interaction sites of the complex were determined by referencing a study of the difference accessible surface area (DASA) of the protein subunits in the complex. PMID:23492851

  9. Recombination and mutation of class II histocompatibility genes in wild mice.

    PubMed

    Wakeland, E K; Darby, B R

    1983-12-01

    We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.

  10. Mouse macrophages primed with alendronate down-regulate monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) production in response to Toll-like receptor (TLR) 2 and TLR4 agonist via Smad3 activation.

    PubMed

    Masuda, Takahiro; Deng, Xue; Tamai, Riyoko

    2009-08-01

    Alendronate is one of the nitrogen-containing bisphosphonates (NBPs) used as anti-bone resorptive drugs. However, NBPs have inflammatory side effects including osteomyelitis and osteonecrosis of the jaw. In the present study, we examined the effects of alendronate on chemokine production by the macrophage-like cell line, J774.1, when incubated with Pam(3)CSK(4) (a Toll-like receptor (TLR) 2 agonist) and Lipid A (a TLR4 agonist). Pretreatment of J774.1 cells with alendronate decreased the production of TLR ligand-induced monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) but did not influence nuclear factor-kappaB (NF-kappaB) activation. While this agent induced caspase-8 activation, a caspase-8 inhibitor did not affect the decrease in MCP-1 production by alendronate and TLR ligands. Thus, the alendronate-mediated decrease in chemokine production was independent of NF-kappaB and caspase-8 activation. Although transforming growth factor-beta1 (TGF-beta1) is known to inhibit chemokine production by various cell types via Smad3 activation, pretreatment with alendronate did not increase TGF-beta1 production by J774.1 cells incubated in the presence or absence of TLR ligands. However, alendronate directly activated Smad3. These results suggest that by down-regulating MCP-1 and MIP-1alpha production via Smad3, long-term use of alendronate might inhibit normal activation and migration of osteoclasts and cause osteonecrosis.

  11. Quantitative RT-PCR for inhibin/activin subunits: measurements of rat hypothalamic and ovarian inhibin/activin subunit mRNAs during the estrous cycle.

    PubMed

    Murata, T; Takizawa, T; Funaba, M; Fujimura, H; Murata, E; Takahashi, M; Torii, K

    1997-02-01

    Inhibins (alpha-beta(A) and alpha-beta(B)) and activins (beta(A)-beta(A), beta(A)-beta(B) and beta(B)-beta(B)) were originally isolated from ovarian follicular fluids as FSH secretion modifiers. Inhibin/activin subunits, alpha, beta(A) and beta(B), are widely distributed in several tissues, including gonads and brain, and inhibins and activins have been reported to be involved in ovarian or hypothalamic functions. In this study, we established and employed a competitive RT-PCR assay system for rat inhibin/activin subunits by capillary electrophoresis to determine rat hypothalamic and ovarian inhibin/activin subunit mRNA levels during the estrous cycle. Linearity of standards for alpha, beta(A), and beta(B) subunit assays were between 0.01-0.3 amol, 0.003-0.09 amol and 0.002-0.02 amol of each fragment DNA as a standard, respectively. Hypothalamic beta(A) subunit mRNA during the estrous morning (1000 h) tended to be increased compared with that of the proestrous evening (1700 h), although they were not significantly different. Ovarian alpha subunit mRNA levels tended to be increased during the proestrous morning (1000 h) and were significantly increased in the proestrous evening (1700 h), compared with diestrus and estrus (P < 0.05). Ovarian beta(A) subunit mRNA was also significantly higher in the proestrous evening, compared with diestrus and estrus (P < 0.05), but in the case of beta(B) subunit mRNA there was no difference among diestrus, proestrus and estrus. We thus established a sensitive competitive RT-PCR system for the measurement of inhibin/activin alpha, beta(A) and beta(B) subunits, and this assay system would be helpful for the study of inhibin/activin action in brain and other tissues where these factors are expressed at low levels.

  12. Enhancement effects of nicotine on neurogenic relaxation responses in the corpus cavernosum in rabbits: the role of nicotinic acetylcholine receptor subtypes.

    PubMed

    Ozturk Fincan, Gokce Sevim; Vural, Ismail Mert; Ercan, Zeynep Sevim; Sarioglu, Yusuf

    2010-02-10

    Nicotine acts as an agonist of nicotinic acetylcholine receptors, which belong to a superfamily of neurotransmitter-gated ion channels. We previously demonstrated that nicotine increases the electrical field stimulation (EFS)-evoked nitrergic relaxation responses via activation of nicotinic acetylcholine receptors. The aim of the present study is to investigate the subtypes of nicotinic acetylcholine receptors in rabbit corpus cavernosum. EFS-evoked relaxation responses were recorded from corpus cavernosum strips obtained from rabbits with an isometric force displacement transducers. Effects of nicotine on EFS-evoked relaxations were examined in pre-contracted tissues. Then the effect of nicotine on the EFS-evoked relaxations was examined in the presence of hexamethonium, dihydro-beta-erythroidine, mecamylamine or alpha-bungarotoxin. In our study, nicotine (3 x 10(-5), 10(-4)) transiently increased nitrergic relaxations induced by EFS in the rabbit isolated corpus cavernosum. While hexamethonium and mecamylamine near totally inhibited or abolished the neurorelaxation response to nicotine (3 x 10(-5)) on EFS, dihydro-beta-erythroidine and alpha-bungarotoxin partially inhibited these responses. These findings demonstrated that the alpha3-beta4, alpha4-beta2 and alpha7 subunits of nicotinic acetylcholine receptors play role on the nicotine-induced augmentation in EFS-evoked relaxation responses in rabbit corpus cavernosum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Unexpected high digestion rate of cooked starch by the Ct-Maltase-Glucoamylase small intestine mucosal alpha-glucosidase subunit

    USDA-ARS?s Scientific Manuscript database

    For starch digestion to glucose, two luminal alpha-amylases and four gut mucosal alpha-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal alpha-glucosidases on cooked (gelatinized) starch. Gelatinized ...

  14. Characterization of inhibin forms and their measurement by an inhibin alpha-subunit ELISA in serum from postmenopausal women with ovarian cancer.

    PubMed

    Robertson, D M; Stephenson, T; Pruysers, E; McCloud, P; Tsigos, A; Groome, N; Mamers, P; Burger, H G

    2002-02-01

    The aim of this study was to characterize the molecular wt forms of inhibins A and B and its free alpha-subunit present in serum from women with ovarian cancer as a basis for developing improved monoclonal antibody-based inhibin assays for monitoring ovarian cancer. Three new inhibin alpha-subunit (alphaC) ELISAs were developed using monoclonal antibodies directed to three nonoverlapping peptide regions of the alphaC region of the inhibin alpha-subunit. To characterize serum inhibin molecular wt forms present in women with ovarian cancer, existing inhibin immunoassays (inhibin A, inhibin B, and pro-alphaC) and the new alphaC ELISAs were applied to sera from women with granulosa cell tumors and mucinous carcinomas previously fractionated using a combined immunoaffinity chromatography, preparative SDS-PAGE, and electroelution procedure. The distribution and molecular size of dimeric inhibins and alpha-subunit detected were consistent with known mol wt forms of inhibins A and B and inhibin alpha-subunit and their precursor forms present in serum and follicular fluid from healthy women. The alphaC ELISAs recognized all known forms of inhibin and the free inhibin alpha-subunit, although differences between alphaC ELISAs were observed in their ability to detect high mol wt forms. To assess which of the alphaC ELISAs was preferred in application to ovarian cancer, the alphaC ELISAs were applied to serum from a range of normal postmenopausal women (n = 61) and postmenopausal women (n = 152) with ovarian (serous, mucinous, endometrioid, clear cell carcinomas, and granulosa cell tumors) and nonovarian (breast and colon) cancers. Despite differences in their ability to detect high mol wt forms of inhibin, the alphaC ELISAs showed similar sensitivity (i.e. proportion of cancer patients correctly detected) and specificity (proportion of controls correctly detected) indexes in the detection of mucinous carcinomas (84% and 95%) and granulosa cell tumors (100% and 95%) compared with earlier inhibin RIA or polyclonal antibody-based immunofluorometric assays. A combination of the alphaC ELISAs with the CA125 assay, an ovarian tumor marker that has a high sensitivity and specificity for other ovarian cancers (serous, clear cell, and endometrioid), resulted in an increase in sensitivity/specificity indexes (95% and 95%) for the all ovarian cancer group. These new monoclonal antibody-based inhibin alphaC ELISAs now provide practical and sensitive assays suitable for evaluation as diagnostic tests for monitoring ovarian cancers.

  15. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex.

    PubMed

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R; Elbing, Karin; Schmidt, Martin C

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (alpha), Snf4 (gamma), and one of three alternative beta subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three beta subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the beta subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation.

  16. Effect of alpha 2-adrenoceptor agonists on gastric pepsin and acid secretion in the rat.

    PubMed Central

    Tazi-Saad, K.; Chariot, J.; Del Tacca, M.; Rozé, C.

    1992-01-01

    1. The purpose of the present study was to analyze the effects of the alpha 2-adrenoceptor agonists clonidine, guanabenz, detomidine and medetomidine on pepsin secretion in conscious rats provided with gastric chronic fistula and to compare this with acid secretion. 2. Basal interdigestive gastric secretion, which is mainly neurally driven in the rat, and the secretion directly stimulated by the two main stimulants of chief cells, cholecystokinin octapeptide (CCK8) and methacholine, were studied. 3. Basal secretion of pepsin and acid was inhibited by all four drugs with comparable EC50S. 4. CCK-stimulated pepsin and acid secretion was less sensitive than basal pepsin and acid secretion to alpha 2-adrenoceptor inhibition. 5. Methacholine-stimulated pepsin and acid secretion was not changed by clonidine and guanabenz; methacholine-stimulated acid was even marginally increased by clonidine. 6. These results do not favour the presence of alpha 2-receptors on chief cells in the rat stomach. They rather suggest that pepsin inhibition by alpha 2-adrenoceptor agonists is indirect and due to central or peripheral inhibition of the discharge of nerve fibres activating pepsin secretion. PMID:1356566

  17. Hormonal regulation of the alpha-ketoglutarate dehydrogenase complex in the isolated perfused rat liver.

    PubMed

    Rashed, H M; Waller, F M; Patel, T B

    1988-04-25

    The metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in perfused livers was monitored by measuring the rate of 14CO2 production from [1-14C]alpha-ketoglutarate. The rates of 14CO2 production and glucose production from [1-14C]alpha-ketoglutarate were increased with increasing perfusate alpha-ketoglutarate concentrations. Vasopressin, angiotensin II, and the alpha 1-adrenergic agonist phenylephrine stimulated transiently by 2.5-fold the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in the presence and absence of Ca2+ in the perfusion medium. High concentrations of glucagon (1 x 10(-8) M) and 8-p-chlorophenylthio-cAMP (100 microM) (data not shown) also stimulated transiently the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction. However, lower glucagon concentrations (1 x 10(-9) M) stimulated the rate of 14CO2 production from [1-14C]alpha-ketoglutarate only under conditions optimized to fix the cellular oxidation-reduction state at an intermediate level, when glucagon (1 x 10(-9) M)-mediated elevation of cAMP content was greater than that observed under highly oxidizing and reducing conditions. These data indicate that agonists which increase cytosolic free Ca2+ levels stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase complex. Furthermore, the data presented here demonstrate for the first time that physiological glucagon concentrations stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction only under conditions known to be optimal for glucagon-mediated Ca2+ mobilization in the isolated perfused rat liver.

  18. Hybrid assemblies of ATP-sensitive K+ channels determine their muscle-type-dependent biophysical and pharmacological properties.

    PubMed

    Tricarico, Domenico; Mele, Antonietta; Lundquist, Andrew L; Desai, Reshma R; George, Alfred L; Conte Camerino, Diana

    2006-01-24

    ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.

  19. Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid.

    PubMed

    Chapman, A G; Talebi, A; Yip, P K; Meldrum, B S

    2001-07-20

    The metabotropic Group III agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-1), selective for the mGlu(4alpha) receptor, suppresses sound-induced seizures in DBA/2 mice following its intracerebroventricular (i.c.v.) administration (ED(50) 5.6 [2.9-10.7], nmol i.c.v., 15 min, clonic phase) and in genetically epilepsy-prone (GEP) rats following focal administration into the inferior colliculus (ED(50) 0.08 [0.01-0.50], nmol, 60 min, clonic phase). ACPT-1 also protects against clonic seizures induced in DBA/2 mice by the Group I agonist, (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) (ED(50) 0.60 [0.29-1.2], nmol i.c.v.) and by the Group III antagonist, (RS)-alpha-methylserine-O-phosphate (MSOP) (ED(50) 49.3 [37.9-64.1], nmol i.c.v.). Another Group III agonist, (RS)-4-phosphonophenyl-glycine (PPG), preferentially activating the mGlu(8) receptor, previously shown to protect against sound-induced seizures in DBA/2 mice and GEP rats, also protects against seizures induced in DBA/2 by 3,5-DHPG (ED(50) 3.7 [2.4-5.7], nmol i.c.v.) and by the Group III antagonist, MSOP (ED(50) 40.2 [21.0-77.0], nmol i.c.v.). At very high doses (500 nmol i.c.v. and above), Group III antagonists have pro-convulsant and convulsant activity. The anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(4) receptor agonist ACPT-1, is partially reversed by the co-administration of the Group III antagonists, MSOP, (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4), in the 20-50 nmol dose range. At doses of 50-200 nmol, MPPG and MAP4 cause further reversal of the ACPT-1 anticonvulsant protection, while the MSOP effect on ACPT-1 protection is abolished at higher doses. In contrast, the anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(8) receptor agonist PPG, is not significantly affected by the co-administration of the same Group III antagonists, MSOP, MPPG or MAP4. We conclude that activation of either mGlu(4alpha) or mGlu(8) receptors confer anticonvulsant protection in DBA/2 mice. Furthermore, the metabotropic Group III receptor antagonists, MSOP, MPPG, and MAP4 appear to be functionally selective for the mGlu(4) receptor in this system.

  20. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  1. Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels.

    PubMed

    Semon, Julie A; Nagy, Lauren H; Llamas, Claire B; Tucker, H Alan; Lee, Ryang Hwa; Prockop, Darwin J

    2010-07-01

    Multipotent mesenchymal stromal cells (MSCs) home to damaged tissue by processes partly regulated by integrins. Integrin subunits expressed by MSCs were identified by flow cytometry (FC), immunocytochemistry (IC), and a panel of integrin-binding antibodies. In subconfluent cultures, over 80% of MSCs expressed integrin subunits beta1, beta2, and alpha3, 20%-55% expressed alpha1, alpha2, alpha4, alpha5, alpha6, and alphaV, and about 10% expressed beta3 when assayed by FC. None of the cells expressed significant levels of 13 other integrins as assayed by FC, but seven of the 13 integrins were detected by IC: beta5, alpha7, alpha8, alpha9, alpha11, alphaX, and alphaD. Expression of some integrins changed with MSC confluency: integrins beta3, alpha1, alpha3, alpha5, and alphaV increased, and alpha6 decreased. Furthermore, alpha4 was the only integrin to vary among preparations of MSCs from different donors. The results resolved some discrepancies in the literature concerning integrin expression by MSCs. We also investigated the role of specific integrins in MSC adhesion to endothelial cells (ECs) from the pulmonary artery (HPAEC), cardiac-derived microvasculature (HMVEC-C), and umbilical veins (HUVEC). In experiments with blocking antibodies to beta integrins, anti-beta5 reduced MSC adhesion to all types of ECs, anti-beta1 to both HUVEC and HPAEC, anti-beta3 to HUVEC, and anti-beta2 to HMVEC-C. With blocking antibodies to alpha integrins, anti-alphaX reduced adhesion to HPAEC and HMVEC-C, anti-alphaV to HPAEC, and both anti-alpha7 and anti-alphaD to HMVEC-C. Thus, MSCs use diverse integrins to adhere to EC from various blood vessels in vitro.

  2. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a humanmore » adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPAR{alpha} activation are very valuable for managing diabetic conditions accompanied by obesity, because PPAR{gamma} agonists, usually used as antidiabetic drugs, induce excessive lipid accumulation in adipocytes in addition to improvement of insulin resistance.« less

  3. Molecular characterization of the alpha subunit of complement component C8 (GcC8alpha) in the nurse shark (Ginglymostoma cirratum).

    PubMed

    Aybar, Lydia; Shin, Dong-Ho; Smith, Sylvia L

    2009-09-01

    Target cell lysis by complement is achieved by the assembly and insertion of the membrane attack complex (MAC) composed of glycoproteins C5b through C9. The lytic activity of shark complement involves functional analogues of mammalian C8 and C9. Mammalian C8 is composed of alpha, beta, and gamma subunits. The subunit structure of shark C8 is not known. This report describes a 2341 nucleotide sequence that translates into a polypeptide of 589 amino acid residues, orthologue to mammalian C8alpha and has the same modular architecture with conserved cysteines forming the peptide bond backbone. The C8gamma-binding cysteine is conserved in the perforin-like domain. Hydrophobicity profile indicates the presence of hydrophobic residues essential for membrane insertion. It shares 41.1% and 47.4% identity with human and Xenopus C8alpha respectively. Southern blot analysis showed GcC8alpha exists as a single copy gene expressed in most tissues except the spleen with the liver being the main site of synthesis. Phylogenetic analysis places it in a clade with C8alpha orthologs and as a sister taxa to the Xenopus. 2009 Elsevier Ltd.

  4. Activation of p42/p44 mitogen-activated protein kinase and contraction by prostaglandin F2alpha, ionomycin, and thapsigargin in cat iris sphincter smooth muscle: inhibition by PD98059, KN-93, and isoproterenol.

    PubMed

    Ansari, H R; Husain, S; Abdel-Latif, A A

    2001-10-01

    In the present study we investigated the cross talk between the Ca2+ mobilization pathway and the mitogen-activated protein (MAP) kinase pathway and contraction in the cat iris sphincter smooth muscle. Three Ca2+-mobilizing agonists, namely, prostaglandin F2alpha (PGF2alpha), ionomycin, and thapsigargin, and three specific inhibitors, PD98059, a p42/p44 MAP kinase inhibitor; KN-93, a Ca2+-calmodulin-dependent protein kinase II (CaMKII) blocker; and isoproterenol, a cAMP-elevating agent, were used. Changes in tension in response to the agonists were recorded isometrically and MAP kinase phosphorylation and activation were monitored by Western blotting and by in situ myelin basic protein phosphorylation, respectively. We found that 1) stimulation of the sphincter muscle with PGF2alpha, ionomycin, or thapsigargin resulted in rapid phosphorylation and activation of p42/p44 MAP kinase and contraction; and 2) treatment of the muscles with PD98059, KN-93, or isoproterenol resulted in inhibition of the Ca2+-mobilizing agonist-induced responses. The contractile responses induced by PGF2alpha, ionomycin, and thapsigargin were (mg of tension/mg of wet weight tissue) 15.2, 15.4, and 16.2, respectively; the increases in MAP kinase phosphorylation by these agonists were 228, 203, and 190%, respectively; and the increases in MAP kinase activation by the agonists were 212, 191, and 162%, respectively. The stimulatory effects of the agonists on contraction and on MAP kinase phosphorylation and activation were blocked by preincubation of the muscle with PD98059, KN-93, or isoproterenol. These data demonstrate that in the iris sphincter phosphorylation and activation of p42/p44 MAP kinases by PGF2alpha, ionomycin, or thapsigargin require intracellular Ca2+ either from extracellular sources or from internal stores, that CaMKII plays an important role in the regulation of contraction, that CaMKII acts upstream of MAP kinase to control its activation, and that the MAP kinase signaling pathway can play a significant role in mediating the cellular effects of these Ca2+-mobilizing agonists.

  5. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R.

    1990-08-01

    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which representedmore » approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.« less

  6. Modification of certain pharmacological effects of ethanol by lipophilic alpha-1 adrenergic agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, M.K.; Dinovo, E.C.; Haddox, V.G.

    The influence of four centrally-acting alpha-1 adrenoceptor agonists, namely, 2(2-chloro-5-trifluoromethylphenylimino) imidazolidine (St 587), cirazoline, (-) 1,2,3,4-tetrahydro-8-methoxy-5-methylthio-2-naphthalenamine ((-)SKF 89748A) and 2-(2-methylindazol-4-imino)imidazolidine (Sgd 101/75) on the pharmacological effects of ethanol was investigated. All four drugs reduced the duration of ethanol-induced hypnosis in C57B1/6 mice, this effect being proportional to their relative potencies to exert central alpha-1 agonism. In prazosin-pretreated mice, St 587 failed to reduce the hypnotic effect of ethanol, which provided strong evidence for the role of alpha-1 agonism for the hypnosis reducing effect of St 587. Hyperactivity induced in C57B1/6 mice by a subhypnotic dose of ethanol and St 587more » was reported earlier. In the present study, St 587, cirazoline and (-)SKF 89748A produced similar response, but no correlation between this effect and ethanol hypnosis blockade could be established. 19 references, 8 figures, 2 tables.« less

  7. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  8. Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3H]Ro 15-4513.

    PubMed

    Pym, Luanda J; Cook, Susan M; Rosahl, Thomas; McKernan, Ruth M; Atack, John R

    2005-11-01

    Classical benzodiazepines (BZs), such as diazepam, bind to GABAA receptors containing alpha1, alpha2, alpha3 or alpha5 subunits that are therefore described as diazepam-sensitive (DS) receptors. However, the corresponding binding site of GABAA receptors containing either an alpha4 or alpha6 subunit do not bind the classical BZs and are therefore diazepam-insensitive (DIS) receptors; a difference attributable to a single amino acid (histidine in alpha1, alpha2, alpha3 and alpha5 subunits and arginine in alpha4 and alpha6). Unlike classical BZs, the imidazobenzodiazepines Ro 15-4513 and bretazenil bind to both DS and DIS populations of GABAA receptors. In the present study, an in vivo assay was developed using lorazepam to fully occupy DS receptors such that [3H]Ro 15-4513 was then only able to bind to DIS receptors. When dosed i.v., [3H]Ro 15-4513 rapidly entered and was cleared from the brain, with approximately 70% of brain radioactivity being membrane-bound. Essentially all membrane binding to DS+DIS receptors could be displaced by unlabelled Ro 15-4513 or bretazenil, with respective ID50 values of 0.35 and 1.2 mg kg(-1). A dose of 30 mg kg(-1) lorazepam was used to block all DS receptors in a [3H]Ro 15-1788 in vivo binding assay. When predosed in a [3H]Ro 15-4513 binding assay, lorazepam blocked [3H]Ro 15-4513 binding to DS receptors, with the remaining binding to DIS receptors accounting for 5 and 23% of the total (DS plus DIS) receptors in the forebrain and cerebellum, respectively. The in vivo binding of [3H]Ro 15-4513 to DIS receptors in the presence of lorazepam was confirmed using alpha1H101R knock-in mice, in which alpha1-containing GABAA receptors are rendered diazepam insensitive by mutation of the histidine that confers diazepam sensitivity to arginine. In these mice, and in the presence of lorazepam, there was an increase of in vivo [3H]Ro 15-4513 binding in the forebrain and cerebellum from 4 and 15% to 36 and 59% of the total (i.e. DS plus DIS) [3H]Ro 15-4513 binding observed in the absence of lorazepam.

  9. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia

    PubMed Central

    Bristow, Linda J.; Easton, Amy E.; Li, Yu-Wen; Sivarao, Digavalli V.; Lidge, Regina; Jones, Kelli M.; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J.; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1–10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1–10 mg/kg, sc) and set shift performance in rats (1–10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1–3 mg/kg, po). BMS-933043 also improved auditory gating (0.56–3 mg/kg, sc) and mismatch negativity (0.03–3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans. PMID:27467081

  10. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    PubMed

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  11. NMR Studies of the C-Terminus of alpha4 Reveal Possible Mechanism of Its Interaction with MID1 and Protein Phosphatase 2A

    PubMed Central

    Du, Haijuan; Massiah, Michael A.

    2011-01-01

    Alpha4 is a regulatory subunit of the protein phosphatase family of enzymes and plays an essential role in regulating the catalytic subunit of PP2A (PP2Ac) within the rapamycin-sensitive signaling pathway. Alpha4 also interacts with MID1, a microtubule-associated ubiquitin E3 ligase that appears to regulate the function of PP2A. The C-terminal region of alpha4 plays a key role in the binding interaction of PP2Ac and MID1. Here we report on the solution structure of a 45-amino acid region derived from the C-terminus of alpha4 (alpha45) that binds tightly to MID1. In aqueous solution, alpha45 has properties of an intrinsically unstructured peptide although chemical shift index and dihedral angle estimation based on chemical shifts of backbone atoms indicate the presence of a transient α-helix. Alpha45 adopts a helix-turn-helix HEAT-like structure in 1% SDS micelles, which may mimic a negatively charged surface for which alpha45 could bind. Alpha45 binds tightly to the Bbox1 domain of MID1 in aqueous solution and adopts a structure consistent with the helix-turn-helix structure observed in 1% SDS. The structure of alpha45 reveals two distinct surfaces, one that can interact with a negatively charged surface, which is present on PP2A, and one that interacts with the Bbox1 domain of MID1. PMID:22194938

  12. The H,K-ATPase beta-subunit can act as a surrogate for the beta-subunit of Na,K-pumps.

    PubMed

    Horisberger, J D; Jaunin, P; Reuben, M A; Lasater, L S; Chow, D C; Forte, J G; Sachs, G; Rossier, B C; Geering, K

    1991-10-15

    Na,K-ATPase and H,K-ATPase are the only members of the P-type ATPases in which a glycosylated beta-subunit is part of the purified active enzyme. In this study, we have followed the synthesis and the posttranslational processing of the beta-subunit of H,K-ATPase (beta HK) in Xenopus oocytes injected with beta HK cRNA and have tested whether it can act as a surrogate for the beta-subunit of Na,K-ATPase (beta NaK) to support the functional expression of Na,K-pumps. In Xenopus oocytes, beta HK is processed from an Endo H-sensitive 51-kDa coreglycosylated form to an Endo H-resistant 71-kDa fully glycosylated form. Similar to beta NaK, beta HK can stabilize and increase the trypsin resistance of alpha-subunits of Na,K-ATPase (alpha NaK). Finally, expression of beta HK together with alpha NaK leads to an increased number of ouabain binding sites at the plasma membrane accompanied by an increased Rb+ uptake and Na,K-pump current. Our data suggest that beta HK, similar to beta NaK, can assemble to alpha NaK, support the structural maturation and the intracellular transport of catalytic alpha NaK, and ultimately form active alpha NaK-beta HK complexes with Na,K-pump transport properties.

  13. Characterization of adrenergic receptors of the cat iris and nictitating membrane.

    PubMed

    Koss, M C; Hey, J A; Gherezghiher, T

    1990-01-01

    Graded pupillary dilations and nictitating membrane (NM) contractions were elicited in anesthetized cats by electrical stimulation of the preganglionic sympathetic nerve or by i.a. administration of norepinephrine (NE) or phenylephrine into the carotid artery. Pupil and NM responses were measured simultaneously from the same side. Alpha-adrenoceptor antagonists were administered intravenously. All of the alpha 1-adrenoceptor blockers tested produced a dose-related reduction of NM responses to both neural and agonist activation; the potency rank order was prazosin greater than WB-4101 greater than phentolamine greater than phenoxybenzamine (PBZ). In contrast, responses of the iris dilator were antagonized only by WB-4101 and PBZ. The iris was almost totally refractory to doses of prazosin and phentolamine that blocked NM responses by more than 75% of control. Neither alpha 2- nor beta-adrenoceptor antagonism produced significant inhibition of neural or agonist activation of either organ (with the exception of high doses of yohimbine on the NM). These results suggest that the postjunctional adrenoceptors of the NM are exclusively of the alpha 1-adrenoceptor subtype. In contrast, those of the iris dilator muscle cannot be easily classified pharmacologically as either alpha 1 or alpha 2-adrenoceptors.

  14. A Novel Di-Leucine Motif at the N-Terminus of Human Organic Solute Transporter Beta Is Essential for Protein Association and Membrane Localization.

    PubMed

    Xu, Shuhua; Soroka, Carol J; Sun, An-Qiang; Backos, Donald S; Mennone, Albert; Suchy, Frederick J; Boyer, James L

    2016-01-01

    The heteromeric membrane protein Organic Solute Transporter alpha/beta is the major bile acid efflux transporter in the intestine. Physical association of its alpha and beta subunits is essential for their polarized basolateral membrane localization and function in the transport of bile acids and other organic solutes. We identified a highly conserved acidic dileucine motif (-EL20L21EE) at the extracellular amino-tail of organic solute transporter beta from multiple species. To characterize the role of this protein interacting domain in the association of the human beta and alpha subunits and in membrane localization of the transporter, Leu20 and Leu21 on the amino-tail of human organic solute transporter beta were replaced with alanines by site-directed mutagenesis. Co-immunoprecipitation study in HEK293 cells demonstrated that substitution of the leucine residues with alanines prevented the interaction of the human beta mutant with the alpha subunit. Membrane biotinylation demonstrated that the LL/AA mutant eliminated membrane expression of both subunits. Computational-based modelling of human organic solute transporter beta suggested that the LL/AA mutation substantially alters both the structure and lipophilicity of the surface, thereby not only affecting the interaction with the alpha subunit but also possibly impacting the capacity of the beta subunit to traffick through the cell and interact with the membrane. In summary, our findings indicate that the dileucine motif in the extracellular N-terminal region of human organic solute transporter beta subunit plays a critical role in the association with the alpha subunit and in its polarized plasma membrane localization.

  15. YC-1 BINDING TO THE BETA SUBUNIT OF SOLUBLE GUANYLYL CYCLASE OVERCOMES ALLOSTERIC INHIBITION BY THE ALPHA SUBUNIT

    PubMed Central

    Purohit, Rahul; Fritz, Bradley G.; The, Juliana; Issaian, Aaron; Weichsel, Andrzej; David, Cynthia L.; Campbell, Eric; Hausrath, Andrew C.; Rassouli-Taylor, Leida; Garcin, Elsa D.; Gage, Matthew J.; Montfort, William R.

    2014-01-01

    Soluble guanylate cyclase (sGC) is a heterodimeric heme protein and the primary nitric oxide receptor. NO binding stimulates cyclase activity, leading to regulation of cardiovascular physiology and making sGC an attractive target for drug discovery. YC-1 and related compounds stimulate sGC both independently and synergistically with NO and CO binding; however, where the compounds bind and how they work remains unknown. Using linked-equilibria binding measurements, surface plasmon resonance, and domain truncations in Manduca sexta and bovine sGC, we demonstrate that YC-1 binds near or directly to the heme-containing domain of the beta subunit. In the absence of CO, YC-1 binds with Kd = 9–21 μM, depending on construct. In the presence of CO, these values decrease to 0.6–1.1 μM. Pfizer compound 25 bound ~10-fold weaker than YC-1 in the absence of CO whereas compound BAY 41–2272 bound particularly tightly in the presence of CO (Kd = 30–90 nM). Additionally, we found that CO binding is much weaker to heterodimeric sGC proteins (Kd = 50–100 μM) than to the isolated heme domain (Kd = 0.2 μM for Manduca beta H-NOX/PAS). YC-1 greatly enhanced CO binding to heterodimeric sGC, as expected (Kd = ~1 μM). These data indicate the alpha subunit induces a heme pocket conformation with lower affinity for CO and NO. YC-1 family compounds bind near the heme domain, overcoming the alpha subunit effect and inducing a heme pocket conformation with high affinity. We propose this high-affinity conformation is required for the full-length protein to achieve high catalytic activity. PMID:24328155

  16. PKA modulation of Kv4.2-encoded A-type potassium channels requires formation of a supramolecular complex.

    PubMed

    Schrader, Laura A; Anderson, Anne E; Mayne, Amber; Pfaffinger, Paul J; Sweatt, John David

    2002-12-01

    A-type channels, encoded by the pore-forming alpha-subunits of the Kv4.x family, are particularly important in regulating membrane excitability in the CNS and the heart. Given the key role of modulation of A currents by kinases, we sought to investigate the protein structure-function relationships underlying the regulation of these currents by PKA. We have previously shown the existence of two PKA phosphorylation sites in the Kv4.2 sequence; therefore, we focused this study on the Kv4.2 primary subunit. In the present studies we made the surprising finding that PKA phosphorylation of the Kv4.2 alpha-subunit is necessary but not sufficient for channel modulation; channel modulation by PKA required the presence of an ancillary subunit, the K+ channel interacting protein (KChIP3). Therefore, these findings indicate a surprising complexity to kinase regulation of A currents, in that an interaction of two separate molecular events, alpha-subunit phosphorylation and the association of an ancillary subunit (KChIP3), are necessary for phosphorylation-dependent regulation of Kv4.2-encoded A channels by PKA. Overall, our studies indicate that PKA must of necessity act on a supramolecular complex of pore-forming alpha-subunits plus ancillary subunits to alter channel properties.

  17. Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells

    PubMed Central

    Harvey, Victoria L; Duguid, Ian C; Krasel, Cornelius; Stephens, Gary J

    2006-01-01

    Ionotropic γ-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for ρ subunit-containing GABAC over other GABA receptors. Exogenous application of the GABAC-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABAC antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABAA receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABAA/GABAC pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone–Purkinje cell (IN–PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that ρ subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABAA α1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that ρ subunits can form complexes with GABAA receptor α1 subunits in the cerebellar cortex. Overall, these data suggest that ρ subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN–PC synapses in the cerebellum. PMID:16945976

  18. Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora.

    PubMed

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-09-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.

  19. The gene for the alpha 1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (Cchl1a3) maps to mouse chromosome 1.

    PubMed

    Chin, H; Krall, M; Kim, H L; Kozak, C A; Mock, B

    1992-12-01

    Cchl1a3 encodes the dihydropyridine-sensitive calcium channel alpha 1 subunit isoform predominantly expressed in skeletal muscle. mdg (muscular dysgenesis) has previously been implicated as a mutant allele of this gene. Hybridization of a rat brain cDNA probe for Cchl1a3 to Southern blots of DNAs from a panel of Chinese hamster x mouse somatic cell hybrids suggested that this gene maps to mouse Chromosome 1. Analysis of the progeny of an inbred strain cross-positioned Cchl1a3 1.3 cM proximal to the Pep-3 locus on Chr 1.

  20. Effects of volume loading and pressor agents in idiopathic orthostatic tachycardia

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Shannon, J. R.; Black, B.; Biaggioni, I.; Mosqueda-Garcia, R.; Robertson, R. M.; Robertson, D.

    1997-01-01

    BACKGROUND: Idiopathic orthostatic tachycardia (IOT) is characterized by an increase in heart rate (HR) with standing of > or = 30 bpm that is associated with elevated catecholamine levels and orthostatic symptoms. A dynamic orthostatic hypovolemia and alpha1-adrenoreceptor hypersensitivity have been demonstrated in IOT patients. There is evidence of an autonomic neuropathy affecting the lower-extremity blood vessels. METHODS AND RESULTS: We studied the effects of placebo, the alpha1-adrenoreceptor agonist midodrine (5 to 10 mg), the alpha2-adrenoreceptor agonist clonidine (0.1 mg), and I.V. saline (1 L) in 13 patients with IOT. Supine and upright blood pressure (BP) and HR were measured before and at 1 and 2 hours after intervention. Midodrine decreased both supine and upright HR (all HR values are given as bpm) at 2 hours (from 78+/-2 supine to 108+/-5 upright before treatment and from 69+/-2 supine to 95+/-5 upright after treatment, P<.005 for supine and P<.01 for upright). Saline decreased both supine and upright HR (from 80+/-3 supine to 112+/-5 upright before infusion and from 77+/-3 supine to 91+/-3 upright 1 hour after infusion, P<.005 for supine and P<.001 for upright). Clonidine decreased supine HR (from 78+/-2 to 74+/-2, P<.03) but did not affect the HR increase with standing. Clonidine very significantly decreased supine systolic BP (from 109+/-3 at baseline to 99+/-2 mm Hg at 2 hours, P<.001), and midodrine decreased supine systolic BP mildly. CONCLUSIONS: IOT responds best acutely to saline infusion to correct the underlying hypovolemia. Chronically, this can be accomplished with increased salt and water intake in conjunction with fludrocortisone. The response of patients to the alpha1-agonist midodrine supports the hypothesis of partial dysautonomia and indicates that the use of alpha1-agonists to pharmacologically replace lower-extremity postganglionic sympathetics is an appropriate overall goal of therapy. These findings are consistent with our hypothesis that the tachycardia and elevated catecholamine levels associated with IOT are principally due to hypovolemia and loss of adequate lower-extremity vascular tone.

  1. Resolution of G(s)alpha and G(q)alpha/G(11)alpha proteins in membrane domains by two-dimensional electrophoresis: the effect of long-term agonist stimulation.

    PubMed

    Matousek, P; Novotný, J; Svoboda, P

    2004-01-01

    Low-density membrane-domain fractions were prepared from S49 lymphoma cells and clone e2m11 of HEK293 cells expressing a large number of thyrotropin-releasing hormone receptor (TRH-R) and G(11)alpha by flotation on sucrose density gradients. The intact cell structure was broken by detergent-extraction, alkaline-treatment or drastic homogenization. Three types of low-density membranes were resolved by two-dimensional electrophoresis and analyzed for G(s)alpha (S49) or G(q)alpha/G11) (e2m11) content. Four individual immunoblot signals of Gsalpha protein were identified in S49 lymphoma cells indicating complete resolution of the long G(s)alpha L+/-ser and short G(s)alpha S+/-ser variants of G(s)alpha. All these were diminished by prolonged agonist (isoprenaline) stimulation. In e2m11-HEK cells, five different immunoblot signals were detected indicating post-translational modification of G proteins of G(q)alpha/G(11)alpha family. The two major spots corresponding to exogenously (over)expressed G(11)alpha and endogenous G(q)alpha were reduced; the minor spots diminished by hormonal stimulation. Parallel analysis by silver staining of the total protein content indicated that no major changes in protein composition occurred under these conditions. Our data thus indicate that agonist-stimulation of target cells results in down-regulation of all different members of G(s) and G(q)/G(11) families. This agonist-specific effect may be demonstrated in crude membrane as well as domain/raft preparations and it is not accompanied by changes in overall protein composition.

  2. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin.

    PubMed

    Leroux, M R; Fändrich, M; Klunker, D; Siegers, K; Lupas, A N; Brown, J R; Schiebel, E; Dobson, C M; Hartl, F U

    1999-12-01

    Group II chaperonins in the eukaryotic and archaeal cytosol assist in protein folding independently of the GroES-like cofactors of eubacterial group I chaperonins. Recently, the eukaryotic chaperonin was shown to cooperate with the hetero-oligomeric protein complex GimC (prefoldin) in folding actin and tubulins. Here we report the characterization of the first archaeal homologue of GimC, from Methanobacterium thermoautotrophicum. MtGimC is a hexamer of 87 kDa, consisting of two alpha and four beta subunits of high alpha-helical content that are predicted to contain extended coiled coils and represent two evolutionarily conserved classes of Gim subunits. Reconstitution experiments with MtGimC suggest that two subunits of the alpha class (archaeal Gimalpha and eukaryotic Gim2 and 5) form a dimer onto which four subunits of the beta class (archaeal Gimbeta and eukaryotic Gim1, 3, 4 and 6) assemble. MtGimalpha and beta can form hetero-complexes with yeast Gim subunits and MtGimbeta partially complements yeast strains lacking Gim1 and 4. MtGimC is a molecular chaperone capable of stabilizing a range of non-native proteins and releasing them for subsequent chaperonin-assisted folding. In light of the absence of Hsp70 chaperones in many archaea, GimC may fulfil an ATP-independent, Hsp70-like function in archaeal de novo protein folding.

  3. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin.

    PubMed Central

    Leroux, M R; Fändrich, M; Klunker, D; Siegers, K; Lupas, A N; Brown, J R; Schiebel, E; Dobson, C M; Hartl, F U

    1999-01-01

    Group II chaperonins in the eukaryotic and archaeal cytosol assist in protein folding independently of the GroES-like cofactors of eubacterial group I chaperonins. Recently, the eukaryotic chaperonin was shown to cooperate with the hetero-oligomeric protein complex GimC (prefoldin) in folding actin and tubulins. Here we report the characterization of the first archaeal homologue of GimC, from Methanobacterium thermoautotrophicum. MtGimC is a hexamer of 87 kDa, consisting of two alpha and four beta subunits of high alpha-helical content that are predicted to contain extended coiled coils and represent two evolutionarily conserved classes of Gim subunits. Reconstitution experiments with MtGimC suggest that two subunits of the alpha class (archaeal Gimalpha and eukaryotic Gim2 and 5) form a dimer onto which four subunits of the beta class (archaeal Gimbeta and eukaryotic Gim1, 3, 4 and 6) assemble. MtGimalpha and beta can form hetero-complexes with yeast Gim subunits and MtGimbeta partially complements yeast strains lacking Gim1 and 4. MtGimC is a molecular chaperone capable of stabilizing a range of non-native proteins and releasing them for subsequent chaperonin-assisted folding. In light of the absence of Hsp70 chaperones in many archaea, GimC may fulfil an ATP-independent, Hsp70-like function in archaeal de novo protein folding. PMID:10581246

  4. IGF-1-dependent subunit communication of the IGF-1 holoreceptor: Interactions between. alpha. beta. heterodimeric receptor halves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilden, P.A.; Treadway, J.L.; Morrison, B.D.

    1989-12-12

    Examination of {sup 125}I-IGF-1 affinity cross-linking and {beta}-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptors into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 receptor complex from the partially purified {alpha}{beta} heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified {alpha}{beta} heterodimers into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulatemore » the protein kinase activity of the purified {alpha}{beta} heterodimeric insulin receptor complex. Incubation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter {sup 125}I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the {alpha}{beta} heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptor complexes into a disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor {alpha}{beta} heterodimers into the {alpha}{sub 2}{beta}{sub 2} heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation.« less

  5. Differential expression of extracellular matrix molecules and the alpha 6-integrins in the normal and neoplastic prostate.

    PubMed Central

    Knox, J. D.; Cress, A. E.; Clark, V.; Manriquez, L.; Affinito, K. S.; Dalkin, B. L.; Nagle, R. B.

    1994-01-01

    The epithelial basal lamina composition and integrin expression profile of normal and neoplastic human prostate was characterized using immunohistochemical analysis of frozen samples. The major components of the basal lamina surrounding normal acini were laminin, type IV collagen, entactin, and type VII collagen with variable amounts of tenascin. The basal lamina of neoplastic acini had a similar composition, except for the loss of type VII collagen, which was observed in all grades of carcinoma. The basal cells of the normal prostate express the alpha 6-, beta 1-, and beta 4-integrin subunits, suggesting that both the alpha 6 beta 1- and alpha 6 beta 4-integrin complexes are formed. In prostate carcinoma there is a complete loss of beta 4 expression and the alpha 6- and beta 1-integrin subunits, which are restricted to the basal and basal lateral surfaces of basal cells, are distributed diffusely throughout the cytoplasmic membrane. The differential expression of type VII collagen and beta 4 are discussed in relationship to their possible role in tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8030747

  6. 5-Hydroxytryptamine 1A/7 and 4alpha receptors differentially prevent opioid-induced inhibition of brain stem cardiorespiratory function.

    PubMed

    Wang, Xin; Dergacheva, Olga; Kamendi, Harriet; Gorini, Christopher; Mendelowitz, David

    2007-08-01

    Opioids evoke respiratory depression, bradycardia, and reduced respiratory sinus arrhythmia, whereas serotonin (5-HT) agonists stimulate respiration and cardiorespiratory interactions. This study tested whether serotonin agonists can prevent the inhibitory effects of opioids on cardiorespiratory function. Spontaneous and rhythmic inspiratory-related activity and gamma-aminobutyric acid (GABA) neurotransmission to premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus were recorded simultaneously in an in vitro thick slice preparation. The mu-opioid agonist fentanyl inhibited respiratory frequency. The 5-hydroxytryptamine 1A/7 receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin increased respiratory frequency by itself and also prevented the fentanyl-induced respiratory depression. The 5-hydroxytryptamine 4alpha agonist BIMU-8 did not by itself change inspiratory activity but prevented the mu-opioid-mediated respiratory depression. Both spontaneous and inspiratory-evoked GABAergic neurotransmission to cardiac vagal neurons were inhibited by fentanyl. 8-Hydroxy-2-(di-n-propylamino)tetralin inhibited spontaneous but not inspiratory-evoked GABAergic activity to parasympathetic cardiac neurons. However, 8-hydroxy-2-(di-n-propylamino)tetralin differentially altered the opioid-mediated depression of inspiratory-evoked GABAergic activity but did not change the opioid-induced reduction in spontaneous GABAergic neurotransmission. In contrast, BIMU-8 did not alter GABAergic neurotransmission to cardiac vagal neurons by itself but prevented the fentanyl depression of both spontaneous and inspiratory-elicited GABAergic neurotransmission to cardiac vagal neurons. In the presence of tetrodotoxin, the inhibition of GABAergic inhibitory postsynaptic currents with fentanyl is prevented by coapplication of BIMU-8, indicating that BIMU-8 acts at presynaptic GABAergic terminals to prevent fentanyl-induced depression. These results suggest that activation of 5-hydroxytryptamine receptors, particularly 5-hydroxytryptamine 4alpha agonists, may be a useful therapeutic approach in preventing opioid-evoked cardiorespiratory depression.

  7. Relative changes in the abundance of branchial Na(+)/K(+)-ATPase alpha-isoform-like proteins in marine euryhaline milkfish (Chanos chanos) acclimated to environments of different salinities.

    PubMed

    Tang, Cheng-Hao; Chiu, Yu-Huei; Tsai, Shu-Chuan; Lee, Tsung-Han

    2009-08-01

    Previous studies revealed that upon salinity challenge, milkfish (Chanos chanos), the euryhaline teleost, exhibited adaptive changes in branchial Na(+)/K(+)-ATPase (NKA) activity with different Na(+) and K(+) affinities. Since alteration of activity and ion-affinity may be influenced by changes in different isoforms of NKA alpha-subunit (i.e., the catalytic subunit), it is, thus, intriguing to compare the patterns of protein abundance of three major NKA alpha-isoform-like proteins (i.e., alpha1, alpha2, and alpha3) in the gills of euryhaline milkfish following salinity challenge. The protein abundance of three NKA alpha-isoform-like proteins in gills of milkfish reared in seawater (SW), fresh water (FW), as well as hypersaline water (HSW, 60 per thousand) were analyzed by immunoblotting. In the acclimation experiments, the SW group revealed significantly higher levels of NKA alpha1- and alpha3-like proteins than the FW or HSW group. Time-course experiments on milkfish that were transferred from SW to HSW revealed the abundance of branchial NKA alpha1-like and alpha3-like proteins decreased significantly after 96 and 12 hr, respectively, and no significant difference was found in NKA alpha2-like protein. Furthermore, when fish were transferred from SW to FW, the amounts of NKA alpha1- and alpha3-like proteins was significantly decreased after 96 hr. Taken together, acute and chronic changes in the abundance of branchial NKA alpha1- and alpha3-like proteins may fulfill the requirements of altering NKA activity with different Na(+) or K(+) affinity for euryhaline milkfish acclimated to environments of various salinities. 2009 Wiley-Liss, Inc.

  8. High-level production and purification in a functional state of an extrasynaptic gamma-aminobutyric acid type A receptor containing α4β3δ subunits.

    PubMed

    Zhou, Xiaojuan; Desai, Rooma; Zhang, Yinghui; Stec, Wojciech J; Miller, Keith W; Jounaidi, Youssef

    2018-01-01

    The inhibitory γ-aminobutyric acid type A receptors are implicated in numerous physiological processes, including cognition and inhibition of neurotransmission, rendering them important molecular targets for many classes of drugs. Functionally, the entire GABAAR family of receptors can be subdivided into phasic, fast acting synaptic receptors, composed of α-, β- and γ-subunits, and tonic extrasynaptic receptors, many of which contain the δ-subunit in addition to α- and β-subunits. Whereas the subunit arrangement of the former group is agreed upon, that of the αβδ GABAARs remains unresolved by electrophysiological and pharmacological research. To resolve such issues will require biophysical techniques that demand quantities of receptor that have been previously unavailable. Therefore, we have engineered a stable cell line with tetracycline inducible expression of human α4-, β3- and N-terminally Flag-tagged δ-subunits. This cell line achieved a specific activity between 15 and 20 pmol [3H]muscimol sites/mg of membrane protein, making it possible to obtain 1 nmole of purified α4β3δ GABAAR from sixty 15-cm culture dishes. When induced, these cells exhibited agonist-induced currents with characteristics comparable to those previously reported for this receptor and a pharmacology that included strong modulation by etomidate and the δ-subunit-specific ligand, DS2. Immunoaffinity purification and reconstitution in CHAPS/asolectin micelles resulted in the retention of equilibrium allosteric interactions between the separate agonist, anesthetic and DS2 sites. Moreover, all three subunits retained glycosylation. The establishment of this well-characterized cell line will allow molecular level studies of tonic receptors to be undertaken.

  9. Steady-state levels of G-protein beta-subunit expression are regulated by treatment of cells with bacterial toxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1987-05-01

    Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with (/sup 32/P)NAD/sup +/ and pertussis toxin and to prevent by more than 90% the labelling with (/sup 32/P)NAD/sup +/ and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased themore » amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study.« less

  10. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodiesmore » to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.« less

  11. Structural characterization of agonist and antagonist-bound acetylcholine-binding protein from Aplysia californica.

    PubMed

    Hansen, Scott B; Sulzenbacher, Gerlind; Huxford, Tom; Marchot, Pascale; Bourne, Yves; Taylor, Palmer

    2006-01-01

    Nicotinic acetylcholine receptors (nAChRs) are well-characterized allosteric transmembrane proteins involved in the rapid gating of ions elicited by ACh. These receptors belong to the Cys-loop superfamily of ligand-gated ion channels, which also includes GABAA and GABAC, 5-HT3, and glycine receptors. The nAChRs are homo- or heteromeric pentamers of structurally related subunits that encompass an extracellular N-terminal ligand-binding domain, four transmembrane-spanning regions that form the ion channel, and an extended intracellular region between spans 3 and 4. Ligand binding triggers conformational changes that are transmitted to the transmembrane-spanning region, leading to gating and changes in membrane potential. The four transmembrane spans on each of the five subunits create a substantial region of hydrophobicity that precludes facile crystallization of this protein. However the freshwater snail, Lymnaea stagnalis, produces a soluble homopentameric protein, termed the ACh-binding protein (AChBP), which binds ACh (Smit et al., 2001). Its structure was determined recently (Brejc et al., 2001) at high resolution, revealing the structural scaffold for nAChR, and has become a functional and structural surrogate of the nAChR ligand-binding domain. We have characterized an AChBP from Aplysia californica and determined distinct ligand-binding properties when compared to those of L. stagnalis, including ligand specificity for the nAChR alpha7 subtype-specific alpha-conotoxin ImI (Hansen et al., 2004).

  12. The expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi

    2006-12-15

    The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17{alpha}-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ER{alpha}-selective agonist), diarylpropionitrile (DPN, an ER{beta}-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE inmore » the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ER{alpha}-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ER{beta}-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.« less

  13. PPAR-alpha agonist treatment increases trefoil factor family-3 expression and attenuates apoptosis in the liver tissue of bile duct-ligated rats.

    PubMed

    Karakan, Tarkan; Kerem, Mustafa; Cindoruk, Mehmet; Engin, Doruk; Alper, Murat; Akın, Okan

    2013-01-01

    Peroxisome proliferators-activated receptor alpha activation modulates cholesterol metabolism and suppresses bile acid synthesis. The trefoil factor family comprises mucin-associated proteins that increase the viscosity of mucins and help protect epithelial linings from insults. We evaluated the effect of short-term administration of fenofibrate, a peroxisome proliferators activated receptor alpha agonist, on trefoil factor family-3 expression, degree of apoptosis, generation of free radicals, and levels of proinflammatory cytokines in the liver tissue of bile duct-ligated rats. Forty male Wistar rats were randomly divided into four groups: 1 = sham operated, 2 = bile duct ligation, 3 = bile duct-ligated + vehicle (gum Arabic), and 4 = bile duct-ligated + fenofibrate (100 mg/kg/day). All rats were sacrificed on the 7 th day after obtaining blood samples and liver tissue. Liver function tests, tumor necrosis factor-alpha and interleukin 1 beta in serum, and trefoil factor family-3 mRNA expression, degree of apoptosis (TUNEL) and tissue malondialdehyde (malondialdehyde, end-product of lipid peroxidation by reactive oxygen species) in liver tissue were evaluated. Fenofibrate administration significantly reduced serum total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, and tumor necrosis factor-alpha and interleukin-1β levels. Apoptosis and malondialdehyde were significantly reduced in the fenofibrate group. Trefoil factor family-3 expression increased with fenofibrate treatment in bile duct-ligated rats. The peroxisome proliferators-activated receptor alpha agonist fenofibrate significantly increased trefoil factor family-3 expression and decreased apoptosis and lipid peroxidation in the liver and attenuated serum levels of proinflammatory cytokines in bile duct-ligated rats. Further studies are needed to determine the protective role of fenofibrate in human cholestatic disorders.

  14. Solution structure of {alpha}-conotoxin PIA, a novel antagonist of {alpha}6 subunit containing nicotinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Seung-Wook; Lee, Si-Hyung; Kim, Do-Hyoung

    2005-12-30

    {alpha}-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing {alpha}6 and {alpha}3 subunits. {alpha}-conotoxin PIA displays 75-fold higher affinity for rat {alpha}6/{alpha}3{beta}2{beta}3 nAChRs than for rat {alpha}3{beta}2 nAChRs. We have determined the three-dimensional structure of {alpha}-conotoxin PIA by nuclear magnetic resonance spectroscopy. The {alpha}-conotoxin PIA has an '{omega}-shaped' overall topology as other {alpha}4/7 subfamily conotoxins. Yet, unlike other neuronally targeted {alpha}4/7-conotoxins, its N-terminal tail Arg{sup 1}-Asp{sup 2}-Pro{sup 3} protrudes out of its main molecular body because Asp{sup 2}-Pro{sup 3}-Cys{sup 4}-Cys{sup 5} forms a stable type I {beta}-turn. In addition, amore » kink introduced by Pro{sup 15} in the second loop of this toxin provides a distinct steric and electrostatic environment from those in {alpha}-conotoxins MII and GIC. By comparing the structure of {alpha}-conotoxin PIA with other functionally related {alpha}-conotoxins we suggest structural features in {alpha}-conotoxin PIA that may be associated with its unique receptor recognition profile.« less

  15. Eukaryotic polypeptide elongation system and its sensitivity to the inhibitory substances of plant origin.

    PubMed

    Gałasiński, W

    1996-05-01

    The structural and functional characteristics of the elongation system (ribosomes and elongation factors) are presented. The immunochemical and diagnostic meaning of the ribosome investigations is considered. Evidence of the participation of ribosomes in the first step of protein glycosylation is presented. The heterogeneous elongation factor eEF-1, isolated from Guerin epithelioma, can be separated into three fractions: one of them functionally corresponds to EF-1 alpha, the second on to EF-1 beta gamma, and the third is an unidentified, active aggregate named EF-1B, which contains the subunit forms EF-1 alpha and EF-1 beta gamma, and other polypeptides showing protein kinase activity. The aggregate EF-1B can be autophosphorylated, while the subunit forms EF-1 alpha and EF-1 beta gamma can neither become autophosphorylated nor phosphorylate other polypeptides. The subunit form EF-beta gamma consists from two polypeptides of 32 and 51 kDa, corresponding to other eukaryotic beta and gamma polypeptides, respectively. EF-1 beta gamma is thermostable and protects against thermal inactivation of EF-1 alpha in the EF-1 alpha-EF-1 beta gamma complex. Pure eEF-2 preparations isolated from normal and neoplastic tissues show different structural features. The existence of eEF-2 in multiple forms, differing in molecular mass, have been found. The eEF-2 with molecular weight of about 100 kDa can be phosphorylated, while eEF-2 of about 65 kDa was not phosphorylated by protein kinase eEF-2. The phosphorylated eEF-2 lost its activity, and this effect was reversed by dephosphorylation. The eEF-2 (65 kDa) was isolated from the active polyribosomes, and it may directly participate in the translocation step of the peptide elongation. It was noted that the components of elongation system can be inhibited, in separate steps, by the substances isolated from various sources of plant origin. Alkaloids emetine and cepheline, cardiac remedy digoxin, saponin glycoside, and its aglycon directly inactivated ribosomes. Quercetin inhibited eEF-1 activity by directly influencing its subunit form EF-1 alpha. eEF-2 was shown to be a target site of the inhibitory action of the glycoside isolated from Melissa officinalis leaves.

  16. Effect of alternative glycosylation on insulin receptor processing.

    PubMed

    Hwang, J B; Frost, S C

    1999-08-06

    The mature insulin receptor is a cell surface heterotetrameric glycoprotein composed of two alpha- and two beta-subunits. In 3T3-L1 adipocytes as in other cell types, the receptor is synthesized as a single polypeptide consisting of uncleaved alpha- and beta-subunits, migrating as a 190-kDa glycoprotein. To examine the importance of N-linked glycosylation on insulin receptor processing, we have used glucose deprivation as a tool to alter protein glycosylation. Western blot analysis shows that glucose deprivation led to a time-dependent accumulation of an alternative proreceptor of 170 kDa in a subcellular fraction consistent with endoplasmic reticulum localization. Co-precipitation assays provide evidence that the alternative proreceptor bound GRP78, an endoplasmic reticulum molecular chaperone. N-Glycosidase F treatment shows that the alternative proreceptor contained N-linked oligosaccharides. Yet, endoglycosidase H insensitivity indicates an aberrant oligosaccharide structure. Using pulse-chase methodology, we show that the synthetic rate was similar between the normal and alternative proreceptor. However, the normal proreceptor was processed into alpha- and beta-subunits (t((1)/(2)) = 1.3 +/- 0.6 h), while the alternative proreceptor was degraded (t((1)/(2)) = 5.1 +/- 0.6 h). Upon refeeding cells that were initially deprived of glucose, the alternative proreceptor was processed to a higher molecular weight form and gained sensitivity to endoglycosidase H. This "intermediate" form of the proreceptor was also degraded, although a small fraction escaped degradation, resulting in cleavage to the alpha- and beta-subunits. These data provide evidence for the first time that glucose deprivation leads to the accumulation of an alternative proreceptor, which can be post-translationally glycosylated with the readdition of glucose inducing both accelerated degradation and maturation.

  17. Altered expression of extracellular matrix molecules and their receptors in chronic pancreatitis and pancreatic adenocarcinoma in comparison with normal pancreas.

    PubMed

    Shimoyama, S; Gansauge, F; Gansauge, S; Oohara, T; Beger, H G

    1995-12-01

    The aim of this study was to elucidate the expression and distribution patterns of both integrins and extracellular matrix (ECM) molecules in chronic pancreatitis (CP) and pancreatic adenocarcinoma (PC) compared with normal pancreas (NP). Expression of nine alpha-subunits (alpha 2-alpha 6, alpha V, alpha L, alpha M, and alpha X), four beta-subunits (beta 1, beta 3-beta 5), and four ECM molecules (type IV collagen, laminin, fibronectin, and vitronectin) was investigated immunohistochemically. In CP, all integrins except alpha V showed nearly the same staining patterns compared with NP. Some acinar cells in CP expressed alpha V. Whereas alpha 2, alpha 3, and alpha 6 expression was stronger and diffuse, no alpha 5 expression was seen in PC. Basement membrane (BM) showed continuous staining in CP, whereas it showed discontinuous/absent staining in PC with antitype IV collagen, laminin, and vitronectin antibodies. Some carcinoma cells showed reverse correlation between alpha 2, alpha 3, and alpha 6 expression and type IV collagen and laminin expression. Fibronectin showed diffuse stromal expression in CP and PC. Some acinar cells or duct cells in CP carcinoma cells in PC showed intracellular VN expression. These results suggest that these integrins and ECM molecules are involved in inflammatory and malignant processes in pancreas.

  18. Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury.

    PubMed

    Yue, Tian-li; Bao, Weike; Jucker, Beat M; Gu, Juan-li; Romanic, Anne M; Brown, Peter J; Cui, Jianqi; Thudium, Douglas T; Boyce, Rogely; Burns-Kurtis, Cynthia L; Mirabile, Rosanna C; Aravindhan, Karpagam; Ohlstein, Eliot H

    2003-11-11

    Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is expressed in the heart and regulates genes involved in myocardial fatty acid oxidation (FAO). The role of PPAR-alpha in acute ischemia/reperfusion myocardial injury remains unclear. The coronary arteries of male mice were ligated for 30 minutes. After reperfusion for 24 hours, ischemic and infarct sizes were determined. A highly selective and potent PPAR-alpha agonist, GW7647, was administered by mouth for 2 days, and the third dose was given 1 hour before ischemia. GW7647 at 1 and 3 mg x kg(-1) x d(-1) reduced infarct size by 28% and 35%, respectively (P<0.01), and myocardial contractile dysfunction was also improved. Cardioprotection by GW7647 was completely abolished in PPAR-alpha-null mice. Ischemia/reperfusion downregulated mRNA expression of cardiac PPAR-alpha and FAO enzyme genes, decreased myocardial FAO enzyme activity and in vivo cardiac fat oxidation, and increased serum levels of free fatty acids. All of these changes were reversed by GW7647. Moreover, GW7647 attenuated ischemia/reperfusion-induced release of multiple proinflammatory cytokines and inhibited neutrophil accumulation and myocardial expression of matrix metalloproteinases-9 and -2. Furthermore, GW7647 inhibited nuclear factor-kappaB activation in the heart, accompanied by enhanced levels of inhibitor-kappaBalpha. Activation of PPAR-alpha protected the heart from reperfusion injury. This cardioprotection might be mediated through metabolic and antiinflammatory mechanisms. This novel effect of the PPAR-alpha agonist could provide an added benefit to patients treated with PPAR-alpha activators for dyslipidemia.

  19. Monoamine uptake inhibitors block alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation.

    PubMed

    Long, Cheng; Chen, Mei-Fang; Sarwinski, Susan J; Chen, Po-Yi; Si, Minliang; Hoffer, Barry J; Evans, M Steven; Lee, Tony J F

    2006-07-01

    We have proposed that activation of cerebral perivascular sympathetic alpha7-nicotinic acetylcholine receptors (alpha7-nAChRs) by nicotinic agonists releases norepinephrine, which then acts on parasympathetic nitrergic nerves, resulting in release of nitric oxide and vasodilation. Using patch-clamp electrophysiology, immunohistochemistry, and in vitro tissue bath myography, we tested this axo-axonal interaction hypothesis further by examining whether blocking norepinephrine reuptake enhanced alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. The results indicated that choline- and nicotine-induced alpha7-nAChR-mediated nitrergic neurogenic relaxation in endothelium-denuded isolated porcine basilar artery rings was enhanced by desipramine and imipramine at lower concentrations (0.03-0.1 microM) but inhibited at higher concentrations (0.3-10 microM). In cultured superior cervical ganglion (SCG) neurons of the pig and rat, choline (0.1-30 mM)-evoked inward currents were reversibly blocked by 1-30 microM mecamylamine, 1-30 microM methyllycaconitine, 10-300 nM alpha-bungarotoxin, and 0.1-10 microM desipramine and imipramine, providing electrophysiological evidence for the presence of similar functional alpha7-nAChRs in cerebral perivascular sympathetic neurons of pigs and rats. In alpha7-nAChR-expressing Xenopus oocytes, choline-elicited inward currents were attenuated by alpha-bungarotoxin, imipramine, and desipramine. These monoamine uptake inhibitors appeared to directly block the alpha7-nAChR, resulting in diminished nicotinic agonist-induced cerebral nitrergic vasodilation. The enhanced nitrergic vasodilation by lower concentrations of monoamine uptake inhibitors is likely due to a greater effect on monoamine uptake than on alpha7-nAChR blockade. These results further support the hypothesis of axo-axonal interaction in nitrergic regulation of cerebral vascular tone.

  20. 3-Isobutyl-1-methylxanthine increases alpha-1-adrenergic receptor sensitivity and density in DDT1-MF2 smooth muscle cells.

    PubMed

    Schachter, J B; Wolfe, B B

    1995-01-01

    The effect of chronic exposure of DDT1-MF2 smooth muscle cells to the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) was investigated with regard to the dynamics of alpha-1-adrenergic receptors. After 48 hr of exposure to 750 microM IBMX, the magnitude of the maximal phospholipase C response to norepinephrine was increased approximately 2-fold and the potency of norepinephrine was increased almost 3-fold. Similar effects were noted for the response to ATP. The density of alpha-1-adrenergic receptors, as defined by [3H]-prazosin binding to membranes was increased 2-fold. In addition, chronic treatment with IBMX prevented agonist-induced desensitization of alpha-1-adrenergic receptors and enhanced the rate of receptor resensitization subsequent to desensitization by a combination of agonist and phorbol ester. These effects appear to be regulated by a cyclic AMP-dependent mechanism. Thus, chronic exposure of smooth muscle cells to phosphodiesterase inhibition may activate compensatory mechanisms that lead to enhanced sensitivity to contractile stimuli. The potential importance of such compensatory mechanisms in the treatment and etiology of smooth muscle dysfunction is briefly discussed.

  1. Affective and cognitive effects of global deletion of alpha3-containing gamma-aminobutyric acid-A receptors.

    PubMed

    Fiorelli, Roberto; Rudolph, Uwe; Straub, Carolin J; Feldon, Joram; Yee, Benjamin K

    2008-09-01

    Gamma-aminobutyric acid (GABA)A receptors characterized by the presence of the alpha3 subunit are the major GABAA receptor subtype expressed in brain stem monoaminergic nuclei. These alpha3-GABAA receptors are therefore in a unique position to regulate monoaminergic functions. To characterize the functional properties of alpha3-GABAA receptors, we present a preliminary assessment of the expression of affective and cognitive behaviour in male mice with a targeted deletion of the Gabra3 gene encoding the alpha3 subunit [alpha3 knockout (KO) mice] on a C57BL/6Jx129X1/SvJ F1 hybrid genetic background. The alpha3 KO mice did not exhibit any gross change of anxiety-like behaviour or spontaneous locomotor behaviour. In the Porsolt forced swim test for potential antidepressant activity, alpha3 KO mice exhibited reduced floating and enhanced swimming behaviour relative to wild-type controls. Performance on a two-choice sucrose preference test, however, revealed no evidence for an increase in sucrose preference in the alpha3 KO mice that would have substantiated a potential phenotype for depression-related behaviour. In contrast, a suggestion of an enhanced negative contrast effect was revealed in a one-bottle sucrose consumption test across different sucrose concentrations. These affective phenotypes were accompanied by alterations in the balance between conditioned responding to the discrete conditioned stimulus and to the context, and a suggestion of faster extinction, in the Pavlovian conditioned freezing paradigm. Spatial learning in the water maze reference memory test, however, was largely unchanged in the alpha3 KO mice, except for a trend of preservation during reversal learning. The novel phenotypes following global deletion of the GABAA receptor alpha3 subunit identified here provided relevant insights, in addition to our earlier study, into the potential behavioural relevance of this specific receptor subtypes in the modulation of both affective and cognitive functions.

  2. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  3. Subunit assembly of hemoglobin: an important determinant of hematologic phenotype.

    PubMed

    Bunn, H F

    1987-01-01

    Hemoglobin's physiologic properties depend on the orderly assembly of its subunits in erythropoietic cells. The biosynthesis of alpha- and beta-globin polypeptide chains is normally balanced. Heme rapidly binds to the globin subunit, either during translation or shortly thereafter. The formation of the alpha beta-dimer is facilitated by electrostatic attraction of a positively charged alpha-subunit to a negatively charged beta-subunit. The alpha beta-dimer dissociates extremely slowly. The difference between the rate of dissociation of alpha beta- and alpha gamma-dimers with increasing pH explains the well-known alkaline resistance of Hb F. Two dimers combine to form the functioning alpha 2 beta 2-tetramer. This model of hemoglobin assembly explains the different levels of positively charged and negatively charged mutant hemoglobins that are encountered in heterozygotes and the effect of alpha-thalassemia and heme deficiency states in modifying the level of the variant hemoglobin as well as Hb A2. Electrostatic interactions also affect the binding of hemoglobin to the cytoplasmic surface of the red cell membrane and may underlie the formation of target cells. Enhanced binding of positively charged variants such as S and C trigger a normally dormant pathway for potassium and water loss. Thus, the positive charge on beta c is responsible for the two major contributors to the pathogenesis of Hb SC disease: increased proportion of Hb S and increased intracellular hemoglobin concentration. It is likely that electrostatic interactions play an important role in the assembly of a number of other multisubunit macromolecules, including membrane receptors, cytoskeletal proteins, and DNA binding proteins.

  4. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.

    PubMed

    Richter, K; Mathes, V; Fronius, M; Althaus, M; Hecker, A; Krasteva-Christ, G; Padberg, W; Hone, A J; McIntosh, J M; Zakrzewicz, A; Grau, V

    2016-06-28

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.

  5. Homologous kappa-neurotoxins exhibit residue-specific interactions with the alpha 3 subunit of the nicotinic acetylcholine receptor: a comparison of the structural requirements for kappa-bungarotoxin and kappa-flavitoxin binding.

    PubMed

    McLane, K E; Weaver, W R; Lei, S; Chiappinelli, V A; Conti-Tronconi, B M

    1993-07-13

    kappa-Flavotoxin (kappa-FTX), a snake neurotoxin that is a selective antagonist of certain neuronal nicotinic acetylcholine receptors (AChRs), has recently been isolated and characterized [Grant, G. A., Frazier, M. W., & Chiappinelli, V. A. (1988) Biochemistry 27, 1532-1537]. Like the related snake toxin kappa-bungarotoxin (kappa-BTX), kappa-FTX binds with high affinity to alpha 3 subtypes of neuronal AChRs, even though there are distinct sequence differences between the two toxins. To further characterize the sequence regions of the neuronal AChR alpha 3 subunit involved in formation of the binding site for this family of kappa-neurotoxins, we investigated kappa-FTX binding to overlapping synthetic peptides screening the alpha 3 subunit sequence. A sequence region forming a "prototope" for kappa-FTX was identified within residues alpha 3 (51-70), confirming the suggestions of previous studies on the binding of kappa-BTX to the alpha 3 subunit [McLane, K. E., Tang, F., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 1537-1544] and alpha-bungarotoxin to the Torpedo AChR alpha subunit [Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230] that this sequence region is involved in formation of a cholinergic site. Single residue substituted analogues, where each residue of the sequence alpha 3 (51-70) was sequentially replaced by a glycine, were used to identify the amino acid side chains involved in the interaction of this prototope with kappa-FTX.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Mutations in the PCCA gene encoding the {alpha} subunit of propionyl-CoA carboxylase in patients with propionic acidemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campeau, E.; Leon-Del-Rio, A.; Gravel, R.A.

    Propionic acidemia is a rare autosomal recessive disorder characterized by a deficiency of the mitochondrial biotin-dependent enzyme, propionyl-CoA carboxylase (PCC). PCC has the structure {alpha}{sub 4}{beta}{sub 4}, with the {alpha} subunit containing the biotin prosthetic group. This study is concerned with defining the spectrum of mutations occurring in the PCCA gene encoding the {alpha} subunit. Mutations were initially assigned to this gene through complementation experiments done after somatic fusion of patient fibroblasts. The analyses were performed on PCR-amplified reverse transcripts of fibroblast RNA. The mutations were identified by single strand conformational polymorphism analysis and direct sequencing of PCR products. Threemore » candidate disease-causing mutations and one DNA polymorphism were identified in the {alpha} subunit sequence in different patients: (1) a 3 bp deletion {triangle}CTG{sub 2058-2060}, which eliminates Cys687 near the biotin binding site (Lys669); (2) T{sub 611}{r_arrow}A which converts Met204 to Lys in a highly conserved region matching that of an ATP binding site; (3) An {approximately}50 bp deletion near the 3{prime} end of the cDNA which likely corresponds to the loss of an exon due to a splicing defect; and (4) a 3 bp insertion, +CAG{sub 2203}, located downstream of the stop codon, which is likely a DNA polymorphism. In order to determine the effect of the Cys687 deletion on the biotinylation of PCC, we expressed the mutation in a 67 amino acid C-terminal fragment of the PCC {alpha} subunit in E. coli in which biotinylation is directed by the bacterial biotin ligase. While the mutant peptide was expressed at about half-normal levels, the biotinylation of the peptide that was present was reduced to only {approximately}20% normal. We suggest, therefore, that the absence of PCC activity due to {triangle}Cys687 results at least in part from defective biotinylation of an unstable protein.« less

  7. KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain.

    PubMed

    Rhodes, Kenneth J; Carroll, Karen I; Sung, M Amy; Doliveira, Lisa C; Monaghan, Michael M; Burke, Sharon L; Strassle, Brian W; Buchwalder, Lynn; Menegola, Milena; Cao, Jie; An, W Frank; Trimmer, James S

    2004-09-08

    Voltage-gated potassium (Kv) channels from the Kv4, or Shal-related, gene family underlie a major component of the A-type potassium current in mammalian central neurons. We recently identified a family of calcium-binding proteins, termed KChIPs (Kv channel interacting proteins), that bind to the cytoplasmic N termini of Kv4 family alpha subunits and modulate their surface density, inactivation kinetics, and rate of recovery from inactivation (An et al., 2000). Here, we used single and double-label immunohistochemistry, together with circumscribed lesions and coimmunoprecipitation analyses, to examine the regional and subcellular distribution of KChIPs1-4 and Kv4 family alpha subunits in adult rat brain. Immunohistochemical staining using KChIP-specific monoclonal antibodies revealed that the KChIP polypeptides are concentrated in neuronal somata and dendrites where their cellular and subcellular distribution overlaps, in an isoform-specific manner, with that of Kv4.2 and Kv4.3. For example, immunoreactivity for KChIP1 and Kv4.3 is concentrated in the somata and dendrites of hippocampal, striatal, and neocortical interneurons. Immunoreactivity for KChIP2, KChIP4, and Kv4.2 is concentrated in the apical and basal dendrites of hippocampal and neocortical pyramidal cells. Double-label immunofluorescence labeling revealed that throughout the forebrain, KChIP2 and KChIP4 are frequently colocalized with Kv4.2, whereas in cortical, hippocampal, and striatal interneurons, KChIP1 is frequently colocalized with Kv4.3. Coimmunoprecipitation analyses confirmed that all KChIPs coassociate with Kv4 alpha subunits in brain membranes, indicating that KChIPs 1-4 are integral components of native A-type Kv channel complexes and are likely to play a major role as modulators of somatodendritic excitability.

  8. Alpha4 containing nicotinic receptors are positioned to mediate postsynaptic effects on serotonin neurons in the rat dorsal raphe nucleus

    PubMed Central

    Commons, Kathryn G.

    2008-01-01

    Nicotinic acetylcholine receptors containing the alpha4 and beta2 subunits constitute the most abundant high-affinity binding site of nicotine in the brain and are critical for the addictive qualities of nicotine. Serotonin neurotransmission is thought to be an important contributor to nicotine addiction. Therefore in this study it was examined how alpha4-containing receptors are positioned to modulate the function of serotonin neurons using ultrastructural analysis of immunolabeling for the alpha4 receptor subunit in the dorsal raphe nucleus (DR), a primary source of forebrain serotonin in the rat. Of 150 profiles labeled for the alpha4 subunit, 140 or 93% consisted of either soma or dendrites, these were often small-caliber (distal) dendrites <1.5 um in diameter (63/150 or 42%). The majority (107/150 or 71%) of profiles containing labeling for alpha4 were dually labeled for the synthetic enzyme for serotonin, tryptophan hydroxylase (TPH). Within dendrites immunogold labeling for alpha4 was present on the plasma membrane or near postsynaptic densities. However, labeling for alpha4 was commonly localized to the cytoplasmic compartment often associated with smooth endoplasmic reticulum, plausibly representing receptors in transit to or from the plasma membrane. Previous studies have suggested that nicotine presynaptically regulates activity onto serotonin neurons, however alpha4 immunolabeling was detected in only 10 axons in the DR or 7% of profiles sampled. This finding suggest that alpha4 containing receptors are minor contributors to presynaptic regulation of synaptic activity onto serotonin neurons, but rather alpha4 containing receptors are positioned to influence serotonin neurons directly at postsynaptic sites. PMID:18403129

  9. Effects of muscarinic receptor agonists and antagonists on alpha 2-adrenoceptors in rat brain.

    PubMed

    Hollingsworth, P J; Smith, C B

    1989-09-13

    The specific binding of [3H]clonidine to alpha 2-adrenoceptors on neural membranes isolated from six brain areas was determined with rats treated for various periods of time with the muscarinic agonists, oxotremorine or pilocarpine, or with the muscarinic antagonists atropine, atropine methyl nitrate, scopolamine and scopolamine methyl bromide. Administration of pilocarpine, 10 mg/kg, twice daily i.p. for 1 and 14 days increased markedly the number of alpha 2-adrenoceptors on neural membranes from all six brain areas. In contrast, oxotremorine, 0.3 mg/kg, twice daily i.p., for 7 days decreased the number of alpha 2-adrenoceptors on membranes from all brain areas except the brainstem and caudate nucleus. Both atropine and scopolamine increased the density of alpha 2-adrenoceptors in specific brain areas. Neither atropine methyl nitrate nor scopolamine methyl bromide had an appreciable effect upon the specific binding of [3H]clonidine to neural membranes from most brain areas.

  10. Expression of the alpha and beta subunits of Ca2+/calmodulin kinase II in the cerebellum of jaundiced Gunn rats during development: a quantitative light microscopic analysis.

    PubMed

    Conlee, J W; Shapiro, S M; Churn, S B

    2000-04-01

    The homozygous (jj) jaundiced Gunn rat model for hyperbilirubinemia displays pronounced cerebellar hypoplasia. To examine the cellular mechanisms involved in bilirubin toxicity, this study focused on the effect of hyperbilirubinemia on calcium/calmodulin-dependent kinase II (CaM kinase II). CaM kinase II is a neuronally enriched enzyme which performs several important functions. Immunohistochemical analysis of alternating serial sections were performed using monoclonal antibodies for the alpha and beta subunits of CaM kinase II. Measurements were made of the total numbers of stained cells in each of the deep cerebellar nuclei and of Purkinje and granule cell densities in cerebellar lobules II, VI, and IX. The beta subunit was present in Purkinje cells and deep cerebellar nuclei of both groups at all ages, but only granule cells which had migrated through the Purkinje cell layer showed staining for beta subunit; external granule cells were completely negative. Many Purkinje cells had degenerated in the older animals, and the percent of granule cells stained for beta subunit was significantly reduced. The alpha subunit was found exclusively in Purkinje cells, although its appearance was delayed in the jaundiced animals. Sulfadimethoxine was administered to some jj rats 24 h or 15 days prior to sacrifice to increase brain bilirubin concentration. Results showed that bilirubin exposure modulated both alpha and beta CaM kinase II subunit expression in selective neuronal populations, but sulfadimethoxine had no acute effect on enzyme immunoreactivity. Thus, developmental expression of the alpha and beta subunits of CaM kinase II was affected by chronic bilirubin exposure during early postnatal development of jaundiced Gunn rats.

  11. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  12. Mapping of a binding site for ATP within the extracellular region of the Torpedo nicotinic acetylcholine receptor beta-subunit.

    PubMed

    Schrattenholz, A; Roth, U; Godovac-Zimmermann, J; Maelicke, A

    1997-10-28

    Using 2,8,5'-[3H]ATP as a direct photoaffinity label for membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata, we have identified a binding site for ATP in the extracellular region of the beta-subunit of the receptor. Photolabeling was completely inhibited in the presence of saturating concentrations of nonradioactive ATP, whereas neither the purinoreceptor antagonists suramin, theophyllin, and caffeine nor the nAChR antagonists alpha-bungarotoxin and d-tubocurarine affected the labeling reaction. Competitive and noncompetitive nicotinic agonists and Ca2+ increased the yield of the photoreaction by up to 50%, suggesting that the respective binding sites are allosterically linked with the ATP site. The dissociation constant KD of binding of ATP to the identified site on the nAChR was of the order of 10(-4) M. Sites of labeling were found in the sequence regions Leu11-Pro17 and Asp152-His163 of the nAChR beta-subunit. These regions may represent parts of a single binding site for ATP, which is discontinuously distributed within the primary structure of the N-terminal extracellular domain. The existence of an extracellular binding site for ATP confirms, on the molecular level, that this nucleotide can directly act on nicotinic receptors, as has been suggested from previous electrophysiological and biochemical studies.

  13. Coadministration of VDR and RXR agonists synergistically alleviates atherosclerosis through inhibition of oxidative stress: An in vivo and in vitro study.

    PubMed

    Lin, L M; Peng, F; Liu, Y P; Chai, D J; Ning, R B; Xu, C S; Lin, J X

    2016-08-01

    Diabetes contributes to atherosclerosis partially through induction of oxidative stress. Both vitamin D receptor (VDR) and retinoid X receptor (RXR) agonists exhibit anti-atherogenic effects. We explored the effects of combination treatment with VDR and RXR agonists (represented by calcitriol and bexarotene, respectively) on atherosclerosis progression and the mechanisms involved, using a diabetes model of mice. The animals were intragastrically fed calcitriol (200 ng/kg, twice-a-week), bexarotene (10 mg/kg, once-daily) either alone or in combination for 12 weeks. VDR and RXR agonists delayed atherosclerosis progression independent of serum lipid and glucose levels, and significantly reduced the protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit gp91phox and nuclear factor-kappa B (NF-κB) subunit p65, as well as plasma biomarkers of oxidative stress and inflammation. Combination therapy alleviated atherosclerosis and inhibited indexes of oxidative stress and inflammation to a greater extent than either monotherapy. In the in vitro study, naturally occurring VDR ligand 1α,25-dihydroxyvitamin D3 (1,25[OH]2D3) and RXR ligand 9-cis retinoic acid (9-cis-RA), both significantly inhibited high-glucose-induced endothelial cell apoptosis. Co-administration of VDR and RXR ligands produced synergistic protection against endothelial apoptosis by antagonizing the protein kinase C /NADPH oxidase/reactive oxygen species pathway. The inhibitory effects of 9-cis-RA on oxidative stress was attenuated when VDR was downregulated by VDR siRNA; however, downregulation of RXR by RXR siRNA imposed no influence on the effects of 1,25(OH)2D3. Combination treatment with VDR and RXR agonists synergistically alleviated diabetic atherosclerosis through inhibition of oxidative stress, and the preventive effects of RXR agonist may partially depend on VDR activation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  14. Oestrogen receptor-alpha activation augments post-exercise myoblast proliferation.

    PubMed

    Thomas, A; Bunyan, K; Tiidus, P M

    2010-01-01

    Our laboratory has shown that oestrogen acts to augment myoblast (satellite cell) activation, proliferation and total number and that this may occur through an oestrogen receptor (OR)-mediated mechanism. The purpose of this study was to further investigate the mechanism of oestrogen influence on augmentation of post-exercise myoblast numbers through use of a specific OR-alpha agonist, propyl pyrazole triol (PPT). Ovariectomized rats were used (n = 64) and separated into four groups: sham, oestrogen supplemented, agonist supplemented, and a combined oestrogen and agonist supplemented group. These groups were further subdivided into control (unexercised) and exercise groups. Surgical removal of white vastus and soleus muscles was performed 72 h post-exercise. Muscle samples were immunostained for the myoblast markers Pax7 and MyoD. A significant increase in total (Pax7-positive) and activated (MyoD-positive) myoblasts was found in all groups post-exercise. A further significant augmentation of total and activated myoblasts occurred in oestrogen supplemented, agonist supplemented and the combined oestrogen and agonist supplemented groups post-exercise in white vastus and soleus muscles relative to unsupplemented animals. These results demonstrate that both oestrogen and the specific OR-alpha receptor agonist, PPT, can significantly and to similar degrees augment myoblast number and activation following exercise-induced muscle damage. This suggests that oestrogen acts through an OR-mediated mechanism to stimulate myoblast proliferation following exercise, with OR-alpha playing a primary role.

  15. Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor alpha subunit form the strychnine-binding site.

    PubMed Central

    Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851

  16. Glutamine 57 at the complementary binding site face is a key determinant of morantel selectivity for {alpha}7 nicotinic receptors.

    PubMed

    Bartos, Mariana; Price, Kerry L; Lummis, Sarah C R; Bouzat, Cecilia

    2009-08-07

    Nicotinic receptors (AChRs) play key roles in synaptic transmission. We explored activation of neuronal alpha7 and mammalian muscle AChRs by morantel and oxantel. Our results revealed a novel action of morantel as a high efficacy and more potent agonist than ACh of alpha7 receptors. The EC(50) for activation by morantel of both alpha7 and alpha7-5HT(3A) receptors is 7-fold lower than that determined for ACh. The minimum morantel concentration required to activate alpha7-5HT(3A) channels is 6-fold lower than that of ACh, and activation episodes are more prolonged than in the presence of ACh. By contrast, oxantel is a weak agonist of alpha7 and alpha7-5HT(3A), and both drugs are very low efficacy agonists of muscle AChRs. The replacement of Gln(57) in alpha7 by glycine, which is found in the equivalent position of the muscle AChR, decreases the efficacy for activation and turns morantel into a partial agonist. The reverse mutation in the muscle AChR (epsilonG57Q) increases 7-fold the efficacy of morantel. The mutations do not affect activation by ACh or oxantel, indicating that this position is selective for morantel. In silico studies show that the tetrahydropyrimidinyl group, common to both drugs, is close to Trp(149) of the principal face of the binding site, whereas the other cyclic group is proximal to Gln(57) of the complementary face in morantel but not in oxantel. Thus, position 57 at the complementary face is a key determinant of the high selectivity of morantel for alpha7. These results provide new information for further progress in drug design.

  17. Opioid Dependence Treatment: Options In Pharmacotherapy

    PubMed Central

    Stotts, Angela L.; Dodrill, Carrie L.; Kosten, Thomas R.

    2010-01-01

    The development of effective treatments for opioid dependence is of great importance given the devastating consequences of the disease. Pharmacotherapies for opioid addiction include opioid agonists, partial agonists, opioid antagonists, and alpha-2-adrenergic agonists, which are targeted toward either detoxification or long-term agonist maintenance. Agonist maintenance therapy is currently the recommended treatment for opioid dependence due to its superior outcomes relative to detoxification. Detoxification protocols have limited long term efficacy and patient discomfort remains a significant therapy challenge. Buprenorphine’s effectiveness relative to methadone remains a controversy and may be most appropriate for patients in need of low doses of agonist treatment. Buprenorphine appears superior to alpha-2 agonists, however, and office-based treatment with buprenorphine in the US is gaining support. Studies of sustained-release formulations of naltrexone suggest improved effectiveness for retention and sustained abstinence, however, randomized clinical trials are needed. PMID:19538000

  18. Steroid withdrawal in the mouse results in anxiogenic effects of 3alpha,5beta-THP: a possible model of premenstrual dysphoric disorder.

    PubMed

    Smith, Sheryl S; Ruderman, Yevgeniy; Frye, Cheryl; Homanics, Gregg; Yuan, Maoli

    2006-06-01

    3alpha-OH-5alpha[beta]-pregnan-20-one (THP) is a positive modulator of the GABAA receptor (GABAR), which underlies its reported anxiolytic effect. However, there are conditions such as premenstrual dysphoric disorder (PMDD) where increases in THP levels can be associated with adverse mood. In order to test for conditions where THP might be anxiogenic, we developed a mouse model of THP withdrawal. Because delta-containing GABAR are highly sensitive to THP modulation, results were compared in wild-type and delta knockout mice. Finasteride, a 5alpha-reductase blocker, was administered for 3 days to female wild-type or delta knockout mice. Then, animals were tested in the elevated plus maze, following acute administration of THP, lorazepam, flumazenil, or 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), and results compared to vehicle-injected controls. CA1 hippocampal GABAR alpha4 subunit levels were assessed by Western blot. After THP withdrawal, THP produced anxiogenic effects, decreasing open arm entries on the elevated plus maze, following a brief shock, in contrast to its expected anxiolytic effects. As we have shown in rats, THP withdrawal also resulted in increased expression of the alpha4 subunit in mouse CA1 hippocampus. As expected for increases in alpha4-containing GABAR, THP withdrawn mice were relatively insensitive to the benzodiazepine (BDZ) lorazepam and had atypical responses to the BDZ antagonist flumazenil when tested on the plus maze. In contrast, they showed a greater anxiolytic response to THIP, which has greater efficacy at alpha4betadelta than other GABAR. Although THP withdrawal in delta knockout mice also increased the alpha4 GABAR subunit, the anxiogenic effects of THP and the anxiolytic effects of THIP were not observed, implicating alpha4betadelta GABAR in these effects. Based on these behavioral and pharmacological findings, we suggest that THP withdrawal in the mouse may serve as a rodent model of PMDD.

  19. Dilation of epicardial coronary arteries by the G protein-coupled estrogen receptor agonists G-1 and ICI 182,780.

    PubMed

    Meyer, Matthias R; Baretella, Oliver; Prossnitz, Eric R; Barton, Matthias

    2010-01-01

    Endogenous estrogens protect from coronary artery disease in premenopausal women, but the mechanisms involved are only partly understood. This study investigated whether activation of the novel G protein-coupled estrogen receptor (GPER, formerly known as GPR30) affects coronary artery tone, and whether this is affected by concomitant blockade of estrogen receptors (ER) alpha and beta. Rings of epicardial porcine coronary arteries suspended in organ chambers were precontracted with prostaglandin F(2)alpha, and direct effects of G-1 (GPER agonist) and ICI 182,780 (GPER agonist and ERalpha/ERbeta antagonist) were determined. In addition, indirect effects on contractility to endothelin-1 and serotonin (a vasoconstrictor released from aggregating platelets during acute myocardial infarction) were assessed. ICI 182,780 and G-1 caused acute dilation of coronary arteries to a comparable degree (p < 0.05 vs. solvent control). Both GPER agonists attenuated contractions to endothelin-1 (p < 0.05 vs. ethanol), but not to serotonin (n.s.). In summary, these findings provide evidence for direct and indirect coronary artery dilator effects of GPER independent of ERalpha and ERbeta, and are the first demonstration of arterial vasodilation in response to ICI 182,780. Copyright 2010 S. Karger AG, Basel.

  20. TrpC5 Mediates Acute Leptin and Serotonin Effects via Pomc Neurons.

    PubMed

    Gao, Yong; Yao, Ting; Deng, Zhuo; Sohn, Jong-Woo; Sun, Jia; Huang, Yiru; Kong, Xingxing; Yu, Kai-Jiang; Wang, Rui-Tao; Chen, Hong; Guo, Hongbo; Yan, Jianqun; Cunningham, Kathryn A; Chang, Yongsheng; Liu, Tiemin; Williams, Kevin W

    2017-01-17

    The molecular mechanisms underlying acute leptin and serotonin 2C receptor-induced hypophagia remain unclear. Here, we show that neuronal and pro-opiomelanocortin (Pomc)-specific loss of transient receptor potential cation 5 (TrpC5) subunits is sufficient to decrease energy expenditure and increase food intake resulting in elevated body weight. Deficiency of Trpc5 subunits in Pomc neurons is also sufficient to block the anorexigenic effects of leptin and serotonin 2C receptor (Ht2Cr) agonists. The loss of acute anorexigenic effects of these receptors is concomitant with a blunted electrophysiological response to both leptin and Ht2Cr agonists in arcuate Pomc neurons. We also demonstrate that the Ht2Cr agonist lorcaserin-induced improvements in glucose and insulin tolerance are blocked by TrpC5 deficiency in Pomc neurons. Together, our results link TrpC5 subunits in the brain with leptin- and serotonin 2C receptor-dependent changes in neuronal activity, as well as energy balance, feeding behavior, and glucose metabolism. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Structure and functional interaction of the extracellular domain of human GABA[subscript B] receptor GBR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Yong; Xiong, Dazhi; Mosyak, Lidia

    2012-10-24

    Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA{sub B} receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA{sub B} receptor has been implicated in several neurological disorders. GABA{sub B} receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimericmore » interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA{sub B} receptor that is unique to the GABAergic system.« less

  2. Interactions of agonists with an allosteric antagonist at muscarinic acetylcholine M2 receptors.

    PubMed

    Lanzafame, A; Christopoulos, A; Mitchelson, F

    1996-11-28

    The interaction of heptane-1,7-bis(dimethyl-3'-phthalimidopropylammonium bromide) (C7/3'-phth), with several agonists, was investigated at the muscarinic M2 receptor in guinea-pig left atria. C7/3'-phth shifted concentration-response curves for the agonists, carbachol, oxotremorine-M and (+)-cis-dioxolane, to the right in a parallel fashion. Arunlakshana-Schild regressions of the data yielded slopes significantly different to unity, suggesting non-competitive antagonism. Non-linear regression analysis, using an equation based on allosteric modulation, gave quantitative estimates of co-operativity (alpha values) and the dissociation constant of C7/3'-phth (KB). In all cases, the KB estimates for C7/3'-phth were not significantly different. Increasing the carbachol contact time 10-fold did not significantly influence the KB or the alpha value obtained with C7/3'-phth. Changing from Krebs to Tyrode solution did not significantly alter the KB for C7/3'-phth, although alpha values obtained were consistently lower in Tyrode solution, suggesting that the allosteric action may be sensitive to buffer composition. A 4-fold higher degree of negative, heterotropic co-operativity between C7/3'-phth and agonists than between C7/3'-phth and competitive antagonists was also found.

  3. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    PubMed Central

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  4. Neuroendocrine mediators up-regulate alpha1b- and alpha1d-adrenergic receptor subtypes in human monocytes.

    PubMed

    Rouppe van der Voort, C; Kavelaars, A; van de Pol, M; Heijnen, C J

    1999-03-01

    Beta2- and alpha2-adrenergic receptors (AR) are thought to be the main AR subtypes to exert the effects of catecholamines on the immune system. However, in the present study, we demonstrate that another subtype of AR can be induced in human monocytes. Expression of alpha1b- and alpha1d-AR mRNA can be obtained by culturing freshly isolated human peripheral blood monocytes with the neuroendocrine mediators dexamethasone or the beta2-AR agonist terbutaline. Using the human monocytic cell line THP-1, we demonstrate that increased levels of alpha1b- and alpha1d-mRNA are accompanied by increased levels of receptor protein as determined by Western blot analysis and radioligand binding assays. This study describes for the first time regulated expression of alpha1-AR subtypes in human monocytes.

  5. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    PubMed

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  6. A double mutation in exon 6 of the [beta]-hexosaminidase [alpha] subunit in a patient with the B1 variant of Tay-Sachs disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, P.J.; Coulter-Mackie, M.B.

    1992-10-01

    The B1 variant form of Tay-Sachs disease is enzymologically unique in that the causative mutation(s) appear to affect the active site in the [alpha] subunit of [beta]-hexosaminidase A without altering its ability to associate with the [beta] subunit. Most previously reported B1 variant mutations were found in exon 5 within codon 178. The coding sequence of the [alpha] subunit gene of a patient with the B1 variant form was examined with a combination of reverse transcription of mRNA to cDNA, PCR, and dideoxy sequencing. A double mutation in exon 6 has been identified: a G[sub 574][yields]C transversion causing a val[submore » 192][yields]leu change and a G[sub 598][yields] A transition resulting in a val[sub 200][yields]met alteration. The amplified cDNAs were otherwise normal throughout their sequence. The 574 and 598 alterations have been confirmed by amplification directly from genomic DNA from the patient and her mother. Transient-expression studies of the two exon 6 mutations (singly or together) in COS-1 cells show that the G[sub 574][yields]C change is sufficient to cause the loss of enzyme activity. The biochemical phenotype of the 574 alteration in transfection studies is consistent with that expected for a B1 variant mutation. As such, this mutation differs from previously reported B1 variant mutations, all of which occur in exon 5. 31 refs., 2 figs., 2 tabs.« less

  7. Infusion of adrenergic receptor agonists and antagonists into the locus coeruleus and ventricular system of the brain. Effects on swim-motivated and spontaneous motor activity.

    PubMed

    Weiss, J M; Simson, P G; Hoffman, L J; Ambrose, M J; Cooper, S; Webster, A

    1986-04-01

    These studies examined how pharmacological stimulation and blockade of alpha receptors would affect active motor behavior in rats. In experiment I, alpha-2 receptor antagonists (piperoxane, yohimbine) and agonists [clonidine, norepinephrine (NE)] were infused into various locations in the ventricular system of the brain, including the locus coeruleus region, and motor activity was measured. Activity was measured principally in a swim test but spontaneous (ambulatory) activity was also recorded while drugs were being infused. When infused into the locus coeruleus region, small doses of the antagonists piperoxane and yohimbine depressed activity in the swim test while infusion of the agonists clonidine and NE had the opposite effect of stimulating activity. These effects were highly specific to the region of the locus coeruleus, since infusions of these drugs into other nearby locations in the ventricular system or use of larger doses had different, often opposite effects. This was especially true of clonidine and NE which profoundly depressed activity when infused posterior to the locus coeruleus, particularly over the dorsal vagal complex. Infusion of small doses of these drugs into the lateral ventricle had effects similar to infusion into the locus coeruleus region, though less pronounced. Changes in spontaneous motor activity were also observed, but this measure differentiated the groups less well than did the swim test. In experiment II, the predominantly postsynaptic receptor agonists isoproterenol (beta agonist) and phenylephrine (alpha-1 agonist) were infused into the ventricular system. Since infusions of piperoxane and yohimbine into the locus coeruleus that decreased activity in experiment I increase the release of NE by blocking alpha-2 inhibitory receptors on cell bodies and dendrites of the locus coeruleus, experiment II tested whether ventricular infusion of predominantly postsynaptic receptor agonists would also decrease activity in the swim test. Both isoproterenol and phenylephrine produced this effect, but did so selectively with respect to dose and location of infusion in the ventricular system. These findings are consistent with recent results relating to the mechanism that underlies stress-induced depression of active behavior.

  8. Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes

    PubMed Central

    Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.

    2005-01-01

    Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465

  9. Common Use of Stimulants and Alpha-2 Agonists to Treat Preschool Attention-Deficit Hyperactivity Disorder: A DBPNet Study.

    PubMed

    Blum, Nathan J; Shults, Justine; Harstad, Elizabeth; Wiley, Susan; Augustyn, Marilyn; Meinzen-Derr, Jareen K; Wolraich, Mark L; Barbaresi, William J

    2018-05-30

    To describe the use of stimulants and alpha-2 agonists (A2As) for the treatment of preschool-aged children with attention-deficit hyperactivity disorder (ADHD) at 2 Developmental-Behavioral Pediatrics Research Network sites. Demographic information, diagnoses, and medications prescribed by developmental-behavioral pediatricians (DBPs) were extracted from the electronic health record for all outpatient visits from January 1, 2010, to December 31, 2011. The subset of visits for children aged 2 to 5 years who had a diagnosis of ADHD was included in this analysis. Multivariable models were constructed to identify factors associated with prescribing stimulants and A2As. Over the 2-year period, 984 children with a diagnosis of ADHD were seen at 1779 visits. Of the 984 children, 342 (34.8%) were prescribed a stimulant, and 243 (24.7%) were prescribed an A2A. Both medications were prescribed at the same visit at least once during the 2-year period for 97 children (9.9%). Alpha-2 agonists were prescribed more often at site 2 than site 1 (OR [odds ratio] = 1.62, p = 0.015). Stimulants were more likely to be prescribed for older preschool-aged children (OR = 1.66, p < 0.001), and A2As were more likely to be prescribed for younger children (OR = 0.82, p = 0.02). Both stimulants and A2As were more likely to be prescribed to children with ADHD and comorbid conditions. Alpha-2 agonists are commonly used by some DBPs for preschool ADHD. Variation in the use of A2As across sites may indicate a lack of consensus on when to use these medications and suggests a need for comparative effectiveness research to better define the relative benefits and side effects of A2As and stimulants for the treatment of preschool ADHD.

  10. Functional characterization of mongoose nicotinic acetylcholine receptor alpha-subunit: resistance to alpha-bungarotoxin and high sensitivity to acetylcholine.

    PubMed

    Asher, O; Lupu-Meiri, M; Jensen, B S; Paperna, T; Fuchs, S; Oron, Y

    1998-07-24

    The mongoose is resistant to snake neurotoxins. The mongoose muscle nicotinic acetylcholine receptor (AChR) alpha-subunit contains a number of mutations in the ligand-binding domain and exhibits poor binding of alpha-bungarotoxin (alpha-BTX). We characterized the functional properties of a hybrid (alpha-mongoose/beta gamma delta-rat) AChR. Hybrid AChRs, expressed in Xenopus oocytes, respond to acetylcholine with depolarizing current, the mean maximal amplitude of which was greater than that mediated by the rat AChR. The IC50 of alpha-BTX to the hybrid AChR was 200-fold greater than that of the rat, suggesting much lower affinity for the toxin. Hybrid AChRs exhibited an apparent higher rate of desensitization and higher affinity for ACh (EC50 1.3 vs. 23.3 microM for the rat AChR). Hence, changes in the ligand-binding domain of AChR not only affect the binding properties of the receptor, but also result in marked changes in the characteristics of the current.

  11. Commentary: Are alpha-2 agonist really effective in children with tics with comorbid ADHD? A commentary on Whittington et al. (2016).

    PubMed

    Bloch, Michael H

    2016-09-01

    In this issue, Whittington et al. (2016) present a systematic review that reports the efficacy of three primary treatments for children with Tourette syndrome (TS) - (a) α2-adrenergic receptor agonists; (b) antipsychotic medications; and (c) habit reversal training/comprehensive behavioral intervention. In this commentary, we highlight the large degree of heterogeneity observed in the meta-analysis of trials involving alpha-2 agonist medications and present possible explanations for the observed heterogeneity. Among these possible explanations is the possibility that presence of comorbid ADHD may moderate the efficacy of alpha-2 agonists in the treatment of tic disorder with the medications being more effective in patients with both conditions. The commentary reviews the evidence supporting this possible moderating effect of ADHD and discusses the implications for such a relationship. © 2016 Association for Child and Adolescent Mental Health.

  12. Regulation of acetylcholine receptor alpha subunit variants in human myasthenia gravis. Quantification of steady-state levels of messenger RNA in muscle biopsy using the polymerase chain reaction.

    PubMed Central

    Guyon, T; Levasseur, P; Truffault, F; Cottin, C; Gaud, C; Berrih-Aknin, S

    1994-01-01

    Myasthenia gravis (MG) is an autoimmune disease mediated by auto-antibodies that attack the nicotinic acetylcholine receptor (AChR). To elucidate the molecular mechanisms underlying the decrease in AChR levels at the neuromuscular junction, we investigated the regulation of AChR expression by analyzing mRNA of the two AChR alpha subunit isoforms (P3A+ and P3A-) in muscle samples from myasthenic patients relative to controls. We applied a quantitative method based on reverse transcription of total RNA followed by polymerase chain reaction (PCR), using an internal standard we constructed by site-directed mutagenesis. An increased expression of mRNA coding for the alpha subunit of the AChR isoforms was observed in severely affected patients (P < 0.003 versus controls) but not in moderately affected patients, independently of the anti-AChR antibody titer. Study of mRNA precursor levels indicates a higher expression in severely affected patients compared to controls, suggesting an enhanced rate of transcription of the message coding for the alpha subunit isoforms in these patients. We have also reported that mRNA encoding both isoforms are expressed at an approximate 1:1 ratio in controls and in patients. We have thus identified a new biological parameter correlated with disease severity, and provide evidence of a compensatory mechanism to balance the loss of AChR in human myasthenia gravis, which is probably triggered only above a certain degree of AChR loss. Images PMID:8040257

  13. Site directed mutagenesis of the heme axial ligands of cytochrome b559 affects the stability of the photosystem II complex.

    PubMed Central

    Pakrasi, H B; De Ciechi, P; Whitmarsh, J

    1991-01-01

    Cytochrome (cyt) b559, an integral membrane protein, is an essential component of the photosystem II (PSII) complex in the thylakoid membranes of oxygenic photosynthetic organisms. Cyt b559 has two subunits, alpha and beta, each with one predicted membrane spanning alpha-helical domain. The heme cofactor of this cytochrome is coordinated between two histidine residues. Each of the two subunit polypeptides of cyt b559 has one His residue. To investigate the influence of these His residues on the structure of cyt b559 and the PSII complex, we used a site directed mutagenesis approach to replace each His residue with a Leu residue. Introduction of these missense mutations in the transformable unicellular cyanobacterium, Synechocystis 6803, resulted in complete loss of PSII activity. Northern blot analysis showed that these mutations did not affect the stability of the polycistronic mRNA that encompasses both the psbE and the psbF genes, encoding the alpha and the beta subunits, respectively. Moreover, both of the single His mutants showed the presence of the alpha subunit which was 1.5 kd smaller than the same polypeptide in wild type cells. A secondary effect of such a structural change was that D1 and D2, two proteins that form the catalytic core (reaction center) of PSII, were also destabilized. Our results demonstrate that proper axial coordination of the heme cofactor in cyt b559 is important for the structural integrity of the reaction center of PSII. Images PMID:1904816

  14. Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): Hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice.

    PubMed

    Veiga, Flavia Maria Silva; Graus-Nunes, Francielle; Rachid, Tamiris Lima; Barreto, Aline Barcellos; Mandarim-de-Lacerda, Carlos Alberto; Souza-Mello, Vanessa

    2017-09-01

    Non-alcoholic fatty liver disease (NAFLD) presents with growing prevalence worldwide, though its pharmacological treatment remains to be established. This study aimed to evaluate the effects of a PPAR-alpha agonist on liver tissue structure, ultrastructure, and metabolism, focusing on gene and protein expression of de novo lipogenesis and gluconeogenesis pathways, in diet-induced obese mice. Male C57BL/6 mice (three months old) received a control diet (C, 10% of lipids, n = 10) or a high-fat diet (HFD, 50% of lipids, n = 10) for ten weeks. These groups were subdivided to receive the treatment (n = 5 per group): C, C-alpha (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the control diet), HFD and HFD-alpha group (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the HFD). The effects were compared with biometrical, biochemical, molecular biology and transmission electron microscopy (TEM) analyses. HFD showed greater body mass (BM) and insulinemia than C, both of which were tackled by the treatment in the HFD-alpha group. Increased hepatic protein expression of glucose-6-phosphatase, CHREBP and gene expression of PEPCK in HFD points to increased gluconeogenesis. Treatment rescued these parameters in the HFD-alpha group, eliciting a reduced hepatic glucose output, confirmed by the smaller GLUT2 expression in HFD-alpha than in HFD. Conversely, favored de novo lipogenesis was found in the HFD group by the increased expression of PPAR-gamma, and its target gene SREBP-1, FAS and GK when compared to C. The treatment yielded a marked reduction in the expression of all lipogenic factors. TEM analyses showed a greater numerical density of mitochondria per area of tissue in treated than in untreated groups, suggesting an increase in beta-oxidation and the consequent NAFLD control. PPAR-alpha activation reduced BM and treated insulin resistance (IR) and NAFLD by increasing the number of mitochondria and reducing hepatic gluconeogenesis and de novo lipogenesis protein and gene expressions in a murine obesity model. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats.

    PubMed

    Zhang, Songyun; Li, Hongyan; Zhang, Lihui; Li, Jie; Wang, Ruiying; Wang, Mian

    2017-02-15

    Increasing evidence demonstrates an association between diabetes and hippocampal neuron damage. This study aimed to determine the effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits (GCLM and GCLC) in the hippocampus of streptozotocin-induced type 1 diabetes mellitus (T1DM) rats. At 12weeks after streptozotocin injection, T1DM rats were randomly divided into 4 groups (n=15 each group) to receive no treatment (T1DM), saline (T1DM+saline), alpha-lipoic acid (T1DM+alpha-lipoic acid), and troxerutin (T1DM+troxerutin), respectively, for 6weeks. Meanwhile, 10 control animals (NC group) were assessed in parallel. Learning performance was evaluated by the Morris water maze. After treatment, hippocampi were collected for pathological examination by hematoxylin and eosin (H&E) staining. Next, hippocampal superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and glutathione (GSH) levels were assessed. Finally, glutamate cysteine ligase catalytic (GCLC) and glutamate cysteine ligase modifier (GCLM) subunit mRNA and protein levels were quantified by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. Compared with T1DM and T1DM+saline groups, escape latency was overtly reduced in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Significantly increased GCLM and GCLC mRNA levels, GCLC protein amounts, SOD activity, and GSH levels, and reduced MDA amounts were observed in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. In T1DM and T1DM+saline groups, H&E staining showed less pyramidal cells in the hippocampus, with disorganized layers, karyopyknosis, decreased endochylema, and cavitation, effects relieved in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Troxerutin alleviates oxidative stress and promotes learning in streptozotocin-induced T1DM rats, a process involving GCLC expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The pharmacokinetic and pharmacodynamic effects of SL65.1498, a GABA-A alpha2,3 selective agonist, in comparison with lorazepam in healthy volunteers.

    PubMed

    de Haas, S L; Franson, K L; Schmitt, J A J; Cohen, A F; Fau, J B; Dubruc, C; van Gerven, J M A

    2009-08-01

    Benzodiazepines are effective short-term treatments for anxiety disorders, but their use is limited by undesirable side effects related to Central Nervous System impairment and tolerance development. SL65.1498 is a new compound that acts in vitro as a full agonist at the gamma-aminobutyric acid(A) 2 and 3 receptor and as a partial agonist at the 1 and 5 receptor subtypes. It is thought that the compound could be anxiolytic by its activation at the alpha2 and alpha3 receptor subtypes, without causing unfavourable side effects, which are believed to be mediated by the alpha1 and alpha5 subtypes. This study was a double-blind, five-way cross-over study to investigate the effects of three doses of SL65.1498 in comparison with placebo and lorazepam 2 mg in healthy volunteers. The objective was to select a dose level (expected to be therapeutically active), free of any significant deleterious effect. Psychomotor and cognitive effects were measured using a validated battery of measurements, including eye movements, body sway, memory tests, reaction-time assessments, and visual analogue scales. The highest dose of SL65.1498 showed slight effects on saccadic peak velocity and smooth pursuit performance, although to a much lesser extent than lorazepam. In contrast to lorazepam, none of the SL65.1498 doses affected body sway, visual analogue scale alertness, attention, or memory tests. This study showed that the three doses of SL65.1498 were well tolerated and induced no impairments on memory, sedation, psychomotor, and cognitive functions.

  17. Absence of integrin alpha 7 causes a novel form of muscular dystrophy.

    PubMed

    Mayer, U; Saher, G; Fässler, R; Bornemann, A; Echtermeyer, F; von der Mark, H; Miosge, N; Pöschl, E; von der Mark, K

    1997-11-01

    Integrin alpha 7 beta 1 is a specific cellular receptor for the basement membrane protein laminin-1 (refs 1,2), as well as for the laminin isoforms -2 and -4 (ref. 3). The alpha 7 subunit is expressed mainly in skeletal and cardiac muscle and has been suggested to be involved in differentiation and migration processes during myogenesis. Three cytoplasmic and two extracellular splice variants that have been described are developmentally regulated and expressed in different sites in the muscle. In adult muscle, the alpha 7A and alpha 7B subunits are concentrated in myotendinous junctions but can also be detected in neuromuscular junctions and along the sarcolemmal membrane. To study the potential involvement of alpha 7 integrin, during myogenesis and its role in muscle integrity and function, we generated a null allele of the alpha 7 gene (Itga7) in the germline of mice by homologous recombination in embryonic stem (ES) cells. Surprisingly, mice homozygous for the mutation are viable and fertile, indicating that the alpha 7 beta 1 integrin is not essential for myogenesis. However, histological analysis of skeletal muscle revealed typical symptoms of a progressive muscular dystrophy starting soon after birth, but with a distinct variability in different muscle types. The observed histopathological changes strongly indicate an impairment of function of the myotendinous junctions. These findings demonstrate that alpha 7 beta 1 integrin represents an indispensable linkage between the muscle fibre and the extracellular matrix that is independent of the dystrophin-dystroglycan complex-mediated interaction of the cytoskeleton with the muscle basement membrane.

  18. Labeled ALPHA4BETA2 ligands and methods therefor

    DOEpatents

    Mukherjee, Jogeshwar; Pichika, Ramaiah; Potkin, Steven; Leslie, Frances; Chattopadhyay, Sankha

    2013-02-19

    Contemplated compositions and methods are employed to bind in vitro and in vivo to an .alpha.4.beta.2 nicotinic acetylcholine receptor in a highly selective manner. Where such compounds are labeled, compositions and methods employing such compounds can be used for PET and SPECT analysis. Alternatively, and/or additionally contemplated compounds can be used as antagonists, partial agonists or agonists in the treatment of diseases or conditions associated with .alpha.4.beta..beta.2 dysfunction.

  19. First administration of cytidine diphosphocholine and galantamine in schizophrenia: a sustained alpha7 nicotinic agonist strategy.

    PubMed

    Deutsch, Stephen I; Schwartz, Barbara L; Schooler, Nina R; Rosse, Richard B; Mastropaolo, John; Gaskins, Brooke

    2008-01-01

    Converging lines of evidence suggest pathophysiology of alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) in schizophrenia. This pilot study was designed to test the tolerability, safety, and preliminary efficacy of chronic administration of an alpha7 nAChR agonist strategy involving combination treatment of cytidine diphosphocholine (CDP-choline; 2 g/d), a dietary source of the alpha7 nAChR agonist choline, and galantamine (24 mg/d), a positive allosteric modulator of nAChRs that was prescribed to prevent choline from becoming a functional antagonist and improve the efficiency of coupling the binding of choline to channel opening. The combination of CDP-choline and galantamine was administered to 6 schizophrenic patients with residual symptoms in a 12-week, open-label trial. Patients were maintained on stable dose regimens of antipsychotic medications for 4 weeks before study entry and for the trial duration. All reached target doses of both agents and completed the trial. Transient side effects resolved without slowing of dose titration. Gastrointestinal adverse effects were most common. Of the 6 patients, 5 showed reduction in Clinical Global Impressions severity scores and Positive and Negative Syndrome Scale total scores. Three patients requested continuation of the adjunctive combination at the end of the trial. These results suggest further investigation of the combination of CDP-choline and galantamine as an alpha7 nAChR agonist intervention.

  20. Unorthodox Acetylcholine Binding Sites Formed by α5 and β3 Accessory Subunits in α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Jain, Akansha; Kuryatov, Alexander; Wang, Jingyi; Kamenecka, Theodore M; Lindstrom, Jon

    2016-11-04

    All nicotinic acetylcholine receptors (nAChRs) evolved from homomeric nAChRs in which all five subunits are involved in forming acetylcholine (ACh) binding sites at their interfaces. Heteromeric α4β2* nAChRs typically have two ACh binding sites at α4/β2 interfaces and a fifth accessory subunit surrounding the central cation channel. β2 accessory subunits do not form ACh binding sites, but α4 accessory subunits do at the α4/α4 interface in (α4β2) 2 α4 nAChRs. α5 and β3 are closely related subunits that had been thought to act only as accessory subunits and not take part in forming ACh binding sites. The effect of agonists at various subunit interfaces was determined by blocking homologous sites at these interfaces using the thioreactive agent 2-((trimethylammonium)ethyl) methanethiosulfonate (MTSET). We found that α5/α4 and β3/α4 interfaces formed ACh binding sites in (α4β2) 2 α5 and (α4β2) 2 β3 nAChRs. The α4/α5 interface in (β2α4) 2 α5 nAChRs also formed an ACh binding site. Blocking of these sites with MTSET reduced the maximal ACh evoked responses of these nAChRs by 30-50%. However, site-selective agonists NS9283 (for the α4/α4 site) and sazetidine-A (for the α4/β2 site) did not act on the ACh sites formed by the α5/α4 or β3/α4 interfaces. This suggests that unorthodox sites formed by α5 and β3 subunits have unique ligand selectivity. Agonists or antagonists for these unorthodox sites might be selective and effective drugs for modulating nAChR function to treat nicotine addiction and other disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonelli, Alessandro, E-mail: a.antonelli@med.unipi.it; Ferrari, Silvia Martina, E-mail: sm.ferrari@int.med.unipi.it; Frascerra, Silvia, E-mail: lafrasce@gmail.com

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} hadmore » a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.« less

  2. Expression of the pituitary transcription factor Ptx-1, but not that of the trans-activating factor prop-1, is reduced in human corticotroph adenomas and is associated with decreased alpha-subunit secretion.

    PubMed

    Skelly, R H; Korbonits, M; Grossman, A; Besser, G M; Monson, J P; Geddes, J F; Burrin, J M

    2000-07-01

    We have studied the expression of the pituitary transcription factors Ptx-1 and Prop-1 in a series of 34 pituitary adenomas fully characterized for in vitro hormone secretion and histological staining. In studies involving mammalian cell lines, the pituitary transcription factor Ptx-1 has been shown to be a pituitary hormone panactivator, whereas more recent studies have shown that it plays an important role in alpha-subunit gene expression. Its expression has not been examined previously in human pituitary adenomas characterized by in vitro hormone secretory profiles. Of the 34 pituitary adenomas studied, Ptx-1 expression was reduced by more than 50% compared to that of the housekeeping gene human glyceraldehyde-3-phosphate dehydrogenase in the 6 corticotroph adenomas, which also had significantly reduced alpha-subunit production (all 6 tumors secreting < or =0.5 ng/24 h). Mutations of the pituitary transcription factor Prop-1, which is responsible for the syndrome of Ames dwarfism in mice, are being increasingly recognized as a cause of combined pituitary hormone deficiency in humans, although ACTH deficiency has been described only once. Prop-1 expression was detected in all 34 pituitary adenomas, including 6 corticotroph adenomas and 5 gonadotroph adenomas. The expression of Prop-1 has not been described previously in these cell phenotypes.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonacci, R.; Colombo, I.; Volta, M.

    The electron-transfer flavoprotein (ETF), located in the mitochondrial matrix, is a nuclear-encoded enzyme delivering to the respiratory chain electrons by straight-chain acyl-CoA dehydrogenases and other dehydrogenases. ETF is composed of a 35-kDa [alpha]-subunit that is cleaved to a 32-kDa protein during mitochondrial import (ETFA) and a [beta]-subunit that reaches the mitochondrion unmodified (ETFB). The cDNA encoding both these subunits has been cloned and sequenced. 14 refs., 1 fig.

  4. Phenotypic consequences of deletion of the {gamma}{sub 3}, {alpha}{sub 5}, or {beta}{sub 3} subunit of the type A {gamma}-aminobutyric acid receptor in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do notmore » have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.« less

  5. Design of ET(B) receptor agonists: NMR spectroscopic and conformational studies of ET7-21[Leu7, Aib11, Cys(Acm)15].

    PubMed

    Hewage, Chandralal M; Jiang, Lu; Parkinson, John A; Ramage, Robert; Sadler, Ian H

    2002-03-01

    In a previous report we have shown that the endothelin-B receptor-selective linear endothelin peptide, ET-1[Cys (Acm)1,15, Ala3, Leu7, Aib11], folds into an alpha-helical conformation in a methanol-d3/water co-solvent [Hewage et al. (1998) FEBS Lett., 425, 234-238]. To study the requirements for the structure-activity relationships, truncated analogues of this peptide were subjected to further studies. Here we report the solution conformation of ET7-21[Leu7, Aib11, Cys(Acm)15], in a methanol-d3/water co-solvent at pH 3.6, by NMR spectroscopic and molecular modelling studies. Further truncation of this short peptide results in it displaying poor agonist activity. The modelled structure shows that the peptide folds into an alpha-helical conformation between residues Lys9-His16, whereas the C-terminus prefers no fixed conformation. This truncated linear endothelin analogue is pivotal for designing endothelin-B receptor agonists.

  6. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure.

    PubMed

    Ujčíková, H; Brejchová, J; Vošahlíková, M; Kagan, D; Dlouhá, K; Sýkora, J; Merta, L; Drastichová, Z; Novotný, J; Ostašov, P; Roubalová, L; Parenti, M; Hof, M; Svoboda, P

    2014-01-01

    Large number of extracellular signals is received by plasma membrane receptors which, upon activation, transduce information into the target cell interior via trimeric G-proteins (GPCRs) and induce activation or inhibition of adenylyl cyclase enzyme activity (AC). Receptors for opioid drugs such as morphine (micro-OR, delta-OR and kappa-OR) belong to rhodopsin family of GPCRs. Our recent results indicated a specific up-regulation of AC I (8-fold) and AC II (2.5-fold) in plasma membranes (PM) isolated from rat brain cortex exposed to increasing doses of morphine (10-50 mg/kg) for 10 days. Increase of ACI and ACII represented the specific effect as the amount of ACIII-ACIX, prototypical PM marker Na, K-ATPase and trimeric G-protein alpha and beta subunits was unchanged. The up-regulation of ACI and ACII faded away after 20 days since the last dose of morphine. Proteomic analysis of these PM indicated that the brain cortex of morphine-treated animals cannot be regarded as being adapted to this drug because significant up-regulation of proteins functionally related to oxidative stress and alteration of brain energy metabolism occurred. The number of delta-OR was increased 2-fold and their sensitivity to monovalent cations was altered. Characterization of delta-OR-G-protein coupling in model HEK293 cell line indicated high ability of lithium to support affinity of delta-OR response to agonist stimulation. Our studies of PM structure and function in context with desensitization of GPCRs action were extended by data indicating participation of cholesterol-enriched membrane domains in agonist-specific internalization of delta-OR. In HEK293 cells stably expressing delta-OR-G(i)1alpha fusion protein, depletion of PM cholesterol was associated with the decrease in affinity of G-protein response to agonist stimulation, whereas maximum response was unchanged. Hydrophobic interior of isolated PM became more "fluid", chaotically organized and accessible to water molecules. Validity of this conclusion was supported by the analysis of an immediate PM environment of cholesterol molecules in living delta-OR-G(i)1alpha-HEK293 cells by fluorescent probes 22- and 25-NBD-cholesterol. The alteration of plasma membrane structure by cholesterol depletion made the membrane more hydrated. Understanding of the positive and negative feedback regulatory loops among different OR-initiated signaling cascades (micro-, delta-, and kappa-OR) is crucial for understanding of the long-term mechanisms of drug addiction as the decrease in functional activity of micro-OR may be compensated by increase of delta-OR and/or kappa-OR signaling.

  7. Effects of preventing O-glycosylation on the secretion of human chorionic gonadotropin in Chinese hamster ovary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzuk, M.M.; Krieger, M.; Corless, C.L.

    1987-09-01

    Human chorionic gonadotropin (hCG) is a member of a family of heterodimeric glycoprotein hormones that have a common ..cap alpha.. subunit but differ in their hormone-specific ..beta..-subunits. The ..beta.. subunit of hCG (hCG..beta..) is unique among the ..beta.. subunits in that it contains four mucin-like O-linked oligosaccharides attached to a carboxyl-terminal extension. To study the effects of O-glycosylation on the secretion and assembly of hCG, expression vectors containing either hCG..beta.. gene alone or together with the hCG..cap alpha.. gene were transfected into a mutant Chinese hamster ovary cell line, 1d1D, which exhibits a reversible defect in O-glycosylation. The results revealmore » that hCG..beta.. can be secreted normally in the absence of its O-linked oligosaccharides. hCG..beta.. devoid of O-linked carbohydrate can also combine efficiently with hCG..cap alpha.. and be secreted as an intact dimer. The authors conclude that in Chinese hamster ovary cells, the hCG..beta.. O-linked chains play no role in the assembly and secretion of hCG. The normal and O-linked oligosaccharide-deficient forms of hCG secreted by these cells should prove useful in examining the role of O-linked chains on the biological function of hCG.« less

  8. PPARgamma agonists inhibit TGF-beta-PKA signaling in glomerulosclerosis.

    PubMed

    Zou, Rong; Xu, Gang; Liu, Xiao-cheng; Han, Min; Jiang, Jing-jing; Huang, Qian; He, Yong; Yao, Ying

    2010-01-01

    To study the probable mechanisms of the anti-glomerulosclerosis effects induced by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists in rat intraglomerular mesangial cells (MCs). Cells were transfected with the pTAL-PPRE-tk-Luc(+) plasmid and then treated with different concentrations of PPARgamma agonist, either troglitazone or telmisartan, for the indicated times. Promega luciferase assays were subsequently used for the detection of PPARgamma activation. Protein expression levels were assessed by Western blot, and PepTag assays were used for the non-radioactive detection of protein kinase A (PKA) activity. The deposition of alpha-smooth muscle actin (alpha-SMA) and p-cyclic AMP responsive element binding protein (pCREB) were analyzed by confocal laser scanning. Both troglitazone and telmisartan remarkably inhibit the PKA activation and pCREB expression that is stimulated by TGF-beta. The PPARgamma agonists also inhibited alpha-SMA and collagen IV protein expression by blocking PKA activation. PPARgamma ligands effectively suppress the activation of MCs and the accumulation of collagen IV stimulated by TGF-beta in vitro. The renal protection provided by PPARgamma agonists is partly mediated via their blockade of TGF-beta/PKA signaling.

  9. Studies on G-protein alpha.betagamma heterotrimer formation reveal a putative S-prenyl-binding site in the alpha subunit.

    PubMed Central

    Dietrich, Alexander; Scheer, Alexander; Illenberger, Daria; Kloog, Yoel; Henis, Yoav I; Gierschik, Peter

    2003-01-01

    The alpha and betagamma subunits of heterotrimeric G-proteins contain specific lipid modifications, which are required for their biological function. However, the relevance of these modifications to the interactions within the heterotrimeric G-protein is not fully understood. In order to explore the role of the S-prenyl moiety of the isoprenylated betagamma dimer of retinal transducin, betagamma(t), in the formation of the heterotrimeric complex with the corresponding N-acylated alpha subunit, alpha(t), we employed purified fully processed subunits, which are soluble in aqueous solutions without detergents. Pertussis-toxin-mediated [(32)P]ADP-ribosylation of alpha(t) is strongly stimulated (approximately 10-fold) in the presence of betagamma(t) and can thus serve as a measure for heterotrimer formation. Using this assay, preincubation of alpha(t) with S-prenyl analogues containing farnesyl or geranylgeranyl moieties was found to inhibit heterotrimer formation in a dose-dependent manner. The inhibition was competitive and reversible, as indicated by its reversal upon increase of the betagamma(t) dimer concentration or by removal of the S-prenyl analogue using gel filtration. The competitive nature of the inhibition is supported by the marked attenuation of the inhibition when the S-prenyl analogue was added to alpha(t) together with or after betagamma(t). The inhibition does not involve interaction with the alpha(t) acyl group, since an S-prenyl analogue inhibited the [(32)P]ADP-ribosylation of an unlipidated alpha(t) mutant. These data suggest the existence of a hitherto unrecognized S-prenyl-binding site in alpha(t), which is critical for its interaction with prenylated betagamma(t). PMID:12952523

  10. Functions and ATP-binding responses of the twelve histidine residues in the TF1-ATPase beta subunit.

    PubMed

    Tozawa, K; Yagi, H; Hisamatsu, K; Ozawa, K; Yoshida, M; Akutsu, H

    2001-10-01

    The C2 proton signals of all (twelve) histidine residues of the TF1 beta subunit in the 1H-NMR spectrum have been identified and assigned by means of pH change experiments and site-directed substitution of histidines by glutamines. pH and ligand titration experiments were carried out for these signals. Furthermore, the ATPase activity of the reconstituted alpha3beta3gamma complex was examined for the twelve mutant beta subunits. Two of three conserved histidines, namely, His-119 and 324, were found to be important for expression of the ATPase activity. The former fixes the N-terminal domain to the central domain. His-324 is involved in the formation of the interface essential for the alpha3beta3gamma complex assembly. The other conserved residue, His-363, showed a very low pK(a), suggesting that it is involved in the tertiary structure formation. On the binding of a nucleotide, only the signals of His-173, 179, 200, and 324 shifted. These histidines are located in the hinge region, and its proximity, of the beta subunit. This observation provided further support for the conformational change of the beta monomer from the open to the closed form on the binding of a nucleotide proposed by us [Yagi et al. (1999) Biophys. J. 77, 2175-2183]. This conformational change should be one of the essential driving forces in the rotation of the alpha3beta3gamma complex.

  11. Thyroid hormone is essential for pituitary somatotropes and lactotropes.

    PubMed

    Stahl, J H; Kendall, S K; Brinkmeier, M L; Greco, T L; Watkins-Chow, D E; Campos-Barros, A; Lloyd, R V; Camper, S A

    1999-04-01

    Mice homozygous for a disruption in the alpha-subunit essential for TSH, LH, and FSH activity (alphaGsu-/-) exhibit hypothyroidism and hypogonadism similar to that observed in TSH receptor-deficient hypothyroid mice (hyt) and GnRH-deficient hypogonadal mutants (hpg). Although the five major hormone-producing cells of the anterior pituitary are present in alphaGsu-/- mice, the relative proportions of each cell type are altered dramatically. Thyrotropes exhibit hypertrophy and hyperplasia, and somatotropes and lactotropes are underrepresented. The size and number of gonadotropes in alphaGsu mutants are not remarkable in contrast to the hypertrophy characteristic of gonadectomized animals. The reduction in lactotropes is more severe in alphaGsu mutants (13-fold relative to wild-type) than in hyt or hpg mutants (4.5- and 1.5-fold, respectively). In addition, T4 replacement therapy of alphaGsu mutants restores lactotropes to near-normal levels, illustrating the importance of T4, but not alpha-subunit, for lactotrope proliferation and function. T4 replacement is permissive for gonadotrope hypertrophy in alphaGsu mutants, consistent with the role for T4 in the function of gonadotropes. This study reveals the importance of thyroid hormone in developing the appropriate proportions of anterior pituitary cell types.

  12. Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses

    PubMed Central

    Ferreira, Joana S; Papouin, Thomas; Ladépêche, Laurent; Yao, Andrea; Langlais, Valentin C; Bouchet, Delphine; Dulong, Jérôme; Mothet, Jean-Pierre; Sacchi, Silvia; Pollegioni, Loredano; Paoletti, Pierre; Oliet, Stéphane Henri Richard; Groc, Laurent

    2017-01-01

    The subunit composition of synaptic NMDA receptors (NMDAR), such as the relative content of GluN2A- and GluN2B-containing receptors, greatly influences the glutamate synaptic transmission. Receptor co-agonists, glycine and D-serine, have intriguingly emerged as potential regulators of the receptor trafficking in addition to their requirement for its activation. Using a combination of single-molecule imaging, biochemistry and electrophysiology, we show that glycine and D-serine relative availability at rat hippocampal glutamatergic synapses regulate the trafficking and synaptic content of NMDAR subtypes. Acute manipulations of co-agonist levels, both ex vivo and in vitro, unveil that D-serine alter the membrane dynamics and content of GluN2B-NMDAR, but not GluN2A-NMDAR, at synapses through a process requiring PDZ binding scaffold partners. In addition, using FRET-based FLIM approach, we demonstrate that D-serine rapidly induces a conformational change of the GluN1 subunit intracellular C-terminus domain. Together our data fuels the view that the extracellular microenvironment regulates synaptic NMDAR signaling. DOI: http://dx.doi.org/10.7554/eLife.25492.001 PMID:28598327

  13. Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature.

    PubMed

    Greenberg, R M

    2005-01-01

    Transient changes in calcium (Ca2+) levels regulate a wide variety of cellular processes, and cells employ both intracellular and extracellular sources of Ca2+ for signalling. Praziquantel, the drug of choice against schistosomiasis, disrupts Ca2+ homeostasis in adult worms. This review will focus on voltage-gated Ca2+ channels, which regulate levels of intracellular Ca2+ by coupling membrane depolarization to entry of extracellular Ca2+. Ca2+ channels are members of the ion channel superfamily and represent essential components of neurons, muscles and other excitable cells. Ca2+ channels are membrane protein complexes in which the pore-forming alpha1 subunit is modulated by auxiliary subunits such as beta and alpha2delta. Schistosomes express two Ca2+ channel beta subunit subtypes: a conventional subtype similar to beta subunits found in other vertebrates and invertebrates and a novel variant subtype with unusual structural and functional properties. The variant schistosome beta subunit confers praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian Ca2+ channel, implicating it as a mediator of praziquantel action.

  14. "Hyperglutamatergic cortico-striato-thalamo-cortical circuit" breaker drugs alleviate tics in a transgenic circuit model of Tourette׳s syndrome.

    PubMed

    Nordstrom, Eric J; Bittner, Katie C; McGrath, Michael J; Parks, Clinton R; Burton, Frank H

    2015-12-10

    The brain circuits underlying tics in Tourette׳s syndrome (TS) are unknown but thought to involve cortico/amygdalo-striato-thalamo-cortical (CSTC) loop hyperactivity. We previously engineered a transgenic mouse "circuit model" of TS by expressing an artificial neuropotentiating transgene (encoding the cAMP-elevating, intracellular A1 subunit of cholera toxin) within a small population of dopamine D1 receptor-expressing somatosensory cortical and limbic neurons that hyperactivate cortico/amygdalostriatal glutamatergic output circuits thought to be hyperactive in TS and comorbid obsessive-compulsive (OC) disorders. As in TS, these D1CT-7 ("Ticcy") transgenic mice׳s tics were alleviated by the TS drugs clonidine and dopamine D2 receptor antagonists; and their chronic glutamate-excited striatal motor output was unbalanced toward hyperactivity of the motoric direct pathway and inactivity of the cataleptic indirect pathway. Here we have examined whether these mice׳s tics are countered by drugs that "break" sequential elements of their hyperactive cortical/amygdalar glutamatergic and efferent striatal circuit: anti-serotonoceptive and anti-noradrenoceptive corticostriatal glutamate output blockers (the serotonin 5-HT2a,c receptor antagonist ritanserin and the NE alpha-1 receptor antagonist prazosin); agmatinergic striatothalamic GABA output blockers (the presynaptic agmatine/imidazoline I1 receptor agonist moxonidine); and nigrostriatal dopamine output blockers (the presynaptic D2 receptor agonist bromocriptine). Each drug class alleviates tics in the Ticcy mice, suggesting a hyperglutamatergic CSTC "tic circuit" could exist in TS wherein cortical/amygdalar pyramidal projection neurons׳ glutamatergic overexcitation of both striatal output neurons and nigrostriatal dopaminergic modulatory neurons unbalances their circuit integration to excite striatothalamic output and create tics, and illuminating new TS drug strategies. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Pharmacological Cyclophilin Inhibitors Prevent Intoxication of Mammalian Cells with Bordetella pertussis Toxin.

    PubMed

    Ernst, Katharina; Eberhardt, Nina; Mittler, Ann-Katrin; Sonnabend, Michael; Anastasia, Anna; Freisinger, Simon; Schiene-Fischer, Cordelia; Malešević, Miroslav; Barth, Holger

    2018-05-01

    The Bordetella pertussis toxin (PT) is one important virulence factor causing the severe childhood disease whooping cough which still accounted for approximately 63,000 deaths worldwide in children in 2013. PT consists of PTS1, the enzymatically active (A) subunit and a non-covalently linked pentameric binding/transport (B) subunit. After endocytosis, PT takes a retrograde route to the endoplasmic reticulum (ER), where PTS1 is released into the cytosol. In the cytosol, PTS1 ADP-ribosylates inhibitory alpha subunits of trimeric GTP-binding proteins (Giα) leading to increased cAMP levels and disturbed signalling. Here, we show that the cyclophilin (Cyp) isoforms CypA and Cyp40 directly interact with PTS1 in vitro and that Cyp inhibitors cyclosporine A (CsA) and its tailored non-immunosuppressive derivative VK112 both inhibit intoxication of CHO-K1 cells with PT, as analysed in a morphology-based assay. Moreover, in cells treated with PT in the presence of CsA, the amount of ADP-ribosylated Giα was significantly reduced and less PTS1 was detected in the cytosol compared to cells treated with PT only. The results suggest that the uptake of PTS1 into the cytosol requires Cyps. Therefore, CsA/VK112 represent promising candidates for novel therapeutic strategies acting on the toxin level to prevent the severe, life-threatening symptoms caused by PT.

  16. Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives

    PubMed Central

    Ghosh, Arnab

    2017-01-01

    Abstract Significance: Soluble guanylate cyclase (sGC) is an intracellular enzyme that plays a primary role in sensing nitric oxide (NO) and transducing its multiple signaling effects in mammals. Recent Advances: The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells, including sGC, where it helps to drive heme insertion into the sGC-β1 subunit. This allows sGC-β1 to associate with a partner sGC-α1 subunit and mature into an NO-responsive active form. Critical Issues: In this article, we review evidence to date regarding the mechanisms that modulate sGC activity by a pathway where binding of hsp90 or sGC agonist to heme-free sGC dictates the assembly and fate of an active sGC heterodimer, both by NO and heme-dependent or heme-independent pathways. Future Directions: We discuss some therapeutic implications of the NO-sGC-hsp90 nexus and its potential as a marker of inflammatory disease. Antioxid. Redox Signal. 26, 182–190. PMID:26983679

  17. Expression of alpha-AR subtypes in T lymphocytes and role of the alpha-ARs in mediating modulation of T cell function.

    PubMed

    Bao, Jing-Yin; Huang, Yan; Wang, Feng; Peng, Yu-Ping; Qiu, Yi-Hua

    2007-01-01

    Previous work in our laboratory has shown that alpha-adrenoreceptors (alpha-ARs) and beta-ARs exist on lymphocytes from functional profile, and that the receptors mediate the regulation of lymphocyte function by catecholamines. In the present study, we directly examined the expression of alpha-AR subtypes, alpha(1)-AR and alpha(2)-AR mRNAs, in T lymphocytes and explored the roles of the alpha-AR subtypes and intracellular signal transduction mechanisms linked to the receptors in mediating the modulation of T lymphocyte function. T lymphocytes from mesenteric lymph nodes of rats were purified by using a nylon wool column. Reverse transcription polymerase chain reaction was used to detect the expression of alpha(1)-AR and alpha(2)-AR mRNAs in the freshly isolated T cells and the mitogen concanavalin A (Con A)-activated lymphocytes. Colorimetric methylthiazoletetrazolium assay was employed to measure lymphocyte proliferation induced by Con A. Interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in the Con A-stimulated lymphocyte culture supernatants were examined by enzyme-linked immunosorbent assay. T cells expressed both alpha(1)-AR and alpha(2)-AR mRNAs. The expression of both alpha(1)-AR and alpha(2)-AR mRNAs was significantly higher in the Con A-activated lymphocytes than in the resting lymphocytes. Phenylephrine, a selective alpha(1)-AR agonist, had no evident effect on lymphocyte proliferation nor on IFN-gamma and IL-4 production induced by Con A. However, the selective alpha(2)-AR agonist clonidine attenuated Con A-induced lymphocyte proliferation as well as IFN-gamma and IL-4 production. The inhibited lymphocyte proliferation and IFN-gamma and IL-4 production by clonidine were blocked by yohimbine, an alpha(2)-AR antagonist. Either phospholipase C inhibitor U-73122 or protein kinase C inhibitor chelerythrine partially prevented the suppressive effect of clonidine on Con A-stimulated lymphocyte proliferation and IL-4 production. T lymphocytes express both alpha(1)-ARs and alpha(2)-ARs, but only the alpha(2)-ARs participate in the suppressive modulation of lymphocyte proliferation and cytokine production in vitro. The inhibitory effect of alpha(2)-AR stimulation on lymphocyte function is partially mediated via the phospholipase C-protein kinase C pathway. (c) 2008 S. Karger AG, Basel.

  18. Ca2+ permeability through rat cloned alpha9-containing nicotinic acetylcholine receptors.

    PubMed

    Fucile, Sergio; Sucapane, Antonietta; Eusebi, Fabrizio

    2006-04-01

    We investigated the functional properties of rat alpha9 and alpha9alpha10 nicotinic acetylcholine receptors (nAChRs) expressed by transient transfection in the rat GH4C1 cell line, using both Ca(2+) imaging and whole-cell recording. Acute applications of ACh generated short-delay fast-rising and quick-decaying Ca(2+) transients, suppressed in Ca(2+)-free medium and invariably accompanied by the activation of whole-cell inward currents. The mean amplitude of ACh-induced currents was as small as -16 pA in alpha9 subunit cDNA-transfected GH4C1 cells (alpha9-GH4C1), while they were much larger (range: -150 to -300 pA) in alpha9alpha10 subunit cDNAs-transfected GH4C1 cells (alpha9alpha10-GH4C1). Currents were not activated by nicotine, were blocked by methyllycaconitine and were ACh concentration-dependent. Because the Ca(2+) permeability of alpha9-containing nAChRs has been estimated in immortalized cochlear UB/OC-2 mouse cells, we also characterized the ACh-induced responses in these cells. Unlike alpha9- and alpha9alpha10-GH4C1 cells, UB/OC-2 cells responded to ACh with both long-delay methyllycaconitine-insensitive whole-cell currents and long-lasting Ca(2+) transients, the latter being detected in the absence of Ca(2+) in the extracellular medium and being suppressed by the Ca(2+)-ATPase inhibitor thapsigargin, known to deplete IP(3)-sensitive stores. These results indicated the involvement of muscarinic nAChRs and the lack of functional ACh-gated receptor channels in UB/OC-2 cells. Thus, we measured the fractional Ca(2+) current (P(f), i.e. the percentage of total current carried by Ca(2+) ions) in alpha9alpha10-GH4C1, obtaining a P(f) value of 22 +/- 4%; this is the largest value estimated to date for a ligand-gated receptor channel. The physiological role played by Ca(2+) entry through alpha9-containing nAChRs gated by ACh is discussed.

  19. The carboxyl-terminal region is a determinant for the intracellular behavior of the chorionic gonadotropin beta subunit: effects on the processing of the Asn-linked oligosaccharides.

    PubMed

    Muyan, M; Boime, I

    1998-05-01

    The placental hormone human CG (hCG) consists of two noncovalently linked alpha- and beta-subunits similar to the other glycoprotein hormones LH, FSH, and TSH. These heterodimers share a common alpha subunit but differ in their structurally distinct beta subunits. The CGbeta subunit is distinguished among the beta subunits by the presence of a C-terminal extension with four serine-linked oligosaccharides (carboxyl terminal peptide or CTP). In previous studies we observed that deleting this sequence decreased assembly of the truncated CGbeta subunit (CGbeta114) with the alpha-subunit and increased the heterogeneity of the secreted forms of the uncombined subunit synthesized in transfected Chinese hamster ovary (CHO) cells. The latter result was attributed to alterations in the processing of the two N-linked oligosaccharides. To examine at what step this heterogeneity occurs, the CGbeta and CGbeta114 genes were transfected into wild-type and mutant CHO cell lines that are defective in the late steps of the N-linked carbohydrate-processing pathway. We show here that removal of the CTP alters the processing of the core mannosyl unit of the subunit to complex forms at both glycosylation sites and that the oligosaccharides contain polylactosamine. Although it has been presumed that there is little intramolecular interaction between the CTP and the proximal domains of the subunit, our data suggest that the CTP sequence participates in the folding of the newly synthesized subunit, which is manifest by the posttranslational changes observed here.

  20. Proteomics of a new esophageal cancer cell line established from Persian patient.

    PubMed

    Moghanibashi, Mehdi; Jazii, Ferdous Rastgar; Soheili, Zahra-Soheila; Zare, Maryam; Karkhane, Aliasghar; Parivar, Kazem; Mohamadynejad, Parisa

    2012-05-25

    Although the highest incidence of esophageal squamous cell carcinoma (ESCC) has repeatedly been reported from Persia (Iran), nevertheless the so far proteomic published reports were limited to one study on tissue specimens. Here we report the proteome of a newly established cell line from Persian ESCC patients and compare it with the normal primary cell proteome. Among polypeptides, whose expression was different in cell line sixteen polypeptides were identified by MALDI/TOF/TOF spectrometry. S100-A8 protein, annexin A1, annexin A2, regulatory subunit of calpain, subunit alpha type-3 of proteasome and glutamate dehydrogenase 1 were proteins down-regulated in cell line while peroxiredoxin-5, non-muscle myosin light polypeptide 6, keratin 1, annexin A4, keratin 8, tropomyosin 3, stress-induced-phosphoprotein 1 and albumin were found to be subject of up-regulation in cell line compared to the primary normal cells. The proteomic results were further verified by western blotting and RT-PCR on annexin A1 and keratin 8. In addition, among the aforementioned proteins, glutamate dehydrogenase 1, regulatory subunit of calpain, subunit alpha of type-3 proteasome and annexin A4 are proteins whose deregulation in ESCC is reported for the first time by this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor [alpha] Selective Agonist 2-((3-((2-(4-Chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic Acid (BMS-687453)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Kennedy, Lawrence J.; Shi, Yan

    2010-04-12

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less

  2. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH(2) at the mouse melanocortin receptors. 1. Modifications at the His position.

    PubMed

    Holder, Jerry Ryan; Bauzo, Rayna M; Xiang, Zhimin; Haskell-Luevano, Carrie

    2002-06-20

    The melanocortin pathway is an important participant in obesity and energy homeostasis. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp", and it has been well documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library based on the template Ac-His-DPhe-Arg-Trp-NH(2), consisting of 17 members that have been modified at the His(6) position (alpha-MSH numbering) and pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. These studies provide further experimental evidence that the His(6) position can determine MC4R versus MC3R agonist selectivity and that chemically nonreactive side chains may be substituted for the imidazole ring (generally needs to be side chain protected in synthetic schemes) in the design of MC4R-selective, small-molecule, non-peptide agonists. Specifically, the tetrapeptide containing the amino-2-naphthylcarboxylic acid (Anc) amino acid at the His position resulted in a potent agonist at the mMC4R (EC(50) = 21 nM), was a weak mMC3R micromolar antagonist (pA(2) = 5.6, K(i) = 2.5 microM), and possessed >4700-fold agonist selectivity for the MC4R versus the MC3R. Substitution of the His(6) amino acid in the tetrapeptide template by the Phe, Anc, 3-(2-thienyl)alanine (2Thi), and 3-(4-pyridinyl)alanine (4-Pal) resulted in equipotency or only up to a 7-fold decrease in potency, compared to the His(6)-containing tetrapeptide at the mMC4R, demonstrating that these amino acid side chains may be substituted for the imidazole in the design of MC4R-selective non-peptide molecules.

  3. Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue.

    PubMed

    Fatima, L A; Campello, R S; Santos, R de Souza; Freitas, H S; Frank, A P; Machado, U F; Clegg, D J

    2017-12-01

    Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.

  4. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which themore » {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.« less

  5. Control of the synthesis and subcellular targeting of the two GDH genes products in leaves and stems of Nicotiana plumbaginifolia and Arabidopsis thaliana.

    PubMed

    Fontaine, Jean-Xavier; Saladino, Francesca; Agrimonti, Caterina; Bedu, Magali; Tercé-Laforgue, Thérèse; Tétu, Thierry; Hirel, Bertrand; Restivo, Francesco M; Dubois, Frédéric

    2006-03-01

    Although the physiological role of the enzyme glutamate dehydrogenase which catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate remains to be elucidated, it is now well established that in higher plants the enzyme preferentially occurs in the mitochondria of phloem companion cells. The Nicotiana plumbaginifolia and Arabidopis thaliana enzyme is encoded by two distinct genes encoding either an alpha- or a beta-subunit. Using antisense plants and mutants impaired in the expression of either of the two genes, we showed that in leaves and stems both the alpha- and beta-subunits are targeted to the mitochondria of the companion cells. In addition, we found in both species that there is a compensatory mechanism up-regulating the expression of the alpha-subunit in the stems when the expression of the beta-subunit is impaired in the leaves, and of the beta-subunit in the leaves when the expression of the alpha-subunit is impaired in the stems. When one of the two genes encoding glutamate dehydrogenase is ectopically expressed, the corresponding protein is targeted to the mitochondria of both leaf and stem parenchyma cells and its production is increased in the companion cells. These results are discussed in relation to the possible signalling and/or physiological function of the enzyme which appears to be coordinated in leaves and stems.

  6. The Chlamydomonas Dhc1 gene encodes a dynein heavy chain subunit required for assembly of the I1 inner arm complex.

    PubMed Central

    Myster, S H; Knott, J A; O'Toole, E; Porter, M E

    1997-01-01

    Multiple members of the dynein heavy chain (Dhc) gene family have been recovered in several organisms, but the relationships between these sequences and the Dhc isoforms that they encode are largely unknown. To identify Dhc loci and determine the specific functions of the individual Dhc isoforms, we have screened a collection of motility mutants generated by insertional mutagenesis in Chlamydomonas. In this report, we characterize one strain, pf9-3, in which the insertion event was accompanied by a deletion of approximately 13 kb of genomic DNA within the transcription unit of the Dhc1 gene. Northern blot analysis confirms that pf9-3 is a null mutation. Biochemical and structural studies of isolated axonemes demonstrate that the pf9-3 mutant fails to assemble the I1 inner arm complex, a two-headed dynein isoform composed of two Dhcs (1 alpha and 1 beta) and three intermediate chains. To determine if the Dhc1 gene product corresponds to one of the Dhcs of the I1 complex, antibodies were generated against a Dhc1-specific peptide sequence. Immunoblot analysis reveals that the Dhc1 gene encodes the 1 alpha Dhc subunit. These studies thus, identify the first inner arm Dhc locus to be described in any organism and further demonstrate that the 1 alpha Dhc subunit plays an essential role in the assembly of the I1 inner arm complex. Images PMID:9247642

  7. Improved purification of brine-shrimp (Artemia saline) (Na+ + K+)-activated adenosine triphosphatase and amino-acid and carbohydrate analyses of the isolated subunits.

    PubMed Central

    Peterson, G L; Hokin, L E

    1980-01-01

    Purification of the (Na+ + K+)-activated ATPase has been improved 2-fold the respect to both purity and yield over the previous method [Peterson, Ewing, Hootman & Conte (1978) J. Biol. Chem. 253, 4762-4770] by using Lubrol WX and non-denaturing concentrations of sodium dodecyl sulphate (SDS). The enzyme was purified 200-fold over the homogenate. The preparation had a specific activity of about 600 mumol of Pi/h per mg of protein, and was about 60% pure according to quantification of Coomassie Blue-stained SDS/polyacrylamide gels. The yield of purified enzyme was about 10 mg of protein per 100g of dry brine-shrimp (Artemia salina) cysts. The method is highly suitable for purification either on a small scale (10-25g of dry cysts) or on a large scale (900g of dry cysts) and methods are described for both. The large (Na+ + K+)-activated ATPase subunit (alpha-subunit) was isolated in pure form by SDS-gel filtration on Bio-Gel A 1.5m. The small subunit (beta-subunit) was eluted with other contaminating proteins on the Bio-Gel column, but was isolated in pure form by extraction from SDS/polyacrylamide gels. The amino acid and carbohydrate compositions of both subunits are reported. The alpha-subunit contained 5.2% carbohydrate by weight, and the beta-subunit 9.2%. Sialic acid was absent from both subunits. Images Fig. 3. Fig. 4. PMID:6272692

  8. Thylakoid membrane protein topography: transmembrane orientation of the chloroplast cytochrome b-559 psbE gene product.

    PubMed

    Tae, G S; Black, M T; Cramer, W A; Vallon, O; Bogorad, L

    1988-12-27

    Protease accessibility and antibody to a COOH-terminal peptide were used as probes for the in situ topography of the Mr 10,000 psbE gene product (alpha subunit) of the chloroplast cytochrome b-559. Exposure of thylakoid membranes to trypsin or Staphylococcus aureus V8 protease cleaved the alpha subunit to a slightly smaller polypeptide (delta Mr approximately -1000) as detected on Western blots, without loss of reactivity to COOH-terminal antibody. The disappearance of the parent Mr 10,000 polypeptide from thylakoids in the presence of trypsin correlated with the appearance of the smaller polypeptide with delta Mr = -750, the conversion having a half-time of approximately 15 min. Exposure of inside-out vesicles to trypsin resulted in almost complete loss of reactivity to the antibody, showing that the COOH terminus is exposed on the lumenal side of the membrane. Removal of the extrinsic polypeptides of the oxygen-evolving complex resulted in an increase of the accessibility of the alpha subunit to trypsin. These data establish that the alpha subunit of cytochrome b-559 crosses the membrane once, as predicted from its single, 26-residue, hydrophobic domain. The NH2 terminus of the alpha polypeptide is on the stromal side of the membrane, where it is accessible, most likely at Arg-7 or Glu-6/Asp-11, to trypsin or V8 protease, respectively. As a consequence of this orientation, the single histidine residue in the alpha subunit is located on the stromal side of the hydrophobic domain.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Definition of the mutation responsible for maple syrup urine disease in Poll Shorthorns and genotyping Poll Shorthorns and Poll Herefords for maple syrup urine disease alleles.

    PubMed

    Dennis, J A; Healy, P J

    1999-08-01

    The organisation of the E1alpha subunit of bovine branched-chain alpha-keto acid dehydrogenase gene was established. c DNA was cloned from Poll Shorthorn x Poll Hereford calves affected with Maple Syrup Urine Disease to identify the mutation responsible for the disease in Poll Shorthorns. Clones containing the c DNA sequences inherited from the Poll Shorthorn sire of the affected calves were identified. Paternal clones were sequenced and a cytidine to thymidine transition was found at nucleotide 1380. The mutation is predicted to substitute leucine in place of a highly conserved proline at codon 372. A polymerase chain reaction procedure was developed for detection of the 1380C-->T mutation in genomic DNA. Three Poll Shorthorn parents of affected calves and three affected Poll Shorthorn x Poll Hereford calves were heterozygous and an affected Poll Shorthorn calf was homozygous for this mutation. An improved polymerase chain reaction procedure was also devised to genotype Poll Herefords for the 248C-->T mutation. The procedures will facilitate disease prevention programs and assist in differential diagnosis of conditions in new-born calves that present with a rapid onset of progressive neurological disease and are characterised histologically by 'status spongiosus'. Maple Syrup Urine Disease (MSUD) is an autosomal recessive defect reported in humans (Danner and Elsas 1989), and in Poll Hereford (PH) and Poll Shorthorn (PS) calves (Harper et al 1986, Healy et al 1992). The clinical, biochemical and pathological manifestations of the disease are identical in the two breeds of cattle, and are characterised by the rapid onset of progressive neurological disease, leading to death within a few days of birth. The disease is caused by a deficiency of activity of the mitochondrial enzyme branched-chain alpha-keto acid dehydrogenase (BCKADH). This deficiency leads to elevated concentrations, in blood and tissues, of branched chain alpha-keto acids and their precursors, the branched chain amino acids, valine, leucine and isoleucine. BCKADH consists of four subunits E1alpha, E1beta, E2 and E3 that are encoded by separate genes, and MSUD may result from deficiency of any of the subunits. In PH s, the disease in caused by premature termination of translation, of the E1alpha subunit, that is induced by a cytidine to thymidine transition exon 2 (248C-->T), that converts the glutamine codon -6 to a stop codon (Q-6ST; Zhang et al 1990). We have shown that MSUD -affected PSxPH calves are heterozygous at the PH locus, illustrating molecular heterogeneity exists for bovine MSUD (Healy and Dennis 1994a). The fact that these crossbred calves are affected, indicates the PS, like the PH mutation, resides in the E1alpha subunit. Copyright 1999 Harcourt Publishers Ltd.

  10. Transgenic Over Expression of Nicotinic Receptor Alpha 5, Alpha 3, and Beta 4 Subunit Genes Reduces Ethanol Intake in Mice

    PubMed Central

    Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara

    2012-01-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873

  11. Brief Report: Initial Trial of Alpha7-Nicotinic Receptor Stimulation in Two Adult Patients with Autism Spectrum Disorder.

    PubMed

    Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R; Freedman, Robert

    2016-12-01

    Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational receptor-specific partial agonist drug would increase the inhibitory functions of the gene and thereby increase patients' attention. An electrophysiological biomarker, P50 inhibition, verified the intended neurobiological effect of the agonist, and neuropsychological testing verified a primary cognitive effect. Both patients perceived increased attention in their self-ratings. Alpha7-nicotinic receptor agonists, currently the target of drug development in schizophrenia and Alzheimer Disease, may also have positive clinical effects in autism spectrum disorder.

  12. Parallel synthesis of a series of potentially brain penetrant aminoalkyl benzoimidazoles.

    PubMed

    Micco, Iolanda; Nencini, Arianna; Quinn, Joanna; Bothmann, Hendrick; Ghiron, Chiara; Padova, Alessandro; Papini, Silvia

    2008-03-01

    Alpha7 agonists were identified via GOLD (CCDC) docking in the putative agonist binding site of an alpha7 homology model and a series of aminoalkyl benzoimidazoles was synthesised to obtain potentially brain penetrant drugs. The array was prepared starting from the reaction of ortho-fluoronitrobenzenes with a selection of diamines, followed by reduction of the nitro group to obtain a series of monoalkylated phenylene diamines. N,N'-Carbonyldiimidazole (CDI) mediated acylation, followed by a parallel automated work-up procedure, afforded the monoacylated phenylenediamines which were cyclised under acidic conditions. Parallel work-up and purification afforded the array products in good yields and purities with a robust parallel methodology which will be useful for other libraries. Screening for alpha7 activity revealed compounds with agonist activity for the receptor.

  13. The G protein alpha subunit (GP alpha1) is associated with the ER and the plasma membrane in meristematic cells of Arabidopsis and cauliflower.

    PubMed

    Weiss, C A; White, E; Huang, H; Ma, H

    1997-05-05

    Towards the elucidation of the cellular function(s) of GP alpha1, we have characterized its subcellular localization using immunofluorescence and cell fractionation. GP alpha1 is not present in nuclei or chloroplasts. It is a membrane-bound protein, and analysis of isolated endoplasmic and plasma membranes indicates a good correlation between GP alpha1 in both the plasma membrane and the ER compartment. Interestingly, these results may suggest more different functions for GP alpha1: it might be involved in transmission of extracellular signals across the plasma membrane and in the cytoplasm, and/or it may also be involved in regulating some aspects of the ER functions or membrane trafficking between both membranes.

  14. Pharmacological and therapeutic directions in ADHD: Specificity in the PFC.

    PubMed

    Levy, Florence

    2008-02-28

    Recent directions in the treatment of ADHD have involved both a broadening of pharmacological perspectives to include nor-adrenergic as well as dopaminergic agents. A review of animal and human studies of pharmacological and therapeutic directions in ADHD suggests that the D1 receptor is a specific site for dopaminergic regulation of the PFC, but optimal levels of dopamine (DA) are required for beneficial effects on working memory. Animal and human studies indicate that the alpha-2A receptor is also important for prefrontal regulation, leaving open the question of the relative importance of these receptor sites. The therapeutic effects of ADHD medications in the prefrontal cortex have focused attention on the development of working memory capacity in ADHD. The actions of dopaminergic vs noradrenergic agents, currently available for the treatment of ADHD have overlapping, but different actions in the prefrontal cortex (PFC) and subcortical centers. While stimulants act on D1 receptors in the dorsolateral prefrontal cortex, they also have effects on D2 receptors in the corpus striatum and may also have serotonergic effects at orbitofrontal areas. At therapeutic levels, dopamine (DA) stimulation (through DAT transporter inhibition) decreases noise level acting on subcortical D2 receptors, while NE stimulation (through alpha-2A agonists) increases signal by acting preferentially in the PFC possibly on DAD1 receptors. On the other hand, alpha-2A noradrenergic transmission is more limited to the prefrontal cortex (PFC), and thus less likely to have motor or stereotypic side effects, while alpha-2B and alpha-2C agonists may have wider cortical effects. The data suggest a possible hierarchy of specificity in the current medications used in the treatment of ADHD, with guanfacine likely to be most specific for the treatment of prefrontal attentional and working memory deficits. Stimulants may have broader effects on both vigilance and motor impulsivity, depending on dose levels, while atomoxetine may have effects on attention, anxiety, social affect, and sedation via noradrenergic transmission. At a theoretical level, the advent of possible specific alpha-2A noradrenergic therapies has posed the question of the role of working memory in ADHD. Head to head comparisons of stimulant and noradrenergic alpha-2A, alpha-2B and alpha-2C agonists, utilizing vigilance and affective measures should help to clarify pharmacological and therapeutic differences.

  15. Design, synthesis, and evaluation of a novel series of alpha-substituted phenylpropanoic acid derivatives as human peroxisome proliferator-activated receptor (PPAR) alpha/delta dual agonists for the treatment of metabolic syndrome.

    PubMed

    Kasuga, Jun-ichi; Yamasaki, Daisuke; Araya, Yoko; Nakagawa, Aya; Makishima, Makoto; Doi, Takefumi; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2006-12-15

    A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes.

  16. Loss of tumorigenic potential by human lung tumor cells in the presence of antisense RNA specific to the ectopically synthesized alpha subunit of human chorionic gonadotropin.

    PubMed

    Rivera, R T; Pasion, S G; Wong, D T; Fei, Y B; Biswas, D K

    1989-06-01

    A clonal strain of human lung tumor cells in culture (ChaGo), derived from a bronchogenic carcinoma, synthesizes and secretes large amounts of alpha (alpha) and a comparatively lower level of beta (beta) subunit of the glycoprotein hormone, human chorionic gonadotropin (HCG). ChaGo cells lost their characteristic anchorage-independent growth phenotype in the presence of anti-alpha-HCG antibody. The effect of the antibody was partially reversed by addition of alpha-HCG to the culture medium. ChaGo cells were transfected with an expression vector (pRSV-anti-alpha-HCG), that directs synthesis of RNA complementary to alpha-HCG mRNA. The transfectants produced alpha-HCG antisense RNA which was associated with the reduced level of alpha-HCG. Transfectants also displayed several altered phenotypic properties, including altered morphology, less mitosis, reduced growth rate, loss of anchorage-independent growth, and loss of tumorigenicity in nude mice. Treatment of transfectants with 8,bromo-cAMP resulted in increased accumulation of alpha-HCG mRNA, no change in the level of alpha-HCG antisense RNA, release of the inhibition of [3H]thymidine incorporation, and restoration of anchorage-independent growth phenotype. The overexpression of c-myc, observed in ChaGo cells, was unaffected by the reduced level of alpha-HCG. These results suggest that ectopic synthesis of the alpha subunit of HCG plays a functional role in the transformation of these human lung cells.

  17. AMPA Receptors Mediate Acetylcholine Release from Starburst Amacrine Cells in the Rabbit Retina

    PubMed Central

    FIRTH, SALLY I.; LI, WEI; MASSEY, STEPHEN C.; MARSHAK, DAVID W.

    2012-01-01

    The light response of starburst amacrine cells is initiated by glutamate released from bipolar cells. To identify the receptors that mediate this response, we used a combination of anatomical and physiological techniques. An in vivo, rabbit eyecup was preloaded with [3H]-choline, and the [3H]-acetylcholine (ACh) released into the superfusate was monitored. A photopic, 3 Hz flashing light increased ACh release, and the selective AMPA receptor antagonist, GYKI 53655, blocked this light-evoked response. Nonselective AMPA/kainate agonists increased the release of ACh, but the specific kainate receptor agonist, SYM 2081, did not increase ACh release. Selective AMPA receptor antagonists, GYKI 53655 or GYKI 52466, also blocked the responses to agonists. We conclude that the predominant excitatory input to starburst amacrine cells is mediated by AMPA receptors. We also labeled lightly fixed rabbit retinas with antisera to choline acetyltransferase (ChAT), AMPA receptor subunits GluR1, GluR2/3, or GluR4, and kainate receptor subunits GluR6/7 and KA2. Labeled puncta were observed in the inner plexiform layer with each of these antisera to glutamate receptors, but only GluR2/3-IR puncta and GluR4-IR puncta were found on the ChAT-IR processes. The same was true of starburst cells injected intracellularly with Neurobiotin, and these AMPA receptor subunits were localized to two populations of puncta. The AMPA receptors are expected to desensitize rapidly, enhancing the sensitivity of starburst amacrine cells to moving or other rapidly changing stimuli. PMID:14515241

  18. A functional assay to measure postsynaptic gamma-aminobutyric acidB responses in cultured spinal cord neurons: Heterologous regulation of the same K+ channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamatchi, G.L.; Ticku, M.K.

    1991-02-01

    The stimulation of postsynaptic gamma-aminobutyric acid (GABA)B receptors leads to slow inhibitory postsynaptic potentials due to the influx of K(+)-ions. This was studied biochemically, in vitro in mammalian cultured spinal cord neurons by using 86Rb as a substitute for K+. (-)-Baclofen, a GABAB receptor agonist, produced a concentration-dependent increase in the 86Rb-influx. This effect was stereospecific and blocked by GABAB receptor antagonists like CGP 35 348 (3-aminopropyl-diethoxymethyl-phosphonic acid) and phaclofen. Apart from the GABAB receptors, both adenosine via adenosine1 receptors and 5-hydroxytryptamine (5-HT) via 5-HT1 alpha agonists also increased the 86Rb-influx. These agonists failed to show any additivity between themmore » when they were combined in their maximal concentration. In addition, their effect was antagonized specifically by their respective antagonists without influencing the others. These findings suggest the presence of GABAB, adenosine1 and 5-HT1 alpha receptors in the cultured spinal cord neurons, which exhibit a heterologous regulation of the same K(+)-channel. The effect of these agonists were antagonized by phorbol 12,13-didecanoate, an activator of protein kinase C, and pretreatment with pertussis toxin. This suggests that these agonists by acting on their own receptors converge on the same K(+)-channel through the Gi/Go proteins. In summary, we have developed a biochemical functional assay for studying and characterizing GABAB synaptic pharmacology in vitro, using spinal cord neurons.« less

  19. Muscarinic cholinergic and alpha/sub 1/ adrenergic receptors in murine atria: phosphatidylinositol breakdown and receptor interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, R.W.

    Upon stimulation of muscarinic cholinergic receptors, there is a decrease in the force of contraction rate of firing in heart, while stimulation of ..cap alpha.. adrenergic receptors causes an increase in the force of contraction with no change in the heart rate. Yet both receptors stimulate the breakdown of phosphatidylinositol (PI). Therefore, the breakdown of PI was examined to determine how the process differed between the two receptor systems. Murine atria, prelabelled with (/sup 3/H)inositol, were stimulated with the muscarinic cholinergic agonists, carbamylcholine (CARB), and oxotremorine (OXO); and with the ..cap alpha.. adrenergic agonists, norepinephrine (NE) and phenylephrine (PE); eithermore » singly or in combination. Breakdown of PI was assessed by measurement of individual inositol phosphates by anion exchange chromatography. Binding of CARB to atrial muscarinic receptors was measured by competition with (/sup 3/H)quinuclidinyl benzilate.« less

  20. Prostaglandins, steroids and reception (an attempt to model the structure of the active centers of adrenoreception).

    PubMed

    Podymov, V K; Piruzyan, L A; Gladkikh, S P; Kats, M M; Nizhnii, S V

    1980-01-01

    On the basis of numerous results of investigations on adrenergic systems, an orientational model of the adrenoreceptor (AR) is postulated. Its active center includes low-molecular-weight components--prostaglandins (PGE, PGF), steroids (cortisone, hydrocortisone), S+-adenosylmethionine, Ca, Mg, and Mn ions. Appraisal of the stereospecific characteristics of such a functional unit of AR explains the difference in the nature and magnitude of the effects of interaction of the catecholamines, their agonists and antagonists will the so-called alpha- and beta-AR. Depending on the organ or tissue in which the AR is located, its protein subunits comprise adenylcyclase (beta-AR) or Na,K-ATPase (alpha-AR). An obligatory component of the AR is catechol-O-methyltransferase. The model elaborated describes satisfactorily the molecular mechanisms of action of many pharmacological agents, explains why attempts to isolate and reconstruct the AR have proved fruitless, and gives grounds for rejecting the hypothesis that there exist steroid, prostaglandin, and purinergic receptors, linking the exceptionally high and diverse activity of these biologically active substances with their participation in adrenoreception among other reasons. A conception of the active centers of the AR as low-molecular-weight entities permits the explanation of such phenomena as the desensitization of the AR, the "interconversion" of beta-AR into alpha-AR with a change in the parameters of the medium, and certain components of the pathogenesis of bronchial asthma, etc.

  1. Crystal structure of heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ida, Koh; E-mail: idakoh@sci.kitasato-u.ac.jp; Moriguchi, Tomotaka

    2005-07-29

    Sarcosine oxidase from Corynebacterium sp. U-96 is a heterotetrameric enzyme. Here we report the crystal structures of the enzyme in complex with dimethylglycine and folinic acid. The {alpha} subunit is composed of two domains, contains NAD{sup +}, and binds folinic acid. The {beta} subunit contains dimethylglycine, FAD, and FMN, and these flavins are approximately 10 A apart. The {gamma} subunit is in contact with two domains of {alpha} subunit and has possibly a folate-binding structure. The {delta} subunit contains a single atom of zinc and has a Cys{sub 3}His zinc finger structure. Based on the structures determined and on themore » previous works, the structure-function relationship on the heterotetrameric sarcosine oxidase is discussed.« less

  2. Cloning and characterization of Sdga gene encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex in Scoparia dulcis.

    PubMed

    Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2008-11-01

    A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.

  3. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.

    PubMed

    Campbell, Zachary T; Weichsel, Andrzej; Montfort, William R; Baldwin, Thomas O

    2009-07-07

    Bacterial luciferase from Vibrio harveyi is a heterodimer composed of a catalytic alpha subunit and a homologous but noncatalytic beta subunit. Despite decades of enzymological investigation, structural evidence defining the active center has been elusive. We report here the crystal structure of V. harveyi luciferase bound to flavin mononucleotide (FMN) at 2.3 A. The isoalloxazine ring is coordinated by an unusual cis-Ala-Ala peptide bond. The reactive sulfhydryl group of Cys106 projects toward position C-4a, the site of flavin oxygenation. This structure also provides the first data specifying the conformations of a mobile loop that is crystallographically disordered in both prior crystal structures [(1995) Biochemistry 34, 6581-6586; (1996) J. Biol. Chem. 271, 21956 21968]. This loop appears to be a boundary between solvent and the active center. Within this portion of the protein, a single contact was observed between Phe272 of the alpha subunit, not seen in the previous structures, and Tyr151 of the beta subunit. Substitutions at position 151 on the beta subunit caused reductions in activity and total quantum yield. Several of these mutants were found to have decreased affinity for reduced flavin mononucleotide (FMNH(2)). These findings partially address the long-standing question of how the beta subunit stabilizes the active conformation of the alpha subunit, thereby participating in the catalytic mechanism.

  4. Allosteric nature of P2X receptor activation probed by photoaffinity labelling

    PubMed Central

    Bhargava, Y; Rettinger, J; Mourot, A

    2012-01-01

    BACKGROUND AND PURPOSE In P2X receptors, agonist binding at the interface between neighbouring subunits is efficiently transduced to ion channel gating. However, the relationship between binding and gating is difficult to study because agonists continuously bind and unbind. Here, we covalently incorporated agonists in the binding pocket of P2X receptors and examined how binding site occupancy affects the ability of the channel to gate. EXPERIMENTAL APPROACH We used a strategy for tethering agonists to their ATP-binding pocket, while simultaneously probing ion channel gating using electrophysiology. The agonist 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP), a photoaffinity analogue of ATP, enabled us to trap rat homomeric P2X2 receptor and a P2X2/1 receptor chimera in different agonist-bound states. UV light was used to control the degree of covalent occupancy of the receptors. KEY RESULTS Irradiation of the P2X2/1 receptor chimera – BzATP complex resulted in a persistent current that lasted even after extensive washout, consistent with photochemical tethering of the agonist BzATP and trapping of the receptors in an open state. Partial labelling with BzATP primed subsequent agonist binding and modulated gating efficiency for both full and partial agonists. CONCLUSIONS AND IMPLICATIONS Our photolabelling strategy provides new molecular insights into the activation mechanism of the P2X receptor. We show here that priming with full agonist molecules leads to an increase in gating efficiency after subsequent agonist binding. PMID:22725669

  5. Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis.

    PubMed

    Lemieux, M Joanne; Mark, Brian L; Cherney, Maia M; Withers, Stephen G; Mahuran, Don J; James, Michael N G

    2006-06-16

    Lysosomal beta-hexosaminidase A (Hex A) is essential for the degradation of GM2 gangliosides in the central and peripheral nervous system. Accumulation of GM2 leads to severely debilitating neurodegeneration associated with Tay-Sachs disease (TSD), Sandoff disease (SD) and AB variant. Here, we present the X-ray crystallographic structure of Hex A to 2.8 A resolution and the structure of Hex A in complex with NAG-thiazoline, (NGT) to 3.25 A resolution. NGT, a mechanism-based inhibitor, has been shown to act as a chemical chaperone that, to some extent, prevents misfolding of a Hex A mutant associated with adult onset Tay Sachs disease and, as a result, increases the residual activity of Hex A to a level above the critical threshold for disease. The crystal structure of Hex A reveals an alphabeta heterodimer, with each subunit having a functional active site. Only the alpha-subunit active site can hydrolyze GM2 gangliosides due to a flexible loop structure that is removed post-translationally from beta, and to the presence of alphaAsn423 and alphaArg424. The loop structure is involved in binding the GM2 activator protein, while alphaArg424 is critical for binding the carboxylate group of the N-acetyl-neuraminic acid residue of GM2. The beta-subunit lacks these key residues and has betaAsp452 and betaLeu453 in their place; the beta-subunit therefore cleaves only neutral substrates efficiently. Mutations in the alpha-subunit, associated with TSD, and those in the beta-subunit, associated with SD are discussed. The effect of NGT binding in the active site of a mutant Hex A and its effect on protein function is discussed.

  6. Molecular cloning and nucleotide sequence of the alpha and beta subunits of allophycocyanin from the cyanelle genome of Cyanophora paradoxa.

    PubMed Central

    Bryant, D A; de Lorimier, R; Lambert, D H; Dubbs, J M; Stirewalt, V L; Stevens, S E; Porter, R D; Tam, J; Jay, E

    1985-01-01

    The genes for the alpha- and beta-subunit apoproteins of allophycocyanin (AP) were isolated from the cyanelle genome of Cyanophora paradoxa and subjected to nucleotide sequence analysis. The AP beta-subunit apoprotein gene was localized to a 7.8-kilobase-pair Pst I restriction fragment from cyanelle DNA by hybridization with a tetradecameric oligonucleotide probe. Sequence analysis using that oligonucleotide and its complement as primers for the dideoxy chain-termination sequencing method confirmed the presence of both AP alpha- and beta-subunit genes on this restriction fragment. Additional oligonucleotide primers were synthesized as sequencing progressed and were used to determine rapidly the nucleotide sequence of a 1336-base-pair region of this cloned fragment. This strategy allowed the sequencing to be completed without a detailed restriction map and without extensive and time-consuming subcloning. The sequenced region contains two open reading frames whose deduced amino acid sequences are 81-85% homologous to cyanobacterial and red algal AP subunits whose amino acid sequences have been determined. The two open reading frames are in the same orientation and are separated by 39 base pairs. AP alpha is 5' to AP beta and both coding sequences are preceded by a polypurine, Shine-Dalgarno-type sequence. Sequences upstream from AP alpha closely resemble the Escherichia coli consensus promoter sequences and also show considerable homology to promoter sequences for several chloroplast-encoded psbA genes. A 56-base-pair palindromic sequence downstream from the AP beta gene could play a role in the termination of transcription or translation. The allophycocyanin apoprotein subunit genes are located on the large single-copy region of the cyanelle genome. PMID:2987916

  7. Comparative Mg(2+)-dependent sequential covalent binding stoichiometries of 3'-O-(4-benzoyl)benzoyl adenosine 5'-diphosphate of MF1, TF1, and the alpha 3 beta 3 core complex of TF1. The binding change motif is independent of the F1 gamma delta epsilon subunits.

    PubMed

    Aloise, P; Kagawa, Y; Coleman, P S

    1991-06-05

    Three F1 preparations, the beef heart (MF1) and thermophilic bacterium (TF1) holoenzymes, and the alpha 3 beta 3 "core" complex of TF1 reconstituted from individually expressed alpha and beta subunits, were compared as to their kinetic and binding stoichiometric responses to covalent photoaffinity labeling with BzATP and BzADP (+/- Mg2+). Each enzyme displayed an enhanced pseudo-first order rate of photoinhibition and one-third of the sites covalent binding to a catalytic site for full inhibition, plus, but not minus Mg2+. Titration of near stoichiometric [MgBzADP]/[F1] ratios during photolysis disclosed two sequential covalent binding patterns for each enzyme; a high affinity binding corresponding to unistoichiometric covalent association concomitant with enzyme inhibition, followed by a low affinity multisite-saturating covalent association. Thus, in the absence of the structural asymmetry inducing gamma delta epsilon subunits of the holoenzyme, the sequential binding of nucleotide at putative catalytic sites on the alpha 3 beta 3 complex of any F1 appears sufficient to effect binding affinity changes. With MF1, final covalent saturation of BzADP-accessible sites was achieved with 2 mol of BzADP/mol of enzyme, but with TF1 or its alpha 3 beta 3 complex, saturation required 3 mol of BzADP/mol of enzyme. Such differential final labeling stoichiometries could arise because of the endogenous presence of 1 nucleotide already bound to one of the 3 potential catalytic sites on normally prepared MF1, whereas TF1, possessing no endogenous nucleotide, has 3 vacant BzADP-accessible sites. Kinetics measurements revealed that regardless of the incremental extent of inhibition of the TF1 holoenzyme by BzADP during photolysis, the two higher apparent Km values (approximately 1.5 x 10(-4) and approximately 10(-3) M, respectively) of the progressively inactivated incubation are unchanged relative to fully unmodified enzyme. As reported for BzATP (or BzADP) and MF1 (Ackerman, S.H., Grubmeyer, C., and Coleman, P.S. (1987) J. Biol. Chem. 262, 13765-13772), this supports the fact that the photocovalent inhibition of F1 is a one-hit one-kill phenomenon. Isoelectric focusing gels revealed that [3H]BzADP covalently modifies both TF1 and MF1 exclusively on the beta subunit, whether or not Mg2+ is present. A single 19-residue [3H]BzADP-labeled peptide was resolved from a tryptic digest of MF1, and this peptide corresponded with the one believed to contain at least a portion of the beta subunit catalytic site domain (i.e. beta Ala-338----beta Arg-356).

  8. Immunochemical analysis of Micrococcus lysodeikticus (luteus) F1-ATPase and its subunits.

    PubMed

    Urban, C; Salton, M R

    1983-08-31

    The F1-ATPase from Micrococcus lysodeikticus has been purified to 95% protein homogeneity in this laboratory and as all other bacterial F1S, possesses five distinct subunits with molecular weights ranging from 60 000 to 10 000 (Huberman, M. and Salton, M.R.J. (1979) Biochim. Biophys. Acta 547, 230-240). In this communication, we demonstrate the immunochemical reactivities of antibodies to native and SDS-dissociated subunits with the native and dissociated F1-ATPase and show that: (1) the antibodies generated to the native or SDS-dissociated subunits react with the native molecule; (2) all of the subunits comprising the F1 are antigenically unique as determined by crossed immunoelectrophoresis and the Ouchterlony double-diffusion techniques; (3) antibodies to the SDS-denatured individual delta- and epsilon-subunits can be used to destabilize the interaction of these specific subunits with the rest of the native F1; and (4) all subunit antibodies as well as anti-native F1 were found to inhibit ATPase activity to varying degrees, the strongest inhibition being seen with antibodies to the total F1 and anti-alpha- and anti-beta-subunit antibodies. The interaction of specific subunit antibodies may provide a new and novel way to study further and characterize the catalytic portions of F1-ATPases and in general may offer an additional method for the examination of multimeric proteins.

  9. LINKING GABAA RECEPTOR SUBUNITS TO ALCOHOL-INDUCED CONDITIONED TASTE AVERSION AND RECOVERY FROM ACUTE ALCOHOL INTOXICATION

    PubMed Central

    Blednov, Y.A.; Benavidez, J.M.; Black, M.; Chandra, D.; Homanics, G.E.; Rudolph, U.; Harris, R.A.

    2012-01-01

    GABA type A receptors (GABAA-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABAA-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011) and indicate this aversive property of ethanol is dependent on ethanol action on α2-containing GABAA-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor-incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABAA-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 and α3 (-/-) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. PMID:23147414

  10. Alpha 2-adrenoceptor blockade, pituitary-adrenal hormones, and agonistic interactions in rats.

    PubMed

    Haller, J; Barna, I; Kovács, J L

    1994-08-01

    The effects of adrenergic activation on aggressiveness and the aggression induced endocrine changes were tested in rats. Alpha 2 adrenoceptor blockers were used for enhancing activation of the adrenergic system, and changes in aggressiveness were tested in resident-intruder contests. Three experiments were conducted. In experiment 1, saline injected rats responded to the presence of an opponent by aggression and the increase in plasma ACTH and corticosterone. Intraperitoneal administration of 1 mg/kg CH-38083 (an alpha 2 adrenoceptor antagonist) produced a several fold increase in clinch fighting and mutual upright scores, and also further enhanced the plasma ACTH and corticosterone response. In experiment 2, the effect of three doses (0.5, 1 and 2 mg/kg) of three different alpha 2 adrenoceptor blockers CH-38083, idazoxan and yohimbine were tested. All the substances increased aggression at 0.5 and 1 mg/kg; at 2 mg/kg the effect of idazoxan and yohimbine disappeared, while with CH-38083 an additional increase was obtained. In yohimbine treated animals the enhancement of aggression was reduced already at 1 mg/kg. In experiment 3, indomethacin, a potent inhibitor of the catecholamine-induced ACTH release completely abolished the effects of the alpha 2 adrenoceptor antagonist CH-38083: the intensity of agonistic interactions, as well as ACTH and corticosterone plasma concentrations, returned to control levels. The possible role of catecholamines and the stress hormones in the activation of aggression is discussed.

  11. In vitro bioactivity of 17alpha-estradiol.

    PubMed

    Sievernich, André; Wildt, Ludwig; Lichtenberg-Fraté, Hella

    2004-12-01

    A miniaturised short-term in vitro assay based on the activation of the human estrogen receptor alpha and genetically modified yeast (Saccharomyces cerevisiae) cells was performed to explore the capacity of this system to monitor the bioactivity of estrogenic compounds, particularly 17alpha- and 17beta-estradiol. Together with the human estrogen receptor (hER)-alpha plasmid, the reporter plasmid containing a yeast-optimised version of the green fluorescent protein (yEGFP) linked to three repeats of the cis-acting estrogen hormone-responsive element (ERE) were expressed in a strain being deleted in the pleiotropic drug resistance transporters Pdr5, Snq2 and Yor1, known to facilitate efflux of organic compounds including steroids and chemotherapeutics. Agonists that bind to hER in vitro trigger estrogen receptor-mediated transcriptional activation of the GFP reporter gene monitored by fluorescence emission at 535 nm. The sensitivity of the assay was tested with various 17alpha- and 17beta-estradiol concentrations, yielding a detection limit of 5 pg/ml (0.018 nM) for the agonist 17beta-E2 in solvent and in human charcoal-stripped serum using a S. cerevisiae pdr5, snq2 and yor1 mutant strain. For 17alpha-estradiol only, at approximately 1500 pg/ml a similar fluorescence response compared to 100 pg/ml 17beta-E2 was observed implicating a much weaker potency of this stereoisomer. The specificity of the system was tested by expression of a truncated hER lacking the ligand-binding domain E and by administration of the androgen, 4-androsten 3,17 dione. Both controls did not yield an increase in fluorescence emission. This fluorescence emission assay enables detection of estrogenic biological activity induced by direct agonists, such as 17beta-E2 at concentrations similar to those found in human sera or by estrogen-like chemicals.

  12. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland

    2008-04-01

    Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

  13. alpha2-Adrenergic agonists antagonise the anxiolytic-like effect of antidepressants in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2005-10-14

    Selective serotonin reuptake inhibitors (SSRIs) and serotonin/noradrenaline reuptake inhibitors (SNRIs) has been reported to be efficient in anxiety disorders. Some animal models have demonstrated an anxiolytic-like effect following acute administration, however, it is not yet known how noradrenergic receptors are implicated in the therapeutic effects of antidepressants (ADs) in anxiety. The effects of two alpha(2)-adrenoceptor agonists (clonidine, guanabenz) on anxiolytic-like effect of two SSRIs (paroxetine and citalopram) and two SNRIs (venlafaxine and milnacipran) were evaluated in the four-plate test (FPT) in mice. Paroxetine (4 mg/kg), citalopram (8 mg/kg), venlafaxine (8 mg/kg), and milnacipran (8 mg/kg) administered intraperitoneally (i.p.) increased the number of punishments accepted by mice in the FPT. Clonidine (0.0039-0.5 mg/kg) and guanabenz (0.03-0.5mg/kg) had no effect on the number of punishments accepted by mice. Clonidine (0.03 and 0.06 mg/kg) and guanabenz (0.125 and 0.5 mg/kg) (i.p. -45 min) reversed the anti-punishment effect of paroxetine, citalopram, venlafaxine and milnacipran (i.p. -30 min). But if the antidepressants are administered 45 min before the test and alpha(2)-adrenoceptor agonists 30 min before the test, alpha(2)-adrenoceptor agonists failed to alter the anti-punishment effect of antidepressants. The results of this present study indicate that alpha(2)-adrenoceptor agonists antagonise the anxiolytic-like effect of antidepressants in mice when they are administered 15 min before the administration of antidepressant suggesting a close inter-regulation between noradrenergic and serotoninergic system in the mechanism of SSRIs and SNRIs in anxiety-like behaviour.

  14. OPC-28326, a selective femoral vasodilator, is an alpha2C-adrenoceptor-selective antagonist.

    PubMed

    Sun, B; Lockyer, S; Li, J; Chen, R; Yoshitake, M; Kambayashi, J I

    2001-11-01

    OPC-28326 has been reported to selectively increase femoral blood flow in open-chest dogs and autoperfused canine femoral artery preparations. Preliminary data indicated that OPC-28326 has a high affinity at the alpha2-adrenoceptor. In the present study, we tested OPC-28326 in isoflurane anesthetized rats at a dose of 3 mg/kg of body weight, given intraduodenally. OPC-28326 significantly increased femoral blood flow, by 44.7 +/- 13.8%, 45 min after drug administration, whereas carotid blood flow increased by only 3.6 +/- 5.5% (n = 6). Chinese hamster ovary cell lines overexpressing rat alpha2D-, alpha2B-, or alpha2C-adrenoceptor were established. These cells also coexpress luciferase, driven by cAMP elevation. In radioligand binding assays using cell membrane preparations, OPC-28326 dose dependently competed with [3H]RX821002 binding, with calculated K(i) values of 3840 +/- 887, 633 +/- 46, and 13.7 +/- 1.9 nM on alpha2D-, alpha2B-, and alpha2C-adrenoceptor, respectively. A similar affinity and rank order of potency were also found for OPC-28326 on the alpha2-subtypes using epinephrine as agonist in luciferase assays. No agonistic effect of OPC-28326 was detected on any of the alpha2-adrenoceptors. Finally, in situ hybridization performed on skeletal muscle tissue sections collected from rat hind limb (musculus gastrocnemius) demonstrated a high level expression of alpha2C in the vascular tissues. Thus, the abundance of alpha2C in the skeletal muscle may account for the selective effect of OPC-28326 in increasing femoral blood flow.

  15. Progesterone modulation of alpha5 nAChR subunits influences anxiety-related behavior during estrus cycle.

    PubMed

    Gangitano, D; Salas, R; Teng, Y; Perez, E; De Biasi, M

    2009-06-01

    Smokers often report an anxiolytic effect of cigarettes. In addition, stress-related disorders such as anxiety, post-traumatic stress syndrome and depression are often associated with chronic nicotine use. To study the role of the alpha5 nicotinic acetylcholine receptor subunit in anxiety-related responses, control and alpha5 subunit null mice (alpha5(-/-)) were subjected to the open field activity (OFA), light-dark box (LDB) and elevated plus maze (EPM) tests. In the OFA and LDB, alpha5(-/-) behaved like wild-type controls. In the EPM, female alpha5(-/-) mice displayed an anxiolytic-like phenotype, while male alpha5(-/-) mice were undistinguishable from littermate controls. We studied the hypothalamus-pituitary-adrenal axis by measuring plasma corticosterone and hypothalamic corticotropin-releasing factor. Consistent with an anxiolytic-like phenotype, female alpha5(-/-) mice displayed lower basal corticosterone levels. To test whether gonadal steroids regulate the expression of alpha5, we treated cultured NTera 2 cells with progesterone and found that alpha5 protein levels were upregulated. In addition, brain levels of alpha5 mRNA increased upon progesterone injection into ovariectomized wild-type females. Finally, we tested anxiety levels in the EPM during the estrous cycle. The estrus phase (when progesterone levels are low) is anxiolytic-like in wild-type mice, but no cycle-dependent fluctuations in anxiety levels were found in alpha5(-/-) females. Thus, alpha5-containing neuronal nicotinic acetylcholine receptors may be mediators of anxiogenic responses, and progesterone-dependent modulation of alpha5 expression may contribute to fluctuations in anxiety levels during the ovarian cycle.

  16. Expression of Functional Human α6β2β3* Acetylcholine Receptors in Xenopus laevis Oocytes Achieved through Subunit Chimeras and Concatamers

    PubMed Central

    Kuryatov, Alexandre

    2011-01-01

    α6β2β3* acetylcholine receptors (AChRs) on dopaminergic neurons are important targets for drugs to treat nicotine addiction and Parkinson's disease. However, it has not been possible to efficiently express functional α6β2β3* AChRs in oocytes or transfected cells. α6/α3 subunit chimeras permit expression of functional AChRs and reveal that parts of the α6 M1 transmembrane domain and large cytoplasmic domain impair assembly. Concatameric subunits permit assembly of functional α6β2β3* AChRs with defined subunit compositions and subunit orders. Assembly of accessory subunits is limiting in formation of mature AChRs. A single linker between the β3 accessory subunit and an α4 or α6 subunit is sufficient to permit assembly of complex β3-(α4β2)(α6β2) or β3-(α6β2)(α4β2) AChRs. Concatameric pentamers such as β3-α6-β2-α4-β2 have been functionally characterized. α6β2β3* AChRs are sensitive to activation by drugs used for smoking cessation therapy (nicotine, varenicline, and cytisine) and by sazetidine. All these are partial agonists. (α6β2)(α4β2)β3 AChRs are most sensitive to agonists. (α6β2)2β3 AChRs have the greatest Ca2+ permeability. (α4β2)(α6β2)β3 AChRs are most efficiently transported to the cell surface, whereas (α6β2)2β3 AChRs are the least efficiently transported. Dopaminergic neurons may have special chaperones for assembling accessory subunits with α6 subunits and for transporting (α6β2)2β3 AChRs to the cell surface. Concatameric pentamers and pentamers formed from combinations of trimers, dimers, and monomers exhibit similar properties, indicating that the linkers between subunits do not alter their functional properties. For the first time, these concatamers allow analysis of functional properties of α6β2β3* AChRs. These concatamers should enable selection of drugs specific for α6β2β3* AChRs. PMID:20923852

  17. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    PubMed

    Wieczorek, Anna; McHenry, Charles S

    2006-05-05

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  18. Integrin alphaIIb-subunit cytoplasmic domain mutations demonstrate a requirement for tyrosine phosphorylation of beta3-subunits in actin cytoskeletal organization.

    PubMed

    Yamodo, Innocent H; Blystone, Scott D

    2004-01-01

    Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.

  19. Expression of A-type K channel alpha subunits Kv 4.2 and Kv 4.3 in rat spinal lamina II excitatory interneurons and colocalization with pain-modulating molecules.

    PubMed

    Huang, Hsin-Yi; Cheng, Jen-Kun; Shih, Yang-Hsin; Chen, Pei-Hsuan; Wang, Chin-Lin; Tsaur, Meei-Ling

    2005-09-01

    Voltage-gated K(+) channel alpha subunits Kv 4.2 and Kv 4.3 are the major contributors of somatodendritic A-type K(+) currents in many CNS neurons. A recent hypothesis suggests that Kv 4 subunits may be involved in pain modulation in dorsal horn neurons. However, whether Kv 4 subunits are expressed in dorsal horn neurons remains unknown. Using immunohistochemistry, we found that Kv 4.2 and Kv 4.3 immunoreactivity was concentrated in the superficial dorsal horn, mainly in lamina II. Both Kv 4.2 and Kv 4.3 appeared on many rostrocaudally orientated dendrites, whereas Kv 4.3 could be also detected from certain neuronal somata. Kv 4.3(+) neurons were a subset of excitatory inerneurons with calretinin(+)/calbindin(-)/PKCgamma(-) markers, and a fraction of them expressed micro-opioid receptors. Kv 4.3(+) neurons also expressed ERK 2 and mGluR 5, which are molecules related to the induction of central sensitization, a mechanism mediating nociceptive plasticity. Together with the expression of Kv 4.3 in VR 1(+) DRG neurons, our data suggest that Kv C4 subunits could be involved in pain modulation.

  20. Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice.

    PubMed

    Gallego, Xavier; Ruiz-Medina, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C; Dierssen, Mara

    2012-05-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol's as well as nicotine's effects. Copyright © 2012. Published by Elsevier Inc.

  1. The chorionic gonadotropin alpha-subunit gene is on human chromosome 18 in JEG cells.

    PubMed Central

    Hardin, J W; Riser, M E; Trent, J M; Kohler, P O

    1983-01-01

    The gene for the alpha subunit of human chorionic gonadotropin (hCG) has been tentatively assigned to human chromosome 18. This localization was accomplished through the use of Southern blot analysis. A full-length cDNA probe for the hCG alpha subunit and DNA isolated from a series of somatic hybrids between mouse and human cells were utilized to make this assignment. In addition, in situ hybridization with normal human peripheral blood lymphocytes as a source of human chromosomes and with the same cDNA probe confirmed this result. The presence of human chromosome 18 was required for the detection of DNA fragments characteristic of the alpha-hCG gene. These results are consistent with our previous observation that human chromosomes 10 and 18 are required for the production of hCG in cultured cells. Images PMID:6578509

  2. Glycine Receptors Containing α2 or α3 Subunits Regulate Specific Ethanol-Mediated Behaviors

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth

    2015-01-01

    Glycine receptors (GlyRs) are broadly expressed in the central nervous system. Ethanol enhances the function of brain GlyRs, and the GlyRα1 subunit is associated with some of the behavioral actions of ethanol, such as loss of righting reflex. The in vivo role of GlyRα2 and α3 subunits in alcohol responses has not been characterized despite high expression levels in the nucleus accumbens and amygdala, areas that are important for the rewarding properties of drugs of abuse. We used an extensive panel of behavioral tests to examine ethanol actions in mice lacking Glra2 (the gene encoding the glycine receptor alpha 2 subunit) or Glra3 (the gene encoding the glycine receptor alpha 3 subunit). Deletion of Glra2 or Glra3 alters specific ethanol-induced behaviors. Glra2 knockout mice demonstrate reduced ethanol intake and preference in the 24-hour two-bottle choice test and increased initial aversive responses to ethanol and lithium chloride. In contrast, Glra3 knockout mice show increased ethanol intake and preference in the 24-hour intermittent access test and increased development of conditioned taste aversion to ethanol. Mutants and wild-type mice consumed similar amounts of ethanol in the limited access drinking in the dark test. Other ethanol effects, such as anxiolysis, motor incoordination, loss of righting reflex, and acoustic startle response, were not altered in the mutants. The behavioral changes in mice lacking GlyRα2 or α3 subunits were distinct from effects previously observed in mice with knock-in mutations in the α1 subunit. We provide evidence that GlyRα2 and α3 subunits may regulate ethanol consumption and the aversive response to ethanol. PMID:25678534

  3. Dexamethasone enhances agonist induction of tissue factor in monocytes but not in endothelial cells.

    PubMed

    Bottles, K D; Morrissey, J H

    1993-06-01

    Stimulation of monocytic cells by inflammatory agents such as bacterial lipopolysaccharide or tumour necrosis factor-alpha leads to the rapid and transient expression of tissue factor, the major cellular initiator of the extrinsic coagulation cascade in both haemostasis and tissue inflammation. In this study we investigated whether the synthetic anti-inflammatory glucocorticoid, dexamethasone, would inhibit agonist induction of tissue factor expression in both monocytes and endothelial cells. Surprisingly, dexamethasone significantly enhanced the induction of tissue factor expression by peripheral blood mononuclear cells and an established monocytic cell line, THP-1, in response to lipopolysaccharide or tumour necrosis factor-alpha. However, unlike monocytic cells, dexamethasone did not enhance agonist induction of tissue factor in endothelial cells. Synergistic enhancement of tissue factor expression by dexamethasone was also reflected in tissue factor mRNA levels in THP-1 cells, but was not the result of improved TF mRNA stability. Synergism between bacterial lipopolysaccharide and glucocorticoid in the induction of monocyte effector function is extremely unusual and may help to explain the variable outcome of glucocorticoid treatment of septic shock.

  4. On the treatment of the alcoholic organic brain syndrome with an alpha-adrenergic agonist modafinil: double-blind, placebo-controlled clinical, psychometric and neurophysiological studies.

    PubMed

    Saletu, B; Saletu, M; Grünberger, J; Frey, R; Zatschek, I; Mader, R

    1990-01-01

    1. In a double-blind study forty abstinent hospitalized male patients with an alcoholic organic brain syndrome (OBS) were treated for 6 weeks with either 200 mg modafinil or placebo. 2. Modafinil (CRL 40476) is a putative central alpha-1 adrenergic agonist. It's pharmacological profile is quite different from that of amphetamine, which can be seen by the lack of peripheral sympathomimetic effects. The vigilance promoting effect of modafinil has been shown previously in pharmaco-EEG and psychometric studies as well as in clinical studies involving treatment of daytime sleepiness in idiopathic hypersomniacs and narcoleptics. 3. The present clinical investigations demonstrated that the spontaneous restitution of the alcoholic OBS was significantly augmented and accelerated by modafinil. 4. Psychometric tests did not show significant intergroup differences. Modafinil- and placebo-treated patients improved continously over the 6-week period. 5. Psychophysiological and autonomous nervous system parameters were affected neither by placebo nor by modafinil. 6. Neurophysiological investigations by means of quantitative pharmaco-EEG showed partly inconsistent findings. However, superimposed dosages of modafinil (on the top of 6 weeks chronic administration) induced a decrease of slow activity and an increase of alpha activity suggesting an improvement of vigilance after the daily drug intake. 7. Considering the beneficial effects of modafinil in abstinent chronic alcoholic patients, it may be said that activation and improvement of adaptive behaviour by an alpha-adrenergic agonist could be regarded as a therapeutic principle in the treatment of the OBS, eventually due to noradrenergic deficits.

  5. Molecular study of electron transfer flavoprotein alpha-subunit deficiency in two Japanese children with different phenotypes of glutaric acidemia type II.

    PubMed

    Purevjav, E; Kimura, M; Takusa, Y; Ohura, T; Tsuchiya, M; Hara, N; Fukao, T; Yamaguchi, S

    2002-09-01

    Electron transfer flavoprotein is a mitochondrial matrix protein composed of alpha- and beta-subunits (ETF alpha and ETF beta, respectively). This protein transfers electrons between several mitochondrial dehydrogenases and the main respiratory chain via ETF dehydrogenase (ETF-DH). Defects in ETF or ETF-DH cause glutaric acidemias type II (GAII). We investigated the molecular basis of ETF alpha deficiency in two Japanese children with different clinical phenotypes using expression study. Patient 1 had the severe form of GAII, a compound heterozygote of two mutations: 799G to A (alpha G267R) and nonsense 7C to T (alpha R3X). Patient 2 had the mild form and carried two heterozygous mutations: 764G to T (alpha G255V) and 478delG (frameshift). Both patients had one each of missense mutations in one allele; the others were either nonsense or truncated. Restriction enzyme digestion assay using genomic DNAs from 100 healthy Japanese revealed that these mutations were all novel. No signal for ETF alpha was detected by immunoblotting in cases of missense mutants, while wild-type cDNA resulted in expression of ETF alpha protein. Transfection with wild-type ETF alpha cDNA into cultured cells from both patients elevated incorporation of radioisotope-labelled fatty acids. These four mutations were pathogenic for GAII and missense mutations, alpha G255V and alpha G267R were considered anecdotal for mild and severe forms, respectively.

  6. Identification of an antagonist that selectively blocks the activity of prostamides (prostaglandin-ethanolamides) in the feline iris.

    PubMed

    Woodward, D F; Krauss, A H; Wang, J W; Protzman, C E; Nieves, A L; Liang, Y; Donde, Y; Burk, R M; Landsverk, K; Struble, C

    2007-02-01

    The prostamides (prostaglandin-ethanolamides) and prostaglandin (PG) glyceryl esters are biosynthesized by COX-2 from the respective endocannabinoids anandamide and 2-arachidonyl glycerol. Agonist studies suggest that their pharmacologies are unique and unrelated to prostanoid receptors. This concept was further investigated using antagonists. The isolated feline iris was used as a key preparation, where prostanoid FP receptors and prostamide activity co-exist. Activity at human recombinant FP and other prostanoid receptors was determined using stable transfectants. In the feline iris, AGN 204396 produced a rightward shift of the dose-response curves for prostamide F2alpha and the prostamide F2alpha analog bimatoprost but did not block the effects of PGF2alpha and synthetic FP receptor agonists. Studies on human recombinant prostanoid receptors confirmed that AGN 204396 did not behave as a prostanoid FP receptor antagonist. AGN 204396 exhibited no antagonism at DP and EP1-4, but was a highly effective TP receptor antagonist. Contrary to expectation, the FP receptor antagonist AL-8810 efficaciously contracted the cat iris. AGN 204396 did not affect AL-8810 induced contractions, demonstrating that AL-8810 and AGN 204396 are pharmacologically distinct. Unlike AL-8810, the ethylamide derivate of AL-8810 was not an agonist. Al-8810 did not block prostamide F2alpha activity. Finally, AGN 204396 did not block PGE2-glyceryl ester activity. The ability of AGN 204396 to selectively block prostamide responses suggests the existence of prostamide sensitive receptors as entities distinct from receptors recognizing PGF2alpha and PGE2-glyceryl ester.

  7. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors. Part 3: modifications at the Arg position.

    PubMed

    Holder, Jerry Ryan; Xiang, Zhimin; Bauzo, Rayna M; Haskell-Luevano, Carrie

    2003-01-01

    The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) located in the brain are implicated as participating in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). All the endogenous (POMC-derived) melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp." Herein, we report 12 tetrapeptides, based upon the template Ac-His(6)-DPhe(7)-Arg(8)-Trp(9)-NH(2) (alpha-MSH numbering) that have been modified at the Arg(8) position by neutral, basic, or acidic amino acid side chains. These peptides have been pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the observation that removal of the guanidinyl side chain moiety results in decreased melanocortin receptor potency, but that this Arg(8) side chain is not critical for melanocortin receptor agonist activity. Additionally, incorporation of the homoArg(8) residue results in 56-fold MC4R versus MC3R selectivity, and the Orn(8) residue results in 123-fold MC4R versus MC5R and 63-fold MC5R versus MC3R selectivity. Copyright 2002 Elsevier Science Inc.

  8. The Heterodimeric Glycoprotein Hormone, GPA2/GPB5, Regulates Ion Transport across the Hindgut of the Adult Mosquito, Aedes aegypti

    PubMed Central

    Paluzzi, Jean-Paul; Vanderveken, Mark; O’Donnell, Michael J.

    2014-01-01

    A family of evolutionarily old hormones is the glycoprotein cysteine knot-forming heterodimers consisting of alpha- (GPA) and beta-subunits (GPB), which assemble by noncovalent bonds. In mammals, a common glycoprotein hormone alpha-subunit (GPA1) pairs with unique beta-subunits that establish receptor specificity, forming thyroid stimulating hormone (GPA1/TSHβ) and the gonadotropins luteinizing hormone (GPA1/LHβ), follicle stimulating hormone (GPA1/FSHβ), choriogonadotropin (GPA1/CGβ). A novel glycoprotein heterodimer was identified in vertebrates by genome analysis, called thyrostimulin, composed of two novel subunits, GPA2 and GPB5, and homologs occur in arthropods, nematodes and cnidarians, implying that this neurohormone system existed prior to the emergence of bilateral metazoans. In order to discern possible physiological roles of this hormonal signaling system in mosquitoes, we have isolated the glycoprotein hormone genes producing the alpha- and beta-subunits (AedaeGPA2 and AedaeGPB5) and assessed their temporal expression profiles in the yellow and dengue-fever vector, Aedes aegypti. We have also isolated a putative receptor for this novel mosquito hormone, AedaeLGR1, which contains features conserved with other glycoprotein leucine-rich repeating containing G protein-coupled receptors. AedaeLGR1 is expressed in tissues of the alimentary canal such as the midgut, Malpighian tubules and hindgut, suggesting that this novel mosquito glycoprotein hormone may regulate ionic and osmotic balance. Focusing on the hindgut in adult stage A. aegypti, where AedaeLGR1 was highly enriched, we utilized the Scanning Ion-selective Electrode Technique (SIET) to determine if AedaeGPA2/GPB5 modulated cation transport across this epithelial tissue. Our results suggest that AedaeGPA2/GPB5 does indeed participate in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis. Taken together, our findings imply this hormone may play an important role in ionic balance when levels of Na+ are limited and levels of K+ are in excess – such as during the digestion and assimilation of erythrocytes following vertebrate blood-feeding by females. PMID:24466069

  9. Synergistic interaction between fentanyl and the histamine H3 receptor agonist R-(alpha)-methylhistamine, on the inhibition of nociception and plasma extravasation in mice.

    PubMed

    Poveda, Raquel; Fernández-Dueñas, Víctor; Fernández, Alejandro; Sánchez, Sílvia; Puig, Margarita M; Planas, Eulàlia

    2006-07-10

    Here we report a synergistic interaction between fentanyl and the histamine H(3) receptor agonist R-(alpha)-methylhistamine on the inhibition of nociception and plasma extravasation in mice. Chronic inflammation was induced by subplantar injection of Complete Freund's Adjuvant into the right hind paw, and the effect of the drugs was evaluated 7 days later. Nociception and plasma extravasation were assessed by hot-plate and Evans blue tests respectively. Subcutaneous administration of fentanyl (0.01-0.1 mg/kg) induced dose-related anti-nociceptive and anti-extravasation effects (E(max)=100% and 62%, respectively). R-(alpha)-methylhistamine administration (0.3-3 mg/kg) showed a dose-related inhibitory effect on extravasation (E(max)=65%) but not on nociception. To analyze possible interaction between these two drugs, a dose-response curve to fentanyl plus a fixed dose of R-(alpha)-methylhistamine (0.5 mg/kg) was obtained. The dose-response curve for the combined treatment showed a shift to the left compared with that for fentanyl alone. Our results confirm that fentanyl and R-(alpha)-methylhistamine interact in a synergic way, inhibiting nociception and plasma extravasation.

  10. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle.

    PubMed

    Gonçalves, Dawit A P; Lira, Eduardo C; Baviera, Amanda M; Cao, Peirang; Zanon, Neusa M; Arany, Zoltan; Bedard, Nathalie; Tanksale, Preeti; Wing, Simon S; Lecker, Stewart H; Kettelhut, Isis C; Navegantes, Luiz C C

    2009-12-01

    Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.

  11. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digestsmore » of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.« less

  12. A reduction in hippocampal GABAA receptor alpha5 subunits disrupts the memory for location of objects in mice.

    PubMed

    Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F

    2010-07-01

    The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.

  13. NOVEL POSITIVE ALLOSTERIC MODULATORS OF GABAA RECEPTORS: DO SUBTLE DIFFERENCES IN ACTIVITY AT α1 PLUS α5 VERSUS α2 PLUS α3 SUBUNITS ACCOUNT FOR DISSIMILARITIES IN BEHAVIORAL EFFECTS IN RATS?

    PubMed Central

    Savić, Miroslav M.; Majumder, Samarpan; Huang, Shengming; Edwankar, Rahul V.; Furtmüller, Roman; Joksimović, Srđan; Clayton, Terry; Ramerstorfer, Joachim; Milinković, Marija M.; Roth, Bryan L.; Sieghart, Werner; Cook, James M.

    2010-01-01

    Over the last years, genetic studies have greatly improved our knowledge on the receptor subtypes mediating various pharmacological effects of positive allosteric modulators at GABAA receptors. This stimulated the development of new benzodiazepine (BZ)-like ligands, especially those inactive/low-active at GABAA receptors containing the α1 subunit, with the aim of generating more selective drugs. Hereby, the affinity and efficacy of four recently-synthesized BZ site ligands: SH-053-2’N, SH-053-S-CH3-2’F, SH-053-R-CH3-2’F and JY-XHe-053 were assessed. They were also studied in behavioral tests of spontaneous locomotor activity, elevated plus maze, and water maze in rats, which are considered predictive of, respectively, the sedative, anxiolytic, and amnesic influence of BZs. The novel ligands had moderately low to low affinity and mild to partial agonistic efficacy at GABAA receptors containing the α1 subunit, with variable, but more pronounced efficacy at other BZ-sensitive binding sites. While presumably α1 receptor-mediated sedative effects of GABAA modulation were not fully eliminated with any of the ligands tested, only SH-053-2’N and SH-053-S-CH3-2’F, both dosed at 30 mg/kg, exerted anxiolytic effects. The lack of clear anxiolytic-like activity of JY-XHe-053, despite its efficacy at α2- and α3-GABAA receptors, may have been partly connected with its preferential affinity at α5-GABAA receptors coupled with weak agonist activity at α1-containing subtypes. The memory impairment in water-maze experiments, generally reported with BZ site agonists, was completely circumvented with all four ligands. The results suggest that a substantial amount of activity at α1 GABAA receptors is needed for effecting spatial learning and memory impairments, while much weaker activity at α1- and α5-GABAA receptors is sufficient for eliciting sedation. PMID:20074611

  14. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    PubMed

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.

  15. Oligomeric properties of alpha-dendrotoxin-sensitive potassium ion channels purified from bovine brain.

    PubMed

    Parcej, D N; Scott, V E; Dolly, J O

    1992-11-17

    Neuronal acceptors for alpha-dendrotoxin (alpha-DTX) have recently been purified from mammalian brain and shown to consist of two classes of subunit, a larger (approximately 78,000 M(r)) protein (alpha) whose N-terminal sequence is identical to that of a cloned, alpha-DTX-sensitive K+ channel, and a novel M(r) 39,000 (beta) polypeptide of unknown function. However, little information is available regarding the oligomeric composition of these native molecules. By sedimentation analysis of alpha-DTX acceptors isolated from bovine cortex, two species have been identified. A minority of these oligomers contain only the larger protein, while the vast majority possess both subunits. Based on accurate determination of the molecular weights of these two forms it is proposed that alpha-DTX-sensitive K+ channels exist as alpha 4 beta 4 complexes because this combination gives the best fit to the experimental data.

  16. The Theory is Out There: The Use of ALPHA-2 Agonists in Treatment of Septic Shock.

    PubMed

    Ferreira, Jason

    2018-04-01

    The sympathetic nervous system plays an important role in the initial response to sepsis. This response enables the host to respond to invading pathogens; however, prolonged activation can become pathological. The potential for unregulated sympathetic tone to become detrimental in the septic patient has fueled interest in the role and impact of sympathetic manipulation, including the selective inhibition of sympathetic tone to return and augment vascular reactivity. While conventional understanding of alpha 2 agonists activity is depletion of sympathetic outflow, novel evidence suggests mitigation rather than depletion. The mechanism by which these agents exert these properties remains controversial and appears to be condition-specific. The hypothesis by which alpha agonists affect the pathology of sepsis is multifactorial, but includes influence on inflammatory regulation, coagulopathy, dynamic flow, as well as vascular responsiveness and integrity. Theory and basic science evidence supports the use of α agonists in the septic population. The clinical evidence shedding light on this topic is limited and confounded by intention or trial design. Future evidence should focus on adjuvant therapy in patients progressing to or at high risk of shock development.

  17. Use of polyclonal and monoclonal antibodies to study hCG-receptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milius, R.P.

    1985-01-01

    Although the glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) bind to different receptors, each contains an identical alpha subunit. Specificity is somehow endowed by theta subunits which are distinct for each hormone. Human choriogonadotropin (hCG) is a natural LH analog that contains a beta subunit nearly identical to that of LH. The roles of these subunits in the recognition and high affinity binding of hCG to receptor was examined. Polyclonal and monoclonal antibodies specific for the individual subunits of hCG were used to probe the hormone-receptor interaction. Conformation-specific and sequence-specific antibodies were examined for their abilities to bindmore » Triton X-100-solubilized /sup 125/I-hCG-receptor complex and to inhibit hormone binding to crude rat ovarian membranes containing receptor. Even though the immunoreactive sites are not located on the receptor binding surface of the beta subunit, most, but not all, of these polyclonal and monoclonal antibodies were able to inhibit /sup 125/I-hCG binding to receptor. Although the inhibition of binding may be due to steric interference due to the size of the antibody molecules, a two-step model for hCG binding to receptor is presented that also explains these results. In this model, the beta subunit initially binds with the receptor with a highly specific but low affinity interaction. This activates a site for the high affinity binding of the alpha subunit and stabilization of the complex. This is an attractive model as it may be applied to other glycoprotein hormones sharing an alpha subunit.« less

  18. Characterization of rat leydig cell gonadotropin receptor structure by affinity cross-linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.Y.; Hwang, J.; Menon, K.M.J.

    1986-05-01

    The gonadotropin receptor from rat leydig cell has been characterized with respect to binding kinetics and physiological regulation. The present study was intended to examine the structure of the receptor. Leydig cell suspension was prepared by either collagenase digestion or by mechanical disruption of the testis. The cells were incubated with /sup 125/I-hCG and the unreacted hCG was removed by centrifugation. The /sup 125/I-hCG was then covalently linked to the cell surface receptor using cleavable (dithiobis (succinimidyl propionate)) and non-cleavable (disuccinimidyl suberate) cross-linking reagents. The extracted cross-linked membrane proteins were resolved on SDS-polyacrylamide gels under reducing and non-reducing conditions andmore » subjected to autoradiographic analysis. Under non-reducing conditions, two labeled species with M/sub r/ = 87,000 and 120,000 were detected. However, only one labeled band was detected under reducing conditions with M/sub r/ = 64,000. The binding of /sup 125/I-hCG to the receptor was inhibited by hCG and LH, but not by a number of peptides and proteins. The data suggest that hCG receptor in leydig cell is an oligomeric complex consisting of four subunits, ..cap alpha cap alpha beta gamma... The ..beta.. and ..gamma.. subunits are each linked to an ..cap alpha.. subunit through disulfide linkage and the hormone binds to each ..cap alpha.. subunit. The two dimers formed (..cap alpha beta cap alpha gamma..) are associated by noncovalent interactions.« less

  19. Antinociceptive synergism of MD-354 and clonidine. Part II. The alpha-adrenoceptor component.

    PubMed

    Young, Shawquia; Vainio, Minna; Scheinin, Mika; Dukat, Małgorzata

    2010-08-01

    Previously, we reported that antinociceptive synergism of a 5-HT(3)/alpha(2)-adrenoceptor ligand MD-354 (m-chlorophenylguanidine) and clonidine combination occurs, in part, through a 5-HT(3) receptor antagonist mechanism. In the present investigation, a possible role for alpha(2)-adrenoceptors was examined. Mechanistic studies using yohimbine (a subtype non-selective alpha(2)-adrenoceptor antagonist), BRL 44408 (a preferential alpha(2A)-adrenoceptor antagonist) and imiloxan (a preferential alpha(2B/C)-adrenoceptor antagonist) on the antinociceptive actions of a MD-354/clonidine combination were conducted. Subcutaneous pre-treatment with all three antagonists inhibited the antinociceptive synergism of MD-354 and clonidine in the mouse tail-flick assay in a dose-dependent manner (AD(50) = 0.33, 2.1, and 0.17 mg/kg, respectively). Enhancement of clonidine antinociception by MD-354 did not potentiate clonidine's locomotor suppressant activity in a mouse locomotor assay. When [ethyl-3H]RS-79948-197 was used as radioligand, MD-354 displayed almost equal affinity to alpha(2A)- and alpha(2B)-adrenoceptors (K(i) = 110 and 220 nM) and showed lower affinity at alpha(2C)-adrenoceptors (K(i) = 4,700 nM). MD-354 had no subtype-selectivity for the alpha(2)-adrenoceptor subtypes as an antagonist in functional [35S]GTPgammaS binding assays. MD-354 was a weak partial agonist at alpha(2A)-adrenoceptors. Overall, in addition to the 5-HT(3) receptor component, the present investigation found MD-354 to be a weak partial alpha(2A)-adrenoceptor agonist that enhances clonidine's thermal antinociceptive actions through an alpha(2)-adrenoceptor-mediated mechanism without augmenting sedation.

  20. Effect of interleukin 13 on bronchial hyperresponsiveness and the bronchoprotective effect of beta-adrenergic bronchodilators and corticosteroids.

    PubMed

    Townley, Robert G; Gendapodi, Pradeep R; Qutna, Nidal; Evans, Joseph; Romero, Francisco A; Abel, Peter

    2009-03-01

    Fluticasone affects airway bronchial hyperresponsiveness (BHR) and enhances bronchodilation and bronchoprotection induced by beta-adrenergic agonists. Interleukin 13 (IL-13), however, induces BHR. To test the hypotheses that fluticasone inhibits BHR after either allergen sensitization or IL-13 administration and that fluticasone restores the bronchodilation and bronchoprotective effects of beta-agonists. The BHR to methacholine induced by IL-13 or ovalbumin was determined in BALB/c mice, and the provocation concentration of methacholine that caused an increase in enhanced pause in expiration of 200% (PC200) was calculated. We compared this response to methacholine in control mice with the response after treatment with IL-13 receptor alpha 2-IgGFc fusion protein (IL-13R alpha 2) (an IL-13 blocker), fluticasone, albuterol, salmeterol, fluticasone-albuterol, and fluticasone-salmeterol. IL-13R alpha 2 (PC200, 17.59) completely blocks the BHR-induced effects of IL-13 (PC200, 7.28; P < .005). After IL-13 therapy (PC200, 5.90; P < .005), 1 mg/mL of albuterol (PC200, 3.38; P = .33), fluticasone (PC200, 4.59; P = .40), or fluticasone plus 50 microg/mL of salmeterol (PC200, 5.59; P = .11) showed no significant bronchoprotection. In nonsensitized mice, fluticasone plus 0.25 microg/mL of salmeterol (PC200, 25.90; P < .005) showed significantly greater bronchoprotection than did salmeterol alone (PC200, 11.08; P = .26). Fluticasone plus 0.3 mg/mL of albuterol and fluticasone plus 1 mg/mL of albuterol were significantly more protective than was fluticasone or albuterol alone in ovalbumin-sensitized mice. The protective effects of fluticasone, beta-agonists, and fluticasone plus beta-agonists are significantly less in IL-13-treated mice than in nonsensitized or ovalbumin-sensitized mice.

  1. Does endometrial integrin expression in endometriosis patients predict enhanced in vitro fertilization cycle outcomes after prolonged GnRH agonist therapy?

    PubMed

    Surrey, Eric S; Lietz, Annette K; Gustofson, Robert L; Minjarez, Debra A; Schoolcraft, William B

    2010-02-01

    To determine whether endometrial expression of the integrin alpha(v)beta(3) vitronectin can predict which endometriosis patient subgroup will benefit from pre-IVF cycle prolonged GnRH agonist (GnRHa) therapy. Prospective randomized institutional review board approved pilot trial. Private assisted reproductive technology program. IVF candidates with regular menses, surgically confirmed endometriosis, and normal ovarian reserve. All patients underwent endometrial biopsy 9 to 11 days post-LH surge to evaluate alpha(v)beta(3) integrin expression. Patients were randomized either to receive depot leuprolide acetate 3.75 mg every 28 days for three doses before controlled ovarian hyperstimulation (COH) or to proceed directly to COH and IVF. Group 1: integrin-positive controls (N = 12); group 2: integrin-positive administered prolonged GnRHa (N = 8). Group A: integrin-negative controls (N = 7); group B: integrin-negative administered prolonged GnRHa (N = 9). COH responses, ongoing pregnancy and implantation rates. There were no significant effects of GnRH agonist treatment in either of the integrin expression strata regarding ongoing pregnancy or implantation rates, although these outcomes were more frequent in group 2 vs. 1 (62.5% vs. 41.6% and 35% vs. 20.6%, respectively). This effect may have because of limited sample size. The value of a negative integrin biopsy in predicting an ongoing pregnancy after prolonged GnRH agonist therapy was only 44.4%. Endometrial alpha(v)beta(3) integrin expression did not predict which endometriosis patients would benefit from prolonged GnRHa therapy before IVF. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    PubMed

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state complexed with guanyl nucleotide-free G-protein.

  3. Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning.

    PubMed

    Weed, Michael R; Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard; Bristow, Linda J

    2017-01-01

    Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer's disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03-1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.

  4. Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning

    PubMed Central

    Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G.; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard; Bristow, Linda J.

    2017-01-01

    Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer’s disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03–1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task. PMID:29261656

  5. Localization of the calcium channel subunits Cav1.2 (alpha1C) and Cav2.3 (alpha1E) in the mouse organ of Corti.

    PubMed

    Waka, N; Knipper, M; Engel, J

    2003-10-01

    Voltage-activated Ca2+ channels play an important role in synaptic transmission, signal processing and development. The immunohistochemical localization of Cav1.2 (alpha1C) and Cav2.3 (alpha1E) Ca2+ channels was studied in the developing and adult mouse organ of Corti using subunit-specific antibodies and fluorescent secondary antibodies with cochlear cryosections. Cav1.2 immunoreactivity has been detected from postnatal day 14 (P14) onwards at the synapses between cholinergic medial efferents and outer hair cells as revealed by co-staining with anti-synaptophysin and anti-choline acetyltransferase. Most likely the Cav1.2 immunoreactivity was located presynaptically at the site of contact of the efferent bouton with the outer hair cell which suggests a role for class C L-type Ca2+ channels in synaptic transmission of the medial efferent system. The localization of the second Ca2+ channel tested, Cav2.3, showed a pronounced change during cochlear development. From P2 until P10, Cav2.3 immunoreactivity was found in the outer spiral bundle followed by the inner spiral bundle, efferent endings and by medial efferent fibers. Around P14, Cav2.3 immunoreactivity disappeared from these structures and from P19 onwards it was observed in the basal poles of the outer hair cell membranes.

  6. Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons.

    PubMed

    Fukuoka, Tetsuo; Kobayashi, Kimiko; Yamanaka, Hiroki; Obata, Koichi; Dai, Yi; Noguchi, Koichi

    2008-09-10

    We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply. (c) 2008 Wiley-Liss, Inc.

  7. Anti-inflammatory actions of clonidine, guanfacine and B-HT 920 against various inflammagen-induced acute paw oedema in rats.

    PubMed

    Kulkarni, S K; Mehta, A K; Kunchandy, J

    1986-02-01

    Clonidine (0.1-1.0 mg/kg, i.p.) exhibited anti-inflammatory activity in carrageenan-, formalin-, 5-HT- and histamine-induced paw oedema in rats. Similarly, other two alpha 2-adrenoceptor agonists, guanfacine and B-HT 920, also displayed an anti-inflammatory action in these models. The anti-inflammatory effect of all the three alpha 2-adrenoceptor agonists was reversed by yohimbine. However, prazosin failed to block the anti-inflammatory effect of clonidine. Intracerebroventricularly administered clonidine had a delayed onset of anti-inflammatory action, starting only from 60 min post carrageenan administration. This was in contrast to the systemically administered clonidine which was effective against both phases of carrageenan-induced oedema. On the other hand, irrespective of the route of administration, i.e. peripheral or central, guanfacine and B-HT 920 were effective against the early as well as against the delayed phases of the inflammatory reaction. The studies suggest that it is not the imidazoline moiety but the activation of alpha 2-adrenoceptors which is essential for the anti-inflammatory action of these agents.

  8. Effect of metal ions on the activity of casein kinase II from Xenopus laevis.

    PubMed

    Gatica, M; Hinrichs, M V; Jedlicki, A; Allende, C C; Allende, J E

    1993-01-04

    Casein kinase II purified from the nuclei of Xenopus laevis oocytes as well as the recombinant alpha and beta subunits of the X. laevis CKII, produced in E. coli from the cloned cDNA genes, were tested with different divalent metal ions. The enzyme from both sources was active with either Mg2+, Mn2+, or Co2+. Optimal concentrations were 7-10 mM for Mg2+, 0.5-0.7 mM for Mn2+ and 1-2 mM for Co2+. In the presence of Mn2+ or Co2+ the enzyme used GTP more efficiently than ATP as a phosphate donor while the reverse was true in the presence of Mg2+. The apparent Km values for both nucleotide triphosphates were greatly decreased in the presence of Mn2+ as compared with Mg2+. Addition of Zn2+ (above 150 microM) to an assay containing the optimal Mg2+ ion concentration caused strong inhibition of both holoenzyme and alpha subunit. Inhibition of the holoenzyme by 400 microM Ni2+ could be reversed by high concentrations of Mg2+ but no reversal of this inhibition was observed with the alpha subunit.

  9. Structure of Glycerol Dehydratase Reactivase: A New Type of Molecular Chaperone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Der-Ing; Reiss, Lisa; Turner, Jr., Ivan

    2010-03-08

    The function of glycerol dehydratase (GDH) reactivase is to remove damaged coenzyme B{sub 12} from GDH that has suffered mechanism-based inactivation. The structure of GDH reactivase from Klebsiella pneumoniae was determined at 2.4 {angstrom} resolution by the single isomorphous replacement with anomalous signal (SIR/AS) method. Each tetramer contains two elongated 63 kDa {alpha} subunits and two globular 14 kDa {beta} subunits. The {alpha} subunit contains structural features resembling both GroEL and Hsp70 groups of chaperones, and it appears chaperone like in its interactions with ATP. The fold of the {beta} subunit resembles that of the {beta} subunit of glycerol dehydratase,more » except that it lacks some coenzyme B12 binding elements. A hypothesis for the reactivation mechanism of reactivase is proposed based on these structural features.« less

  10. 5-Amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel and selective 5-hydroxytryptamine4 receptor partial agonist: pharmacological profile in vitro and gastroprokinetic effect in conscious dogs.

    PubMed

    Mikami, Tadayoshi; Ochi, Yasuo; Suzuki, Keiko; Saito, Toshiyuki; Sugie, Yutaka; Sakakibara, Minoru

    2008-04-01

    5-Hydroxytryptamine (5-HT) receptors and dopamine(2) (D(2)) receptor modulate gastrointestinal motility. Gastroprokinetic agents that act on several 5-HT receptor subtypes and/or D(2) receptors are used clinically. Although the 5-HT(4) receptor is known to mediate the gastroprokinetic effects of these agents, the absence of highly selective 5-HT(4) receptor agonists has made it difficult to confirm the physiological consequences of selective 5-HT(4) receptor stimulation. In this study, we report the in vitro pharmacological profiles and the in vivo gastroprokinetic effects of 5-amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel, potent, and selective 5-HT(4) partial agonist. Compared with preceding 5-HT(4) agonists such as cisapride, mosapride, and tegaserod, CJ-033,466 had a superior in vitro profile, with nanomolar agonistic activities for the 5-HT(4) receptor and 1000-fold greater selectivity for the 5-HT(4) receptor over other 5-HT and D(2) receptors. In vivo studies in conscious dogs showed that CJ-033,466 dose-dependently stimulated gastric antral motility in both the fasted and postprandial states at the same dose range and that it was 30 times more potent than cisapride. Furthermore, CJ-033,466 accelerated the gastric emptying rate in a gastroparesis dog model at the minimally effective dose established in the gastric motility study. In conclusion, CJ-033,466 is a potent and highly selective 5-HT(4) agonist that stimulates physiologically coordinated gastric motility, and it has no activity on other 5-HT receptor subtypes and D(2) receptors. Therefore, CJ-033,466 could be used to treat gastroparesis, providing better gastroprokinetics and reduced side effects mediated by the other receptors.

  11. The peroxisome proliferator-activated receptor alpha agonist fenofibrate has no effect on insulin sensitivity compared to atorvastatin in type 2 diabetes mellitus; a randomised, double-blind controlled trial.

    PubMed

    Black, R Neil A; Ennis, Cieran N; Young, Ian S; Hunter, Steven J; Atkinson, A Brew; Bell, Patrick M

    2014-01-01

    Assess insulin sensitivity after treatment with a selective PPAR-alpha agonist compared to an HMG CoA reductase inhibitor in human subjects with type 2 diabetes mellitus. Thirteen subjects with Type 2 diabetes mellitus were studied in a double-blind crossover design with 4-week placebo run-in and washout and 12-week treatment periods, randomised to micronised fenofibrate 267 mg or atorvastatin 10mg daily followed by the alternate drug in the second period. Insulin resistance was measured using the isoglycaemic hyperinsulinaemic clamp method with isotope dilution. Weight, physical activity and other medications did not change. Total cholesterol (mean +/- standard error) was 4.60+/-0.21 versus 3.9+/-0.22 mmol/L after fenofibrate and atorvastatin respectively, p<0.05. LDL was 2.70+/-0.19 versus 1.95+/-0.23 mmol/L, p<0.05 and triglyceride 1.64+/-0.23 versus 1.84+/-0.26 mmol/L, p<0.05. Insulin-stimulated whole-body glucose disposal (35.4+/-3.1 versus 33.2+/-3.0 μmol/kg/min) and nadir endogenous glucose production (6.2+/-1.4 versus 7.0+/-1.1 μmol/kg/min) revealed no significant differences in effects of the treatments. In human subjects with Type 2 diabetes mellitus there were characteristic differences in lipid profile changes but no difference in insulin sensitivity after treatment with micronised fenofibrate compared to atorvastatin. This study finds no evidence of increased insulin sensitivity using this selective PPAR-alpha agonist over a commonly used statin at these doses. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Development of 2′-substituted (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine analogues as potent N-methyl-d-aspartic acid receptor agonists

    PubMed Central

    Risgaard, Rune; Nielsen, Simon D.; Hansen, Kasper B.; Jensen, Christina M.; Nielsen, Birgitte; Traynelis, Stephen F.; Clausen, Rasmus P.

    2013-01-01

    A series of 2′-substituted analogues of the selective NMDA receptor ligand (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine ((S)-CCG-IV) have been designed, synthesized and pharmacologically characterized. The design was based on a docking study hypothesizing that substituents in the 2′-position would protrude into a region where differences among the NMDA receptor GluN2 subunits exist. Various synthetic routes were explored, and two different routes provided a series of alkyl-substituted analogues. Pharmacological characterization revealed that these compounds are NMDA receptor agonists and that potency decreases with increasing size of the alkyl groups. Variations in agonist activity are observed at the different recombinant NMDA receptor subtypes. This study demonstrates that it is possible to introduce substituents in the 2′-position of (S)-CCG-IV while maintaining agonist activity and that variation among NMDA receptor subtypes may be achieved by probing this region of the receptor. PMID:23614571

  13. Selective enhancement of fentanyl-induced antinociception by the delta agonist SNC162 but not by ketamine in rhesus monkeys: Further evidence supportive of delta agonists as candidate adjuncts to mu opioid analgesics.

    PubMed

    Banks, Matthew L; Folk, John E; Rice, Kenner C; Negus, S Stevens

    2010-12-01

    Mu-opioid receptor agonists such as fentanyl are effective analgesics, but their clinical use is limited by untoward effects. Adjunct medications may improve the effectiveness and/or safety of opioid analgesics. This study compared interactions between fentanyl and either the noncompetitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist ketamine or the delta-opioid receptor agonist SNC162 [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-phenyl)methyl]-N,N-diethylbenzamide] in two behavioral assays in rhesus monkeys. An assay of thermal nociception evaluated tail-withdrawal latencies from water heated to 50 and 54°C. An assay of schedule-controlled responding evaluated response rates maintained under a fixed-ratio 30 schedule of food presentation. Effects of each drug alone and of three mixtures of ketamine+fentanyl (22:1, 65:1, 195:1 ketamine/fentanyl) or SNC162+fentanyl (59:1, 176:1, 528:1 SNC162/fentanyl) were evaluated in each assay. All drugs and mixtures dose-dependently decreased rates of food-maintained responding, and drug proportions in the mixtures were based on relative potencies in this assay. Ketamine and SNC162 were inactive in the assay of thermal antinociception, but fentanyl and all mixtures produced dose-dependent antinociception. Drug interactions were evaluated using dose-addition and dose-ratio analysis. Dose-addition analysis revealed that interactions for all ketamine/fentanyl mixtures were additive in both assays. SNC162/fentanyl interactions were usually additive, but one mixture (176:1) produced synergistic antinociception at 50°C. Dose-ratio analysis indicated that ketamine failed to improve the relative potency of fentanyl to produce antinociception vs. rate suppression, whereas two SNC162/fentanyl mixtures (59:1 and 176:1) increased the relative potency of fentanyl to produce antinociception. These results suggest that delta agonists may produce more selective enhancement than ketamine of mu agonist-induced antinociception. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Modulation of intracellular Ca2+ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the alpha1-adrenoceptors.

    PubMed

    Bkaily, Ghassan; El-Bizri, Nesrine; Bui, Michel; Sukarieh, Rami; Jacques, Danielle; Fu, Michael L X

    2003-03-01

    The effects of methoxamine, a selective alpha1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of alpha1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of alpha1-adrenoreceptors significantly increased the L-type calcium current (I(Ca(L))) but had no effect on the T-type calcium current (I(Ca(T))), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective alpha1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in I(Ca(L)), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional alpha1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of alpha1-receptor agonists like methoxamine.

  15. Regulation of GnRH I receptor gene expression by the GnRH agonist triptorelin, estradiol, and progesterone in the gonadotroph-derived cell line alphaT3-1.

    PubMed

    Weiss, J M; Polack, S; Treeck, O; Diedrich, K; Ortmann, O

    2006-08-01

    The secretion of luteinizing hormone (LH) and the GnRH receptor (GnRH-R) concentration are modulated by ovarian steroids and GnRH. To elucidate whether this regulation is due to alterations at the transcriptional level, we examined the GnRH I-R mRNA expression in the gonadotroph-derived cell line alphaT3-1 treated with different estradiol and progesterone paradigms and the GnRH I agonist triptorelin. alphaT3-1 cells were treated with different steroid paradigms: 1 nM estradiol or 100 nM progesterone for 48 h alone or in combination. Cells were exposed to 10 nM or 100 pM triptorelin for 30 min, 3 h, 9 h, or, in pulsatile way, with a 5-min pulse per hour. The GnRH I-R mRNA was determined by Northern blot analysis. GnRH I-R mRNA from cells treated with continuous triptorelin decreased in a time- and concentration-dependent manner. Pulsatile triptorelin increased GnRH I-R gene expression. Progesterone alone further enhanced this effect, whereas estradiol and its combination with progesterone diminished it. Continuous combined treatment with estradiol and progesterone lead to a significant decrease of GnRH I-R mRNA by 30% and by 35% for estradiol alone. The addition of 10 nM triptorelin for 30 min or 3 h could not influence that steroid effect. In conclusion, estradiol and progesterone exclusively decreased GnRH I-R mRNA in alphaT3-1 cells no matter whether they are treated additionally with the GnRH I agonist triptorelin. The enhanced sensitivity of gonadotrophs and GnRH I-R upregulation by estradiol is not due to increased GnRH I gene expression because GnRH I-R mRNA is downregulated by estradiol and progesterone. Other pathways of the GnRH I-R signal transduction might be involved.

  16. Role of amino acids in salivation and the localization of their receptors in the rat salivary gland.

    PubMed

    Shida, T; Kondo, E; Ueda, Y; Takai, N; Yoshida, Y; Araki, T; Kiyama, H; Tohyama, M

    1995-11-01

    The distribution of gamma-aminobutyric acid (GABA) receptor subunits such as GABAAR-gamma 1 and GABAAR-gamma 2, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptor subunits such as GluR-1, GluR-2/3 and GluR-4, and N-methyl-D-aspartic acid (NMDA) type subunits such as NR1 were investigated by immunocytochemistry. Furthermore, the roles of these amino acids, GABA and glutamate, on salivation were analyzed in the rat submandibular and sublingual glands. Some similarities were observed in the distribution patterns of GABAA type receptors and AMPA receptors. In the submandibular ganglion cells, collecting ducts and striated ducts, these subunits were expressed strongly; however, there were some differences in their expression patterns between the submandibular and sublingual gland acinar cells. Since these receptor subunits were expressed in the acinar cell bodies of the submandibular gland, they were not expressed in the acinar cells but were expressed in the myoepithelial cells in the sublingual gland. On the other hand, no NR1 expression was observed. To examine the roles of GABA and glutamate in salivation, the submandibular and sublingual glands were perfused partially with Ringer's solution via a facial artery to avoid systemic influence, and substrates were infused into the perfusion solution. No salivary secretion was evoked by GABA or glutamate infusion in the absence of electrical stimulation (2-3 V, 5 ms, 20 Hz). Salivary flow evoked by electrical stimulation of the chorda-lingual nerve caused significant inhibition by GABA (10(-6), 10(-5), 10(-4) and 10(-3) M) and the GABAAR agonist muscimol 10(-3) and 10(-6) M) (n = 6, P < 0.05). Such GABA-induced inhibition was antagonized by the GABAAR antagonists bicuculline (BCC; 10(-6) and 10(-3) M) and picrotoxin (PTX; 10(-6) and 10(-3) M). On the other hand, salivary flow evoked by electrical stimulation (8-10 V, 5 ms, 20 Hz) of the superior cervical ganglion (SCG) was not affected by GABA. While high doses of glutamate (10(-1) M) and NMDA (10(-1) M) showed no effects on salivary flow despite application of electrical stimulation, AMPA at a high concentration (10(-1) M) significantly inhibited salivary secretion (n = 6, P < 0.05). These studies revealed that inhibitory and excitatory amino acid receptors such as GABAA and AMPA type receptors are coexpressed in the rat salivary glands, and that GABA inhibits salivary secretion via GABAA receptors which may act with acetylcholine. However, the role of glutamate in salivation remains unclear despite the presence of AMPA type receptors. The present findings suggest that glutamate does not act alone but with other substances such as peptides and/or other amino acids.

  17. BENZODIAZEPINE-INDUCED SPATIAL LEARNING DEFICITS IN RATS ARE REGULATED BY THE DEGREE OF MODULATION OF α1 GABAA RECEPTORS

    PubMed Central

    Joksimović, Srđan; Divljaković, Jovana; Van Linn, Michael L.; Varagic, Zdravko; Brajković, Gordana; Milinković, Marija M.; Yin, Wenyuan; Timić, Tamara; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2012-01-01

    Despite significant advances in understanding the role of benzodiazepine (BZ)-sensitive populations of GABAA receptors, containing the α1, α2, α3 or α5 subunit, factual substrates of BZ-induced learning and memory deficits are not yet fully elucidated. It was shown that α1-subunit affinity-selective antagonist β-CCt almost completely abolished spatial learning deficits induced by diazepam (DZP) in the Morris water maze. We examined a novel, highly (105 fold) α1-subunit selective ligand - WYS8 (0.2, 1 and 10 mg/kg), on its own and in combination with the non-selective agonist DZP (2 mg/kg) or β-CCt (5 mg/kg) in the water maze in rats. The in vitro efficacy study revealed that WYS8 acts as α1-subtype selective weak partial positive modulator (40% potentiation at 100 nM). Measurement of concentrations of WYS8 and DZP in rat serum and brain tissues suggested that they did not substantially cross-influence the respective disposition. In the water maze, DZP impaired spatial learning (acquisition trials) and memory (probe trial). WYS8 caused no effect per se, did not affect the overall influence of DZP on the water-maze performance and was devoid of any activity in this task when combined with β-CCt. Nonetheless, an additional analysis of the latency to reach the platform and the total distance swam suggested that WYS8 addition attenuated the run-down of the spatial impairment induced by DZP at the end of acquisition trials. These results demonstrate a clear difference in the influence of an α1 subtype-selective antagonist and a partial agonist on the effects of DZP on the water-maze acquisition. PMID:22633616

  18. Targeted deletion of the GABRA2 gene encoding alpha2-subunits of GABA(A) receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates.

    PubMed

    Dixon, C I; Rosahl, T W; Stephens, D N

    2008-07-01

    Mice with point-mutated alpha2 GABA(A) receptor subunits (rendering them diazepam insensitive) are resistant to the anxiolytic-like effects of benzodiazepines (BZs) in the conditioned emotional response (CER) test, but show normal anxiolytic effects of a barbiturate. We investigated the consequence of deleting the alpha2-subunit on acquisition of the CER with increasing intensity of footshock, and on the anxiolytic efficacy of a benzodiazepine, diazepam, and a barbiturate, pentobarbital. alpha2 knockout (KO) and wildtype (WT) mice were trained in a conditioned emotional response (CER) task, in which lever pressing for food on a variable interval (VI) schedule was suppressed during the presentation of a compound light/tone conditioned stimulus (CS+) that predicted footshock. The ability of diazepam and of pentobarbital to reduce suppression during the CS+ was interpreted as an anxiolytic response. There were no differences between the genotypes in shock sensitivity, as assessed by their flinch responses to increasing levels of shock. However, alpha2 KO mice showed a greater suppression of lever pressing than WT littermates in the presence of a compound cue signalling footshock. Diazepam (0, 0.5, 1 and 2 mg/kg) induced a dose-dependent anxiolytic-like effect in WT mice but no such effect was seen in KO mice. Similarly, although pentobarbital (20 mg/kg) reduced the ability of the CS+ to reduce lever pressing rates in WT mice, this effect was not seen in the KO. These findings suggest that alpha2-containing GABA(A) receptors mediate the anxiolytic effects of barbiturates, as well as benzodiazepines, and that they may be involved in neuronal circuits underlying conditioned anxiety.

  19. A single mutation at the catalytic site of TF1-alpha3beta3gamma complex switches the kinetics of ATP hydrolysis from negative to positive cooperativity.

    PubMed

    Muneyuki, E; Odaka, M; Yoshida, M

    1997-08-11

    Previously, we reported the substitution of Tyr341 of the F1-ATPase beta subunit from a thermophilic Bacillus strain PS3 with leucine, cysteine, or alanine (M. Odaka et al. J. Biochem., 115 (1994) 789-796). These mutations resulted in a great decrease in the affinity of the isolated beta subunit for ATP-Mg and an increase in the apparent Km of the alpha3beta3gamma complex in ATP hydrolysis when examined above 0.1 mM ATP. Here, we examined the ATPase activity of the mutant complexes in a wide range of ATP concentration and found that the mutants exhibited apparent positive cooperativity in ATP hydrolysis. This is the first clear demonstration that a single mutation in the catalytic sites converts the kinetics from apparent negative cooperativity in the wild-type alpha3beta3gamma complex to apparent positive cooperativity. The conversion of apparent cooperativity could be explained in terms of a simple kinetic scheme based on the binding change model proposed by Boyer.

  20. Pharmacodynamic and pharmacokinetic effects of MK-0343, a GABA(A) alpha2,3 subtype selective agonist, compared to lorazepam and placebo in healthy male volunteers.

    PubMed

    de Haas, S L; de Visser, S J; van der Post, J P; Schoemaker, R C; van Dyck, K; Murphy, M G; de Smet, M; Vessey, L K; Ramakrishnan, R; Xue, L; Cohen, A F; van Gerven, J M A

    2008-01-01

    The use of non-selective gamma-aminobutyric acid (GABA) enhancers, such as benzodiazepines in the treatment of anxiety disorders is still widespread but hampered by unfavourable side effects. some of these may be associated with binding properties to certain subtypes of the GABA(A) receptor that are unnecessary for therapeutic effects. MK-0343 was designed to be a less sedating anxiolytic, based on reduced efficacy at the alpha1 subtype and significant efficacy at alpha2 and alpha3 subtypes of the GABA(A) receptor. This paper is a double-blind, four-way cross-over (n = 12) study to investigate the effects of MK-0343 (0.25 and 0.75 mg) in comparison to placebo and an anxiolytic dose (2 mg) of the non-selective agonist lorazepam. Effects were measured by eye movements, body sway, Visual Analogue scales (VAS) and memory tests. Lorazepam impaired saccadic peak velocity (SPV), VAs alertness scores, postural stability and memory and increased saccadic latency and inaccuracy. MK-0343 0.75 mg was equipotent with lorazepam as indicated by SPV (-42.4 deg/s), saccadic latency (0.02 s) and VAS alertness scores (1.50 ln mm), while effects on memory and postural stability were smaller. MK-0343 0.25 mg only affected postural stability to a similar extent as MK-0343 0.75 mg. The effect profile of MK-0343 0.75 mg is different from the full agonist lorazepam, which could reflect the selective actions of this compound. Although less effect on VAS alertness was expected, diminished effects on memory and postural stability were present. Clinical studies in anxiety patients should show whether this dose of MK-0343 is therapeutically effective with a different side-effect profile.

  1. Reversal of behavioral depression by infusion of an alpha-2 adrenergic agonist into the locus coeruleus.

    PubMed

    Simson, P G; Weiss, J M; Hoffman, L J; Ambrose, M J

    1986-04-01

    This experiment demonstrated that behavioral depression produced by exposure of rats to strong uncontrollable shocks could be reversed by infusion of the alpha-2 adrenergic agonist clonidine into the region of the locus coeruleus (LC). A 20-min infusion, through bilateral cannulae, into the locus coeruleus of clonidine, piperoxane (alpha-2 antagonist) or inactive vehicle (0.85% saline), was given beginning 70 min after the animals were removed from the stress situation. The dose and volume of drug given in the infusion (0.16 microgram/microliter, 0.1 microliter/min) had been previously shown to produce effects specific to the locus coeruleus (Weiss, Simson, Hoffman, Ambrose, Cooper and Webster, 1986; Neuropharmacology 25: 367-384). At the conclusion of the infusion, active behavior of animals was measured in a 15-min swim test. Results showed that stressed animals infused with vehicle exhibited significantly less active behavior in the swim test than did non-stressed animals infused with vehicle, thereby showing the usual behavioral depression seen after exposure to an uncontrollable stress. Stressed animals infused with clonidine showed no difference in active behavior in comparison to non-stressed animals infused with vehicle and showed significantly more activity than did the stressed animals infused with vehicle. Stressed animals infused with piperoxane showed no significant difference in activity in comparison to the stressed animals infused with vehicle and were significantly less active than either the non-stressed animals infused with vehicle or the stressed animals infused with clonidine. Thus, infusion into the locus coeruleus of the alpha-2 agonist clonidine, but not the alpha-2 antagonist piperoxane, eliminated behavioral depression.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Icilin-evoked behavioral stimulation is attenuated by alpha2-adrenoceptor activation

    PubMed Central

    Kim, Jae; Cowan, Alan; Lisek, Renata; Raymondi, Natalie; Rosenthal, Aaron; Hirsch, Daniel D.; Rawls, Scott M.

    2011-01-01

    Icilin is a transient receptor potential cation channel subfamily M (TRPM8) agonist that produces behavioral activation in rats and mice. Its hallmark overt pharmacological effect is wet-dog shakes (WDS) in rats. The vigorous shaking associated with icilin is dependent on NMDA receptor activation and nitric oxide production, but little else is known about the biological systems that modulate the behavioral phenomenon. The present study investigated the hypothesis that alpha2-adrenoceptor activation inhibits icilin-induced WDS. Rats injected with icilin (0.5, 1, 2.5, 5 mg/kg, i.p.) displayed dose-related WDS that were inhibited by pretreatment with a fixed dose of clonidine (0.15 mg/kg, s.c.). Shaking behavior caused by a fixed dose (2.5 mg/kg) of icilin was also inhibited in a dose-related manner by clonidine pretreatment (0.03–0.15 mg/kg, s.c.) and reduced by clonidine posttreatment (0.15 mg/kg, s.c.). Pretreatment with a peripherally restricted alpha2-adrenoceptor agonist, ST91 (0.075, 0.15 mg/kg), also decreased the incidence of shaking elicited by 2.5 mg/kg of icilin. Pretreatment with yohimbine (2 mg/kg, i.p.) enhanced the shaking induced by a low dose of icilin (0.5 mg/kg). The imidazoline site agonists, agmatine (150 mg/kg, i.p.) and 2-BFI (7 mg/kg, i.p.), did not affect icilin-evoked shaking. These results suggest that alpha2-adrenoceptor activation inhibits shaking induced by icilin and that increases in peripheral, as well as central, alpha2-adrenoceptor signaling oppose the behavioral stimulant effect of icilin. PMID:21315691

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng,L.; Gell, D.; Zhou, S.

    Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two alpha and two beta subunits. Free alpha-hemoglobin (alphaHb) is unstable, and its precipitation contributes to the pathophysiology of beta thalassemia. In erythrocytes, the alpha-hemoglobin stabilizing protein (AHSP) binds alphaHb and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-alphaHb reveals that AHSP specifically recognizes the G and H helices of alphaHb through a hydrophobic interface that largely recapitulates the alpha1-beta1 interface of hemoglobin. The AHSP-alphaHb interactions are extensive but suboptimal, explaining why beta-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP boundmore » alphaHb is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-alphaHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free alphaHb.« less

  4. Chronic lithium treatment up-regulates cell surface Na(V)1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: enhancement of Na(+) influx, Ca(2+) influx and catecholamine secretion after lithium withdrawal.

    PubMed

    Yanagita, Toshihiko; Maruta, Toyoaki; Nemoto, Takayuki; Uezono, Yasuhito; Matsuo, Kiyotaka; Satoh, Shinya; Yoshikawa, Norie; Kanai, Tasuku; Kobayashi, Hideyuki; Wada, Akihiko

    2009-09-01

    In cultured bovine adrenal chromaffin cells expressing Na(V)1.7 isoform of voltage-dependent Na(+) channels, we have previously reported that lithium chloride (LiCl) inhibits function of Na(+) channels independent of glycogen synthase kinase-3 (GSK-3) (Yanagita et al., 2007). Here, we further examined the effects of chronic lithium treatment on Na(+) channels. LiCl treatment (1-30 mM, > or = 12 h) increased cell surface [(3)H]saxitoxin ([(3)H]STX) binding by approximately 32% without altering the affinity of [(3)H]STX binding. This increase was prevented by cycloheximide and actinomycin D. SB216763 and SB415286 (GSK-3 inhibitors) also increased cell surface [(3)H]STX binding by approximately 31%. Simultaneous treatment with LiCl and SB216763 or SB415286 did not produce an increased effect on [(3)H]STX binding compared with either treatment alone. LiCl increased Na(+) channel alpha-subunit mRNA level by 32% at 24 h. LiCl accelerated alpha-subunit gene transcription by 35% without altering alpha-subunit mRNA stability. In LiCl-treated cells, LiCl inhibited veratridine-induced (22)Na(+) influx as in untreated cells. However, washout of LiCl after chronic treatment enhanced veratridine-induced (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion by approximately 30%. Washout of LiCl after 24 h treatment shifted concentration-response curve of veratridine upon (22)Na(+) influx upward, without altering its EC(50) value. Ptychodiscus brevis toxin-3 allosterically enhanced veratridine-induced (22)Na(+) influx by two-fold in untreated and LiCl-treated cells. Whole-cell patch-clamp analysis indicated that I-V curve and steady-state inactivation/activation curves were comparable between untreated and LiCl-treated cells. Thus, GSK-3 inhibition by LiCl up-regulated cell surface Na(V)1.7 via acceleration of alpha-subunit gene transcription, enhancing veratridine-induced Na(+) influx, Ca(2+) influx and catecholamine secretion.

  5. The effects of brefeldin-A on the high mannose oligosaccharides of mouse thyrotropin, free alpha-subunits, and total glycoproteins.

    PubMed

    Perkel, V S; Liu, A Y; Miura, Y; Magner, J A

    1988-07-01

    We have studied the effects of Brefeldin-A (BFA) on the processing of high mannose (Man) oligosaccharides of TSH. BFA is a drug that inhibits the intracellular translocation of newly synthesized glycoproteins and causes dilatation of the rough endoplasmic reticulum (RER) as well as mild swelling of the Golgi apparatus. Mouse pituitary thyrotropic tumor tissue was incubated with [3H]Man for a 2-h pulse, with and without a 3-h chase; BFA (5 micrograms/ml) was included during selected pulse and selected chase incubations. TSH and free alpha-subunits were obtained from detergent lysates of tissue by immunoprecipitation using specific antisera. Total glycoproteins were obtained by trichloroacetic acid precipitation. Endoglycosidase-H-released [3H]oligosaccharides were analyzed by paper chromatography. BFA inhibited carbohydrate processing of TSH, free alpha-subunits, and total glycoproteins, resulting in the accumulation of Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2, especially during the chase period. Subcellular fractions enriched in RER, heavy (proximal) Golgi, and light (distal) Golgi were prepared by centrifugation in discontinuous sucrose gradients. [3H]Man-labeled oligosaccharides of TSH and total glycoproteins in the subcellular fractions were analyzed. In contrast to oligosaccharides with eight or nine Man residues found in control incubations, BFA caused the accumulation of oligosaccharides containing five to eight Man residues. These BFA-induced oligosaccharide alterations began in the RER and proximal Golgi with the 2-h pulse and extended into the distal Golgi during the chase incubations. Thus, BFA blocks the normal intracellular transport and processing of TSH, free alpha-subunits, and total glycoproteins within thyrotrophs, causing species with smaller than normal high Man oligosaccharides to appear in subcellular compartments as early as the RER. The translocation block between RER and Golgi produced by BFA may prevent the processing of Man8GlcNAc2 to Man5GlcNAc2 by Golgi (alpha,1-2)mannosidase I, yet the species retained within the RER may be subject to ongoing processing by endoplasmic reticulum (alpha,1-2)mannosidase, resulting in the accumulation of Man5-8GlcNAc2 within the RER.

  6. NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocyte-derived dendritic cells.

    PubMed

    Meis, Sabine; Hamacher, Alexandra; Hongwiset, Darunee; Marzian, Claudia; Wiese, Michael; Eckstein, Niels; Royer, Hans-Dieter; Communi, Didier; Boeynaems, Jean-Marie; Hausmann, Ralf; Schmalzing, Günther; Kassack, Matthias U

    2010-01-01

    The G protein-coupled P2Y(11) receptor is involved in immune system modulation. In-depth physiological evaluation is hampered, however, by a lack of selective and potent ligands. By screening a library of sulfonic and phosphonic acid derivatives at P2Y(11) receptors recombinantly expressed in human 1321N1 astrocytoma cells (calcium and cAMP assays), the selective non-nucleotide P2Y(11) agonist NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] was identified. NF546 had a pEC(50) of 6.27 and is relatively selective for P2Y(11) over P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(12), P2X(1), P2X(2), and P2X(2)-X(3). Adenosine-5'-O-(3-thio)triphosphate (ATPgammaS), a nonhydrolyzable analog of the physiological P2Y(11) agonist ATP, and NF546 use a common binding site as suggested by molecular modeling studies and their competitive behavior toward the nanomolar potency antagonist NF340 [4,4'-(carbonylbis(imino-3,1-(4-methyl-phenylene)carbonylimino))bis(naphthalene-2,6-disulfonic acid) tetrasodium salt] in Schild analysis. The pA(2) of NF340 was 8.02 against ATPgammaS and 8.04 against NF546 (calcium assays). NF546 was further tested for P2Y(11)-mediated effects in monocyte-derived dendritic cells. Similarly to ATPgammaS, NF546 led to thrombospondin-1 secretion and inhibition of lipopolysaccharide-stimulated interleukin-12 release, whereas NF340 inhibited these effects. Further, for the first time, it was shown that ATPgammaS or NF546 stimulation promotes interleukin 8 (IL-8) release from dendritic cells, which could be inhibited by NF340. In conclusion, we have described the first selective, non-nucleotide agonist NF546 for P2Y(11) receptors in both recombinant and physiological expression systems and could show a P2Y(11)-stimulated IL-8 release, further supporting the immunomodulatory role of P2Y(11) receptors.

  7. Evidence for alpha 2-adrenoceptor agonist activity of minoxidil.

    PubMed

    Sharma, N; Mehta, A A; Santani, D D; Goyal, R K

    1997-09-01

    The present investigation was undertaken to study the mechanism of action of minoxidil using various smooth muscle preparations. Minoxidil (4.7 x 10(-6) M to 4.7 x 10(-4) M) produced a concentration-dependent inhibition of field stimulation-evoked responses in rat anococcygeus muscle and vas deferens. The inhibition produced by minoxidil was antagonized by yohimbine (2.5 x 10(-7) M). Minoxidil (1.4 x 10(-5) M to 4.7 x 10(-4) M) also produced a concentration-dependent relaxation in oestrogen-primed potassium chloride-depolarized rat uterus. These responses were blocked not only by yohimbine but also by glibenclamide (2.02 x 10(-8) M). Our results suggest that minoxidil possesses alpha 2-adrenoceptor agonist activity in addition to potassium-channel-opening activity.

  8. Alterations in GluR2 AMPA receptor phosphorylation at serine 880 following group I metabotropic glutamate receptor stimulation in the rat dorsal striatum.

    PubMed

    Ahn, Sung Min; Choe, Eun Sang

    2010-04-01

    Phosphorylation of ionotropic glutamate receptors in the brain plays a crucial role in the regulation of synaptic plasticity. In this study, we investigated the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor phosphorylation by the stimulation of group I metabotropic glutamate receptors (mGluRs) in the dorsal striatum in vivo. The results showed that intrastriatal infusion of the group I mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG, 250 nmol), enhanced the sensitivity of GluR2 subunit in its phosphorylation at serine 880 (S880) in the dorsal striatum. This enhancement of the sensitivity of GluR2-S880 phosphorylation was reduced by blocking group I mGluRs and N-methyl-D-aspartate (NMDA) receptors. Similar reduction of the enhancement was also induced by inhibiting phospholipase C (PLC), calcium/calmodulin-dependent protein kinase (CaMK), c-Jun N-terminal kinase (JNK), and protein kinase C (PKC). Inhibition of protein phosphatase (PP) 1/2A and calcineurin (PP2B) alone enhanced GluR2-S880 phosphorylation in the dorsal striatum, whereas inhibition of these phosphatases did not further enhance the S880 phosphorylation by DHPG stimulation. In addition, inhibition of PP1/2A or PP2B also enhanced the phosphorylation of CaMKII, JNK and PKC. These data suggest that the phosphorylation of AMPA receptor GluR2 subunit at S880 is subject to the upregulation by the stimulation of group I mGluRs. Interactions among glutamate receptors, protein kinases, and PPs participate in this upregulation. (c) 2009 Wiley-Liss, Inc.

  9. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits.

    PubMed

    Zepeda, Angelica; Sengpiel, Frank; Guagnelli, Miguel Angel; Vaca, Luis; Arias, Clorinda

    2004-02-25

    Reorganization of cortical representations after focal visual cortex lesions has been documented. It has been suggested that functional reorganization may rely on cellular mechanisms involving modifications in the excitatory/inhibitory neurotransmission balance and on morphological changes of neurons peripheral to the lesion. We explored functional reorganization of cortical retinotopic maps after a focal ischemic lesion in primary visual cortex of kittens using optical imaging of intrinsic signals. After 1, 2, and 5 weeks postlesion (wPL), we addressed whether functional reorganization correlated in time with changes in the expression of MAP-2, GAP-43, GFAP, GABA(A) receptor subunit alpha1 (GABA(A)alpha1), subunit 1 of the NMDA receptor (NMDAR1), and in neurotransmitter levels at the border of the lesion. Our results show that: (1) retinotopic maps reorganize with time after an ischemic lesion; (2) MAP-2 levels increase gradually from 1wPL to 5wPL; (3) MAP-2 upregulation is associated with an increase in dendritic-like structures surrounding the lesion and a decrease in GFAP-positive cells; (4) GAP-43 levels reach the highest point at 2wPL; (5) NMDAR1 and glutamate contents increase in parallel from 1wPL to 5wPL; (6) GABA(A)alpha1 levels increase from 1wPL to 2wPL but do not change after this time point; and (7) GABA contents remain low from 1wPL to 5wPL. This is a comprehensive study showing for the first time that functional reorganization correlates in time with dendritic sprouting and with changes in the excitatory/inhibitory neurotransmission systems previously proposed to participate in cortical remodeling and suggests mechanisms by which plasticity of cortical representations may occur.

  10. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening withmore » approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.« less

  11. The presence of both negative and positive elements in the 5'-flanking sequence of the rat Na,K-ATPase alpha 3 subunit gene are required for brain expression in transgenic mice.

    PubMed Central

    Pathak, B G; Neumann, J C; Croyle, M L; Lingrel, J B

    1994-01-01

    The Na,K-ATPase is an integral plasma membrane protein consisting of alpha and beta subunits, each of which has discrete isoforms expressed in a tissue-specific manner. Of the three functional alpha isoform genes, the one encoding the alpha 3 isoform is the most tissue-restricted in its expression, being found primarily in the brain. To identify regions of the alpha 3 isoform gene that are involved in directing expression in the brain, a 1.6 kb 5'-flanking sequence was attached to a reporter gene, chloramphenicol acetyltransferase (CAT). The alpha 3-CAT chimeric gene construct was microinjected into fertilized mouse eggs, and transgenic mice were produced. Analysis of adult transgenic mice from different lines revealed that the transgene is expressed primarily in the brain. To further delineate regions that are needed for conferring expression in this tissue, systematic deletions of the 5'-flanking sequence of the alpha 3-CAT fusion constructs were made and analyzed, again using transgenic mice. The results from these analyses indicate that DNA sequences required for mediating brain-specific expression of the alpha 3 isoform gene are present within 210 bp upstream of the transcription initiation site. alpha 3-CAT promoter constructs containing scanning mutations in this region were also assayed in transgenic mice. These studies have identified both a functional neural-restrictive silencer element as well as a positively acting cis element. Images PMID:7984427

  12. The influence of tumour necrosis factor-alpha on the cardiovascular system of anaesthetized rats.

    PubMed

    Tabrizchi, R

    2001-03-01

    The effects of two vasoactive agents (adenosine A2A agonist, CGS 21680, and adrenoceptor agonist, noradrenaline) were examined on cardiac output (CO), heart rate (HR), blood pressure (BP), mean circulatory filling pressure (Pmcf), resistance to venous return, arterial resistance, dP/dt, plasma levels of NO2-/NO3-, and inducible nitric oxide synthase (iNOS) activity in lungs ex vivo, following treatment with tumour necrosis factor-alpha (TNF-alpha; 30 microg/kg) in anaesthetized rats. Treatment with TNF-alpha produced significant reduction in CO (41+/-2%), dP/dt (26+/-3%), BP (26+/-2%) and Pmcf (27+/-4%; n=6; mean+/-SEM), but increased arterial resistance. There were no significant changes in the plasma levels of NO2-/NO3-levels over time following treatment with TNF-alpha, but there was a significant increase (approximately twofold) in the activity of the iNOS in the lungs of animals treated with TNF-alpha. Administration of CGS 21680 (1.0 microg/kg per min) significantly increased CO (44+/-6%), HR (12+/-2%), Pmcf (24+/-4%) and dP/dt (24+/-5%) in TNF-alpha-treated rats. CGS 21680 also significantly reduced arterial resistance (33+/-2%) without altering resistance to venous return in TNF-alpha-treated rats. While noradrenaline (1.0 microg/kg per min) infusion did not significantly increase CO, it did significantly increase HR (12+/-1%), BP (55+/-9%), Pmcf (47+/-5%), dP/dt (65+/-7%), resistance to venous return (64+/-20%), and arterial resistance (41+/-16%) in TNF-alpha-treated animals. The reduction in BP due to administration of TNF-alpha is the result of significant reduction in CO. Consequently, the decline in CO can be attributed to a combination of a negative inotropic effect as well as a reduction in Pmcf. It is evident that infusion with CGS 21680 could reverse the negative impact of TNF-alpha on CO by increasing dP/dt, Pmcf and HR as well as a reduction in arterial resistance. The fact that noradrenaline did not significantly increase CO in TNF-alpha-treated rats can be attributed to increased arterial resistance as well increase in resistance to venous return.

  13. The PPAR alpha gene is associated with triglyceride, low-density cholesterol and inflammation marker response to fenofibrate intervention: the GOLDN study

    USDA-ARS?s Scientific Manuscript database

    As a peroxisome proliferator-activated receptor alpha (PPAR Alpha) agonist, fenofibrate favorably modulates dyslipidemia and inflammation markers, which are associated with cardiovascular risk. To determine whether variation in the PPAR Alpha receptor gene was associated with lipid and inflammatory ...

  14. Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus.

    PubMed

    Jiang, Dong-Neng; Li, Jian-Tao; Tao, Ya-Xiong; Chen, Hua-Pu; Deng, Si-Ping; Zhu, Chun-Hua; Li, Guang-Li

    2017-05-01

    Melanocortin-4 receptor (Mc4r) function related to reproduction in fish has not been extensively investigated. Here, we report on gene expression changes by real-time PCR following treatment with Mc4r agonists and antagonists in the spotted scat (Scatophagus argus). Using in vitro incubated hypothalamus, the Mc4r nonselective agonist NDP-MSH ([Nle 4 , D-Phe 7 ]-α-melanocyte stimulating hormone; 10 -6 M) and selective agonist THIQ (N-[(3R)-1, 2, 3, 4-Tetrahydroisoquinolinium-3-ylcarbonyl]- (1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-1-yl]-2-oxoethylamine; 10 -7 M) significantly increased the expression of gnrh (Gonadotropin releasing hormone), while the Mc4r nonselective antagonist SHU9119 (Ac-Nle-[Asp-His-DPhe/DNal(2')-Arg-Trp-Lys]-NH2; 10 -6 M) and selective antagonist Ipsen 5i (compound 5i synthesized in Ipsen Research Laboratories; 10 -6 M) significantly inhibited gnrh expression after 3 h of incubation. In incubated pituitary tissue, NDP-MSH and THIQ significantly increased the expression of fshb (Follicle-stimulating hormone beta subunit) and lhb (Luteinizing hormone beta subunit), while SHU9119 and Ipsen 5i significantly decreased fshb and lhb expression after 3 h of incubation. During the in vivo experiment, THIQ (1 mg/kg bw) significantly increased gnrh expression in hypothalamic tissue, as well as the fshb and lhb expression in pituitary tissue 12 h after abdominal injection. Furthermore, Ipsen 5i (1 mg/kg bw) significantly inhibited gnrh expression in hypothalamic tissue, as well as fshb and lhb gene expression in pituitary tissue 12 h after abdominal injection. In summary, Mc4r singling appears to stimulate gnrh expression in the hypothalamus, thereby modulating the synthesis of Fsh and Lh in the pituitary. In addition, Mc4r also appears to directly regulate fshb and lhb levels in the pituitary in spotted scat. Our study suggests that Mc4r, through the hypothalamus and pituitary, participates in reproductive regulation in fish.

  15. Ethanol Inhibition of Constitutively Open N-Methyl-d-Aspartate Receptors

    PubMed Central

    Xu, Minfu; Smothers, C. Thetford; Trudell, James

    2012-01-01

    N-Methyl-d-aspartate (NMDA) receptors gate a slow and calcium-rich component of the postsynaptic glutamate response. Like all ionotropic glutamate receptors, NMDA subunits contain a highly conserved motif (SYTANLAAF) in the transmembrane (TM) 3 domain that is critically involved in channel gating. Mutation of an alanine in this domain (A7; underlined above) results in constitutively open receptors that show reduced sensitivity to several allosteric modulators. In this study, we examined the effects of ethanol, a substance that inhibits NMDA currents via an unknown mechanism, on tonically active NMDA receptors expressed in human embryonic kidney 293 cells. Ethanol (100 mM) inhibited currents from GluN1(A7R)/GluN2A and GluN1(A7R)/GluN2B receptors by approximately 50%, whereas those from GluN1/GluN2B(A7R) receptors were reduced by less than 10%. In cysteine-substituted GluN1 and GluN2 A7 mutants, estimated ethanol IC50 values for agonist-gated currents were 101, 117, 103, and 69 mM for GluN1(A7C)/GluN2A, GluN1(A7C)/GluN2B, GluN1/GluN2A(A7C), and GluN1/GluN2B(A7C) receptors, respectively. After exposure to the thiol-modifying reagent 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET), A7C mutants showed robust agonist-independent currents and reduced sensitivity to ethanol (IC50 values of 371, 256, 715, and 958 mM, respectively, as above). In contrast, cysteine modification of the ligand-binding domain resulted in constitutively open receptors that showed robust ethanol inhibition. Ethanol inhibition of MTSET-treated GluN1(A7C) receptors was further reduced by TM3/TM4 mutations previously shown to reduce ethanol sensitivity of agonist-gated receptors. Overall, these results show that ethanol affects NMDA receptor function at a site distal from agonist binding and appears to exert greater effects via perturbation of GluN2 subunits. PMID:22005043

  16. Receptor protection studies comparing recombinant and native nicotinic receptors: Evidence for a subpopulation of mecamylamine-sensitive native alpha3beta4* nicotinic receptors.

    PubMed

    Free, R Benjamin; Kaser, Daniel J; Boyd, R Thomas; McKay, Dennis B

    2006-01-09

    Studies involving receptor protection have been used to define the functional involvement of specific receptor subtypes in tissues expressing multiple receptor subtypes. Previous functional studies from our laboratory demonstrate the feasibility of this approach when applied to neuronal tissues expressing multiple nicotinic acetylcholine receptors (nAChRs). In the current studies, the ability of a variety of nAChR agonists and antagonists to protect native and recombinant alpha3beta4 nAChRs from alkylation were investigated using nAChR binding techniques. Alkylation of native alpha3beta4* nAChRs from membrane preparations of bovine adrenal chromaffin cells resulted in a complete loss of specific [(3)H]epibatidine binding. This loss of binding to native nAChRs was preventable by pretreatment with the agonists, carbachol or nicotine. The partial agonist, cytisine, produced partial protection. Several nAChR antagonists were also tested for their ability to protect. Hexamethonium and decamethonium were without protective activity while mecamylamine and tubocurarine were partially effective. Addition protection studies were performed on recombinant alpha3beta4 nAChRs. As with native alpha3beta4* nAChRs, alkylation produced a complete loss of specific [(3)H]epibatidine binding to recombinant alpha3beta4 nAChRs which was preventable by pretreatment with nicotine. However, unlike native alpha3beta4* nAChRs, cytisine and mecamylamine, provide no protection for alkylation. These results highlight the differences between native alpha3beta4* nAChRs and recombinant alpha3beta4 nAChRs and support the use of protection assays to characterize native nAChR subpopulations.

  17. The yeast genome may harbor hypoxia response elements (HRE).

    PubMed

    Ferreira, Túlio César; Hertzberg, Libi; Gassmann, Max; Campos, Elida Geralda

    2007-01-01

    The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.

  18. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations

    PubMed Central

    Liu, Lu Tian; Xu, Yan; Tang, Pei

    2010-01-01

    Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662

  19. Characterization of the N-linked high-mannose oligosaccharides of the insulin pro-receptor and mature insulin receptor subunits.

    PubMed Central

    McElduff, A; Watkinson, A; Hedo, J A; Gorden, P

    1986-01-01

    The insulin receptor is synthesized as a 190,000-Mr single-chain precursor that contains exclusively asparagine-N-linked high-mannose-type carbohydrate chains. In this study we have characterized the structure of the pro-receptor oligosaccharides. IM-9 lymphocytes were pulse-chase-labelled with [3H]mannose, and the insulin pro-receptor was isolated by immunoprecipitation and SDS/polyacrylamide-gel electrophoresis. The pro-receptor oligosaccharides were removed from the protein backbone with endoglycosidase H and analysed by h.p.l.c. Immediately after a [3H]mannose pulse the largest oligosaccharide found in the pro-receptor was Glc1Man9GlcNAc2; this structure represented only a small fraction (3%) of the total. The predominant oligosaccharides present in the pro-receptor were Man9GlcNAc2 (25%) and Man8GlcNAc2 (48%). Smaller oligosaccharides were also detected: Man7GlcNAc2 (18%), Man6GlcNAc2 (3%) and Man5GlcNAc2 (3%). The relative distribution of the different oligosaccharides did not change at 1, 2 or 3 h after the pulse with the exception of the rapid disappearance of the Glc1Man9GlcNAc2 component. The mature alpha- and beta-subunits of the insulin receptor are known to contain both high-mannose-type and complex-type oligosaccharides. We have also examined here the structure of the high-mannose chains of these subunits. The predominant species in the alpha-subunit was Man8GlcNAc2 whereas in the beta-subunit it was Man7GlcNAc2. These results demonstrate that most (approx. 75%) oligosaccharides of the insulin pro-receptor are chains of the type Man8GlcNAc2 or Man9GlcNAc2. Thus, assuming that a Glc3Man9GlcNAc2 species is transferred co-translationally, carbohydrate processing of the pro-receptor appears to be very rapid and limited to the removal of the three glucose residues and one mannose residue. Further mannose removal does not occur until the pro-receptor has been proteolytically cleaved. In addition, the degree of mannose trimming appears to be different in the alpha- and beta-subunits. Images Fig. 1. PMID:3827820

  20. Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity.

    PubMed

    Haskell-Luevano, C; Sawyer, T K; Hendrata, S; North, C; Panahinia, L; Stum, M; Staples, D J; Castrucci, A M; Hadley, M F; Hruby, V J

    1996-01-01

    Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity: PEPTIDES 17(6) 995-1002, 1996.-Systematic analysis of fragment derivatives of the superpotent alpha-MSH analogue. Ac-Ser.Tyr-Ser-Nle4-Glu- His-DPhe7-Arg-Trp-Gly-Lys-Pro-Val-NH2(NDP-MSH), led to the discovery of tripeptide agonists possessing prolonged bioactivity in the frog skin assay. Of particular significance to this discovery was Ac-DPhe-Arg-DTrp-NH2, which was the most potent tripeptide in this series exhibiting sustained melanotropic activity. Different pharmacophore models appear to exist that are dependent on the substructure and stereochemistry of the MSH(6-9) "active site." The tripeptides Ac-DPhe-Arg-Trp-NH2, Ac-DPhe-Arg-DTrp-NH2, and Ac-DPhe-DArg-Trp-NH2 stereo-chemical combinations require only Phe7-Xaa8-Trp9, whereas Ac-DPhe-DArg-DTrp-NH2, Ac-Phe-Arg-DTrp-NH2, and Ac-Phe-Arg-Trp-NH2 additionally require His4 for minimal biological activity. Ac-DPhe-Arg-DTrp-NH2 represents a novel prototype lead for the development of MSH-based peptidomimetic agonists.

  1. Spacing requirements for interactions between the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase and the cAMP receptor protein.

    PubMed Central

    Lloyd, G S; Busby, S J; Savery, N J

    1998-01-01

    During transcription initiation at bacterial promoters, the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) can interact with DNA-sequence elements (known as UP elements) and with activator proteins. We have constructed a series of semi-synthetic promoters carrying both an UP element and a consensus DNA-binding site for the Escherichia coli cAMP receptor protein (CRP; a factor that activates transcription by making direct contacts with alphaCTD). At these promoters, the UP element was located at a variety of distances upstream of the CRP-binding site, which was fixed at position -41.5 bp upstream of the transcript start. At some positions, the UP element caused enhanced promoter activity whereas, at other positions, it had very little effect. In no case was the CRP-dependence of the promoter relieved. DNase I and hydroxyl-radical footprinting were used to study ternary RNA polymerase-CRP-promoter complexes formed at two of the most active of these promoters, and co-operativity between the binding of CRP and purified alpha subunits was studied. The footprints show that alphaCTD binds to the UP element as it is displaced upstream but that this displacement does not prevent alphaCTD from being contacted by CRP. Models to account for this are discussed. PMID:9461538

  2. Linking GABA(A) receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication.

    PubMed

    Blednov, Y A; Benavidez, J M; Black, M; Chandra, D; Homanics, G E; Rudolph, U; Harris, R A

    2013-04-01

    GABA type A receptors (GABA(A)-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABA(A)-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011). All together, they indicate that aversive property of ethanol is dependent on ethanol action on α2-containing GABA(A)-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABA(A)-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 (-/-) and α3 (-/Y) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Transfer in SDS of biotinylated proteins from acrylamide gels to an avidin-coated membrane filter.

    PubMed

    Karlin, Arthur; Wang, Chaojian; Li, Jing; Xu, Qiang

    2004-06-01

    Avidin was covalently linked to aldehyde-derivatized polyethersulfone membrane filters. These filters were used in Western blot analysis of proteins reacted with biotinylation reagents and electrophoresed in sodium dodecyl sulfate (SDS) on polyacrylamide gels. Electrophoretic transfer from the gels to these filters was in 0.1% SDS, in which the covalently bound avidin retained its biotin-binding capacity. We compared Western blots on avidin-coated membrane filters of biotinylated and nonbiotinylated forms of mouse immunoglobulin G (IgG), mouse IgG heavy chain, muscle-type acetylcholine receptor alpha subunit, and fused alpha and beta subunits of receptor. Biotinylated proteins were captured with high specificity compared to their nonbiotinylated counterparts and sensitively detected on the avidin-coated membranes.

  4. Influence of thyroid status on hepatic alpha 1-adrenoreceptor responsiveness.

    PubMed

    Daza, F J; Parrilla, R; Martín-Requero, A

    1997-12-01

    The present work aimed to elucidate the influence of thyroid functional status on the alpha 1-adrenoreceptor-induced activation of hepatic metabolic functions. The experiments were performed in either a nonrecirculating liver perfusion system featuring continuous monitoring of portal pressure, PO2, pCa, and pH, or isolated hepatocytes from euthyroid, hyperthyroid, and hypothyroid rats. Hypothyroidism decreased the alpha 1-adrenergic stimulation of respiration, glycogen breakdown, and gluconeogenesis. These effects were accompanied by a decreased intracellular Ca2+ mobilization corroborating that those processes are regulated by the Ca(2+)-dependent branch of the alpha 1-adrenoreceptor signaling pathway. Moreover, in hyperthyroid rats the alpha 1-adrenergic-induced increase in cytosolic Ca2+ was enhanced, and glucose synthesis or mobilization was not altered. The thyroid status influenced neither the alpha 1-adrenergic stimulation of vascular smooth muscle contraction nor the alpha 1-agonist-induced intracellular alkalinization and protein kinase C (PKC) activation. Thus the distinct impairment of the Ca(2+)-dependent branch of the alpha 1-adrenoreceptor signaling pathway by thyroid status provides a useful tool to investigate the role played by each signaling pathway, Ca2+ or PKC, in controlling hepatic functions.

  5. Population patch-clamp electrophysiology analysis of recombinant GABAA alpha1beta3gamma2 channels expressed in HEK-293 cells.

    PubMed

    Hollands, Emma C; Dale, Tim J; Baxter, Andrew W; Meadows, Helen J; Powell, Andrew J; Clare, Jeff J; Trezise, Derek J

    2009-08-01

    Gamma-amino butyric acid (GABA)-activated Cl- channels are critical mediators of inhibitory postsynaptic potentials in the CNS. To date, rational design efforts to identify potent and selective GABA(A) subtype ligands have been hampered by the absence of suitable high-throughput screening approaches. The authors describe 384-well population patch-clamp (PPC) planar array electrophysiology methods for the study of GABA(A) receptor pharmacology. In HEK293 cells stably expressing human alpha1beta3gamma2 GABA(A) channels, GABA evoked outward currents at 0 mV of 1.05 +/- 0.08 nA, measured 8 s post GABA addition. The I(GABA) was linear and reversed close to the theoretical E(Cl) (-56 mV). Concentration-response curve analysis yielded a mean pEC(50) value of 5.4 and Hill slope of 1.5, and for a series of agonists, the rank order of potency was muscimol > GABA > isoguvacine. A range of known positive modulators, including diazepam and pentobarbital, produced concentration-dependent augmentation of the GABA EC( 20) response (1 microM). The competitive antagonists bicuculline and gabazine produced concentration-dependent, parallel, rightward displacement of GABA curves with pA(2) and slope values of 5.7 and 1.0 and 6.7 and 1.0, respectively. In contrast, picrotoxin (0.2-150 microM) depressed the maximal GABA response, implying a non-competitive antagonism. Overall, the pharmacology of human alpha1beta3gamma2 GABA(A) determined by PPC was highly similar to that obtained by conventional patch-clamp methods. In small-scale single-shot screens, Z' values of >0.5 were obtained in agonist, modulator, and antagonist formats with hit rates of 0% to 3%. The authors conclude that despite the inability of the method to resolve the peak agonist responses, PPC can rapidly and usefully quantify pharmacology for the alpha1beta3gamma2 GABA(A) isoform. These data suggest that PPC may be a valuable approach for a focused set and secondary screening of GABA(A) receptors and other slow ligand-gated ion channels.

  6. Oligomeric status of the dihydropyridine receptor in aged skeletal muscle.

    PubMed

    Ryan, M; Carlson, B M; Ohlendieck, K

    2000-10-01

    A prominent feature of aging is represented by a decrease in muscle mass and strength. Abnormalities in Ca2+ -regulatory membrane complexes are involved in many muscular disorders. In analogy, we determined potential age-related changes in a key component of excitation-contraction coupling, the dihydropyridine receptor. Immunoblotting of the microsomal fraction from aged rabbit muscle revealed a drastic decline in the voltage-sensing alpha1-subunit of this transverse-tubular receptor, but only marginally altered expression of its auxiliary alpha(2)-subunit and the Na+/K+ -ATPase. A shift to slower fibre type characteristics was indicated by an age-related increase in the slow calsequestrin isoform. Chemical crosslinking analysis showed that the triad receptor complex has a comparable tendency of protein-protein interactions in young and aged muscles. Hence, a reduced expression and not modified oligomerization of the principal dihydropyridine receptor subunit might be involved in triggering impaired triadic signal transduction and abnormal Ca2+ -homeostasis resulting in a progressive functional decline of skeletal muscles. Copyright 2001 Academic Press.

  7. Targeting mechanisms of high voltage-activated Ca2+ channels.

    PubMed

    Herlitze, Stefan; Xie, Mian; Han, Jing; Hümmer, Alexander; Melnik-Martinez, Katya V; Moreno, Rosa L; Mark, Melanie D

    2003-12-01

    Functional voltage-dependent Ca2+ channel complexes are assembled by three to four subunits: alpha1, beta, alpha2delta subunits (C. Leveque et al., 1994, J. Biol Chem. 269, 6306-6312; M. W. McEnery et al., 1991, Proc. Natl. Acad. Sci. U.S.A. 88, 11095-11099) and at least in muscle cells also y subunits (B. M. Curtis and W. A. Catterall, 1984, Biochemistry 23, 2113-2118). Ca2+ channels mediate the voltage-dependent Ca2+ influx in subcellular compartments, triggering such diverse processes as neurotransmitter release, dendritic action potentials, excitation-contraction, and excitation-transcription coupling. The targeting of biophysically defined Ca2+ channel complexes to the correct subcellular structures is, thus, critical to proper cell and physiological functioning. Despite their importance, surprisingly little is known about the targeting mechanisms by which Ca2+ channel complexes are transported to their site of function. Here we summarize what we know about the targeting of Ca2+ channel complexes through the cell to the plasma membrane and subcellular structures.

  8. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together

    PubMed Central

    Pathare, Ganesh Ramnath; Nagy, István; Bohn, Stefan; Unverdorben, Pia; Hubert, Agnes; Körner, Roman; Nickell, Stephan; Lasker, Keren; Sali, Andrej; Tamura, Tomohiro; Nishioka, Taiki; Förster, Friedrich; Baumeister, Wolfgang; Bracher, Andreas

    2012-01-01

    Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP. PMID:22187461

  9. Mutations affecting two adjacent amino acid residues in the alpha subunit of RNA polymerase block transcriptional activation by the bacteriophage P2 Ogr protein.

    PubMed Central

    Ayers, D J; Sunshine, M G; Six, E W; Christie, G E

    1994-01-01

    The bacteriophage P2 ogr gene product is a positive regulator of transcription from P2 late promoters. The ogr gene was originally defined by compensatory mutations that overcame the block to P2 growth imposed by a host mutation, rpoA109, in the gene encoding the alpha subunit of RNA polymerase. DNA sequence analysis has confirmed that this mutation affects the C-terminal region of the alpha subunit, changing a leucine residue at position 290 to a histidine (rpoAL290H). We have employed a reporter plasmid system to screen other, previously described, rpoA mutants for effects on activation of a P2 late promoter and have identified a second allele, rpoA155, that blocks P2 late transcription. This mutation lies just upstream of rpoAL290H, changing the leucine residue at position 289 to a phenylalanine (rpoAL289F). The effect of the rpoAL289F mutation is not suppressed by the rpoAL290H-compensatory P2 ogr mutation. P2 ogr mutants that overcome the block imposed by rpoAL289F were isolated and characterized. Our results are consistent with a direct interaction between Ogr and the alpha subunit of RNA polymerase and support a model in which transcription factor contact sites within the C terminus of alpha are discrete and tightly clustered. PMID:8002564

  10. Pegvisomant treatment in gigantism caused by a growth hormone-secreting giant pituitary adenoma.

    PubMed

    Müssig, K; Gallwitz, B; Honegger, J; Strasburger, C J; Bidlingmaier, M; Machicao, F; Bornemann, A; Ranke, M B; Häring, H-U; Petersenn, S

    2007-03-01

    Gigantism is rare with the majority of cases caused by a growth hormone (GH)-secreting pituitary adenoma. Treatment options for GH-secreting pituitary adenomas have been widened with the availability of long-acting dopamine agonists, depot preparations of somatostatin analogues, and recently the GH receptor antagonist pegvisomant. A 23-year-old male patient presented with continuous increase in height during the past 6 years due to a GH-secreting giant pituitary adenoma. Because of major intracranial extension and failure of octreotide treatment to shrink the tumour, the tumour was partially resected by a trans-frontal surgical approach. At immunohistochemistry, the tumour showed a marked expression of GH and a sparsely focal expression of prolactin. Somatostatin receptors (sst) 1-5 were not detected. Tumour tissue weakly expressed dopamine receptor type 2. The Gs alpha subunit was intact. Conversion from somatostatin analogue to pegvisomant normalized insulin-like-growth-factor-I (IGF-I) levels and markedly improved glucose tolerance. Pegvisomant is a potent treatment option in patients with pituitary gigantism. In patients who do not respond to somatostatin analogues, knowledge of the SST receptor status may shorten the time to initiation of pegvisomant treatment.

  11. Spectral and Temporal Properties of the Alpha and Beta Subunits and (alpha Beta) Monomer Isolated from Nostoc SP. Using Picosecond Laser Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Dagen, Aaron J.

    1985-12-01

    The fluorescence decay profiles, relative quantum yield and transmission of the (alpha), (beta) and ((alpha)(beta)) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated ((TURN)4 x 10('13) to (TURN)4 x 10('15) photons-cm('-2) per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the (alpha) subunit, 666 ps in the (beta) subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f(,(beta)) chromophore, an apparent result of aggregation effects.

  12. Spectral and temporal properties of the alpha and beta subunits and (alpha beta) monomer isolated from Nostoc sp. using picosecond laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Dagen, A. J.

    1985-12-01

    The fluorescence decay profiles, relative quantum yield and transmission of the alpha, beta and (alpha beta) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated (approx. 4x10 to the 13th power to 4x10 to the 15th power photons/sq cm per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the alpha subunit, 666 ps in the beta subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f beta chromophore, an apparent result of aggregation effects.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petroulakis, E.; Cao, Z.; Salo, T.

    Mutations in the HEXA gene that encodes the {alpha}-subunit of the heterodimeric lysosomal enzyme {beta}-hexosaminidase A, or Hex A ({alpha}{beta}), cause G{sub M2} gangliosidosis, type 1. The infantile form (Tay-Sachs disease) results when there is no residual Hex A activity, while less severe and more variable clinical phenotypes result when residual Hex A activity is present. A non-Jewish male who presented with an acute psychotic episode at age 16 was diagnosed with a subacute encephalopathic form of G{sub M2} gangliosidosis. At age 19, chronic psychosis with intermittent acute exacerbations remains the most disabling symptom in this patient and his affectedmore » brother although both exhibit some ataxia and moderately severe dysarthria. We have found a 4 bp insertion (+TATC 1278) associated with infantile Tay-Sachs disease on one allele; no previously identified mutation was found on the second allele. SSCP analysis detected a shift in exon 13 and sequencing revealed a G1422C mutation in the second allele that results in a Trp474Cys substitution. The presence of the mutation was confirmed by the loss of HaeIII and ScrFI sites in exon 13 PCR products from the subjects and their father. The mutation was introduced into the {alpha}-subunit cDNA and Hex S ({alpha}{alpha}) and Hex A ({alpha}{beta}) were transiently expressed in monkey COS-7 cells. The Trp474Cys mutant protein had approximately 5% and 12% of wild-type Hex S and Hex A activity, respectively. Western blot analysis revealed a small amount of residual mature {alpha}-subunit and a normal level of precursor protein. We conclude that the Trp474Cys mutation is the cause of the Hex A deficiency associated with a subacute (juvenile-onset) phenotype in this patient. Like other mutations in exon 13 of HEXA, it appears to affect intracellular processing. Studies of the defect in intracellular processing are in progress.« less

  14. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    PubMed

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to the 5-HT(1B) receptor, the 5-HT(1A) receptor signal plays the dominant role in improving the anti-immobility effect of fluoxetine in the IFN-alpha-induced depression; (2) combination of the 5-HT(1A) antagonist with subactive fluoxetine can be helpful in IFN-alpha-induced depression treatment.

  15. Ligand-Induced Conformational Change in the α7 Nicotinic Receptor Ligand Binding Domain

    PubMed Central

    Henchman, Richard H.; Wang, Hai-Long; Sine, Steven M.; Taylor, Palmer; McCammon, J. Andrew

    2005-01-01

    Molecular dynamics simulations of a homology model of the ligand binding domain of the α7 nicotinic receptor are conducted with a range of bound ligands to induce different conformational states. Four simulations of 15 ns each are run with no ligand, antagonist d-tubocurarine (dTC), agonist acetylcholine (ACh), and agonist ACh with potentiator Ca2+, to give insight into the conformations of the active and inactive states of the receptor and suggest the mechanism for conformational change. The main structural factor distinguishing the active and inactive states is that a more open, symmetric arrangement of the five subunits arises for the two agonist simulations, whereas a more closed and asymmetric arrangement results for the apo and dTC cases. Most of the difference arises in the lower portion of the ligand binding domain near its connection to the adjacent transmembrane domain. The transfer of the more open state to the transmembrane domain could then promote ion flow through the channel. Variation in how subunits pack together with no ligand bound appears to give rise to asymmetry in the apo case. The presence of dTC expands the receptor but induces rotations in alternate directions in adjacent subunits that lead to an asymmetric arrangement as in the apo case. Ca2+ appears to promote a slightly greater expansion in the subunits than ACh alone by stabilizing the C-loop and ACh positions. Although the simulations are unlikely to be long enough to view the full conformational changes between open and closed states, a collection of different motions at a range of length scales are observed that are likely to participate in the conformational change. PMID:15665135

  16. Contrasting metabolic effects of antihypertensive agents.

    PubMed

    Velliquette, Rodney A; Ernsberger, Paul

    2003-12-01

    Hypertension often coexists with hyperlipidemia, insulin resistance, and glucose intolerance, a comorbidity known as metabolic syndrome X. Different antihypertensives have mixed effects on these associated abnormalities. We compared three antihypertensives in the spontaneously hypertensive obese rat model of syndrome X. Moxonidine (4 mg/kg), an imidazoline and alpha2-adrenergic agonist, alpha-methyldopa (200 mg/kg), an alpha2-adrenergic agonist, or the vasodilator hydralazine (10 mg/kg) was given orally for 15 d. All three agents lowered blood pressure equally. Moxonidine significantly reduced fasting plasma insulin, glucagon, cholesterol, triglycerides, and free fatty acids (FFA) compared with untreated controls. In contrast, syndrome X markers were not affected by alpha-methyldopa treatment, and hydralazine reduced only glucagon and FFA. Relative to untreated controls, moxonidine improved glucose tolerance as shown by reduced glucose area under the curve (AUC) (13.6 +/- 2.4 versus 42.5 +/- 9.9 g x min/dl). Insulin AUC was increased (7.4 +/- 0.9 versus 3.9 +/- 1.8 microg x min/ml) as was the plasma C-peptide response to the glucose load. In contrast, alpha-methyldopa and hydralazine worsened glucose tolerance (68 +/- 26 and 110 +/- 21 g x min/ml, respectively) and significantly reduced insulin AUC (2.5 +/- 0.8 and -2.3 +/- 1.0 microg x min/ml, respectively) compared with controls. Moxonidine reduced but alpha-methyldopa and hydralazine elevated glucagon levels after the glucose load. Contrary to the "hemodynamic hypothesis" for the metabolic actions of antihypertensives, which predicts roughly equal benefits, only moxonidine had a positive impact on comorbidities. This unique action suggests a role for direct stimulation of imidazoline receptors.

  17. Comparison of prostaglandin F2alpha, bimatoprost (prostamide), and butaprost (EP2 agonist) on Cyr61 and connective tissue growth factor gene expression.

    PubMed

    Liang, Yanbin; Li, Chen; Guzman, Victor M; Evinger, Albert J; Protzman, Charles E; Krauss, Achim H-P; Woodward, David F

    2003-07-18

    Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog Bimatoprost and an EP2-selective agonist affects only Cyr61.

  18. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.

    PubMed

    Kagawa, H K; Osipiuk, J; Maltsev, N; Overbeek, R; Quaite-Randall, E; Joachimiak, A; Trent, J D

    1995-11-10

    One of the most abundant proteins in the hyperthermophilic archaeon Sulfolobus shibatae is the 59 kDa heat shock protein (TF55) that is believed to form a homo-oligomeric double ring complex structurally similar to the bacterial chaperonins. We discovered a second protein subunit in the S. shibatae ring complex (referred to as alpha) that is stoichiometric with TF55 (renamed beta). The gene and flanking regions of alpha were cloned and sequenced and its inferred amino acid sequence has 54.4% identity and 74.4% similarity to beta. Transcription start sites for both alpha and beta were mapped and three potential transcription regulatory regions were identified. Northern analyses of cultures shifted from normal growth temperatures (70 to 75 degrees C) to heat shock temperatures (85 to 90 degrees C) indicated that the levels of alpha and beta mRNAs increased during heat shock, but at all temperatures their relative proportions remained constant. Monitoring protein synthesis by autoradiography of total proteins from cultures pulse labeled with L(-)[35S]methionine at normal and heat shock temperatures indicated significant increases in alpha and beta synthesis during heat shock. Under extreme heat shock conditions (> or = 90 degrees C) alpha and beta appeared to be the only two proteins synthesized. The purified alpha and beta subunits combined to form high molecular mass complexes with similar mobilities on native polyacrylamide gels to the complexes isolated directly from cells. Equal proportions of the two subunits gave the greatest yield of the complex, which we refer to as a "rosettasome". It is argued that the rosettasome consists of two homo-oligomeric rings; one of alpha and the other of beta. Polyclonal antibodies against alpha and beta from S. shibatae cross-reacted with proteins of similar molecular mass in 10 out of the 17 archaeal species tested, suggesting that the two rosettasome proteins are highly conserved among the archaea. The archaeal sequences were aligned with bacterial and eukaryotic chaperonins to generate a phylogenetic tree. The tree reveals the close relationship between the archaeal rosettasomes and the eukaryotic TCP1 protein family and the distant relationship to the bacterial GroEL/HSP60 proteins.

  19. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.

    PubMed

    Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L

    1996-07-01

    Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.

  20. Differences between magnetoencephalographic (MEG) spectral profiles of drugs acting on GABA at synaptic and extrasynaptic sites: a study in healthy volunteers.

    PubMed

    Nutt, David; Wilson, Sue; Lingford-Hughes, Anne; Myers, Jim; Papadopoulos, Andreas; Muthukumaraswamy, Suresh

    2015-01-01

    A range of medications target different aspects of the GABA system; understanding their effects is important to inform further drug development. Effects on the waking EEG comparing these mechanisms have not been reported; in this study we compare the effects on resting MEG spectra of the benzodiazepine receptor agonist zolpidem, the delta sub-unit selective agonist gaboxadol (also known as THIP) and the GABA reuptake inhibitor tiagabine. These were two randomised, single-blind, placebo-controlled, crossover studies in healthy volunteers, one using zolpidem 10 mg, gaboxadol 15 mg and placebo, and the other tiagabine 15 mg and placebo. Whole head MEG recordings and individual MEG spectra were divided into frequency bands. Baseline spectra were subtracted from each post-intervention spectra and then differences between intervention and placebo compared. After zolpidem there were significant increases in beta frequencies and reduction in alpha frequency power; after gaboxadol and tiagabine there were significant increases in power at all frequencies up to beta. Enhancement of tonic inhibition via extrasynaptic receptors by gaboxadol gives rise to a very different MEG signature from the synaptic action of zolpidem. Tiagabine theoretically can affect both types of receptor; from these MEG results it is likely that the latter is the more prominent effect here. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. AlphaII-spectrin interacts with Tes and EVL, two actin-binding proteins located at cell contacts.

    PubMed

    Rotter, Björn; Bournier, Odile; Nicolas, Gael; Dhermy, Didier; Lecomte, Marie-Christine

    2005-06-01

    The spectrin-based membrane skeleton, a multi-protein scaffold attached to diverse cellular membranes, is presumed to be involved in the stabilization of membranes, the establishment of membrane domains as well as in vesicle trafficking and nuclear functions. Spectrin tetramers made of alpha- and beta-subunits are linked to actin microfilaments, forming a network that binds a multitude of proteins. The most prevalent alpha-spectrin subunit in non-erythroid cells, alphaII-spectrin, contains two particular spectrin repeats in its central region, alpha9 and alpha10, which host an Src homology 3 domain, a tissue-specific spliced sequence of 20 residues, a calmodulin-binding site and major cleavage sites for caspases and calpains. Using yeast two-hybrid screening of kidney libraries, we identified two partners of the alpha9-alpha10 repeats: the potential tumour suppressor Tes, an actin-binding protein mainly located at focal adhesions; and EVL (Ena/vasodilator-stimulated phosphoprotein-like protein), another actin-binding protein, equally recruited at focal adhesions. Interactions between spectrin and overexpressed Tes and EVL were confirmed by co-immunoprecipitation. In vitro studies showed that the interaction between Tes and spectrin is mediated by a LIM (Lin-11, Isl-1 and Mec3) domain of Tes and by the alpha10 repeat of alphaII-spectrin whereas EVL interacts with the Src homology 3 domain located within the alpha9 repeat. Moreover, we describe an in vitro interaction between Tes and EVL, and a co-localization of these two proteins at focal adhesions. These interactions between alphaII-spectrin, Tes and EVL indicate new functions for spectrin in actin dynamics and focal adhesions.

  2. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit.

    PubMed

    Venn, R M; Bradshaw, C J; Spencer, R; Brealey, D; Caudwell, E; Naughton, C; Vedio, A; Singer, M; Feneck, R; Treacher, D; Willatts, S M; Grounds, R M

    1999-12-01

    Dexmedetomidine, a highly selective and potent alpha2-adrenergic agonist, has a potentially useful role as a sedative agent in patients requiring intensive care. As part of a larger European multicentre trial, a total of 119 postoperative cardiac and general surgical patients requiring ventilation and sedation in an intensive care unit were enrolled in four centres in the United Kingdom. One hundred and five patients were randomly allocated to receive either dexmedetomidine or placebo with rescue sedation and analgesia provided by midazolam and morphine, respectively. Compared with the control group, intubated patients receiving dexmedetomidine required 80% less midazolam [mean 4.9 (5.8) microg.kg-1.h-1 vs. 23.7 (27.5) microg.kg-1.h-1, p < 0.0001], and 50% less morphine [11.2 (13.4) microg.kg-1.h-1 vs. 21.5 (19.4) microg.kg-1.h-1,p = 0.0006]. Cardiovascular effects and adverse events could be predicted from the known properties of alpha-2 agonists. In conclusion, dexmedetomidine is a useful agent for the provision of postoperative analgesia and sedation.

  3. Seminal plasma proteome of electroejaculated Bos indicus bulls.

    PubMed

    Rego, J P A; Crisp, J M; Moura, A A; Nouwens, A S; Li, Y; Venus, B; Corbet, N J; Corbet, D H; Burns, B M; Boe-Hansen, G B; McGowan, M R

    2014-07-01

    The present study describes the seminal plasma proteome of Bos indicus bulls. Fifty-six, 24-month old Australian Brahman sires were evaluated and subjected to electroejaculation. Seminal plasma proteins were separated by 2-D SDS-PAGE and identified by mass spectrometry. The percentage of progressively motile and morphologically normal sperm of the bulls were 70.4 ± 2.3 and 64 ± 3.2%, respectively. A total of 108 spots were identified in the 2-D maps, corresponding to 46 proteins. Binder of sperm proteins accounted for 55.8% of all spots detected in the maps and spermadhesins comprised the second most abundant constituents. Other proteins of the Bos indicus seminal plasma include clusterin, albumin, transferrin, metalloproteinase inhibitor 2, osteopontin, epididymal secretory protein E1, apolipoprotein A-1, heat shock 70 kDa protein, glutathione peroxidase 3, cathelicidins, alpha-enolase, tripeptidyl-peptidase 1, zinc-alpha-2-glycoprotein, plasma serine protease inhibitor, beta 2-microglobulin, proteasome subunit beta type-4, actin, cathepsins, nucleobinding-1, protein S100-A9, hemoglobin subunit alpha, cadherin-1, angiogenin-1, fibrinogen alpha and beta chain, ephirin-A1, protein DJ-1, serpin A3-7, alpha-2-macroglobulin, annexin A1, complement factor B, polymeric immunoglobulin receptor, seminal ribonuclease, ribonuclease-4, prostaglandin-H2 d-isomerase, platelet-activating factor acetylhydrolase, and phosphoglycerate kinase 1. In conclusion, this work uniquely portrays the Bos indicus seminal fluid proteome, based on samples from a large set of animals representing the Brahman cattle of the tropical Northern Australia. Based on putative biochemical attributes, seminal proteins act during sperm maturation, protection, capacitation and fertilization. Copyright © 2014. Published by Elsevier B.V.

  4. Inferring High-Confidence Human Protein-Protein Interactions

    DTIC Science & Technology

    2012-01-01

    comprised proteins that had the same specific func- tion or were subunits of the same protein complex, such as branched chain keto acid E1 alpha (BCKDHA...and branched chain keto acid E1 beta (BCKDHB) [3,29], and dynein cytoplasmic 2 intermediate chain 1 (D2LIC) and dynein cytoplasmic 2 heavy chain 1...474.3 28.0 1337.0 BCKDHA 5 Branched chain keto acid dehydro. E1, alpha BCKDHB 4 Branched chain keto acid dehydro. E1, beta 4 471.4 29.0 1337.5 ARTN 2

  5. Alpha1-adrenergic drugs affect the development and expression of ethanol-induced behavioral sensitization.

    PubMed

    Kim, Andrezza Kyunmi; Souza-Formigoni, Maria Lucia Oliveira

    2013-11-01

    According to the incentive sensitization theory, addiction is caused primarily by drug-induced sensitization in the brain mesocorticolimbic systems. After repeated ethanol administration, some animals develop psychomotor sensitization, a phenomenon which occurs simultaneously with the incentive sensitization. Recent evidence suggests the involvement of norepinephrine (NE) in drug addiction, with a critical role in the ethanol reinforcing properties. In this study we evaluated the influence of an agonist (phenylephrine) and an antagonist (prazosin) of alpha1-adrenergic receptors on the development and expression of behavioral sensitization to ethanol. Male Swiss mice, previously treated with ethanol or saline, were challenged with the combined administration of ethanol (or saline) with alpha1-adrenergic drugs. Prazosin (0.1; 0.5 and 1.0 mg/kg) and phenylephrine (1.0 and 2.0 mg/kg) administration blocked the expression of behavioral sensitization to ethanol. In another set of experiments, mice treated with 0.5mg/kg of prazosin+ethanol did not present the development of behavioral sensitization. However, when challenged with ethanol alone, they showed the same sensitized levels of locomotor activity of those presented by mice previously treated with ethanol and saline. Phenylephrine (1.0 mg/kg) treatment did not affect the development of behavioral sensitization. Based on this data, we concluded that the alteration of alpha1-adrenergic receptors functioning, by the administration agonists or antagonists, affected the locomotor sensitization to the stimulant effect of ethanol, suggesting that the normal functioning of the noradrenergic system is essential to its development and expression. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Toll-like receptor prestimulation increases phagocytosis of Escherichia coli DH5alpha and Escherichia coli K1 strains by murine microglial cells.

    PubMed

    Ribes, Sandra; Ebert, Sandra; Czesnik, Dirk; Regen, Tommy; Zeug, Andre; Bukowski, Stephanie; Mildner, Alexander; Eiffert, Helmut; Hanisch, Uwe-Karsten; Hammerschmidt, Sven; Nau, Roland

    2009-01-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality. When an infection occurs, Toll-like receptors (TLRs) expressed by microglial cells can recognize pathogen-associated molecular patterns and activate multiple steps in the inflammatory response that coordinate the brain's local defense, such as phagocytosis of invading pathogens. An upregulation of the phagocytic ability of reactive microglia could improve the host defense in immunocompromised patients against pathogens such as E. coli. Here, murine microglial cultures were stimulated with the TLR agonists Pam(3)CSK(4) (TLR1/TLR2), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9) for 24 h. Upon stimulation, levels of tumor necrosis factor alpha and the neutrophil chemoattractant CXCL1 were increased, indicating microglial activation. Phagocytic activity was studied after adding either E. coli DH5alpha or E. coli K1 strains. After 60 and 90 min of bacterial exposure, the number of ingested bacteria was significantly higher in cells prestimulated with TLR agonists than in unstimulated controls (P < 0.01). Addition of cytochalasin D, an inhibitor of actin polymerization, blocked >90% of phagocytosis. We also analyzed the ability of microglia to kill the ingested E. coli strains. Intracellularly surviving bacteria were quantified at different time points (90, 150, 240, and 360 min) after 90 min of phagocytosis. The number of bacteria killed intracellularly after 6 h was higher in cells primed with the different TLR agonists than in unstimulated microglia. Our data suggest that microglial stimulation by the TLR system can increase bacterial phagocytosis and killing. This approach could improve central nervous system resistance to infections in immunocompromised patients.

  7. Thinking in cycles: MWC is a good model for acetylcholine receptor-channels

    PubMed Central

    Auerbach, Anthony

    2012-01-01

    Abstract Neuromuscular acetylcholine receptors have long been a model system for understanding the mechanisms of operation of ligand-gated ion channels and fast chemical synapses. These five subunit membrane proteins have two allosteric (transmitter) binding sites and a distant ion channel domain. Occupation of the binding sites by agonist molecules transiently increases the probability that the channel is ion-permeable. Recent experiments show that the Monod, Wyman and Changeux formalism for allosteric proteins, originally developed for haemoglobin, is an excellent model for acetylcholine receptors. By using mutations and single-channel electrophysiology, the gating equilibrium constants for receptors with zero, one or two bound agonist molecules, and the agonist association and dissociation rate constants from both the closed- and open-channel conformations, have been estimated experimentally. The change in affinity for each transmitter molecule between closed and open conformations provides ∼–5.1 kcal mol−1 towards the global gating isomerization of the protein. PMID:21807612

  8. Role of Integrin Subunits in Mesenchymal Stem Cell Differentiation and Osteoblast Maturation on Graphitic Carbon-coated Microstructured Surfaces

    PubMed Central

    Olivares-Navarrete, Rene; Rodil, Sandra E.; Hyzy, Sharon L.; Dunn, Ginger R.; Almaguer-Flores, Argelia; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2β1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra<0.4μm], rough [Ra≥3.4μm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and β1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins β1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin β1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition. PMID:25770999

  9. Local expression of interferon-alpha and interferon receptors in cervical intraepithelial neoplasia.

    PubMed

    Tirone, Nelson R; Peghini, Bethanea C; Barcelos, Ana Cristina M; Murta, Eddie F C; Michelin, Marcia A

    2009-12-01

    The present study evaluated mRNA expression of interferon-alpha (IFN-alpha), IFN-alpha receptor subunits (IFNAR-1 and IFNAR-2) and an IFN-stimulated gene encoding the enzyme 2',5'-oligoadenylate synthetase (2'5'OAS) in biopsies on patients with varying grades of cervical intraepithelial neoplasia (CIN I, II and III). Uterine cervix biopsies were collected from women with CIN I, II and III (n = 28) and controls without CIN lesions or human papilloma virus (HPV) infection (n = 17). The presence of high and low-risk HPV DNA was determined using hybrid capture. The mRNA levels of IFNAR-1, IFNAR-2, IFN-alpha and 2'5'OAS were determined by RT-PCR with specific primers. The control group exhibited a greater frequency of IFNAR-1 expression (10/17; 58.3%) than the CIN samples (4/28; 14.2%) (P = 0.0018), while, the expression of IFNAR-2 was also greater in the control samples (11/17; 64.7%) than in the patients with lesions (2/28; 7.1%) (P = 0.0018). Importantly, simultaneous expression of both receptors was observed only in the control group (8/17; 47.0%) (P = 0.0001). Among the CIN samples, there was one case of low expression of mRNA of IFNAR-1 and IFNAR-2. IFN-alpha was present in 14.2% (4/28) of the CIN samples but was not expressed in the control group. mRNA 2'5'OAS were expressed in 28.5% (8/28) of the CIN samples and 11.7% (2/17) of the control samples (not statistically significant). Fifty percent (14/28) of the CIN samples were positive for HPV DNA. Cervical biopsy samples from control women or those without neoplasia or HPV infection displayed higher IFN-alpha receptor expression than those with CIN, while simultaneous expression of both IFN-alpha receptor subunits was found only in the control group. There was no significant difference in mRNA expression of IFN-alpha and 2'5'OAS between the control and CIN groups. Then we concluded that the samples obtained from patients with CIN present low levels of the IFN-alpha receptor mRNA.

  10. Alpha-2 adrenergic agonists for the prevention of cardiac complications among adults undergoing surgery.

    PubMed

    Duncan, Dallas; Sankar, Ashwin; Beattie, W Scott; Wijeysundera, Duminda N

    2018-03-06

    The surgical stress response plays an important role on the pathogenesis of perioperative cardiac complications. Alpha-2 adrenergic agonists attenuate this response and may help prevent postoperative cardiac complications. To determine the efficacy and safety of α-2 adrenergic agonists for reducing mortality and cardiac complications in adults undergoing cardiac surgery and non-cardiac surgery. We searched CENTRAL (2017, Issue 4), MEDLINE (1950 to April Week 4, 2017), Embase (1980 to May 2017), the Science Citation Index, clinical trial registries, and reference lists of included articles. We included randomized controlled trials that compared α-2 adrenergic agonists (i.e. clonidine, dexmedetomidine or mivazerol) against placebo or non-α-2 adrenergic agonists. Included trials had to evaluate the efficacy and safety of α-2 adrenergic agonists for preventing perioperative mortality or cardiac complications (or both), or measure one or more relevant outcomes (i.e. death, myocardial infarction, heart failure, acute stroke, supraventricular tachyarrhythmia and myocardial ischaemia). Two authors independently assessed trial quality, extracted data and independently performed computer entry of abstracted data. We contacted study authors for additional information. Adverse event data were gathered from the trials. We evaluated included studies using the Cochrane 'Risk of bias' tool, and the quality of the evidence underlying pooled treatment effects using GRADE methodology. Given the clinical heterogeneity between cardiac and non-cardiac surgery, we analysed these subgroups separately. We expressed treatment effects as pooled risk ratios (RR) with 95% confidence intervals (CI). We included 47 trials with 17,039 participants. Of these studies, 24 trials only included participants undergoing cardiac surgery, 23 only included participants undergoing non-cardiac surgery and eight only included participants undergoing vascular surgery. The α-2 adrenergic agonist studied was clonidine in 21 trials, dexmedetomidine in 24 trials and mivazerol in two trials.In non-cardiac surgery, there was high quality evidence that α-2 adrenergic agonists led to a similar risk of all-cause mortality compared with control groups (1.3% with α-2 adrenergic agonists versus 1.7% with control; RR 0.80, 95% CI 0.61 to 1.04; participants = 14,081; studies = 16). Additionally, the risk of cardiac mortality was similar between treatment groups (0.8% with α-2 adrenergic agonists versus 1.0% with control; RR 0.86, 95% CI 0.60 to 1.23; participants = 12,525; studies = 5, high quality evidence). The risk of myocardial infarction was probably similar between treatment groups (RR 0.94, 95% CI 0.69 to 1.27; participants = 13,907; studies = 12, moderate quality evidence). There was no associated effect on the risk of stroke (RR 0.93, 95% CI 0.55 to 1.56; participants = 11,542; studies = 7; high quality evidence). Conversely, α-2 adrenergic agonists probably increase the risks of clinically significant bradycardia (RR 1.59, 95% CI 1.18 to 2.13; participants = 14,035; studies = 16) and hypotension (RR 1.24, 95% CI 1.03 to 1.48; participants = 13,738; studies = 15), based on moderate quality evidence.There was insufficient evidence to determine the effect of α-2 adrenergic agonists on all-cause mortality in cardiac surgery (RR 0.52, 95% CI 0.26 to 1.04; participants = 1947; studies = 16) and myocardial infarction (RR 1.01, 95% CI 0.43 to 2.40; participants = 782; studies = 8), based on moderate quality evidence. There was one cardiac death in the clonidine arm of a study of 22 participants. Based on very limited data, α-2 adrenergic agonists may have reduced the risk of stroke (RR 0.37, 95% CI 0.15 to 0.93; participants = 1175; studies = 7; outcome events = 18; low quality evidence). Conversely, α-2 adrenergic agonists increased the risk of bradycardia from 6.4% to 12.0% (RR 1.88, 95% CI 1.35 to 2.62; participants = 1477; studies = 10; moderate quality evidence), but their effect on hypotension was uncertain (RR 1.19, 95% CI 0.87 to 1.64; participants = 1413; studies = 9; low quality evidence).These results were qualitatively unchanged in subgroup analyses and sensitivity analyses. Our review concludes that prophylactic α-2 adrenergic agonists generally do not prevent perioperative death or major cardiac complications. For non-cardiac surgery, there is moderate-to-high quality evidence that these agents do not prevent death, myocardial infarction or stroke. Conversely, there is moderate quality evidence that these agents have important adverse effects, namely increased risks of hypotension and bradycardia. For cardiac surgery, there is moderate quality evidence that α-2 adrenergic agonists have no effect on the risk of mortality or myocardial infarction, and that they increase the risk of bradycardia. The quality of evidence was inadequate to draw conclusions regarding the effects of alpha-2 agonists on stroke or hypotension during cardiac surgery.

  11. ENU mutagenesis identifies mice with cardiac fibrosis and hepatic steatosis caused by a mutation in the mitochondrial trifunctional protein beta-subunit.

    PubMed

    Kao, Hsiao-Jung; Cheng, Ching-Feng; Chen, Yen-Hui; Hung, Shuen-Iu; Huang, Cheng-Chih; Millington, David; Kikuchi, Tateki; Wu, Jer-Yuarn; Chen, Yuan-Tsong

    2006-12-15

    Using the metabolomics-guided screening coupled to N-ethyl-N-nitrosourea-mediated mutagenesis, we identified mice that exhibited elevated levels of long-chain acylcarnitines. Whole genome homozygosity mapping with 262 SNP markers mapped the disease gene to chromosome 5 where candidate genes Hadha and Hadhb, encoding the mitochondria trifunctional protein (MTP) alpha- and beta-subunits, respectively, are located. Direct sequencing revealed a normal alpha-subunit, but detected a nucleotide T-to-A transversion in exon 14 (c.1210T>A) of beta-subunit (Hadhb) which resulted in a missense mutation of methionine to lysine (M404K). Western blot analysis showed a significant reduction of both the alpha- and beta-subunits, consistent with reduced enzyme activity in both the long-chain 3-hydroxyacyl-CoA dehydrogenase and the long-chain 3-ketoacyl-CoA thiolase activities. These mice had a decreased weight gain and cardiac arrhythmias which manifested from a prolonged PR interval to a complete atrio-ventricular dissociation, and died suddenly between 9 and 16 months of age. Histopathological studies showed multifocal cardiac fibrosis and hepatic steatosis. This mouse model will be useful to further investigate the mechanisms underlying arrhythmogenesis relating to lipotoxic cardiomyopathy and to investigate pathophysiology and treatment strategies for human MTP deficiency.

  12. Astrocytes express specific variants of CaM KII delta and gamma, but not alpha and beta, that determine their cellular localizations.

    PubMed

    Vallano, M L; Beaman-Hall, C M; Mathur, A; Chen, Q

    2000-04-01

    Multiple isoforms of type II Ca(2+)-calmodulin-dependent kinase (CaM KII) are composed of two major neuron-specific subunits, designated alpha and beta, and two less well-characterized subunits that are also expressed in non-neuronal tissues, designated delta and gamma. Regulated expression of these 4 gene products, and several variants produced by alternative splicing, shows temporal and regional specificity and influences intracellular targeting. We used immunoblotting and RT-PCR to analyze subunit and variant expression and distribution in cultured cerebellar astrocytes and neurons, and whole cerebellar cortex from rodent brain. The data indicate that: (i) astrocytes express a single splice variant of delta, namely delta(2); (ii) like neurons, astrocytes express two forms of CaM KII gamma; gamma(B) and gamma(A); (iii) these CaM KII variants are enriched in the supernate fraction in astrocytes, and the particulate fraction in neurons; (iv) unlike neurons, astrocytes do not express detectable levels of alpha or beta subunits or their respective splice variants. The results indicate that neurons and astrocytes express distinct CaM KII subunits and variants that localize to distinct subcellular compartments and, by inference, exert distinct cellular functions. Copyright 2000 Wiley-Liss, Inc.

  13. Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan.

    PubMed

    Bozzi, Manuela; Bianchi, Marzia; Sciandra, Francesca; Paci, Maurizio; Giardina, Bruno; Brancaccio, Andrea; Cicero, Daniel O

    2003-11-25

    Dystroglycan (DG) is an adhesion molecule playing a crucial role for tissue stability during both early embriogenesis and adulthood and is composed by two tightly interacting subunits: alpha-DG, membrane-associated and highly glycosylated, and the transmembrane beta-DG. Recently, by solid-phase binding assays and NMR experiments, we have shown that the C-terminal domain of alpha-DG interacts with a recombinant extracellular fragment of beta-DG (positions 654-750) independently from glycosylation and that the linear binding epitope is located between residues 550 and 565 of alpha-DG. In order to elucidate which moieties of beta-DG are specifically involved in the complex with alpha-DG, the ectodomain has been recombinantly expressed and purified in a labeled ((13)C,(15)N) form and studied by multidimensional NMR. Although it represents a natively unfolded protein domain, we obtained an almost complete backbone assignment. Chemical shift index, (1)H-(15)N heteronuclear single-quantum coherence and nuclear Overhauser effect (HSQC-NOESY) spectra and (3)J(HN,H)(alpha) coupling constant values confirm that this protein is highly disordered, but (1)H-(15)N steady-state NOE experiments indicate that the protein presents two regions of different mobility. The first one, between residues 659 and 722, is characterized by a limited degree of mobility, whereas the C-terminal portion, containing about 30 amino acids, is highly flexible. The binding of beta-DG(654-750) to the C-terminal region of the alpha subunit, alpha-DG(485-620), has been investigated, showing that the region of beta-DG(654-750) between residues 691 and 719 is involved in the interaction.

  14. Constitutive Activation of the G-Protein Subunit G[alpha]s within Forebrain Neurons Causes PKA-Dependent Alterations in Fear Conditioning and Cortical "Arc" mRNA Expression

    ERIC Educational Resources Information Center

    Kelly, Michele P.; Cheung, York-Fong; Favilla, Christopher; Siegel, Steven J.; Kanes, Stephen J.; Houslay, Miles D.; Abel, Ted

    2008-01-01

    Memory formation requires cAMP signaling; thus, this cascade has been of great interest in the search for cognitive enhancers. Given that medications are administered long-term, we determined the effects of chronically increasing cAMP synthesis in the brain by expressing a constitutively active isoform of the G-protein subunit G[alpha]s…

  15. A conformational switch in the inhibitory gamma-subunit of PDE6 upon enzyme activation by transducin.

    PubMed

    Granovsky, A E; Artemyev, N O

    2001-11-06

    In response to light, a photoreceptor G protein, transducin, activates cGMP-phosphodiesterase (PDE6) by displacing the inhibitory gamma-subunits (Pgamma) from the enzyme's catalytic sites. Evidence suggests that the activation of PDE6 involves a conformational change of the key inhibitory C-terminal domain of Pgamma. In this study, the C-terminal region of Pgamma, Pgamma-73-85, has been targeted for Ala-scanning mutagenesis to identify the point-to-point interactions between Pgamma and the PDE6 catalytic subunits and to probe the nature of the conformational change. Pgamma mutants were tested for their ability to inhibit PDE6 and a chimeric PDE5-conePDE6 enzyme containing the Pgamma C-terminus-binding site of cone PDE. This analysis has revealed that in addition to previously characterized Ile86 and Ile87, important inhibitory contact residues of Pgamma include Asn74, His75, and Leu78. The patterns of mutant PDE5-conePDE6 enzyme inhibition suggest the interaction between the PgammaAsn74/His75 sequence and Met758 of the cone PDE6alpha' catalytic subunit. This interaction, and the interaction between the PgammaIle86/Ile87 and PDE6alpha'Phe777/Phe781 residues, is most consistent with an alpha-helical structure of the Pgamma C-terminus. The analysis of activation of PDE6 enzymes containing Pgamma mutants with Ala-substituted transducin-contact residues demonstrated the critical role of PgammaLeu76. Accordingly, we hypothesize that the initial step in PDE6 activation involves an interaction of transducin-alpha with PgammaLeu76. This interaction introduces a bend into the alpha-helical structure of the Pgamma C-terminus, allowing transducin-alpha to further twist the C-terminus thereby uncovering the catalytic pocket of PDE6.

  16. UBXD4, a UBX-containing protein, regulates the cell surface number and stability of alpha3-containing nicotinic acetylcholine receptors.

    PubMed

    Rezvani, Khosrow; Teng, Yanfen; Pan, Yaping; Dani, John A; Lindstrom, Jon; García Gras, Eduardo A; McIntosh, J Michael; De Biasi, Mariella

    2009-05-27

    Adaptor proteins are likely to modulate spatially and temporally the trafficking of a number of membrane proteins, including neuronal nicotinic acetylcholine receptors (nAChRs). A yeast two-hybrid screen identified a novel UBX-containing protein, UBXD4, as one of the cytosolic proteins that interact directly with the alpha3 and alpha4 nAChR subunits. The function of UBX-containing proteins is largely unknown. Immunoprecipitation and confocal microscopy confirmed the interaction of UBXD4 with alpha3-containing nAChRs (alpha3* nAChRs) expressed in HEK293 cells, PC12 cells, and rat cortical neurons. Overexpression of UBXD4 in differentiated PC12 cells (dPC12) increased nAChR cell surface expression, especially that of the alpha3beta2 subtype. These findings were corroborated by electrophysiology, immunofluorescent staining, and biotinylation of surface receptors. Silencing of UBXD4 led to a significant reduction of alpha3* nAChRs in rat cortical neurons and dPC12 cells. Biochemical and immunofluorescence studies of endogenous UBXD4 showed that the protein is located in both the ER and cis-Golgi compartments. Our investigations also showed that the alpha3 subunit is ubiquitinated and that UBXD4 can interfere with its ubiquitination and consequent degradation by the proteasome. Our data suggest that UBXD4 modulates the distribution of alpha3* nAChRs between specialized intracellular compartments and the plasma membrane. This effect is achieved by controlling the stability of the alpha3 subunit and, consequently, the number of receptors at the cell surface.

  17. Molecular cloning of pituitary glycoprotein alpha-subunit and follicle stimulating hormone and chorionic gonadotropin beta-subunits from New World squirrel monkey and owl monkey.

    PubMed

    Scammell, Jonathan G; Funkhouser, Jane D; Moyer, Felricia S; Gibson, Susan V; Willis, Donna L

    2008-02-01

    The goal of this study was to characterize the gonadotropins expressed in pituitary glands of the New World squirrel monkey (Saimiri sp.) and owl monkey (Aotus sp.). The various subunits were amplified from total RNA from squirrel monkey and owl monkey pituitary glands by reverse transcription-polymerase chain reaction and the deduced amino acid sequences compared to those of other species. Mature squirrel monkey and owl monkey glycoprotein hormone alpha-polypeptides (96 amino acids in length) were determined to be 80% homologous to the human sequence. The sequences of mature beta subunits of follicle stimulating hormone (FSHbeta) from squirrel monkey and owl monkey (111 amino acids in length) are 92% homologous to human FSHbeta. New World primate glycoprotein hormone alpha-polypeptides and FSHbeta subunits showed conservation of all cysteine residues and consensus N-linked glycosylation sites. Attempts to amplify the beta-subunit of luteinizing hormone from squirrel monkey and owl monkey pituitary glands were unsuccessful. Rather, the beta-subunit of chorionic gonadotropin (CG) was amplified from pituitaries of both New World primates. Squirrel monkey and owl monkey CGbeta are 143 and 144 amino acids in length and 77% homologous with human CGbeta. The greatest divergence is in the C terminus, where all four sites for O-linked glycosylation in human CGbeta, responsible for delayed metabolic clearance, are predicted to be absent in New World primate CGbetas. It is likely that CG secreted from pituitary of New World primates exhibits a relatively short half-life compared to human CG.

  18. Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats.

    PubMed

    Chan, Jiangping; Guan, Xin; Ni, Yiling; Luo, Lilu; Yang, Liqiang; Zhang, Pengyue; Zhang, Jichuan; Chen, Yanmei

    2017-03-15

    The Lateral Habenula (LHb) plays an important role in emotion and cognition. Recent experiments suggest that LHb has functional interaction with the hippocampus and plays an important role in spatial learning. LHb is reciprocally connected with midbrain monoaminergic brain areas such as the ventral tegmental area (VTA). However, the role of dopamine type 1 receptor (D1R) in LHb in learning and memory is not clear yet. In the present study, D1R agonist or antagonist were administered bilaterally into the LHb in rats. We found that both D1R agonist and antagonist impaired the acquisition of contextual fear memory in rats. D1R agonist or antagonist also impaired long term potentiation (LTP) in hippocampal CA3-CA1 synapses in freely moving rats and attenuated learning induced phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at Ser831 and Ser845 in hippocampus. Taken together, our results suggested that dysfunction of D1R in LHb affected the function of hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raulli, R.; Crews, F.T.

    The potency of various alpha adrenergic compounds on stimulation of phosphatidylinositol (PI) hydrolysis was determined using (/sup 3/H)-inositol labelled cerebral cortical slices. Norepinephrine-induced PI hydrolysis was inhibited by the alpha/sub 1/ selective antagonist prazosin (1 ..mu..M) but not the beta receptor antagonist propranolol (1 ..mu..M). Tramazoline, (-)-ephedrine, and (+/-)-phenylpropanolamine were all found to be partial agonists at 1 mM concentrations. Clonidine, naphazoline, trazodone, and the novel antidepressant mianserin at concentrations of 100 ..mu..M to 1 mM produced no significant increase in PI hydrolysis above control levels. The relationship between responses and receptor binding will be discussed.

  20. The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity.

    PubMed

    Cambridge, Emma L; McIntyre, Zoe; Clare, Simon; Arends, Mark J; Goulding, David; Isherwood, Christopher; Caetano, Susana S; Reviriego, Carmen Ballesteros; Swiatkowska, Agnieszka; Kane, Leanne; Harcourt, Katherine; Adams, David J; White, Jacqueline K; Speak, Anneliese O

    2017-01-01

    Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  1. The PPARdelta agonist, GW501516, promotes fatty acid oxidation but has no direct effect on glucose utilisation or insulin sensitivity in rat L6 skeletal muscle cells.

    PubMed

    Dimopoulos, Nikolaos; Watson, Maria; Green, Charlotte; Hundal, Harinder S

    2007-10-02

    Peroxisome proliferator-activated receptor-delta (PPARdelta) activation enhances skeletal muscle fatty acid oxidation and improves whole body glucose homeostasis and insulin sensitivity. Recently, GW501516, a selective PPARdelta agonist, was reported to increase glucose uptake in human skeletal myotubes by an AMPK-dependent mechanism that may contribute to the improved glucose tolerance. Here, we demonstrate that whilst GW501516 increases expression of PGC-1alpha and CPT-1 and stimulates fatty-acid oxidation in L6 myotubes, it fails to enhance insulin sensitivity, AMPK activity or glucose uptake and storage. Our findings exclude sarcolemmal glucose transport as a potential target for the therapeutic action of PPARdelta agonists in skeletal muscle.

  2. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  3. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Lindstrom, Jon

    2018-06-01

    Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2) 2 α5, (α4β2) 2 β3 and (α6β2) 2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  4. Functional conservation of RNA polymerase II in fission and budding yeasts.

    PubMed

    Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P

    2000-02-04

    The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.

  5. Characterization of the N-linked high-mannose oligosaccharides of the insulin pro-receptor and mature insulin receptor subunits.

    PubMed

    McElduff, A; Watkinson, A; Hedo, J A; Gorden, P

    1986-11-01

    The insulin receptor is synthesized as a 190,000-Mr single-chain precursor that contains exclusively asparagine-N-linked high-mannose-type carbohydrate chains. In this study we have characterized the structure of the pro-receptor oligosaccharides. IM-9 lymphocytes were pulse-chase-labelled with [3H]mannose, and the insulin pro-receptor was isolated by immunoprecipitation and SDS/polyacrylamide-gel electrophoresis. The pro-receptor oligosaccharides were removed from the protein backbone with endoglycosidase H and analysed by h.p.l.c. Immediately after a [3H]mannose pulse the largest oligosaccharide found in the pro-receptor was Glc1Man9GlcNAc2; this structure represented only a small fraction (3%) of the total. The predominant oligosaccharides present in the pro-receptor were Man9GlcNAc2 (25%) and Man8GlcNAc2 (48%). Smaller oligosaccharides were also detected: Man7GlcNAc2 (18%), Man6GlcNAc2 (3%) and Man5GlcNAc2 (3%). The relative distribution of the different oligosaccharides did not change at 1, 2 or 3 h after the pulse with the exception of the rapid disappearance of the Glc1Man9GlcNAc2 component. The mature alpha- and beta-subunits of the insulin receptor are known to contain both high-mannose-type and complex-type oligosaccharides. We have also examined here the structure of the high-mannose chains of these subunits. The predominant species in the alpha-subunit was Man8GlcNAc2 whereas in the beta-subunit it was Man7GlcNAc2. These results demonstrate that most (approx. 75%) oligosaccharides of the insulin pro-receptor are chains of the type Man8GlcNAc2 or Man9GlcNAc2. Thus, assuming that a Glc3Man9GlcNAc2 species is transferred co-translationally, carbohydrate processing of the pro-receptor appears to be very rapid and limited to the removal of the three glucose residues and one mannose residue. Further mannose removal does not occur until the pro-receptor has been proteolytically cleaved. In addition, the degree of mannose trimming appears to be different in the alpha- and beta-subunits.

  6. Regulation of mGlu4 metabotropic glutamate receptor signaling by type-2 G-protein coupled receptor kinase (GRK2).

    PubMed

    Iacovelli, L; Capobianco, L; Iula, M; Di Giorgi Gerevini, V; Picascia, A; Blahos, J; Melchiorri, D; Nicoletti, F; De Blasi, A

    2004-05-01

    We examined the role of G-protein coupled receptor kinase-2 (GRK2) in the homologous desensitization of mGlu4 metabotropic glutamate receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Receptor activation with the agonist l-2-amino-4-phosphonobutanoate (l-AP4) stimulated at least two distinct signaling pathways: inhibition of cAMP formation and activation of the mitogen-activated protein kinase (MAPK) pathway [assessed by Western blot analysis of phosphorylated extracellular signal-regulated kinase (ERK) 1 and 2]. Activation of both pathways was attenuated by pertussis toxin. Overexpression of GRK2 (but not GRK4) largely attenuated the stimulation of the MAPK pathway by l-AP4, whereas it slightly potentiated the inhibition of FSK-stimulated cAMP formation. Transfection with a kinase-dead mutant of GRK2 (GRK2-K220R) or with the C-terminal fragment of GRK2 also reduced the mGlu4-mediated stimulation of MAPK, suggesting that GRK2 binds to the Gbetagamma subunits to inhibit signal propagation toward the MAPK pathway. This was confirmed by the evidence that GRK2 coimmunoprecipitated with Gbetagamma subunits in an agonist-dependent manner. Finally, neither GRK2 nor its kinase-dead mutant had any effect on agonist-induced mGlu4 receptor internalization in HEK293 cells transiently transfected with GFP-tagged receptors. Agonist-dependent internalization was instead abolished by a negative-dominant mutant of dynamin, which also reduced the stimulation of MAPK pathway by l-AP4. We speculate that GRK2 acts as a "switch molecule" by inhibiting the mGlu4 receptor-mediated stimulation of MAPK and therefore directing the signal propagation toward the inhibition of adenylyl cyclase.

  7. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160.

    PubMed

    Perrin, Arnaud; Rousseau, Joël; Tremblay, Jacques P

    2017-03-17

    Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR) and proteins (immunohistochemistry and western blot) were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Involvement of the Clock Gene Rev-erb alpha in the Regulation of Glucagon Secretion in Pancreatic Alpha-Cells

    PubMed Central

    Vieira, Elaine; Marroquí, Laura; Figueroa, Ana Lucia C.; Merino, Beatriz; Fernandez-Ruiz, Rebeca; Nadal, Angel; Burris, Thomas P.; Gomis, Ramon; Quesada, Ivan

    2013-01-01

    Disruption of pancreatic clock genes impairs pancreatic beta-cell function, leading to the onset of diabetes. Despite the importance of pancreatic alpha-cells in the regulation of glucose homeostasis and in diabetes pathophysiology, nothing is known about the role of clock genes in these cells. Here, we identify the clock gene Rev-erb alpha as a new intracellular regulator of glucagon secretion. Rev-erb alpha down-regulation by siRNA (60–70% inhibition) in alphaTC1-9 cells inhibited low-glucose induced glucagon secretion (p<0.05) and led to a decrease in key genes of the exocytotic machinery. The Rev-erb alpha agonist GSK4112 increased glucagon secretion (1.6 fold) and intracellular calcium signals in alphaTC1-9 cells and mouse primary alpha-cells, whereas the Rev-erb alpha antagonist SR8278 produced the opposite effect. At 0.5 mM glucose, alphaTC1-9 cells exhibited intrinsic circadian Rev-erb alpha expression oscillations that were inhibited by 11 mM glucose. In mouse primary alpha-cells, glucose induced similar effects (p<0.001). High glucose inhibited key genes controlled by AMPK such as Nampt, Sirt1 and PGC-1 alpha in alphaTC1-9 cells (p<0.05). AMPK activation by metformin completely reversed the inhibitory effect of glucose on Nampt-Sirt1-PGC-1 alpha and Rev-erb alpha. Nampt inhibition decreased Sirt1, PGC-1 alpha and Rev-erb alpha mRNA expression (p<0.01) and glucagon release (p<0.05). These findings identify Rev-erb alpha as a new intracellular regulator of glucagon secretion via AMPK/Nampt/Sirt1 pathway. PMID:23936124

  9. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH(2) at the mouse melanocortin receptors: part 2 modifications at the Phe position.

    PubMed

    Holder, Jerry Ryan; Bauzo, Rayna M; Xiang, Zhimin; Haskell-Luevano, Carrie

    2002-07-04

    The melanocortin pathway is an important participant in skin pigmentation, steroidogenesis, obesity, energy homeostasis and exocrine gland function. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp," and it has been well-documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library, based upon the template Ac-His-DPhe-Arg-Trp-NH(2), consisting of 26 members that have been modified at the DPhe(7) position (alpha-MSH numbering) and pharmacologically characterized for agonist and antagonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the identification of the tetrapeptide Ac-His-(pI)DPhe-Arg-Trp-NH(2) that is a full nanomolar agonist at the mMC1 and mMC5 receptors, a mMC3R partial agonist with potent antagonist activity (pA(2) = 7.25, K(i) = 56 nM) and, but unexpectedly, is a potent agonist at the mMC4R (EC(50) = 25 nM). This ligand possesses novel melanocortin receptor pharmacology, as compared to previously reported peptides, and is potentially useful for in vivo studies to differentiate MC3R vs MC4R physiological roles in animal models, such as primates, where "knockout" animals are not viable options. The DNal(2') substitution for DPhe resulted in a mMC3R partial agonist with antagonist activity (pA(2) = 6.5, K(i) = 295 nM) and a mMC4R (pA(2) = 7.8, K(i) = 17 nM) antagonist possessing 60- and 425-fold decreased potency, respectively, as compared with SHU9119 at these receptors. Examination of this DNal(2')-containing tetrapeptide at the F254S and F259S mutant mMC4Rs resulted in agonist activity of this mMC4R tetrapeptide antagonist, similar to that observed for the SHU9119 peptide, supporting our previously proposed hypothesis that the Phe 254 and 259 transmembrane six receptor residues are important for differentiating melanocortin sequence-based MC4R antagonists vs the agouti-related protein (AGRP) sequence-based antagonists.

  10. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    NASA Technical Reports Server (NTRS)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  11. The role of nicotinic receptor alpha 7 subunits in nicotine discrimination.

    PubMed

    Stolerman, I P; Chamberlain, S; Bizarro, L; Fernandes, C; Schalkwyk, L

    2004-03-01

    The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. The experiments described here use mice lacking the alpha7 subunit of nicotinic receptors to investigate the role of alpha7-containing receptors in nicotine discrimination. Wild-type and alpha7-knockout mice were trained in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement. Mutant mice exhibited baseline rates of lever-pressing as low as 52.2% of rates in wild-type controls (n=21-24). Mutant and wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) at a similar rate (n=10-12) and reached similar final levels of accuracy (71.9 +/- 4.4% and 90.8 +/- 3.1% after 60 training sessions for 0.4 and 0.8 mg/kg training doses, respectively, in mutant mice, as compared with 75.0 +/- 6.5% and 87.6 +/- 4.8% for wild types). The genotypes exhibited similar steep dose-response curves for nicotine discrimination. In both genotypes, dose-response curves for mice trained with 0.8 mg/kg of nicotine were displaced three- to four-fold to the right as compared with those for the mice trained with the smaller dose. The predominant effect of nicotine on the overall rate of responding was a reduction at the largest doses tested and there was no difference between the genotypes. The results suggest that nicotinic receptors containing the alpha7 subunit do not contribute to the discriminative stimulus or response-rate-depressant effects of nicotine, although they may regulate baseline rates of operant responding.

  12. Phosphorylation-dependent autoinhibition of myosin light chain phosphatase accounts for Ca2+ sensitization force of smooth muscle contraction.

    PubMed

    Khromov, Alexander; Choudhury, Nandini; Stevenson, Andra S; Somlyo, Avril V; Eto, Masumi

    2009-08-07

    The reversible regulation of myosin light chain phosphatase (MLCP) in response to agonist stimulation and cAMP/cGMP signals plays an important role in the regulation of smooth muscle (SM) tone. Here, we investigated the mechanism underlying the inhibition of MLCP induced by the phosphorylation of myosin phosphatase targeting subunit (MYPT1), a regulatory subunit of MLCP, at Thr-696 and Thr-853 using glutathione S-transferase (GST)-MYPT1 fragments having the inhibitory phosphorylation sites. GST-MYPT1 fragments, including only Thr-696 and only Thr-853, inhibited purified MLCP (IC(50) = 1.6 and 60 nm, respectively) when they were phosphorylated with RhoA-dependent kinase (ROCK). The activities of isolated catalytic subunits of type 1 and type 2A phosphatases (PP1 and PP2A) were insensitive to either fragment. Phospho-GST-MYPT1 fragments docked directly at the active site of MLCP, and this was blocked by a PP1/PP2A inhibitor microcystin (MC)-LR or by mutation of the active sites in PP1. GST-MYPT1 fragments induced a contraction of beta-escin-permeabilized ileum SM at constant pCa 6.3 (EC(50) = 2 microm), which was eliminated by Ala substitution of the fragment at Thr-696 or by ROCK inhibitors or 8Br-cGMP. GST-MYPT1-(697-880) was 5-times less potent than fragments including Thr-696. Relaxation induced by 8Br-cGMP was not affected by Ala substitution at Ser-695, a known phosphorylation site for protein kinase A/G. Thus, GST-MYPT1 fragments are phosphorylated by ROCK in permeabilized SM and mimic agonist-induced inhibition and cGMP-induced activation of MLCP. We propose a model in which MYPT1 phosphorylation at Thr-696 and Thr-853 causes an autoinhibition of MLCP that accounts for Ca(2+) sensitization of smooth muscle force.

  13. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis.

    PubMed

    Lennon, V A; Lambert, E H; Leiby, K R; Okarma, T B; Talib, S

    1991-04-01

    A synthetic gene encoding the 210 N-terminal residues of the alpha-subunit of the nicotinic acetylcholine receptor (AChR) of human skeletal muscle was cloned into an inducible expression plasmid to produce a fusion protein in high yield in Escherichia coli. Like native human AChR, the recombinant human alpha 1-210 protein induced AChR-binding, AChR-modulating, and AChR-blocking autoantibodies in rats when injected once intradermally as an emulsion in CFA, with Bordetella pertussis vaccine as supplementary adjuvant. The minimum dose of recombinant protein required to induce biochemical signs of experimental autoimmune myasthenia gravis (EAMG) with 100% incidence was 2.2 micrograms. With 6.6 to 22 micrograms, serum levels of autoantibodies were persistent, and clinically apparent EAMG lasted more than a month. Clinical, electrophysiological, and biochemical indices of EAMG induced by doses of 66 micrograms or more were more uniformly severe and persistent, with 33% fatality. Rats receiving a control extract of E. coli containing plasmid without the alpha 1-210 codon insert, with adjuvants, did not develop autoantibodies or signs of EAMG. This highly reproducible new model of EAMG induced by a recombinant human autoantigen should be valuable for testing Ag-specific immunotherapeutic strategies that might be applicable to treating acquired myasthenia gravis in humans.

  14. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells inmore » the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. {alpha}1 and {alpha}3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers' blood is pro-fibrogenic, through actions on hHSCs expressed nAChRs. Therefore, CS, via its nicotine content, may worsen liver fibrosis. Moreover, nicotinic receptor antagonists may have utility as novel anti-fibrotic agents.« less

  15. Olfactory Bulb [alpha][subscript 2]-Adrenoceptor Activation Promotes Rat Pup Odor-Preference Learning via a cAMP-Independent Mechanism

    ERIC Educational Resources Information Center

    Shakhawat, Amin MD.; Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    In this study, three lines of evidence suggest a role for [alpha][subscript 2]-adrenoreceptors in rat pup odor-preference learning: olfactory bulb infusions of the [alpha][subscript 2]-antagonist, yohimbine, prevents learning; the [alpha][subscript 2]-agonist, clonidine, paired with odor, induces learning; and subthreshold clonidine paired with…

  16. Discovery and structural optimization of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-ones as RORc inverse agonists.

    PubMed

    Wu, Xi-Shan; Wang, Rui; Xing, Yan-Li; Xue, Xiao-Qian; Zhang, Yan; Lu, Yong-Zhi; Song, Yu; Luo, Xiao-Yu; Wu, Chun; Zhou, Yu-Lai; Jiang, Jian-Qin; Xu, Yong

    2016-11-01

    Retinoic acid receptor-related orphan nuclear receptors (RORs) are orphan nuclear receptors that show constitutive activity in the absence of ligands. Among 3 subtypes of RORs, RORc is a promising therapeutic target for the treatment of Th17-mediated autoimmune diseases. Here, we report novel RORc inverse agonists discovered through structure-based drug design. Based on the structure of compound 8, a previously described agonist of RORa, a series of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives were designed and synthesized. The interaction between the compounds and RORc was detected at molecular level using AlphaScreen assay. The compounds were further examined in 293T cells transfected with RORc and luciferase reporter gene. Thermal stability shift assay was used to evaluate the effects of the compounds on protein stability. A total of 27 derivatives were designed and synthesized. Among them, the compound 22b was identified as the most potent RORc inverse agonist. Its IC 50 values were 2.39 μmol/L in AlphaScreen assay, and 0.82 μmol/L in inhibition of the cell-based luciferase reporter activity. Furthermore, the compound 22b displayed a 120-fold selectivity for RORc over other nuclear receptors. Moreover, a molecular docking study showed that the structure-activity relationship was consistent with the binding mode of compound 22b in RORc. 4-(4-(Benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives are promising candidates for the treatment of Th17-mediated autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.

  17. Cloning and characterization of the mouse alpha1C/A-adrenergic receptor gene and analysis of an alpha1C promoter in cardiac myocytes: role of an MCAT element that binds transcriptional enhancer factor-1 (TEF-1).

    PubMed

    O'Connell, T D; Rokosh, D G; Simpson, P C

    2001-05-01

    alpha1-Adrenergic receptor (AR) subtypes in the heart are expressed by myocytes but not by fibroblasts, a feature that distinguishes alpha1-ARs from beta-ARs. Here we studied myocyte-specific expression of alpha1-ARs, focusing on the subtype alpha1C (also called alpha1A), a subtype implicated in cardiac hypertrophic signaling in rat models. We first cloned the mouse alpha1C-AR gene, which consisted of two exons with an 18 kb intron, similar to the alpha1B-AR gene. The receptor coding sequence was >90% homologous to that of rat and human. alpha1C-AR transcription in mouse heart was initiated from a single Inr consensus sequence at -588 from the ATG; this and a putative polyadenylation sequence 8.5 kb 3' could account for the predominant 11 kb alpha1C mRNA in mouse heart. A 5'-nontranscribed fragment of 4.4 kb was active as a promoter in cardiac myocytes but not in fibroblasts. Promoter activity in myocytes required a single muscle CAT (MCAT) element, and this MCAT bound in vitro to recombinant and endogenous transcriptional enhancer factor-1. Thus, alpha1C-AR transcription in cardiac myocytes shares MCAT dependence with other cardiac-specific genes, including the alpha- and beta-myosin heavy chains, skeletal alpha-actin, and brain natriuretic peptide. However, the mouse alpha1C gene was not transcribed in the neonatal heart and was not activated by alpha1-AR and other hypertrophic agonists in rat myocytes, and thus differed from other MCAT-dependent genes and the rat alpha1C gene.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolau, Basil J; Wurtele, Eve S; Oliver, David J

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method ofmore » producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.« less

  19. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice.

    PubMed

    Choi, Soonwook; Yu, Eunah; Kim, Daesoo; Urbano, Francisco J; Makarenko, Vladimir; Shin, Hee-Sup; Llinás, Rodolfo R

    2010-08-15

    The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming alpha1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming alpha1G subunit for T-type calcium channel were used. In vitro intracellular recording from IO neurons reveals that the amplitude and frequency of sinusoidal subthreshold oscillations (SSTOs) were reduced in the CaV2.1-/- mice. In the CaV3.1-/- mice, IO neurons also showed altered patterns of SSTOs and the probability of SSTO generation was significantly lower (15%, 5 of 34 neurons) than that of wild-type (78%, 31 of 40 neurons) or CaV2.1-/- mice (73%, 22 of 30 neurons). In addition, the low-threshold calcium spike and the sustained endogenous oscillation following rebound potentials were absent in IO neurons from CaV3.1-/- mice. Moreover, the phase-reset dynamics of oscillatory properties of single neurons and neuronal clusters in IO were remarkably altered in both CaV2.1-/- and CaV3.1-/- mice. These results suggest that both alpha1A P/Q- and alpha1G T-type calcium channels are required for the dynamic control of neuronal oscillations in the IO. These findings were supported by results from a mathematical IO neuronal model that incorporated T and P/Q channel kinetics.

  20. Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor I{m}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coseno,M.; Martin, G.; Berger, C.

    Cleavage factor Im is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic {alpha}/{beta}/{alpha} fold and a conserved catalytic sequence or Nudix box. We present heremore » the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Angstroms, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.« less

  1. Alpha1- and alpha2-containing GABAA receptor modulation is not necessary for benzodiazepine-induced hyperphagia.

    PubMed

    Morris, H V; Nilsson, S; Dixon, C I; Stephens, D N; Clifton, P G

    2009-06-01

    Benzodiazepines increase food intake, an effect attributed to their ability to enhance palatability. We investigated which GABA(A) receptor subtypes may be involved in mediating benzodiazepine-induced hyperphagia. The role of the alpha2 subtype was investigated by observing the effects of midazolam, on the behavioural satiety sequence in mice with targeted deletion of the alpha2 gene (alpha2 knockout). Midazolam (0.125, 0.25 and 0.5mg/kg) increased food intake and the amount of time spent feeding in alpha2 knockout mice, suggesting that BZ-induced hyperphagia does not involve alpha2-containing GABA(A) receptors. We further investigated the roles of alpha1- and alpha3-containing GABA(A) receptors in mediating BZ-induced hyperphagia. We treated alpha2(H101R) mice, in which alpha2-containing receptors are rendered benzodiazepine insensitive, with L-838417, a compound which acts as a partial agonist at alpha2-, alpha3- and alpha5-receptors but is inactive at alpha1-containing receptors. L-838417 (10 and 30 mg/kg) increased food intake and the time spent feeding in both wildtype and alpha2(H101R) mice, demonstrating that benzodiazepine-induced hyperphagia does not require alpha1- and alpha2-containing GABA(A) receptors. These observations, together with evidence against the involvement of alpha5-containing GABA(A) receptors, suggest that alpha3-containing receptors mediate BZ-induced hyperphagia in the mouse.

  2. A patient with thyrotropinoma cosecreting growth hormone and follicle-stimulating hormone with low alpha-glycoprotein: a new subentity?

    PubMed

    Elhadd, Tarik A; Ghosh, Sujoy; Teoh, Wei Leng; Trevethick, Katy Ann; Hanzely, Zoltan; Dunn, Laurence T; Malik, Iqbal A; Collier, Andrew

    2009-08-01

    Thyrotropinomas are rare pituitary tumors. In 25 percent of cases there is autonomous secretion of a second pituitary hormone, adding to the clinical complexity. We report a patient with thyrotropin (TSH)-dependant hyperthyroidism along with growth hormone (GH) and follicle-stimulating hormone (FSH) hypersecretion but low alpha-glycoprotein (alpha-subunit) concentrations, a hitherto unique constellation of findings. A 67-year-old Scottish lady presented with longstanding ankle edema, paroxysmal atrial fibrillation, uncontrolled hypertension, fine tremors, warm peripheries, and agitation. Initial findings were a small goiter, elevated serum TSH of 7.37 mU/L (normal range, 0.30-6.0 mU/L), a free-thyroxine concentration of 34.9 pmol/L (normal range, 9.0-24.0 pmol/L), a flat TSH response to TSH-releasing hormone, and serum alpha-subunit of 3.1 IU/L (normal, <3.0 IU/L). There was no evidence of an abnormal thyroid hormone beta receptor by genotyping. Serum FSH was 56.8 U/L, but the luteinizing hormone (LH) was 23.6 U/L (postmenopausal FSH and LH reference ranges both >30 U/L) Basal insulin-like growth factor I was elevated to 487 microg/L with the concomitant serum GH being 14.1 mU/L, and subsequent serum GH values 30 minutes after 75 g oral glucose being 19.1 mU/L and 150 minutes later being 13.7 mU/L. An magnetic resonance imaging pituitary revealed a macroadenoma. Pituitary adenomectomy was performed with the histology confirming a pituitary adenoma, and the immunohistochemistry staining showed positive reactivity for FSH with scattered cells staining for GH and TSH. Staining for other anterior pituitary hormones was negative. After pituitary surgery she became clinically and biochemically euthyroid, the serum IFG-1 became normal, but the pattern of serum FSH and LH did not change. This case of plurihormonal thyrotropinoma is unique in having hypersecretion of TSH, GH, and FSH with low alpha-subunit. Such a combination may represent a new subentity of TSHomas.

  3. Interactive Effects of Dietary Lipid and Phenotypic Feed Efficiency on the Expression of Nuclear and Mitochondrial Genes Involved in the Mitochondrial Electron Transport Chain in Rainbow Trout

    PubMed Central

    Eya, Jonathan C.; Ukwuaba, Vitalis O.; Yossa, Rodrigue; Gannam, Ann L.

    2015-01-01

    A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10), 20% (40/20) and 30% (40/30) dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass) or high-feed efficient (F136; 205.47 ± 1.27 g) full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency) on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1), cytb (Cytochrome b), cox1 (Cytochrome c oxidase subunits 1), cox2 (Cytochrome c oxidase subunits 2) and atp6 (ATP synthase subunit 6) and nuclear genes ucp2α (uncoupling proteins 2 alpha), ucp2β (uncoupling proteins 2 beta), pparα (peroxisome proliferator-activated receptor alpha), pparβ (peroxisome proliferatoractivated receptor beta) and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha) in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP) in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish. PMID:25853266

  4. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsurugizawa, Tomokazu; Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, Graduate School of Arts and Sciences, University of Tokyo at Komaba, 3-8-1 Meguro, Tokyo 153; Mukai, Hideo

    2005-12-02

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but notmore » by MK-801 (NMDA receptor antagonist). ER{alpha} agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ER{beta} agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ER{alpha} was performed using purified RC-19 antibody. The localization of ER{alpha} (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ER{alpha} and MAP kinase.« less

  5. Localization of type IV collagen a 1 to a 6 chains in basement membrane during mouse molar germ development.

    PubMed

    Nagai, N; Nakano, K; Sado, Y; Naito, I; Gunduz, M; Tsujigiwa, H; Nagatsuka, H; Ninomiya, Y; Siar, C H

    2001-10-01

    The dental basement membrane (BM) putatively mediates epithelial-mesenchymal interactions during tooth morphogenesis and cytodifferentiation. Type IV collagen alpha chains, a major network-forming protein of the dental BM, was studied and results disclosed distinct expression patterns at different stages of mouse molar germ development. At the dental placode and bud stage, the BM of the oral epithelium expressed alpha 1, alpha 2, alpha 5 and alpha 6 chains while the gubernaculum dentis, in addition to the above four chains, also expressed a 4 chain. An asymmetrical expression for alpha 4, alpha 5 and alpha 6 chains was observed at the bud stage. At the early bell stage, the BM associated with the inner enamel epithelium (IEE) of molar germ expressed alpha 1, alpha 2 and alpha 4 chains while the BM of the outer enamel epithelium (OEE) expressed only alpha 1 and a 2 chains. With the onset of dentinogenesis, the collagen a chain profile of the IEE BM gradually disappeared. Howeverfrom the early to late bell stage, the gubernaculum dentis consistently expressed alpha 1, alpha 2, alpha 5 and a 6 chains resembling fetal oral mucosa. These findings suggest that stage- and position-specific distribution of type IV collagen alpha subunits occur during molar germ development and that these changes are essential for molar morphogenesis and cytodifferentiation.

  6. Somato-synaptic variation of GABA(A) receptors in cultured murine cerebellar granule cells: investigation of the role of the alpha6 subunit.

    PubMed

    Mellor, J R; Wisden, W; Randall, A D

    2000-07-10

    Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden, W., 1997. Ligand-gated ion channel partnerships: GABA(A) receptor alpha(6) subunit inactivation inhibits delta subunit expression. Journal of Neuroscience 17, 1350-1362).

  7. Vitamin D receptor ligands for osteoporosis.

    PubMed

    Cheskis, Boris J; Freedman, Leonard P; Nagpal, Sunil

    2006-10-01

    1alpha,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), the biologically active metabolite of vitamin D, mediates its actions via the vitamin D receptor (VDR), a member of the superfamily of steroid/thyroid hormone/retinoid receptors. 1,25-(OH)2D3 is required for calcium and phosphorus homeostasis, and for normal skeletal development as well as maintenance of skeletal architecture. Two VDR ligands, calcitriol (1,25-(OH)2D3) and its synthetic analog alfacalcidol (1alpha-hydroxyvitamin D3), have been approved for the treatment of osteoporosis. However, the use of calcitriol and alfacalcidol is limited by their major side effect, hypercalcemia, which is mediated mainly by VDR activity in the small intestine. In order to identify VDR ligands with less hypercalcemia liability, a number of pharmaceutical companies are pursuing efforts to develop synthetic vitamin D analogs. This review discusses the mechanism of action of vitamin D, and summarizes the currently approved anti-osteoporotic VDR agonists and compounds that are under development. The future directions of vitamin D research for the discovery of novel VDR agonists for osteoporosis are also discussed.

  8. Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets δ-subunit-containing GABAA receptors

    PubMed Central

    Jiménez-González, Cristina; Pirttimaki, Tiina; Cope, David W; Parri, H R

    2011-01-01

    The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe γ-aminobutyric acid (GABA)A receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca2+ or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at δ-subunit-containing GABAA receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist β-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the δ-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by δ-subunit-containing GABAA receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte–neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology. PMID:21395866

  9. Identification of critical residues of subunit H in its interaction with subunit E of the A-ATP synthase from Methanocaldococcus jannaschii.

    PubMed

    Gayen, Shovanlal; Balakrishna, Asha M; Biuković, Goran; Yulei, Wu; Hunke, Cornelia; Grüber, Gerhard

    2008-04-01

    The boomerang-like H subunit of A(1)A(0) ATP synthase forms one of the peripheral stalks connecting the A(1) and A(0) sections. Structural analyses of the N-terminal part (H1-47) of subunit H of the A(1)A(0) ATP synthase from Methanocaldococcus jannaschii have been performed by NMR spectroscopy. Our initial NMR structural calculations for H1-47 indicate that amino acid residues 7-44 fold into a single alpha-helical structure. Using the purified N- (E1-100) and C-terminal domains (E101-206) of subunit E, NMR titration experiments revealed that the N-terminal residues Met1-6, Lys10, Glu11, Ala15, Val20 and Glu24 of H1-47 interact specifically with the N-terminal domain E1-100 of subunit E. A more detailed picture regarding the residues of E1-100 involved in this association was obtained by titration studies using the N-terminal peptides E1-20, E21-40 and E41-60. These data indicate that the N-terminal tail E41-60 interacts with the N-terminal amino acids of H1-47, and this has been confirmed by fluorescence correlation spectroscopy results. Analysis of (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra of the central stalk subunit F in the presence and absence of E101-206 show no obvious interaction between the C-terminal domain of E and subunit F. The data presented provide, for the first time, structural insights into the interaction of subunits E and H, and their arrangement within A(1)A(0) ATP synthase.

  10. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development.

    PubMed

    Japón, M A; Rubinstein, M; Low, M J

    1994-08-01

    We used 35S-labeled oligonucleotides and cRNAs (riboprobes) to detect the temporal order and spatial pattern of anterior pituitary hormone gene expression in (B6CBF1 x B6CBF1)F2 fetal mice from embryonic Day 9.5 (E9.5) to postnatal Day 1 (P1). Pro-opiomelanocortin (POMC) mRNA was expressed in the basal diencephalon on Day E10.5, in the ventromedial zone of the pars distalis on Day E12.5, and in the pars intermedia on Day E14.5. The common alpha-glycoprotein subunit (alpha-GSU) mRNA first appeared in the anterior wall of Rathke's pouch on Day E11.5 and extended to the pars tuberalis and ventromedial zone of the pars distalis on Day E12.5. Thyroid-stimulating hormone-beta (TSH beta) subunit mRNA was expressed initially in both the pas tuberalis and ventromedial pars distalis on Day E14.5, with an identical spatial distribution to alpha-GSU at the time. In contrast, luteinizing hormone-beta (LH beta) subunit and follicle-stimulating hormone beta (FSH beta) subunit mRNAs were detected initially only in the ventromedial pars distalis on Days E16.5 and E17.5, respectively, in an identical distribution to each other. POMC-, alpha-GSU-, TSH beta, LH beta-, and FSH beta-positive cells within the pars distalis all increased in number and autoradiographic signal with differing degrees of spatial expansion posteriorly, laterally, and dorsally up to Day P1. POMC expression was typically the most intense and extended circumferentially to include the entire lateral and dorsal surfaces of the pars distalis. The expression of both growth hormone (GH) and prolactin (PRL) started coincidentally on Day E15.5. However PRL cells localized in the ventromedial area similarly to POMC and the glycoprotein hormone subunits, whereas GH cells were found initially in a more lateral and central distribution within the lobes of the pars distalis. Somatotrophs increased dramatically in number and autoradiographic signal, extending throughout the pars distalis except for the most peripheral layer of cells on Day E17.5. Mammotrophs also increased in number but less abundantly than somatotrophs, and PRL expression remained more confined to central-medial and ventrolateral areas of the pars distalis up to Day P1. These data demonstrate distinctive patterns of expression for each of the major anterior pituitary hormone genes during development of the mouse pituitary gland and suggest that different groups of committed cells are the immediate precursors to the terminally differentiated hormone-secreting cell types.

  11. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs.

    PubMed

    Groves, M R; Hanlon, N; Turowski, P; Hemmings, B A; Barford, D

    1999-01-08

    The PR65/A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit, generating functionally diverse heterotrimers. Mutations of the beta isoform of PR65 are associated with lung and colon tumors. The crystal structure of the PR65/Aalpha subunit, at 2.3 A resolution, reveals the conformation of its 15 tandemly repeated HEAT sequences, degenerate motifs of approximately 39 amino acids present in a variety of proteins, including huntingtin and importin beta. Individual motifs are composed of a pair of antiparallel alpha helices that assemble in a mainly linear, repetitive fashion to form an elongated molecule characterized by a double layer of alpha helices. Left-handed rotations at three interrepeat interfaces generate a novel left-hand superhelical conformation. The protein interaction interface is formed from the intrarepeat turns that are aligned to form a continuous ridge.

  12. Identification of the electron transfer flavoprotein as an upregulated enzyme in the benzoate utilization of Desulfotignum balticum.

    PubMed

    Habe, Hiroshi; Kobuna, Akinori; Hosoda, Akifumi; Kosaka, Tomoyuki; Endoh, Takayuki; Tamura, Hiroto; Yamane, Hisakazu; Nojiri, Hideaki; Omori, Toshio; Watanabe, Kazuya

    2009-07-01

    Desulfotignum balticum utilizes benzoate coupled to sulfate reduction. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analysis was conducted to detect proteins that increased more after growth on benzoate than on butyrate. A comparison of proteins on 2D gels showed that at least six proteins were expressed. The N-terminal sequences of three proteins exhibited significant identities with the alpha and beta subunits of electron transfer flavoprotein (ETF) from anaerobic aromatic-degraders. By sequence analysis of the fosmid clone insert (37,590 bp) containing the genes encoding the ETF subunits, we identified three genes, whose deduced amino acid sequences showed 58%, 74%, and 62% identity with those of Gmet_2267 (Fe-S oxidoreductase), Gmet_2266 (ETF beta subunit), and Gmet_2265 (ETF alpha subunit) respectively, which exist within the 300-kb genomic island of aromatic-degradation genes from Geobacter metallireducens GS-15. The genes encoding ETF subunits found in this study were upregulated in benzoate utilization.

  13. A yeast-based genetic screening to identify human proteins that increase homologous recombination.

    PubMed

    Collavoli, Anita; Comelli, Laura; Rainaldi, Giuseppe; Galli, Alvaro

    2008-05-01

    To identify new human proteins implicated in homologous recombination (HR), we set up 'a papillae assay' to screen a human cDNA library using the RS112 strain of Saccharomyces cerevisiae containing an intrachromosomal recombination substrate. We isolated 23 cDNAs, 11 coding for complete proteins and 12 for partially deleted proteins that increased HR when overexpressed in yeast. We characterized the effect induced by the overexpression of the complete human proteasome subunit beta 2, the partially deleted proteasome subunits alpha 3 and beta 8, the ribosomal protein L12, the brain abundant membrane signal protein (BASP1) and the human homologue to v-Ha-RAS (HRAS), which elevated HR by 2-6.5-fold over the control. We found that deletion of the RAD52 gene, which has a key role in most HR events, abolished the increase of HR induced by the proteasome subunits and HRAS; by contrast, the RAD52 deletion did not affect the high level of HR due to BASP1 and RPL12. This suggests that the proteins stimulated yeast HR via different mechanisms. Overexpression of the complete beta 2 human proteasome subunit or the partially deleted alpha 3 and beta 8 subunits increased methyl methanesulphonate (MMS) resistance much more in the rad52 Delta mutant than in the wild-type. Overexpression of RPL12 and BASP1 did not affect MMS resistance in both the wild-type and the rad52 Delta mutant, whereas HRAS decreased MMS resistance in the rad52 Delta mutant. The results indicate that these proteins may interfere with the pathway(s) involved in the repair of MMS-induced DNA damage. Finally, we provide further evidence that yeast is a helpful tool to identify human proteins that may have a regulatory role in HR.

  14. Innate signaling by mycobacterial cell wall components and relevance for development of adjuvants for subunit vaccines.

    PubMed

    Tima, Hermann Giresse; Huygen, Kris; Romano, Marta

    2016-11-01

    Pathogen recognition receptors (PRRs) recognize pathogen-associated molecular patterns, triggering the induction of inflammatory innate responses and contributing to the development of specific adaptive immune responses. Novel adjuvants have been developed based on agonists of PRRs. Areas covered: Lipid pathogen-associated molecular patterns (PAMPs) present in the cell wall of mycobacteria are revised, with emphasis on agonists of C-type lectin receptors, signaling pathways, and preclinical data supporting their use as novel adjuvants inducing cell-mediated immune responses. Their potential use as lipid antigens in novel tuberculosis subunit vaccines is also discussed. Expert commentary: Few adjuvants are licensed for human use and mainly favour antibody-mediated protective immunity. Use of lipid PAMPs that trigger cell-mediated immune responses could lead to the development of adjuvants for vaccines against intracellular pathogens and cancer.

  15. Binding-dependent disorder-order transition in PKI alpha: a fluorescence anisotropy study.

    PubMed

    Hauer, J A; Taylor, S S; Johnson, D A

    1999-05-25

    The conformational flexibility of peptidyl ligands may be an essential element of many peptide-macromolecular interactions. Consequently, the alpha-carbonyl backbone flexibility of the 8 kDa protein kinase inhibitor (PKI alpha) peptide of cAMP-dependent protein kinase (cAPK) free in solution and bound to cAPK was assessed by time-resolved fluorescence anisotropy. Specifically, three full-length, single-site PKI alpha mutants (V3C, S28C, and S59C) were prepared, and fluorescein iodoacetamide (FI) was selectively conjugated to the side chains of each substituted cysteine. The time-resolved anisotropy decay profiles of the labeled mutants were well fit to a model-free nonassociative biexponential equation. Free in solution, the three labeled proteins had very similar anisotropy decays arising primarily from local alpha-carbonyl backbone movements. Only a small fraction of the anisotropy decay was associated with slower, whole-body tumbling, confirming that PKI alpha is highly disordered at all three locations. Complexation of the mutants with the catalytic (C) subunit of cAPK decreased the rate of whole-body tumbling for all three mutants. The effects on the rapid decay processes, however, were dependent upon the site of conjugation. The anisotropy decay profiles of both FI-V3C- and FI-S28C-PKI alpha were associated with significantly reduced contributions from the fast decay processes, while that of FI-S59C-PKI alpha was largely unaffected by binding to the C-subunit. The results suggest that the cAPK-binding domain of PKI alpha extends from the its N-terminus to residues beyond Ser28 but does not include the segment around Ser59, which is still part of a highly flexible domain when bound to the C-subunit.

  16. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  17. Computer-assisted determination of minimum energy conformations. 7: A pharmacophore model of the active region of the alpha2-adrenoceptor

    NASA Astrophysics Data System (ADS)

    Ashman, William P.; Mickiewicz, A. P.; Nelson, Todd M.

    1992-09-01

    Molecular modeling and computational chemistry techniques are used to analyze compounds in developing pharmacophores of biological receptors to use as templates in structure activity relationship studies and to design new chemicals having physiological activity of interest. In this study, the results of x-ray crystal analyses and PM3 semi-empirical molecular orbital conformational analyses are used to determine the three-dimensional representations of selected adrenergic compounds known to be agonists with the alpha2-adrenoceptor in achieving optimized geometries and electrostatic parameters. The alpha2-adrenergic agonists interact with the adrenergic system receptors to produce various increases or decreases in hemodynamic responses (i.e., hypertension, hypotension, and bradycardia) and sedation. A pharmacophore model of the active region of the alpha2-adrenoceptor is described based on the superimposition of common structural, electrostatic, and physicochemical features of the compounds. Using the model to predict compound adrenergic activity and to design alpha2-adrenergic compounds is discussed.

  18. Blockade of rat alpha3beta4 nicotinic receptor function by methadone, its metabolites, and structural analogs.

    PubMed

    Xiao, Y; Smith, R D; Caruso, F S; Kellar, K J

    2001-10-01

    The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.

  19. Fragrant dioxane derivatives identify beta1-subunit-containing GABAA receptors.

    PubMed

    Sergeeva, Olga A; Kletke, Olaf; Kragler, Andrea; Poppek, Anja; Fleischer, Wiebke; Schubring, Stephan R; Görg, Boris; Haas, Helmut L; Zhu, Xin-Ran; Lübbert, Hermann; Gisselmann, Günter; Hatt, Hanns

    2010-07-30

    Nineteen GABA(A) receptor (GABA(A)R) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of beta1-subunit-containing GABA(A)Rs is unknown. Here we report the discovery of a new structural class of GABA(A)R positive modulators with unique beta1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed alpha1betaxgamma2L (x-for 1,2,3) GABA(A)R FDD were 6 times more potent at beta1- versus beta2- and beta3-containing receptors. Serine at position 265 was essential for the high sensitivity of the beta1-subunit to FDD and the beta1N286W mutation nearly abolished modulation; vice versa the mutation beta3N265S shifted FDD sensitivity toward the beta1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to beta1-negative cerebellar Purkinje neurons. Immunostaining for the beta1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by beta1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of beta1-containing GABA(A)Rs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABA(A)Rs.

  20. Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees.

    PubMed

    Salter, D M; Godolphin, J L; Gourlay, M S

    1995-04-01

    During development and at maturity different forms of cartilage vary in morphology and macromolecular content. This reflects heterogeneity of chondrocyte activity, in part involving differential interactions with the adjacent extracellular matrix via specialized cell surface receptors such as integrins. We undertook an immunohistological study on a series of human fetal knee joints to assess variation in the expression of integrins by chondrocytes and potential matrix ligands in articular, epiphyseal, growth plate, and meniscal cartilage. The results show that articular chondrocytes (beta 1+, beta 5 alpha V+, alpha 1+, alpha 2+/-, alpha 5+, weakly alpha 6+, alpha V+) differed from epiphyseal (beta 1+, beta 5 alpha V+, alpha 1+/-, alpha 2+/-, alpha 5+, alpha 6+, alpha V+) growth plate (beta 1+, beta 5 alpha V+, alpha 1-, alpha 2-, alpha 5+, alpha 6+, alpha V+), and meniscal cells (beta 1+, beta 5 alpha V+, alpha 1+, strongly alpha 2+, alpha 5+, alpha 6+, alpha V+ in expression of integrin subunits. There was no expression of beta 3, beta 4, beta 6, or alpha 3 by chondrocytes. These results differ from previous reports on the expression of integrins by adult articular cartilage, where alpha 2 and alpha 6 are not seen. Variation in distribution of matrix ligands was also seen. Fibronectin, laminin and Type VI collagen were expressed in all cartilages but there was restricted expression of tenascin, ED-A and ED-B fibronectin isoforms (articular cartilage and meniscus), and vitronectin (absent from growth plate cartilage). Regulated expression of integrins by chondrocytes, associated with changes in the pericellular matrix composition, is of potential importance in control of cartilage differentiation and function in health and disease.

Top