Science.gov

Sample records for alter alpine lake

  1. Recent climate extremes alter alpine lake ecosystems

    PubMed Central

    Parker, Brian R.; Vinebrooke, Rolf D.; Schindler, David W.

    2008-01-01

    Here, we show that alpine lake ecosystems are responsive to interannual variation in climate, based on long-term limnological and meteorological data from the Canadian Rockies. In the 2000s, in years with colder winter temperatures, higher winter snowfall, later snowmelt, shorter ice-free seasons, and dryer summers, relative to the 1990s, alpine lakes became clearer, warmer, and mixed to deeper depths. Further, lakes became more dilute and nutrient-poor, the latter leading to significant declines in total phytoplankton biomass. However, increased concentrations of dissolved organic carbon in lake water stimulated the appearance of small mixotrophic algal species, partially offsetting the decline in autotrophic phytoplankton biomass and increasing algal species richness. The climate regime in the 2000s altered the physical, chemical, and biological character and the function of high-elevation aquatic ecosystems. Forecasts of increased climatic variability in the future pose serious ramifications for both the biodiversity and ecosystem function of high-elevation lakes. PMID:18725641

  2. The potential for retreating alpine glaciers to alter alpine ecosystems in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Hall, E.; Baron, J.

    2013-12-01

    Glaciers are retreating at an unprecedented rate. In mid-latitude alpine ecosystems the presence of glaciers and rock glaciers govern rates and ecology of alpine and sub-alpine ecosystems. Changes in the thermal environment due to the loss of isothermal habitat and inputs from glacier melt chemistry are altering alpine ecosystems in unpredictable ways. In particular, glacier may be a source of nitrogen that is altering alpine ecosystem dynamics. Loch Vale Watershed (LVWS) located within Rocky Mountain National Park. LVWS contains a surface glacier (Andrew's glacier) and a rock glacier (Taylor's glacier) at the headwater of each of the two drainages within the watershed. We collected precipitation from a National Atmospheric Deposition Site and surface water from multiple alpine lakes and streams during a particularly high and low snow year in the Colorado Front Range. We also sampled stream and lake sediments at each site to analyze the associated microbial community. Concentrations of nitrate and ammonium, relative abundance of amoA (the gene responsible for a key step in the microbial nitrification pathway), and the dual isotope signal to nitrate all point to snow melt as a key deliverer of nitrogen to ecosystems along the Colorado Front Range. However, late summer surface water chemistry is isotopically similar to the chemistry of glacial ice. This suggests that retreating glacier may be an additional source of N to alpine ecosystems and have the potential to alter microbial community composition, biogeochemical rate processes, and ecosystem function. These dynamics are most likely not unique to the Colorado Front Range and should be globally distributed as glaciers continue to retreat in high altitude ecosystems around the world.

  3. ALPINE LAKES WILDERNESS STUDY AREA, WASHINGTON.

    USGS Publications Warehouse

    Gualtieri, J.L.; Thurber, H.K.

    1984-01-01

    The Alpine Lakes Wilderness study area, located in the central part of the Cascade Mountains of Washington was examined for its mineral-resource potential. On the basis of that study the area was found to contain deposits of copper, other base metals, and gold and silver. Probable or substantiated mineral-resource potential exists for these commodities in the southwest-central, northwest, and southeast-central parts of the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  4. Melting Alpine glaciers enrich high-elevation lakes with reactive nitrogen.

    PubMed

    Saros, Jasmine E; Rose, Kevin C; Clow, David W; Stephens, Verlin C; Nurse, Andrea B; Arnett, Heather A; Stone, Jeffery R; Williamson, Craig E; Wolfe, Alexander P

    2010-07-01

    Alpine glaciers have receded substantially over the last century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological cycle, but can also alter the physical (i.e., turbidity from glacial flour) and biogeochemical properties of downstream ecosystems. Here we compare nutrient concentrations, transparency gradients, algal biomass, and fossil diatom species richness in two sets of high-elevation lakes: those fed by snowpack melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We found that nitrate (NO(3)(-)) concentrations in the GSF lakes were 1-2 orders of magnitude higher than in SF lakes. Although nitrogen (N) limitation is common in alpine lakes, algal biomass was lower in highly N-enriched GSF lakes than in the N-poor SF lakes. Contrary to expectations, GSF lakes were more transparent than SF lakes to ultraviolet and equally transparent to photosynthetically active radiation. Sediment diatom assemblages had lower taxonomic richness in the GSF lakes, a feature that has persisted over the last century. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO(3)(-)concentrations in high-elevation lake ecosystems than any other geomorphic or biogeographic characteristic.

  5. Agriculture causes nitrate fertilization of remote alpine lakes

    PubMed Central

    Hundey, E. J.; Russell, S. D.; Longstaffe, F. J.; Moser, K. A.

    2016-01-01

    Humans have altered Earth's nitrogen cycle so dramatically that reactive nitrogen (Nr) has doubled. This has increased Nr in aquatic ecosystems, which can lead to reduced water quality and ecosystem health. Apportioning sources of Nr to specific ecosystems, however, continues to be challenging, despite this knowledge being critical for mitigation and protection of water resources. Here we use Δ17O, δ18O and δ15N from Uinta Mountain (Utah, USA) snow, inflow and lake nitrate in combination with a Bayesian-based stable isotope mixing model, to show that at least 70% of nitrates in aquatic systems are anthropogenic and arrive via the atmosphere. Moreover, agricultural activities, specifically nitrate- and ammonium-based fertilizer use, are contributing most (∼60%) Nr, and data from other North American alpine lakes suggest this is a widespread phenomenon. Our findings offer a pathway towards more effective mitigation, but point to challenges in balancing food production with protection of important water resources. PMID:26853267

  6. Agriculture causes nitrate fertilization of remote alpine lakes

    NASA Astrophysics Data System (ADS)

    Hundey, E. J.; Russell, S. D.; Longstaffe, F. J.; Moser, K. A.

    2016-02-01

    Humans have altered Earth's nitrogen cycle so dramatically that reactive nitrogen (Nr) has doubled. This has increased Nr in aquatic ecosystems, which can lead to reduced water quality and ecosystem health. Apportioning sources of Nr to specific ecosystems, however, continues to be challenging, despite this knowledge being critical for mitigation and protection of water resources. Here we use Δ17O, δ18O and δ15N from Uinta Mountain (Utah, USA) snow, inflow and lake nitrate in combination with a Bayesian-based stable isotope mixing model, to show that at least 70% of nitrates in aquatic systems are anthropogenic and arrive via the atmosphere. Moreover, agricultural activities, specifically nitrate- and ammonium-based fertilizer use, are contributing most (~60%) Nr, and data from other North American alpine lakes suggest this is a widespread phenomenon. Our findings offer a pathway towards more effective mitigation, but point to challenges in balancing food production with protection of important water resources.

  7. Alpine Lake Phytoplankton Responses to the 2002 Drought in Colorado

    NASA Astrophysics Data System (ADS)

    Flanagan, C. M.

    2005-05-01

    Because the hydrologic regime of alpine catchments is dominated by snow melt, their terrestrial and aquatic ecosystems are extremely sensitive to physical and climatic fluctuations in the amount of snow and timing of snowmelt. The drought of 2002 in Colorado was the most extreme drought of the past 100 years of record for the state. Measured at the outflow of Green Lake 4, an alpine lake in Green Lake Valley, located within the Niwot Ridge Long Term Ecological Research (LTER) site in the Front Range of Colorado, the 2002 drought resulted in snowmelt discharge that was just 60% of recent historical averages for stream discharge. We examined how the drought affected the phytoplankton population in this alpine lake. Algal biomass was quantified and samples for community composition analysis were collected during the summers of 2000, 2001 and 2002. The results of the statistical comparison indicate a significant increase in total density of algal cells, possibly caused by drought-induced factors such as earlier ice-out and hence higher irradiance, higher hydraulic residence time and lower wash-outs, plus higher surface water temperatures. Species in three divisions, Bacillariophyta, Chlorophyta and Cyanophyta, showed significant responses. A principal components analysis confirmed a shift in the community composition during the drought. Although based on only three seasons of monitoring data, these results may foreshadow climate change and implicate subsequent biological effects in high altitude watersheds.

  8. Differences in UV transparency and thermal structure between alpine and subalpine lakes: implications for organisms†

    PubMed Central

    Rose, Kevin C.; Williamson, Craig E.; Saros, Jasmine E.; Sommaruga, Ruben; Fischer, Janet M.

    2010-01-01

    Ultraviolet (UV) radiation is a globally important abiotic factor influencing ecosystem structure and function in multiple ways. While UV radiation can be damaging to most organisms, several factors act to reduce UV exposure of organisms in aquatic ecosystems, the most important of which is dissolved organic carbon (DOC). In alpine lakes, very low concentrations of DOC and a thinner atmosphere lead to unusually high UV exposure levels. These high UV levels combine with low temperatures to provide a fundamentally different vertical structure to alpine lake ecosystems in comparison to most lowland lakes. Here, we discuss the importance of water temperature and UV transparency in structuring alpine lake ecosystems and the consequences for aquatic organisms that inhabit them. We present transparency data on a global data set of alpine lakes and nearby analogous subalpine lakes for comparison. We also present seasonal transparency data on a suite of alpine and subalpine lakes that demonstrate important differences in UV and photosynthetically active radiation (PAR, 400–700 nm) transparency patterns even within a single region. These data are used to explore factors regulating transparency in alpine lakes, to discuss implications of future environmental change on the structure and function of alpine lakes, and ways in which the UV transparency of these lakes can be used as a sentinel of environmental change. PMID:19707613

  9. Water quality of two glacial alpine Italian lakes.

    PubMed

    Zelano, Vincenzo; Zambrotta, Maria; Defilippi, Albino; Torazzo, Annamaria

    2005-01-01

    The purpose of this study was to characterize, in a period of one year, two glacial lakes, Alice and Meugliano, located in an alpine reservoir on the basis of physical and chemical features. The two lakes show two periods of mixing: one in the spring and one in the autumn, so can be classified as dimictic lakes. They are characterized by pH, alkalinity, low conductivity and and quite dilute ionic concentrations. With regard to nutrients, most nitrogen occurred in the nitric form in the superficial layers. During the period of thermal stratification, in the anoxic layer NO3- decreases and NH4+ increases, confirming the activity of the anaerobic denitrificant bacteria. Total and soluble phosphorus levels show homogeneity during the cold period at different depths, while with stratification concentrations increase in the hypolimnium and metalimnium. In both lakes there is an inverse correlation between transparency and chlorophyll a. To evaluate the trophic state the conventional criteria of Nurnberg 2 and four lake trophic indices (TSIs) are used. Both evaluations suggest that the two lakes are eutrophic, with worse conditions in Alice. Deviations of the trophic states, based on the relation between TSIs, indicate that factors other than phosphorous limit the algal biomass, and that non-algal particles influence light attenuation

  10. Shifts in alpine lakes' ecosystems in Japan driven by increasing Asian dusts

    NASA Astrophysics Data System (ADS)

    Tsugeki, N. K.; Tani, Y.; Ueda, S.; Agusa, T.; Toyoda, K.; Kuwae, M.; Oda, H.; Tanabe, S.; Urabe, J.

    2011-12-01

    Recently in East Asia the amount of fossil fuel combustion have increased with economic growth. It has caused a problem of trans-boundary air pollution in the whole of eastern Asia. Furthermore, Asian dust storms contribute episodically to the global aerosol load. However, the effects of increased Asian dusts on aquatic ecosystems are not well understood. If biologically important nutrients such as nitrogen (N) and phosphorus (P) are transported via air dust, the atmospheric deposition of the dust may have serious impacts on recipient aquatic ecosystems because the biological production is limited by these nutrient elements. A previous report using sedimentary records has evaluated that atmospheric P inputs to the alpine lakes in the United States increased fivefold following the increased western settlement to this country during the nineteenth century. Since P is the most deficient nutrient for production in many lakes increase in P loading through atmospheric deposition of anthropogenically-derived dust might greatly affect the lake ecosystems. We examined fossil pigments and zooplankton remains from Pb-dated sediments taken from a high mountain lake of Hourai-Numa, located in the Towada-Hachimantai National Park of Japan, to uncover historical changes in the phyto- and zooplankton community over the past 100 years. Simultaneously, we measured the biogeochemical variables of TOC, TN, TP, δ13C, δ15N, and 206Pb/207Pb, 208Pb/207Pb in the sediments to identify environmental factors causing such changes. As a result, despite little anthropogenic activities in the watersheds, alpine lakes in Japan Islands increased algal and herbivore plankton biomasses by 3-6 folds for recent years depending on terrestrial the surrounded vegetations and landscape conditions. Biological and biogeochemical proxies recorded in the lake sediments indicate that this eutrophication occurred after the 1990s when P deposition increased due to atmospheric loading transported from Asian

  11. THE CHALLENGE OF ACQUIRING ALPINE LARGE VOLUME LAKE WATER SAMPLES FOR ULTRA TRACE LEVEL ANALYSIS

    EPA Science Inventory

    The National Exposure Research Laboratory-Las Vegas, Nevada is interested in the emerging field technology of in-situ extraction of contaminants from surface water. A current research project involves ultra-trace level determination of agricultural pesticides from alpine lakes. T...

  12. Alpine Channel and Floodplain Dynamics in the Lake Tahoe Region, California

    NASA Astrophysics Data System (ADS)

    Liquori, M.; Chris, B.; Parris, A.; Heins, A.; Stofleth, J.; Wickland, M.

    2006-12-01

    Alpine floodplains provide diverse habitat components for terrestrial and aquatic species, and strongly influence bank stability and channel migration processes. They also present complex restoration challenges. Several systems in the Lake Tahoe region have been diagnosed with incised channel conditions that generate excessive mobile sediment from eroding banks, degrade riparian vegetation communities, and diminish floodplain wetland abundance and quality. Conventional efforts to restore these systems focus on reconnecting floodplains, primarily through channel or floodplain modifications designed to reestablish floodplain inundation frequency near a Q1.5 level. Recent observations along lower Squaw Creek and the Upper Truckee River suggest that human impacts and climate-induced shifts over the 20th Century appear to significantly change the processes and dynamics between channels and floodplains. Our observations highlight differences in alpine settings as compared with lowland environments. Increased rain-on-snow frequency appears to increase the importance of avulsion and channel widening processes over channel meander processes. Loss of channel sinuosity, increases in depth and changes in channel shape appear to follow rain-on-snow events. These changes affect the overall sediment transport regime, even as snowmelt duration continues to exert the primary influence over dominant discharge relationships. During floods, discontinuous, proximal deposition of coarse sediment replaces uniform, distal deposition of finer sediments, altering the structure of the channel bed and floodplain. Early snowmelt from developed hillslopes saturates floodplains even in the absence of regular flooding, potentially negating or eliminating the restorative benefit of increased flood frequency. These results suggest that effective long-term restoration strategies cannot rely on historic sinuosity patterns or simple flood frequency metrics, but must begin to understand how changes in

  13. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet.

    PubMed

    Hu, Zhujun; Anderson, Nicholas John; Yang, Xiangdong; McGowan, Suzanne

    2014-05-01

    The south-east margin of Tibet is highly sensitive to global environmental change pressures, in particular, high contemporary reactive nitrogen (Nr) deposition rates (ca. 40 kg ha(-1)  yr(-1) ), but the extent and timescale of recent ecological change is not well prescribed. Multiproxy analyses (diatoms, pigments and geochemistry) of (210) Pb-dated sediment cores from two alpine lakes in Sichuan were used to assess whether they have undergone ecological change comparable to those in Europe and North America over the last two centuries. The study lakes have contrasting catchment-to-lake ratios and vegetation cover: Shade Co has a relatively larger catchment and denser alpine shrub than Moon Lake. Both lakes exhibited unambiguous increasing production since the late 19th to early 20th. Principle component analysis was used to summarize the trends of diatom and pigment data after the little ice age (LIA). There was strong linear change in biological proxies at both lakes, which were not consistent with regional temperature, suggesting that climate is not the primary driver of ecological change. The multiproxy analysis indicated an indirect ecological response to Nr deposition at Shade Co mediated through catchment processes since ca. 1930, while ecological change at Moon Lake started earlier (ca. 1880) and was more directly related to Nr deposition (depleted δ(15) N). The only pronounced climate effect was evidenced by changes during the LIA when photoautotrophic groups shifted dramatically at Shade Co (a 4-fold increase in lutein concentration) and planktonic diatom abundance declined at both sites because of longer ice cover. The substantial increases in aquatic production over the last ca. 100 years required a substantial nutrient subsidy and the geochemical data point to a major role for Nr deposition although dust cannot be excluded. The study also highlights the importance of lake and catchment morphology for determining the response of alpine lakes to

  14. Satellite monitoring of dramatic changes at Hawai'i's only alpine lake: Lake Waiau on Mauna Kea volcano

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.

    2015-01-01

    Lake Waiau is a small, typically 100-meter-long lake, located near the summit of Mauna Kea volcano, on the Island of Hawaiʻi. It is Hawaiʻi’s only alpine lake and is considered sacred in Hawaiian cultural tradition. Over the past few years, the lake has diminished in size, and, by October 2013, surface water had almost completely disappeared from the lake. In this study, we use high-resolution satellite images and aerial photographs to document recent changes at the lake. Based on our reconstructions covering the past 200 years, the historical lake surface area has typically ranged from 5,000 to 7,000 square meters, but in 2010 a dramatic plunge in lake area ensued. The lake area rebounded significantly in early 2014, following heavy winter storms. This near disappearance of the lake, judging from analysis of visitor photographs and field reports, appears to be highly unusual, if not unprecedented, in the historical record. The unusually low water levels in the lake are consistent with a recent severe drought in Hawaiʻi.

  15. Scalable Climate Forcing Optical Indices: How Effective Are They in Alpine Lakes?

    NASA Astrophysics Data System (ADS)

    Williamson, C. E.; Overholt, E.; Fischer, J.; Olson, M.; Brentrup, J.; Saros, J. E.; Melack, J. M.

    2014-12-01

    As the world gets warmer and wetter, it is important to identify sentinel systems to resolve the response of ecosystems to climate change across drivers and complex landscapes. Recently developed climate forcing optical indices (CFOI) related to the quality and quantity of dissolved organic carbon (DOC) have been shown to be scalable from short-term storm events to interdecadal periods in diverse lakes in lowland landscapes. Are these CFOI metrics effective in alpine ecosystems, which are often viewed as more responsive sentinels of climate change than lowland ecosystems? DOC-related optical data from a series of alpine lakes in North America are used here to address this question. The response of these CFOI metrics followed the same tight relationship in alpine lakes as in lowland lakes, with a seasonal increase in spectral slope between 275 and 295 nm (S275-295) and a decrease in DOC-specific absorbance at 320 nm (a*320) as well as in the ratio of these two indices (a*320/S275-295, a composite climate forcing index, CF). These changes are likely driven largely by photobleaching of terrestrial DOC during the ice-free season. Closer analysis of five years of data for Lake Oesa in the Canadian Rockies revealed marginally significant relationships between precipitation and the CFOI metrics. Specifically, S275-295 decreased with increasing cumulative precipitation for the 15 day period preceding water sample collection. a*320 increased with cumulative precipitation for the 45 day period preceding water sample collection. Relationships between CFOI metrics and precipitation at other time scales were not significant. While the DOC-quality related CFOI metrics were responsive to precipitation, DOC concentration alone was not. The time scale of precipitation effects on CFOI metrics in Lake Oesa was shorter than those previously observed for lowland lakes. This contrasting response is likely related to differences in the characteristics of the hydrology and catchments of

  16. UV-induced DNA damage in Cyclops abyssorum tatricus populations from clear and turbid alpine lakes

    PubMed Central

    Tartarotti, Barbara; Saul, Nadine; Chakrabarti, Shumon; Trattner, Florian; Steinberg, Christian E. W.; Sommaruga, Ruben

    2014-01-01

    Zooplankton from clear alpine lakes thrive under high levels of solar UV radiation (UVR), but in glacially turbid ones they are more protected from this damaging radiation. Here, we present results from experiments done with Cyclops abyssorum tatricus to assess UV-induced DNA damage and repair processes using the comet assay. Copepods were collected from three alpine lakes of differing UV transparency ranging from clear to glacially turbid, and exposed to artificial UVR. In addition, photoprotection levels [mycosporine-like amino acids (MAAs) and lipophilic antioxidant capacity] were estimated in the test populations. Similar UV-induced DNA damage levels were observed among the copepods from all lakes, but background DNA damage (time zero and dark controls) was lowest in the copepods from the glacially turbid lake, resulting in a higher relative DNA damage accumulation. Most DNA strand breaks were repaired after recovery in the dark. Low MAA concentrations were found in the copepods from the glacially turbid lake, while the highest levels were observed in the population from the most UV transparent lake. However, the highest lipophilic antioxidant capacities were measured in the copepods from the lake with intermediate UV transparency. Photoprotection and the ability to repair DNA damage, and consequently reducing UV-induced damage, are part of the response mechanisms in zooplankton to changes in water transparency caused by glacier retreat. PMID:24616551

  17. Are lake sediments mere archives of degraded organic matter? - evidence of rapid biotic changes tracked in sediments of pre-alpine Lake Lunz, Austria

    NASA Astrophysics Data System (ADS)

    Hollaus, Lisa-Maria; Khan, Samiullah; Schelker, Jakob; Ejarque, Elisabet; Battin, Tom; Kainz, Martin

    2016-04-01

    Lake sediments are used as sentinels of changes in organic matter composition and dynamics within lakes and their catchments. In an effort to investigate how past and recent hydrological extreme events have affected organic matter composition in lake sediments, we investigated the biogeochemical composition of sediment cores and settling particles, using sediment traps in the pre-alpine, oligotrophic Lake Lunz, Austria. We assessed annual sedimentation rates using 137Cs and 210Pb, time integrated loads of settling particles, analyze stable carbon (δ13C) and nitrogen (δ15N) isotopes to track changes of carbon sources and trophic compositions, respectively, and use source-specific fatty acids as indicators of allochthonous, bacterial, and algal-derived organic matter. Preliminary results indicate that settling particles of Lake Lunz (33 m depth) contain high algae-derived organic matter, as assessed by long-chain polyunsaturated fatty acids (LC-PUFA), indicating low degradation of such labile organic matter within the water column of this lake. However, LC-PUFA decreased rapidly in sediment cores below the sediment-water interface. Concentrations of phosphorous remained stable throughout the sediment cores (40 cm), suggesting that past changes in climatic forcing did not alter the load of this limiting nutrient in lakes. Ongoing work reveals dramatic biotic changes within the top layers of the sediment cores as evidenced by high numbers of small-bodied cladocerans (e.g., Bosmina) and large-bodied zooplankton (e.g., Daphnia) are only detected at lower sediment layers. Current research on these lake sediments is aimed at investigating how organic matter sources changed during the past century as a result of recorded weather changes.

  18. Soil warming alters microbial substrate use in alpine soils.

    PubMed

    Streit, Kathrin; Hagedorn, Frank; Hiltbrunner, David; Portmann, Magdalena; Saurer, Matthias; Buchmann, Nina; Wild, Birgit; Richter, Andreas; Wipf, Sonja; Siegwolf, Rolf T W

    2014-04-01

    Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted (13)CO2 (δ(13)C = -30‰, 2001-2009). We traced this depleted (13)C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 ('old'), from 2001 to 2009 ('new') or in 2010 ('recent'). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem.

  19. Promise and Pitfalls of Using Grain Size Analysis to Identify Glacial Sediments in Alpine Lake Cores.

    NASA Astrophysics Data System (ADS)

    Clark, D. H.

    2011-12-01

    Lakes fed by glacier outwash should have a clastic particle-size record distinct from non-glacial lakes in the same area, but do they? The unique turquoise color of alpine glacial lakes reflects the flux of suspended clastic glacial rock flour to those lakes; conversely, lakes not fed by outwash are generally clear with sediments dominated by organics or slope-wash from nearby hillslopes. This contrast in sediment types and sources should produce a distinct and measureable different in grain sizes between the two settings. Results from a variety of lakes suggest the actual situation is often more subtle and complex. I compare grain size results to other proxies to assess the value of grain size analysis for paleoglacier studies. Over the past 10 years, my colleagues and I have collected and analyzed sediment cores from a wide variety of lakes below small alpine glaciers in an attempt to constrain the timing and magnitude of alpine glaciation in those basins. The basic concept is that these lakes act as continuous catchments for any rock flour produced upstream by glacier abrasion; as a glacier grows, the flux of rock flour to the lake will also increase. If the glacier disappears entirely, rock flour deposition will also cease in short order. We have focused our research in basins with simple sedimentologic settings: mostly small, high-altitude, stripped granitic or metamorphic cirques in which the cirque glaciers are the primary source of clastic sediments. In most cases, the lakes are fed by meltwater from a modern glacier, but were ice free during the earlier Holocene. In such cases, the lake cores should record formation of and changes in activity of the glacier upstream. We used a Malvern Mastersizer 2000 laser particle size analyzer for our grain size analyses, as well as recording magnetic susceptibility, color, and organics for the same cores. The results indicate that although lakes often experience increases in silt and clay-size (<0.63 mm) clastic

  20. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    NASA Astrophysics Data System (ADS)

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T. J.

    2016-05-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term data set on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted 7 days earlier over the past 33 years and that spring weather conditions—especially snowfall—drive yearly variation in ice-off timing. In the most well studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  1. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    USGS Publications Warehouse

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.

    2016-01-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  2. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    PubMed

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.

  3. Unexpected response of high Alpine Lake waters to climate warming.

    PubMed

    Thies, Hansjörg; Nickus, Ulrike; Mair, Volkmar; Tessadri, Richard; Tait, Danilo; Thaler, Bertha; Psenner, Roland

    2007-11-01

    Over the past two decades, we have observed a substantial rise in solute concentration at two remote high mountain lakes in catchments of metamorphic rocks in the European Alps. At Rasass See, the electrical conductivity increased 18-fold. Unexpectedly high nickel concentrations at Rasass See, which exceeded the limit in drinking water by more than 1 order of magnitude, cannot be related to catchment geology. We attribute these changes in lake water quality to solute release from the ice of an active rock glacier in the catchment as a response to climate warming. Similar processes occurred at the higher elevation lake Schwarzsee ob Sölden, where electrical conductivity has risen 3-fold during the past two decades.

  4. Fluorscence signatures of dissolved organic material in an alpine lake ecosystem: responses to interannual climate variation and nutrient cycling

    NASA Astrophysics Data System (ADS)

    McKnight, Diane; Olivier, Matt; Hell, Katherina

    2016-04-01

    During snowmelt alpine lakes receive lower concentrations of dissolved organic material (DOM) that originates from the surrounding watershed than sub-alpine and montane lakes at lower elevations. Alpine lakes also have a shorter ice-free period that constrains the summer season of phytoplankton growth. Nonetheless, previous study of the reactive transport and production of DOM in an alpine lake in the Colorado Front Range during snowmelt and the summer ice-free season has shown that changes in DOM sources and the influence of biogeochemical processes can be resolved using fluorescence spectroscopy. Here we examine inter-annual variations in DOM fluorescence signatures during the snowmelt and summer periods in comparison to records of climate, residence time and primary production in the lake during the summer. Our analysis shows that variation in chlorophyll a concentration is a driver for variations in the fluorescence index (FI), as well as for specific ultra-violet absorbance. This result supports the predictions from the previous reactive transport modeling. We also conducted mesocosm experiments with nutrient enrichment to explore the role of nitrogen and phosphorus availability in influencing the fluorescence signature of DOM in summer. These results suggest that monitoring of simple spectroscopic properties of DOM can provide a means to track the biogeochemical consequences for alpine lakes of "too much" summer as climate continues to change.

  5. Temperature impact on pH in sensitive high alpine lakes

    SciTech Connect

    Schmidt, R.; Koinig, K.A.; Psenner, R.

    1996-12-31

    Despite the attention given to lake acidification caused by anthropogenic emissions, the question of how climate change might influence the acid-base equilibria of lakes has rarely been explored. High altitude stations and inner alpine valleys are affected by precipitation with mineral acidity of 50 microequivalents per liter, thus exceeding the critical load in very sensitive watersheds. Paleolimnological data show that the acidity on soft-water, remote high altitude lakes situated on crystalline bedrock in the southern central Alps was correlated with regional temperature during the entire nineteenth century, colder years associated with lower pH, e.g., years which can be assigned to the so-called little ice-age. The onset of anthropogenic acid precipitation at the beginning of the present century led to a breakdown of the pH-temperature relationship, with pH dropping steadily to recent values.

  6. Diatom Community Changes in Five Sub-alpine Mountain Lakes in Northern California

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Noble, P. J.; Howard, K.; Heyvaert, A.

    2012-12-01

    Sediment cores and/or phytoplankton sampling of five sub-alpine lakes within three northern California mountain ranges show a major shift in diatom phytoplankton communities over the past 20-60 years; however, specific causes of these changes are still under investigation. Diatom analysis of a 20-cm sediment core taken from Castle Lake, a meso-oligotrophic lake located on the eastern slope of the Klammath Mountains, shows the phytoplankton community shifted from being cyclotelloid-dominated to having a larger component of araphids beginning around 1997. In the lower 14 cm of the core, the phytoplankton are dominated by centric diatoms, including the Discostella stelligera-pseudostelligera group (>50% of total diatoms), and the Cyclotella occelata-rossii-tripartita complex (9-18%). The top 6 cm show an increasing shift towards araphids, including Asterionella formosa and the Fragilaria tenera-nanana group, which is consistent with phytoplankton in the lake's epilimnion today. Fallen Leaf Lake (FLL), located at the southern end of the Lake Tahoe basin, has also undergone a similar shift. Presently, A. formosa, the F. tenera-nananna group, and Tabellaria dominate the phytoplankton. Examination of a sediment core from FLL indicates that A. formosa has been present in high abundances since at least 1812. The most prominent shift in the FLL diatom population began in the 1950s when the centric diatoms (eg. Aulacoseira subarctica) declined significantly in favor of araphids. The F. tenera-nanana group was present in trace amounts before 1812 and dramatically increased in abundance after the 1950s. Sediment accumulation rates have increased steadily since 1950 and coincide with increases in lake development and recreational use. A. formosa is also present today in Gilmore Lake, a minimally human-impacted lake located in the watershed above FLL, and in the heavily impacted Manzanita Lake in the northwestern corner of Lassen Volcanic National Park (LAVO) at the southern end

  7. The transmission of the NAO signal to alpine lakes in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Sánchez, Guiomar; Hernández, Armand; Toro, Manuel; Granados, Ignacio; Sigró, Javier; Pla-Rabes, Sergi; Trigo, Ricardo; Jesús Rubio, María; Giralt, Santiago

    2014-05-01

    The North Atlantic Oscillation (NAO) is one of the main climate circulation patterns ruling winter rainfall and temperature in western Europe. In particular, the NAO pattern controls to a large extent the seasonal and inter-annual precipitation variability in the Iberian Peninsula (IP). Alpine lake ecosystems can be excellent records of NAO influence. They have been shown to respond significantly to local and regional climate variability dominated by large-scale climatic fluctuations, including the NAO. Physical lake parameters seem to reflect these meteorological forcing more immediately and sensitively than other lacustrine ones (i.e biological parameters). Specifically, ice phenology has become one of the most valuable indicators of NAO winter influence. Many studies carried out in lakes located in Northern Hemisphere have in common to find this transmission through air temperature. In addition, only few works have found a significant relationship between NAO signal and other climate variables, such as precipitation or snow. Conversely, to the best of our knowledge this kind of assessments have not been performed yet in Southern Europe. Two alpine lakes, with a glacial origin and located in the Spanish Central Range (IP) have been selected to perform a conceptual model of the transmission of NAO signal to lakes: Cimera (dimictic at 2140 m a.s.l., 384 m long, 177 m wide and 9.4 m deep) and Peñalara (monomictic at 2017 m a.s.l., 115 m long, 71.5 m wide and 4.8 m deep). This conceptual model has been built using Pearson's r correlation coefficients between winter season (December-March) data sets of NAO index, local meteorology (precipitation, temperature and snow days) and limnology (ice phenology records and lake water surface temperatures) available for the period 1993-2011 in Lake Peñalara and for the period 2007-2013 in Lake Cimera. The conceptual model results suggest that NAO winter signal is mainly reflected in ice phenology by air temperature but also by

  8. Seasonal inorganic nitrogen release in alpine lakes on the Colorado western slope

    USGS Publications Warehouse

    Inyan, B.I.; Williams, M.W.; Tonnessen, K.; Turk, J.T.; Campbell, D.H.

    1998-01-01

    In the Rocky Mountains, the association of increases in acidic deposition with increased atmospheric loading of sulfate and direct changes in surface water chemistry has been well established. The importance, though, of increased nitrogen (N) deposition in the episodic acidification of alpine lakes and N saturation in alpine ecosystems is only beginning to be documented. In alpine areas of the Colorado Front Range, modest loadings of N in deposition have been associated with leakage of N to surface waters. On the Colorado western slope, however, no leakage of N to surface waters has been reported. A 1995 study that included early season under-ice water samples that were not available in earlier studies showed that there is, in fact, N leakage to surface waters in some western slope basins. Under-ice nitrate (NO3-) concentrations were as high as 10.5 ??q L-1, and only decreased to detection limits in September. Landscape type appears to be important in leakage of N to surface waters, which is associated with basins having steep slopes, thin soils, and large amounts of exposed bedrock. NO3- leakage compounds the existing sensitivity to episodic acidification from low acid neutralizing capacity (ANC), which is less than 40 ??eq L-1 in those basins.

  9. Impact of internal waves on the spatial distribution of Planktothrix rubescens (cyanobacteria) in an alpine lake.

    PubMed

    Cuypers, Yannis; Vinçon-Leite, Brigitte; Groleau, Alexis; Tassin, Bruno; Humbert, Jean-François

    2011-04-01

    The vertical and horizontal distribution of the cyanobacterium, Planktothrix rubescens, was studied in a deep alpine lake (Lac du Bourget) in a 2-year monitoring program with 11 sampling points, and a 24-h survey at one sampling station. This species is known to proliferate in the metalimnic layer of numerous deep mesotrophic lakes in temperate areas, and also to produce hepatotoxins. When looking at the distribution of P. rubescens at the scale of the entire lake, we found large variations (up to 10  m) in the depth of the biomass peak in the water column. These variations were closely correlated to isotherm displacements. We also found significant variations in the distribution of the cyanobacterial biomass in the northern and southern parts of the lake. We used a physical modeling approach to demonstrate that two internal wave modes can explain these variations. Internal waves are generated by wind events, but can still be detected several days after the end of these events. Finally, our 24-h survey at one sampling point demonstrated that the V1H1 sinusoidal motion could evolve into nonlinear fronts. All these findings show that internal waves have a major impact on the distribution of P. rubescens proliferating in the metalimnic layer of a deep lake, and that this process could influence the growth of this species by a direct impact on light availability.

  10. Alpine Warming induced Nitrogen Export from Green Lakes Valley, Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Williams, M. W.; Parman, J.

    2012-12-01

    Alpine ecosystems are particularly susceptible to disturbance due to their short growing seasons, sparse vegetation and thin soils. Atmospheric nitrogen deposition and warming temperatures currently affect Green Lakes Valley (GLV) within the Colorado Front Range. Research conducted within the alpine links chronic nitrogen inputs to a suite of ecological impacts, resulting in increased nitrate export. According to NADP records at the site, the atmospheric flux of nitrogen has decreased by 0.56 kg ha-1 yr-1 since 2000, due to a decrease in precipitation. Concurrent with this decrease, alpine nitrate yields have continued to increase; by 32% relative to the previous decade (1990-1999). In order to determine the source(s) of the sustained nitrate increases we utilized long term datasets to construct a mass balance model for four stream segments (glacier to subalpine) for nitrogen and weathering product constituents. We also compared geochemical fingerprints of various solute sources (glacial meltwater, thawing permafrost, snow, and stream water) to alpine stream water to determine if sources had changed over time. Long term trends indicate that in addition to increases in nitrate; sulfate, calcium, and silica have also increased over the same period. The geochemical composition of thawing permafrost (as indicated by rock glacial meltwater) suggests it is the source of these weathering products. Mass balance results indicate the high ammonium loads within glacial meltwater are rapidly nitrified, contributing approximately 0.45 kg yr-1 to the NO3- flux within the upper reaches of the watershed. The sustained export of these solutes during dry, summer months is likely facilitated by thawing cryosphere providing hydraulic connectivity late into the growing season. In a neighboring catchment, lacking permafrost and glacial features, there were no long term weathering or nitrogen solute trends; providing further evidence that the changes in alpine chemistry in GLV are likely

  11. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  12. 75 FR 13253 - Plan Revision for Lake Tahoe Basin Management Unit, Alpine, El Dorado, and Placer Counties, CA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... the need for quality land management under the sustainable multiple-use management concept as required by the National Forest Management Act and the Multiple Use Sustained Yield Act. This concept seeks to... Forest Service Plan Revision for Lake Tahoe Basin Management Unit, Alpine, El Dorado, and Placer...

  13. Factors involved in the distribution pattern of ciliates in the water column of a transparent alpine lake

    PubMed Central

    SONNTAG, BETTINA; SUMMERER, MONIKA; SOMMARUGA, RUBEN

    2011-01-01

    The recurrent depth preference of three ciliate species (two prostomatids and one haptorid) in a transparent alpine lake indicates the existence of niche partitioning among them involving potential factors such as avoidance of high ultraviolet radiation levels and zooplankton predation, as well as competition for food resources. PMID:21984852

  14. Sediments as tracers for transport and deposition processes in peri-alpine lakes: A case study

    NASA Astrophysics Data System (ADS)

    Righetti, Maurizio; Toffolon, Marco; Lucarelli, Corrado; Serafini, Michele

    2011-12-01

    SummaryThe benthic sediment fingerprint is analysed in the small peri-alpine lake Levico (Trentino, Italy) to identify the causes of recurrent phenomena of turbidity peaks, particularly evident in a littoral region of the water body. In order to study the sediment transport processes, we exploit the fact that the sediment supply from the major tributary has a specific chemical composition, which differs from that of the nearby lake basin. Three elements (Fe, Al, K) have been used as tracers to identify the source and the deposition patterns of tributary sediments, and another typical element, Si, has been critically analysed because of its dual (allochthonous and autochthonous) origin. Several samples of the benthic material have been analysed using SEM-EDS, and the results of the sedimentological characterisation have been compared with the patterns of sediment accumulation at the bed of the lake obtained using a three-dimensional numerical model, in response to the tributary supply under different external forcing and stratification conditions. The coupled use of field measurements and numerical results suggests that the turbidity phenomena are strongly related to the deposition of the sediments supplied by the tributary stream, and shows that it is possible to reconstruct the process of local transport when the tributary inflow is chemically specific.

  15. Transport of pollutants from cow feedlots in eastern Colorado into Rocky Mountain alpine lakes

    NASA Astrophysics Data System (ADS)

    Pina, A.; Denning, S.; Schumacher, R. S.

    2012-12-01

    Concentrated Animal Feeding Operations (CAFOs), also called factory farms, are known for raising tens of millions head of livestock including cows (beef and dairy), swine, and poultry. With as many as 250 head of cattle per acre, a United States Department of Agriculture's (USDA) Agricultural Research Service (ARS) report showed beef cattle from CAFOs in the United States produce as much as 24.1 million tons of manure annually. Gases released from cow manure include methane (CH4), nitrous oxide (N2O), hydrogen sulfide (H2S), and ammonia (NH3). During boreal summers Colorado experiences fewer synoptic weather systems, allowing the diurnal cycle to exert greater control of meteorological events along the mountain-plains interface. Anabatic, or upslope winds induced by the diurnal cycle, contribute largely to the transport of gases and particulates from feedlots in eastern Colorado into the Rocky Mountains, presenting a potential harm to natural alpine ecosystems. This study focuses on locating the source of transport of gases from feedlots along the eastern Front Range of Colorado into alpine lakes of the Rocky Mountains. Source regions are approximated using backward time simulation of a Lagrangian Transport model.

  16. Identification and Characterization of Dynamic Alpine Subglacial Lakes Using InSAR, Radio- Echo Sounding, and Crevasse Interpretation

    NASA Astrophysics Data System (ADS)

    Capps, D. L.; Rabus, B. T.; Clague, J. J.

    2007-12-01

    We use interferometric synthetic aperture radar (InSAR), radio-echo sounding (RES), and crevasse interpretation to identify and characterize two dynamic alpine subglacial lakes in Glacier Bay National Park, Alaska. Although significant literature exists on large subglacial lakes in Antarctica, little research has been done on alpine subglacial lakes. Subglacial and subaerial glacier-dammed lakes and the catastrophic floods (jokulhlaups) that release are a hazard in glacierized mountain regions around the world. Many glacier-dammed lakes form subglacially during periods of glacier retreat and downwasting, but are not identified until they become subaerially exposed or release a jokulhlaup. The two lakes discussed here are dammed by Brady Glacier in southeast Alaska, 120 km west of Juneau. Initially, a conspicuous, 3-km-long crevasse in the glacier drew our attention to Hinge Lake, so named because of its hinge-like appearance. For the InSAR analysis, we utilized 20 ascending and descending ERS-1 and -2 tandem radar images provided by the European Space Agency. We obtained a DEM from Glacier Bay National Park that was based on data from the SRTM mission, with gaps filled using photogrammetry data. We co-registered and processed raw SAR signal data into complex, single-look images, created interferograms, and unwrapped the phase. To simplify the analysis, we assumed zero horizontal glacier movement. This assumption is valid because ice is flowing into a closed depression and all interferograms analyzed in this study show very little or zero horizontal motion. To further characterize the lakes, we conducted a RES survey to determine ice depths and substrate. We deduced principle stresses by interpreting crevasses patterns in combination with vertical displacement data derived from interferograms. A time series of interferograms shows vertical motion over large areas of the two lakes. A hydraulic connection between the two lakes is inferred from contemporaneous vertical

  17. Tropical high-altitude Andean lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes.

    PubMed

    Aguilera, Ximena; Lazzaro, Xavier; Coronel, Jorge S

    2013-09-01

    Tropical high-altitude Andean lakes are physically harsh ecosystems. Located above the treeline (≥4000 m a.s.l.), they share common features with temperate alpine lakes, which impose extreme conditions on their aquatic organisms: e.g., strong winds, broad diel variations in water temperature, and intense solar ultraviolet radiation (UVR). However, because of their latitude, they differ in two major ecological characteristics: they lack ice cover during the winter and they do not present summer water column stratification. We sampled 26 tropical high-altitude Andean lakes from three regions of the Bolivian Eastern Andes Cordillera during the wet period (austral summer). We performed an ordination to better describe the typology of Andean lakes in relation to the environmental variables, and we assessed the relationships among them, focussing on the UV-A transparency (360 nm) throughout the water column. We found a positive correlation between UV-A transparency calculated as Z(1%) (the depth which reaches 1% of the surface UV-A), the lake maximum depth and Secchi transparency (r = 0.61). Z(1%) of UV-A was smaller in shallow lakes than in deep lakes, indicating that shallow lakes are less transparent to UV-A than deep lakes. We hypothesize that, compared to shallow lakes, deep lakes (maximum depth > 10 m) may have lower dissolved organic carbon (DOC) concentrations (that absorb UV radiation) due to lower temperature and reduced macrophyte cover. Based on our data, tropical high-altitude Andean lakes are less transparent to UV-A (K(d) range = 1.4-11.0 m(-1); Z(1%) depth range = 0.4-3.2 m) than typical temperate alpine lakes (1-6 m(-1), 3-45 m, respectively). Moreover, they differ in vertical profiles of UV-A, chlorophyll-a, and temperature, suggesting that they may have a distinct ecological functioning. Such peculiarities justify treating tropical high-altitude Andean lakes as a separate category of alpine lakes. Tropical high-altitude Andean lakes have been poorly

  18. Long-term EC measurements over a pre-alpine lake

    NASA Astrophysics Data System (ADS)

    Scholz, Katharina; Hammerle, Albin; Wohlfahrt, Georg

    2016-04-01

    Recent research indicates that inland waters are significant contributors to the global carbon cycle. However, up to now long-term measurements of carbon dioxide (CO2) and methane (CH4) fluxes above freshwater ecosystems are sparse and the knowledge on the magnitude of the fluxes and the involved processes needs to be improved. Most of the research has focused on tropical and boreal regions. Furthermore, many findings were based on short-term measurements or relied on non-continuous floating chamber measurements. This study is part of a cooperation project with the overarching aim to study possible effects of past, present and future hydrological extremes on carbon fluxes at catchment scale. The first step is to establish the complete carbon balance of a lake and therefore also to measure CO2 exchange between the atmosphere and the surface of a temperate lake for the first time continuously all year round. The eddy covariance method is a technique widely used for long-term, continuous measurements of energy and trace gas exchange between the atmosphere and terrestrial ecosystems. Here, we employ this method for year-round monitoring of CO2-, sensible and latent heat fluxes above Lake Lunz, a small pre-alpine lake in lower Austria. In addition, the water temperature profile was measured with high temporal resolution in order to capture the heat storage change of the lake during the ice free period. This together with measurements of the net radiation allows us to also evaluate the energy balance closure. The measurements started in December 2014 and here we present flux data as well as data on the energy balance closure of the first year. A preliminary analysis of the data indicated that the lake acts as a net source of CO2 with stronger emissions during night. The monthly mean amplitudes of the sensible (H) and latent (LE) heat flux were highest during the summer month (July, August), with a clear peak of H in the early morning hours. The water temperature profile

  19. Biogeochemical responses of two alpine lakes to climate change and atmospheric deposition, Jasper and Banff National Parks, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hobbs, W.; Vinebrooke, R. D.; Wolfe, A. P.

    2012-12-01

    The sensitivity of remote alpine ecosystems to global change has been documented by 20th century changes in climate, glacial recession, and terrestrial and aquatic ecosystems. In many cases the magnitude and dominance of abiotic drivers on recent changes in alpine lakes is often mediated by processes within the hydrologic catchment. Here we present sedimentary records of biogeochemical responses in two alpine lake ecosystems to multiple environmental drivers over the last ~ 500 years in Banff and Jasper National parks. We combine paleoecological measures of primary production (fossil microbial pigments) and diatom community structure with geochemical proxies of reactive N (Nr) deposition to describe the nature and rate of recent ecosystem changes. Curator Lake in Jasper shows a strong diatom response to the limnological effects of climate warming (e.g. thermal stratification), but little evidence of changes in Nr cycling over the last ~500 years. The response of McConnell Lake in Banff to climate change is strongly mediated by glacial activity within the catchment, and changing inputs of Nr. Our findings highlight the range of limnological responses that may be expressed by similar ecosystems subjected to comparable abiotic stressors, while further documenting the magnitude of the ecological footprint associated with recent environmental change in mountain park environments.

  20. Air pollution in the shore zone of a Large Alpine Lake - 1 - Road dust and urban aerosols at Lake Tahoe, California-Nevada

    NASA Astrophysics Data System (ADS)

    VanCuren, R.; Pederson, J.; Lashgari, A.; Dolislager, L.; McCauley, E.

    2012-01-01

    Concentrated human activity and limited atmospheric mixing create a high potential for airborne pollutant impacts to alpine lakes developed as mountain resorts. Lake Tahoe is a major alpine resort straddling the California-Nevada border, receiving more than two million visitors each year. The lake's clarity has declined substantially since the inception of intense development in the Tahoe basin in the 1970s. The 2002-2004 Lake Tahoe Atmospheric Deposition Study (LTADS) was conducted as part of a multi-agency effort to develop a water quality management plan for the lake. Estimating aerosol deposition to the lake requires detailed knowledge of the spatial and temporal patterns of aerosol concentration, size distribution, and chemical composition over the entire basin - and developing a management plan requires also that the sources of the aerosols be known with considerable specificity. In lieu of the intensive measurement network implied by this level of detail, we hypothesized that a set of measurements to characterized the temporal, spatial, and size distribution patterns of particles in ambient air and in local emissions in the vicinity of Lake Tahoe could be used to extrapolate long time series of simple measurements to an annual aerosol deposition computation. Here we report the results of our detailed aerosol measurement campaign. Our results show that there are strong systematic and repeating gradients in aerosol loading that occur as functions of location, land use, traffic activity, and time of day, and that road dust is a major source of aerosols around the lake. In addition, we observed strong consistency of particle size distributions as a function of source type, largely independent of particle concentrations. Finally, we demonstrated the use of particle counters to directly observe downwind dispersion and deposition of particles. Together, these findings support the use of imputed location- and time-specific size distributions in annual aerosol

  1. Nonnative salmon alter nitrification in Great Lakes tributaries

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    Nonnative species can affect the biogeochemistry of an ecosystem. For instance, Pacific salmon have been introduced for sport fishing in many streams and lakes beyond their native range, and their introduction may be altering nitrogen cycling in those ecosystems.

  2. Ciliate community structure and interactions within the planktonic food web in two alpine lakes of contrasting transparency.

    PubMed

    Kammerlander, Barbara; Koinig, Karin A; Rott, Eugen; Sommaruga, Ruben; Tartarotti, Barbara; Trattner, Florian; Sonntag, Bettina

    2016-11-01

    Climate warming is accelerating the retreat of glaciers and recently, many 'new' glacial turbid lakes have been created. In the course of time, the loss of the hydrological connectivity to a glacier causes, however, changes in their water turbidity and turns these ecosystems into clear ones.To understand potential differences in the food-web structure between glacier-fed turbid and clear alpine lakes, we sampled ciliates, phyto-, bacterio- and zooplankton in one clear and one glacial turbid alpine lake, and measured key physicochemical parameters. In particular, we focused on the ciliate community and the potential drivers for their abundance distribution.In both lakes, the zooplankton community was similar and dominated by the copepod Cyclops abyssorum tatricus and rotifers including Polyarthra dolichoptera, Keratella hiemalis, Keratella cochlearis and Notholca squamula. The phytoplankton community structure differed and it was dominated by the planktonic diatom Fragilaria tenera and the cryptophyte alga Plagioselmis nannoplanctica in the glacial turbid lake, while chrysophytes and dinoflagellates were predominant in the clear one.Ciliate abundance and richness were higher in the glacial turbid lake (∼4000-27 800 Ind L(-1), up to 29 species) than in the clear lake (∼570-7150 Ind L(-1), up to eight species). The dominant species were Balanion planctonicum, Askenasia cf. chlorelligera, Urotricha cf. furcata and Mesodinium cf. acarus. The same species dominated in both lakes, except for Mesodinium cf. acarus and some particle-associated ciliates, which occurred exclusively in the glacial turbid lake. The relative underwater solar irradiance (i.e. percentage of PAR and UVR at depth) significantly explained their abundance distribution pattern, especially in the clear water lake. In the glacial turbid lake, the abundance of the dominating ciliate taxa was mainly explained by the presence of predatory zooplankton.Our results revealed an unexpected high

  3. An Investigation of the Impacts of Climate and Environmental Change on Alpine Lakes in the Uinta Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Moser, K. A.; Hundey, E. J.; Porinchu, D. F.

    2007-12-01

    Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant

  4. Dissolved greenhouse gas concentrations as proxies for emissions: First results from a survey of 43 Alpine lakes

    NASA Astrophysics Data System (ADS)

    Pighini, Sylvie; Wohlfahrt, Georg; Miglietta, Franco

    2015-04-01

    Up to very recently, freshwater ecosystems were neglected in assessments of the global carbon cycle and considered merely as passive 'pipes' which transport carbon from the land to the oceans. This view has been challenged by an increasing number of studies showing that freshwater ecosystems may negate a substantial fraction of the carbon sink through carbon dioxide (CO2) and in particular methane (CH4) emissions and thus rather should be viewed as 'reactors' which process a large fraction of the terrigenous carbon. Most of our knowledge on freshwater CO2 and CH4 emissions to date derives from studies in tropical and boreal regions, while temperate freshwater ecosystems are understudied. This study is focused on lakes from the Alpine area and their content in dissolved greenhouse gases, CH4 and CO2. We mostly aim to assess the content of dissolved methane and carbon dioxide from the Alpine lakes in order to understand whether Alpine lakes could be potential CH4 and CO2 emitters. We also would like to relate concentrations to lake characteristics and potential biotic and abiotic driving forces. A diverse set of 43 lakes, from Trentino, South Tirol (Italy) and North Tirol (Austria), was selected resulting in a gradient with respect to elevation (from 240 to 1700 m a.s.l.) and latitude (from 45.52° to 47.38°). Complementary to dissolved CH4 and CO2 surface water samples, dissolved oxygen and temperature were measured. Only water surface samples were considered. Analyses were done with a gas chromatographer equipped with a flame ionization detector (FID) for CH4 and a thermal conductivity detector (TCD) for CO2 determination. The first results show that all the sampled lakes were super-saturated in dissolved methane and carbon dioxide concentrations, at least partly to a degree that in the literature has been shown to result in substantial emissions to the atmosphere. To estimate emissions, CO2 and CH4 fluxes will be quantified using the eddy covariance and floating

  5. Erosion under climate and human pressures: An alpine lake sediment perspective

    NASA Astrophysics Data System (ADS)

    Arnaud, Fabien; Poulenard, Jérôme; Giguet-Covex, Charline; Wilhelm, Bruno; Révillon, Sidonie; Jenny, Jean-Philippe; Revel, Marie; Enters, Dirk; Bajard, Manon; Fouinat, Laurent; Doyen, Elise; Simonneau, Anaëlle; Pignol, Cécile; Chapron, Emmanuel; Vannière, Boris; Sabatier, Pierre

    2016-11-01

    We review the scientific efforts over the last decades to reconstruct erosion from continuous alpine lake sediment records. We focused both on methodological issues, showing the growing importance of non-destructive high resolution approaches (XRF core-scanner) as well as progresses in the understanding of processes leading to the creation of an "erosion signal" in lakes. We distinguish "continuous records" from "event-records". Both provide complementary information but need to be studied with different approaches. Continuous regionally-relevant records proved to be particularly pertinent to document regional erosion patterns throughout the Holocene, in particular applying the source to sink approach. Event-based approaches demonstrated and took advantage of the strong non-linearity of sediment transport in high altitude catchment areas. This led to flood frequency and intensity reconstructions, highlighting the influence of climate change upon flood dynamics in the mountain. The combination of different record types, both in terms of location (high vs. low elevation), sedimentology (high vs. low terrigenous contribution) and significance (local vs. regional) is one of the main outputs of this paper. It allows the establishment of comprehensive histories of NW French Alps erosion, but also and consequently, soil dynamics and hydrological patterns throughout the Holocene. We also discuss the influence of glacier dynamics, one of the major agents of erosion in the Alps. A major feature is the growing human influence upon erosion at a local scale since at least the middle of the Bronze Age (3500 cal. BP). However and according to the regional record from Lake Bourget, only few periods of rising erosion at local scales generated a regional record that can be discriminated from wetter climatic periods. Among them, the period between 200 BCE and 400 AD appeared to be marked by a generalised rise in human-triggered erosion at local scales in the northern French Alps

  6. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake

    PubMed Central

    Faulks, Leanne; Östman, Örjan

    2016-01-01

    Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H’T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species. PMID:27032100

  7. Lakes as organic matter upgraders - seasonal variation in biochemical compositions of in- and outflowing particles in pre-alpine Lake Lunz, Austria

    NASA Astrophysics Data System (ADS)

    Khan, Samiullah; Hollaus, Lisa-Maria; Schelker, Jakob; Ejarque, Elisabet; Battin, Tom; Kainz, Martin

    2016-04-01

    Lakes are typically recharged by inflowing stream water and discharge into outflowing streams. In this multiannual field study on pre-alpine, oligotrophic Lake Lunz, Lower Austria, we hypothesized that, irrespective of seasons, stream water recharging the lake contains predominantly recalcitrant particular organic matter (POM; >1.2 um particle size), whereas outflowing lake water is mostly composed of more labile, algae-derived POM. We collected POM for 3 years (2013-2015) at a monthly basis from the inflowing and outflowing streams of Lake Lunz, analyzed POM content, its carbon and nitrogen, their stable isotopes, and fatty acids as biochemical indicators of POM sources. Preliminary results show that, independent of seasons, inflowing POM is rich in terrestrial markers, as evidenced by long-chain saturated fatty acids (>C22:0), with little contribution of autochthonous stream POM, such as algae-derived long-chain polyunsaturated fatty acids (LC-PUFA). However, POM in outflowing water contained considerably less terrestrial markers, but clearly higher contents of highly nutritious, algae-derived LC-PUFA. These results suggest that oligotrophic Lake Lunz acts as a biochemical upgrader within the fluvial network of this drainage basin and supplies highly nutritional POM to consumers further downstream. Ongoing research is aimed at identifying how much of the terrestrial and autochthonous POM is retained and processed in the lake (biota, sediments, or respired).

  8. Holocene lake level fluctuations of a small alpine lake in the Qilian Mountains, NW China: a comparison of chironomid, ostracod, pollen and geochemistry data.

    NASA Astrophysics Data System (ADS)

    Mischke, S.; Herzschuh, U.

    2003-04-01

    A core of 14 m length was drilled in a small alpine lake in the Qilian Mountains, NW China. The lake Luanhaizi has a drainage area of about 30 km2 and is situated at an altitude of 3200 m which represents the altitude of the present regional upper timberline. Due to the small size of the open-basin lake (surface area about 1 km2) and the sharply outlined catchment area the lake is regarded as a very sensitively and rapidly responding ecosystem. Analyses of ostracod shells, head capsules of larval chironomids and pollen and spores were conducted and the organic and carbonate content (LOI), element concentrations and magnetic susceptibility of core samples determined. Ostracod taxa mainly comprise Candona candida, C. neglecta, C. rawsoni, Cyclocypris ovum, Cypridopsis vidua, Fabaeformiscandona caudata, F. danielopoli, F. hyalina, Herpetocypris chevreuxi, Heterocypris salina, Ilyocypris cf. bradyi, I. echinata, I. lacustris and Limnocythere inopinata. They may be used to distinguish periods of low lake levels corresponding to a dense cover of aquatic plants at the lake bottom from stages of higher lake levels and a corresponding decrease in macrophytes at the core site. Chironomid taxa belonging to Chironomus, Cladopelma, Glyptotendipes, Micropsectra, Paratanytarsus, Polypedilum, Psectrocladius and Tanytarsus further provide information on variations in benthic oxygen availability and lake level fluctuations. Several units of the core show high abundances of pollen and spores of higher aquatic and wetland plants and fungi (Cyperaceae, Hippuris, Myriophyllum and Glomus) indicating low lake levels. In contrast, algae such as Botryococcus, Pediastrum and Tetraedron were regarded to reflect higher water levels. Typha angustifolia-type, Typha latifolia, Alisma and Potamogeton were recorded in low abundances as well. The organic content of core samples averages 6 % displaying four alternating stages of distinct minima and maxima. Lowest values of about 1 % occur at the core

  9. New homogenized daily lake surface water temperature data of three decades from multiple sensors confirm warming of large sub-alpine lake Garda

    NASA Astrophysics Data System (ADS)

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-04-01

    Availability of remotely sensed multi-spectral images from the early eighties covering three decades of voluminous data could help researchers to study the change dynamics in bio-physical characteristics of land and water. However it is very important to homogenize these data originating from multiple sources which follow different standards and quality. In this study, we explored the thermal dynamics of a large sub-alpine lake Garda over last twentyeight years (1986 - 2014) using Lake Surface Water Temperature (LSWT) derived from the thermal bands of moderate resolution sensors - AVHRR/2, AVHRR/3, ATSR1, ATSR2, A(A)TSR and MODIS aboard multiple satellites. We developed a homogenized daily LSWT dataset (12:00 P.M) at 1km spatial resolution combining the data from these sensors using split window technique and performing an acquisition time correction. The gaps in the temporal database due to clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The results show high correlation (R2 > 90) between satellite derived LSWT (taken into account both individual sensors and the combined data) and the in-situ data. The time correction enable us to perform a trend analysis on unified datasets corrected for its acquisition times. The trend analysis using non-parametric tests shows significant warming in annual trend at the rate of 0.01K yr-1 (p<0.05), while in summer the increasing trend is 0.02K yr-1(p<0.1). The results are in line with similar findings on warming of Alpine lakes. Moreover, the advantage of the spatial coverage at 1 km resolution we are able to characterize the thermal dynamics of the lake Garda at multiple locations of this large lake.

  10. Seasonal changes in CH4 emissions from an alpine reservoir, Lake Klöntal, Switzerland

    NASA Astrophysics Data System (ADS)

    Sollberger, S.; Eugster, W.; Schubert, C.; Wehrli, B.

    2012-04-01

    Atmospheric methane (CH4) concentration doubled since the pre-industrialized era and its potential as a greenhouse gas is 25 higher than CO2 over a 100-year horizon. Recent studies showed an important contribution of inland waters, including hydropower reservoirs, to the global CH4 cycle. However, the large seasonal and latitudinal variability of emissions reported in the literature highlights the necessity for a better understanding of CH4 emission mechanisms. The aim of this study was to investigate physical factors (water level and temperature) that trigger the seasonal pattern of CH4 emissions in a Swiss alpine reservoir, Lake Klöntal, using multiple methods. Atmospheric CH4 flux was measured using a fast methane analyzer (FMA, Los Gatos Research) and an eddy covariance tower set on a floating platform from April to December 2011 (before ice sets). Emissions were also measured monthly via chambers and calculated from surface water concentrations using Henry's law. Methane ebullition was examined over the lake surface of 5 km2 using a split-beam echosounder. Typical daily variations of CH4 were measured with the eddy covariance setup within the range of 0.23 and 7.4 mg CH4 m-2 d-1 (95% confidence interval) and were mainly related to temperature and solar radiation variability. The seasonal trend shows that average fluxes increase from 3.0 (April) to 3.7 mg CH4 m-2 d-1 in November. Much larger fluctuations can be observed in comparison to the chamber results where the emissions typically increase throughout the day. Furthermore, highest chamber fluxes were measured in July and October, which does not correspond with the FMA results (November). This inconsistency is also observed in the flux estimates calculated from surface concentrations of which the highest fluxes were in September. Ebullition was only observed (Jul., Sep. and Nov.) in a very shallow area where it was not possible to use the echosounder. Hence, our measurements may slightly underestimate the

  11. The epidemiology of illness and injury at the alpine venues during the Salt Lake City 2002 Winter Olympic Games.

    PubMed

    Allen, Todd L; Jolley, Scott J; Cooley, Vernon J; Winn, Robert T; Harrison, Jeffery D; Price, Richard R; Rich, J Charles

    2006-02-01

    The Emergency Medicine literature has described levels of medical care for mass gatherings in the United States, including for the Los Angeles 1984 Summer and Calgary 1988 Winter Olympic Games. However, there are limited data to describe the type and number of illness or injury that may occur during mass gatherings in an alpine winter environment. To describe the epidemiology of illness and injury seen among spectators at the alpine and snowboarding venues during the Salt Lake City 2002 Winter Olympic Games, we conducted a retrospective review of the Salt Lake City 2002 Olympic Medical Care database for all patient encounters during the operational period of the Games at the alpine and snowboarding venues. The three venues included were: Deer Valley Resort (DVR), Park City Mountain Resort (PCM), and Snowbasin Resort (SBA). Each venue had a medical clinic located on site for spectators and another for athletes. Physicians, nurses, emergency medical technicians, and therapists staffed the clinics. The database was created by Inter-mountain Health Care (IHC) in conjunction with Salt Lake City 2002 Winter Olympic staff and consisted of descriptive reports of all patient encounters from all venues including demographic, epidemiology, and outcome information. IHC maintains the database, and was the sole medical provider for the Games. Each venue had at least 6 days of competition events. Over the 19 days of the Olympiad, a total of 410,160 spectators and 3,961 competitive athletes attended the three venues. There were 841 spectators evaluated and treated at the venue clinics, and mobile medical staff treated 262 spectators. The top five spectator clinic diagnostic categories were: sprain/strain (n=108), miscellaneous trauma (n=103), respiratory (n=88), miscellaneous medical (n=69), and digestive (n=52). Fifty spectators required transport to a hospital for additional care: 27 required transfer by ground ambulance and the remainder were transported by private vehicle. The

  12. Where have all the females gone? Male biased sex-ratio in Arctodiaptomus alpinus (Imhof, 1885) in alpine lakes

    NASA Astrophysics Data System (ADS)

    Žibrat, U.; Brancelj, A.

    2009-04-01

    In populations with both males and females sex-ratio is one of the driving forces of population dynamics. It influences fecundity, inbreeding and social interactions. Sex-ratio is affected by several biotic and abiotic factors, either by selective killing of one sex or by inducing migrations. In alpine lakes of Triglav National Park, Slovenia, an extremely male biased sex-ratio in Arctodiaptomus alpinus (Imhof, 1885) was regularly observed since 1992. We analysed population dynamics and sex-ratio of A. alpinus in three alpine lakes (Jezero v Ledvicah, Rjavo jezero and Zgornje Kriško jezero) from Triglav National Park in Slovenia. In addition to seasonal dynamics we also researched long-term changes in sex-ratio (in a period of 11 years from autumn samples) as a result of increased air-temperature, and zooplankton diurnal vertical migrations. Adults of both sexes were found to appear at the same time in the water collumn with males prevailing throughout the season. A similar trend was found in copepodites CV. The percent of adult females began increasing in late summer, when there were no more copepodites and recrutation from copepodites CV to adults stopped, while male mortality increased. All cohorts of A. alpinus were found to perform diurnal vertical migrations. Both adult and CV females remained close to the bottom during the day and migrated vertically during the night. Results of the long-term study show no changes in sex-ratio in autumn.

  13. Historical deposition of persistent organic pollutants in Lake Victoria and two alpine equatorial lakes from East Africa: Insights into atmospheric deposition from sedimentation profiles.

    PubMed

    Arinaitwe, Kenneth; Rose, Neil L; Muir, Derek C G; Kiremire, Bernard T; Balirwa, John S; Teixeira, Camilla

    2016-02-01

    Information on historical deposition of persistent organic pollutants (POPs) for African lakes is very limited. We investigated historical deposition trends and sources of POPs in sediment cores from Lakes Victoria (SC1), Bujuku (Buju2) and Mahoma (Maho2). The latter two lakes are situated in the Rwenzori mountain range in western Uganda. SC1 was taken from a central depositional area within the Ugandan part of the lake. Profiles in Buju2 and Maho2 were used as a reference for historical atmospheric deposition. For the post-1940 sediment deposits in SC1, average focusing factor-adjusted fluxes (FFFs) of ΣDDTs, polychlorinated biphenyls (ΣPCBs), hexachlorocyclohexanes (ΣHCHs) and chlordanes (ΣCHLs) were 390, 230, 210 and 120 ng m(-2) yr(-1). Higher fluxes of ΣDDTs, ΣPCBs, and ΣCHLs were observed in Buju2 and Maho2. The average FFF of HCB in Buju2 was the highest while the values for Maho2 and SC1 were similar. The endosulfan FFFs in SC1 were lower than in the alpine lake cores. Generally, Buju2 was a better reference for historical atmospheric deposition of POPs than Maho2 probably due to distortion of the latter's profile by Lake Mahoma's forested catchment. Profiles of p,p'-DDE, ΣCHLs and HCB in SC1 were consistent with atmospheric deposition while profiles of PCBs and HCHs were indicative of particle-bound loadings from additional sources. Profiles of endosulfans, DDTs, and chlordanes were consistent with influence of other factors such as anoxia, and dilution. Further studies of spatial resolution of historical deposition, especially in near-shore deposition areas of the lake are recommended.

  14. Aerosol generation and circulation in the shore zone of a Large Alpine lake - 2 - Aerosol distributions over Lake Tahoe, CA

    NASA Astrophysics Data System (ADS)

    VanCuren, R.; Pederson, J.; Lashgari, A.; Dolislager, L.; McCauley, E.

    2012-01-01

    The temporal, spatial, and size-distribution patterns of particles in ambient air over the surface of Lake Tahoe (Nevada and California) were studied as part of the 2003-2004 Lake Tahoe atmospheric deposition study (LTADS). The concentration of population along the shoreline of Lake Tahoe makes accurate characterization of local aerosol generation and transport especially important in estimation of annual particle flux to the surface of the lake. Measurements taken while cruising on the lake show that aerosol concentrations in near shore areas are primarily controlled by a combination of diurnal cycling of land- and lake- breezes and particle emissions driven by cycles of human activity near the shore. These effects were observed to be highly localized. Highest concentrations were found just offshore from urbanized areas, especially shoreline centers of activity; lowest concentrations were found along undeveloped shoreline; low-to-intermediate concentrations were measured over the middle areas of the lake. The on-lake data reported here indicate that aerosols over the lake, and thus dry deposition to the lake, are dominated by the same processes that control onshore emissions, and that the impact is strongest in the near shore areas of the lake.

  15. Influence of geomorphic setting on sedimentation of two adjacent alpine lakes, Triglav Lakes Valley (Julian Alps, NW Slovenia)

    NASA Astrophysics Data System (ADS)

    Smuc, Andrej; Skabene, Dragomir; Muri, Gregor; Vreča, Polona; Jaćimović, Radojko; Čermelj, Branko; Turšič, Janja

    2013-04-01

    The Triglav Lakes Valley is elongated, 7km long depression, located high (at places over 2000 m.a.s.l.) in the central part of the Julian Alps (NW Slovenia). It hosts 6 small isolated lakes that formed due to the combination of Neogene tectonic and Pleistocene glaciation. The study is focused on the 5th and 6th Triglav Valley Lakes that characterize lower part of the valley. The lakes are located so close to each other that they are even connected in times of high water. Thus, they share the same bedrock geology, are subjected to the same climatic forcing and share similar vegetation communities. Despite their proximity, the lakes differ in their hydrologic and geomorphic setting. The lakes have no permanent surface tributaries; however 5th is fed periodically, at times of high water level, by the Močivec spring, while additional water flows from the swamp area near its northern shore. An underground spring on the eastern side of 5th represents the lake's only permanent freshwater inflow, while drainage takes place to the west via a small ponor. 6th has only one weak underground spring on the eastern side of the lake. Water levels may fluctuate between 2 and 3 m. Additionally, the lakes have different configuration of lakes shores; the northern shores of the 5th lake are low-angle soil and debris covered plateau, while southern shores of the 5th lake and shores of the 6th lake are represented by heavily karstified carbonate base rock and covered partly by trees. The detailed sedimentary analysis of the lakes record showed some similarities, but also some significant differences. Sediments of both lakes are represented by fine-grained turbidity current deposits that are transported from lake shores during snow melt or storms. The grain-size and sedimentary rates of the lakes are however markedly different. The 5th lake has coarser grained sediments, with mean ranging from 46 to 60 µm and records higher sedimentation rates of ~0,57 cm/year, compared to the 6th lake

  16. Structure and diversity of ssDNA Microviridae viruses in two peri-alpine lakes (Annecy and Bourget, France).

    PubMed

    Zhong, Xu; Guidoni, Baptiste; Jacas, Louis; Jacquet, Stéphan

    2015-10-01

    Microviridae is a subset of single-stranded DNA (ssDNA) viruses infecting bacteria. This group of phages has been previously observed to be very abundant (representing >90% of the total known viral metagenomic sequences) in Lake Bourget. However, this observation was made only during one period (in summer) and from a single sample collected at a single depth (near surface). This result suggests the importance of these viruses, poorly examined thus far, especially in fresh waters. In this study, performed on the two largest natural lakes in France (e.g. Lakes Annecy and Bourget), Microviridae structure was determined each month throughout the year (2011) using PCR-DGGE, with primers that target the major-capsid-protein-encoding gene VP1; cloning/sequencing was used to investigate their diversity. Our results confirm that Microviridae are diverse in peri-alpine lakes and are mainly represented by gokushoviruses. We also found for the first time ssDNA viruses belonging to Alpavirinae, another subfamily within Microviridae recently proposed by Krupovic and Forterre (2011), generally prophages infecting members of the Phylum Bacteroidetes. Our data also support highly variable community composition and dynamics of individual components whose patterns were different between lakes, suggesting distinct host communities and/or abiotic influences between the two ecosystems. We point out that most of the major observed ssDNA Microviridae viruses display boom-bust patterns (with a sharp increase/decline) in their dynamics, with high relative abundances, suggesting brutal control of hosts and rapid regulation of the host community structure.

  17. Biological cycling of nitrogen in a Rocky Mountain alpine lake, with emphasis on the physiological and ecological effects of acidification

    SciTech Connect

    Angelo, R.T.

    1989-01-01

    This study examined nitrogen cycling interactions occurring among the heterotrophic and autotrophic plankton of a softwater, oligotrophic alpine lake. Its major objectives were (1) to compare the influences of internal (regenerative) and external nitrogen supply processes on watercolumn primary production, (2) to identify the food web components contributing most to regenerative and assimilative fluxes of nitrogen, and (3) to evaluate the sensitivity of the limnetic nitrogen cycle to lake acidification. Field and laboratory experiments were based on isotopic tracer ({sup 15}N, {sup 14}C, {sup 3}H) methodologies plankton size-fractionation and metabolic inhibitor techniques, and short-term bioassay procedures; supporting data were gathered on lake physicochemical and biological properties. Measured aqueous nutrient concentrations, the results of {sup 14}CO{sub 2}-based snowmelt and nutrient enrichment bioassays, and physiological indicators of algal nutrient status collectively demonstrated that phytoplankton nitrogen demand greatly exceeded nitrogen supply. Both NH{sub 4}{sup +} and NO{sub 3}{sup {minus}} were quantitatively important forms of assimilatable nitrogen under ambient conditions. Mass balance considerations indicated that within-lake biogeochemical processes constituted a net sink for NO{sub 3}{sup {minus}}, whereas NH{sub 4}{sup +} production and consumption rates were approximately in balance on an ecosystem scale. Water-column regenerative and assimilative fluxes of NH{sub 4}{sup +} were strongly correlated. Meta- and protozooplankton were the principal sources of regenerated NH{sub 4}{sup +}; heterotrophic bacterioplankton were net consumers of NH{sub 4} {sup +}. Experimental reductions in metazooplankton populations markedly enhanced rates of NH{sub 4}{sup +} regeneration.

  18. Atmospheric deposition of particles at a sensitive alpine lake: Size-segregated daily and annual fluxes from passive sampling techniques.

    PubMed

    Tai, Anna Y-C; Chen, L-W Antony; Wang, Xiaoliang; Chow, Judith C; Watson, John G

    2017-02-01

    Lake Tahoe, a North American alpine lake long appreciated for its clear water and geographic setting, has experienced a trend of declining water clarity due to increasing nutrient and particle inputs. Contributions from atmospheric deposition of particulate matter (PM) could be important, yet they are inadequately quantified. This study established a yearlong deposition monitoring network in the northern Lake Tahoe Basin. Dry deposition was quantified on surrogate surfaces while wet deposition was based on particles suspended in precipitation at 24-hour resolution. The particle size ranges by these passive techniques were 1-64μm and 0.5-20μm in diameter for dry and wet deposition, respectively. Dry deposition of submicrometer (0.5-1μm) particles was also estimated by extrapolation of a lognormal size distribution. Higher daily number deposition fluxes (NDFdry and NDFwet) were found at a near-shore site, confirming substantial impacts of commercial and tourist activities. The two more isolated sites indicated a uniform regional background. On average, daily NDFdry is about one order of magnitude lower than daily NDFwet. Dry deposition velocities increased rapidly with particle size, as evidenced by collocated measurements of NDFdry and ambient particle number concentrations, though it seems less so for wet deposition due to different scavenging mechanisms. Despite fewer "wet" days than "dry" days during the monitoring period, wet processes dominated seasonal particle deposition, particularly in winter and spring when most precipitation occurred. Adopting sediment (insoluble, inorganic) particle fraction estimates from the literature, this study reports an annual particle flux of 2.9-5.2×10(10)#m(-2)yr(-1) for sediment particles with 1-20μm diameter and 6.1-11×10(10)#m(-2)yr(-1) for those with 0.5-20μm diameter. Implications of these findings to the current knowledge of atmospheric deposition in the Lake Tahoe Total Maximum Daily Load (TMDL) are discussed.

  19. Benthic Diatoms of an Alpine Stream/Lake Network in Switzerland

    NASA Astrophysics Data System (ADS)

    Rueegg, J.; Robinson, C. T.; Kawecka, B.

    2005-05-01

    We compared the benthic diatom composition of lakes, and lake inlet and outlet streams in a high elevation catchment (~2600 m a.s.l.). The catchment was separated in a southern and northern basin with different water sources. Streams in both basins flowed through a series of small lakes before converging into a lake with a primary outlet. The south basin had lower water temperatures and 2× higher nitrate-N levels (up to 300 μg/L) while the north basin had 2-4× higher levels of particulate-P, particulate-N, and particulate organic matter. 143 and 109 diatom species was identified in streams and lakes, respectively, with a similar number of species found in each basin. PCA showed a clear separation between basins. Of the 10 most common species, Psammothidium helveticum, Achnanthes helvetica var. minor, Achnanthes marginulata, Achnanthes subatomoides, and Diatoma mesodon were more abundant in south basin, whereas Achnanthidium minutissimum, Aulacoseira alpigena and Luticola goeppertiana were more abundant in the north. In general, lake outlet assemblages were similar to respective downstream lake inlet assemblages. Composition shifted along each basins longitudinal flow path. The spatial patterns in species composition reflected the hierarchical interaction of landscape features (geology, hydrology) on longitudinal gradients (lake position) in the stream/lake network.

  20. Executive summary - Assessing the response of Emerald Lake, an alpine watershed in Sequoia National Park, California, to acidification during snowmelt using a simple hydrochemical model

    SciTech Connect

    Hooper, R.P.; West, C.T.; Peters, N.E. )

    1990-01-01

    A simple process-oriented model, called the Alpine Lake Forecaster (ALF), was constructed using data collected from the Integrated Watershed Study of Emerald Lake, Sequoia National Park, California. ALF is able to capture the basic solute patterns during snowmelt in this alpine catchment where groundwater is a minor contributor to streamflow. It includes an empirical representation of primary mineral weathering as the only alkalinity generating mechanism. During a heavy snow year, such as the one used for calibrating the model, the model accurately simulated the surface water chemical change in response to the initial ionic pulse from the snowpack and to the dilution that occurs at peak snowmelt. Because the model does not consider cation exchange, it over-predicts the acidification during the initial period of snowmelt, and therefore is a conservative predictor. However, the minimum alkalinity observed in the main inflows to Emerald Lake and in the lake outflow is accurately simulated by the model. The representation of the lake as simply a missing volume with no additional chemical reactions is supported by the observation. The model predicts a change of 2 to 5 microequiv/L in the minimum alkalinity of the lake outflow during snowmelt if the deposition would have to increase between two and 18 times the current load-alkalinity of the lake; the precise increase depends on hydrologic conditions and on the pattern of solute release from the snowpack. An acidic rainstorm that exhausted the alkalinity of the lake was observed during summer 1984 after the lake had stratified, and is the likely cause of the acidification of Emerald Lake.

  1. Assessment of Water Quality in a Subtropical Alpine Lake Using Multivariate Statistical Techniques and Geostatistical Mapping: A Case Study

    PubMed Central

    Liu, Wen-Cheng; Yu, Hwa-Lung; Chung, Chung-En

    2011-01-01

    Concerns about the water quality in Yuan-Yang Lake (YYL), a shallow, subtropical alpine lake located in north-central Taiwan, has been rapidly increasing recently due to the natural and anthropogenic pollution. In order to understand the underlying physical and chemical processes as well as their associated spatial distribution in YYL, this study analyzes fourteen physico-chemical water quality parameters recorded at the eight sampling stations during 2008–2010 by using multivariate statistical techniques and a geostatistical method. Hierarchical clustering analysis (CA) is first applied to distinguish the three general water quality patterns among the stations, followed by the use of principle component analysis (PCA) and factor analysis (FA) to extract and recognize the major underlying factors contributing to the variations among the water quality measures. The spatial distribution of the identified major contributing factors is obtained by using a kriging method. Results show that four principal components i.e., nitrogen nutrients, meteorological factor, turbidity and nitrate factors, account for 65.52% of the total variance among the water quality parameters. The spatial distribution of principal components further confirms that nitrogen sources constitute an important pollutant contribution in the YYL. PMID:21695032

  2. Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Yao, Tandong; Piao, Shilong; Bolch, Tobias; Xie, Hongjie; Chen, Deliang; Gao, Yanhong; O'Reilly, Catherine M.; Shum, C. K.; Yang, Kun; Yi, Shuang; Lei, Yanbin; Wang, Weicai; He, You; Shang, Kun; Yang, Xiankun; Zhang, Hongbo

    2017-01-01

    Asia's high plateaus are sensitive to climate change and have been experiencing rapid warming over the past few decades. We found 99 new lakes and extensive lake expansion on the Tibetan Plateau during the last four decades, 1970-2013, due to increased precipitation and cryospheric contributions to its water balance. This contrasts with disappearing lakes and drastic shrinkage of lake areas on the adjacent Mongolian Plateau: 208 lakes disappeared, and 75% of the remaining lakes have shrunk. We detected a statistically significant coincidental timing of lake area changes in both plateaus, associated with the climate regime shift that occurred during 1997/1998. This distinct change in 1997/1998 is thought to be driven by large-scale atmospheric circulation changes in response to climate warming. Our findings reveal that these two adjacent plateaus have been changing in opposite directions in response to climate change. These findings shed light on the complex role of the regional climate and water cycles and provide useful information for ecological and water resource planning in these fragile landscapes.

  3. How climate changes in the Rocky Mountains contribute to changes in an alpine lake's phytoplankton community

    NASA Astrophysics Data System (ADS)

    Guido, A. S.; Garland, D.; McKnight, D. M.

    2011-12-01

    It is important to track algae in potable water supplies as they are a factor in the production of dissolved organic matter (DOM) that can result in the formation of disinfection byproducts. Disinfection byproducts have been identified by the Environmental Protection Agency (EPA) as a potential carcinogen and have been linked to reproductive and developmental effects in lab animals. Green Lake 4 is located in the Rocky Mountains and is part of the Silver Lake Watershed which provides 40% of Boulder, CO's potable water supply. In 2002, the Rocky Mountain region had below average precipitation and consequently Green Lake experienced a change in its physical and chemical conditions. As a result of the changes experienced in Green Lake 4, a change in the composition of the phytoplankton community was seen. Along with reduced precipitation levels, this area has also experienced an earlier ice-out date. As part of this research, chemical changes, physical changes, and algae changes in Green Lake 4 will be analyzed. Data from 2007 to 2010 will be analyzed; this study will be looking at both the chemical and physical changes of Green Lake 4 as they relate to the change in ice out of the lake and precipitation in the region.

  4. Submicron Organic Matter in a Peri-alpine, Ultra-oligotrphic Lake

    SciTech Connect

    Chanudet,V.; Filella, M.

    2007-01-01

    Combining organic carbon (OC) measurements with the classic MBTH (3-methyl-2-benzothiazolinone hydrochloride) method for carbohydrate determination and a new voltammetric method for the determination of refractory organic matter (ROM) made it possible, for the first time, to quantify the types, sources and fate of submicron organic matter present in an ultra-oligotrophic lake (Lake Brienz, Switzerland). The lake is extremely rich in suspended glacial flour in summer (glacier melting season). Measurements were taken from June 2004 to October 2005 from 1.2 {mu}m filtered samples. OC concentration remained extremely low throughout the year (below 1 mg C L{sup -1}). MBTH carbohydrate concentration was very low in the lake (0.06-0.43 mg C L{sup -1}) and in the two tributary rivers (0.06-0.25 mg C L{sup -1}). Lake carbohydrate concentration only correlated with phytoplanktonic biomass at the onset of the productivity period. The results suggest that differences in MBTH concentration may sometimes reflect differences in the nature of the carbohydrates rather than differences in carbon concentration. Extensive fibril formation was evidenced by transmission electron microscopy (TEM) observations. ROM concentration in the lake was also very low (0.1-0.2 mg C L{sup -1}). Significant variation in ROM riverine input was due to either annual occurrences (snow melting) or irregular episodes (floods). Melting snow was responsible for about 30% of the lake's annual ROM input. One box mass balance calculations showed that about 25% of ROM was lost within the lake. Evidence gleaned from TEM and STXM (scanning transmission X-ray microscopy) observations clearly indicates that this is mainly caused by ROM sedimentation after association with inorganic colloids.

  5. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs.

    PubMed

    Johnson, David; Vachon, Jérémie; Britton, Andrea J; Helliwell, Rachel C

    2011-05-01

    • Climate change is predicted to increase the frequency of drought events in alpine ecosystems with the potential to affect carbon turnover. • We removed intact turfs from a Nardus stricta alpine snowbed community and subjected half of them to two drought events of 8 d duration under controlled conditions. Leachate dissolved organic carbon (DOC) was measured throughout the 6 wk study period, and a (13)CO(2) pulse enabled quantification of fluxes of recent assimilate into shoots, roots and leachate and ecosystem CO(2) exchange. • The amount of DOC in leachate from droughted cores was 62% less than in controls. Drought reduced graminoid biomass, increased forb biomass, had no effect on bryophytes, and led to an overall decrease in total above-ground biomass compared with controls. Net CO(2) exchange, gross photosynthesis and the amount of (13)CO(2) fixed were all significantly less in droughted turfs. These turfs also retained proportionally more (13)C in shoots, allocated less (13)C to roots, and the amount of dissolved organic (13)C recovered in leachate was 57% less than in controls. • Our data show that drought events can have significant impacts on ecosystem carbon fluxes, and that the principal mechanism behind this is probably changes in the relative abundance of forbs and grasses.

  6. Effects of Short-Term Warming and Altered Precipitation on Soil Microbial Communities in Alpine Grassland of the Tibetan Plateau

    PubMed Central

    Zhang, Kaoping; Shi, Yu; Jing, Xin; He, Jin-Sheng; Sun, Ruibo; Yang, Yunfeng; Shade, Ashley; Chu, Haiyan

    2016-01-01

    Soil microbial communities are influenced by climate change drivers such as warming and altered precipitation. These changes create abiotic stresses, including desiccation and nutrient limitation, which act on microbes. However, our understanding of the responses of microbial communities to co-occurring climate change drivers is limited. We surveyed soil bacterial and fungal diversity and composition after a 1-year warming and altered precipitation manipulation in the Tibetan plateau alpine grassland. In isolation, warming and decreased precipitation treatments each had no significant effects on soil bacterial community structure; however, in combination of both treatments altered bacterial community structure (p = 0.03). The main effect of altered precipitation specifically impacted the relative abundances of Bacteroidetes and Gammaproteobacteria compared to the control, while the main effect of warming impacted the relative abundance of Betaproteobacteria. In contrast, the fungal community had no significant response to the treatments after 1-year. Using structural equation modeling (SEM), we found bacterial community composition was positively related to soil moisture. Our results indicate that short-term climate change could cause changes in soil bacterial community through taxonomic shifts. Our work provides new insights into immediate soil microbial responses to short-term stressors acting on an ecosystem that is particularly sensitive to global climate change. PMID:27446064

  7. Effects of Short-Term Warming and Altered Precipitation on Soil Microbial Communities in Alpine Grassland of the Tibetan Plateau.

    PubMed

    Zhang, Kaoping; Shi, Yu; Jing, Xin; He, Jin-Sheng; Sun, Ruibo; Yang, Yunfeng; Shade, Ashley; Chu, Haiyan

    2016-01-01

    Soil microbial communities are influenced by climate change drivers such as warming and altered precipitation. These changes create abiotic stresses, including desiccation and nutrient limitation, which act on microbes. However, our understanding of the responses of microbial communities to co-occurring climate change drivers is limited. We surveyed soil bacterial and fungal diversity and composition after a 1-year warming and altered precipitation manipulation in the Tibetan plateau alpine grassland. In isolation, warming and decreased precipitation treatments each had no significant effects on soil bacterial community structure; however, in combination of both treatments altered bacterial community structure (p = 0.03). The main effect of altered precipitation specifically impacted the relative abundances of Bacteroidetes and Gammaproteobacteria compared to the control, while the main effect of warming impacted the relative abundance of Betaproteobacteria. In contrast, the fungal community had no significant response to the treatments after 1-year. Using structural equation modeling (SEM), we found bacterial community composition was positively related to soil moisture. Our results indicate that short-term climate change could cause changes in soil bacterial community through taxonomic shifts. Our work provides new insights into immediate soil microbial responses to short-term stressors acting on an ecosystem that is particularly sensitive to global climate change.

  8. Forest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest

    PubMed Central

    Li, Han; Xu, Liya; Wu, Fuzhong; Yang, Wanqin; Ni, Xiangyin; He, Jie; Tan, Bo; Hu, Yi

    2016-01-01

    The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year. PMID:26849120

  9. Forest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest.

    PubMed

    Li, Han; Xu, Liya; Wu, Fuzhong; Yang, Wanqin; Ni, Xiangyin; He, Jie; Tan, Bo; Hu, Yi

    2016-01-01

    The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year.

  10. Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China)

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yang, Xiangdong; Anderson, Nicholas John; Dong, Xuhui

    2016-07-01

    The reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climate-diatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake's thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climate-catchment-vegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.

  11. Annual hydrochemical budgets (1989-2009) and their variability and annual trends for two alpine lake catchments, Snowy Range, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Stednick, J. D.; Fassnacht, S. R.; Musselman, R. C.

    2011-12-01

    The Glacier Lakes Ecosystem Experiments Site (GLEES) is an alpine-subalpine study area located in the Snowy Range of southern Wyoming approximately 55 km west of Laramie, Wyoming and managed by the USDA Forest Service. GLEES was established in 1986 to study the effects of atmospheric deposition and climate change on alpine-subalpine aquatic and terrestrial ecosystems. Two small coterminous alpine lake catchments, West Glacier Lake and East Glacier Lake have been sampled for precipitation chemistry by the National Atmospheric Deposition Program and dry deposition by CASTNET and streamflow chemistry by the USDA Forest Service. This presentation analyses historical variability and trends in these inputs and outputs over the 21-year monitoring period (1989-2009). The average annual precipitation at GLEES is 1225mm with 85% as snow. The coefficient of variation for annual precipitation was 15%. The annual snowmelt peak flow rate had a coefficient of variation of 33%, while annual water yield varied up to 92%. The mean coefficient of variation for annual precipitation chemistry inputs was 31%, and the variability highest in the nitrogen species. Significant decreases over time were detected in precipitation chemistry for Na+ and Cl- , no other trends were detected. Streamflow outputs were calculated from streamflow chemistry and flow volumes. Even with dilute chemistry (<5mg/L TDS) preferential elution was observed with snowmelt. No significant trends were detected in streamflow chemistry. Variability in streamflow chemistry was greatest for the nitrogen species. There were no significant temporal trends in streamflow outputs. Unlike some Front Range catchments, significant nitrogen retention was observed at GLEES.

  12. Global warming alters carbon sink and source situation of the Tibetan lakes

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Ni, Q.; Yang, J.; Liu, W.

    2015-12-01

    Global warming would accelerate glacier retreat and permafrost degeneration on the Tibetan Plateau. The carbon stored in permafrost would be released to nearby lakes. However, little is known about how the carbon sink and source situation could be altered and what role the microbial community could play in Tibetan lakes in response to global warming. To fill this knowledge gap, six lakes (Erhai Lake, Qinghai Lake, Tuosu Lake, Gahai Lake, Xiaochaidan Lake and Lake Chaka) on the Tibetan Plateau were studied. In order to compare the seasonal variations in geochemistry and microbial communities, two sampling cruises were performed (May and July of 2015, corresponding to dry and wet seasons, respectively). For each lake, salinity, pH, dissolved organic carbon (DOC), total nitrogen (TN), and chlorophyll were measured for water samples, and salinity and total organic carbon (TOC) were measured for sediments. Chamber-based greenhouse gas flux measurement were performed on the surface of each lake. Microbial communities were analyzed by using MiSeq sequencing technique. The results showed that in response to seasonal variation (from dry to set season), lake surface increased by 5-20% (calculated on the basis of satellite data) and salinity decreased by 4-30% for the studied lakes, suggesting the studied lakes were diluted by precipitations. The DOC contents of the lake waters were almost stable for the studied lakes, whereas TN increased by more than 70% for the lakes with salinity less than 100g/L. In the meanwhile, chlorophyll content increased by more than 180% for lakes with low salinities (Erhai Lake, Qinghai Lake, and Tuosu Lake) and decreased by 17-94% for lakes with high salinities (Gahai Lake, Xiaoxhaidan Lake, and Lake Chaka. This indicated that desalination (precipitation plus glacier melt) would increase carbon fixation potential in Tibetan lakes. Microbial community analyses showed that microbial diversity increased in response to desalination. All in all

  13. Spatial and Temporal Variability of Near-Shore Clarity in an Alpine Lake

    NASA Astrophysics Data System (ADS)

    Shanafield, M.; Taylor, K.; Susfalk, R.

    2003-12-01

    Spatial and temporal variability in localized near-shore locations of Lake Tahoe, CA/NV was investigated using turbidity and light attenuation measurements. Between 2001 and 2003, several areas were identified as turbidity hotspots and chosen for further study. The effects of storms, high winds, snowmelt runoff, and calm conditions on clarity were monitored at these areas. Data was continuously collected at a depth of one meter and displayed in real time. A comparison of the spatially plotted results shows an increase in turbidity after storms and during runoff events concentrated around the Upper Truckee River, Bijou Creek, and Edgewood Creek. Turbidity values ranged from 0.17 ntu in unaffected areas to up to 20 ntu in the most concentrated sections of the plume. In addition to the turbidity measurements, particle analysis was undertaken on water from three areas adjacent streams and from a distance of two kilometers off the mouth of the Upper Truckee River. Particles collected on a 0.1 micron filter

  14. Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Enders, S.K.; Pagani, M.; Pantoja, S.; Baron, J.S.; Wolfe, A.P.; Pedentchouk, N.; Nunez, L.

    2008-01-01

    Compound-specific nitrogen, carbon, and hydrogen isotope records from sediments of Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to evaluate factors contributing to changes in diatom assemblages and bulk organic nitrogen isotope records identified in lake sediments across Colorado, Wyoming, and southern Montana. Nitrogen isotopic records of purified algal chlorins indicate a substantial shift in nitrogen cycling in the region over the past ???60 yr. Temporal changes in the growth characteristics of algae, captured in carbon isotope records in and around Sky Pond, as well as a -60??? excursion in the hydrogen isotope composition of algal-derived palmitic acid, are coincident with changes in nitrogen cycling. The confluence of these trends is attributed to an increase in biologically available nitrogenous compounds caused by an expansion of anthropogenic influences and temporal changes in catchment hydrology and nutrient delivery associated with meltwater dynamics. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  15. Assessing the response of Emerald Lake, an alpine watershed in Sequoia National Park, California, to acidification during snowmelt by using a simple hydrochemical model

    SciTech Connect

    Hooper, R.P.; West, C.T.; Peters, N.E. )

    1990-01-01

    A sparsely parameterized hydrochemical model has been developed by using data from Emerald Lake watershed, which is a 120-ha alpine catchment in Sequoia National Park, California. Greater than 90% of the precipitation to this watershed is snow; hence, snowmelt is the dominant hydrologic event. A model which uses a single alkalinity-generating mechanism, primary mineral weathering, was able to capture the pattern of solute concentrations in surface waters during snowmelt. An empirical representation of the weathering reaction, which is based on rock weathering stoichiometry and which uses discharge as a measure of residence time, was included in the model. Results of the model indicate that current deposition levels would have to be increased between three-fold and eight-fold to exhaust the alkalinity of the lake during snowmelt if their is a mild acidic pulse in the stream at the beginning of snowmelt as was observed during the study period. The acidic pulse in the inflow stream at the onset of snowmelt was less pronounced than acidic pulses observed in the meltwater draining the snowpack at a point using snow lysimeters or in the laboratory. Sulfate concentrations in the stream water were the most constant; chloride and nitrate concentrations increased slightly at the beginning of snowmelt. Additional field work is required to resolve whether an acidic meltwater pulse occurs over a large area as well as at a point or whether, due to physical and chemical processes within the snowpack, the acidic meltwater pulse is attenuated at the catchment scale. The modest data requirements of the model permit its applications to other alpine watersheds that are much less intensively studied than Emerald Lake watershed.

  16. Sedimentary records of metal deposition in Japanese alpine lakes for the last 250 years: recent enrichment of airborne Sb and In in East Asia.

    PubMed

    Kuwae, Michinobu; Tsugeki, Narumi K; Agusa, Tetsuro; Toyoda, Kazuhiro; Tani, Yukinori; Ueda, Shingo; Tanabe, Shinsuke; Urabe, Jotaro

    2013-01-01

    Concentrations of 18 elements, including Sb, In, Sn, and Bi, were measured in sediment cores from two pristine alpine lakes on Mount Hachimantai, northern Japan, representing the past 250 years. Vertical variations in concentrations are better explained by atmospheric metal deposition than by diagenetic redistribution of Fe and Mn hydroxide and organic matter. Anthropogenic metal fluxes were estimated from (210)Pb-derived accumulation rates and metal concentrations in excess of the Al-normalized mean background concentration before 1850. Anthropogenic fluxes of Sb and In showed gradual increases starting around 1900 in both lakes, and marked increases after 1980. Comparison of Sb/Pb and Pb stable isotope ratios in sediments with those in aerosols of China or northern Japan and Japanese source materials (recent traffic- and incinerator-derived dust) suggest that the markedly elevated Sb flux after 1980 resulted primarily from enhanced long-range transport in aerosols containing Sb and Pb from coal combustion on the Asian continent. The fluxes of In, Sn, and Bi which are present in Chinese coal showed increasing trends similar to Sb for both study lakes. This suggests that the same source although incinerators in Japan may not be ruled out as sources of In. The sedimentary records for the last 250 years indicate that atmospheric pollution of Sb and In in East Asia have intensified during recent decades.

  17. Sustainable knowledge development across cultural boundaries: Experiences from the EU-project SILMAS (Toolbox for conflict solving instruments in Alpine Lake Management)

    NASA Astrophysics Data System (ADS)

    Fegerl, Michael; Wieden, Wilfried

    2013-04-01

    Increasingly people have to communicate knowledge across cultural and language boundaries. Even though recent technologies offer powerful communication facilities people often feel confronted with barriers which clearly reduce their chances of making their interaction a success. Concrete evidence concerning such problems derives from a number of projects, where generated knowledge often results in dead-end products. In the Alpine Space-project SILMAS (Sustainable Instruments for Lake Management in Alpine Space), in which both authors were involved, a special approach (syneris® ) was taken to avoid this problem and to manage project knowledge in sustainable form. Under this approach knowledge input and output are handled interactively: Relevant knowledge can be developed continuously and users can always access the latest state of expertise. Resort to the respective tools and procedures can also assist in closing knowledge gaps and in developing innovative responses to familiar or novel problems. This contribution intends to describe possible ways and means which have been found to increase the chances of success of knowledge communication across cultural boundaries. The process of trans-cultural discussions of experts to find a standardized solution is highlighted as well as the problem of dissemination of expert knowledge to variant stakeholders. Finally lessons learned are made accessible, where a main task lies in the creation of a tool box for conflict solving instruments, as a demonstrable result of the project and for the time thereafter. The interactive web-based toolbox enables lake managers to access best practice instruments in standardized, explicit and cross-linguistic form.

  18. Altered energetics and parasitism in juvenile northern pike (Esox lucius) inhabiting metal-mining contaminated lakes.

    PubMed

    Kelly, Jocelyn M; Janz, David M

    2008-07-01

    The objective of this study was to evaluate possible factors that could be contributing to altered bioenergetics of juvenile northern pike (Esox lucius) living in lakes receiving effluent from the Key Lake uranium mill in northern Saskatchewan, Canada. Although glycogen and triglycerides stores in liver and muscle were significantly greater in pike from exposure lakes compared to the reference, triglycerides stores of aquatic insects and spottail shiners that are prey items of juvenile pike showed no overall differences among lakes. Measures of parasitism, on the other hand, were negatively correlated with pike bioenergetics thereby reflecting a possible energetic cost of parasitism on reference lake fishes. The degree of infection, as measured by the abundance and biomass of intestinal parasites and the abundance of monogeneans on pike gills, was greatest in reference fishes and intermediate in low-exposure pike, whereas high-exposure fishes harbored no parasites.

  19. Chilling- and Freezing- Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana

    PubMed Central

    Song, Yuan; Liu, Lijun; Feng, Yanhao; Wei, Yunzhu; Yue, Xiule; He, Wenliang; Zhang, Hua; An, Lizhe

    2015-01-01

    Chilling (0–18°C) and freezing (<0°C) are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation) mediates the adaptation to cold stresses in nature (e.g., in alpine regions). Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h). To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling) and -4°C (freezing) over five periods of time (0–24 h). Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h). Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana to

  20. Alpine Microbial Community Responses to Summer Warming

    NASA Astrophysics Data System (ADS)

    Osborne, B. B.; Baron, J.; Wallenstein, M. D.

    2011-12-01

    Remote alpine ecosystems of the western US are vulnerable to anthropogenic drivers of change. Atmospheric nitrogen (N) deposition and a changing climate introduce nutrients, alter hydrological processes, and expose soils to novel temperature regimes. We asked whether terrestrial microbes, specifically nitrifiers that may contribute to already high lake and stream NO3- concentrations, may be responding to changes in important controls of community development and activity associated with a changing climate, namely temperature and moisture. In August 2010 we sampled three soils from the Loch Vale Watershed in Rocky Mountain National Park which fell along a gradient of succession commonly represented in deglaciated alpine catchments. These included well-developed meadow soils, poorly vegetated talus substrate, and newly-exposed glacial outwash. Outwash, talus, and meadow samples were all N-rich and contained NH4-N concentrations ~7 times higher than NO3-N. Soils were incubated for 45 days at 2.5, 10, and 25oC and three moisture levels based on initial field conditions. Nitrifier concentrations were greatest in outwash, intermediate in talus, and lowest in meadow samples. Bacterial nitrifier abundance greatly surpassed archaeal nitrifier levels. Net nitrification was also greatest in outwash, followed by meadow and talus respectively. Moisture, rather than temperature, was a dominant control over both nitrifier abundance and activity. Linking the influence of temperature and moisture on alpine microbial communities will provide insight into control thresholds, optima, and synergistic interactions. This research is part of a larger study of controls on headwater stream and lake NO3-. Characterizing microbial NO3- production in the alpine will help us evaluate the importance of biological, as opposed to physical, sources of stream NO3-. It will also inform our ability to forecast and mitigate consequences of anthropogenic drivers of change on these systems.

  1. Impact of Toxic Cyanobacterial Blooms on Eurasian Perch (Perca fluviatilis): Experimental Study and In Situ Observations in a Peri-Alpine Lake

    PubMed Central

    Sotton, Benoît; Guillard, Jean; Bony, Sylvie; Devaux, Alain; Domaizon, Isabelle; Givaudan, Nicolas; Crespeau, François; Huet, Hélène; Anneville, Orlane

    2012-01-01

    Due to the importance of young-of-the-year (YOY) perch in the peri-alpine regions where they are consumed, the microcystin (MC) contamination of YOY perch was analysed both in field (Lake Bourget, France) and experimentally using force-feeding protocols with pure MCs. In-situ, schools of YOY perch present in the epilimnion of the lake were never found in direct contact with the P. rubescens blooms that were present in the metalimnion. However, MCs were detected in the muscles and liver of the fish and were thus assumed to reach YOY perch through dietary routes, particularly via the consumption of MC-containing Daphnia. Force-feeding experiment demonstrates the existence of MC detoxification/excretion processes and suggests that in situ, YOY perch could partly detoxify and excrete ingested MCs, thereby limiting the potential negative effects on perch populations under bloom conditions. However, because of chronic exposure these processes could not allow for the complete elimination of MCs. In both experimental and in situ studies, no histological change was observed in YOY perch, indicating that MC concentrations that occurred in Lake Bourget in 2009 were too low to cause histological damage prone to induce mortality. However, Deoxyribonucleic acid (DNA) damages were observed for both the high and low experimental MC doses, suggesting that similar effects could occur in situ and potentially result in perch population disturbance during cyanobacterial blooms. Our results indicate the presence of MCs in wild perch, the consumption of this species coming from Lake Bourget is not contested but more analyses are needed to quantify the risk. PMID:23272228

  2. The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a Multi-Site Transplant Experiment

    PubMed Central

    Cortés, Andrés J.; Bossdorf, Oliver; Hoch, Guenter; Lexer, Christian; Wipf, Sonja; Karrenberg, Sophie; van Kleunen, Mark; Rixen, Christian

    2015-01-01

    Climate change is altering spring snowmelt patterns in alpine and arctic ecosystems, and these changes may alter plant phenology, growth and reproduction. To predict how alpine plants respond to shifts in snowmelt timing, we need to understand trait plasticity, its effects on growth and reproduction, and the degree to which plants experience a home-site advantage. We tested how the common, long-lived dwarf shrub Salix herbacea responded to changing spring snowmelt time by reciprocally transplanting turfs of S. herbacea between early-exposure ridge and late-exposure snowbed microhabitats. After the transplant, we monitored phenological, morphological and fitness traits, as well as leaf damage, during two growing seasons. Salix herbacea leafed out earlier, but had a longer development time and produced smaller leaves on ridges relative to snowbeds. Longer phenological development times and smaller leaves were associated with reduced sexual reproduction on ridges. On snowbeds, larger leaves and intermediate development times were associated with increased clonal reproduction. Clonal and sexual reproduction showed no response to altered snowmelt time. We found no home-site advantage in terms of sexual and clonal reproduction. Leaf damage probability depended on snowmelt and thus exposure period, but had no short-term effect on fitness traits. We conclude that the studied populations of S. herbacea can respond to shifts in snowmelt by plastic changes in phenology and leaf size, while maintaining levels of clonal and sexual reproduction. The lack of a home-site advantage suggests that S. herbacea may not be adapted to different microhabitats. The studied populations are thus unlikely to react to climate change by rapid adaptation, but their responses will also not be constrained by small-scale local adaptation. In the short term, snowbed plants may persist due to high stem densities. However, in the long term, reduction in leaf size and flowering, a longer phenological

  3. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota

    USGS Publications Warehouse

    Wilcox, Douglas A.; Meeker, James E.

    1992-01-01

    Water-level regulation has altered the plant species composition and thus the structure of nearshore aquatic macrophyte communities in two regulated lakes in northern Minnesota as compared with a nearby unregulated lake. Results of previous faunal studies in the regulated lakes were used as a basis for assessing the effects of vegetation changes on faunal communities. The unregulated lake with mean annual water-level fluctuations of 1.6 m supported structurally diverse plant communities and varied faunal habitat at all depths studied. Mean annual fluctuations on one regulated lake were reduced to 1.1 m, and dense beds of four erect aquatic macrophytes dominated the 1.75-m depth that was never dewatered. We suggest that this lack of plant diversity and structural complexity resulted in diminished habitat for invertebrates, reduced availability of invertebrates as food for waterbirds and fish, reduced winter food supplies for muskrats, and reduced feeding efficiency for adult northern pike, yellow perch, and muskellunge. Mean annual fluctuations in the other regulated lake were increased to 2.7 m, and rosette and mat-forming species dominated the 1.25-m depth that was affected by winter drawdowns. We suggest that the lack of larger canopy plants resulted in poor habitat for invertebrates, reduced availability of invertebrates as food for waterbirds and fish, and poor nursery and adult feeding habitat for many species of fish. In addition, the timing and extent of winter drawdowns reduced access to macrophytes as food for muskrats and as spawning habitat for northern pike and yellow perch. In regulated lakes throughout the world, indirect effects on aquatic fauna resulting from alteration of wetland and aquatic macrophyte communities should be considered when water-level management plans are developed.

  4. The influence of glacial meltwater on alpine aquatic ecosystems: a review.

    PubMed

    Slemmons, Krista E H; Saros, Jasmine E; Simon, Kevin

    2013-10-01

    The recent and rapid recession of alpine glaciers over the last 150 years has major implications for associated aquatic communities. Glacial meltwater shapes many of the physical features of high altitude lakes and streams, producing turbid environments with distinctive hydrology patterns relative to nival systems. Over the past decade, numerous studies have investigated the chemical and biological effects of glacial meltwater on freshwater ecosystems. Here, we review these studies across both lake and stream ecosystems. Focusing on alpine regions mainly in the Northern Hemisphere, we present examples of how glacial meltwater can affect habitat by altering physical and chemical features of aquatic ecosystems, and review the subsequent effects on the biological structure and function of lakes and streams. Collectively or separately, these factors can drive the overall distribution, diversity and behavior of primary producers, triggering cascading effects throughout the food web. We conclude by proposing areas for future research, particularly in regions where glaciers are soon projected to disappear.

  5. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    PubMed

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  6. Small Changes in Climate Can Profoundly Alter the Dynamics and Ecosystem Services of Tropical Crater Lakes

    PubMed Central

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G.; Efitre, Jackson; Nowlan, Tobias E.; Taranu, Zofia E.; Chapman, Lauren J.

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R2adj = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions. PMID:24497954

  7. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    PubMed Central

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-01-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr−1 (*P < 0.05), and of 0.036 °C yr−1 (***P < 0.001) during summer. PMID:27502177

  8. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    NASA Astrophysics Data System (ADS)

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-08-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr‑1 (*P < 0.05), and of 0.036 °C yr‑1 (***P < 0.001) during summer.

  9. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake.

    PubMed

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-08-09

    Availability of remotely sensed multi-spectral images since the 1980's, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr(-1) (*P < 0.05), and of 0.036 °C yr(-1) (***P < 0.001) during summer.

  10. Paleoflood activity and climate change over the last 2000 years recorded by high altitude alpine lake sediments in Western French Alps.

    NASA Astrophysics Data System (ADS)

    Fouinat, Laurent; Sabatier, Pierre; Develle, Anne-Lise; Giguet-Covex, Charline; Poulenard, Jérôme; Doyen, Elise; Crouzet, Christian; Malet, Emmanuel; Reyss, Jean-Louis; Arnaud, Fabien

    2015-04-01

    Extreme precipitation events can trigger floods that may have serious human and economic consequences. The flood represents extreme rainfall event, which in high altitude mountain regions are mostly triggered alternatively by local convective summer storms or, less frequently, by regional widespread rainfall event. The former's precipitation pattern comes from Mediterranean Sea fluxes, dominant in the south; instead of the latter coming from the Atlantic Ocean, dominant in the north of the French Alps. The aim of the study is then to explore which regime dominates in Western French Alps. Paleoflood chronicle is a way to understand past continental climate through the variability of both frequency and intensity. In this study we explore the paleoflood activity as recorded by sediments of the small alpine lake Muzelle (2200 m.a.s.l.) located in the western French Alps. Lake Muzelle catchment area is 5 km² -around 4 % being glacier covered- and is drained by one main stream. Lake Muzelle is 18.8 meters deep and is ice-covered during 7-8 months each year. Moreover, the watershed is being used for pastoral activity for several centuries. In this study, we use sedimentological analysis as well high resolution XRF core scanner geochemistry to identify turbidites interpreted as flood deposits. 256 turbidites were documented in the sediment sequence. Sr/Ti geochemical ratio is used to identify the coarsest grain size fraction of the flood deposit and the thickness of each deposit was measured. Dating was carried out using short-lived-radio-elements (210Pb, 137Cs, 241Am), historical events as well as nine 14C dates and paleomagnetic declination to constrain the age model over the last 2000 years. The study includes also palynological and sediment DNA analysis to understand past human activity on the watershed. As a result, the 31 years frequency shows a stable period from 0 to 1100 AD. Between 1100 and1200 AD the flood frequency presents a brutal increase with a relatively

  11. Fingerprinting of glacial silt in lake sediments yields continuous records of alpine glaciation (35–15 ka), western USA

    USGS Publications Warehouse

    Rosenbaum, Joseph G.; Reynolds, Richard L.; Colman, Steven M.

    2012-01-01

    Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~1000 yr, and underwent two stages of retreat separated by a short period of expansion.

  12. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Lieberherr, G.; Wunderle, S.

    2015-02-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of -0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite

  13. Structural and alteration controls on gold mineralization the of the amphibolite facies Detour Lake Deposit, Canada

    NASA Astrophysics Data System (ADS)

    Dubosq, Renelle; Schneider, David

    2016-04-01

    The 15M oz Detour Lake deposit is a Neoarchean orogenic gold ore body located in the northern most region of the Abitibi district within the Superior Province. The mine is an open pit design in the high strain zone of the Sunday Lake Deformation Zone (SLDZ). The ductile-brittle SLDZ parallels the broadly E-W Abitibi greenstone belt and the deposit is situated in a dilation zone between volcanoclastic rocks of the Caopatina Assemblage and Lower Detour Lake Formation, consisting of ultramafic talc-chlorite-sericite schist. The Upper Detour Lake Formation consists of pillowed and massive flows and hyloclastic units crosscut by minor felsic to intermediate dykes. All of the formations are sub-vertical, north-dipping units with stretching lineations indicating dip-slip motion. The Detour deposit differs from other classic ore deposits in the dominantly greenschist facies Abitibi Subprovince by possessing an amphibolite facies metamorphic assemblage of actinolite-biotite-plagioclase-almandine. Consequently, the typical indicator minerals used to identify alteration and mineralization, such as secondary biotite, may not be useful. Petrological and geochemical analyses have revealed at least four populations of biotite: 1) large euhedral crystals located within quartz-carbonate veins, 2) small, euhedral zoned crystals present as alteration haloes, 3) very small, anhedral to subhedral indistinct crystal present in mafic volcanic host rock, and 4) large euhedral crystals defining the main metamorphic foliation in the metasediments. Extensive examination of mineral assemblages, alteration products, and vein structure in rock core across barren and mineralized zones has documented over a dozen vein types which can be grouped into two main categories: 1) sulfidized quartz-carbonate veins associated with biotite alteration and 2) late carbonate veins. Gold grades do not prove to be dependent on vein type but rather on the host rock composition: the highest ore grades are present

  14. Decreased glutathione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads (Ameriurus nebulosus)

    USGS Publications Warehouse

    Gallagher, E.P.; Gross, T.S.; Sheehy, K.M.

    2001-01-01

    A number of freshwater lakes and reclaimed agricultural sites in Central Florida have been the receiving waters for agrochemical and municipal runoff. One of these sites, Lake Apopka, is also a eutrophic system that has been the focus of several case studies reporting altered reproductive activity linked to bioaccumulation of persistent organochlorine chemicals in aquatic species. The present study was initiated to determine if brown bullheads (Ameriurus nebulosus) from the north marsh of Lake Apopka (Lake Apopka Marsh) exhibit an altered capacity to detoxify environmental chemicals through hepatic glutathione S-transferase (GST)-mediated conjugation as compared with bullheads from a nearby reference site (Lake Woodruff). We also compared plasma sex hormone concentrations (testosterone, 17-?? estradiol, and 11 keto-testosterone) in bullheads from the two sites. Female bullheads from Lake Apopka had 40% lower initial rate GST conjugative activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 50% lower activity towards p-nitrobutyl chloride (NBC), 33% lower activity toward ethacrynic acid (ECA), and 43% lower activity toward ??5-androstene-3,17-dione (??5-ADI), as compared with female bullheads from Lake Woodruff. Enzyme kinetic analyses demonstrated that female bullheads from Lake Apopka had lower GST-catalyzed CDNB clearance than did female Lake Woodruff bullheads. Western blotting studies of bullhead liver cytosolic proteins demonstrated that the reduced GST catalytic activities in female Lake Apopka bullheads were accompanied by lower expression of hepatic GST protein. No site differences were observed with respect to GST activities or GST protein expression in male bullheads. Female Lake Apopka bullheads also had elevated concentrations of plasma androgens (testosterone and 11-ketotestosterone) as compared with females from Lake Woodruff. In contrast, male Lake Apopka bullheads had elevated levels of plasma estrogen but similar levels of androgens as compared with

  15. Tracking Holocene glacial and high-altitude alpine environments fluctuations from minerogenic and organic markers in proglacial lake sediments (Lake Blanc Huez, Western French Alps)

    NASA Astrophysics Data System (ADS)

    Simonneau, Anaëlle; Chapron, Emmanuel; Garçon, Marion; Winiarski, Thierry; Graz, Yann; Chauvel, Catherine; Debret, Maxime; Motelica-Heino, Mickaël; Desmet, Marc; Di Giovanni, Christian

    2014-04-01

    Holocene palaeoenvironmental evolution and glacial fluctuations at high-altitude in the western French Alps are reconstructed based on a multiproxy approach within Lake Blanc Huez (2550 m a.s.l.) drainage basin. The combination of seismic profiling (3.5 kHz), piston coring and radiocarbon dating in proglacial lacustrine sediments together with a detailed organic analysis of autochthonous and allochthonous supply allows documenting the evolution of glacier activity during the Holocene. Over the last 9700 years, the Holocene lake record has a bimodal pattern whose transition is progressive and occurring between 5400 and 4700 cal BP. During the Early Holocene, the organic lacustrine facies reflects reduced glacial activity in the catchment. This major glacial retreat seems to result from solar forcing and high summer insolation. After 5400 cal BP, lacustrine sedimentation is marked by the gradual increase both of minerogenic supply and soil erosion, suggesting a progressive transition to wetter climatic conditions. This climate change is synchronous both from the gradual decrease of summer insolation and the gradual reorganization of oceanic and atmospheric circulations, characterizing the beginning of the Neoglacial period. Both colder temperature and humid climate induced significant glacier advance, since 4700 cal BP. Over this global trend, three periods are particularly associated with higher runoff processes and higher soil erosion interpreted as wetter time intervals resulting from enhanced northern Westerlies regimes across the North Atlantic and Western Europe. They are dated from 8700 to 7000, 4700 to 2500 and 1200 to 200 cal BP. These wetter phases drastically contrast with periods of reduced glacial activities dated from the Early Bronze Age (ca 3870-3770 cal BP), the Iron Age (ca 2220-2150 cal BP), the Roman period (ca AD115-330) and the Medieval Warm Period (ca AD760-1160). In addition, these dryer periods are associated with mining activities at high-altitude.

  16. An Intense Ocean-Atmosphere Interaction during the Holocene Optimum: Evidence from Sub-alpine Lake Sediments in Taiwan

    NASA Astrophysics Data System (ADS)

    Kandasamy, S.; Chen, C. A.; Lou, J. Y.; Kao, S.

    2009-12-01

    The Holocene climate reconstructions indicate an optimum climate in terms of either temperature or precipitation or both between ca. 10.5 and 4.5 calendar thousand years before the Present (ka BP). This so called Holocene optimum (HO) exhibits a time lagged phenomenon across the East Asia where the interaction of summer and winter modes of East Asian monsoon (EAM) has produced diverse climatic and environmental finger prints for the entire Holocene (the past ~11.5 ka). Yet, we lack evidence for the role of ocean and atmosphere during the HO given the fact that quantification of such input in the continental archives has not been done earlier, especially on the land-ocean-atmosphere interface. To fulfill this gap, a sediment core (~1.7 m) raised from Retreat Lake in northeastern Taiwan was studied for Relative Grey Index (RGI), bulk density, water content, total organic carbon (TOC), total nitrogen, and selected major and trace elements, including indicator elements for sea salt input (Br, Cl and Na). Time series of RGI shows high values (>80) ~170-155 cm and top ~45 cm of the core due to the presence of white, dense, minerogenic sediments with low water and TOC contents. Such an association of parameters indicates cool-wet and warm-dry climates and respectively corresponds to early Holocene (~10.3-8.6 ka BP) and late Holocene (since 4.5 ka BP). By contrast, sediments ~155-45 cm of the core show low RGI values (mostly <50) due to the presence of dark, less dense, peaty sediments with high water and TOC contents, indicating the warmest perhaps the wettest climate (HO) ~8.6-4.5 ka BP. Interestingly, the peaty sediments of HO show very high Br concentrations of up to 230 μg g-1, almost all values are >150 μg g-1. These values are ~7-12 times higher than Br values found in early and late Holocene sediments (0-20 μg g-1) as well as source rock Br values. Depth profiles of Br, Cl, and Na mimic each other and Br shows a linear relationship with Cl and Na in sediments of

  17. Two millennia of torrential activity reconstructed from alpine lake sediments: towards regional patterns of extreme precipitation changes

    NASA Astrophysics Data System (ADS)

    Wilhelm, B.; Arnaud, F.; Giguet-Covex, C.; Sabatier, P.; Crouzet, C.; Delannoy, J. J.

    2012-04-01

    In mountain areas extreme precipitation events trigger torrential floods, characterized by a sudden and intense rise of discharge causing large human and economic losses. Their frequency and/or intensity are expected to increase in the context of global warming. However, the relationship between such events and climate changes remains difficult to assess. Long-term geological records of intense events could enable to extend documented records beyond the observational data for a better understanding of local to regional flood hazard patterns in relation to past climatic changes and hence improving predictive models. In this context, lake sediment records appear a relevant archive as they are continuous records in which the identification of high-energy sediment layers allows to reconstruct flood calendar. In addition, the flood intensity can be reconstructed from the coarse fraction of each flood layer. Frequency and intensity of past torrential floods were thus reconstructed from four high-elevation lake records of the French Alps, in the framework of Pygmalion research program. Studied sites were selected along a north-south transect over this region to investigate the flooding responses to different climatic influences (westerlies in the north and Mediterranean influences in the south). High-resolution geochemical and sedimentological analyses were undertaken for an exhaustive identification of flood layers and several dating methods (short-lived radionuclides, 14C, correlation with historic events, paleomagnetism) were combined to reduce age uncertainties as much as possible. Over the entire French Alps, the torrential-flood frequency increases at a secular timescale during the cold period of the Little Ice Age (LIA; 1300-1900 AD). This increase seems in agreement with a regional high wetness, already described in the literature, possibly related to an increase in cyclonic activity. Superimposed to this secular trend, a pluri-decadal variability appears at

  18. Late Pleistocene and Holocene Hydroclimate Variability in the Tropical Andes from Alpine Lake Sediments, Cordillera de Mérida, Venezuela

    NASA Astrophysics Data System (ADS)

    Larsen, D. J.; Abbott, M. B.; Polissar, P. J.

    2014-12-01

    The tropics play a major role in the global hydrologic cycle and changes to tropical rainfall patterns have critical implications for water resources and ecosystem dynamics over large geographic scales. In tropical South America, late Pleistocene and Holocene precipitation variability has been documented in geologic records and associated with numerous external and internal variables, including changes in summer insolation, South American summer monsoon strength, Pacific Ocean sea surface temperatures, continental moisture recycling, and other climate processes. However, there are few records from the northern hemisphere tropical Americas, a key region for understanding interhemispheric linkages and the drivers of tropical hydroclimate variability. Here, we present a ~13 ka record of coupled hydroclimate and environmental changes from Laguna Brava, a small (~0.07 km2), hydrologically closed lake basin situated at 2400 m asl in the Cordillera de Mérida, Venezuela. Sediment cores collected from varying water depths and proximity to shore are placed in a chronologic framework using radiocarbon ages from terrestrial macrofossils, and analyzed for a suite of physical, bulk geochemical, and stable isotopic parameters. Compound specific hydrogen isotope (D/H) measurements of terrestrial plant waxes (long-chain n-alkanes) show a sharp increase in the late Pleistocene, followed by a long-term trend toward more negative values that suggest a ~20‰ decrease in the D/H ratios of South American tropical precipitation during the Holocene. This pattern is consistent in sign and magnitude to other South American precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability. Superimposed on this continent-scale trend are changes in moisture balance and environmental conditions in the Venezuelan Andes. We reconstruct these parameters at Laguna Brava at multidecadal and centennial resolution and evaluate this

  19. Nonnative Pacific salmon alter hot spots of sediment nitrification in Great Lakes tributaries

    NASA Astrophysics Data System (ADS)

    Levi, Peter S.; Tank, Jennifer L.

    2013-06-01

    Biogeochemical transformations may represent an important pathway influencing the fate of nutrient subsidies in stream ecosystems. Pacific salmon (Oncorhynchus spp.) provide an ammonium (NH4+) subsidy to streams during their annual spawning runs, which may be transformed to nitrate (NO3-) via sediment nitrification. Increases in either forms of dissolved inorganic nitrogen may have ecosystem effects both at the reach and watershed scales, including the fertilization of algal biofilms and elevated export of nutrients to downstream ecosystems. In the nonnative range of salmon, where spawning runs are a relatively new phenomenon, few studies have explored the effect of introduced salmon on ecosystem processes. To assess the effect of nonnative salmon on dissolved inorganic nitrogen dynamics in Great Lakes tributaries, we quantified sediment nitrification in five streams before, during, and after the spawning run in 2009. Overall, sediment nitrification rates were higher in the channel thalweg (mean ± SE = 1.9 ± 0.1 mg N/gAFDM/d) compared to channel margins (mean ± SE = 0.9 ± 0.1 mg N/gAFDM/d). In the two streams with the largest salmon runs, nitrification was highest in the channel thalweg prior to salmon, but margin sediments had higher nitrification during the run. Among all streams, variation in nitrification rates was habitat specific, predicted by exchangeable NH4+ in sediments from the thalweg and predicted by salmon biomass for sediments in the channel margin. Nonnative salmon provide a pulsed source of inorganic nitrogen to Great Lakes tributaries, yet dissimilatory biogeochemical transformations such as nitrification may alter the form of the NH4+ subsidy and potentially influence downstream lakes via export of both NH4+ and NO3-.

  20. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes.

    PubMed

    Higgins, Scott N; Althouse, B; Devlin, S P; Vadeboncoeur, Y; Vander Zanden, M J

    2014-08-01

    While limnological studies have emphasized the importance of grazers on algal biomass and primary production in pelagic habitats, few studies have examined their potential role in altering total ecosystem primary production and it's partitioning between pelagic and benthic habitats. We modified an existing ecosystem production model to include biotic feedbacks associated with two groups of large-bodied grazers of phytoplankton (large-bodied zooplankton and dreissenid mussels) and estimated their effects on total ecosystem production (TEP), and the partitioning of TEP between phytoplankton and periphyton (autotrophic structure) across large gradients in lake size and total phosphorus (TP) concentration. Model results indicated that these filter feeders were capable of reducing whole-lake phytoplankton production by 20-70%, and increasing whole-lake benthic production between 0% and 600%. Grazer effects on TEP were constrained by lake size, trophic status, and potential feedbacks between grazing and maximum rates of benthic photosynthesis (BP(MAX)). In small (mean depth Z < 10 m) oligotrophic and mesotrophic (TP < 100 mg P/m2) lakes, both large-bodied zooplankton and dreissenids were capable of increasing the benthic fraction (Bf) by 10-50% of TEP. Small lakes were also the only systems where TEP had the potential to increase in the presence of large-bodied grazers, but such increases only occurred if grazer-induced changes in water clarity, macrophyte coverage, or nutrient availability stimulated specific growth rates of periphyton. In other scenarios, TEP declined by a maximum of 50%. In very large lakes (Z > 100 m), Bf was minor (< 10%) in the presence or absence of grazers, but increases in littoral habitat and the stimulation of benthic production in these ecosystems could be of ecological relevance because littoral zones in large lakes contain a relatively high proportion of within-lake biodiversity and are important for whole-lake food webs.

  1. Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth?

    PubMed

    Bykova, Olga; Laursen, Andrew; Bostan, Vadim; Bautista, Joseph; McCarthy, Lynda

    2006-12-01

    This study examined possible relationships between the presence of zebra mussels (Dreissena polymorpha) and Microcystis spp. abundance. Experiments were conducted in 12 microcosms designed to mimic shallow lake ecosystems. Fresh, aerated water with phytoplankton (pseudokirchneriella spp. and Microcystis spp.) was pumped into each microcosm daily to ensure zebra mussels were exposed to oxygen and food. Microcosms containing zebra mussels experienced significantly higher fluxes of nitrate (p=0.019) and lower fluxes of ortho-phosphate (p=0.047) into sediments. In a second experiment, water column nutrient concentrations were compared in microcosms with and without live zebra mussels. Consistent with results of the previous experiment, microcosms with zebra mussels had significantly less nitrate (p=0.023) and organic nitrogen (p=0.003) in the water column, while ammonium (p=0.074), phosphate (p=0.491), and dissolved organic carbon (p=0.820) in the water column were not different between microcosms with or without zebra mussels. Microcosms with zebra mussels also experienced a reduction in green algae (pseudokirchneriella) (p<0.001) and an increase in abundance of Microcystis (p<0.001) relative to microcosms without zebra mussels. In an experiment without zebra mussels, nutrient ratios (N/P) were manipulated to determine potential links between N/P and relative abundance of each phytoplankton. Manipulation of N/P was intended to mimic differences observed in microcosms with and without zebra mussels in the previous experiment. Low N/P (mimicking microcosms with zebra mussels) was related to an increase in Microcystis (p<0.001) and Microcystis/Pseudokirchneriella biovolume (p<0.001). It is this shift in N/P, and possibly some level of selective feeding, that is believed to have driven changes in the relative abundance of Microcystis. In lakes invaded by zebra mussels, alterations in the processing of nitrogen and phosphorus could contribute to the re-emergence of

  2. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  3. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    PubMed Central

    Lin, Peng; Guo, Laodong

    2016-01-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling. PMID:27996017

  4. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  5. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    PubMed

    Lin, Peng; Guo, Laodong

    2016-12-20

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  6. Crystallization process of zircon and fergusonite during hydrothermal alteration in Nechalacho REE deposit, Thor Lake, Canada

    NASA Astrophysics Data System (ADS)

    Hoshino, M.; Watanabe, Y.; Murakami, H.; Kon, Y.; Tsunematsu, M.

    2012-04-01

    The core samples of two drill holes, which penetrate sub-horizontal mineralized horizons at Nechalacho REE deposit in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify magmatic and hydrothermal processes that enriched HFSE (e.g. Zr, Nb, Y and REE). Zircon is the most common REE minerals in Nechalacho REE deposit. The zircon is divided into five types as follows: Type-1 zircon occurs as single grain in phlogopite and the chondrite-normalized REE pattern is characterized by a steeply-rising slope from the LREE to the HREE with a positive Ce-anomaly and negative Eu-anomaly. This chemical characteristic is similar to that of igneous zircon. Type-2 zircon consists of HREE-rich magmatic porous core and LREE-Nb-F-rich hydrothermal rim. This type zircon is mostly included in phlogopite and fluorite, and occasionally in microcline. Type-3 zircon is characterized by euhedral to anhedral crystal, occurring in a complex intergrowth with REE fluorocarbonates. Type-3 zircons have high contents of REE, Nb and fluorine. Type-4 zircon consists of porous-core and -rim zones, but their chemical compositions are similar to each other. This type zircon is a subhedral crystal rimmed by fergusonite. Type-5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircons are filled by fergusonite. Type-4 and -5 zircons show low REE and Nb contents. Occurrences of these five types of zircon are different according to the depth and degree of the alteration by hydrothermal solutions rich in F- and CO3 of the two drill holes, which permit a model for evolution of the zircon crystallization in Nechalacho REE deposit as follows: (1) type-1 (single magmatic zircon) is formed in miaskitic syenite. (2) LREE-Nb-F-rich hydrothermal zircon formed around HREE-rich magmatic zircon (type-2 zircon); (3) type-3 zircon crystallized thorough F and CO3-rich hydrothermal alteration of type-2 zircon which formed the complex

  7. Sensitivity of alpine and subalpine lakes to acidification from atmospheric deposition in Grand Teton National Park and Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Nanus, Leora; Campbell, Donald H.; Williams, Mark W.

    2005-01-01

    The sensitivity of 400 lakes in Grand Teton and Yellowstone National Parks to acidification from atmospheric deposition of nitrogen and sulfur was estimated based on statistical relations between acid-neutralizing capacity concentrations and basin characteristics to aid in the design of a long-term monitoring plan for Outstanding Natural Resource Waters. Acid-neutralizing capacity concentrations that were measured at 52 lakes in Grand Teton and 23 lakes in Yellowstone during synoptic surveys were used to calibrate the statistical models. Three acid-neutralizing capacity concentration bins (bins) were selected that are within the U.S. Environmental Protection Agency criteria of sensitive to acidification; less than 50 microequivalents per liter (?eq/L) (0-50), less than 100 ?eq/L (0-100), and less than 200 ?eq/L (0-200). The development of discrete bins enables resource managers to have the ability to change criteria based on the focus of their study. Basin-characteristic information was derived from Geographic Information System data sets. The explanatory variables that were considered included bedrock type, basin slope, basin aspect, basin elevation, lake area, basin area, inorganic nitrogen deposition, sulfate deposition, hydrogen ion deposition, basin precipitation, soil type, and vegetation type. A logistic regression model was developed and applied to lake basins greater than 1 hectare in Grand Teton (n = 106) and Yellowstone (n = 294). A higher percentage of lakes in Grand Teton than in Yellowstone were predicted to be sensitive to atmospheric deposition in all three bins. For Grand Teton, 7 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-50 bin, 36 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-100 bin, and 59 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity

  8. Well construction information, lithologic logs, water level data, and overview of research in Handcart Gulch, Colorado: an alpine watershed affected by metalliferous hydrothermal alteration

    USGS Publications Warehouse

    Caine, Jonathan Saul; Manning, Andrew H.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine Gurley; Ge, Shemin

    2006-01-01

    Integrated, multidisciplinary studies of the Handcart Gulch alpine watershed provide a unique opportunity to study and characterize the geology and hydrology of an alpine watershed along the Continental Divide. The study area arose out of the donation of four abandoned, deep mineral exploration boreholes to the U.S. Geological Survey for research purposes by Mineral Systems Inc. These holes were supplemented with nine additional shallow holes drilled by the U.S. Geological Survey along the Handcart Gulch trunk stream. All of the holes were converted into observation wells, and a variety of data and samples were measured and collected from each. This open-file report contains: (1) An overview of the research conducted to date in Handcart Gulch; (2) well location, construction, lithologic log, and water level data from the research boreholes; and (3) a brief synopsis of preliminary results. The primary purpose of this report is to provide a research overview as well as raw data from the boreholes. Interpretation of the data will be reported in future publications. The drill hole data were tabulated into a spreadsheet included with this digital open-file report.

  9. Mineral magnetism and other characteristics of sediments from a sub-alpine lake (3080 m a.s.l.) in central east China and their implications on environmental changes for the last 5770 years

    NASA Astrophysics Data System (ADS)

    Wang, Hongya; Song, Yaqiong; Cheng, Ying; Luo, Yao; Zhang, Cai'na; Gao, Yishen; Qiu, An'an; Deng, Lei; Liu, Hongyan

    2016-10-01

    A sediment sequence (SQC07) was recovered from Sanqing Chi, a small sub-alpine lake (3080 m a.s.l.) on Taibai (3767 m a.s.l.), the highest mountain in east mainland China (east of 105°). The Mountain is also the highest part and central massif of the Qinling Mountain Range functioning as the boundary between the warm temperate climate zone to the north and sub-tropical climate zone to the south in east China. Soils and debris were also sampled from the catchment of Sanqing Chi. SQC07 was AMS 14C dated. Mineral magnetism was measured for the sediment sequence and catchment samples. Particle-size, TOC and TN analysis were undertaken on SQC07, while pollen analysis was made for the sediment sequence and surface-soil samples. With the mineral magnetism of the catchment materials, the magnetic and other characteristics of SQC07 indicate the environmental changes occurring on the high altitudes of Taibai Mountain during the past 5770 years. Environments were still moderately warm and wet over 5770-5100 cal. yr BP around this sub-alpine lake. Then cold and dry conditions persisted in the period of 5100-4000 cal. yr BP. Local environments began to ameliorate from 4000 cal. yr BP onwards and were thus generally warm and wet over 4000-1200 cal. yr BP. The warmth and wetness culminated in 1200-800 cal. yr BP. During the period of 800-400 cal. yr BP, cold and arid conditions again predominated. Environments have subsequently become warm and humid since ∼400 cal. yr BP. The overall trend of the changes is coincident with what have been identified at several other sites in east mainland China and Taiwan. Presumably, the deterioration over 5100-4000 cal. yr BP marks the termination of the Holocene optimum, corresponds to or encompasses Holocene event 3, while the deterioration occurring in 800-400 cal. yr BP may correspond to LIA cooling. However, they appear to have commenced earlier than the aforementioned sites at relatively low altitudes in east mainland China or even

  10. ALTERATIONS IN SEXUALLY DIMORPHIC BIOTRANSFORMATION OF TESTOSTERONE IN JUVENILE AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED LAKES

    EPA Science Inventory

    The goal of this study was to determine whether hepatic biotransformation of testosterone is normally sexually dimorphic in juvenile alligators and whether living in a contaminated environment affects hepatic dimorphism. Lake Woodruff served as our reference site. Moonshine Bay, ...

  11. Alteration in hematology of Labeo rohita under stress of pollution from Lakes of Bangalore, Karnataka, India.

    PubMed

    Zutshi, Bela; Prasad, S G Raghu; Nagaraja, R

    2010-09-01

    Blood is an indicator of physiological condition of an animal. Therefore, a field study was conducted to investigate the hematological parameters of wild population of rohu, Labeo rohita (Ham). The following aspects were evaluated in blood: hemoglobin content, red blood cell (RBC) and white blood cell (WBC) count, packed cell volume (PCV), and mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC) values, and in plasma: cholesterol, protein, and glucose levels. For this purpose, rohu fish of varying sizes and weights were sampled from Hebbal (receiving a storm water drain) and Chowkalli lake (received domestic sewage and industrial effluents from various sources and was more polluted than Hebbal lake). It revealed noticeable differences in hemoglobin content, RBC and WBC count, and PCV and MCHC values. Severe anemia can be marked by a significant decrease in RBC count (p < 0.5), hemoglobin content, and PCV and MCHC values, whereas an increase in leukocyte count and MCV values were observed in fish from Chowkalli lake. Fish from lake B had fewer RBC and low concentration of serum protein and cholesterol. Serum concentration of glucose showed initial higher levels and then low concentration (900-1,500 g) in fish from lake B when compared to lake A. The variation in values of different parameters can be attributed to exposure of fish to various types of pollutants present mainly in the Chowkalli lake which receives heavy metals, synthetic detergents, petroleum products, and other acid and alkali substances from the nearby local industries. Other observations of these fish include dark body color and aggressive nature of fish.

  12. Comparative responses of Dryas octopetala to simulated changes in climate from alpine, low- and high arctic ITEX sites

    SciTech Connect

    Welker, J.M.; Parsons, A.N.; Walker, M.D. |||

    1995-06-01

    Field manipulations of environmental conditions have been established in dry tundra sites on Niwot Ridge, CO, Toolik Lake, AK and on Svalbard, Norway as part of the International Tundra Experiment (ITEX). Dryas octopetala is the dominant species at all three sites where we have examined organismic and ecosystem responses to similar increases in temperature. Leaf and seed mass differ significantly between all sites and warmer temperatures resulted in reductions in leaf mass at both the high and low arctic sites in the initial year, but this was not observed at the alpine site. Reductions in leaf mass were accompanied by changes in leaf demography. Seed masses were inherently different between sites, being largest from plants in the alpine tundra. Plants in the alpine and in the high arctic had higher seed weights when warmed. By the end of the second year, leaf C:N ratios were higher in alpine plants which were warmed. These organismic responses may set the stage for altered colonization of bare ground while changes in C:N ratios may modify decomposition rates linking organismic and ecosystem dynamics.

  13. Snow deposition, melt, runoff, and chemistry in a small alpine watershed, Emerald Lake Basin, Sequoia National Park. Final report, 1 July 1984-31 March 1987

    SciTech Connect

    Dozier, J.; Melack, J.M.; Marks, D.; Elder, K.; Kattelmann, R.

    1987-03-01

    The report describes the first two years of an investigation of the snow chemistry and hydrology of the Emerald Lake Watershed in Sequoia National Park. The investigation examined the impact of acid deposition on high-elevation ecosystems of the Sierra Nevada. The following aspects of snow deposition and melt were studied: energy inputs; pattern of snow deposition and ablation; snowpack, meltwater and runoff chemistry; stream hydrology during the melt period.

  14. Plants in alpine environments

    USGS Publications Warehouse

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  15. Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau

    PubMed Central

    Zhu, Wenyan; Wang, Jinzhou; Zhang, Zhenhua; Ren, Fei; Chen, Litong; He, Jin-Sheng

    2016-01-01

    The effects of nitrogen (N) and phosphorus (P) addition on litter decomposition are poorly understood in Tibetan alpine meadows. Leaf litter was collected from plots within a factorial N × P addition experiment and allowed to decompose over 708 days in an unfertilized plot to determine the effects of N and/or P addition on litter decomposition. Results showed that nutrient addition significantly affected initial P and P-related biochemical properties of litter from all four species. However, the responses of litter N and N-related biochemical properties to nutrient addition were quite species-specific. Litter C decomposition and N release were species-specific. However, N and P addition significantly affected litter P release. Ratios of Hemicellulose + Cellulose to N and P were significantly related to litter C decomposition; C:N ratio was a determinant of litter N release; and C:P and (Hemicellulose + Cellulose):P controlled litter P release. Overall, litter C decomposition was controlled by litter quality of different plant species, and strongly affected by P addition. Increasing N availability is likely to affect litter C decomposition more indirectly by shifting plant species composition than directly by improving litter quality, and may accelerate N and P cycles, but shift the ecosystem to P limitation. PMID:27694948

  16. Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau.

    PubMed

    Zhu, Wenyan; Wang, Jinzhou; Zhang, Zhenhua; Ren, Fei; Chen, Litong; He, Jin-Sheng

    2016-10-03

    The effects of nitrogen (N) and phosphorus (P) addition on litter decomposition are poorly understood in Tibetan alpine meadows. Leaf litter was collected from plots within a factorial N × P addition experiment and allowed to decompose over 708 days in an unfertilized plot to determine the effects of N and/or P addition on litter decomposition. Results showed that nutrient addition significantly affected initial P and P-related biochemical properties of litter from all four species. However, the responses of litter N and N-related biochemical properties to nutrient addition were quite species-specific. Litter C decomposition and N release were species-specific. However, N and P addition significantly affected litter P release. Ratios of Hemicellulose + Cellulose to N and P were significantly related to litter C decomposition; C:N ratio was a determinant of litter N release; and C:P and (Hemicellulose + Cellulose):P controlled litter P release. Overall, litter C decomposition was controlled by litter quality of different plant species, and strongly affected by P addition. Increasing N availability is likely to affect litter C decomposition more indirectly by shifting plant species composition than directly by improving litter quality, and may accelerate N and P cycles, but shift the ecosystem to P limitation.

  17. Seismic properties and effects of hydrothermal alteration on Volcanogenic Massive Sulfide (VMS) deposits at the Lalor Lake in Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Miah, Khalid H.; Bellefleur, Gilles; Schetselaar, Ernst; Potter, David K.

    2015-12-01

    Borehole sonic and density logs are essential for mineral exploration at depth, but its limited availability to link rock properties of different ore forming geologic structure is a hindrance to seismic data interpretations. In situ density and velocity logs provide first order control on the reflectivity of various lithologic units. We analyzed borehole logs from 12 drill holes over and around the Lalor VMS deposits geographically located in the northern Manitoba, Canada, in an attempt to characterize lithologic units based on its seismic properties. The Lalor Lake deposit is part of the Paleoproterozoic Flin Flon Belt, and associated with an extensive hydrothermal alteration system. Volcanogenic Massive Sulfide (VMS) zones are distributed in several ore lenses with relatively shallower facies comprise solid to solid sulfides, tend to be disseminated or Stringer sulfides, while deeper lenses are gold and silver enriched and occurred in the highly altered footwall region. Our analysis suggests that massive sulfide and diorite have higher acoustic impedance than other rock units, and can produce useful reflection signatures in seismic data. Bivariate distributions of P-wave velocity, density, acoustic impedance and Poisson's ratio in end-member mineral cones were used for qualitative assessment of the extent of alteration of various lithologic units. It can be inferred that hydrothermal alteration has considerably increased P-wave velocity and density of altered argillite and felsic volcanic rocks in comparison to their corresponding unaltered facies. Amphibole, garnet, kyanite, pyrite, sphalerite and staurolite are the dominant end-member alteration minerals affecting seismic rock properties at the VMS site.

  18. Effects of Short-Term Thermal Alteration on Organic Matter in Experimentally-Heated Tagish Lake Observed by Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Nakato, A.; Zolensky, M. E.; Nakamura, T.; Kebukawa, Y.; Maisano, J.; Colbert, M.; Martinez, J. E.

    2017-01-01

    Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics, while some are known to demonstrate mineralogical and petrologic evidence of having been thermally metamorphosed after aqueous alteration. This group of meteorites are commonly referred as thermally met-amorphosed carbonaceous chondrites (TMCCs), and their reflectance spectra show resemblances to that of C-type asteroids which typically have low albedos. This suggests that the surfaces of the C-type asteroids are also composed of both hydrous and dehydrated minerals, and thus TMCCs are among the best samples that can be studied in laboratory to reveal the true nature of the C-type asteroids. Although TMCCs are usually meteorites that were previously categorized as CI and CM chondrites, they are not strictly CI/CM because they exhibit isotopic and petrographic characteristics that significantly deviate from typical CI/CM. More appropriately, they are called CI-like and/or CM-like chondrites. Typical examples of TMCCs include the C2-ung/CM2TIV Belgica (B)-7904 and Yamato (Y) 86720. Thermal alteration is virtually complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates. The estimated heating conditions are 10 to 103 days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation. While the petrology and chemistry of TMCCs have only recently been extensively characterized, we have just begun to study in detail their organic contents. In order to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in hydrous chondrites, we investigated experimentally-heated Tagish Lake meteorite using Raman spectroscopy, as the chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to the TMCCs.

  19. Experimental soil warming and cooling alters the partitioning of recent assimilates: evidence from a (14)C-labelling study at the alpine treeline.

    PubMed

    Ferrari, A; Hagedorn, F; Niklaus, P A

    2016-05-01

    Despite concerns about climate change effects on ecosystems functioning, little is known on how plant assimilate partitioning changes with temperature. Particularly, large temperature effects might occur in cold ecosystems where critical processes are at their temperature limit. In this study, we tested temperature effects on carbon (C) assimilate partitioning in a field experiment at the alpine treeline. We warmed and cooled soils of microcosms planted with Pinus mugo or Leucanthemopsis alpina, achieving daily mean soil temperatures (3-10 cm depth) around 5.8, 12.7 and 19.2 °C in cooled, control and warmed soils. We pulse-labelled these systems with (14)CO2 for one photoperiod and traced (14)C over the successive 4 days. Plant net (14)C uptake increased steadily with soil temperature. However, (14)C amounts in fungal hyphae, soil microbial biomass, soil organic matter, and soil respiration showed a non-linear response to temperature. This non-linear pattern was particularly pronounced in P. mugo, with five times higher (14)C activities in cooled compared to control soils, but no difference between warmed and control soil. Autoradiographic analysis of the spatial distribution of (14)C in soils indicated that temperature effects on the vertical label distribution within soils depended on plant species. Our results show that plant growth, in particular root metabolism, is limited by low soil temperature. As a consequence, positive temperature effects on net C uptake may not be paralleled by similar changes in rhizodeposition. This has important implications for predictions of soil C storage, because rhizodeposits and plant biomass vary strongly in their residence times.

  20. Falling phytoplankton: altered access to the photic zone over 60 years of warming in Lake Baikal, Siberia

    NASA Astrophysics Data System (ADS)

    Hampton, S. E.; Izmest'eva, L. R.; Moore, M.; Katz, S. L.

    2011-12-01

    Vertical stratification of aquatic ecosystems can be strongly reinforced by long-term warming, altering access to suitable habitat differentially across plankton taxa. Surface waters in the world's most voluminous freshwater lake - Lake Baikal in Siberia - are warming at an average rate of 2.01°C century-1, with more dramatic warming in the summer (3.78°C century-1). This long-term warming trend occurs within seasonal cycles of freezing and thawing, and against the larger backdrop of shorter-term climate dynamics, such as those associated with the Pacific Decadal Oscillation and Arctic Oscillation, with which shifting Siberian weather patterns affect the timing of seasonal changes (e.g., stratification) at the lake. While the increasing temperature difference between surface and deeper waters implies stronger stratification in the summer in general, the available long-term temperature data are not sufficiently fine-scaled across depth to further resolve stratification patterns. However, analysis of long-term vertical phytoplankton distributions may give perspectives on the dynamics of the physical environment that plankton experience. For example, many of Lake Baikal's endemic, cold-adapted phytoplankton species are large and heavy diatoms that require strong mixing to remain suspended, a process that is suppressed by stronger summer stratification. Observed vertical patterns of algal distribution are consistent with the predictions of increased warming and intensified stratification with diatoms present in summer increasingly sinking far beyond the photic zone. Specifically, the average depth of diatoms in August, the most reliably stratified month at Lake Baikal, has increased from depths roughly aligned with photic zone (0.1% light penetration) limits (ca. 40 m) in the 1970s to average depths approximately 48 m below the photic zone by the end of the century. Concurrently, smaller motile algae such as cryptomonads have maintained or increased their presence in

  1. Asynchronous evolution of the isotopic composition and amount of precipitation in north China during the Holocene revealed by a record of compound-specific carbon and hydrogen isotopes of long-chain n-alkanes from an alpine lake

    NASA Astrophysics Data System (ADS)

    Rao, Zhiguo; Jia, Guodong; Li, Yunxia; Chen, Jianhui; Xu, Qinghai; Chen, Fahu

    2016-07-01

    Both the timing of the maximum East Asian summer monsoon (EASM) intensity in monsoonal China and the environmental significance of the Chinese stalagmite oxygen isotopic record (δ18O) have been debated. Here, we present a ca. 120-year-resolution compound-specific carbon (δ13C) and hydrogen (δD) isotopes of terrestrial long-chain n-alkanes extracted from a well-dated sediment core from an alpine lake in north China. Our δ13C data, together with previously reported pollen data from a parallel core, demonstrate a humid mid-Holocene from ca. 8-5 ka BP. Assuming that the climatic humidity of north China is an indicator of the EASM intensity, then the maximum EASM intensity occurred in the mid-Holocene. Our δD data reveal a similar long-term trend to the δ18O record from nearby Lianhua Cave, indicating that the synchronous δD and δ18O records faithfully record the δD and δ18O of precipitation, respectively. The most negative δD and δ18O values occur in the early-mid Holocene, from ca. 11-5 ka BP. This contrast in the timing of isotopic variations demonstrates a complex relationship between the isotopic composition of precipitation and precipitation amount, or EASM intensity. Further comparisons indicate a possible linkage between the precipitation amount in north China and the west-east thermal gradient in the equatorial Pacific. In addition, the temperature of the moisture source area may play an important role in determining the isotopic composition of precipitation in monsoonal China.

  2. Effects of Short-Term Thermal Alteration on Organic Matter in Experimentally-Heated Tagish Lake Observed by Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Nakato, A.; Zolensky, M. E.; Nakamura, T.; Kebukawa, Y.

    2007-01-01

    Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics. Examples of the thermally metamorphosed carbonaceous chondrites (TMCCs) include the C2-ung/CM2TIVs Belgica (B)-7904 and Yamato (Y) 86720. The alteration extent is the most complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates [1, 2]. The estimated heating conditions are 10 to 10(sup 3) days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation [3]. The chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to these TMCCs [4]. We investigated the experimentally-heated Tag with the use of Raman spectroscopy to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in aqueously altered meteorites.

  3. Rapid Ecological Change in Two Contrasting Lake Ecosystems: Evidence of Threshold Responses, Altered Species Dynamics, and Perturbed Patterns of Variability

    NASA Astrophysics Data System (ADS)

    Simpson, G. L.

    2015-12-01

    Studying threshold responses to environmental change is often made difficult due to the paucity of monitoring data prior to and during change. Progress has been made via theoretical models of regime shifts or experimental manipulation but natural, real world, examples of threshold change are limited and in many cases inconclusive. Lake sediments provide the potential to examine abrupt ecological change by directly observing how species, communities, and biogeochemical proxies responded to environmental perturbation or recorded ecosystem change. These records are not problem-free; age uncertainties, uneven and variable temporal resolution, and time-consuming taxonomic work all act to limit the scope and scale of the data or complicate its analysis. Here I use two annually laminated records 1. Kassjön, a seasonally anoxic mesotrophic lake in N Sweden, and2. Baldeggersee, a nutrient rich, hardwater lake on the central Swiss Plateau to investigate lake ecosystem responses to abrupt environmental change using ideal paleoecological time series. Rapid cooling 2.2kyr ago in northern Sweden significantly perturbed the diatom community of Kassjön. Using wavelet analysis, this amelioration in climate also fundamentally altered patterns of variance in diatom abundances, suppressing cyclicity in species composition that required several hundred years to reestablish. Multivariate wavelet analysis of the record showed marked switching between synchronous and asynchronous species dynamics in response to rapid climatic cooling and subsequent warming. Baldeggersee has experienced a long history of eutrophication and the diatom record has been used as a classic illustration of a regime shift in response to nutrient loading. Time series analysis of the record identified some evidence of a threshold-like response in the diatoms. A stochastic volatility model identified increasing variance in composition prior to the threshold, as predicted from theory, and a switch from compensatory

  4. Changing climate and sea level alter Hg mobility at Lake Tulane, Florida, U.S.

    PubMed

    Jacobson, G L; Norton, S A; Grimm, E C; Edgar, T

    2012-11-06

    Between 45,000 cal years BP and the beginning of the Holocene, the accumulation rate for Hg in sediments of Lake Tulane, Florida ranged from ≈2 to 10 μg m(-2) yr(-1), compared with 53 μg Hg m(-2) yr(-1) in the 1985-1990 period of anthropogenic input. The locality experienced regional draw-down of the water table during the Wisconsinan glaciation, which lowered global sea level by nearly 130 m. Natural atmospheric deposition of Hg to the surrounding area resulted in long-term (ca. 100,000 years) sequestration of this atmospheric flux of Hg, primarily by adsorption in the oxic Al- and Fe-hydroxide-rich sandy subsoil. Global sea level rise during deglaciation led to a rising regional water table, flooding the oxidized soils surrounding Tulane. Iron and adsorbed Hg were mobilized by reductive dissolution and transported by groundwater flow to Lake Tulane and ultimately to the accumulating sediment. The accumulation rate of Hg (and Fe) increased rapidly about 16,000 cal years BP, peaked at nearly 60 μg Hg m(-2) yr(-1) ca. 13,000-14,000 cal years BP, declined sharply during the Younger Dryas, and then increased sharply to a second 60 μg Hg m(-2) yr(-1) peak about 5000 cal years BP. Thereafter, it declined nearly to background by 900 cal years BP. In similar geologic situations, rapid modern sea level rise will initiate this process globally, and may mobilize large accumulations of Hg and lesser amounts of As, and other redox sensitive metals to groundwater and surface water.

  5. What does a lake sediment terrigenous input record actually tell us? Tentative answers based on a multi-lakes source-to-sink approach in the 4000 km2 Arve-Rhône alpine catchment

    NASA Astrophysics Data System (ADS)

    Arnaud, F.; Révillon, S.; Giguet-Covex, C.; Wilhelm, B.; Jenny, J.-P.; Magny, M.; Von Grafenstein, U.; Poulenard, J.; Ployon, E.

    2012-04-01

    Since the emergence of paleolimnology as a scientific discipline, numerous studies attempted to link terrigenous input to environmental variables. In particular, it has been proposed that the total amount of river-borne sediment should be used as a mirror of "humidity", assuming the erosion flux is mainly driven by climate changes. Alternatively and in a sense, at the opposite, the recent development of Holocene paleo-studies and the growing interest for the reconstruction of past human-environment interactions led to postulate that since at least the Bronze age, humans became the main driver of erosion patterns. Indeed there is not really a scientific debate, each "church" hanging to its position: "pro-human" vs. "pro-climate". In this paper, we attempt to light the debate, based on an original approach which was led in the framework of the Pygmalion program. Rather than studying a single lake record, we tried to integrate results at various time and spatial scales within a 4000 km2, lithologically and morphologically complex catchment. The chosen area lies at the northern edge of French Alps: Arve river catchment, which drains among others the Mont Blanc massif, and its continuation after its junction with river Rhône, downstream Lake Geneva. After a river course of ca. 250 km, Lake Bourget represents a partial sink for erosion products when river Rhône flows within the lake during major floods. In this, Holocene-long sediment cores from Lake Bourget can be interpreted as a regional record of terrigenoux fluxes. Thanks to a set of 20 tributary samples, we led a source-to-sink approach, based on Nd isotopes. This led us to identify from the sediment record fluctuations in the main provenance of sediments. Moreover, the high resolution record of chemical weathering proxies (clay mineralogy and K/Ti ratio) gave important information upon the role of soil genesis in erosion patterns. This approach stated that the Little Ice Age has been an exceptional period of

  6. CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line.

    PubMed

    Dawes, Melissa A; Zweifel, Roman; Dawes, Nicholas; Rixen, Christian; Hagedorn, Frank

    2014-06-01

    To understand how trees at high elevations might use water differently in the future, we investigated the effects of CO2 enrichment and soil warming (separately and combined) on the water relations of Larix decidua growing at the tree line in the Swiss Alps. We assessed diurnal stem radius fluctuations using point dendrometers and applied a hydraulic plant model using microclimate and soil water potential data as inputs. Trees exposed to CO2 enrichment for 9 yr showed smaller diurnal stem radius contractions (by 46 ± 16%) and expansions (42 ± 16%) compared with trees exposed to ambient CO2 . Additionally, there was a delay in the timing of daily maximum (40 ± 12 min) and minimum (63 ± 14 min) radius values for trees growing under elevated CO2 . Parameters optimized with the hydraulic model suggested that CO2 -enriched trees had an increased flow resistance between the xylem and bark, representing a more buffered water supply system. Soil warming did not alter diurnal fluctuation dynamics or the CO2 response. Elevated CO2 altered the hydraulic water flow and storage system within L. decidua trees, which might have contributed to enhanced growth during 9 yr of CO2 enrichment and could ultimately influence the future competitive ability of this key tree-line species.

  7. Chemical Compositional Indications of Aqueous Alteration for Whitewater Lake Boxworks, Veneers and Veins at Cape York, Mars

    NASA Astrophysics Data System (ADS)

    Clark, Benton; Gellert, R.; Squyres, S.; Arvidson, R.; Yen, A.; Rice, J.; Athena Science Team

    2013-10-01

    An area of partially-veneered, flat-lying rocks which also includes boxwork and linear veins contains a variety of compositions which are each indicative of minor to major aqueous alteration processes in the Cape York rim of Endeavour Crater. As analyzed by APXS x-ray fluorescence spectroscopy, the sets of unique elemental compositions correspond variously to Al-Si rich clays in boxwork veins, with Fe- and Cl-enriched salt veneers (Esperance samples); swarms of Ca sulfate veins (Ortiz samples); and, as indicated by remote sensing, mafic smectite alteration products in veneers (Chelmsford covering Azilda samples). Multiple offset analyses by APXS reveal clear trends and associations of certain elements, allowing inferences of mineralogies. In contrast to the acidic environment deduced for the genesis of the multiple-sulfate Burns formation sediments and shallow ferric-rich sulfate deposits beneath soils, these alteration products formed at more near-neutral pH, often with major chemical segregations and requiring high water-rock ratios comparable to a wide range of eminently habitable terrestrial environments. Several of these compositions are also rated high with respect to their potential for preservation of organic materials and biomarkers. Within distances of just tens of meters inside this so-called Whitewater Lake unit, this broad diversity exemplifies the tantalizing opportunities as well as challenges for future sample return missions to the red planet, which in this case could also be expanded to include nearby samples of Burns Fm sandstones, hematite concretions, light-toned spherules (Kirkwood), large gypsum veins (Homestake), martian global soils and surface dust.

  8. Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears

    USGS Publications Warehouse

    Kraus, Richard T.; Knight, Carey T.; Farmer, Troy M.; Gorman, Ann Marie; Collingsworth, Paris D.; Warren, Glenn J.; Kocovsky, Patrick M.; Conroy, Joseph D.

    2015-01-01

    Seasonal degradation of aquatic habitats from hypoxia occurs in numerous freshwater and coastal marine systems and can result in direct mortality or displacement of fish. Yet, fishery landings from these systems are frequently unresponsive to changes in the severity and extent of hypoxia, and population-scale effects have been difficult to measure except in extreme hypoxic conditions with hypoxia-sensitive species. We investigated fine-scale temporal and spatial variability in dissolved oxygen in Lake Erie as it related to fish distribution and catch efficiencies of both active (bottom trawls) and passive (trap nets) fishing gears. Temperature and dissolved oxygen loggers placed near the edge of the hypolimnion exhibited much higher than expected variability. Hypoxic episodes of variable durations were frequently punctuated by periods of normoxia, consistent with high-frequency internal waves. High-resolution interpolations of water quality and hydroacoustic surveys suggest that fish habitat is compressed during hypoxic episodes, resulting in higher fish densities near the edges of hypoxia. At fixed locations with passive commercial fishing gear, catches with the highest values occurred when bottom waters were hypoxic for intermediate proportions of time. Proximity to hypoxia explained significant variation in bottom trawl catches, with higher catch rates near the edge of hypoxia. These results emphasize how hypoxia may elevate catch rates in various types of fishing gears, leading to a lack of association between indices of hypoxia and fishery landings. Increased catch rates of fish at the edges of hypoxia have important implications for stock assessment models that assume catchability is spatially homogeneous.

  9. The altered ecology of Lake Christina: a record of regime shifts, land-use change, and management from a temperate shallow lake.

    PubMed

    Theissen, Kevin M; Hobbs, William O; Hobbs, Joy M Ramstack; Zimmer, Kyle D; Domine, Leah M; Cotner, James B; Sugita, Shinya

    2012-09-01

    We collected two sediment cores and modern submerged aquatic plants and phytoplankton from two sub-basins of Lake Christina, a large shallow lake in west-central Minnesota, and used stable isotopic and elemental proxies from sedimentary organic matter to explore questions about the pre- and post-settlement ecology of the lake. The two morphologically distinct sub-basins vary in their sensitivities to internal and external perturbations offering different paleoecological information. The record from the shallower and much larger western sub-basin reflects its strong response to internal processes, while the smaller and deeper eastern sub-basin record primarily reflects external processes including important post-settlement land-use changes in the area. A significant increase in organic carbon accumulation (3-4 times pre-settlement rates) and long-term trends in δ(13)C, organic carbon to nitrogen ratios (C/N), and biogenic silica concentrations shows that primary production has increased and the lake has become increasingly phytoplankton-dominated in the post-settlement period. Significant shifts in δ(15)N values reflect land-clearing and agricultural practices in the region and support the idea that nutrient inputs have played an important role in triggering changes in the trophic status of the lake. Our examination of hydroclimatic data for the region over the last century suggests that natural forcings on lake ecology have diminished in their importance as human management of the lake increased in the mid-1900s. In the last 50 years, three chemical biomanipulations have temporarily shifted the lake from the turbid, algal-dominated condition into a desired clear water regime. Two of our proxies (δ(13)C and BSi) measured from the higher resolution eastern basin record responded significantly to these known regime shifts.

  10. Embryonic critical windows: changes in incubation temperature alter survival, hatchling phenotype, and cost of development in lake whitefish (Coregonus clupeaformis).

    PubMed

    Mueller, Casey A; Eme, John; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y

    2015-04-01

    The timing, success and energetics of fish embryonic development are strongly influenced by temperature. However, it is unclear if there are developmental periods, or critical windows, when oxygen use, survival and hatchling phenotypic characteristics are particularly influenced by changes in the thermal environment. Therefore, we examined the effects of constant incubation temperature and thermal shifts on survival, hatchling phenotype, and cost of development in lake whitefish (Coregonus clupeaformis) embryos. We incubated whitefish embryos at control temperatures of 2, 5, or 8 °C, and shifted embryos across these three temperatures at the end of gastrulation or organogenesis. We assessed hatch timing, mass at hatch, and yolk conversion efficiency (YCE). We determined cost of development, the amount of oxygen required to build a unit of mass, for the periods from fertilization-organogenesis, organogenesis-fin flutter, fin flutter-hatch, and for total development. An increase in incubation temperature decreased time to 50 % hatch (164 days at 2 °C, 104 days at 5 °C, and 63 days at 8 °C), survival decreased from 55 % at 2 °C, to 38 % at 5 °C, and 17 % at 8 °C, and hatchling yolk-free dry mass decreased from 1.27 mg at 2 °C to 0.61 mg at 8 °C. Thermal shifts altered time to 50 % hatch and hatchling yolk-free dry mass and revealed a critical window during gastrulation in which a temperature change reduced survival. YCE decreased and cost of development increased with increased incubation temperature, but embryos that hatched at 8 °C and were incubated at colder temperatures during fertilization-organogenesis had reduced cost. The relationship between cost of development and temperature was altered during fin flutter-hatch, indicating it may be a critical window during which temperature has the greatest impact on energetic processes. The increase in cost of development with an increase in temperature has not been documented in other fishes and suggests

  11. [Impacts of Ochotona pallasi disturbance on alpine grassland community characteristics].

    PubMed

    Zhao, Guo-qin; Li, Guang-yong; Ma, Wen-hu; Zhao, Dian-zhi; Li, Xiao-yan

    2013-08-01

    Plateau pika is the main fossorial mammal in the alpine grassland in Qinghai Lake Watershed of Northwest China. Based on the field investigation data from 18 alpine grassland quadrats in the Watershed, and by using redundancy analysis (RDA) and the surface fitting offered by 'R-Vegan' , the disturbance intensity of plateau pika (Ochotona pallasi) was classified as four levels. In order to explore the impacts of plateau pika disturbance on the alpine grassland ecosystem and its grazing quality, the community characteristics under different disturbance intensities by plateau pika were analyzed, and a conceptual model about the alpine grassland community succession was proposed. The results showed that with the increase of the disturbance intensity, the dominant species changed from Juncus roemerianus to Poa pratensis and Laux maritima. When the disturbance was small, the community had high quantitative values of coverage, aboveground biomass, biodiversity, and species richness, but the proportion of weeds was also high. When the disturbance was large, the quantitative values were the lowest, while the proportion of weeds was the highest. When the disturbance was moderate, the community had relatively high quantitative values, and the proportion of grasses and sedges was the highest. It was concluded that the community' s characteristic values under low plateau pika disturbance intensity were high but the grazing quality was low, while high disturbance intensity resulted in the grassland degradation. Therefore, the disturbance intensity in the threshold could maintain the stability of alpine grassland ecosystem and improve its grazing quality.

  12. Altered sex hormone concentrations and gonadal mRNA expression levels of activin signaling factors in hatchling alligators from a contaminated Florida lake.

    PubMed

    Moore, Brandon C; Kohno, Satomi; Cook, Robert W; Alvers, Ashley L; Hamlin, Heather J; Woodruff, Teresa K; Guillette, Louis J

    2010-04-01

    Activins and estrogens participate in regulating the breakdown of ovarian germ cell nests and follicle assembly in mammals. In 1994, our group reported elevated frequencies of abnormal, multioocytic ovarian follicles in 6 month old, environmental contaminant-exposed female alligators after gonadotropin challenge. Here, we investigated if maternal contribution of endocrine disrupting contaminants to the egg subsequently alters estrogen/inhibin/activin signaling in hatchling female offspring, putatively predisposing an increased frequency of multioocytic follicle formation. We quantified basal and exogenous gonadotropin-stimulated concentrations of circulating plasma steroid hormones and ovarian activin signaling factor mRNA abundance in hatchling alligators from the same contaminated (Lake Apopka) and reference (Lake Woodruff) Florida lakes, as examined in 1994. Basal circulating plasma estradiol and testosterone concentrations were greater in alligators from the contaminated environment, whereas activin/inhibin betaA subunit and follistatin mRNA abundances were lower than values measured in ovaries from reference lake animals. Challenged, contaminant-exposed animals showed a more robust increase in plasma estradiol concentration following an acute follicle stimulating hormone (FSH) challenge compared with reference site alligators. Aromatase and follistatin mRNA levels increased in response to an extended FSH challenge in the reference site animals, but not in the contaminant-exposed animals. In hatchling alligators, ovarian follicles have not yet formed; therefore, these endocrine differences are likely to affect subsequent ovarian development, including ovarian follicle assembly.

  13. Neutralization of atmospheric acidity by chemical weathering in an alpine drainage basin in the North Cascade mountains

    SciTech Connect

    Drever, J.I.; Hurcomb, D.R.

    1986-03-01

    The most important weathering reaction that neutralizes incoming atmospheric acidity in the South Cascade Lake basin is weathering of calcite, which occurs in trace amounts in veins, on joint surfaces, and as a subglacial surficial deposit. Although the basin is underlain by igneous and high-grade metamorphic rocks, weathering of plagioclase is quantitatively negligible; the principal silicate weathering reaction is alteration of biotite to vermiculite. These conclusions are based on mass-balance calculations involving runoff compositions and on mineralogical observations. For predictive modeling of the effects of increased acid deposition, it is essential to identify the relevant weathering reactions. Feldspar weathering is commonly not an important source of solutes in alpine basins underlain by granitic rocks. 30 references, 2 figures, 1 table.

  14. Ecosystem Alterations and Species Range Shifts: An Atlantic-Mediterranean Cephalaspidean Gastropod in an Inland Egyptian Lake

    PubMed Central

    Malaquias, Manuel António E.

    2016-01-01

    The eastern Atlantic and Mediterranean marine Cephalaspidea gastropod Haminoea orbignyana was collected from Lake Qarun (Fayoum, Egypt), a landlocked lake that has undergone a shift from freshwater to estuarine conditions in the past 100 years. Species identity was confirmed by both morphological (anatomical dissection and scanning electron microscopy) and molecular methods (COI gene phylogeny). Observations suggested a robust population of H. orbignyana in the lake with a density of ca. 64 individuals/m2 and ca. 105 egg masses/m2 during surveys conducted in the summer of 2013. The vast majority of snails and egg masses were found under rocks. Observations of egg masses in the lab showed a gradual change from whitish to yellow-green as the eggs matured and the release of veliger larvae alone after about a week. Although adult cephalaspideans readily consumed filamentous red and green algae, and cyanobacteria, laboratory trials showed that they consumed significantly more of the red alga Ceramium sp., than of the green alga Cladophora glomerata, with consumption of Oscillatoria margaritifera being similar to those on the two algae. When grown on these resources for 16 days, H. orbignyana maintained their mass on the rhodophyte and cyanobacterium, but not in starvation controls. No cephalaspideans grew over the course of this experiment. Lake Qarun has been periodically restocked with Mediterranean fishes and prawns since the 1920s to maintain local fisheries, which represents a possible route of colonization for H. orbignyana. Yet, based on literature records, it seems more likely that invasion of the lake by this gastropod species has occurred only within the last 20 years. As human activities redistribute species through direct and indirect means, the structure of the community of this inland lake has become unpredictable and the long-term effects of these recent introductions are unknown. PMID:27248835

  15. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    PubMed

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  16. Endocrine disruption and altered gonadal development in white perch (Morone americana) from the lower Great Lakes region.

    PubMed Central

    Kavanagh, Richard J; Balch, Gordon C; Kiparissis, Yiannis; Niimi, Arthur J; Sherry, Jim; Tinson, Cheryl; Metcalfe, Chris D

    2004-01-01

    High prevalences of gonadal intersex have been observed in wild fish populations in areas affected by domestic and industrial effluents. For this study, fish were collected in 1998 from the Cootes Paradise region of Hamilton Harbour in western Lake Ontario, Canada, to determine whether gonadal abnormalities, including intersex, were present in young of the year (YOY) fish. No gonadal abnormalities were observed in goldfish (Carassius auratus), common carp (Cyprinus carpio), gizzard shad (Dorosoma cepedianum), brown bullhead (Ictalurus ameiurus), pumpkinseed (Lepomis gibbosus), and bluegill (Lepomis macrochirus). However, intersex gonads were observed in 8 of 16 male white perch (Morone americana) examined in this survey. Subsequently, in 1999 and 2000 white perch estimated to be YOY to approximately 2 years of age were collected from Cootes Paradise and from two other sites in the lower Great Lakes region. Gonadal intersex was observed in male white perch collected from the Bay of Quinte (22-44%) and Lake St. Clair (45%), although the prevalence and the extent of the intersex condition were lower relative to the 83% prevalence in white perch collected in Cootes Paradise. Intersex was not observed in hatchery-reared white perch or in white perch collected from an uncontaminated reference site (i.e., Deal Lake) in the United States. An analysis of plasma collected in the spring of 2002 from male adult white perch in Cootes Paradise revealed high concentrations of vitellogenin, ranging from 49 to 1,711 microg/mL. These observations indicate that male white perch are exposed to estrogenic endocrine-disrupting substances that may be responsible for the induction of gonadal intersex. PMID:15175179

  17. Lake surface area variation and its responses to climatic change in Yamzhog Yumco Basin, South Tibet during 1970-2010

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Tian, Y.; Sun, R.

    2015-12-01

    The research on lake extraction from multi-source and multi-temporal satellite images and the lake size variation can provide reliable method and indispensable information to deepen the understanding about alpine lake changes with the accelerating warming. With field survey experience in the Yamzhog Yumco Basin, South Tibet, the outlines of five lakes (i.e., Yamzhog Yumco, Chen Co, Kongmu Co, Bajiu Co and Puma Yumco) were delineated by the adoption of 42 scenes of satellite images from Landsat, CBERS and HJ from 1970 to 2010, basing on which the responses of alpine lakes to climate change at different timescales were explored. The results are summarized as follows. (1) The seasonal fluctuation of lake surface area was similar with different trend for the five alpine lakes. As for the last 41 years, the annual variation of lake surface area exhibited two kinds of patterns for the five alpine lakes. And the Yamzhog Yumco declined by 9.41%, while the rest four lakes expanded. (2) The responses of alpine lakes to climate change rely on different timescale and water replenishment types. On the one hand, the precipitation change was the predominant driving forces for the seasonal fluctuation and variation trend of lake size, and the rising temperature accounted for the inter-annual lake surface variation. On the other hand, the two kinds of alpine lakes behaviors were well correspondent with the warming temperature over the Qinghai-Tibetan Plateau. The lakes supplied mainly by precipitation shrunk as a result of increased evaporation, and lakes supplied mainly by glacier and snow meltwater, however, expanded because of the remarkable glacier recession. (3) The quantification of hydrological components would hopefully be improved, according to uncertainties analysis, with the adoption of microwave satellite images and higher resolution ones to disclose the interaction mechanism among climate, glacier, and lake in alpine regions.

  18. Enrichment of Non-Terrestrial L-Proteinogenic Amino Acids by Aqueous Alteration on the Tagish Lake Meteorite Parent Body

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Herd, Christopher D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography fluorescence detection time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approx. 43 to 59%) of the a-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha-hydrogen protein amino acid, was found to be nearly racemic (D approx. L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and D- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the Lexcesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals.

  19. Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.; McKnight, Diane M.

    2010-03-01

    The spectral characteristics of whole water dissolved organic matter (DOM) and fulvic acid were studied in samples collected from an alpine lake, a subalpine lake, and a subalpine stream during snowmelt and the summer growing season. Excitation-emission matrices of whole water DOM and fulvic acid were analyzed by parallel factor analysis (PARAFAC). Allochthonous inputs of terrestrially derived fulvic acid DOM were dominant during snowmelt at the alpine lake, and during both snowmelt and summer at the subalpine sites. At the alpine lake, autochthonous inputs of DOM dominated during the summer phytoplankton bloom, and the spectral characteristics of the whole water DOM diverged from those of the fulvic acid. For example, the quinone-like fluorophores in whole water DOM at the alpine lake were more oxidized and microbially derived than the fulvic acid fraction during the summer. At the subalpine sites, the seasonal changes in the source and redox state of the quinone-like fluorophores of the whole water DOM tracked those of the fulvic acid pool. However, at both lake sites there was a greater contribution of amino acid-like fluorophores in the whole water DOM than the fulvic acid fraction. This trend was not observed at the subalpine stream site. Principal components analysis (PCA) of the PARAFAC components suggests that during snowmelt, the chemical quality of the DOM at the alpine lake was similar to that of the subalpine stream; whereas the alpine site was more similar to the subalpine lake during the summer. Spectral characterization and PCA of the PARAFAC components suggest that nonhumic quinone-like and amino acid-like fluorophores were produced in the alpine lake during the summer phytoplankton bloom. Our results show that different types of water bodies produce different seasonal patterns in whole water DOM and fulvic acid quantity and quality.

  20. Climate change and alpine stream biology: progress, challenges, and opportunities for the future.

    PubMed

    Hotaling, Scott; Finn, Debra S; Joseph Giersch, J; Weisrock, David W; Jacobsen, Dean

    2017-01-20

    In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward-looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems.

  1. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  2. Food Web Topology in High Mountain Lakes

    PubMed Central

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235

  3. Food Web Topology in High Mountain Lakes.

    PubMed

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.

  4. Hydrothermal alteration of organic matter in uranium ores, Elliot Lake, Canada: Implications for selected organic-rich deposits

    SciTech Connect

    Mossman, D.J.; Nagy, B.; Davis, D.W.

    1993-07-01

    Organic matter in the uraniferous Matinenda Formation, Elliot Lake, is preserved in the forms of syngenetic kerogen and solid bitumen as it is in many of the Oklo uranium deposits and in the Witwatersrand gold-uranium ores. The Elliot Lake kerogen is a vitrinite-like material considered to be remnants of the Precambrian cyanobacterial mats. The kerogen at Elliot Lake has reflectances (in oil) ranging from 2.63-7.31% RO{sub max}, high aromaticity, relatively low (0.41-0.60) atomic H/C ratios, and it contains cryptocrystalline graphite. Bitumen, present primarily as dispersed globules (up to 0.5 mm dia.), has reflectances from 0.72-1.32% RO{sub max}, atomic H/C ratios of 0.71-0.81, and is somewhat less aromatic than the kerogen. Overall similarity in molecular compositions indicates that liquid bitumen was derived from kerogen by processes similar to hydrous pyrolysis. The carbon isotopic composition of kerogen ({minus}15.62 to {minus}24.72%), and the now solid bitumen ({minus}25.91 to {minus}33.00%) are compatible with these processes. Despite having been subjected to several thermal episodes, ca. 2.45 Ga old kerogen of microbiological origin here survived as testimony of the antiquity of life on Earth. U-Pb isotopic data from discrete kerogen grains at Elliot Lake form a scattered array intersecting concordia at 2130 {+-} 100 Ma, correspond to the Nipissing event. U-Pb systems were totally reset by this event. Uranium and lead show subsequently partial mobility, the average of which is indicated by the lower concordia intersect of 550 {+-} 260 Ma. The migrated bitumen contains virtually no uranium and thorium but has a large excess of {sup 206}Pb, which indicates that the once liquid bitumen must have acted as a sink for mobile intermediate decay products of {sup 238}U. Emplacement of the Nipissing diabase may have been responsible for producing the bitumen and, indirectly, for its enrichment in {sup 206}Pb as a result of outgassing of {sup 222}Rn.

  5. Alpine skiing injuries.

    PubMed Central

    Sahlin, Y

    1989-01-01

    Alpine skiing accidents admitted to the Trondheim Regional and University Hospital during one year were recorded. Of the 339 injured, 67 per cent were male and 33 per cent were female. Eighty-seven per cent were outpatients, and 13 per cent were hospitalized. Falling accidents (67 per cent), followed by collision accidents (17 per cent), were the most common cause of injury. The injuries in the lower extremities were caused by falling and the head injuries were mostly caused by collisions. Knee ligament strains were the most common injuries, and 17 per cent of these were hospitalized and required operative treatment. Of the minor knee strains, all 44 per cent were not fully recovered after two and a half years. Seventeen patients sustained tibial fractures, eleven of them spiral fractures and six transverse fractures. The patients with spiral fractures were younger than the patients with transverse fractures. Head injuries were the most severe injuries, with eleven concussions and two epidural haematomas. PMID:2630001

  6. Air-Pollution-Mediated Changes in Alpine Ecosystems and Ecotones.

    PubMed

    Rusek, Josef

    1993-08-01

    Soil biological parameters (e.g., Collembola), soil types, soil chemical parameters (pH, humus substances), and plant communities were studied in different ecosystems and ecotones in alpine, subalpine, and spruce forest zones in the Tatra National Park, Slovak Republic. The preliminary, selected data, based on a long-term research program, showed a high sensitivity of some alpine ecotones and ecosystems to long-distance transported acid deposits. The changes in different ecosystem parameters since 1977 were more extensive in alpine grasslands on limestone than on granite. The greatest soil pH decrease was in the plant communities Festucetum versicoloris (-1.5 pH), Geranio-Alchemilletum crinitae (-1.32 pH), and Saxifragetum perdurantis (-1.25 pH), which are restricted to places with snow accumulation and water runoff gullies. In these ecosystems the greatest changes occurred in the leaching of humus substances. Some formerly less abundant and rare soil animals restricted to acid bedrock became dominant in some ecosystems on limestone as well as on granite; other formerly dominant species disappeared from the entire study area (e.g., Folsomia alpina). The aerial extent of some ecosystems changed substantially since 1977, and their surrounding ecotones moved into the space formerly occupied by one of the adjacent ecosystems. These changes are detectable by remote-sensing methods. In Central European mountains, strongly affected by global and regional industrial air pollution (e.g., Krusne Hory, Krkonose, Beskydy), spruce forests started to die back from higher to lower mountain elevations. The effects of air pollution on alpine and subalpine vegetation were not studied there. Strong alterations in alpine ecosystems and ecotones were detected by the author during long-term studies in the High Tatra Mountains, and I suggest that subalpine and mountain forest belts will be affected here in the near future as they were in the more polluted Central European mountains. The

  7. Hydrological significance of soil frost for pre-alpine areas

    NASA Astrophysics Data System (ADS)

    Stähli, Manfred

    2017-03-01

    Soil frost can have a substantial impact on water flows at the soil surface and-potentially-alter the dynamics of catchment runoff. While these findings are mainly based on studies from alpine and Northern-latitude areas (including permafrost areas), little is known about the significance of soil frost for hydrology in pre-alpine areas, i.e. the region at the transition from central European lowlands to high-alpine areas. Here I synthesize soil temperature data and soil frost observations from ten sites in Switzerland to assess the occurrence of soil frost and to determine its impact on catchment runoff. In addition, a well-established numerical model was used to reconstruct the presence of soil frost in two first-order catchments for single runoff events and winters. The data clearly demonstrates that shallow soil frost has formed regularly in this altitudinal range over the past decade. The presence of a frozen soil surface was found to be highly variable among the sites under study and did not significantly correlate with altitude or forest density. For the first-order catchments, it was not possible to relate important flood peaks or increased runoff coefficients to winter situations with substantial soil frost. Thus, the present analysis suggests that although soil frost is widespread and regularly occurring at this altitudinal range, it has no significant impact on winter runoff in pre-alpine watersheds.

  8. Detention Basins may Help Reduce Nutrient Loads to Lake Tahoe

    NASA Astrophysics Data System (ADS)

    Green, J. M.

    2005-12-01

    Water clarity in Lake Tahoe has been declining at a rate of about one foot per year for more than 35 years. In an attempt to decrease sediment and associated nutrients from reaching the lake, many detention basins have been installed, although their efficiency was uncertain. Many basins were constructed near alpine streams. This setting effectively reduces sediments from reaching surface water, but may allow transport of nutrients by ground water beneath the detention basins possibly discharging to streams farther downgradient or directly to Lake Tahoe. Determining the effectiveness of detention basins in the Lake Tahoe area requires an understanding of the shallow subsurface environment in which nutrients travel. A study was carried out at Cattlemans detention basin, situated adjacent to Cold Creek, a tributary to Lake Tahoe. Ground-water and solute transport models were used to evaluate complex ground-water interactions with Cold Creek near Cattlemans detention basin. Based on observations that urban runoff entering the basin rarely exited as surface water, each model assumes all water entering the basin either infiltrates or is consumed by evapotranspiration. Modeling results indicated that the detention basin has altered the local ground-water flow system while efficiently reducing suspended sediments, although nutrients are not filtered out as readily. Nutrient discharge points were tracked by calculating ground-water flow paths and endpoints. Approximately 45 percent of ground water originating from the detention basin discharges to Cold Creek within the modeled area downstream of the detention basin. The remaining 55 percent of ground water could discharge to evapotranspiration, to Cold Creek farther downstream, or to Lake Tahoe.

  9. Application of near surface geophysical methods to image water table response in an Alpine Meadow, Northern California.

    NASA Astrophysics Data System (ADS)

    Ayers, M.; Blacic, T. M.; Craig, M. S.; Yarnell, S. M.

    2015-12-01

    Meadows are recognized for their value to the ecological, hydrologic, and aesthetic functions of a watershed. As natural water retention sinks, meadows attenuate floods, improve water quality and support herbaceous vegetation that stabilize streambanks and promote high biodiversity. Alpine meadows are especially vital, serving as freshwater sources and distributing to lower lying provinces through ground and surface water interaction. These complexes are highly vulnerable to drought conditions, altered seasonal precipitation patterns, and mismanaged land use. One such location, Van Norden meadow located in the Donner Summit area west of Lake Tahoe, is one of the largest sub-alpine meadows in the Sierra Nevada mountain range of Northern California. Van Norden meadow offers a natural hydrologic laboratory. Ownership transfer of the area from a local land trust to the Forestry Service requires restoration toward natural meadow conditions, and involves notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre-and post-base level alteration is required. Comprehensive understanding of groundwater flux that supports meadow reaches relies on knowledge of their often complex stratigraphic and structural subsurface framework. In recent years hydrogeophysics has emphasized the combination of near surface geophysical techniques, collaborated with well and borehole measures, to qualitatively define these parameters. Building on a preliminary GPR investigation conducted in 2014, in which 44 270 MHz transect lines were collected, we returned to Van Norden meadow in late summer 2015 to collect lower frequency GPR (50 and 100 MHz) and electrical resistivity profiles to better define the groundwater table, sedimentary, and structural features of the meadow.

  10. Seismic properties of rocks affected by hydrothermal alteration: a case study from the Lalor Lake VMS mining camp

    NASA Astrophysics Data System (ADS)

    Miah, K.; Bellefleur, G.; Schetselaar, E.

    2013-12-01

    Global demand of base metals, uranium, diamonds, and precious metals has been pushing technological barrier to find and extract minerals at higher depth, which was not feasible in just a few decades ago. Seismic properties of rocks containing and surrounding ore bodies have been useful in characterizing and modeling geologic structures, and mapping high-resolution images of ore bodies. Although seismic surveys and drill hole sonic and density logs are essential for mineral exploration at depth, limited availability of seismic logs to link rock properties of different ore forming geologic structure is a hindrance to seismic interpretations. Volcanogenic Massive Sulphides (VMS) are rich in minerals and of primary interests among geologists and mining industries alike. VMS deposits occur due to focused discharge of metal-enriched fluids associated in the hydrothermal alteration process, and are rich in Zn, Cu, Pb, Ag, Au, etc. Alteration halos surrounding ore deposits can be widespread, and their locations are easier to determine than the deposits within them. Physical rock properties affected by alteration can provide clues on type and potentially size of ore deposits in the surrounding area. In this context, variations in seismic properties of rocks due to hydrothermal alteration near the deposits can help in improving modeling accuracy, and better interpretation of seismic data for economic mineral exploration. While reflection seismic techniques can resolve ore bodies at higher depths than other conventional geophysical techniques, they are relatively expensive both in terms of field data acquisition and post-processing, especially for high-resolution 3D surveys. Acoustic impedance contrasts of ore lenses with their hosting rock environment; geometry, size and spatial location relative to the surface affect their detection with seismic data. Therefore, apriori knowledge of seismic rock properties from drill hole logs and core samples in the potential survey area

  11. Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada

    SciTech Connect

    Salvi, S.; Williams-Jones, A.E.

    1997-01-01

    The composition of the carbonic phase(s) of fluid inclusions in pegmatite quartz from the Strange Lake peralkaline complex has been analysed by gas chromatography using online extraction of inclusion contents and a PoraPLOT{reg_sign} Q capillary column. The measured gas species are, in order of abundance, CH{sub 4} H{sub 2}, C{sub 2}H{sub 6}, CO{sub 2}, N{sub 2}, C{sub 3}H{sub 8}, n-C{sub 4}H{sub 10}, n-C{sub 5}H{sub 12}, C{sub 2}H{sub 2}-i-C{sub 4}H{sub 10}, and C{sub 2}H{sub 4}. Minor amounts of i-C{sub 5}H{sub 12}, n-C{sub 6}H{sub 14}, i-C{sub 6}H{sub 14}, and neo-C{sub 6}H{sub 14}, were also detected (but not quantified) in some samples. A suite of quartz samples from Ca-metasomatised pegmatites contains fluid inclusions with a similar distribution of hydrocarbons but much higher proportions of CO{sub 2}. The carbonic fluid coexisted immiscibly with a brine, which on the basis of field and petrographic evidence, was interpreted to have originated from the magma. However, thermodynamic calculations indicate that the above gas species, specifically the hydrocarbons, could not have coexisted at equilibrium in the proportions measured, at any geologically reasonable conditions either prior to or post entrapment. We propose, instead, that the gas compositions measured in the Strange Lake inclusions, and in inclusions from other alkalic complexes, resulted from the production of H{sub 2} during the alteration of arfvedsonite to aegirine, and the subsequent reaction of this H{sub 2} with orthomagmatic CO{sub 2} and CO to form hydrocarbons in a magnetite-catalysed Fischer-Tropsch synthesis. Locally, influx of an oxidised calcic brine, derived externally from the pluton, altered the original composition of the fluid by converting hydrocarbons to CO{sub 2}. 70 refs., 7 figs., 5 tabs.

  12. Ambient Nitrogen Deposition Gradients in the Rocky Mountains and the Effect on Alpine Moist Meadow Ecosystems

    NASA Astrophysics Data System (ADS)

    Churchill, A. C.; Bowman, W. D.

    2012-12-01

    The chronic ambient deposition of nitrogen (N) in alpine ecosystems can have cascading effects on plants, soils and hydrology in both the alpine and areas downstream through leaching and ecosystem export. Nitrogen is traditionally a nutrient limiting for plant growth in the alpine zone and the addition of anthropogenically derived nitrogen has the potential to alter nutrient composition and interactions between soil, plants and hydrology. While deposition is globally widespread its spatial impacts are associated with a proximity to agriculture (fertilizers) and industry (hydrocarbon byproducts), creating gradients of deposition with distance from point sources. Consequently, N deposition levels and potential environmental impacts on ecosystem processes increase in regions with expanding populations and changes in land use. The Rocky Mountains face both enhanced deposition associated with high levels of precipitation at high elevations and increases in anthropogenic sources of nitrogen from conversion of prairie to agricultural fields or development of new roads and housing communities. Our study focuses on linking gradients of ambient nitrogen deposition to responses within the alpine ecosystem, in particular the interactions between plants and soils within moist meadow communities. Previous studies have focused on the effects of N deposition within alpine dry meadows, as these are abundant and generally higher in elevation than other alpine meadow community types. Within these systems critical loads have been estimated to determine at what level N addition directly alters the ecosystem. Alpine moist meadows, however, also cover a substantial portion of the alpine zone, and support a very different plant community with naturally lower species richness. These areas receive heavier snowfall, and are more dependent on the snowpack for ephemeral water availability making them potentially more susceptible to nutrient loading within the snowpack. Along our ambient N

  13. Chernobyl fallout on Alpine glaciers

    SciTech Connect

    Ambach, W.; Rehwald, W.; Blumthaler, M.; Eisner, H.; Brunner, P.

    1989-01-01

    Measurements of the gross beta activity of snow samples from four Alpine glaciers contaminated by radioactive fallout from the Chernobyl nuclear accident and a gamma-spectrum analysis of selected samples are reported. The results are discussed with respect to possible risks to the population from using meltwater from these glaciers as drinking water.

  14. Alpine Skiing in the Classroom

    ERIC Educational Resources Information Center

    Mendez-Gimenez, Antonio; Fernandez-Rio, Javier

    2012-01-01

    Many students settle indoors in the winter. However, this does not mean that winter should be a period of time with no physical activity. Several snow activities could be practiced during those months, such as ice-skating, ice-hockey, snowshoeing, cross-country skiing, alpine skiing, or snowboarding. In order to counteract the tendency for…

  15. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    USGS Publications Warehouse

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  16. Invasive mussels alter the littoral food web of a large lake: stable isotopes reveal drastic shifts in sources and flow of energy.

    PubMed

    Ozersky, Ted; Evans, David O; Barton, David R

    2012-01-01

    We investigated how establishment of invasive dreissenid mussels impacted the structure and energy sources of the littoral benthic food web of a large temperate lake. We combined information about pre- and postdreissenid abundance, biomass, and secondary production of the littoral benthos with results of carbon and nitrogen stable isotope analysis of archival (predreissenid) and recent (postdreissenid) samples of all common benthic taxa. This approach enabled us to determine the importance of benthic and sestonic carbon to the littoral food web before, and more than a decade after dreissenid establishment. Long term dreissenid presence was associated with a 32-fold increase in abundance, 6-fold increase in biomass, and 14-fold increase in secondary production of the littoral benthos. Dreissenids comprised a large portion of the post-invasion benthos, making up 13, 38, and 56% of total abundance, biomass, and secondary production, respectively. The predreissenid food web was supported primarily by benthic primary production, while sestonic material was relatively more important to the postdreissenid food web. The absolute importance of both sestonic material and benthic primary production to the littoral benthos increased considerably following dreissenid establishment. Our results show drastic alterations to food web structure and suggest that dreissenid mussels redirect energy and material from the water column to the littoral benthos both through biodeposition of sestonic material as well as stimulation of benthic primary production.

  17. Invasive Mussels Alter the Littoral Food Web of a Large Lake: Stable Isotopes Reveal Drastic Shifts in Sources and Flow of Energy

    PubMed Central

    Ozersky, Ted; Evans, David O.; Barton, David R.

    2012-01-01

    We investigated how establishment of invasive dreissenid mussels impacted the structure and energy sources of the littoral benthic food web of a large temperate lake. We combined information about pre- and postdreissenid abundance, biomass, and secondary production of the littoral benthos with results of carbon and nitrogen stable isotope analysis of archival (predreissenid) and recent (postdreissenid) samples of all common benthic taxa. This approach enabled us to determine the importance of benthic and sestonic carbon to the littoral food web before, and more than a decade after dreissenid establishment. Long term dreissenid presence was associated with a 32-fold increase in abundance, 6-fold increase in biomass, and 14-fold increase in secondary production of the littoral benthos. Dreissenids comprised a large portion of the post-invasion benthos, making up 13, 38, and 56% of total abundance, biomass, and secondary production, respectively. The predreissenid food web was supported primarily by benthic primary production, while sestonic material was relatively more important to the postdreissenid food web. The absolute importance of both sestonic material and benthic primary production to the littoral benthos increased considerably following dreissenid establishment. Our results show drastic alterations to food web structure and suggest that dreissenid mussels redirect energy and material from the water column to the littoral benthos both through biodeposition of sestonic material as well as stimulation of benthic primary production. PMID:23284673

  18. Hazardous crater lakes studied

    NASA Astrophysics Data System (ADS)

    Kusakabe, Minoru

    Crater lakes usually sit on top of volcanic conduits and act as condensers of magmatic vapor. Studies of crater lakes can therefore provide information on both deep magmatic activity and variations in the degassing state of a shallow magmatic body. The Lake Nyos gas disaster of August 1986 and a similar event in August 1984 at Lake Monoun, both in Cameroon, resulted from the accumulation of magmatic CO2 in the bottom layers of the lakes. Geochemical monitoring of crater lakes is a promising tool for forecasting not only limnic but also volcanic eruptions. Acid-mineralized waters formed by condensation of hot magmatic volatiles in crater lakes are thought to bear some resemblance to hydrothermal fluids acting in the genesis of acid-sulfate alteration and Au-Cu-Ag mineralization of volcanic-hosted precious metal deposits.

  19. Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes

    USGS Publications Warehouse

    Carl, Leon M.; McGuiness, Fiona

    2006-01-01

    This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.

  20. Nd, Sr, Pb, Ar, and O isotopic systematics of Sturgeon Lake kimberlite, Saskatchewan, Canada: constraints on emplacement age, alteration, and source composition

    NASA Astrophysics Data System (ADS)

    Hegner, E.; Roddick, J. C.; Fortier, S. M.; Hulbert, L.

    1995-06-01

    Rb-Sr isotopic dating of phlogopite megacryst samples separated from Sturgeon Lake kimberlite, Saskatchewan, yields a crystallization age of 98±1 Ma (2 σ, MSWD=1.2; 87Sr/86Sr( t)=0.7059). The 40Ar/39Ar analyses of a phlogopite megacryst sample indicate the presence of large amounts of excess 40Ar and yield an excessively old age of ˜410 Ma. Assessment of the Ar data using isotope correlation plots indicates clustering of the data points about a mixing line between the radiogenic 40Ar component at 98 Ma and a trapped component with uniform 36Ar/40Ar and Cl/40Ar. Values of δ 18O as high as +20‰ (VSMOW) for calcite from the groundmass and a whole-rock sample indicate pervasive low-temperature alteration. The δ 13C of matrix carbonate is -11.3‰ (PDB), slightly lighter than typical values from the literature. The δ 18O values of about +5‰ (VSMOW) for brown phlogopite megacrysts may be primary, green phlogopites are interpreted to be an alteration product of the brown variety and are 2‰ heavier. Initial Nd-Sr-Pb isotopic ratios for a whole-rock sample ( ɛ Nd=+0.8; 87Sr/86Sr=0.7063, 206Pb/204Pb=18.67, 207Pb/204Pb=15.54, 208Pb/204Pb=38.97) suggest an affinity with group I kimberlites. Initial ɛ Nd values of +1.7 and +0.5 (87Sr/86Sr( t)=0.7053 and 0.7050) for eclogitic and lherzolitic garnet megacryst samples, and values of 0.0 for two phlogopite megacryst samples reflect an origin from an isotopically evolving melt due to assimilation of heterogeneous mantle. Lilac high-Cr lherzolitic garnet megacrysts give an unusually high ɛ Nd(98. Ma) of +28.6 (87Sr/86Sr=0.7046) indicating a xenocrystic origin probably from the lithospheric mantle. The very radiogenic 87Sr/86Sr and 206Pb/204Pb ratios of the kimberlite are consistent with melting of EM II (enriched) mantle components.

  1. Hydrological Trends in a High Alpine Watershed in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Pina, A.; Moore, C. E.; Records, R.; Medina, I. D.; Miner, G. L.

    2014-12-01

    Recent studies reveal amplified air temperature warming trends in the Rocky Mountains than global averages, as well as earlier snowmelt timing and decreased snow-water equivalent (SWE) relative to past records in this region. Changes in SWE and snowmelt runoff timing directly impact water availability in alpine watersheds as well as downstream ecosystem services. In this study we evaluated local trends in air temperature, precipitation, snowpack, and streamflow timing to look for similarities to regional trends reported in literature. We assessed two long-term alpine data collection sites in Rocky Mountain National Park: Bear Lake SNOTEL site (2896 m; 1981-2013) and Loch Vale Watershed (3159 m; 1984-2011), using the Mann-Kendall test to examine trends in average monthly temperature, number of days above freezing, peak SWE depth and timing, number of snow-free days, and total precipitation at Bear Lake, as well as streamflow volume and timing metrics at the outlet of Loch Vale. We found seasonal patterns and magnitudes of warming similar to regional trend findings, with significant increasing trends in average monthly mean air temperatures for most months. The average number of days below 0ºC also significantly decreased in fall and winter. However, we found no significant trends in peak SWE, discharge rate, precipitation, accumulated snowfall, or the number of snow-free days at Bear Lake or Loch Vale sites. These results suggest reported regional warming trends are not reflected in localized snowmelt trends in alpine Rocky Mountain watersheds.

  2. Abiotic and biotic controls of spatial pattern at alpine treeline

    USGS Publications Warehouse

    Malanson, George P.; Xiao, Ningchuan; Alftine, K.J.; Bekker, Mathew; Butler, David R.; Brown, Daniel G.; Cairns, David M.; Fagre, Daniel; Walsh, Stephen J.

    2000-01-01

    At alpine treeline, trees and krummholz forms affect the environment in ways that increase their growth and reproduction. We assess the way in which these positive feedbacks combine in spatial patterns to alter the environment in the neighborhood of existing plants. The research is significant because areas of alpine tundra are susceptible to encroachment by woody species as climate changes. Moreover, understanding the general processes of plant invasion is important. The importance of spatial pattern has been recognized, but the spatial pattern of positive feedbacks per se has not been explored in depth. We present a linked set of models of vegetation change at an alpine forest-tundra ecotone. Our aim is to create models that are as simple as possible in order to test specific hypotheses. We present results from a model of the resource averaging hypothesis and the positive feedback switch hypothesis of treelines. We compare the patterns generated by the models to patterns observed in fine scale remotely sensed data.

  3. Europe's battery: The making of the Alpine energy landscape, 1870-1955

    NASA Astrophysics Data System (ADS)

    Landry, Marc D., II

    This study examines the environmental history of hydropower development in the Alps from the mid-nineteenth to the mid-twentieth centuries. Analyzing government archival files, associational journals, conference proceedings, and published contemporary material from several Alpine countries, it seeks to determine how and why Europeans modified the Alpine landscape to generate hydropower, and to explore the consequences of these decisions. I argue that during this time period, Europeans thoroughly transformed the Alpine environment, creating what I call "Europe's Battery": a gigantic system for storing hydropower and distributing it on a continental scale. This study shows how nineteenth-century innovations in energy technology contributed to a dramatic shift in the perception of the Alps as a landscape of "white coal." It demonstrates how at the outset of electrification, Europeans modified Alpine waterways on an unprecedented scale in order to tap into the power of flowing Alpine water. I show how after the turn of the twentieth century, Europeans took advantage of the unique mountain environment to store water, first by converting existing lakes into reservoirs. The practice countered what was perceived to be the greatest disadvantage of white coal: its climate-influenced inconstancy. This study shows the importance of war, and especially the First World War, in the forging of the new Alpine landscape. Finally, this study illustrates how from the interwar period to the aftermath of the Second World War, Europeans put the finishing touches on the new Alpine energy landscape by creating large reservoirs behind dams and feeding Alpine hydroelectricity into a burgeoning European electricity grid. By 1955 the Alps had become one of the most important energy landscapes in Europe. This history of the Alpine energy landscape contributes to a number of historiographical fields. It represents an important chapter in the environmental history of one of the world's most

  4. Tourism and Water: Themes of the Alpine Convention

    NASA Astrophysics Data System (ADS)

    Imhof, R.

    2012-04-01

    environment. This needs to be accomplished by balancing the local population's interests with environmental needs. Water is considered as a crucial element for different uses such as hydroelectricity production, irrigation or drinking water as well as in biotopes, especially forests, environmental regeneration and diversity and in natural and cultural landscapes features. Aspects of water protection can be found in the protocols on Energy, Nature Conservation and Landscape Protection, Soil Protection, Tourism, Spatial Planning and Sustainable Development, Mountain Agriculture, Mountain Forests and Transport. However a specific protocol on water is not in place. The Reports on the state of the Alps are published regularly by the Alpine Conference. In November 2006 water was chosen as the topic for the second Report on the State of the Alps. The report compiles information from the Alpine Countries on monitoring programmes, chemical quality of water (point sources, diffuse sources and the chemical status of surface and groundwater in the Alps), water abstraction, residual water and hydro-peaking, droughts and water scarcity, reservoirs and regulated lakes as well on river morphology and continuity. Finally, it summarizes information on property rights and provisions for access to water in the different countries, charges regarding the use of water, different management systems for water supply (public or private), hydro power generation in the Alps and water use management conflicts. The Report was adopted by the Ministers during the Xth Alpine Conference in Evian (France) in 2009. This Conference additionally set up a platform on Water management in the Alpine area in order to deal continually with the theme of water in the Alps. Within this platform, objectives that were identified in the second Report on the State of the Alps should be pursued and examples of good practices exchanged. The platform developed inter alia common guidelines for the use of small hydropower in the

  5. Fluids preserved in variably altered graphitic pelitic schists in the Dufferin Lake Zone, south-central Athabasca Basin, Canada: implications for graphite loss and uranium deposition

    NASA Astrophysics Data System (ADS)

    Pascal, Marjolaine; Boiron, Marie-Christine; Ansdell, Kevin; Annesley, Irvine R.; Kotzer, Tom; Jiricka, Dan; Cuney, Michel

    2016-06-01

    The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake Zone are variably graphitic, pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ). They were locally bleached near the unconformity during paleoweathering and/or later fluid interaction. Overall, graphite was lost from the RGZ and the bleached zone relative to the original VGPS. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman spectroscopy, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, and N2-rich fluid inclusions, which homogenize into the vapor phase between -100 and -74 °C, and -152 and -125 °C, respectively, and CO2-rich fluid inclusions, homogenizing either into vapor or liquid between 20 and 28 °C, are present. Carbonic fluids could be the result of the breakdown of graphite to CH4 + CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4 ++N2. In the RGZ, the presence of fluid inclusions with low ice melting temperature (-38 to -16 °C) reflect the presence of CaCl2, and fluid inclusions with halite daughter minerals that dissolve between 190 and 240 °C indicate the presence of highly saline fluids. These fluids are interpreted to be derived from the Athabasca Basin. The circulation of carbonic fluids and brines occurred during two different events related to different P-T conditions of trapping. The carbonic fluids interacted with basement rocks during retrograde metamorphism of the basement rocks before deposition of the Athabasca Basin, whereas the brines circulated after the deposition of the Athabasca Basin. These latter fluids are similar to brines related to uranium mineralization at McArthur River and thus, in addition to possibly being related to graphite depletion in the RGZ, they could

  6. Global Research Initiative in Alpine Environments: A New GLORIA Site in Southwestern Montana

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Pullman, T. Y.; Mitman, G. G.

    2007-12-01

    Global climate change is expected to have pronounced effects on the alpine environments and thus the alpine plants of western North America. Predicted responses include an upward migration of treelines, altered species compositions, changes in the percentage of land covered by vegetation, and a change in the phenology of alpine plants. To determine the effects of climate change on the alpine flora of southwestern Montana, we are installing a GLORIA (Global Research Initiative in Alpine Environments) site in order to monitor temperature, species composition, and percent cover of vascular plants, lichens, and mosses along an ascending altitudinal gradient. We are including lichens and mosses because of their importance as ecological indicator species. The abundance and spatial distribution of lichens and mosses provides essential baseline data for long-term monitoring of local and global impacts on the environment. Mt. Fleecer (9250 ft.), which is west of the continental divide and semi-isolated from other peaks in the Anaconda-Pintlar Range, is currently the most likely location for the southwestern Montana GLORIA site. Mt. Fleecer is accessible because it does not have the steep and hazardous glaciated talus cirques that characterize many of the neighboring, higher peaks. However, if an accessible and suitable higher summit is found, then it will be included as the highest summit in the GLORIA site. Interesting species at Mt. Fleecer include the whitebark pine, Pinus albicaulis, which is a keystone species in high mountain ecosystems of the western United States and Canada, the green gentian, Frasera speciosa, and the shooting star, Dodecatheon pulchellum. Data from this site will become part of a global network of GLORIA sites with which we will assess changes in alpine flora. Information gained from this GLORIA site can also be used as a link between studies of alpine climate change and related investigations on the timing of snowmelt and its influence on

  7. Effect of dietary alpine butter rich in conjugated linoleic acid on milk fat composition of lactating sows.

    PubMed

    Schmid, Alexandra; Collomb, Marius; Bee, Giuseppe; Bütikofer, Ulrich; Wechsler, Daniel; Eberhard, Pius; Sieber, Robert

    2008-07-01

    Multiparous sows (n 17) were included in a controlled cross-over-study in order to investigate the influence of a natural source of conjugated linoleic acid (CLA) (alpine butter) on the milk fatty acid composition of lactating sows (as an animal model for lactating women) and on the growth performance of their progeny. The usual fat source of a standard lactation diet was replaced by either CLA-rich alpine butter or margarine (control diet). Compared with the margarine diet, feeding the alpine butter-supplemented diet increased (P 0.05) affected. Growth performance of the progeny was similar for both dietary treatments. In summary, the findings show that adding alpine butter to the diet does not provoke a milk fat depression and does not alter the composition of total SFA, MUFA and PUFA in sow milk but increases its CLA concentration.

  8. Seed dormancy in alpine species

    PubMed Central

    Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta

    2011-01-01

    In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after cold-wet storage, and scarification. We also tested the light requirement for germination in some species. Germination behavior was characterized using the final germination percentage and the mean germination time. Considering the effects of the pretreatments, a refined classification of the prevailing dormancy types was constructed based on the results of our pretreatments. Only two out of the 28 species that we evaluated had predominantly non-dormant seeds. Physiological dormancy was prevalent in 20 species, with deep physiological dormancy being the most abundant, followed by non-deep and intermediate physiological dormancy. Seeds of four species with underdeveloped embryos were assigned to the morphophysiologial dormancy class. An impermeable seed coat was identified in two species, with no additional physiological germination block. We defined these species as having physical dormancy. Light promoted the germination of seeds without storage in all but one species with physiological dormancy. In species with physical dormancy, light responses were of minor importance. We discuss our new classification in the context of former germination studies and draw implications for the timing of germination in the field. PMID:24415831

  9. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    NASA Astrophysics Data System (ADS)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  10. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    USGS Publications Warehouse

    Osborne, Brooke B; Baron, Jill S.; Wallenstein, Matthew D.

    2016-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  11. Hybridization and restricted gene flow between native and introduced stocks of Alpine whitefish (Coregonus sp.) across multiple environments

    PubMed Central

    Winkler, Kathrin A; Pamminger-Lahnsteiner, Barbara; Wanzenböck, Josef; Weiss, Steven

    2011-01-01

    Translocations of Baltic whitefish (Coregonus sp.) into Austrian Alpine lakes have created ‘artificial hybrid zones’, threatening the genetic integrity of native lineages. We evaluate the genetic structure of Coregonus in Austrian lakes and characterize hybridization and introgression between native and introduced lineages. Fifteen populations (N= 747) were assessed for allelic variation at eight microsatellite loci and a reduced set (N= 253) for variation across two mtDNA genes (cyt b and NADH-3). Bayesian approaches were used to estimate individual admixture proportions (q-values) and classify genotypes as native, introduced or hybrids. q-value distributions varied among populations highlighting differential hybridization and introgression histories. Many lakes revealed a clear distinction between native and introduced genotypes despite hybridization, whereas some locations revealed hybrid swarms. Genetic structure among lakes was congruent with morphological divergence and novelty raising speculation of multiple taxa, including a population south of the Alps, outside the putative native range of Coregonus. Although statistically congruent with inferences based on nuclear markers, mitochondrial haplotype data was not diagnostic with respect to native and non-native lineages, supporting that the Alpine region was colonized post-glacially by an admixture of mtDNA lineages, which coalesce >1 Ma. Mechanisms promoting or eroding lineage isolation are discussed, as well as a high potential to conserve native Alpine lineages despite the extensive historical use of introduced Baltic stocks. PMID:21199024

  12. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    PubMed

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2016-11-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems.

  13. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-09

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years.

  14. Erosion by an Alpine glacier

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N.; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y. Y.; Avouac, Jean-Philippe; Cox, Simon C.

    2015-10-01

    Assessing the impact of glaciation on Earth’s surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years.

  15. Quaternary geology of the DFDP-2 drill holes, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Upton, P.; Cox, S.; Howarth, J. D.; Sutherland, R.; Langridge, R.; Barth, N. C.; Atkins, C.

    2015-12-01

    A 240 m-thick Quaternary sediment sequence in Whataroa Valley was much thicker than predicted before drilling. DFDP-2A and DFDP-2B were mostly drilled through the sequence by dual-rotary method using air or water circulation, returning cuttings bagged at 1 or 2 m sample intervals. Some sorting/bias and contamination occurred. Core was retrieved in DFDP-2A from 125-160 m, with highly variable recovery (0-100%) and mixed preservation/quality. The sequence is interpreted to comprise: fluvial-glacial gravels (0-58 m); grading downward into sandy lake delta sediments (59-77 m); overlying a monotonous sequence of lake mud and silts, with rare pebble-cobble diamictite (77-206 m); with a basal unit (206-240 m) containing coarse cobbles and boulders that may represent a distinct till/diamictite. Evidence has yet to be found for any marine influence in lowermost sediments, despite deposition at least 120 m below present day sea level, and potentially 200 m bsl if uplift has occurred on the Alpine Fault. When corrected for uplift the lacustrine sequence broadly correlates to those in present Lakes Rotokina and Wahapo, suggesting a substantial (~100 km2) pro-glacial lake once covered the area. Radiocarbon dating of plant fragments indicate 70 m of upper lacustrine and deltaic sediments (129-59 m) were deposited rapidly between 16350-15800 Cal BP. Overlying alluvial gravels are much younger (<1 ka), but potentially also involved pulses of rapid aggradation. The sequence provides a record of sedimentation on the Alpine Fault hanging wall following late-glacial ice retreat up Whataroa Valley, with uplift and erosion followed by Holocene alluvial gravel deposition. Future work will address: (1) the nature and history of sedimentation, including the lithology and origin of sediments; (2) what, if any, geological record of tectonics (movement) or Alpine Fault earthquakes (shaking) the sediments contain.

  16. GENE EXPRESSION ALTERATIONS OBSERVED IN PRIMARY CULTURED RAT HEPATOCYTES AFTER TREATMENT WITH CHLORINATED OR CHLORINATED AND OZONATED DRINKING WATER FROM EAST FORK LAKE, OHIO

    EPA Science Inventory

    Drinking water from East Fork Lake was spiked with iodide and bromide, disinfected with chlorine or ozone + chlorine, concentrated ~100-fold using reverse osmosis, and volatile disinfection by-products (DBPs) added back. Primary rat hepatocytes were exposed to full-strength, 1:10...

  17. Evidence for organochlorine contamination in Lake Tahoe, California

    SciTech Connect

    Datta, S.; Matsumura, F.

    1995-12-31

    Organochlorine pollutants were measured in mature lake trout (Salvelinus namaycush) from Lake Tahoe, California. This is the first report of organochlorine contamination in this lake which is considered to be pristine; Lake Tahoe, an alpine lake, located in the Sierra Nevadas, has not been subject to direct contamination by industrial discharges or agricultural runoff. Multiresidue analysis of chlorinated compounds in the belly flap tissues of lake trout revealed wet weight concentrations of PCBs and DDE in the low ppb range using EIMS and SIM. Full spectra of specific PCB congeners and DDE were obtained using extracts of fish fat tissue. The presence of these pollutants in biota suggests that atmospheric transport may be a significant source of input to the Lake Tahoe ecosystem.

  18. Spatial and temporal patterns in water chemistry of two high elevation lakes in southeast Wyoming

    SciTech Connect

    Musselman, R.C.

    1995-12-31

    The Glacier Lakes Ecosystem Experiments Site (GLEES) was established to examine the effects of atmospheric deposition and climate change on alpine and subalpine ecosystems. This report documents temporal and spatial trends during 1993 in water chemistry in East and West Glacier Lakes. Data are presented on seasonal and lake depth changes in water chemistry of the two lakes. The application of the results to appropriate sampling protocols for two alpine lakes is discussed. Both lakes were sampled during the same day, at midday. Samples were kept cool, returned to the lab the same day, and filtered for analysis. Samples were analyzed for cations and anions, pH, and conductivity at the Rocky Mountain Station Water Chemistry laboratory. Silica and aluminum were also measured for some sample dates.

  19. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    SciTech Connect

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  20. Mercury Sources and Cycling in the Great Lakes: Dramatic Changes Resulting from Altered Atmospheric Loads and the Near-Shore Shunt

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, D. P.; DeWild, J. F.; Maglio, M. M.; Tate, M. T.; Ogorek, J. M.; Hurley, J. P.; Lepak, R.

    2013-12-01

    Mercury (Hg) contamination of the aquatic food webs across the Great Lakes remains a significant environmental issue. However, our ability to prescribe corrective actions has been significantly hampered by a scarcity of data, particularly for methylmercury (MeHg) the most toxic and bioaccumulative form of mercury in freshwater ecosystems. As part of the Great Lakes Restoration Initiative initiated in 2010, a joint effort was undertaken by the U.S. Geological Survey (USGS) and U.S. Environmental Protection Agency (USEPA) to improve our understanding of total Hg and MeHg concentrations and distributions in the Great Lakes. Since 2010, sampling surveys have been conducted at about 15-20 stations twice annually (April and August) at 15-20 stations per lake to collect data from both cold and warm water conditions. All sampling was conducted using trace-metal free protocols using a sampling rosette equipped with 12 Teflon-lined Niskin. Water samples were collected at predetermined depths: mid-epilimnion, mid-thermocline, deep chlorophyll layer, mid-hypolimnion, and about 2 meters above the bottom. Seston samples were collected from the top 20 meters using plankton nets, while bottom sediments and benthos samples were acquired using a ponar sampler. Water, biota, and sediment samples were all analyzed for Hg and MeHg concentration at the USGS Mercury Research Laboratory in Middleton, Wisconsin. Several important trends are apparent from the water column samples. First, most stations reveal a strong top-to-bottom declining trend total Hg concentration, underscoring the importance of atmospheric deposition to the Great Lakes. Methylmercury profiles, show maximal concentrations at the thermocline or deep chlorophyll layer, suggesting in situ water-column MeHg production. Calculations suggest this in-lake MeHg source is similar in magnitude to tributary loading of MeHg, which heretofore was thought to be the dominant MeHg source. Aqueous total Hg results also suggest that

  1. Alpine radar conversion for LAWR

    NASA Astrophysics Data System (ADS)

    Savina, M.; Burlando, P.

    2012-04-01

    The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this

  2. Frost resistance in alpine woody plants

    PubMed Central

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone. PMID:25520725

  3. Frost resistance in alpine woody plants.

    PubMed

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  4. Differential exposure of alpine ospreys to mercury: melting glaciers, hydrology or deposition patterns?

    PubMed

    Guigueno, Mélanie F; Elliott, Kyle H; Levac, Joshua; Wayland, Mark; Elliott, John E

    2012-04-01

    Mercury (Hg) is a global contaminant impacting even remote environments. In alpine watersheds, glacial meltwater is a source of Hg, which accumulated in glaciers during the 1960-1980 cooling cycle. The considerable variation observed for Hg exposure of alpine animals in proximal watersheds could result from differences among those watersheds in Hg loading from glacial meltwater. Alternatively, variation may be the result of hydrology, atmospheric Hg deposition patterns, or food web characteristics. To examine those possibilities, we measured Hg in ospreys (Pandion haliaetus), apex predators in 15 watersheds in western Canada. Mercury levels in feathers of nestlings increased with increasing modeled atmospheric deposition rates and decreased with lake size. In eggs mercury decreased with δ(13)C, an indicator of food web structure, and with pH and elevation. Thus, Hg levels in chicks were strongly associated with local patterns relevant when the chicks were growing (e.g. the period post-snow melt: Hg deposition, lake size) while Hg levels in eggs were weakly associated with local patterns relevant during the snow melt (elevation, δ(13)C), with the remainder of the Hg variation in eggs determined by other factors such as possible Hg accumulation by the adult elsewhere. Modeled atmospheric deposition from prevailing upwind locations including Asia, followed by runoff into small lakes, were related to Hg patterns in osprey, with little apparent role for recent melting of glaciers. Our study highlights the importance of physical patterns to the environmental chemistry of top predators.

  5. Erosion by an Alpine glacier

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric; Beyssac, Olivier; Lane, Stuart; Brughelli, Mattia; Leprince, Sebastien; Brun, Fanny

    2015-04-01

    Most mountain ranges on Earth owe their morphology to the action of glaciers and icecaps over the last few million years. Our current understanding of how glaciers have modified mountainous landforms has mainly been driven through landscape evolution models. These have included an array of erosion laws and mainly progressed through the implementation of various levels of sophistication regarding ice dynamics, subglacial hydrology or thermodynamics of water flow. However, the complex nature of the erosion processes involved and the difficulty of directly examining the ice-bedrock interface of contemporary glaciers has precluded the establishment of a prevailing erosion theory. Here we quantify the spatial variations in ice sliding velocity and erosion rate of a fast-flowing Alpine glacier in New Zealand during a 5-month period. By combining high resolution 3D measurements of surface velocity from optical satellite imagery with the quantification of both the production and provenance of sediments by the glacier, we show that erosion rates are proportional to sliding velocity raised to a power of about two. This result is consistent with abrasion theory. Given that the ice sliding velocity is a nonlinear function of ice thickness and ice surface slope, the response of glacial erosion to precipitation changes is highly nonlinear. Finally, our ability to constrain the glacial abrasion law present opportunities to further examine the interaction between glaciation and mountain evolution.

  6. Modelling photochemistry in alpine valleys

    NASA Astrophysics Data System (ADS)

    Brulfert, G.; Chemel, C.; Chaxel, E.; Chollet, J. P.

    2005-03-01

    Road traffic is a serious problem in the Chamonix Valley, France: traffic, noise and above all air pollution worry the inhabitants. The big fire in the Mont-Blanc tunnel made it possible, in the framework of the POVA project (POllution in Alpine Valleys), to undertake measurement campaigns with and without heavy-vehicle traffic through the valley, towards Italy (before and after the tunnel re-opening). Modelling in POVA should make it possible to explain the processes leading to episodes of atmospheric pollution, both in summer and in winter. Atmospheric prediction model ARPS 4.5.2 (Advanced Regional Prediction System), developed at the CAPS (Center for Analysis and Prediction of Storms) of the University of Oklahoma, enables to resolve the dynamics above a complex terrain. This model is coupled to the TAPOM 1.5.2 atmospheric chemistry (Transport and Air POllution Model) code developed at the Air and Soil Pollution Laboratory of the Ecole Polytechnique Fédérale de Lausanne. The numerical codes MM5 and CHIMERE are used to compute large scale boundary forcing. Using 300-m grid cells to calculate the dynamics and the reactive chemistry makes possible to accurately represent the dynamics in the valley (slope and valley winds) and to process chemistry at fine scale. Validation of campaign days allows to study chemistry indicators in the valley. NOy according to O3 reduction demonstrates a VOC controlled regime, different from the NOx controlled regime expected and observed in the nearby city of Grenoble.

  7. Lake Life.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This quarterly publication of the State Historical Society of Iowa features articles and activities for elementary school students. This summer issue focuses on the topic of lake life. The issue includes the following features: (1) "Where the Lakes Are Map"; (2) "Letter from the Lake"; (3) "Lake People"; (4)…

  8. Encroaching forests decouple alpine butterfly population dynamics.

    PubMed

    Roland, Jens; Matter, Stephen F

    2007-08-21

    Over the past 50 years, the rising tree line along Jumpingpound Ridge in the Rocky Mountains of Alberta, Canada, has reduced the area of alpine meadows and isolated populations that reside within them. By analyzing an 11-year data set of butterfly population sizes for 17 subpopulations along the ridge, we show that forest habitat separating alpine meadows decouples the dynamics of populations of the alpine butterfly Parnassius smintheus. Although the distance between populations is often negatively correlated with synchrony of dynamics, here we show that distance through forest, not Euclidean distance, determines the degree of synchrony. This effect is consistent with previous results demonstrating that encroaching forest reduces dispersal among populations and reduces gene flow. Decoupling dynamics produces more smaller independent populations, each with greater risk of local extinction, but decoupling may produce a lower risk of regional extinction in this capricious environment.

  9. Multilocus Analyses Reveal Postglacial Demographic Shrinkage of Juniperus morrisonicola (Cupressaceae), a Dominant Alpine Species in Taiwan

    PubMed Central

    Chiu, Chi-Te; Huang, Chao-Li; Hung, Kuo-Hsiang; Chiang, Tzen-Yuh

    2016-01-01

    Postglacial climate changes alter geographical distributions and diversity of species. Such ongoing changes often force species to migrate along the latitude/altitude. Altitudinal gradients represent assemblage of environmental, especially climatic, variable factors that influence the plant distributions. Global warming that triggered upward migrations has therefore impacted the alpine plants on an island. In this study, we examined the genetic structure of Juniperus morrisonicola, a dominant alpine species in Taiwan, and inferred historical, demographic dynamics based on multilocus analyses. Lower levels of genetic diversity in north indicated that populations at higher latitudes were vulnerable to climate change, possibly related to historical alpine glaciers. Neither organellar DNA nor nuclear genes displayed geographical subdivisions, indicating that populations were likely interconnected before migrating upward to isolated mountain peaks, providing low possibilities of seed/pollen dispersal across mountain ranges. Bayesian skyline plots suggested steady population growth of J. morrisonicola followed by recent demographic contraction. In contrast, most lower-elevation plants experienced recent demographic expansion as a result of global warming. The endemic alpine conifer may have experienced dramatic climate changes over the alternation of glacial and interglacial periods, as indicated by a trend showing decreasing genetic diversity with the altitudinal gradient, plus a fact of upward migration. PMID:27561108

  10. Nitrogen Critical Loads for an Alpine Meadow Ecosystem on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zong, Ning; Shi, Peili; Song, Minghua; Zhang, Xianzhou; Jiang, Jing; Chai, Xi

    2016-03-01

    Increasing atmospheric nitrogen (N) deposition has the potential to alter plant diversity and thus the function and stability of terrestrial ecosystems. N-limited alpine ecosystems are expected to be particularly susceptible to increasing N deposition. However, little is known about the critical loads and saturation thresholds of ecosystem responses to increasing N deposition on the Tibetan Plateau, despite its importance to ecosystem management. To evaluate the N critical loads and N saturation thresholds in an alpine ecosystem, in 2010, we treated an alpine meadow with five levels of N addition (0, 10, 20, 40, and 80 kg N ha-1 year-1) and characterized plant and soil responses. The results showed that plant species richness and diversity index did not statistically vary with N addition treatments, but they both changed with years. N addition affected plant cover and aboveground productivity, especially for grasses, and soil chemical features. The N critical loads and saturation thresholds, in terms of plant cover and biomass change at the community level, were 8.8-12.7 and 50 kg N ha-1 year-1 (including the ambient N deposition rate), respectively. However, pronounced changes in soil inorganic N and net N mineralization occurred under the 20 and 40 kg N ha-1 year-1 treatments. Our results indicate that plant community cover and biomass are more sensitive than soil to increasing N inputs. The plant community composition in alpine ecosystems on the Qinghai-Tibetan Plateau may change under increasing N deposition in the future.

  11. Modelling photochemistry in alpine valleys

    NASA Astrophysics Data System (ADS)

    Brulfert, G.; Chemel, C.; Chaxel, E.; Chollet, J. P.

    2005-09-01

    Road traffic is a serious problem in the Chamonix Valley, France: traffic, noise and above all air pollution worry the inhabitants. The big fire in the Mont-Blanc tunnel made it possible, in the framework of the POVA project (POllution in Alpine Valleys), to undertake measurement campaigns with and without heavy-vehicle traffic through the Chamonix and Maurienne valleys, towards Italy (before and after the tunnel re-opening). Modelling is one of the aspects of POVA and should make it possible to explain the processes leading to episodes of atmospheric pollution, both in summer and in winter. Atmospheric prediction model ARPS 4.5.2 (Advanced Regional Prediction System), developed at the CAPS (Center for Analysis and Prediction of Storms) of the University of Oklahoma, enables to resolve the dynamics above a complex terrain. This model is coupled to the TAPOM 1.5.2 atmospheric chemistry (Transport and Air POllution Model) code developed at the Air and Soil Pollution Laboratory of the Ecole Polytechnique Fédérale de Lausanne. The numerical codes MM5 and CHIMERE are used to compute large scale boundary forcing.

    This paper focuses on modelling Chamonix valley using 300-m grid cells to calculate the dynamics and the reactive chemistry which makes possible to accurately represent the dynamics in the Chamonix valley (slope and valley winds) and to process chemistry at fine scale. The summer 2003 intensive campaign was used to validate the model and to study chemistry. NOy according to O3 reduction demonstrates a VOC controlled regime, different from the NOx controlled regime expected and observed in the nearby city of Grenoble.

  12. The need for ecological monitoring of freshwaters in a changing world: a case study of Lakes Annecy, Bourget, and Geneva.

    PubMed

    Jacquet, Stéphan; Domaizon, Isabelle; Anneville, Orlane

    2014-06-01

    Lakes Annecy, Bourget, and Geneva are large, deep carbonated peri-alpine lakes in eastern France. They are located in the same ecoregion but have been subject to differing degrees of anthropogenic pressure over the past decades. A comparative analysis of these ecosystems can therefore provide valuable information on how the lakes have responded to changes in phosphorus runoff, fish management practices, and global warming. Each of these lakes has undergone a restoration process, and changes in water quality and trophic state, as measured using parameters like transparency, chlorophyll a, nutrient concentrations, and phytoplankton biomass and structure, can be used to evaluate efforts made to preserve these ecosystems. Our results reveal that (1) peri-alpine lakes are exemplary cases of restoration in the world where freshwater eutrophication is on the increase, and (2) efforts must be maintained because of the new context of climate change, the effects of which on the quality and the ecological functioning of lakes are still poorly understood.

  13. Attribution of sources to metal accumulation in an alpine tarn, the Snowy Mountains, Australia.

    PubMed

    Stromsoe, Nicola; Callow, J Nikolaus; McGowan, Hamish A; Marx, Samuel K

    2013-10-01

    This study analyses 1800 years of heavy metal accumulation in a remote alpine lake experiencing long-range atmospheric contamination and additional inputs of Ag from cloud seeding. In comparison to previous work undertaken on peats, lake sediments show limited post-industrial metal enrichment with enrichment factors of Ag: 1.3, Pb: 1.3, Zn: 1.1, Cu: 1.2 compared to Ag: 2.2, Pb: 3.3, Zn: 2.1, Cu: 4.1 for peat. We show this to be the result of substantial fluvial lithogenic flux of metals (92-97% of total metal flux) to the lake. Total annual metal flux to the lake ranges from: Ag: 4-12 ng/cm(2)/yr to Zn: 3 383-11 313 ng/cm(2)/yr. As a result, any contribution of cloud seeding to additional enrichment of Ag in lake sediments is considered negligible. Results show that metal enrichment is not necessarily ubiquitous through a landscape. This has implications for predicting the impacts of atmospheric metal pollution to complex environmental systems.

  14. Outdoor Education Project Report, Camp Alpine.

    ERIC Educational Resources Information Center

    Palmer, N. J.

    A report is given of Project Alpine, two summer pilot programs in outdoor education sponsored by the Mesa Public Schools of Arizona. The report outlines the duties of camp personnel and includes an instruction sheet used by camp counselors. Various activities held for the campers (boys and girls from both upper elementary and secondary grades) are…

  15. Monitoring Alpine Transportation Infrastructures Using Space Techniues

    NASA Astrophysics Data System (ADS)

    Strozzi, Tazio; Caduff, Rafael; Wegmuller, Urs; Brandstaetter, Michael; Kuhtreiber, Norbert

    2013-12-01

    Integration of satellite SAR interferometry, terrestrial radar interferometry and GPS is considered for the monitoring of ground motion along Alpine transportation infrastructures. We present results related to large-scale surveys in Switzerland along the Gotthard railway with satellite SAR interferometry and to a local monitoring of an active rockfall above the Pyhrn motorway in Austria using terrestrial radar interferometry and GPS.

  16. Modeling glacier beds in the Austrian Alps: How many lakes will form in future?

    NASA Astrophysics Data System (ADS)

    Koehler, Dominik; Geilhausen, Martin; Linsbauer, Andreas

    2014-05-01

    Glacial retreat exposes landscapes with relief characteristics greatly differing from the former ice covered surfaces. If glacial retreat exposes natural basins capable of forming proglacial lakes, then the downstream hydrologic and geomorphic systems in such catchments will be significantly altered due to discharge modifications, sediment trapping, decoupling effects and long term sediment storage (e.g. Geilhausen et al. 2013). Further implications are related to hydropower management, tourism and natural hazards. Consequently, sound knowledge of present day glacier beds ("proglacial zones of tomorrow") and in particular the total number, locations and characteristics of overdeepenings are of importance. For Austria, however, this important information about significant future changes of high alpine regions is yet missing. An interdisciplinary research project is currently in preparation to close this gap. This paper presents results of a pilot study. We used a novel GIS-based approach (GlabTop, cf. Linsbauer et al. 2012) to compute approximate glacier beds in the Austrian Alps. GlabTop ('Glacier bed Topography') is based on an empirical relation between average basal shear stress and elevation range of individual glaciers and makes use of digital elevation models (DEM), glacier outlines and branch lines (i.e. a set of lines covering all important glacier branches). DEMs and glacier outlines were derived from the Austrian glacier inventory (1998) and branch lines were manually digitized. The inventory includes 911 glaciers of which 876 (96%) were considered and 35 were excluded due to size restrictions (< 0.01 km²) or insufficient DEM coverage. We found 165 overdeepenings (> 0.01 km²) with the potential of forming proglacial lakes when glacier retreat reveals the bed. The total area and volume of all overdeepenings is approx. 10 km² and 236 Mio m³ respectively and 33 lakes will be larger than 1 km³. A total glacier volume of 16 ± 5 km³ with an average ice

  17. Lake Tahoe

    EPA Pesticide Factsheets

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate change, Lake Tahoe Total Maximum Daily Load (TMDL), EPA-sponsored projects, list of partner agencies.

  18. An inventory of glacial lakes in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Buckel, Johannes; Otto, Jan-Christoph; Keuschnig, Markus; Götz, Joachim

    2016-04-01

    The formation of lakes is one of the consequences of glacier retreat due to climate change in mountain areas. Numerous lakes have formed in the past few decades in many mountain regions around the globe. Some of these lakes came into focus due to catastrophic hazard events especially in the Himalayas and the Andes. Glacial lake development and lifetime is controlled by the complex interplay of glacier dynamics, geomorphological process activity and geological boundary conditions. Besides the hazard potential new lakes in formerly glaciated areas will significantly contribute to a new landscape setting and to changing geomorphologic, hydrologic and ecologic conditions at higher alpine altitudes. We present an inventory of high alpine lakes in the Austrian Alps located above an altitude of 1700 m asl. Most of these lakes are assumed to be of glacial origin, but other causes for development, like mass movements are considered as well. The inventory is a central part of the project FUTURELAKES that aims at modelling the potential development of glacial lakes in Austria (we refer to the presentation by Helfricht et al. during the conference for more details on the modelling part). Lake inventory data will serve as one basis for model validation since modelling is performed on different time steps using glacier inventory data. The purpose of the lake inventory is to get new insights into boundary conditions for lake formation and evolution by analysing existing lake settings. Based on these information the project seeks to establish a model of lake sedimentation after glacier retreat in order to assess the potential lifetime of the new lakes in Austria. Lakes with a minimum size of 1000 m² were mapped using multiple aerial imagery sources. The dataset contains information on location, geometry, dam type, and status of sedimentation for each lake. Additionally, various geologic, geomorphic and morphometric parameters describe the lake catchments. Lake data is related to

  19. Multiscale Snow/Icemelt Discharge Simulations into Alpine Reservoirs: adding Glacier Dynamics to a Hydrological Model

    NASA Astrophysics Data System (ADS)

    Schueller, Felix; Förster, Kristian; Hanzer, Florian; Huttenlau, Matthias; Marzeion, Ben; Strasser, Ulrich; Achleitner, Stefan; Kirnbauer, Robert

    2015-04-01

    Glacier and snow runoff in high alpine regions is an essential process in hydrological research for its high relevance on lower altitude areas and hydro-power generation. MUSICALS II (Multiscale Snow/Icemelt Discharge Simulations into Alpine Reservoirs) seeks to identify and quantify water availability and runoff in alpine headwater catchments. The focus is on future changes due to glacier retreat, altering the multi-day and seasonal runoff available for hydropower operations. Our aim is to investigate and improve runoff forecasts by coupling the semi-distributed hydrological model HQSim with a simple glacier evolution model. The glacier model MMBM (Marzeion Mass Balance Model) with its statistical nature allows for fast modelling of the dynamical properties of glaciers. We present the design of the coupled hydrological application for different hydro power headwater catchments in Tyrol. The capabilities of the glacier model to simulate the selected glaciers is shown. Simulated discharge with the original and the coupled model are compared to downstream gauge measurements. Using the multi-objective optimization algorithm AMALGAM (A Multi-ALgorithm, Genetically Adaptive Multiobjective model), we optimize the glacier module parameters fully automatically. The results show the improvements in runoff modelling for past periods, when altering of glaciated catchment parts is considered. This indicates consideration of this process is mandatory for simulating future developments.

  20. Comparison of bacterial growth in response to photodegraded terrestrial chromophoric dissolved organic matter in two lakes.

    PubMed

    Su, Yaling; Hu, En; Feng, Muhua; Zhang, Yongdong; Chen, Feizhou; Liu, Zhengwen

    2017-02-01

    Terrestrial chromophoric dissolved organic matter (CDOM) could subsidize lake food webs. Trophic state and altitude have a pronounced influence on the CDOM concentration and composition of a lake. The impact of future changes in solar radiation on high-altitude lakes is particularly alarming because these aquatic ecosystems experience the most pronounced radiation variation worldwide. Photodegradation experiments were conducted on terrestrial CDOM samples from oligotrophic alpine Lake Tiancai and low-altitude eutrophic Lake Xiaohu to investigate the response of bacterial growth to photodegraded CDOM. During the photo-irradiation process, the fluorescent CDOM intensity evidently decreased in an inflowing stream of Lake Tiancai, with the predominance of humic-like fluorescence. By contrast, minimal changes were observed in the riverine CDOM of Lake Xiaohu, with the predominance of protein-like fluorescence. The kinetic constants of photodegradation indicated that the degradation rate of terrestrial (soil) humic acid in Lake Tiancai was significantly higher than that in Lake Xiaohu (p<0.001). Soil humic and fulvic acids irradiated in the simulated experiment were applied to incubated bacteria. The specific growth rate of bacteria incubated with soil humic substances was significantly higher in Lake Tiancai than in Lake Xiaohu (p<0.05). Furthermore, the utilizing rate of dissolved oxygen (DO) confirmed that the DO consumption by bacteria incubated with terrestrial CDOM in Lake Tiancai was significantly greater than that in Lake Xiaohu (p<0.05). In summary, the exposure of terrestrial CDOM to light significantly enhances its availability to heterotrophic bacteria in Lake Tiancai, an oligotrophic alpine lake, which is of importance in understanding bacterial growth in response to photodegraded terrestrial CDOM for different types of lakes.

  1. Chemotype diversity in Planktothrix rubescens (cyanobacteria) populations is correlated to lake depth.

    PubMed

    Haruštiaková, Danka; Welker, Martin

    2017-04-01

    The cyanobacterial species Planktothrix rubescens is known to preferably inhabit deep, stratified, oligo- to mesotrophic lakes. It is also known for the production of diverse bioactive peptides, including the hepatotoxic microcystins. A number of studies showed that P. rubescens populations generally consist of multiple distinct genotypes or chemotypes, respectively. In the present study, variability of chemotype diversity was analysed. Filaments of P. rubescens were isolated from water samples originating from 10 European lakes and analysed by MALDI-TOF mass spectrometry. In most of the analysed filaments multiple peptides belonging to multiple peptide classes could be detected. A resulting data matrix of 964 filaments and 37 individual peptides was subjected to correspondence analysis and K-means clustering. From the latter analysis the distribution of chemotypes among the lakes was established and diversity estimated by computing Shannon-Indices. Diversity varied strongly among lakes with the lowest diversity found in non-alpine lakes. Further, chemotype diversity was strongly correlated to the maximum depth of the sampled lakes in alpine and non-alpine lakes. The possible influence of both factors, geographic isolation and water column depth, on the observed patterns of chemotype diversity of P. rubescens populations is discussed.

  2. Planetary Lake Lander - A Robotic Sentinel to Monitor a Remote Lake

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Smith, Trey; Lee, Susan; Cabrol, Nathalie; Rose, Kevin

    2012-01-01

    The Planetary Lake Lander Project is studying the impact of rapid deglaciation at a high altitude alpine lake in the Andes, where disrupted environmental, physical, chemical, and biological cycles result in newly emerging natural patterns. The solar powered Lake Lander robot is designed to monitor the lake system and characterize both baseline characteristics and impacts of disturbance events such as storms and landslides. Lake Lander must use an onboard adaptive science-on-the-fly approach to return relevant data about these events to mission control without exceeding limited energy and bandwidth resources. Lake Lander carries weather sensors, cameras and a sonde that is winched up and down the water column to monitor temperature, dissolved oxygen, turbidity and other water quality parameters. Data from Lake Lander is returned via satellite and distributed to an international team of scientists via web-based ground data systems. Here, we describe the Lake Lander Project scientific goals, hardware design, ground data systems, and preliminary data from 2011. The adaptive science-on-the-fly system will be described in future papers.

  3. Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA?

    USGS Publications Warehouse

    Goodbred, Steven L.; Patino, Reynaldo; Torres, Leticia; Echols, Kathy R.; Jenkins, Jill A.; Rosen, Michael R.; Orsak, Erik

    2015-01-01

    Male Largemouth Bass were sampled from two locations in Lake Mead (USA), a site influenced by treated municipal wastewater effluent and urban runoff (Las Vegas Bay), and a reference site (Overton Arm). Samples were collected in summer (July '07) and spring (March '08) to assess general health, endocrine and reproductive biomarkers, and compare contaminant body burdens by analyzing 252 organic chemicals. Sperm count and motility were measured in spring. Contaminants were detected at much higher frequencies and concentrations in fish from Las Vegas Bay than Overton Arm. Those with the highest concentrations included PCBs, DDTs, PBDEs, galaxolide, and methyl triclosan. Fish from Las Vegas Bay also had higher Fulton condition factor, hepatosomatic index, and hematocrit, and lower plasma 11-ketotestosterone concentration (KT). Gonadosomatic index (GSI) and sperm motility did not differ between sites, but sperm count was lower by nearly 50% in fish from Las Vegas Bay. A positive association between KT and GSI was identified, but this association was nonlinear. On average, maximal GSI was reached at sub-maximal KT concentrations. In conclusion, the higher concentration of contaminant body burdens coupled with reduced levels of KT and sperm count in fish from Las Vegas Bay suggest that male reproductive condition was influenced by contaminant exposures. Also, the nonlinear KT-GSI association provided a framework to understand why GSI was similar between male bass from both sites despite their large difference in KT, and also suggested the existence of post-gonadal growth functions of KT at high concentrations.

  4. Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA?

    PubMed

    Goodbred, Steven L; Patiño, Reynaldo; Torres, Leticia; Echols, Kathy R; Jenkins, Jill A; Rosen, Michael R; Orsak, Erik

    2015-08-01

    Male Largemouth Bass were sampled from two locations in Lake Mead (USA), a site influenced by treated municipal wastewater effluent and urban runoff (Las Vegas Bay), and a reference site (Overton Arm). Samples were collected in summer (July '07) and spring (March '08) to assess general health, endocrine and reproductive biomarkers, and compare contaminant body burdens by analyzing 252 organic chemicals. Sperm count and motility were measured in spring. Contaminants were detected at much higher frequencies and concentrations in fish from Las Vegas Bay than Overton Arm. Those with the highest concentrations included PCBs, DDTs, PBDEs, galaxolide, and methyl triclosan. Fish from Las Vegas Bay also had higher Fulton condition factor, hepatosomatic index, and hematocrit, and lower plasma 11-ketotestosterone concentration (KT). Gonadosomatic index (GSI) and sperm motility did not differ between sites, but sperm count was lower by nearly 50% in fish from Las Vegas Bay. A positive association between KT and GSI was identified, but this association was nonlinear. On average, maximal GSI was reached at sub-maximal KT concentrations. In conclusion, the higher concentration of contaminant body burdens coupled with reduced levels of KT and sperm count in fish from Las Vegas Bay suggest that male reproductive condition was influenced by contaminant exposures. Also, the nonlinear KT-GSI association provided a framework to understand why GSI was similar between male bass from both sites despite their large difference in KT, and also suggested the existence of post-gonadal growth functions of KT at high concentrations.

  5. Zooplankton Successions in Neighboring Lakes with Contrasting Impacts of Amphibian and Fish Predators

    NASA Astrophysics Data System (ADS)

    Schabetsberger, Robert; Grill, Susanne; Hauser, Gabriele; Wukits, Petra

    2006-06-01

    Two pairs of neighboring subalpine lakes located in the Northern Calcareous Alps of Austria were investigated. Each pair comprised a deeper lake containing European minnows (Phoxinus phoxinus ), and a corresponding shallower lake harboring Alpine newts (Triturus alpestris ) as top predators. Plankton successions within fish and amphibian lakes differed markedly from each other. Throughout the year rotifers numerically dominated within the minnow lakes, while pigmented copepods (Genera Heterocope, Acanthodiaptomus , Arctodiaptomus , Mixodiaptomus ) and Daphnia were prominent in the amphibian lakes, at least early during the ice-free period. We argue that size-selective predation by minnows was the ultimate reason for this predominance of smaller zooplankton. While one of the minnow lakes was characterized by a succession of spatially and temporally segregated rotifer species, the other minnow lake permitted the development of populations of small-sized Bosmina and Ceriodaphnia during summer, probably due to the existence of a strong oxycline allowing zooplankton crustaceans to avoid predation from shore-based shoals of minnows. Once trout were introduced into this lake, minnows were visibly reduced in abundance. Bosmina and Ceriodaphnia disappeared and Daphnia together with a predacious copepod (Heterocope ) emerged either from egg banks or arrived from nearby source populations. We argue that the crustacean communities within the fishless lakes were adapted to the comparatively weak predation rates of Alpine newts.

  6. Intersex and alterations in reproductive development of a cichlid, Tilapia guineensis, from a municipal domestic water supply lake (Eleyele) in Southwestern Nigeria.

    PubMed

    Adeogun, Aina O; Ibor, Oju R; Adeduntan, Sherifat D; Arukwe, Augustine

    2016-01-15

    The objectives of this study were to develop and validate biomarker techniques for aquatic environmental monitoring of endocrine disrupting chemicals (EDCs) in Nigeria aquatic ecosystems, using the Eleyele Lake, which is a major source of domestic water supply to Ibadan and its surrounding towns, as a model aquatic environment and Tilapia guineensis, as a model organism. A total of 55 male and 28 female fish were used for this study. No significant difference in condition factor was observed between the sexes. Evaluation of gross gonadal morphology of the sampled fish showed 33% intersex prevalence in the sampled population, of which respective 71 and 29% were males and females, with visible testis and ovary developing alongside phenotypic females and males. Plasma concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 11-ketotestosterone (11-KT) and 17β-estradiol (E2) were performed, showing that male fish had significantly higher plasma LH and E2 concentrations, compared to females. Vitellogenin (Vtg) and zona radiata proteins (Zrp) mRNA levels were significantly higher in males, compared to female fish. Contaminant analysis revealed that PCB 81, 123, 138 and 196 were the only PCB congeners detected in sediment and fish muscle (PCB153 in sediment), while dieldrin was the only organochlorine compound (OC) detected in Eleyele sediment. These responses were used in a multivariate analysis, showing that two principal components were extracted and accounted for 74% of total variation in the dataset. The principal component analysis (PCA) showed that male fish variables were positively correlated with PCB congeners 18 and 123, while female fish showed positive correlations with congener 81, 138, 189, 196, indicating sex-specific pattern of association between PCBs concentrations and biomarker expression. In addition, strong positive correlation between male fish and LH, E2, FSH and Vtg was observed, while female fish positively correlated with

  7. Climate Change Forces New Ecological States in Tropical Andean Lakes

    PubMed Central

    Michelutti, Neal; Wolfe, Alexander P.; Cooke, Colin A.; Hobbs, William O.; Vuille, Mathias; Smol, John P.

    2015-01-01

    Air temperatures in the tropical Andes have risen at an accelerated rate relative to the global average over recent decades. However, the effects of climate change on Andean lakes, which are vital to sustaining regional biodiversity and serve as an important water resource to local populations, remain largely unknown. Here, we show that recent climate changes have forced alpine lakes of the equatorial Andes towards new ecological and physical states, in close synchrony to the rapid shrinkage of glaciers regionally. Using dated sediment cores from three lakes in the southern Sierra of Ecuador, we record abrupt increases in the planktonic thalassiosiroid diatom Discostella stelligera from trace abundances to dominance within the phytoplankton. This unprecedented shift occurs against the backdrop of rising temperatures, changing atmospheric pressure fields, and declining wind speeds. Ecological restructuring in these lakes is linked to warming and/or enhanced water column stratification. In contrast to seasonally ice-covered Arctic and temperate alpine counterparts, aquatic production has not increased universally with warming, and has even declined in some lakes, possibly because enhanced thermal stability impedes the re-circulation of hypolimnetic nutrients to surface waters. Our results demonstrate that these lakes have already passed important ecological thresholds, with potentially far-reaching consequences for Andean water resources. PMID:25647018

  8. Climate change forces new ecological states in tropical Andean lakes.

    PubMed

    Michelutti, Neal; Wolfe, Alexander P; Cooke, Colin A; Hobbs, William O; Vuille, Mathias; Smol, John P

    2015-01-01

    Air temperatures in the tropical Andes have risen at an accelerated rate relative to the global average over recent decades. However, the effects of climate change on Andean lakes, which are vital to sustaining regional biodiversity and serve as an important water resource to local populations, remain largely unknown. Here, we show that recent climate changes have forced alpine lakes of the equatorial Andes towards new ecological and physical states, in close synchrony to the rapid shrinkage of glaciers regionally. Using dated sediment cores from three lakes in the southern Sierra of Ecuador, we record abrupt increases in the planktonic thalassiosiroid diatom Discostella stelligera from trace abundances to dominance within the phytoplankton. This unprecedented shift occurs against the backdrop of rising temperatures, changing atmospheric pressure fields, and declining wind speeds. Ecological restructuring in these lakes is linked to warming and/or enhanced water column stratification. In contrast to seasonally ice-covered Arctic and temperate alpine counterparts, aquatic production has not increased universally with warming, and has even declined in some lakes, possibly because enhanced thermal stability impedes the re-circulation of hypolimnetic nutrients to surface waters. Our results demonstrate that these lakes have already passed important ecological thresholds, with potentially far-reaching consequences for Andean water resources.

  9. Contexts for change in alpine tundra

    USGS Publications Warehouse

    Malanson, George P.; Rose, Jonathan P.; Schroeder, P. Jason; Fagre, Daniel B.

    2011-01-01

    Because alpine tundra is responding to climate change, a need exists to understand the meaning of observed changes. To provide context for such interpretation, the relevance of niche and neutral theories of biogeography and the continuum and classification approaches to biogeographic description are assessed. Two extensive studies of alpine tundra, from the Indian Peaks area, Colorado and Glacier National Park, Montana, are combined. The data are ordinated to describe relations. The pattern that emerges is one of a continuum of vegetation, but with the distinctions one might expect from distant sites. The relationships of the similarity of vegetation on all possible pairs of sites to the environmental differences and geographic distances are analyzed using Mantel correlations. Because distance and environmental differences in climate between the two sites are correlated, partial correlations are weak but still significant. More advanced analyses are suggested for this environment prior to interpretation of monitoring efforts such as GLORIA.

  10. Sensitivity of subalpine tree seedlings and alpine plants to natural and manipulated climate variation: Initial results from an Alpine Treeline Warming Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.

    2010-12-01

    Niche models and paleoecological studies indicate that future climate change will alter the geographic distributions of plant species. Changes in temperature, snowmelt timing, or moisture conditions at one edge of a species’ range may have different consequences for recruitment, carbon exchange, phenology, and survival than changes at another edge. Similarly, local genetic adaptation may constrain species and community responses to climate change. We have established a new experiment to investigate potential shifts in the distribution of subalpine tree species, and the alpine species they might replace. We are asking how tree species recruitment and alpine species growth and reproduction vary within their current ranges, and in response to temperature and soil moisture manipulations. We are also examining whether genetic provenance and ecosystem processes constrain tree seedling and alpine herb responses. Our Alpine Treeline Warming Experiment is located across three sites at Niwot Ridge, CO, ranging from near the lower limit of subalpine forest to alpine tundra. We use infrared heaters to raise growing season surface soil temperatures by 4-5°C, and to lengthen the growing season. The warming treatment is crossed with a soil moisture manipulation to distinguish effects due to higher temperatures from those due to drier soil. Each plot is a common garden sown with high and low elevation provenances of limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii). We established an additional set of experimental plots to examine treatment effects on alpine species phenology, growth and reproduction. Under ambient conditions in 2009, tree seedling germination rate, lifespan, and first season survival was higher within the species’ current range than in the alpine, and for Engelmann spruce, was higher at the low elevation limit than the high elevation limit. Source population (low vs. high elevation) was a significant factor explaining natural variation in

  11. Keep cool: memory is retained during hibernation in Alpine marmots.

    PubMed

    Clemens, L E; Heldmaier, G; Exner, C

    2009-08-04

    Hibernators display severe changes in brain structure during deep torpor, including alterations in synaptic constitution. To address a possible effect on long-term memory, we examined learning behavior and memory of the hibernator Marmota marmota. In two operant conditioning tasks, the marmots learned to jump on two boxes or to walk through a tube. The animals were trained during their active season. Performance improved during the training phase and remained stable in a last test, four weeks before entrance into hibernation. When retested after six months of hibernation, skills were found to be unimpaired (box: before hibernation: 258.2+/-17.7 s, after hibernation: 275.0+/-19.8 s; tube: before hibernation: 158.4+/-9.0 s, after hibernation: 137.7+/-6.3 s). Contrary to these findings, memory seemed to be less fixed during the active season, since changes in test procedure resulted in impaired test performance. Besides the operant conditioning, we investigated the animals' habituation to a novel environment by repeated open field exposure. In the first run, animals showed exploratory behavior and thus a high locomotor activity was observed (63.6+/-10.7 crossed squares). Upon a second exposure, all animals immediately moved into one corner and locomotion ceased (7.2+/-1.9 crossed squares). This habituation was not altered even after hibernation (6.1+/-1.1 crossed squares). We thus conclude that long-term memory is unaffected by hibernation in Alpine marmots.

  12. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  13. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    PubMed

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  14. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow

    PubMed Central

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  15. Factors influencing legacy pollutant accumulation in alpine osprey: biology, topography, or melting glaciers?

    PubMed

    Elliott, John E; Levac, Joshua; Guigueno, Mélanie F; Shaw, D Patrick; Wayland, Mark; Morrissey, Christy A; Muir, Derek C G; Elliott, Kyle H

    2012-09-04

    Persistent organic pollutants (POPs) can be transported long distances and deposited into alpine environments via cold trapping and snow scavenging processes. Here we examined biotic and abiotic factors determining contaminant variability of wildlife in alpine ecosystems. We measured POPs in eggs and plasma of an apex predator, the osprey (Pandion haliaetus) breeding in 15 mountainous watersheds across a broad latitudinal, longitudinal and altitudinal range in western Canada. After accounting for proximate biotic factors such as trophic level (δ(15)N) and carbon source (δ(13)C), variability in contaminant concentrations, including ΣDDT (sum of trichlorodiphenylethane-related compounds), toxaphene, hexachlorobenzene (HCB), total chlordane, and ΣPCBs (polychlorinated biphenyls) in osprey tissues was explained by interactions among relative size of watersheds, water bodies, elevation, and glacial input. ΣDDT in nestling plasma, for example, decreased with lake elevation, probably as a result of local past inputs from agricultural or public health usage at lower altitude sites. In contrast, toxaphene, never used as an insecticide in western Canada, increased with elevation and year-round snow and ice cover in both plasma and eggs, indicating long-range atmospheric sources as dominant for toxaphene. Lower chlorinated PCBs in plasma tended to decrease with elevation and ice cover consistent with published data and model outcomes. Temporal trends of POPs in osprey eggs are coincident with some modeled predictions of release from melting glaciers due to climate change. Currently we suggest that contaminants largely are released through annual snowpack melt and deposited in large lower elevation lakes, or some smaller lakes with poor drainage. Our study highlights the importance of understanding how biological processes integrate physical when studying the environmental chemistry of wildlife.

  16. Morphometry and average temperature affect lake stratification responses to climate change

    NASA Astrophysics Data System (ADS)

    Kraemer, Benjamin M.; Anneville, Orlane; Chandra, Sudeep; Dix, Margaret; Kuusisto, Esko; Livingstone, David M.; Rimmer, Alon; Schladow, S. Geoffrey; Silow, Eugene; Sitoki, Lewis M.; Tamatamah, Rashid; Vadeboncoeur, Yvonne; McIntyre, Peter B.

    2015-06-01

    Climate change is affecting lake stratification with consequences for water quality and the benefits that lakes provide to society. Here we use long-term temperature data (1970-2010) from 26 lakes around the world to show that climate change has altered lake stratification globally and that the magnitudes of lake stratification changes are primarily controlled by lake morphometry (mean depth, surface area, and volume) and mean lake temperature. Deep lakes and lakes with high average temperatures have experienced the largest changes in lake stratification even though their surface temperatures tend to be warming more slowly. These results confirm that the nonlinear relationship between water density and water temperature and the strong dependence of lake stratification on lake morphometry makes lake temperature trends relatively poor predictors of lake stratification trends.

  17. OH zoning in alpine quartz from Austria

    NASA Astrophysics Data System (ADS)

    Hertweck, B.; Niedermayr, G.; Beran, A.

    2003-04-01

    Rock crystals from various alpine clefts in Austria were investigated in terms of morphology, domain structure, and OH defects. Since the formation of alpine clefts is a long lasting and multiphase process, the crystal growth of alpine quartz is dominated by different morphologies and various OH defects. 140 samples were investigated by FTIR spectroscopy and optical methods to reveal complementary information on morphology, twining, hydrogen incorporation, and zoning of the OH defects. IR spectroscopic measurements of colourless and smoky quartz samples revealed six characteristic absorption bands in the range of the OH stretching frequencies at 3315, 3380, 3430, 3480, 3510 and 3595 cm-1. The quantitative analysis of the water content revealed an amount of 0.5-20 ppm H_2O. With a maximum of frequency in the 1-2 ppm range the amount of water incorporation is comparably lower than known from non-alpine deposits. The spectra can be divided in four types characterised by the number and/or the relative band intensities. Among the Austrian samples one type, showing clearly all the six bands, is abundant and has not been found in the spectra from non-alpine sites. A significant relation between spectra type, crystal morphology, mineral deposit (within Austria), and OH content cannot be deduced. Microspectroscopic measurements of profiles through crystals cut perpendicular to the c-axis revealed that the spectra types rarely change within one sample. However, a variation of the water content is commonly related to a change of the relative intensity of the 3480 cm-1 absorption band. Regarding the hydrogen incorporation all samples show a distinct zoning. In addition, the OH zoning as well as the crystal growth appear regularly, leading to different hydrogen amounts in core and mantle zone of the crystals. The average zoning is given by factor 1.2, whereas strong variations were measured up to factor 2.5. The formation of Brazil twin domains often coincides with a distinct

  18. Hydrology of the Hamilton lakes and vicinity, Polk County, central Florida

    USGS Publications Warehouse

    Anderson, Warren G.; Simonds, Edward P.

    1983-01-01

    The Hamilton lakes, headwaters of the eastern arm of the Peace River drainage system, consist of Lake Hamilton, Middle Lake Hamilton, and Little Lake Hamilton. The lakes, which are connected by canals that tend to equalize their levels, probably occupy coalesced sinkhole depressions. The drainage basin of Lake Hamilton contains several water-control structures which can alter the effective size of the area contributing water to the Hamilton lakes according to their gate settings. The chemical and biological conditions in the Hamilton lakes are such that the lakes are not sufficiently enriched to cause problems with excessive weed growth or algae blooms. (USGS)

  19. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau

    PubMed Central

    Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin

    2016-01-01

    The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland. PMID:27494253

  20. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau.

    PubMed

    Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin

    2016-01-01

    The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland.

  1. High intensity training and energy production during 90-second box jump in junior alpine skiers.

    PubMed

    Gross, Micah; Hemund, Kevin; Vogt, Michael

    2014-06-01

    Alpine ski races can last up to 2.5 minutes and have very high metabolic demands. One limiting factor for performance is insufficient aerobic energy supply. We studied the effects of an 8-day interval training block on aerobic capacity (VO2max) and performance and physiology during the 90-second box jump test (BJ90), a maximal performance test employed to simulate the metabolic demands of alpine ski racing, in elite junior skiers. After 10 high-intensity interval training sessions, performed as cycling, running, or an obstacle course, VO2max increased in all subjects by 2.5 ± 1.9 ml · minute(-1) · kg(-1) (4.3 ± 3.2%), as did maximal blood lactate concentration in a graded cycling test (before: 11.7 ± 1.3 mmol · L(-1), after: 14.8 ± 1.8 mmol · L(-1), both parameters p ≤ 0.05). Performance (total jumps) and aerobic energy contribution (63.3 ± 2.8%) during the BJ90 did not increase as hypothesized; however, subjects altered their pacing strategy, which may have counteracted such an effect. Additionally, the present data support the practicality of the performance test used for mimicking the demands of alpine skiing.

  2. Effect of altitude on the genetic structure of an Alpine grass, Poa hiemata

    PubMed Central

    Byars, Sean G.; Parsons, Yvonne; Hoffmann, Ary A.

    2009-01-01

    Background and Aims The persistence of plants inhabiting restricted alpine areas under climate change will depend upon many factors including levels of genetic variation in adaptive traits, population structure, and breeding system. Methods Using microsatellite markers, the genetic structure of populations of a relatively common alpine grass, Poa hiemata, is examined across three altitudinal gradients within the restricted Australian alpine zone where this species has previously been shown to exhibit local adaptation across a narrow altitudinal gradient. Key Results Genetic variation across six microsatellite markers revealed genetic structuring along altitudinal transects, and a reduction in genetic variation at high and low altitude extremes relative to sites central within transects. There was less genetic variation among transect sites compared with altitudinal gradients within transects, even though distances among transects were relatively larger. Central sites within transects were less differentiated than those at extremes. Conclusions These patterns suggest higher rates of gene flow among sites at similar altitudes than along transects, a process that could assist altitudinal adaptation. Patterns of spatial autocorrelation and isolation by distance changed with altitude and may reflect altered patterns of dispersal via pollen and/or seed. There was evidence for selfing and clonality in neighbouring plants. Levels of gene flow along transects were insufficient to prevent adaptive changes in morphological traits, given previously measured levels of selection. PMID:19208670

  3. Generating quantitative palaeoflood data from homogeneous lake sediments: a case-study from Brotherswater, northwest England

    NASA Astrophysics Data System (ADS)

    Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet

    2016-04-01

    The scarcity of long-term hydrological data is a barrier to reliably determining the likelihood of floods becoming more frequent and/or intense in a warmer world. Lakes and their sediments are increasingly being used to reconstruct long-term, highly-resolved datasets of past floods but the ultimate goal, generating quantitative palaeohydrological data to augment flood frequency analyses, is a persistent challenge. To this end, ascertaining the autogenic and allogenic processes influencing the character and preservation potential of palaeoflood laminations and determining the minimum discharge at which a sedimentary imprint will be deposited in a particular system are two key precursors. Some success has been achieved at lakes containing annually-laminated sequences or where event layers exhibit well-defined lithological contacts. Many non-alpine and non-polar lakes, especially those in temperate regions, are instead characterised by visually-homogeneous, organic-rich sediments from which discrete flood laminations are difficult to discriminate. Working at Brotherswater, a small upland lake in northwest England, we have successfully demonstrated an approach to obtain flood frequency and magnitude data from this type of lake system by integrating a 16 month sediment trap deployment (CE 2013-2014) with the recent (CE 1962 - 2014) depositional record. The geochemical composition and end-member modelling of the trap data shed light on the seasonal variation in background sedimentation dynamics, specifically enhanced sediment supply during winter, spring diatom blooms and heightened summer productivity, which alter the signature of coarse-grained deposition in response to higher flows. Having pinpointed the characteristic flood end-member, comparison of the short-core palaeoflood reconstruction to local river discharge data was able to reveal the hydrological thresholds of this system: flood magnitudes calculated to have a four year recurrence interval are preserved in

  4. Hydrology of Lake Carroll, Hillsborough County, Florida

    USGS Publications Warehouse

    Henderson, S.E.; Hayes, R.D.; Stoker, Y.E.

    1985-01-01

    Lakeshore property around Lake Carroll has undergone extensive residential development since 1960. This development increased the lake shoreline, altered surface water flow to and from the lake, and may have affected lake-stage characteristics. Some areas of the lake were dredged to provide fill material for lakefront property. Water-balance analyses for 1952-60, a predevelopment period, and 1961-80, a period of residential development, indicate that both net surface water flow to the lake and downward leakage from the lake to the Floridan aquifer were greater after 1960. These changes were due more to changes in the regional climate and related changes in ground-water levels than to changes associated with residential development. Results of water quality analyses in 1980-81 are within State limits for surface waters used for recreation and wildlife propagation. (USGS)

  5. Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment

    NASA Astrophysics Data System (ADS)

    Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.

    2013-12-01

    Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by

  6. 75 FR 30366 - Alpine County Resource Advisory Committee (RAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... Alpine County at the Alpine Early Learning Center, 100 Foothill Road, Markleeville, CA 96120. FOR FURTHER... District, 1536 S. Carson Street, Carson City, NV 89701 (775) 884-8140; E-Mail danielmorris@fs.fed.us... opportunity to address the Committee at that time. Dated: May 21, 2010. Genny E. Wilson, Designated...

  7. 75 FR 74681 - Alpine County Resource Advisory Committee (RAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... will be held in Alpine County at the Alpine Early Learning Center, 100 Foothill Road, Markleeville, CA... Forest, Carson Ranger District, 1536 S. Carson Street, Carson City, NV 89701 (775) 884-8140; E-MAIL... Committee at that time. Dated: November 22, 2010. Genny E. Wilson, Designated Federal Officer. BILLING...

  8. 75 FR 16069 - Alpine County Resource Advisory Committee (RAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... Alpine County at the Alpine Early Learning Center, 100 Foothill Road, Markleeville, CA 96120. FOR FURTHER... District, 1536 S. Carson Street, Carson City, NV 89701 (775) 352-1240; E-MAIL mbonesteel@fs.fed.us.... Genny E. Wilson, Designated Federal Officer. BILLING CODE 3410-11-M...

  9. Water resources: Research network to track alpine water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water cycle in alpine environments worldwide supplies fresh water to vast downstream areas inhabited by more than half of humanity. The International Network for Alpine Research Catchment Hydrology (INARCH) was launched this year by the Global Energy and Water Exchanges project of the World Clim...

  10. The Effectiveness of Cattlemans Detention Basin, South Lake Tahoe, California

    USGS Publications Warehouse

    Green, Jena M.

    2006-01-01

    Lake Tahoe (Nevada-California) has been designated as an 'outstanding national water resource' by the U.S. Environmental Protection Agency, in part, for its exceptional clarity. Water clarity in Lake Tahoe, however, has been declining at a rate of about one foot per year for more than 35 years. To decrease the amount of sediment and nutrients delivered to the lake by way of alpine streams, wetlands and stormwater detention basins have been installed at several locations around the lake. Although an improvement in stormwater and snowmelt runoff quality has been measured, the effectiveness of the detention basins for increasing the clarity of Lake Tahoe needs further study. It is possible that poor ground-water quality conditions exist beneath the detention basins and adjacent wetlands and that the presence of the basins has altered ground-water flow paths to nearby streams. A hydrogeochemical and ground-water flow modeling study was done at Cattlemans detention basin, situated adjacent to Cold Creek, a tributary to Lake Tahoe, to determine whether the focusing of storm and snowmelt runoff into a confined area has (1) modified the ground-water flow system beneath the detention basin and affected transport of sediment and nutrients to nearby streams and (2) provided an increased source of solutes which has changed the distribution of nutrients and affected nutrient transport rates beneath the basin. Results of slug tests and ground-water flow modeling suggest that ground water flows unrestricted northwest across the detention basin through the meadow. The modeling also indicates that seasonal flow patterns and flow direction remain similar from year to year under transient conditions. Model results imply that about 34 percent (0.004 ft3/s) of the total ground water within the model area originates from the detention basin. Of the 0.004 ft3/s, about 45 percent discharges to Cold Creek within the modeled area downstream of the detention basin. The remaining 55 percent

  11. Lake Constance

    Atmospheric Science Data Center

    2013-04-17

    ... Swiss shores of Lake Constance at the town of Rorschach. Eutrophication, or the process of nutrient enrichment, is rapidly accelerated ... of the value of Lake Constance, efforts to mitigate eutrophication were initiated in the 1970's. MISR was built and is managed ...

  12. Nitrogen and carbon storage in alpine plants.

    PubMed

    Monson, Russell K; Rosenstiel, Todd N; Forbis, Tara A; Lipson, David A; Jaeger, Charles H

    2006-02-01

    Alpine plants offer unique opportunities to study the processes and economics of nutrient storage. The short alpine growing season forces rapid completion of plant growth cycles, which in turn causes competition between vegetative and reproductive growth sinks during the early part of the growing season. Mobilization of stored nitrogen and carbon reserves facilitates competing sinks and permits successful completion of reproduction before the onset of winter stress. We discuss the theoretical framework for assessing the costs and benefits of nutrient storage in alpine plants in order to lay the foundation for interpretation of observations. A principal point that has emerged from past theoretical treatments is the distinction between reserve storage, defined as storage that occurs with a cost to growth, and resource accumulation, defined as storage that occurs when resource supply exceeds demand, and thus when there is no cost to growth. We then discuss two case studies, one already published and one not yet published, pertaining to the storage and utilization of nitrogen and carbon compounds in alpine plants from Niwot Ridge, Colorado. In the first case, we tested the hypothesis that the seasonal accumulation of amino acids in the rhizome of N-fertilized plants of Bistorta bistortoides provides an advantage to the plant by not imposing a cost to growth at the time of accumulation, but providing a benefit to growth when the accumulated N is remobilized. We show that, as predicted, there is no cost during N accumulation but, not as predicted, there is no benefit to future growth. In the presence of N accumulation, reliance on stored N for growth increases, but reliance on current-season, soil-derived N decreases; thus the utilization of available N in this species is a 'zero sum' process. Inherent meristematic constraints to growth cause negative feedback that limits the utilization of accumulated N and precludes long-term advantages to this form of storage. In the

  13. Characterizing streamflow generation in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Chiogna, Gabriele; Cano Paoli, Karina; Bellin, Alberto

    2016-04-01

    Developing effective hydrological models for streamflow generation in Alpine catchments is challenging due to the inherent complexity of the intertwined processes controlling water transfer from hillslopes to streams and along the river network. With water discharge as the sole observational variable it is impossible to differentiate between different streamflow sources, and modelling activity is often limited to simplified phenomenological rainfall-runoff models. This study focuses on quantifying streamflow sources at different temporal scales and the associated uncertainty by using natural tracer data (electrical conductivity, oxygen and hydrogen stable isotopes ratios) as observational variables supplementing streamflow measurements. We determine the spatial and temporal hydrological behavior and the mean residence time of water in the Vermigliana catchment, North-Eastern Italy and we separate contributions to streamflow originating from Presena and Presanella glaciers, both exerting a strong control on the hydrologic budget of the study site. Furthermore, we identify a seasonal control on the effect of storm events. The catchment responded rapidly to precipitation events in early autumn, it was unaffected by precipitation events in early spring, while runoff generation was enhanced by snow melting in late autumn. Air temperature is identified as the main controlling parameter, in addition to precipitation. Two-component mixing analysis showed that the relative contribution of new water, which can contribute up to 75% of total streamflow, is very rapid. Only two hours time-lag was observed between the beginning of the precipitation event and the emergence of a significant contribution of new water. These results evidence the relevance of mixing between pre-event and event water in the Vermigliana catchment, and in similar high elevation Alpine catchments. This study provides new insights on the dynamics of streamflow generation in Alpine catchments and a

  14. 3D cartography of the Alpine Arc

    NASA Astrophysics Data System (ADS)

    Vouillamoz, N.; Sue, C.; Champagnac, J. D.; Calcagno, P.

    2012-04-01

    We present a 3D cartography of the alpine arc, a highly non-cylindrical mountain belt, built using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimentional cartography that would be used as input for further alpine studies.

  15. Is leg compression beneficial for alpine skiers?

    PubMed Central

    2013-01-01

    Background This study examined the effects of different levels of compression (0, 20 and 40 mmHg) produced by leg garments on selected psycho-physiological measures of performance while exposed to passive vibration (60 Hz, amplitude 4-6 mm) and performing 3-min of alpine skiing tuck position. Methods Prior to, during and following the experiment the electromygraphic (EMG) activity of different muscles, cardio-respiratory data, changes in total hemoglobin, tissue oxygenation and oscillatory movement of m. vastus lateralis, blood lactate and perceptual data of 12 highly trained alpine skiers were recorded. Maximal isometric knee extension and flexion strength, balance, and jumping performance were assessed before and after the experiment. Results The knee angle (−10°) and oscillatory movement (−20-25.5%) were lower with compression (P < 0.05 in all cases). The EMG activities of the tibialis anterior (20.2-28.9%), gastrocnemius medialis (4.9-15.1%), rectus femoris (9.6-23.5%), and vastus medialis (13.1-13.7%) muscles were all elevated by compression (P < 0.05 in all cases). Total hemoglobin was maintained during the 3-min period of simulated skiing with 20 or 40 mmHg compression, but the tissue saturation index was lower (P < 0.05) than with no compression. No differences in respiratory parameters, heart rate or blood lactate concentration were observed with or maximal isometric knee extension and flexion strength, balance, and jumping performance following simulated skiing for 3 min in the downhill tuck position were the same as in the absence of compression. Conclusions These findings demonstrate that with leg compression, alpine skiers could maintain a deeper tuck position with less perceived exertion and greater deoxygenation of the vastus lateralis muscle, with no differences in whole-body oxygen consumption or blood lactate concentration. These changes occurred without compromising maximal leg strength, jumping performance or balance

  16. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains

    PubMed Central

    Kammerlander, Barbara; Breiner, Hans-Werner; Filker, Sabine; Sommaruga, Ruben; Sonntag, Bettina; Stoeck, Thorsten

    2015-01-01

    We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs97%, operational taxonomic units), Stramenopiles (34.0% OTUs97%), Cryptophyta (4.0% OTUs97%), Chloroplastida (3.6% OTUs97%) and Fungi (1.7% OTUs97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes. PMID:25764458

  17. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains.

    PubMed

    Kammerlander, Barbara; Breiner, Hans-Werner; Filker, Sabine; Sommaruga, Ruben; Sonntag, Bettina; Stoeck, Thorsten

    2015-04-01

    We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs 97%, operational taxonomic units), Stramenopiles (34.0% OTUs 97%), Cryptophyta (4.0% OTUs 97%), Chloroplastida (3.6% OTUs 97%) and Fungi (1.7% OTUs 97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs 97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes.

  18. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    PubMed

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  19. Climatic changes and anthropogenic pollution as evidenced by two Alpine lacustrine records, Switzerland.

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Poté, John; Guédron, Stéphane; Adatte, Thierry; Chiaradia, Massimo; Loizeau, Jean-Luc; Spangenberg, Jorge; Anselmetti, Flavio S.

    2010-05-01

    This study aims to provide high-resolution records of climatic changes and human impacts on two different Alpine environments: Lake Lucerne is a large (114 km2) lake located at 434 m asl in Central Switzerland, whereas Meidsee is a small (<1 km2) remote lake located at 2661 m asl in the Southern Alps. Two short gravity cores (1.2 and 1.6 m) recovering the industrial history and the last millennia were sampled with a resolution of 1 cm, and investigated for organic (13δC, 15δN, C/N) and/or inorganic (δ13C, δ18O) matter contents, and elemental composition (REE compositions, trace elements, and heavy metals). Both sites exhibit 1) rapid hydrological changes related to variations in winter precipitations, and 2) increases in atmospheric pollution due to human activities. Lead enrichment factors combined to changes in lead isotopic composition (206Pb/207Pb ratio) are used to distinguish natural from anthropogenic sources. The greatest mercury and lead atmospheric emissions occurred during the twentieth century, resulting from the extensive combustion of fossil coal and petroleum in Europe. Although the highest heavy metals fluxes are synchronous with major anthropogenic changes (e.g. Roman mining, industrial revolution), proxies show that in absence of such events, the heavy metals deposition in the sedimentary records is primarily influenced by sedimentological processes linked to climate variations (i.e. runoff and erosion processes).

  20. Phospholipid Analyses for Microbial Community Composition in Alpine Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Webster, C. E.; Tapp, J. B.; Pfiffner, S. M.

    2008-12-01

    This project is examining factors of non-anthropogenic acid rock drainage that influence microbial community composition in the Peekaboo Gulch drainage basin (Sawatch Range, Colorado). At this site, natural acid rock drainage outflows from acidic springs (pH=2.6) on Red Mountain. The acid drainage converges with South Fork Lake Creek (pH ~ 7.0, prior to convergence) two miles down gradient. Sediment samples were collected across confluences with gradient of pH, temperature, conductivity and metal concentration. In-situ parameter measurements ranged from 2.3 to 7.9 of pH, 3.8 to 16.6 degree Celsius for temperature, and 34.9 to 1820 for conductivity. Biomass as measured by phospholipids ranged from 280 to 95,900 pmol/g sediment. The only relationship between the in situ parameters and the phospholipid profiles is a weak positive correlation between pH and branched monounsaturated fatty acid methyl esters in that at a pH greater than 5.0 these fatty acid methyl esters were detected. The phospholipid profiles were diverse across the samples. These profiles changed with respect to the spatial relationship within the drainage pattern. The highest alpine samples contained greater relative abundances of monounsaturated fatty acid methyl esters compared to the lower alpine samples. Microbial community profiles shifted at each confluence depending on water source chemistry. Continuing research is needed to determine other biogeochemical factors that may influence these community shifts.

  1. Simulation of Natural Acid Sulfate Weathering in an Alpine Watershed

    NASA Astrophysics Data System (ADS)

    Bassett, R. L.; Miller, William R.; McHugh, John; Catts, John G.

    1992-09-01

    Streams with acidic sulfate compositions (pH less than 3.5) are naturally generated in the alpine Geneva Creek Basin of the southern Rocky Mountains, an area underlain by Proterozoic metamorphic and igneous rocks that are intruded by Tertiary felsic stocks with associated pyritic alteration. These naturally acidic waters are similar in composition to more familiar man-made acid mine waters or to surface waters acidified by sulfate precipitation. Detailed study of the stream compositions has revealed the principal reactions driving the weathering process and was used to estimate the relative effects of snowpack ionic input versus the solute contribution from acid attack in soil zones and groundwater. In the Geneva Creek Basin, atmospheric sources of solute represent a minor component to the stream water composition, except for chloride, which can be used to determine the fraction of contribution. The weathering process is a balance between oxidation of sulfides, dissolution of silicates, formation of the clay minerals vermiculite, kaolinite, and smectite, carbonate neutralization, and precipitation of ferric and aluminum oxyhydroxides and aluminum sulfate. The chemical analyses of snow samples, multiple samples of water from Geneva Creek and its tributaries, and the composition of primary and secondary minerals identified in the basin serve as input to a mass balance geochemical model, which facilitates the interpretation of the principal geochemical processes.

  2. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes.

    PubMed

    Eagles-Smith, Collin A; Herring, Garth; Johnson, Branden; Graw, Rick

    2016-05-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  3. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  4. Metabolic Profiling of Alpine and Ecuadorian Lichens.

    PubMed

    Mittermeier, Verena K; Schmitt, Nicola; Volk, Lukas P M; Suárez, Juan Pablo; Beck, Andreas; Eisenreich, Wolfgang

    2015-10-01

    Non-targeted ¹H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA) were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.

  5. Forest blowdown and lake acidification

    SciTech Connect

    Dobson, J.E.; Rush, R.M. ); Peplies, R.W. )

    1990-01-01

    The authors examine the role of forest blowdown in lake acidification. The approach combines geographic information systems (GIS) and digital remote sensing with traditional field methods. The methods of analysis consist of direct observation, interpretation of satellite imagery and aerial photographs, and statistical comparison of two geographical distributions-one representing forest blow-down and another representing lake chemistry. Spatial and temporal associations between surface water pH and landscape disturbance are strong and consistent in the Adirondack Mountains of New York. In 43 Adirondack Mountain watersheds, lake pH is associated with the percentage of the watershed area blown down and with hydrogen ion deposition (Spearman rank correlation coefficients of {minus}0.67 and {minus}0.73, respectively). Evidence of a temporal association is found at Big Moose Lake and Jerseyfield Lake in New York and the Lygners Vider Plateau of Sweden. They conclude that forest blowdown facilities the acidification of some lakes by altering hydrologic pathways so that waters (previously acidified by acid deposition and/or other sources) do not experience the neutralization normally available through contact with subsurface soils and bedrock. Increased pipeflow is suggested as a mechanism that may link the biogeochemical impacts of forest blowdown to lake chemistry.

  6. Effects of acid precipitation on reproduction in alpine plant species. [Erythronium grandiflorum; Aquilegia caerulea

    SciTech Connect

    McKenna, M.A.; Hille-Salgueiro, M.; Musselman, R.C. Dept. of Agriculture, Fort Collins, CO )

    1990-01-01

    A series of experiments were designed to determine the impact of acid rain on plant reproductive processes, a critical component of a species life history. Research was carried out in herbaceous alpine communities at the USDA (United States Department of Agriculture) Forest Service Glacier Lakes Ecosystem Experiments Site in the Snowy Mts. of Wyoming. A range of species were surveyed to monitor the sensitivity of pollen to acidification during germination and growth, and all species demonstrated reduced in vitro pollen germination in acidified media. Field pollinations were carried out in Erythronium grandiflorum and Aquilegia caerulea to determine the reproductive success of plants exposed to simulated ambient precipitation (pH 5.6) or simulated acid precipitation (pH 3.6) prior to pollination. In Erythronium, no differences were observed in seed set and seed weight of fruits resulting from the two pollination treatments. In Aquilegia, fruits resulting from the acid spray treatment produced fewer seeds and lighter seeds.

  7. Resource partitioning in two heterochronic populations of Greek Alpine newts, Triturus alpestris veluchiensis

    NASA Astrophysics Data System (ADS)

    Denoël, Mathieu; Schabetsberger, Robert

    2003-04-01

    Current ecological models suggest that the maintenance of trophic polymorphisms is favoured by a different resource use in alternative morphs. Facultative paedomorphosis in newts is an example of phenotypic variation as paedomorphs retain morphological larval traits, such as gills and gill slits. The aim of this study was to find out whether heterochronic morphs occupy particular micro-habitats and focus on specific prey items. Resource partitioning was found between morphs. It concerns mainly food selection with paedomorphs preying more on plankton and less on terrestrial invertebrates than metamorphs. Some habitat specializations were also found with metamorphs being more abundant at the water surface than paedomorphs. Diel variation in habitat use of the two different morphs was minimal. Polymorphism allows Alpine newts to exploit the different resources in the lakes in order to minimize intraspecific competition, but the extent of resource partitioning depends on habitat characteristics.

  8. Hydrology of Hunters Lake, Hernando County, Florida

    USGS Publications Warehouse

    Henderson, S.E.

    1986-01-01

    The size and shape of Hunters Lake, Florida has been significantly altered by development of the surrounding Spring Hill residential community. The lake is the largest in Hernando County, enlarged by lakeshore excavation and connection to nearby ponds to an area of 360 acres at an average stage of 17.2 ft above sea level. Hunters Lake is naturally a closed lake, but development of Spring Hill has resulted in a surface water outflow from the lake in its southwest corner. Inflow to the lake could occur on the east side during extreme high-water periods. The karst terrain of the Hunters Lake area is internally drained through permeable soils, depressions, and sinkholes, and natural surface drainage is absent. The underlying Floridan aquifer system is unconfined except locally near coastal springs. Flow in the groundwater system is to the west regionally and to the southwest in the immediate area of Hunters Lake. Water level gradients in the groundwater system increase from 1.4 ft/mi east of the lake to about 8 ft/mi southwest of the lake. Hunters Lake is hydraulically connected to the groundwater system, receiving groundwater on the northeast side and losing water to the groundwater system on the southwest side. This close relationship with the groundwater system is demonstrated by graphical and numerical comparison of Hunters Lake stage with water levels in nearby groundwater sites. During 1965-84, the stage of Hunters Lake fluctuated between 12.48 and 20.7 ft above sea level. Because area lakes are all directly affected by groundwater levels, they also show a close relationship with water levels in Hunters Lake. Analysis of water quality data for Hunters Lake indicates that the water of the lake is a soft calcium bicarbonate type with ionic concentrations higher than in water from nearby shallow wells and lower than in water from the Upper Floridan aquifer. Samples collected in 1981-1983 indicate slightly higher levels of ionic concentration than in 1965

  9. Lake Tapps tephra: An early Pleistocene stratigraphic marker in the Puget Lowland, Washington

    USGS Publications Warehouse

    Westgate, J.A.; Easterbrook, D.J.; Naeser, N.D.; Carson, R.J.

    1987-01-01

    The rhyolitic Lake Tapps tephra was deposited about 1.0 myr ago, shortly after culmination of the early phase of the Salmon Springs Glaciation in the Puget Lowland. It is contained within sediments that were deposited in ponds or lakes in front of the reteating glacier. An herb-dominated tundra existed in the southern Puget Lowland at that time. Lake Tapps tephra is most likely the product of an eruption that in part was phreatomagmatic. It forms an early Pleistocene stratigraphic marker across the southern sector of the Puget Lowland and provides a link between Puget lobe sediments of the Cordilleran Ice Sheet and sediments deposited by Olympic alpine glaciers. ?? 1987.

  10. Changes in Quadriceps Muscle Activity During Sustained Recreational Alpine Skiing

    PubMed Central

    Kröll, Josef; Müller, Erich; Seifert, John G.; Wakeling, James M.

    2011-01-01

    During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing) and the last two (POSTskiing) runs was measured from the vastus lateralis (VL) and rectus femoris (RF) using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination) within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs. Key points The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF. General muscular fatigue, where additional specific fibers have to be recruited due to the reduced power output of other fibers, did not occur. A modified skiing style towards a less functional and hence more uncontrolled skiing technique seems to be a key

  11. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Gan-Lin; Yang, Jin-Ling; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Yang, Ren-Min; Yang, Fan

    2014-11-01

    Soil water retention influences many soil properties and soil hydrological processes. The alpine meadows and steppes of the Qilian Mountains on the northeast border of the Qinghai-Tibetan Plateau form the source area of the Heihe River, the second largest inland river in China. The soils of this area therefore have a large effect on water movement and storage of the entire watershed. In order to understand the controlling factors of soil water retention and how they affect regional eco-hydrological processes in an alpine grassland, thirty-five pedogenic horizons in fourteen soil profiles along two facing hillslopes in typical watersheds of this area were selected for study. Results show that the extensively-accumulated soil organic matter plays a dominant role in controlling soil water retention in this alpine environment. We distinguished two mechanisms of this control. First, at high matric potentials soil organic matter affected soil water retention mainly through altering soil structural parameters and thereby soil bulk density. Second, at low matric potentials the water adsorbing capacity of soil organic matter directly affected water retention. To investigate the hydrological functions of soils at larger scales, soil water retention was compared by three generalized pedogenic horizons. Among these soil horizons, the mattic A horizon, a diagnostic surface horizon of Chinese Soil Taxonomy defined specially for alpine meadow soils, had the greatest soil water retention over the entire range of measured matric potentials. Hillslopes with soils having these horizons are expected to have low surface runoff. This study promotes the understanding of the critical role of alpine soils, especially the vegetated surface soils in controlling the eco-hydrological processes in source regions of the Heihe River watershed.

  12. Analysis of Poyang Lake water balance and its indication of river-lake interaction.

    PubMed

    Zhang, Zengxin; Huang, Yuhan; Xu, Chong-Yu; Chen, Xi; Moss, Elica M; Jin, Qiu; Bailey, Alisha M

    2016-01-01

    In recent years, water shortage is becoming one of the most serious problems in the Poyang Lake. In this paper, the long-term water balance items of the Poyang Lake have been analyzed to reveal the coupling effects of Three Gorges Dam (TGD) and droughts on the water balance of Poyang Lake. The results indicate that: (1) the water balance items of Poyang Lake vary greatly, e.g. lake precipitation and inflow decrease during the past several decades while evaporation and water consumption increase significantly; (2) the water balance of Poyang Lake has been affected by the operation of TGD. Negative lake water balance in recent years leads to a serious water shortage problem in the Poyang Lake. Moreover, the operation of TGD also changed the river-lake relationship in the lower Yangtze River basin; (3) the coupling effects of drought and TGD on the lake water balance has been analyzed by using composite analysis method and it can be found that the operation of TGD has significantly altered the lake water balance. But it is not the only factor that affects the lake water balance, and the droughts might cause their relations to be much more complicated.

  13. Quantified sensitivity of lakes to record historic earthquakes: Implications for paleoseismology

    NASA Astrophysics Data System (ADS)

    Wilhelm, Bruno; Nomade, Jerome; Crouzet, Christian; Litty, Camille; Belle, Simon; Rolland, Yann; Revel, Marie; Courboulex, Françoise; Arnaud, Fabien; Anselmetti, Flavio S.

    2015-04-01

    Seismic hazard assessment is a challenging issue for modern societies. A key parameter to be estimated is the recurrence interval of damaging earthquakes. In moderately active seismo-tectonic regions, this requires the establishment of earthquake records long enough to be relevant, i.e. far longer than historical observations. Here we investigate how lake sediments can be used for this purpose and quantify the conditions that enable earthquake recording. For this purpose, (i) we studied nine lake-sediment sequences to reconstruct mass-movement chronicles in different settings of the French Alpine range and (ii) we compared the chronicles to the well-documented earthquake history over the last five centuries. The studied lakes are all small alpine-type lakes based directly on bedrock. All lake sequences have been studied following the same methodology; (i) a multi-core approach to well understand the sedimentary processes within the lake basins, (ii) a high-resolution lithological and grain-size characterization and (iii) a dating based on short-lived radionuclide measurements, lead contaminations and radiocarbon ages. We identified 40 deposits related to 26 mass-movement (MM) occurrences. 46% (12 on 26) of the MMs are synchronous in neighbouring lakes, supporting strongly an earthquake origin. In addition, the good agreement between MMs ages and historical earthquake dates suggests an earthquake trigger for 88% (23 on 26) of them. Related epicenters are always located at distances of less than 100 km from the lakes and their epicentral MSK intensity ranges between VII and IX. However, the number of earthquake-triggered MMs varies between lakes of a same region, suggesting a gradual sensitivity of the lake sequences towards earthquake shaking, i.e. distinct lake-sediment slope stabilities. The quantification of this earthquake sensitivity and the comparison to the lake system and sediment characteristics suggest that the primary factor explaining this variability is

  14. Neotectonic fault structures in the Lake Thun area (Switzerland)

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano C.; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Merz, Kaspar; Anselmetti, Flavio S.

    2016-04-01

    Strong historic earthquakes (i.e. intensities I0 ≥ V) in Switzerland are well documented by the earthquake catalogue of Switzerland ECOS-09 (e.g. Frutigen, 1729 AD, Mw=5.2, I0=VI). Many of these strong events can be recognized paleoseismically by large subaquatic, earthquake-triggered mass movements that occur frequently in Swiss Lakes. Some of these represent the occasional occurrence of even stronger earthquakes (i.e. Mw ˜6.5) in the Alpine region (Strasser et al., 2013), which are expected to produce noticeable surface ruptures. However, convincing evidence for Quaternary displacements with offset surface expressions have scarcely been found (e.g., Wiemer et al., 2009). Applying a multi-disciplinary approach, this study presents potential candidates for such faults in the larger Lake Thun area at the edge of the Alps. The overdeepened basin of Lake Thun is situated at the northern Alpine front, which extends orthogonally to the general strike direction of the Alpine nappe front. The northern shoreline is predominantly shaped by the front of the Subalpine Molasse, which is in strong contrast to the south western shore built by the structurally higher units of the Middle and Lower Penninic nappes. This pattern with obvious differences of both lake sides suggests a major fault along the lake axis and high tectonic activity during nappe emplacement, i.e. from Eocene times throughout the Late Miocene. The area is dominated today by a strike-slip stress regime with a slight normal faulting component (Kastrup et al., 2004). As part of a multi-disciplinary study, attempting to find potential neotectonically active fault structures in the Lake Thun area, a 2D ground penetrating radar (GPR) survey was conducted. The aim of the GPR survey was to link observations from a multichannel reflection seismic survey and a multibeam bathymetric survey carried out in Lake Thun with findings in a nearby gravel quarry revealing suspicious deformation features such as rotated gravel

  15. Interaction of various flow systems in small alpine catchments: conceptual model of the upper Gurk Valley aquifer, Carinthia, Austria

    NASA Astrophysics Data System (ADS)

    Hilberg, Sylke; Riepler, Franz

    2016-08-01

    Small alpine valleys usually show a heterogeneous hydraulic situation. Recurring landslides create temporal barriers for the surface runoff. As a result of these postglacial processes, temporal lakes form, and thus lacustrine fine-grained sedimentation intercalates with alluvial coarse-grained layers. A sequence of alluvial sediments (confined and thus well protected aquifers) and lacustrine sediments (aquitards) is characteristic for such an environment. The hydrogeological situation of fractured hard-rock aquifers in the framing mountain ranges is characterized by superficially high hydraulic conductivities as the result of tectonic processes, deglaciation and postglacial weathering. Fracture permeability and high hydraulic gradients in small-scaled alpine catchments result in the interaction of various flow systems in various kinds of aquifers. Spatial restrictions and conflicts between the current land use and the requirements of drinking-water protection represent a special challenge for water resource management in usually densely populated small alpine valleys. The presented case study describes hydrogeological investigations within the small alpine valley of the upper Gurktal (Upper Carinthia, Austria) and the adjacent Höllenberg Massif (1,772 m above sea level). Hydrogeological mapping, drilling, and hydrochemical and stable isotope analyses of springs and groundwater were conducted to identify a sustainable drinking-water supply for approximately 1,500 inhabitants. The results contribute to a conceptual hydrogeological model with three interacting flow systems. The local and the intermediate flow systems are assigned to the catchment of the Höllenberg Massif, whereas the regional flow system refers to the bordering Gurktal Alps to the north and provides an appropriate drinking water reservoir.

  16. Lithological Characteristics of the Alpine Fault Zone from DFDP-1 and Outcrop Observations

    NASA Astrophysics Data System (ADS)

    Toy, V. G.; Boulton, C. J.; Prior, D. J.; Norris, R. J.; Mariani, E.; Faulkner, D. R.; Sutherland, R.; Townend, J.

    2012-12-01

    Approximately 120 m total length of core which was recovered across the Alpine Fault Zone during drilling of DFDP-1 sampled a similar fault rock sequence to that observed in nearby outcrops. Detailed description of core and outcrop samples allows us to characterize the fault rocks in general, and to more clearly define the alteration zone identified by Sutherland et al. (in press; this session). We identify six distinct basement-derived lithologic units that we anticipate will also be encountered in DFDP-2: 1) "Schist-derived mylonite" to ultramylonite with a Pacific Plate quartzo-feldspathic or metabasic protolith, which generally has an amphibolite facies mineralogy; 2) "Brown-green-black ultramylonite" that is finely laminated, displays a hydrous greenschist facies mineralogy, and may in part have formed from Australian Plate protoliths; 3) "Unfoliated cataclasites" primarily derived from Pacific Plate protoliths; 4) "Foliated cataclasites" primarily derived from Pacific Plate protoliths; 5) "Gouges" composed of ultracomminuted material (described in more detail by Boulton et al., this session); and 6) "Footwall cataclasites", so named because they were first encountered beneath the shallowest principal slip zone (PSZ) in DFDP-1B. Unit 6 locally contains feldspar and biotite in textures reminiscent of granite, suggesting it is derived from a footwall protolith. However, we emphasise that, at present, downhole geophysical logs provide clearer distinction between units 3 and 4, and unit 6, than is evident from examination of hand specimens of the core (Townend et al., this session). We anticipate further microscopic and geochemical investigations will allow cataclasites derived from the two different protoliths to be more clearly differentiated. Carbonate cements are common, and phyllosilicates such as chlorite and illite-muscovite are more pervasive within a "primary alteration zone" developed within 20 m of the PSZs in DFDP-1. In a "secondary alteration zone

  17. The missing piece: sediment records in remote Mountain lakes confirm glaciers being secondary sources of persistent organic pollutants.

    PubMed

    Schmid, Peter; Bogdal, Christian; Blüthgen, Nancy; Anselmetti, Flavio S; Zwyssig, Alois; Hungerbühler, Konrad

    2011-01-01

    After atmospheric deposition and storage in the ice, glaciers are temporary reservoirs of persistent organic pollutants (POPs). Recently, the hypothesis that melting glaciers represent secondary sources of these pollutants has been introduced by investigations of the historical trend of POPs in a dated sediment core from the proglacial Alpine Lake Oberaar. Here, the hypothesis is further confirmed by the comparison of sediment data gathered from two Alpine lakes with a glaciated and a nonglaciated hydrological catchment. The two lakes (Lake Engstlen and Lake Stein in the Bernese Alps in Switzerland) are situated only 8 km apart at similar altitude and in the same meteorological catchment. In the nonglacial lake sediment of Lake Engstlen, PCBs and DDT (polychlorinated biphenyls and dichlorodiphenyl trichloroethane) levels culminated with the historic usage of these chemicals some 30-50 years ago. In the glacial Lake Stein, this peak was followed by a reincrease in the 1990s, which goes along with the accelerated melting of the adjacent glacier. This study confirms the hypothesis of glaciers being a secondary source of these pollutants and is in accordance with the earlier findings in Lake Oberaar.

  18. On the measurement of alpine subscale erosion

    NASA Astrophysics Data System (ADS)

    Konz, N.; Schaub, M.; Prasuhn, V.; Alewell, C.

    2009-04-01

    Institute of Environmental Geosciences, University of Basel, Switzerland Data on quantification of sheet erosion rates in alpine grasslands and their dependency on land use remain scarce but are urgently needed to estimate soil degradation and soil conservation strategies. We determined soil erosion rates based on the Cs-137 method with in-situ measurements and with sediment traps. The Cs-137 method integrates the erosion over the last 22 years (time after the Chernobyl accident), whereas sediment traps provide information on erosion rates over single weeks and months during the vegetation period. Sediment traps can not be applied during winter time in alpine regions because snow amounts flatten and destroy the sediment traps. Three different land use types were investigated: hayfields, pasture with dwarf shrubs and pasture without dwarf shrubs. Our test plots are situated in the Urseren Valley (Central Switzerland) with a mean slope steepness of 37°. Monthly erosion rates measured with sediment traps during the vegetation periods 2007 and 2008 are about 0.01 t ha-1 for hayfields, 0.005 t ha-1 for pastures with dwarf shrubs and 0.05 t ha-1 for pastures without dwarf shrubs. Mean annual soil erosion rates determined with Cs-137 of the investigated sites ranged between 4.7 t ha-1 a-1 for pastures with dwarf shrubs to >15 t ha-1 a-1 at hayfields and pastures without dwarf shrubs and are thus exceedingly high compared to measurements with sediment traps. Cs-137 measurements integrated over the last 22 years, including extreme rainfall events as well as winter processes; whereas sediment traps provide erosion rates based on summer time rainfall events. Our results lead to the assumption that the triggering processes of alpine erosion are due to snow gliding processes during winter time whereas erosion rates due to overland flow and splash effects play a minor role on the entire erosion amount. These different amounts on erosion rates for the vegetation periods in

  19. White Lake AOC

    EPA Pesticide Factsheets

    White Lake is in Muskegon County along the eastern shore of Lake Michigan. It was named an Area of Concern on the Great Lakes under the Great Lakes Water Quality Agreement of 1987 and delisted in 2014.

  20. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau

    PubMed Central

    Lin, Li; Zhu, Biao; Chen, Chengrong; Zhang, Zhenhua; Wang, Qi-Bing; He, Jin-Sheng

    2016-01-01

    Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland. PMID:27527683

  1. CHARACTERIZATION OF ENDOCRINE-DISRUPTION AND CLINICAL MANIFESTATIONS IN LARGE-MOUTH BASS FROM FLORIDA LAKES

    EPA Science Inventory

    Previous efforts from this laboratory, have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefo...

  2. Evaluation of water quality projects in the Lake Tahoe basin.

    PubMed

    Schuster, S; Grismer, M E

    2004-01-01

    Lake Tahoe is a large sub alpine lake located in the Sierra Nevada Range in the states of California and Nevada. The Lake Tahoe watershed is relatively small (800 km(20) and is made up of soils with a very low nutrient content and when combined with the Lake's enormous volume (156 km(3)) produces water of unparalleled clarity. However, urbanization around the Lake during the past 50 yr has greatly increased nutrient flux into the Lake resulting in increased algae production and rapidly declining water clarity. Lake transition from nitrogen limiting to phosphorous limiting during the last 30 yr suggests the onset of cultural eutrophication of Lake Tahoe. Protecting Lake Tahoe's water quality has become a major public concern and much time, effort, and money has been, and will be, spent on this undertaking. The effectiveness of remedial actions is the subject of some debate. Local regulatory agencies have mandated implementation of best management practices (BMPs) to mitigate the effects of development, sometimes at great additional expense for developers and homeowners who question their effectiveness. Conclusive studies on the BMP effectiveness are also expensive and can be difficult to accomplish such that very few such studies have been completed. However, several project evaluations have been completed and more are underway. Such study usually demonstrates support of the project's effectiveness in decreasing nutrient flux to Lake Tahoe. Here, we review the existing state of knowledge of nutrient loading to the Lake and to highlight the need for further evaluative investigations of BMPs in order to improve their performance in present and future regulatory actions.

  3. Sustainable use of alpine and pre-alpine grassland soils in a changing climate (SUSALPS)

    NASA Astrophysics Data System (ADS)

    Zistl-Schlingmann, Marcus; Beck, Robert; Brandhuber, Robert; Butterbach-Bahl, Klaus; Garcia Franco, Noelia; von Gillhaußen, Phillip; Jentsch, Anke; Kiese, Ralf; Krämer, Alexander; Kögel-Knabner, Ingrid; Köllner, Thomas; Poppenborg, Patrick; Schloter, Michael; Schulz, Stefanie; Wiesmeier, Martin; Wolf, Benjamin; Dannenmann, Michael

    2016-04-01

    The development of ecologically as well as economically sustainable management options for the carbon- and nitrogen rich alpine and pre-alpine grassland soils in a changing climate poses a grand scientific and socio- economical challenge. The transdisciplinary SUSALPS project starting in 2016 aims to essentially improve the knowledge on the functionality of alpine and pre-alpine grassland soils using both natural-scientific/ technical and socio economical approaches. The project is building on existing infrastructure of German grassland-ecosystem-research like the pre-alpine TERENO (Terrestrial ecosystem observation network observatory) observatory sites, the EVENT and SIGNAL sites as well as long term LfL (Bayerische Landesanstalt für Landwirtschaft) sites, plus a new additional high elevation (1400m a.s.l) site in the Bavarian Alps. The site setup along the elevational gradient on the edge of the Alps (1400 m to 300 m) is used for space-for-time climate change experiments which are combined with extensive and intensive management treatments. A key focus of SUSALPS will be the characterization of combined climate change/management effects on carbon and nitrogen biogeochemistry. Hence, we will evaluate the influence of different management options and current and future climate changes on the soil microbiome and associated biogeochemical processes in the plant-soil-system, on nitrogen use efficiency, on biosphere-atmosphere exchange of greenhouse gases as well as on leaching of environmentally relevant compounds. For this purpose, we simulate the predicted climate change in the region by translocation of large lysimeters (1m2, 1.4m depth; TERENO lysimeters, translocated in 2011) for measurements of biosphere-atmosphere hydrosphere exchange of environmentally relevant C and N compounds as well as by newly transferred smaller plant-soil-mesocosms used for destructive biogeochemical process studies. By closely linking this experimental work with biogeochemical and

  4. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    NASA Astrophysics Data System (ADS)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  5. Arctic and Alpine Vegetations: Similarities, Differences, and Susceptibility to Disturbance

    ERIC Educational Resources Information Center

    Billings, W. D.

    1973-01-01

    Discusses environmental and biological aspects of arctic and alpine vegetations in the New World between the equator and the Arctic Ocean, considering their similarities, differences, and susceptibility to disturbance by man. (JR)

  6. Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleoecological approaches

    USGS Publications Warehouse

    Saros, Jasmine E.; Stone, Jeffery R.; Pederson, Gregory T.; Slemmons, Krista; Spanbauer, Trisha; Schliep, Anna; Cahl, Douglas; Williamson, Craig E.; Engstrom, Daniel R.

    2015-01-01

    Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.

  7. Palinspastic reconstruction of the Alpine thrust belt at the Alpine-Carpathian transition - A geological Sudoku

    NASA Astrophysics Data System (ADS)

    Beidinger, A.; Decker, K.; Zamolyi, A.; Hölzel, M.; Hoprich, M.; Strauss, P.

    2009-04-01

    The palinspastic reconstruction of the Austroalpine thrust belt is part of the project Karpatian Tectonics, which is funded by OMV Austria. The objective is to reconstruct the evolution of the thrust belt through the Early to Middle Miocene in order to obtain information on the palaeogeographic position of the Northern Calcareous Alps (NCA) in the region of the present Vienna Basin. A particular goal of the study is to constrain the position of reservoir rocks within the Rhenodanubic Flysch units and the NCA with respect to the autochthonous Malmian source rocks overlying the European basement below the Alpine-Carpathian thrust wedge, and to constrain the burial history of these source rocks. Reconstruction uses regional 2D seismic lines crossing from the European foreland into the fold-thrust belt, 3D seismic data covering the external thrust sheets, and lithostratigraphic data from a total of 51 selected wells, which were drilled and provided by OMV Austria. The main criterion, whether a well was suitable for palinspastic reconstruction or not, was its penetration of Alpine thrust sheets down to the Autochthonous Molasse of the foreland. Additional wells, which do not penetrate the entire Alpine thrust complex but include the Allochthonous Molasse or the external Alpine-Carpathian nappes (Waschberg and Roseldorf thrust unit, Rhenodanubic Flysch nappes) in their well path, were also taken into account. The well data in particular comprise stratigraphic information on the youngest overthrust sediments of the different thrust units and the underlying Autochthonous foreland Molasse. These data allow constraining the timing of thrust events in the allochthonous thrust units and overthrusting of the Autochthonous Molasse. In the particular case of overthrust Autochthonous Molasse, additionally to the timing of overthrusting, which can be derived from the youngest overthrust sediments, the palaeogeographic position of the Alpine Carpathian thrust front could directly be

  8. The onset of alpine pastoral systems in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Oeggl, Klaus; Festi, Daniela; Putzer, Andreas

    2015-04-01

    Since the discovery of the Neolithic glacier mummy "Ötzi" in the nival belt of the main Alpine ridge, the onset of alpine pasture is matter of a highly controversial debate both in archaeology and in palaeo-ecology of the Eastern Alps. The implication is that his sojourn in the high-altitudes of the Alps is considered to be connected with pastoral nomadism. Regrettably any archaeological evidence for the existence of such Neolithic alpine pastoral systems is missing up to now and the assumption is based on palynological data only. However, also the palynological record is ambiguous, because pasture indicators in the alpine regions react positive on grazing as well as on fertilization induced by a higher runoff of precipitation. Thus alpine pasture indicators reflect both grazing pressure and climatic change. Anyhow, alpine pastoral systems are a common practice in Alpine animal husbandry, but from an economic point of view such a seasonal vertical transhumance is costly. There are three main reasons for its practice: i) climatic, ii) economic (mainly in connection with population pressure or mining activities), and iii) cultural ideology. In this study we tested the above mentioned reasons in an interdisciplinary study on the beginning of pastoral activities in high altitudes in the central part of the Eastern Alps. This is conducted by palynological analyses of peat deposits situated in the vicinity of the timberline (1600 - 2400 m a.s.l.) combined with archaeological surveys. The investigated sites are located in traditional Alpine transhumance regions and aligned on a transect through the central part of the Eastern Alps. The studies reveal that grazing pressure is reflected since the Bronze Age, which is corroborated by archaeological findings in the vicinity of the investigated sites.

  9. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.

    2014-12-01

    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  10. Lake Powell

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The white ring around Lake Powell tells the story. The surface is down 98 feet. This is critical, because Powell, Lake Mead, and other lakes along the Colorado River provide water for millions of people in five states. We are in the eighth year of a drought on the Colorado River. This year was the driest year ever reported in Southern California, and there is a severe drought in Northern California, down to less than 30-percent of snow pack. This ASTER image of part of Lake Powell was acquired in 2001. The gray area depicts the shrunken, reduced 2007 lake extent compared to the extended, larger black area in 2001.

    The image covers an area of 24 x 30 km, and is centered near 37.1 degrees north latitude, 111.3 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  11. Alpine crustal shear zones and pre-Alpine basement terranes in the Romanian Carpathians and Apuseni Mountains

    NASA Astrophysics Data System (ADS)

    Panã, Dinu; Erdmer, Phillippe

    1994-09-01

    The Carpathian orocline formed by complex suturing of small continental fragments to the East European (and Moesian) plate. Remnants of continental fragments belong to three pre-Alpine lithotectonic assemblages: a "greenstone-granite" association and two gneissic assem blages. During Alpine collision, pieces of crust were repeatedly fragmented and welded to accommodate heterogeneous strain along the irregular East European plate boundary. Shallow structural levels of Alpine tectonic discontinuities in which the locus of most intense strain migrated over time are now exposed as wide retrograde greenschist grade belts. Repeated, mainly transpressive deformation resulted in early ductile fabrics being overprinted by local brittle shear strain. Igneous intrusion accompanied different phases of tectonic activity. The age of shearing initiation is probably late Paleozoic, and the configuration of the zones and their Alpine internal structures are consistent with the geometry of the Carpathian arc.

  12. Lake acidification

    SciTech Connect

    Dobson, J.E.; Peplies, R.W.; Rush, R.M.

    1987-06-01

    This paper examined a National Research Council (NRC) report called Acid Deposition: Long-Term Trends. The report has been the final word on acid deposition as the cause of acidification of lakes. The authors considered it important that the tentative nature of this report be kept in perspective so that the work of the NRC would promote rather than inhibit scientific inquiry on the lake acidification issue. In this spirit, this report proposed that degradation of storm damaged trees could increase the acidity of the forest humus and as a result the ground water which would fed local streams and lakes. They proposed that extensive forest blowdown could be a factor in acidification of surface waters.

  13. Quantifying Recent Ecological Changes in Remote Lakes of North America and Greenland Using Sediment Diatom Assemblages

    PubMed Central

    Hobbs, William O.; Telford, Richard J.; Birks, H. John B.; Saros, Jasmine E.; Hazewinkel, Roderick R. O.; Perren, Bianca B.; Saulnier-Talbot, Émilie; Wolfe, Alexander P.

    2010-01-01

    Background Although arctic lakes have responded sensitively to 20th-century climate change, it remains uncertain how these ecological transformations compare with alpine and montane-boreal counterparts over the same interval. Furthermore, it is unclear to what degree other forcings, including atmospheric deposition of anthropogenic reactive nitrogen (Nr), have participated in recent regime shifts. Diatom-based paleolimnological syntheses offer an effective tool for retrospective assessments of past and ongoing changes in remote lake ecosystems. Methodology/Principal Findings We synthesized 52 dated sediment diatom records from lakes in western North America and west Greenland, spanning broad latitudinal and altitudinal gradients, and representing alpine (n = 15), arctic (n = 20), and forested boreal-montane (n = 17) ecosystems. Diatom compositional turnover (β-diversity) during the 20th century was estimated using Detrended Canonical Correspondence Analysis (DCCA) for each site and compared, for cores with sufficiently robust chronologies, to both the 19th century and the prior ∼250 years (Little Ice Age). For both arctic and alpine lakes, β-diversity during the 20th century is significantly greater than the previous 350 years, and increases with both latitude and altitude. Because no correlation is apparent between 20th-century diatom β-diversity and any single physical or limnological parameter (including lake and catchment area, maximum depth, pH, conductivity, [NO3−], modeled Nr deposition, ambient summer and winter air temperatures, and modeled temperature trends 1948–2008), we used Principal Components Analysis (PCA) to summarize the amplitude of recent changes in relationship to lake pH, lake:catchment area ratio, modeled Nr deposition, and recent temperature trends. Conclusions/Significance The ecological responses of remote lakes to post-industrial environmental changes are complex. However, two regions reveal concentrations of sites

  14. `Hearing' alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Rebetez, Martine; Filippa, Gianluca; Cremonese, Edoardo; Klein, Geoffrey; Rixen, Christian

    2017-02-01

    In alpine environments, the growing season is severely constrained by low temperature and snow. Here, we aim at determining the climatic factors that best explain the interannual variation in spring growth onset of alpine plants, and at examining whether photoperiod might limit their phenological response during exceptionally warm springs and early snowmelts. We analysed 17 years of data (1998-2014) from 35 automatic weather stations located in subalpine and alpine zones ranging from 1560 to 2450 m asl in the Swiss Alps. These stations are equipped with ultrasonic sensors for snow depth measurements that are also able to detect plant growth in spring and summer, giving a unique opportunity to analyse snow and climate effects on alpine plant phenology. Our analysis showed high phenological variation among years, with one exceptionally early and late spring, namely 2011 and 2013. Overall, the timing of snowmelt and the beginning of plant growth were tightly linked irrespective of the elevation of the station. Snowmelt date was the best predictor of plant growth onset with air temperature after snowmelt modulating the plants' development rate. This multiple series of alpine plant phenology suggests that currently alpine plants are directly tracking climate change with no major photoperiod limitation.

  15. `Hearing' alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Rebetez, Martine; Filippa, Gianluca; Cremonese, Edoardo; Klein, Geoffrey; Rixen, Christian

    2016-08-01

    In alpine environments, the growing season is severely constrained by low temperature and snow. Here, we aim at determining the climatic factors that best explain the interannual variation in spring growth onset of alpine plants, and at examining whether photoperiod might limit their phenological response during exceptionally warm springs and early snowmelts. We analysed 17 years of data (1998-2014) from 35 automatic weather stations located in subalpine and alpine zones ranging from 1560 to 2450 m asl in the Swiss Alps. These stations are equipped with ultrasonic sensors for snow depth measurements that are also able to detect plant growth in spring and summer, giving a unique opportunity to analyse snow and climate effects on alpine plant phenology. Our analysis showed high phenological variation among years, with one exceptionally early and late spring, namely 2011 and 2013. Overall, the timing of snowmelt and the beginning of plant growth were tightly linked irrespective of the elevation of the station. Snowmelt date was the best predictor of plant growth onset with air temperature after snowmelt modulating the plants' development rate. This multiple series of alpine plant phenology suggests that currently alpine plants are directly tracking climate change with no major photoperiod limitation.

  16. 'Hearing' alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology.

    PubMed

    Vitasse, Yann; Rebetez, Martine; Filippa, Gianluca; Cremonese, Edoardo; Klein, Geoffrey; Rixen, Christian

    2017-02-01

    In alpine environments, the growing season is severely constrained by low temperature and snow. Here, we aim at determining the climatic factors that best explain the interannual variation in spring growth onset of alpine plants, and at examining whether photoperiod might limit their phenological response during exceptionally warm springs and early snowmelts. We analysed 17 years of data (1998-2014) from 35 automatic weather stations located in subalpine and alpine zones ranging from 1560 to 2450 m asl in the Swiss Alps. These stations are equipped with ultrasonic sensors for snow depth measurements that are also able to detect plant growth in spring and summer, giving a unique opportunity to analyse snow and climate effects on alpine plant phenology. Our analysis showed high phenological variation among years, with one exceptionally early and late spring, namely 2011 and 2013. Overall, the timing of snowmelt and the beginning of plant growth were tightly linked irrespective of the elevation of the station. Snowmelt date was the best predictor of plant growth onset with air temperature after snowmelt modulating the plants' development rate. This multiple series of alpine plant phenology suggests that currently alpine plants are directly tracking climate change with no major photoperiod limitation.

  17. Geophysical Evidence for Holocene Lake-Level Change in Southern California (Dry Lake): Additional Evidence for a Regional Early Holocene High Stand

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.; Bird, B. W.; Howat, I. M.; Tulaczyk, S.

    2007-12-01

    Ground penetrating radar data are used to develop a Holocene history of basin sedimentation in a small, alpine lake in Southern California (Dry Lake). We define three depositional sequences spanning the past 9,000 calendar years before present (cy BP). Although, the basin contains sediments clearly older than the Holocene, we focus on the past 9,000 cy BP to match our similarly aged sediment cores. Sequence I represents the first phase of an early Holocene high stand. A major regression, perhaps following the 8,200 year cold event, separates Sequence I from Sequence II. The timing of this regression is approximately coeval with major regressions at Owens Lake (Bacon et al., 2006) in southeastern California and Tulare Lake (Negrini et al., 2006) in the southern Central Valley of California. Sequence II represents the second phase of the early Holocene high stand. This second high stand phase is also observed at Tulare Lake but not at Owens Lake. Sequence III represents a permanent shift to low or dry lake stands. By 4,000 cy BP, the lake earns rightfully its appellation of Dry Lake as indicated by a permanently contracted central basin. The similarity in ages of early Holocene lake level change across the greater region of Southern California suggests a similar external forcing - perhaps modulation of early Holocene storm activity by insolation (Kirby et al., 2007). The lake level records are less congruous for the mid-to-late Holocene across the region. Specifically for Dry Lake, it is not clear what caused the apparently rapid shift from a deep, early Holocene lake to a permanent shallow or dry lake by the mid-Holocene.

  18. Tibetan alpine tundra responses to simulated changes in climate: Aboveground biomass and community responses

    SciTech Connect

    Yanqing Zhang; Welker, J.M.

    1996-05-01

    High-elevation ecosystems are predicted to be some of the terrestrial habitats most sensitive to changing climates. The ecological consequences of changes in alpine tundra environmental conditions are still unclear especially for habitats in Asia. In this study we report findings from a field experiment where an alpine tundra grassland on the Tibetan plateau (37{degrees}N, 101{degrees}E) was exposed to experimental warming, irradiance was lowered, and wind speed reduced to simulate a suite of potential changes in environmental conditions. Our warming treatment increased air temperatures by 5{degrees}C on average and soil temperatures were elevated by 3{degrees}C at 5 cm depth. Aboveground biomass of grasses responded rapidly to the warmer conditions whereby biomass was 25% greater than that of controls after only 5 wk of experimental warming. This increase was accompanied by a simultaneous decrease in forb biomass, resulting in almost no net change in community biomass after 5 wk. Lower irradiance reduced grass biomass during the same period. Under ambient conditions total aboveground community biomass increased seasonally from 161 g m{sup -2} in July to a maximum of 351 g m{sup -2} in September, declining to 285 g m{sup -2} in October. However, under warmed conditions, peak community biomass was extended into October due in part to continued growth of grasses and the postponement of senescence. Our finding indicate that while alpine grasses respond favorably to altered conditions, others may not. And, while peak community biomass may actually change very little under warmer summers, the duration of peak biomass may be extended having feedback effects on net ecosystem CO{sub 2} balances, nutrient cycling, and forage availability. 47 refs., 3 figs., 3 tabs.

  19. Soil moisture mediates alpine life form and community productivity responses to warming.

    PubMed

    Winkler, Daniel E; Chapin, Kenneth J; Kueppers, Lara M

    2016-06-01

    Climate change is expected to alter primary production and community composition in alpine ecosystems, but the direction and magnitude of change is debated. Warmer, wetter growing seasons may increase productivity; however, in the absence of additional precipitation, increased temperatures may decrease soil moisture, thereby diminishing any positive effect of warming. Since plant species show individual responses to environmental change, responses may depend on community composition and vary across life form or functional groups. We warmed an alpine plant community at Niwot Ridge, Colorado continuously for four years to test whether warming increases or decreases productivity of life form groups and the whole community. We provided supplemental water to a subset of plots to alleviate the drying effect of warming. We measured annual above-ground productivity and soil temperature and moisture, from which we calculated soil degree days and adequate soil moisture days. Using an information-theoretic approach, we observed that positive productivity responses to warming at the community level occur only when warming is combined with supplemental watering; otherwise we observed decreased productivity. Watering also increased community productivity in the absence of warming. Forbs accounted for the majority of the productivity at the site and drove the contingent community response to warming, while cushions drove the generally positive response to watering and graminoids muted the community response. Warming advanced snowmelt and increased soil degree days, while watering increased adequate soil moisture days. Heated and watered plots had more adequate soil moisture days than heated plots. Overall, measured changes in soil temperature and moisture in response to treatments were consistent with expected productivity responses. We found that available soil moisture largely determines the responses of this forb-dominated alpine community to simulated climate warming.

  20. Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics

    NASA Astrophysics Data System (ADS)

    Kuhlemann, Joachim; Kempf, Oliver

    2002-09-01

    The post-flysch (Oligocene-Miocene) palaeogeographic evolution of the entire North Alpine Foreland Basin (NAFB) between Savoy (France) and Lower Austria is presented in eight sketch maps. The compilation considers the palinspastic evolution of the Alps. It includes intramontane deposits, which represent a continuous marginal facies of the NAFB during Rupelian to Early Burdigalian times. The facies distribution in the NAFB was driven by two major types of processes, which are related to the tectonic evolution of the Alpine orogen. The first type, representing tectonic processes at the thrust front of the Alps, directly influenced the facies distribution of the narrowing NAFB. The second type represents an indirect impact of Alpine uplift and tectonics to the NAFB, transformed by varying sediment discharge. A strong increase in sediment discharge due to uplift of the Alps is the major reason for the generally regressive coarsening- and shallowing-upward cycle from the Lower Marine to the Lower Freshwater Molasse (UMM, USM) between 33 and 21 Ma. The development of the "Burdigalian Seaway" at ˜20 Ma was coeval with a reduction of thrust advance rates in the western and central part of the NAFB. Shallow marine conditions (Upper Marine Molasse, OMM) prevailed for ˜3 million years. In the Eastern Alps, reduction of relief due to lateral (east-west-oriented) extension caused a strong reduction in sediment discharge. Closure of the "Burdigalian Seaway" around 17 Ma occurred during a phase of tectonic reorganisation in the Alpine orogen and is coeval with a short-term increase in sediment discharge. Between 17 and 12 Ma, the NAFB was constantly overfilled (Upper Freshwater Molasse, OSM), despite strongly decreasing sediment discharge. Termination of sedimentation in the (unfolded) NAFB occurred diachronously in an undramatic process. It started in the western NAFB in the course of uplift of the Swiss Jura Mountains after 11 Ma and reached Lower Austria around 6-5 Ma

  1. Lake Bonneville

    USGS Publications Warehouse

    Gilbert, Grove Karl

    1890-01-01

    This volume is a contribution to the later physical history of the Great Basin. As a geographic province the Great Basin is characterized by a dry climate, changes of drainage, volcanic eruption, and crustal displacement. Lake Bonneville, the special theme of the volume, was a phenomenon of climate and drainage, but its complete history includes an account of contemporaneous eruption and displacement.

  2. Nitrogen deposition and warming - effects on phytoplankton nutrient limitation in subarctic lakes.

    PubMed

    Bergström, Ann-Kristin; Faithfull, Carolyn; Karlsson, Daniel; Karlsson, Jan

    2013-08-01

    The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosure experiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied over the growing season in 11 lakes situated along an altitudinal/climate gradient with low N-deposition (<1 kg N ha(-1)  yr(-1) ) in northern subarctic Sweden. Short-term bioassay experiments with N- and P-additions revealed that phytoplankton in high-alpine lakes were more prone to P-limitation, and with decreasing altitude became increasingly N- and NP-colimited. Nutrient limitation was additionally most obvious in midsummer. There was also a strong positive correlation between phytoplankton growth and water temperature in the bioassays. Although excess nutrients were available in spring and autumn, on these occasions growth was likely constrained by low water temperatures. These results imply that enhanced N-deposition over the Swedish mountain areas will, with the exception of high-alpine lakes, enhance biomass and drive phytoplankton from N- to P-limitation. However, if not accompanied by warming, N-input from deposition will stimulate limited phytoplankton growth due to low water temperatures during large parts of the growing season. Direct effects of warming, allowing increased metabolic rates and an extension of the growing season, seem equally crucial to synergistically enhance phytoplankton development in these lakes.

  3. Potentially dangerous glacial lakes in Kyrgyzstan - Research overview of 2004-2015

    NASA Astrophysics Data System (ADS)

    Jansky, Bohumir; Yerokhin, Sergey; Sobr, Miroslav; Engel, Zbynek; Cerny, Michal; Falatkova, Kristyna; Kocum, Jan; Benes, Vojtech

    2016-04-01

    Global warming causes intensive melting and retreat of glaciers in most of high mountains all over the world. This process is also evident in the mountain regions of central Tien Shan. Glacier melt water affects changes in hydrological regime of water streams and causes overfilling of high mountain lake basins. The dams of many lakes are very unstable and can burst open. To determine the degree of such risk, it is necessary to analyse the genesis of lakes, to characterize the morphology of the lake basins and to know the particularities of their hydrological regime. According to the latest inventory within territory of Kyrgyzstan, a total of 1328 lakes have been identified as potentially dangerous, 12 lakes are considered as currently dangerous, other 25 feature high potential hazard. Since 1952 more than 70 disastrous cases of lake outburst have been registered. The hazardous alpine lakes are studied in Kyrgyzstan systematically since 1966. Since 2004, Czech-Kyrgyz research team has been operating in Kyrgyzstan in the field of dangerous glacial lakes. Projects were focused primarily on high-mountain glacial lakes risk assessment, propositions of risk mitigation measures, establishment of permanent research station near one of the studied glacier complexes, preparation of risk analysis for selected endangered valleys, evaluation of climatic and hydrological data and glacier development within observed regions. The most significant portion of data and information has been gathered during field work, complemented by satellite image analysis and surveillance flights over the monitored sites.

  4. Organic carbon input from atmospheric deposition: a potential driver of nitrogen export from barren alpine ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.

    2010-12-01

    There is urgency to improve our understanding of how biogeochemical cycling and surface water quality in high-elevation catchments will respond to a combination of changes in climate, atmospheric deposition of pollutants, and potential increases in dust deposition. Previous work has shown that atmospheric wet and dry deposition is an important source of dissolved organic matter for alpine lakes, with important consequences for aquatic ecosystem functioning. Here we investigate new linkages between atmospheric deposition of organic matter and terrestrial biogeochemical processes, namely nitrification. Our goal is to better understand the substantial increase in mean annual nitrogen (N) export that has been observed in Rocky Mountain and other alpine watersheds, while N deposition rates have remained constant. The combination of increasing temperatures and dust emissions, melting glaciers, and surprisingly high amounts of microbial activity in recently deglaciated soils, suggest that carbon (C) cycling in these barren alpine catchments may have an important and, thus far, unexplored role in nitrification and N export. Our results show that the quantity of atmospheric organic carbon inputs approaches that of biological C fixation in magnitude. We hypothesize that heterotrophic processing of atmospheric and autotrophic C inputs and the resulting increased availability of amine compounds may enhance nitrification and intensify N export from alpine catchments. Results from optical spectroscopy further demonstrate that water soluble organic carbon from atmospheric deposition has low aromaticity, is high in amino acid-like moieties (Figure 1), and may represent a labile carbon source for terrestrial and aquatic alpine microorganisms. Fig 1. TOP: Fluorescence excitation emission matrix (EEM) of a representative wet deposition sample (collected 24-30 June, 2009 at Niwot Ridge, Colorado). FI = fluorescence index; SUVA = specific UV absorbance (L mg-1 m-1); AA = amino acid

  5. Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage?

    PubMed

    Bannister, Peter; Maegli, Tanja; Dickinson, Katharine J M; Halloy, Stephan R P; Knight, Allison; Lord, Janice M; Mark, Alan F; Spencer, Katrina L

    2005-06-01

    year. While warmer temperatures might lower frost resistance, they would also reduce the incidence of frosts, and the incidence of frost damage is unlikely to be altered. The relationship of frost resistance with daylength and temperature potentially provides a means of predicting the responses of alpine plants in response to global warming.

  6. ERTS-1 views the Great Lakes

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Pease, S. R.

    1973-01-01

    The meteorological content of ERTS images, particularly mesoscale effects of the Great Lakes and air pollution dispersion is summarized. Summertime lake breeze frontal clouds and various winter lake-effect convection patterns and snow squalls are revealed in great detail. A clear-cut spiral vortex over southern Lake Michigan is related to a record early snow storm in the Chicago area. Marked cloud changes induced by orographic and frictional effects on Lake Michigan's lee shore snow squalls are seen. The most important finding, however, is a clear-cut example of alterations in cumulus convection by anthropogenic condensation and/or ice nuclei from northern Indiana steel mills during a snow squall situation. Jet aircraft condensation trails are also found with surprising frequency.

  7. Annual variability of ozone along alpine hillsides

    NASA Technical Reports Server (NTRS)

    Putz, Erich; Kosmus, Walter

    1994-01-01

    Over a period of more than two years (March 1989 till June 1991) ozone and nitrogen dioxide have been monitored along twelve alpine hillsides in the Austrian alps. The profiles had a height-resolution of 100 m and cover a range between 400 m and 1800 m asl, that is 100 m to 1100 m above the bottom of the valleys. They were situated in remote rural areas as well as in the vicinity of polluted urban and industrial areas. Both trace gases were monitored by means of integral chemical (SAM-surface active monitor) methods with a measuring cycle of two weeks. The concentration of ozone exhibits a substantial annual variation over the entire height range. In summer, highest ozone levels are observed near the ground and at the top of the mountains, whereas in winter the maxima are found mainly in the crest regions. The overall ozone burden shows a relative maximum near the temperature inversion layer in the valleys and an absolute maximum at the crest.

  8. Fungal Biodiversity in the Alpine Tarfala Valley

    PubMed Central

    Coleine, Claudia; Selbmann, Laura; Ventura, Stefano; D’Acqui, Luigi Paolo; Onofri, Silvano; Zucconi, Laura

    2015-01-01

    Biological soil crusts (BSCs) are distributed worldwide in all semiarid and arid lands, where they play a determinant role in element cycling and soil development. Although much work has concentrated on BSC microbial communities, free-living fungi have been hitherto largely overlooked. The aim of this study was to examine the fungal biodiversity, by cultural-dependent and cultural-independent approaches, in thirteen samples of Arctic BSCs collected at different sites in the Alpine Tarfala Valley, located on the slopes of Kebnekaise, the highest mountain in northern Scandinavia. Isolated fungi were identified by both microscopic observation and molecular approaches. Data revealed that the fungal assemblage composition was homogeneous among the BSCs analyzed, with low biodiversity and the presence of a few dominant species; the majority of fungi isolated belonged to the Ascomycota, and Cryptococcus gilvescens and Pezoloma ericae were the most frequently-recorded species. Ecological considerations for the species involved and the implication of our findings for future fungal research in BSCs are put forward. PMID:27682108

  9. Environmental controls on alpine cirque size

    NASA Astrophysics Data System (ADS)

    Delmas, Magali; Gunnell, Yanni; Calvet, Marc

    2014-02-01

    Pleistocene alpine cirques are emblematic landforms of mountain scenery, yet their deceptively simple template conceals complex controlling variables. This comparative study presents a new database of 1071 cirques, the largest of its kind, located in the French eastern Pyrenees. It is embedded in a review of previous work on cirque morphometry and thus provides a perspective on a global scale. First-order cirque attributes of length, width, and amplitude were measured; and their power as predictors of climatic and lithological variables and as proxies for the duration of glacier activity was tested using ANOVA, simple and multiple linear regression, and their various post-hoc tests. Conventional variables such as cirque aspect, floor elevation, and exposure with respect to regional precipitation-bearing weather systems are shown to present some consistency in spatial patterns determined by solar radiation, the morning-afternoon effect, and wind-blown snow accumulation in the lee of ridgetops. This confirms in greater detail the previously encountered links between landforms and climate. A special focus on the influence of bedrock lithology, a previously neglected nonclimatic variable, highlights the potential for spurious relations in the use of cirque size as a proxy of past environmental conditions. Cirques are showcased as complex landforms resulting from the combination of many climatic and nonclimatic variables that remain difficult to rank by order of importance. Apart from a few statistically weak trends, several combinations of different factors in different proportions are shown to produce similar morphometric outcomes, suggesting a case of equifinality in landform development.

  10. Response of alpine grassland to elevated nitrogen deposition and water supply in China.

    PubMed

    Li, Kaihui; Liu, Xuejun; Song, Ling; Gong, Yanming; Lu, Chunfang; Yue, Ping; Tian, Changyan; Zhang, Fusuo

    2015-01-01

    Species composition and productivity are influenced by water and N availability in semi-arid grasslands. To assess the effects of increased N deposition and water supply on plant species composition and productivity, two field experiments with four N addition treatments, and three N and water combination treatments were conducted in alpine grassland in the mid Tianshan mountains, northwest China. When considering N addition alone, aboveground biomass (AGB) of forbs (F(AGB)) responded less to N addition than AGB of grasses (G(AGB)). G(AGB) increased as an effect of N combined with water addition but F(AGB) did not show such an effect, reflecting a stronger response of grasses to the interaction of water availability and N than forbs. Under all treatments, N allocation to the aboveground tissue did not change for either forbs or grasses. N deposition and water addition did not alter species richness in the present study. These results suggest that N addition generally promoted AGB but had little effect on species richness in wet years. Snowfall in winter combined with rainfall in the early growing season likely plays a critical role in regulating plant growth of the subsequent year in the alpine grassland.

  11. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes

    PubMed Central

    Steltzer, Heidi; Landry, Chris; Painter, Thomas H.; Anderson, Justin; Ayres, Edward

    2009-01-01

    Dust deposition to mountain snow cover, which has increased since the late 19th century, accelerates the rate of snowmelt by increasing the solar radiation absorbed by the snowpack. Snowmelt occurs earlier, but is decoupled from seasonal warming. Climate warming advances the timing of snowmelt and early season phenological events (e.g., the onset of greening and flowering); however, earlier snowmelt without warmer temperatures may have a different effect on phenology. Here, we report the results of a set of snowmelt manipulations in which radiation-absorbing fabric and the addition and removal of dust from the surface of the snowpack advanced or delayed snowmelt in the alpine tundra. These changes in the timing of snowmelt were superimposed on a system where the timing of snowmelt varies with topography and has been affected by increased dust loading. At the community level, phenology exhibited a threshold response to the timing of snowmelt. Greening and flowering were delayed before seasonal warming, after which there was a linear relationship between the date of snowmelt and the timing of phenological events. Consequently, the effects of earlier snowmelt on phenology differed in relation to topography, which resulted in increasing synchronicity in phenology across the alpine landscape with increasingly earlier snowmelt. The consequences of earlier snowmelt from increased dust deposition differ from climate warming and include delayed phenology, leading to synchronized growth and flowering across the landscape and the opportunity for altered species interactions, landscape-scale gene flow via pollination, and nutrient cycling. PMID:19564599

  12. Increased stem density and competition may diminish the positive effects of warming at alpine treeline.

    PubMed

    Wang, Yafeng; Pederson, Neil; Ellison, Aaron M; Buckley, Hannah L; Case, Bradley S; Liang, Eryuan; Julio Camarero, J

    2016-07-01

    The most widespread response to global warming among alpine treeline ecotones is not an upward shift, but an increase in tree density. However, the impact of increasing density on interactions among trees at treeline is not well understood. Here, we test if treeline densification induced by climatic warming leads to increasing intraspecific competition. We mapped and measured the size and age of Smith fir trees growing in two treelines located in the southeastern Tibetan Plateau. We used spatial point-pattern and codispersion analyses to describe the spatial association and covariation among seedlings, juveniles, and adults grouped in 30-yr age classes from the 1860s to the present. Effects of competition on tree height and regeneration were inferred from bivariate mark-correlations. Since the 1950s, a rapid densification occurred at both sites in response to climatic warming. Competition between adults and juveniles or seedlings at small scales intensified as density increased. Encroachment negatively affected height growth and further reduced recruitment around mature trees. We infer that tree recruitment at the studied treelines was more cold-limited prior to 1950 and shifted to a less temperature-constrained regime in response to climatic warming. Therefore, the ongoing densification and encroachment of alpine treelines could alter the way climate drives their transitions toward subalpine forests.

  13. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes.

    PubMed

    Steltzer, Heidi; Landry, Chris; Painter, Thomas H; Anderson, Justin; Ayres, Edward

    2009-07-14

    Dust deposition to mountain snow cover, which has increased since the late 19(th) century, accelerates the rate of snowmelt by increasing the solar radiation absorbed by the snowpack. Snowmelt occurs earlier, but is decoupled from seasonal warming. Climate warming advances the timing of snowmelt and early season phenological events (e.g., the onset of greening and flowering); however, earlier snowmelt without warmer temperatures may have a different effect on phenology. Here, we report the results of a set of snowmelt manipulations in which radiation-absorbing fabric and the addition and removal of dust from the surface of the snowpack advanced or delayed snowmelt in the alpine tundra. These changes in the timing of snowmelt were superimposed on a system where the timing of snowmelt varies with topography and has been affected by increased dust loading. At the community level, phenology exhibited a threshold response to the timing of snowmelt. Greening and flowering were delayed before seasonal warming, after which there was a linear relationship between the date of snowmelt and the timing of phenological events. Consequently, the effects of earlier snowmelt on phenology differed in relation to topography, which resulted in increasing synchronicity in phenology across the alpine landscape with increasingly earlier snowmelt. The consequences of earlier snowmelt from increased dust deposition differ from climate warming and include delayed phenology, leading to synchronized growth and flowering across the landscape and the opportunity for altered species interactions, landscape-scale gene flow via pollination, and nutrient cycling.

  14. Effects of the duration of cold stratification on early life stages of the Mediterranean alpine plant Silene ciliata.

    PubMed

    García-Fernández, A; Escudero, A; Lara-Romero, C; Iriondo, J M

    2015-03-01

    Cold stratification provided by snow cover is essential to break seed dormancy in many alpine plant species. The forecast reduction in snow precipitation and snow cover duration in most temperate mountains as a result of global warming could threaten alpine plant populations, especially those at the edge of their species distribution, by altering the dynamics of early life stages. We simulated some effects of a reduction in the snow cover period by manipulating the duration of cold stratification in seeds of Silene ciliata, a Mediterranean alpine specialist. Seeds from three populations distributed along an altitudinal gradient were exposed to different periods of cold stratification (2, 4 and 6 months) in the laboratory and then moved to common garden conditions in a greenhouse. The duration of the cold stratification treatment and population origin significantly affected seed emergence percentage, emergence rate and seedling size, but not the number of seedling leaves. The 6-month and 4-month cold stratification treatments produced higher emergence percentages and faster emergence rates than seeds without cold stratification treatment. No significant cold stratification duration x seed population origin interactions were found, thus differential sensitivity to cold stratification along elevation is not supported.

  15. Physiological aspects and injury in elite Alpine skiers.

    PubMed

    White, A T; Johnson, S C

    1993-03-01

    Alpine skiing requires aerobic and anaerobic power, muscular strength, and a variety of complex motor abilities including quickness, agility, balance and coordination. There is evidence of variability in physical characteristics between skiers of different events. Generally, successful alpine competitors are taller and heavier than in the past. Greater size, specifically lean mass, may be related to technique changes because of the advent of breakaway poles. Aerobic power, although important, does not discriminate competitors of varying ability categories. Aerobic power is more likely to be a result of conditioning for alpine skiing rather than a profound requirement of the sport. Anaerobic power is important for skiing and both laboratory and field power tests correlate well with performance. Tests that measure explosive and sustained anaerobic power such as the Wingate, vertical jump, 60-second repeated jump, and Margaria-Kalamen stair run are valuable in assessing skiers. On-snow lactate and oxygen consumption measurements further substantiate the need for high anaerobic power. Alpine skiers have very high leg strength compared with other athletes. Isokinetic testing has been used to evaluate dynamic leg strength in skiers, but little is known about high speed dynamic or eccentric strength capabilities. A new mechanism of knee injury that is associated with tibial acceleration has been identified in competitive alpine skiers. A release binding that is sensitive to physiological factors in addition to release forces should be developed. Strength profiling of skiers may also be valuable in evaluating injury risk.

  16. Synchoronous inter-hemispheric alpine glacier advances during the Late Glacial?

    NASA Astrophysics Data System (ADS)

    Bakke, Jostein; Paasche, Øyvind

    2016-04-01

    The termination of the last glaciation in both hemispheres was a period of rapid climate swings superimposed on the overall warming trend, resulting from large-scale reorganizations of the atmospheric and oceanic circulation patterns in both hemispheres. Environmental changes during the deglaciation have been inferred from proxy records, as well as by model simulations. Several oscillations took place both in northern and southern hemispheres caused by melt water releases such as during the Younger Dryas in north and the Antarctic Cold Reversal in south. However, a consensus on the hemispheric linkages through ocean and atmosphere are yet to be reached. Here we present a new multi-proxy reconstruction from a sub-annually resolved lake sediment record from Lake Lusvatnet in Arctic Norway compared with a new reconstruction from the same time interval at South Georgia, Southern Ocean, suggesting inter-hemispheric climate linkages during the Bølling/Allerød time period. Our reconstruction of the alpine glacier in the lake Lusvatnet catchment show a synchronous glacier advance with the Birch-hill moraine complex in the Southern Alps, New Zealand during the Intra Allerød Cooling period. We propose these inter hemispheric climate swings to be forced by the northward migration of the southern Subtropical Front during the Antarctic Cold Reversal. Such a northward migration of the Subtropical Front is shown in model simulation and in palaeorecords to reduce the Agulhas leakage impacting the strength of the Atlantic meridional overturning circulation. We simply ask if this can be the carrier of rapid climate swings from one hemisphere to another? Our high-resolution reconstructions provide the basis for an enhanced understanding of the tiny balance between migration of the Subtropical Front in the Southern Ocean and the teleconnection to northern hemisphere.

  17. Abundances, diversity and seasonality of (non-extremophilic) Archaea in Alpine freshwaters.

    PubMed

    Reitschuler, Christoph; Hofmann, Katrin; Illmer, Paul

    2016-06-01

    The objectives of this study were to assess abundances and community compositions of Archaea within a heterogeneous set of freshwater systems in the Austrian Alps. Seasonal changes and geographical differences within Archaea, considering abiotic and biotic factors (e.g. temperature, pH, total organic carbon (TOC), NH4 (+), bacteria, fungi), were analysed in this context. Water samples were collected from 8 lakes, 10 creeks and the river Inn in 2014. Qualitative-quantitative data were derived via a comprehensive set of (quantitative) PCR assays and PCR-DGGE (denaturing gradient gel electrophoresis) based methodology, which was evaluated concerning specificity and reliability either previously or in this study. QPCR-derived archaeal abundances reached values of 10(3) copies mL(-1) on average, with a peak in winter-spring ('Cold Peak'), and covered 0-15 % (average: 1 %) of the microbial populations. This peak correlated with significantly raised TOC and low NH4 (+) levels during the cold seasons. Stagnant waters showed significantly higher archaeal abundances and diversities than flowing ones. Among methanogens, Methanosarcinales were the most common order. PCR-DGGE data showed that the archaeal communities were site-specific and could function as an ecological marker, in contrast to the more heterogeneous and unsteady bacterial and fungal community. This is attributable to the highly heterogeneous community of methanogenic Archaea (MA, Euryarchaeota), while only two species, Nitrosopumilus maritimus and Ca. Nitrososphaera gargensis, were found to be the ubiquitous representatives of ammonia-oxidizing Archaea (AOA, Thaumarchaeota) in Alpine freshwaters. This work emphasises the diversity, distribution and seasonality of non-extremophilic Archaea in Alpine freshwaters, with a first insight into their ecophysiological potential.

  18. Ecological functions and differentially expressed transcripts of translucent bracts in an alpine 'glasshouse' plant Rheum nobile (Polygonaceae).

    PubMed

    Zhang, Dongyuan; Liu, Bingbing; Zhao, Changming; Lu, Xu; Wan, Dongshi; Ma, Fei; Chen, Litong; Liu, Jianquan

    2010-05-01

    The molecular basis of many physiological and/or phenotypic adaptations of alpine plants remains largely unknown. The upper leaves of what are termed "glasshouse plants" have been transformed into translucent bracts that cover their inflorescences. This change in appearance is believed to allow such plants to maintain normal sexual reproduction under very cold conditions. Thus, it is hypothesized that the foliar roles of these bracts have been altered as an adaptation to alpine environments. In the present study, a test of this hypothesis revealed distinct physiological and anatomical differences (especially related to photosynthesis) between the bracts and normal leaves in one 'glasshouse' species, Rheum nobile Hook. f. and Thomson. A cDNA-AFLP analysis, was conducted to identify candidate genes involving differential expression in bracts and normal leaves, detected 323 (5.4%) transcript-derived fragments (TDFs) that were differentially expressed (up- or down-regulated) among 6,000 TDFs recovered. In total, 110 differentially expressed TDFs were sequenced, of which 52 were homologous to genes reported from other plants. More than half of the candidate genes represented by the unidentified TDFs may be specific to the Rheum lineage or have arisen through adaptive processes in alpine plants. All putative genes involved in photosynthesis had been down-regulated, while those related to stress and defense response were up-regulated in the bracts. These differentially expressed genes are highly congruent with physiological and anatomical differences between the bracts and normal leaves, indicating that they are associated with functions that confer a physiological advantage in alpine conditions.

  19. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas

    NASA Astrophysics Data System (ADS)

    Song, Chunqiao; Sheng, Yongwei; Wang, Jida; Ke, Linghong; Madson, Austin; Nie, Yong

    2017-03-01

    Glacier mass loss in the Himalayas has far-reaching implications for the alteration of regional hydrologic regimes, an increased risk of glacial lake outburst, downstream water resource abundance, and contributions to sea level rise. However, the mass losses of Himalayan glaciers are not well understood towing to the scarcity of observations and the heterogeneous responses of Himalayan glaciers to climate change and local factors (e.g., glacier surge, interacting with proglacial lakes). In particular, there is a lack of understanding on the unique interactions between moraine-dammed glacial lakes and their effects on debris cover on valley glacier termini. In this study, we examined the temporal evolution of 151 large glacial lakes across the Himalayas and then classified these glacial lakes into three categories: proglacial lakes in contact with full or partial debris-covered glaciers (debris-contact lakes), ice cliff-contact lakes, and non-glacier-contact lakes. The results show that debris-contact lakes experienced a dramatic areal increase of 36.5% over the years 2000 to 2014, while the latter two categories of lakes remained generally stable. The majority of lake expansions occurred at the glacier front without marked lake level rises. This suggests that the rapid expansion of these debris-contact lakes can be largely attributed to the thinning of debris-covered ice as caused by the melting of glacial fronts and the subsequent glacial retreat. We reconstructed the height variations of glacier fronts in contact with 57 different proglacial lakes during the years 2000 to 2014. These reconstructed surface elevation changes of debris-covered, lake-contact glacier fronts reveal significant thinning trends with considerable lowering rates that range from 1.0 to 9.7 m/y. Our study reveals that a substantial average ice thinning of 3.9 m/y occurred at the glacier fronts that are in contact with glacial lakes.

  20. Alpine ski bindings and injuries. Current findings.

    PubMed

    Natri, A; Beynnon, B D; Ettlinger, C F; Johnson, R J; Shealy, J E

    1999-07-01

    In spite of the fact that the overall incidence of alpine ski injuries has decreased during the last 25 years, the incidence of serious knee sprains usually involving the anterior cruciate ligament (ACL) has risen dramatically since the late 1970s. This trend runs counter to a dramatic reduction in lower leg injuries that began in the early 1970s and to date has lowered the risk of injury below the knee by almost 90%. One of the primary design objectives of modern ski boots and bindings has been to protect the skier from tibia and ankle fractures. So, in that sense, they have done an excellent job. However, despite advances in equipment design, modern ski bindings have not protected the knee from serious ligament trauma. At the present time, we are unaware of any binding design, settings or function that can protect both the knee and lower extremities from serious ligament sprains. No innovative change in binding design appears to be on the horizon that has the potential to reduce the risk of these severe knee injuries. Indeed, only 1 study has demonstrated a means to help reduce this risk of serious knee sprains, and this study involved education of skiers, not ski equipment. Despite the inability of bindings to reduce the risk of severe knee injuries there can be no doubt that improvement in ski bindings has been the most important factor in the marked reduction in incidence of lower leg and ankle injuries during the last 25 years. The authors strongly endorse the application of present International Standards Organisation (ISO) and American Society for Testing and Materials (ASTM) standards concerning mounting, setting and maintaining modern 'state of the art' bindings.

  1. Alpine ski injuries and their prevention.

    PubMed

    Koehle, Michael S; Lloyd-Smith, Rob; Taunton, Jack E

    2002-01-01

    Alpine skiing is a popular sport with significant risk of injury. Since the 1970s, injury rates have dropped from approximately 5 to 8 per 1000 skier-days to about 2 to 3 per 1000 skier-days. The nature of the injuries has also been transformed over the same period. Lower leg injuries are becoming less common while the incidence of knee sprains and upper extremity injuries is becoming more common. Much of this change can be attributed to advancements in binding technology, which effectively reduces lower leg injury, but does not adequately address the issue of knee sprains. Along with design, binding adjustment and maintenance are important preventative factors. Poorly adjusted bindings have been correlated with increased injury rates. Upper extremity injuries constitute approximately one-third of skiing injuries, with ulnar collateral ligament sprains and shoulder injuries being the most common. Strategies to prevent these include proper poling technique and avoidance of non-detachable ski pole retention devices. Spinal injuries in skiers have been traditionally much less common than in snowboarders, but this disparity is likely to diminish with the recent trend of incorporating snowboarding moves into skiing. Strategies to help reduce these injuries include promoting the development of terrain parks and focussing on proper technique during such moves. Head injuries have been increasing in incidence over recent decades and account for more than half of skiing-related deaths. The issue of ski helmets remains controversial while evidence for their efficacy remains under debate. There is no evidence to demonstrate that traditional ski instruction reduces injury frequency. More specific programmes focussed on injury prevention techniques are effective. The question of pre-season conditioning to prevent injuries needs further research to demonstrate efficacy.

  2. Traumatic dental injuries and Alpine skiing.

    PubMed

    Gassner, R; Vàsquez Garcia, J; Leja, W; Stainer, M

    2000-06-01

    The purpose of this study was to determine the occurrence and type of traumatic dental injuries after maxillofacial injuries as a result of Alpine skiing. During an 8-year period (from January 1991 to December 1998) 7600 patients with facial injuries were registered at the Department of Oral and Maxillofacial Surgery, University of Innsbruck, Austria. Of 784 patients with skiing-related facial injuries (524 males, 260 females) 326 (41.6%) sustained injuries to 639 teeth. The age groups predominantly affected were between 7 and 32 years. Luxation injuries occurred in 338 (53%) teeth, fractures accounted for 270 tooth injuries (42%), and only 35 (5%) were lost at the place of the accident. Of skiers with traumatic dental injuries 58% had concomitant soft tissue injuries, while 23.3% had associated facial bone fractures. The most common causes of injury were falls in 42% (329 patients) and collisions with other persons in 24.1% (189 patients). Being hit by one's own sports equipment (11%) was the third most common cause. Collisions with obstacles accounted for 9% and lift accidents for 5.6% of injuries. The probability of suffering dentoalveolar trauma during skiing varied depending on the injury mechanism. There was a 2-fold risk for dentoalveolar trauma when colliding with objects, a 3.5-fold risk when hit by one's own equipment and a 8.5-fold risk during lift accidents. Dental injuries occurred in about 2% of all injured skiers. Dental health professionals should be aware of the high incidence and the distribution of dental trauma and facial injuries caused by skiing.

  3. Horn growth patterns in Alpine chamois.

    PubMed

    Corlatti, Luca; Gugiatti, Alessandro; Imperio, Simona

    2015-06-01

    The analysis of horn growth may provide important information about the allocation of metabolic resources to secondary sexual traits. Depending on the selective advantages offered by horn size during intra- and inter-specific interactions, ungulates may show different investment in horn development, and growth variations within species may be influenced by several parameters, such as sex, age, or resource availability. We investigated the horn growth patterns in two hunted populations of Alpine chamois (Rupicapra r. rupicapra) in the Central Italian Alps. We tested the role of individual heterogeneity on the growth pattern and explored the variation in annulus length as a function of different factors (sex, age, hunting location, cohort). We then investigated the mechanisms underlying horn growth trajectories to test for the occurrence of compensatory or recovery growth and their potential differences between sexes and populations. Annulus length varied as a function of sex, age of individuals and, marginally, hunting location; no effect of cohort or individual heterogeneity was detected. Male and female chamois showed compensatory horn growth within the first 5½ years of life, though the partial convergence of horn trajectories in chamois suggests that this mechanisms would best be described as 'recovery growth'. Compensation rates were greater in males than in females, while only compensatory growth rates up to 2½ years of age were different in the two populations. Besides confirming the sex- and age-dependent pattern of horn development, our study suggests that the mechanism of recovery growth supports the hypothesis of horn size as a weakly selected sexual trait in male and female chamois. Furthermore, the greater compensation rates in horn growth shown by male chamois possibly suggest selective effects of hunting on age at first reproduction, while different compensation rates between populations may suggest the occurrence of some plasticity in resource

  4. Alkali content of alpine ultramafic rocks

    USGS Publications Warehouse

    Hamilton, W.; Mountjoy, W.

    1965-01-01

    The lower limit of abundance of sodium and potassium in ultramafic rocks is less than the threshold amount detectable by conventional analytical methods. By a dilutionaddition modification of the flame-spectrophotometric method, sodium and potassium have been determined in 40 specimens of alpine ultramafic rocks. Samples represent six regions in the United States and one in Australia, and include dunite, peridotite, pyroxenite, and their variably serpentinized and metamorphosed derivatives. The median value found for Na2O is 0.004 per cent, and the range of Na2O is 0.001-0.19. The median value for K2O is 0.0034 per cent and the range is 0.001-0.031 per cent. Alkali concentrations are below 0.01 per cent Na2O in 28 samples and below 0.01 per cent K2O in 35. Derivation of basalt magma from upper-mantle material similar to such ultramafic rocks, as has been postulated, is precluded by the relative amounts of sodium and potassium, which are from 200 to 600 times more abundant in basalt than in the ultramafic rocks. Similar factors apply to a number of other elements. No reasonable process could produce such concentrations in, for example, tens of thousands of cubic miles of uniform tholeiitic basalt. The ultramafic rocks might have originated either as magmatic crystal precipitates or as mantle residues left after fusion and removal of basaltic magma. Injection of ultramafic rocks to exposed positions is tectonic rather than magmatic. ?? 1965.

  5. Tagliamento, the king of Alpine rivers

    NASA Astrophysics Data System (ADS)

    Imbriani, Nadia

    2016-04-01

    The Tagliamento river is usually described as the king of the Alpine rivers because it is an extraordinary example of braided gravel-bed river in Europe. It flows in Friuli Venezia Giulia, a region in north-eastern Italy. It has preserved its original ecosystem which has never been changed significantly by irresponsible human interference. Therefore, vegetated islands and braid bars, due to the typical network of channels the river creates, have always been an uncontaminated natural habitat for a wide variety of species of flora and fauna. The Pinzano Bridge, near San Daniele del Friuli, collapsed on 4th November 1966 because of an overflow of water from Tagliamento. From that time, lowlands territorial authorities would like to build retention basins to prevent the river from floodings. A study about the bio-geological survey carried out from a Manzini High School project, chiefly aims to study this ecosystem, which combines the dynamic nature of the Tagliamento with the biodiversity of the whole area where it flows. In the previous years, some classes were involved in this school project. After visiting the river area and taking several photographs of it, the students had the opportunity to reflect upon the devastating environmental impact which the construction of retention basins would cause. They illustrated and analyzed both the solutions offered by some local governors and the objections raised by the World Wide Fund For Nature (WWF). In the near future, other students will continue studying the Tagliamento river so as to be able to appreciate one of the local rarities nature offers, in the hope that the unique geomorphological features of this site of undoubted scientific interest could be kept intact for a very long time.

  6. Constructing an Alpine Fault Paleoseismicity Record from Slumped Lacustrine Deposits in the Cascade River Valley, South Westland, New Zealand

    NASA Astrophysics Data System (ADS)

    Coffey, G.; Moy, C. M.; Toy, V. G.; Ohneiser, C.; Howarth, J. D.

    2014-12-01

    The Alpine Fault is a major structure in New Zealand capable of producing earthquakes of magnitude 7 or greater, which delineates the boundary between the Australian and Pacific plates. Paleoseismic records of these earthquakes indicate recurrence intervals of 300 - 400 years over the last 1,300 years. However, there are no pre-Holocene records. Documenting the late Pleistocene record of magnitude, timing, and frequency of earthquakes would significantly reduce uncertainty in hazard analyses. The tectonically complex Cascade River Valley follows the Southern Alpine Fault, where the fault dominantly accommodates strike-slip motion. Two ~7m outcrops of proglacial lacustrine silt are exposed along the river in which, deformed rhythmites bounded by planar laminated rhythmites have been identified. These exhibit a variety of fold geometries in outcrop and x-ray computed tomography (CT) scans, all of which show some degree of asymmetry. Initial radiocarbon ages of 14,400 and 13,300 14C yr BP have been obtained from terrestrial plant material isolated from samples near the base of one outcrop. Given the age range and laminae density, these dates suggest that the rhythmites are varves, but additional radiocarbon dates and CT-scans will be used to confirm this. The deformed horizons are interpreted to be seismites formed by slumping. Earthquake shaking triggers an increase in pore fluid pressure, which destabilises the sublacustrine slope causing failure and the release of silt into the sedimentary system. As silt is transported by downslope shear it is deformed in distinct layers. Displacement of volumes of silt also causes the formation of seiche waves that apply shear stress to lake floor sediments causing further deformation. Deviations in magnetic susceptibility and the declination of magnetic remanence observed underneath and within deformed horizons are interpreted to be a response of earthquake shaking. Data from these different proxies will be presented and

  7. Mineralogy of Tagish Lake, a Unique Type 2 Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Gounelle, M.; Zolensky, M. E.; Tonui, E.; Mikouchi, T.

    2001-01-01

    We have identified in Tagish Lake an abondant carbonate-poor lithology and a less common carbonate-rich lithology. Tagish Lake shows similarities and differences with CMs and CI1s. It is a unique carbonaceous chondrite recording specific aqueous alteration conditions. Additional information is contained in the original extended abstract.

  8. Integrating physical and chemical characteristics of lakes into the glacially influenced landscape of the Northern Cascade Mountains, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.; Lomnicky, G.A.; Liss, W.J.; Deimling, E.

    1999-01-01

    A basic knowledge of the physical and chemical characteristics of lakes is needed by management to make informed decisions to protect water resources. In this study we investigated some of the physical and chemical characteristics of 58 lakes in alpine, subalpine, and forest vegetation zones in a natural area (North Cascades National Park Service Complex) between 1989 and 1993. The objectives of the study were to: (1) document the time of ice-out relative to lake elevation; (2) determine how a sharp climate gradient west and east of the hydrologic divide affected the time of ice-out for subalpine lakes; and (3) assess how lake water quality was associated with lake elevation, lake depth, and basin geology. As expected, lake ice-out times occurred earlier with decreasing elevation. East-slope subalpine lakes iced-out earlier than did west-slope subalpine lakes because the east slope of the study area was drier and warmer than the west slope. On average, the lakes were relatively cold, neutral in pH, and low in dissolved substances and concentrations of nitrogen and phosphorus. Although some shallow lakes (depth ,10 m) exhibited the highest alkalinities, conductivities, and concentrations of phosphorus and nitrogen, most shallow lakes exhibited low values for these variables that were comparable to values observed in deep lakes. Geology did not play a major role in segregating the lakes based on water quality. Overall, lake temperature, pH, alkalinity, conductivity, and concentrations of total phosphorus and total Kjeldahl N increased with decreasing elevation. These changes in water quality with decreasing elevation in this temperate mountainous region corresponded with warmer air temperatures and increased vegetation biomass, soil depth and maturity, and dissolved substances and nutrients.

  9. Acid neutralizing processes in an alpine watershed front range, Colorado, U.S.A.-1: Buffering capacity of dissolved organic carbon in soil solutions

    USGS Publications Warehouse

    Iggy, Litaor M.; Thurman, E.M.

    1988-01-01

    Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.

  10. Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem.

    PubMed

    Evju, Marianne; Austrheim, Gunnar; Halvorsen, Rune; Mysterud, Atle

    2009-08-01

    Herbivores shape plant communities through selective foraging. However, both herbivore selectivity and the plant's ability to tolerate or resist herbivory may depend on the density of herbivores. In an alpine ecosystem with a long history of grazing, plants are expected to respond to both enhanced and reduced grazing pressures, and the interaction between plant traits and changes in species abundance are expected to differ between the two types of alteration of grazing regime. To understand the mechanisms behind species response, we investigated the relationship between sheep selectivity (measured in situ), plant traits and experimentally derived measures of change in species abundance as a response to the enhancement (from low to high density) or cessation (from low to zero density) of sheep grazing pressure over a six-year time period for 22 abundant herb species in an alpine habitat in south Norway. Sheep selected large, late-flowering herbs with a low leaf C/N ratio. Species that increased in abundance in response to enhanced grazing pressure were generally small and had high root/shoot ratios, thus exhibiting traits that reflect both resistance (through avoidance) and tolerance (through regrowth capacity) strategies. The abundance of selected species remained stable during the study period, and also under the enhanced grazing pressure treatment. There was, however, a tendency for selected species to respond positively to cessation of grazing, although overall responses to cessation of grazing were much less pronounced than responses to enhanced grazing. Avoidance through short stature (probably associated with increased light availability through the removal of tall competitors) as well as a certain amount of regrowth capacity appear to be the main mechanisms behind a positive response to enhanced grazing pressure in this study. The plant trait perspective clearly improves our insight into the mechanisms behind observed changes in species abundance when the

  11. Permafrost aggradation in recently deglaciated alpine environments

    NASA Astrophysics Data System (ADS)

    Leopold, Matthias; Dusik, Jana; Stocker-Waldhuber, Martin; Völkel, Jörg; Becht, Michael

    2015-04-01

    Permafrost degradation is of major interest in the present discussion about alpine climate change and natural hazard prevention. Glacial retreat since the Little Ice Age (LIA) is followed by destabilisation of the surrounding mountains due to melting permafrost in bedrock and sediments. Glacial retreat also exposes huge areas of lateral and ground moraines. Areas of formerly temperate glaciers experience colder temperatures only since their ice cover has melted and basal meltwater no longer heats the ground. With a huge pore volume in the sediment body, water supply during the melt season and large daily temperature variations in high mountains, distinct freeze and thaw processes start and generate periglacial forms like patterned ground in the direct glacier forefield. Those geomorphic features are precursors for possible permafrost aggradation in proglacial areas. The work presented is part of the joint project PROSA (High-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) that aims in the quantification of a sediment budget for the upper Kaunertal valley, Austrian Central Alps. In this sense and to find out about erosion causing prerequisites and processes, permafrost and ground ice occurrence, as well as sediment thickness is measured by i.a. application of geophysical measurements, multitemporal airborne and terrestrial LiDAR, as well as aerial photographs. In this case study we examine the spatial and temporal settings for permafrost aggradation in a recently deglaciated cirque, belonging to the catchment area of the Gepatschferner glacier using electric resistivity tomography (ERT) and basal temperature of the winterly snowcover (BTS) measurements to detect the state of the permafrost, multitemporal aerial photographs dating back to 1953 to reproduce recent deglaciation of the cirque and multitemporal airborne LiDAR data to gain information about surface elevation changes. The northeast facing cirque is situated in

  12. An investigation of historical lake-atmosphere interactions in the Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Holman, Kathleen Danielle

    The Laurentian Great Lakes are a tremendous freshwater resource, holding approximately 20% of the world's unfrozen freshwater. With a combined surface area of 244,000 km2, the Great Lakes are constantly interacting with the overlying atmosphere through fluxes of heat, moisture, and momentum. In the current study, we explore interactions between the Great Lakes and overlying atmosphere using a combination of observational and modeling tools. Results based on historical observations indicate that over-lake precipitation from the Lake Superior watershed is associated with transient Rossby waves during each month of the year. Further analysis indicates the origin and path of these waves change with the background flow. During summer and early fall, the Pacific jet is relatively sharp and acts as a waveguide, such that Rossby wave trains traversing the Great Lakes region do not follow a great-circle path. While the atmosphere primarily dictates hydrology in the Great Lakes basin, each of the Great Lakes feeds back on the overlying atmosphere, ultimately influencing the local and regional climate. Historical observational and modeling studies support this claim; however, a consistent, long-term analysis of the impacts of the Great Lakes on climate has yet to be executed. In the current analysis, the influence of the Great Lakes on climate is assessed by comparing two decade-long regional climate simulations, with the lakes present or replaced by woodland. Model results indicate the Great Lakes dampen seasonal and daily surface air temperature ranges, alter the strength and track of synoptic systems, and modify atmospheric stability. Additional analysis based on output from the regional climate model indicates that seasonal fluctuations in atmospheric stability over Lake Superior influence the ratio of over-lake to over-land precipitation. Since the current operational technique used to estimate over-lake precipitation does not account for variations in atmospheric

  13. Identification of odorant receptors from the Alpine marmot (Marmota marmota).

    PubMed

    Matarazzo, V; Tirard, A; Renucci, M; Botto, J M; Bel, M C; Claverie, J M; Belaïch, A; Clement, J L

    2000-11-01

    Alpine Marmots (Marmota marmota) are a good model to study intraspecific chemical communication among mammals. This species has been subjected to several behavioural and biochemical studies regarding both their scent-marking behaviour by cheek-rubbing, and the chemical composition of their glandular secretions. However, no molecular study has been undertaken until today on proteins from the olfactory epithelium possibly implicated in chemical perception. In this study, we identified, to our knowledge for the first time, some olfatory receptors from this wild rodent. Starting with olfactory epithelium of an Alpine Marmot, and by mean of reverse transcriptase polymerase chain reaction technique (RT-PCR), we isolated fourteen partial sequences that exhibited a high degree of homology (45-92%) with olfactory receptors from other vertebrates. Conserved identities and structural features clearly defined these Alpine Marmot sequences as members of the seven transmembrane domain olfactory receptors. All sequences were observed as belonging to known olfactory receptor families and were classified into ten subfamilies of the tetrapods OR class. Finally, Northern blot analysis revealed specific expression of these sequences in the Alpine Marmot olfactory epithelium tissue.

  14. Identifying key conservation threats to Alpine birds through expert knowledge.

    PubMed

    Chamberlain, Dan E; Pedrini, Paolo; Brambilla, Mattia; Rolando, Antonio; Girardello, Marco

    2016-01-01

    Alpine biodiversity is subject to a range of increasing threats, but the scarcity of data for many taxa means that it is difficult to assess the level and likely future impact of a given threat. Expert opinion can be a useful tool to address knowledge gaps in the absence of adequate data. Experts with experience in Alpine ecology were approached to rank threat levels for 69 Alpine bird species over the next 50 years for the whole European Alps in relation to ten categories: land abandonment, climate change, renewable energy, fire, forestry practices, grazing practices, hunting, leisure, mining and urbanization. There was a high degree of concordance in ranking of perceived threats among experts for most threat categories. The major overall perceived threats to Alpine birds identified through expert knowledge were land abandonment, urbanization, leisure and forestry, although other perceived threats were ranked highly for particular species groups (renewable energy and hunting for raptors, hunting for gamebirds). For groups of species defined according to their breeding habitat, open habitat species and treeline species were perceived as the most threatened. A spatial risk assessment tool based on summed scores for the whole community showed threat levels were highest for bird communities of the northern and western Alps. Development of the approaches given in this paper, including addressing biases in the selection of experts and adopting a more detailed ranking procedure, could prove useful in the future in identifying future threats, and in carrying out risk assessments based on levels of threat to the whole bird community.

  15. Red Deer as Maintenance Host for Bovine Tuberculosis, Alpine Region

    PubMed Central

    Schleicher, Corina; Gonano, Monika; Prodinger, Wolfgang M.; Pacciarini, Maria; Glawischnig, Walter; Ryser-Degiorgis, Marie-Pierre; Walzer, Chris; Stalder, Gabrielle L.; Lombardo, Dorotea; Schobesberger, Hermann; Winter, Petra; Büttner, Mathias

    2015-01-01

    To estimate the prevalence of bovine tuberculosis in the Alpine region, we studied the epidemiology of Mycobacterium caprae in wildlife during the 2009–2012 hunting seasons. Free-ranging red deer (Cervus elaphus) were a maintenance host in a hot-spot area, mainly located in Austria. PMID:25695273

  16. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    corresponding range in precipitation from about 15 cm/yr to 150 cm/yr, range in evapotranspiration regimes from semi-arid to alpine, range in groundwater residence times from 10 to 10,000 years, and ranges in biome type from semi-arid shrubland to alpine tundra, all within a 30 km distance. Atmospheric and surface fluxes and stores (precipitation, evapotranspiration, snow, soil moisture) will be quantified using an array of in-situ surface stations and remote sensing platforms. Deep (greater than 300 m) multilevel sampling wells will be used to measure ground water levels, fluxes, and for sampling of age dating and environmental tracers. Another proposed focus effort will involve lake sediment core analyses complemented by monitoring of dissolved and suspended constituents in surrounding tributaries, to provide a basis for examination of closed basin lakes as integrators and recorders of biogeochemical signals that would otherwise not be discerned based on discreet measurements made in individual tributary watersheds. Core-derived climate and contaminant-nutrient trends through time will be investigated at locations distributed from the top to the bottom of the hydrologic system.

  17. Stable isotopes in alpine precipitation as tracers of atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Lafreniere, M. J.; Kyser, T. K.; Norman, A. L.; Mayer, B.; Wieser, M.

    2010-12-01

    Alpine ecosystems, which are generally nutrient poor and exist under extreme climatic conditions, are particularly sensitive to environmental and climatic stressors. Studies in the USA Rocky Mountains and European Alps have shown that alpine terrestrial and aquatic ecosystems are particularly sensitive to enhanced deposition of reactive nitrogen and can show ecologically destructive responses at relatively low levels of nitrogen deposition. However, there is no base line for atmospheric deposition of natural and anthropogenic contaminants in the Canadian alpine. Preliminary results of isotopic and chemical analyses of precipitation from an elevational transect on a glaciated alpine site in the Canadian Rockies are presented. Precipitation accumulating from early autumn through to spring (2008/2009 and 2009/2010) was sampled by means of seasonal snow cover on alpine glaciers. Summer precipitation was sampled through July and August 2010 using bulk collectors installed at the sites of winter sampling. The isotope ratios of dissolved sulphate (δ34S, δ18O), nitrogen (δ15N, δ18O), as well as precipitation (δ2H, δ18O) are utilized in addition to major ion concentrations and trace metal concentrations. Results from 2008/2009 snowpack samples indicate a strong seasonal trend in sulphate (SO42-) and nitrogen (NO3-) deposition which is consistent across the altitudinal transect. Snow horizons representing early autumn and spring precipitation show higher SO42- and NO3- concentrations in contrast to lower concentrations in winter horizons. The aforementioned suite of isotopic and chemical analyses are used to investigate the variability in dominant geographic source regions for atmospheric SO42- and NO3- (local, regional, or long range transported contaminants), as well as to identify contributions from the major biogeochemical source types (e.g. hydrocarbon combustion, lithogenic dust, agricultural emissions).

  18. Caddisflies (Insecta: Trichoptera) of fringing wetlands of the Laurentian Great Lakes

    USGS Publications Warehouse

    Armitage, Brian J.; Hudson, Patrick L.; Wilcox, Douglas A.

    2001-01-01

    Fringing wetlands of the Laurentian Great Lakes are subject to natural processes, such as water-level fluctuation and wave-induced erosion, and to human alterations. In order to evaluate the quality of these wetlands over space and time, biological communities are often examined. This paper reports on the use of adult caddisflies to evaluate fringing wetlands of Lake Huron, Lake Michigan, and Lake Superior.

  19. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years.

    PubMed

    Bai, Jie; Chen, Xi; Li, Junli; Yang, Liao; Fang, Hui

    2011-07-01

    Inland lakes are major surface water resource in arid regions of Central Asia. The area changes in these lakes have been proved to be the results of regional climate changes and recent human activities. This study aimed at investigating the area variations of the nine major lakes in Central Asia over the last 30 years. Firstly, multi-temporal Landsat imagery in 1975, 1990, 1999, and 2007 were used to delineate lake extents automatically based on Normalized Difference Water Index (NDWI) threshold segmentation, then lake area variations were detailed in three decades and the mechanism of these changes was analyzed with meteorological data and hydrological data. The results indicated that the total surface areas of these nine lakes had decreased from 91,402.06 km(2) to 46,049.23 km(2) during 1975-2007, accounting for 49.62% of their original area of 1975. Tail-end lakes in flat areas had shrunk dramatically as they were induced by both climate changes and human impacts, while alpine lakes remained relatively stable due to the small precipitation variations. With different water usage of river outlets, the variations of open lakes were more flexible than those of other two types. According to comprehensive analyses, different types of inland lakes presented different trends of area changes under the background of global warming effects in Central Asia, which showed that the increased human activities had broken the balance of water cycles in this region.

  20. The precipitation response to the desiccation of Lake Chad

    SciTech Connect

    Lauwaet D.; VanWeverberg K.; vanLipzig, N. P. M., Weverberg, K. V., Ridderb, K. D., and Goyens, C.

    2012-04-01

    Located in the semi-arid African Sahel, Lake Chad has shrunk from a surface area of 25000 km2 in 1960 to about 1350 km2 due to a series of droughts and anthropogenic influences. The disappearance of such a large open-water body can be expected to have a noticeable effect on the meteorology in the surroundings of the lake. The impact could extend even further to the west as westward propagating convective systems pass Lake Chad in the rainfall season. This study examines the sensitivity of the regional hydrology and convective processes to the desiccation of the lake using a regional atmospheric model. Three Lake Chad scenarios are applied reflecting the situation in 1960, the current situation and a potential future scenario in which the lake and the surrounding wetlands have disappeared. The model simulations span the months July-September in 2006, which includes the rainfall season in the Lake Chad area. Total precipitation amounts and the components of the hydrological cycle are found to be hardly affected by the existence of the lake. A filled Lake Chad does, however, increase the precipitation at the east side of the lake. The model results indicate that the boundary layer moisture and temperature are significantly altered downwind of the lake. By investigating a mesoscale convective system (MCS) case, this is found to affect the development and progress of the system. At first, the MCS is intensified by the more unstable boundary layer air but the persistence of the system is altered as the cold pool propagation becomes less effective. The proposed mechanism is able to explain the differences in the rainfall patterns nearby Lake Chad between the scenarios. This highlights the local sensitivity to the desiccation of Lake Chad whereas the large-scale atmospheric processes are not affected.

  1. Lake Volta, Ghana

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of Lake Volta in Ghana was acquired March 31, 2002 by the Moderate Resolution Imaging Spectroradiometer (MODIS). Lake Volta is one of the world's largest artificially created lakes. Lake Volta is actually a reservoir formed from the damming of the Volta River, and extends 250 miles north of the Akosombo Dam. The lake covers an area of 8,482 square km. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  2. Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Wang, Ting

    2016-09-01

    X-ray computed tomography (CT) scans of drill-core, recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through New Zealand's Alpine Fault, provide an excellent opportunity to study the damage zone of a plate-bounding continental scale fault, late in its interseismic cycle. Documentation of the intermediate-macro scale damage zone structures observed in the CT images show that there is no increase in the density of these structures towards the fault's principal slip zones (PSZs), at least within the interval sampled, which is 30 m above and below the PSZs. This is in agreement with independent analysis using borehole televiewer data. Instead, we conclude the density of damage zone structures to correspond to lithology. We find that 72% of fractures are fully healed, by a combination of clays, calcite and quartz, with an additional 24% partially healed. This fracture healing is consistent with the Alpine Fault's late interseismic state, and the fact that the interval of damage zone sampled coincides with an alteration zone, an interval of extensive fluid-rock interaction. These fractures do not impose a reduction of P-wave velocity, as measured by wireline methods. Outside the alteration zone there is indirect evidence of less extensive fracture healing.

  3. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake

    NASA Astrophysics Data System (ADS)

    Mei, Xuefei; Dai, Zhijun; Du, Jinzhou; Chen, Jiyu

    2015-12-01

    Despite comprising a small portion of the earth’s surface, lakes are vitally important for global ecosystem cycling. However, lake systems worldwide are extremely fragile, and many are shrinking due to changing climate and anthropogenic activities. Here, we show that Poyang Lake, the largest freshwater lake in China, has experienced a dramatic and prolonged recession, which began in late September of 2003. We further demonstrate that abnormally low levels appear during October, 28 days ahead of the normal initiation of the dry season, which greatly imperiled the lake’s wetland areas and function as an ecosystem for wintering waterbirds. An increase in the river-lake water level gradient induced by the Three Gorges Dam (TGD) altered the lake balance by inducing greater discharge into the Changjiang River, which is probably responsible for the current lake shrinkage. Occasional episodes of arid climate, as well as local sand mining, will aggravate the lake recession crisis. Although impacts of TGD on the Poyang Lake recession can be overruled by episodic extreme droughts, we argue that the average contributions of precipitation variation, human activities in the Poyang Lake catchment and TGD regulation to the Poyang Lake recession can be quantified as 39.1%, 4.6% and 56.3%, respectively.

  4. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake

    PubMed Central

    Mei, Xuefei; Dai, Zhijun; Du, Jinzhou; Chen, Jiyu

    2015-01-01

    Despite comprising a small portion of the earth’s surface, lakes are vitally important for global ecosystem cycling. However, lake systems worldwide are extremely fragile, and many are shrinking due to changing climate and anthropogenic activities. Here, we show that Poyang Lake, the largest freshwater lake in China, has experienced a dramatic and prolonged recession, which began in late September of 2003. We further demonstrate that abnormally low levels appear during October, 28 days ahead of the normal initiation of the dry season, which greatly imperiled the lake’s wetland areas and function as an ecosystem for wintering waterbirds. An increase in the river-lake water level gradient induced by the Three Gorges Dam (TGD) altered the lake balance by inducing greater discharge into the Changjiang River, which is probably responsible for the current lake shrinkage. Occasional episodes of arid climate, as well as local sand mining, will aggravate the lake recession crisis. Although impacts of TGD on the Poyang Lake recession can be overruled by episodic extreme droughts, we argue that the average contributions of precipitation variation, human activities in the Poyang Lake catchment and TGD regulation to the Poyang Lake recession can be quantified as 39.1%, 4.6% and 56.3%, respectively. PMID:26657816

  5. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  6. Effects of the 1980 eruption of Mount St Helens on the limnological characteristics of selected lakes in western Washington

    USGS Publications Warehouse

    Embrey, S.S.; Dion, N.P.

    1988-01-01

    The 1980 eruption of Mount St. Helens provided the opportunity to study its effect on the physical, chemical, and biological characteristics of lakes near the volcano, and to describe two newly created lakes. Concentrations of dissolved solids and organic carbon, measured in June 1980, had increased from 2 to 30 times those observed in the 1970 's in Spirit, St. Helens, and Venus Lakes. Water in the lakes was altered from preeruption calcium-bicarbonate types to calcium-sulfate, calcium sulfate-chloride, or lake surface, as in St. Helens Lake; transparency in Venus Lake had improved to a depth of 24 ft by 1982. Spirit Lake was anoxic into fall 1980, but had reaerated to 5.2 mg/L of dissolved oxygen by May 1981. Phytoplankton communities in existing lakes in the blast zone in 1980 were primarily green and bluegreen algae; diatoms were sparse until summer 1982. Small numbers of zooplankton in Spirit, St. Helens, and Venus Lakes, compared to numbers in Walupt and Fawn Lakes, may indicate some post-eruption mortality. Rotifers were absent from lakes in the blast zone, but by 1981 were observed in all the lakes. The recovery of the physical, chemical, and biological characteristics of the lakes will depend on stabilization of the surrounding environment and biological processes within each lake. Excluding Spirit Lake, it is estimated that St. Helens Lake would be the slowest to recover and Venus Lake the fastest. (USGS)

  7. Biomass Partitioning and Its Relationship with the Environmental Factors at the Alpine Steppe in Northern Tibet

    PubMed Central

    Wu, Jianbo; Hong, Jiangtao; Wang, Xiaodan; Sun, Jian; Lu, Xuyang; Fan, Jihui; Cai, Yanjiang

    2013-01-01

    Alpine steppe is considered to be the largest grassland type on the Tibetan Plateau. This grassland contributes to the global carbon cycle and is sensitive to climate changes. The allocation of biomass in an ecosystem affects plant growth and the overall functioning of the ecosystem. However, the mechanism by which plant biomass is allocated on the alpine steppe remains unclear. In this study, biomass allocation and its relationship to environmental factors on the alpine grassland were studied by a meta-analysis of 32 field sites across the alpine steppe of the northern Tibetan Plateau. We found that there is less above-ground biomass (MA) and below-ground biomass (MB) in the alpine steppe than there is in alpine meadows and temperate grasslands. By contrast, the root-to-shoot ratio (R:S) in the alpine steppe is higher than it is in alpine meadows and temperate grasslands. Although temperature maintained the biomass in the alpine steppe, precipitation was found to considerably influence MA, MB, and R:S, as shown by ordination space partitioning. After standardized major axis (SMA) analysis, we found that allocation of biomass on the alpine steppe is supported by the allometric biomass partitioning hypothesis rather than the isometric allocation hypothesis. Based on these results, we believe that MA and MB will decrease as a result of the increased aridity expected to occur in the future, which will reduce the landscape’s capacity for carbon storage. PMID:24349170

  8. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    years ago. Within that record is a quasi-periodic rise and fall of about 160 ? 40 years in duration and a shorter fluctuation of 32 ? 6 years that is superimposed on the 160-year fluctuation. Recorded lake-level history from 1860 to the present falls within the longer-term pattern and appears to be a single 160-year quasi-periodic fluctuation. Independent investigations of past climate change in the basin over the long-term period of record confirm that most of these changes in lake level were responses to climatically driven changes in water balance, including lake-level highstands commonly associated with cooler climatic conditions and lows with warm climate periods. The mechanisms underlying these large hydroclimatic anomalies are not clear, but they may be related to internal dynamics of the ocean-atmosphere system or dynamical responses of the ocean-atmosphere system to variability in solar radiation or volcanic activity. The large capacities of the Great Lakes allow them to store great volumes of water. As calculated at chart datum, Lake Superior stores more water (2,900 mi3) than all the other lakes combined (2,539 mi3). Lake Michigan's storage is 1,180 mi3; Lake Huron's, 850 mi3; Lake Ontario's, 393 mi3; and Lake Erie's, 116 mi3. Seasonal lake-level changes alter storage by as much as 6 mi3 in Lake Superior and as little as 2.1 mi3 in Lake Erie. The extreme high and low lake levels measured in recorded lake-level history have altered storage by as much as 31 mi3 in Lake Michigan-Huron and as little as 9 mi3 in Lake Ontario. Diversions of water into and out of the lakes are very small compared to the total volume of water stored in the lakes. The water level of Lake Superior has been regulated since about 1914 and levels of Lake Ontario since about 1960. The range of Lake Superior water-level fluctuations and storage has not been altered greatly by regulation. However, fluctuations on Lake Ontario have been reduced from 6.6 ft preregulation

  9. 125 years of glacier survey of the Austrian Alpine Club: results and future challenges

    NASA Astrophysics Data System (ADS)

    Fischer, Andrea

    2016-04-01

    One of the aims of the German and Austrian Alpine Club was the scientific investigation of the Alps. In 1891, several years after Swiss initiatives, Richter put out a call to contribute to regular glacier length surveys in the Eastern Alps. Since then more than 100 glaciers have been surveyed on a first biannual and later annual basis. The database includes measured data showing a general glacier retreat since 1891, with two periods of glacier advances in the 1920s and 1980s. Less well known are the sketches and reports which illustrate, for instance, changes in surface texture. The interpretation of length change data requires a larger sample of data for a reasonable interpretation on a regional scale. Nearly every time series in the long history of investigation includes gaps, e.g. in cases of problematic snout positions on steep rock walls or in lakes, or of debris-covered tongues. Current climate change adds the problem of glaciers splitting up into several smaller glaciers which behave differently. Several basic questions need to be addressed to arrive at a most accurate prolongated time series: How should measurements on disintegrating or debris-covered (and thus more or less stagnating) glaciers be documented, and how can we homogenize length change time series? Despite of uncertainties, length change data are amongst the longest available records, bridging the gap to moraine datings of the early holocene.

  10. Evaluating the Importance of Plant Functional Traits: the Subalpine and Alpine

    NASA Astrophysics Data System (ADS)

    Sanchez, A.; Smith, W. K.

    2011-12-01

    be new, potentially revealing traits with regard to function and fitness of a particular plant community. The most frequently studied traits (above) are evaluated here for their potential in predicting fitness in these distinctly different communities, i.e. new functional traits that may most relevant for predicting successful growth and reproduction. Also, additional traits are proposed that are absent from the literature, but are hypothesized as critical to fitness in each community. This association between specific plant traits, or suites of traits, for these two adjacent communities will be valuable for identifying future spatial shifts according to a changing global environment. The future role of climate change in altering global treelines might be predicted based on differences in the most critical functional traits possessed by subalpine versus alpine species.

  11. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra

    USGS Publications Warehouse

    Walker, M.D.; Walker, D.A.; Welker, J.M.; Arft, A.M.; Bardsley, T.; Brooks, P.D.; Fahnestock, J.T.; Jones, M.H.; Losleben, M.; Parsons, A.N.; Seastedt, T.R.; Turner, P.L.

    1999-01-01

    Three 60 m long, 2.8 m high snowfences have been erected to study long-term effects of changing winter snow conditions on arctic and alpine tundra. This paper describes the experimental design and short-term effects. Open-top fiberglass warming chambers are placed along the experimental snow gradients and in controls areas outside the fences; each warming plot is paired with an unwarmed plot. The purpose of the experiment is to examine short- and long-term changes to the integrated physical-biological systems under simultaneous changes of winter snow regime and summer temperature, as part of the Long-Term Ecological Research network and the International Tundra Experiment. The sites were at Niwot Ridge, Colorado, a temperate high altitude site in the Colorado Rockies, and Toolik Lake, Alaska, a high-latitude site. Initial results indicate that although experimental designs are essentially identical at the arctic and alpine sites, experimental effects are different. The drift at Niwot Ridge lasts much longer than do the Toolik Lake drifts, so that the Niwot Ridge fence affects both summer and winter conditions, whereas the Toolik Lake fence affects primarily winter conditions. The temperature experiment also differs in effect between the sites. Although the average temperature increase at the two sites is similar (daily increase 1.5oC at Toolik and 1.9oC at Niwot Ridge), at Toolik Lake there is only minor diurnal variation, whereas at Niwot Ridge the daytime increases are extreme on sunny days (as much as 7-10oC), and minimum nighttime temperatures in the chambers are often slightly cooler than ambient (by about 1oC). The experimental drifts resulted in wintertime increases in temperature and CO2 flux. Temperatures under the deep drifts were much more consistent and warmer than in control areas, and at Niwot Ridge remained very close to 0oC all winter. These increased temperatures were likely responsible for observed increases in system carbon loss. Initial changes

  12. [Rate of microsuccessions: Structure and floristic richness recovery after sod transplantation in alpine plant communities].

    PubMed

    Kipkeev, A M; Cherednichenko, O V; Tekeev, D K; Onipchenko, V G

    2015-01-01

    Reciprocal transplantations of sod pieces have been conducted in alpine plant communities of the northwestern Caucasus. During 25 years, the changes in floristic richness and successional rates have been registered. Study objects were chosen to be. plant communities located along the toposequence from ridges to hollows with gradient of snow. cover thickness increase and vegetation period decrease, namely alpine lichen heath (ALH), Festuca varia grasslands (FVG), Geranium-Hedysarum meadows (GHM), and snow bed communities (SBC). The results of the study confirm the hypothesis about floristic richness of transplanted pieces to come closer to that of a background acceptor community. It is shown that during succession the variability reduces if sod pieces from different communities are transplanted into a common one. In particular, this is evident in case of SBC, where floristic richness of sod pieces transplanted from ALH and GHM has reduced noticeably. Also, it is evident from the results that the more different are donor and acceptor communities the higher is the rate of their changing. However, the assumption of higher succession rate in more productive communities has not been affirmed. On the opposite, communities with initially low productivity turned out to change faster than those with high productivity. It is found out that sod pieces transplanted to upper areas of the toposequence have had higher rate of alteration in comparison with those transplanted to lower areas. The reason behind this, as it may be suggested, is a longer growth season, which means a more prolonged period of high functional activity, and, accordingly, more time for the effects of competition, bringing seeds over, etc. In whole, the rate of succession decreases as the time from the moment of transplantation.increases, especially in communities with low productivity.

  13. The role of weather and density dependence on population dynamics of Alpine-dwelling red deer.

    PubMed

    Bonardi, Anna; Corlatti, Luca; Bragalanti, Natalia; Pedrotti, Luca

    2017-01-01

    The dynamics of red deer Cervus elaphus populations has been investigated across different environmental conditions, with the notable exception of the European Alps. Although the population dynamics of mountain-dwelling ungulates is typically influenced by the interaction between winter severity and density, the increase of temperatures and the reduction of snowpack occurring on the Alps since the 1980s may be expected to alter this pattern, especially in populations dwelling at medium - low elevations. Taking advantage of a 29-year time series of spring count data, we explored the role of weather stochasticity and density dependence on growth rate and vital rates (mortality and weaning success), and the density-dependent variation in body mass in a red deer population of the Italian Alps. The interaction between increasing values of density and snow depth exerted negative and positive effects on growth and mortality rates, respectively, while weaning success was negatively affected by increasing values of density, female-biased sex ratio and snow depth. Body mass of males and females of different age classes declined as population size increased. Our data support the role of winter severity and density dependence as key components of red deer population dynamics, and provide insight into the species' ecology on the European Alps. Despite the recent decline of snowpack on the Alpine Region, the negative impacts of winter severity and population abundance on growth rrate (possibly mediated by the density-dependent decline in body mass) confirms the importance of overwinter mortality in affecting the population dynamics of Alpine-dwelling red deer.

  14. Nitrate and Anion Behavior in Alpine Tundra Soil in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Evans, A.; Janke, J. R.

    2014-12-01

    Anthropogenic nitrogen deposition can potentially alter soil biogeochemistry in alpine tundra ecosystems by soil acidification, resulting in accelerated nutrient leaching as well as reduced microbial and plant diversity. Several field studies have simulated various atmospheric nitrogen loading rates and observed changes in above ground biomass, species diversity, and soil buffering capacity. Few studies to date have examined the biogeochemical behavior and transport of nitrogen in alpine tundra soil. The objective of this study is to evaluate nitrate transport in soil and the chemical behavior of associated leached ionic species. To accomplish this, a soil leaching study was conducted using both composite soil columns and intact soil cores collected in Rocky Mountain National Park, CO, USA (3,658 m). Soil columns were leached in a temperature controlled environmental chamber with DI water adjusted for pH and ionic strength. Leachates were collected using a fraction collector and analyzed using IC and ICP-MS. Analysis of collected leachates for intact soil cores indicated a complex mixture of inorganic and organic anions moving in the soil wetting front, with elevated NO3- concentration > 15 mg/L. Nitrate concentration decreased rapidly after initial column breakthrough. Leaching of individual soil horizons indicated high NO3- concentrations > 15 mg/L in collected pore volumes for both the organic and subsurface horizons. Elevated concentrations of both inorganic (SO42-, F-) and organic anions (acetate, oxalate) were found in these horizons. Fluctuation of approximately 1-1.5 pH units for the intact soil column leachates and the anion elution order suggests possible complex anion exchange processes in the soil wetting front between various soil solid phases.

  15. The legacy of large regime shifts in shallow lakes.

    PubMed

    Ramstack Hobbs, Joy M; Hobbs, William O; Edlund, Mark B; Zimmer, Kyle D; Theissen, Kevin M; Hoidal, Natalie; Domine, Leah M; Hanson, Mark A; Herwig, Brian R; Cotner, James B

    2016-12-01

    Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. We examine the modern and historical stability of 11 shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 yr suggest that (1) the diatom assemblage is characteristic of either clear or turbid lakes, (2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state, (3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 yr and have since remained in a regime where turbid-water predominates, and (4) top-down impacts to the lake food-web from fish introductions appear to be the dominant driver of strong regime shifts and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention.

  16. Late Holocene Hydrologic Variability Reconstruction of the Coastal Southwestern United States Using Lake Sediments from Crystal Lake, CA

    NASA Astrophysics Data System (ADS)

    Palermo, J. A.; Kirby, M. E.; Hiner, C.; Leeper, R. J.

    2014-12-01

    This study aims to reconstruct a high resolution, late Holocene record of precipitation variability for the coastal southwestern United States region using sediment cores from Crystal Lake, CA. This region is especially susceptible to droughts and episodic floods, making it of particular importance to understand past hydrologic variability. Crystal Lake is a small, alpine landslide dammed lake in the Angeles National Forest of the San Gabriel Mountains. The lake is the only permanent, freshwater lake located in the range. It is hydrologically closed, meaning all lake level changes are controlled by changes in precipitation: evaporation. To reconstruct past hydrologic variability, two Livingston piston cores were taken 15 m apart in the depocenter of the lake in May 2014. A multi-proxy methodology was utilized including: magnetic susceptibility, total organic matter and total carbonate content, grain size, and bulk d13Corg of sediments. All analyses were conducted at 1 cm contiguous intervals except bulk d13Corg (at 2 cm). Seismic reflection profiles were also generated to examine the basin's stratigraphic features in the context of the individual sediment cores. A working age model was provided by multiple AMS 14C dates from discrete organic matter (i.e., seeds, charcoal). Results from this study are compared to preexisting records of late Holocene hydrologic variability from coastal, central, and southern California. Further, the forcing mechanisms that drive hydrologic change (wet vs. dry episodes) in Southern California, such as ocean-atmosphere interactions including El Niño Southern Oscillation or the Pacific Decadal Oscillation, are discussed.

  17. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  18. Lake Nasser and Toshka Lakes, Egypt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Nasser (center) and the Toshka Lakes (center left) glow emerald green and black in this MODIS true-color image acquired March 8, 2002. Located on and near the border of Egypt and Norther Sudan, these lakes are an oasis of water in between the Nubian (lower right) and Libyan Deserts (upper left). Also visible are the Red Sea (in the upper right) and the Nile River (running north from Lake Nasser). Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  19. A New GLORIA (Global Research Initiative in Alpine Environments Site in Southwestern Montana

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Warden, J. E.; Apple, C. J.; Pullman, T. Y.; Gallagher, J. H.

    2008-12-01

    Global climate change is predicted to have a major impact on the alpine environments and plants of western North America. Alpine plant species and treelines may migrate upwards due to warmer temperatures. Species composition, vegetation cover, and the phenology of photosynthesis, flowering, pollination, and seed dispersal may change. The Global Research Initiative in Alpine Environments (GLORIA) is a network of alpine sites established with the goal of understanding the interactions between climate change and alpine plants. The Continental Divide traverses Southwestern Montana, where the flora contains representative species from both sides of the divide. In the summer of 2008, we established a GLORIA site in southwestern Montana east of the Continental Divide with the objective of determining whether the temperature changes at the site, and if so, how temperature changes influence alpine plants. We are monitoring soil temperature along with species composition and percent cover of alpine plants at four sub-summits along an ascending altitudinal gradient. We placed the treeline, lower alpine, and upper alpine sites on Mt. Fleecer (45°49'36.06"N, 112°48'08.18"W, 2886.2 m (9469 ft)) and the highest sub-summit on Keokirk Mountain, (45°35'37.94"N, 112°57'03.89"W, 2987.3 m (9801 ft)) in the Pioneer Range. Interesting species on these mountains include Lewisia pygmaea, the Pygmy Bitterroot, Silene acaulis, the Moss Campion, Eritrichium nanum, the Alpine Forget-Me-Not, Lloydia serotina, the Alpine Lily, and Pinus albicaulis, the Whitebark Pine. This new site will remain in place indefinitely. Baseline and subsequent data from this site will be linked with the global network of GLORIA sites with which we will assess changes in alpine flora.

  20. Glucose homeostasis and cardiovascular disease biomarkers in older alpine skiers.

    PubMed

    Dela, F; Niederseer, D; Patsch, W; Pirich, C; Müller, E; Niebauer, J

    2011-08-01

    Alpine skiing and ski training involves elements of static and dynamic training, and may therefore improve insulin sensitivity. Healthy men and women who where beginners/intermediate level of alpine skiing, were studied before (Pre) and immediately after (Post) 12 weeks of alpine ski training. After an additional 8 weeks a third test (retention study, Ret) was performed. The subjects were randomized into an intervention group (IG, n=22, age=66.6 ± 0.4 years) or a control group (CG, n=20, age=67.0 ± 1.0 years). Plasma glucose decreased (P<0.05) in CG, but increased (P<0.05) again at Ret, while a continued decrease was seen in IG (Ret vs Post, P<0.05). Plasma insulin decreased (P<0.05) with training in IG, while no effect was seen in CG. HOMA2 index for insulin resistance decreased (P<0.05) from 0.80 ± 0.08 to 0.71 ± 0.09 in IG. The value at Ret (0.57 ± 0.08) tended (P=0.067) to be different from Post. In CG the corresponding values were 0.84 ± 0.09, 0.81 ± 0.12 and 0.70 ± 0.09, respectively. Total cholesterol and LDL decreased in both IC and CG, a result, interpreted as seasonal variation. Biomarkers for endothelial function and low-grade inflammation were not elevated and similar in IG and CG, and did not change. Alpine ski training improves glucose homeostasis and insulin sensitivity in healthy, elderly individuals.

  1. Identifying key conservation threats to Alpine birds through expert knowledge

    PubMed Central

    Pedrini, Paolo; Brambilla, Mattia; Rolando, Antonio; Girardello, Marco

    2016-01-01

    Alpine biodiversity is subject to a range of increasing threats, but the scarcity of data for many taxa means that it is difficult to assess the level and likely future impact of a given threat. Expert opinion can be a useful tool to address knowledge gaps in the absence of adequate data. Experts with experience in Alpine ecology were approached to rank threat levels for 69 Alpine bird species over the next 50 years for the whole European Alps in relation to ten categories: land abandonment, climate change, renewable energy, fire, forestry practices, grazing practices, hunting, leisure, mining and urbanization. There was a high degree of concordance in ranking of perceived threats among experts for most threat categories. The major overall perceived threats to Alpine birds identified through expert knowledge were land abandonment, urbanization, leisure and forestry, although other perceived threats were ranked highly for particular species groups (renewable energy and hunting for raptors, hunting for gamebirds). For groups of species defined according to their breeding habitat, open habitat species and treeline species were perceived as the most threatened. A spatial risk assessment tool based on summed scores for the whole community showed threat levels were highest for bird communities of the northern and western Alps. Development of the approaches given in this paper, including addressing biases in the selection of experts and adopting a more detailed ranking procedure, could prove useful in the future in identifying future threats, and in carrying out risk assessments based on levels of threat to the whole bird community. PMID:26966659

  2. spatial and temporal distribution of nutrients in a linked stream-lake ecosystem

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Covino, T. P.; McGlynn, B. L.

    2011-12-01

    The movement of nutrients between streams and lakes can impact nutrient export and aquatic ecology in linked stream-lake ecosystems. Specifically, lakes can alter water chemistry and buffer downstream export of nutrients through physical, chemical, and biological processes. This study characterizes nitrogen storage and transport dynamics in a connected stream-lake ecosystem over the summer of 2008 in the Bull Trout Lake Watershed in the Sawtooth Mountains of central Idaho, USA. Water samples were collected for chemical analyses at the lake inflow, outflow, and at six sites across the lake, on hourly to bi-weekly intervals. Lake sampling sites were each sampled at six depths in order to capture all strata of the lake. Additionally, a dye-tracer (Rhodamine-WT) was co-injected with LiCl into the lake to determine water flow-paths and residence time distributions. Inflow and outflow fluxes, spatial and temporal distributions of dissolved organic nitrogen(DON) and dissolved inorganic nitrogen (DIN), as well as water residence times at different lake depths were evaluated. Over the summer of 2008, net influx of NO3 to the lake and net export of DON and NH4 from the lake was observed. While NO3 dominated the DIN fraction at the inflow, NH4 was dominant both at the lake outflow and within the lake, suggesting potential contributions of NH4 to the lake from adjacent wetland and groundwater sources. Differences in transport dynamics between NO3 and NH4, and temporal concentration dynamics both in the stream and lake support this hypothesis. NO3 concentrations were driven by snowmelt flushing and peaked with the hydrograph, subsequently declining for the rest of the summer. NH4 concentrations however remained stable and peaked three weeks after NO3 at the lake outflow, at a time when the contribution of snow melt water had declined and groundwater contribution increased proportionally. In the lake, NH4 and DON concentrations declined during peak runoff in May and June, and

  3. Effects of experimentally modified soil temperatures and nutrient availability on growth and mycorrhization of Pinus cembra at the alpine treeline

    NASA Astrophysics Data System (ADS)

    Gruber, Andreas; Peintner, Ursula; Wieser, Gerhard; Oberhuber, Walter

    2015-04-01

    Soil temperature affects litter decomposition, nutrient uptake, root growth and respiration and it is suggested that soil temperature has direct impact on tree growth at the alpine treeline. We have evaluated the impact of experimentally modified soil temperatures and nutrient availability on growth and mycorrhization of Pinus cembra at the treeline in the Central Eastern Alps (c. 2150 m a.s.l., Tyrol, Austria). Soil temperature in the rooting zone of naturally grown c. 25 year old trees (n=6 trees per treatment) was altered by shading and heat-trapping using non-transparent and glasshouse foils mounted c. 20 cm above soil surface. Additional trees were selected for a nitrogen fertilisation treatment and as controls. During the study period, mean soil temperatures at 10 cm depth were reduced by c. 3°C at the cooled vs. warmed plots. Soil moisture was not influenced due to soil water transport along the slope. Results revealed that changed soil temperatures did not significantly affect tree growth, gas exchange, needle nutrient content and specific leaf area. We also found no significant difference in degree of mycorrhization or number of mycorrhized root tips between treatments. On the other hand, nitrogen fertilization and a reduction of interspecific root competition led to significantly raised radial stem growth. Results indicate that tree growth at the selected study area was not limited by soil temperature, while interspecific competition for nutrients among trees and low stature vegetation (dwarf shrubs, grasses) had significant impact. Therefore, we suggest that root competition with alpine grassland and dwarf-shrub communities will hamper temperature driven advance of alpine treeline in the course of climate warming. Acknowledgements This work was funded by the Austrian Science Fund (FWF Project No. P22836-B16, 'Growth response of Pinus cembra to experimentally modified soil temperatures at the treeline').

  4. Responses Of Alpine Vegetation To Global Warming: Insights From Comparing Alpine-Restricted And Broad-Ranging Herbs Along Snowmelt Gradients

    NASA Astrophysics Data System (ADS)

    Butz, R. J.; Reinhardt, K. S.; Germino, M. J.; Kueppers, L. M.

    2009-12-01

    Many alpine plant species face habitat fragmentation and loss, and even extinction because their narrow elevation, precipitation, and temperature tolerances limit their geographic distribution. In order to assess the impacts of climate change on sensitive native alpine communities we used a variety of methods to look at the seasonal timing of life stages (phenology) and the stress responses (physiology) of alpine species along a natural environmental gradient at Niwot Ridge in the Colorado Rocky Mountains to address the following question: Will alpine plants be impaired in their existing range as a result of climate change? We collected data on date of snowmelt and vegetative and flowering phenology of all alpine species present from snowmelt to senescence in 80 1m2 plots above treeline. In addition, we measured soil temperature and moisture, plant water potential and leaf-level gas exchange early, mid, and late-season on three alpine-restricted and three broader-ranging alpine species: Geum rossii, Artemisia scopulorum, Carex rupestris, Lewisia pygmaea, Tetraneuris grandiflora, and Sibbaldia procumbens. In 2009, the natural variation in snowmelt timing was 40 days (approximately 5.5 weeks) over the 80 plots. Our results suggest that with earlier snowmelt, the number of vascular species per plot increases. However, this increase is almost exclusively attributable to wider ranging species not restricted to the alpine. Plots with intermediate natural snowmelt dates had a higher diversity of alpine-restricted species, photosynthesis, and water-use efficiency, thereby potentially increasing long-term survival rates amongst alpine species. Water stress increased in all species as the season progressed, especially in plots where snow melted earliest. Photosynthetic productivity and diversity of alpine-restricted species was greatest in plots having intermediate melt dates. These findings suggest that shifts in snowmelt date under a warming climate will likely impact the

  5. Alpine Lakes Wilderness Additions and Pratt and Middle Fork Snoqualmie Rivers Protection Act

    THOMAS, 113th Congress

    Rep. Reichert, David G. [R-WA-8

    2013-01-23

    12/22/2014 Placed on the Union Calendar, Calendar No. 517. (All Actions) Notes: For further action, see H.R.3979, which became Public Law 113-291 on 12/19/2014. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Alpine Lakes Wilderness Additions and Pratt and Middle Fork Snoqualmie Rivers Protection Act

    THOMAS, 113th Congress

    Sen. Murray, Patty [D-WA

    2013-01-23

    06/21/2013 Referred to the Subcommittee on Public Lands and Environmental Regulation. (All Actions) Notes: For further action, see H.R.3979, which became Public Law 113-291 on 12/19/2014. Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  7. Alpine Lakes Wilderness Additions and Pratt and Middle Fork Snoqualmie Rivers Protection Act

    THOMAS, 111th Congress

    Rep. Reichert, David G. [R-WA-8

    2009-03-26

    03/19/2010 Received in the Senate. Read twice. Placed on Senate Legislative Calendar under General Orders. Calendar No. 325. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  8. Temporal Patterns of Airborne Pesticides in Alpine Lakes of the Sierra Nevada, California

    EPA Science Inventory

    Airborne agricultural pesticides are being transported many tens of kilometers to remote mountain areas, and have been implicated as a causal agent for recent, dramatic population declines of several amphibian species in such locations. Largely unmeasured, however, are the magnit...

  9. Comparison modeling for alpine vegetation distribution in an arid area.

    PubMed

    Zhou, Jihua; Lai, Liming; Guan, Tianyu; Cai, Wetao; Gao, Nannan; Zhang, Xiaolong; Yang, Dawen; Cong, Zhentao; Zheng, Yuanrun

    2016-07-01

    Mapping and modeling vegetation distribution are fundamental topics in vegetation ecology. With the rise of powerful new statistical techniques and GIS tools, the development of predictive vegetation distribution models has increased rapidly. However, modeling alpine vegetation with high accuracy in arid areas is still a challenge because of the complexity and heterogeneity of the environment. Here, we used a set of 70 variables from ASTER GDEM, WorldClim, and Landsat-8 OLI (land surface albedo and spectral vegetation indices) data with decision tree (DT), maximum likelihood classification (MLC), and random forest (RF) models to discriminate the eight vegetation groups and 19 vegetation formations in the upper reaches of the Heihe River Basin in the Qilian Mountains, northwest China. The combination of variables clearly discriminated vegetation groups but failed to discriminate vegetation formations. Different variable combinations performed differently in each type of model, but the most consistently important parameter in alpine vegetation modeling was elevation. The best RF model was more accurate for vegetation modeling compared with the DT and MLC models for this alpine region, with an overall accuracy of 75 % and a kappa coefficient of 0.64 verified against field point data and an overall accuracy of 65 % and a kappa of 0.52 verified against vegetation map data. The accuracy of regional vegetation modeling differed depending on the variable combinations and models, resulting in different classifications for specific vegetation groups.

  10. Effects of eccentric cycle ergometry in alpine skiers.

    PubMed

    Gross, M; Lüthy, F; Kroell, J; Müller, E; Hoppeler, H; Vogt, M

    2010-08-01

    Eccentric cycling, where the goal is to resist the pedals, which are driven by a motor, increases muscle strength and size in untrained subjects. We hypothesized that it could also be beneficial for athletes, particularly in alpine skiing, which involves predominantly eccentric contractions at longer muscle lengths. We investigated the effects of replacing part of regular weight training with eccentric cycling in junior male alpine skiers using a matched-pair design. Control subjects ( N=7) executed 1-h weight sessions 3 times per week, which included 4-5 sets of 4 leg exercises. The eccentric group ( N=8) performed only 3 sets, followed by continuous sessions on the eccentric ergometer for the remaining 20 min. After 6 weeks, lean thigh mass increased significantly only in the eccentric group. There was a groupxtime effect on squat-jump height favouring the eccentric group, which also experienced a 6.5% improvement in countermovement-jump height. The ability to finely modulate muscle force during variable eccentric cycling improved 50% (p=0.004) only in the eccentric group. Although eccentric cycling did not significantly enhance isometric leg strength, we believe it is beneficial for alpine skiers because it provides an efficient means for hypertrophy while closely mimicking the type of muscle actions encountered while skiing.

  11. Drought occurrence in the Alpine Region, 1864-2050

    NASA Astrophysics Data System (ADS)

    Calanca, P.; Spörri, M.

    2010-09-01

    Drought is one of the major threats to agricultural production worldwide. It occasionally affects agriculture in the Alpine region, although more intermittently than in other areas of Europe, notably the Mediterranean. Things may change, though, in the future if climate projections developed for the Alpine region in the context of the IPCC Fourth Assessment Report or the PRUDENCE project come true, with enhanced drought risk calling for adaptation. The focus of this contribution is on the characterization of drought occurrence in the Alpine region during 1864-2050. The analysis relies on historical weather records from Switzerland covering the period 1864-2010 and projections from the ENSEMBLES project for 2010-2050. Drought is quantified in terms of the standardized precipitation index (SPI), the modified moisture index (MMI) and the seasonal mean soil moisture availability. We show that the last decades were less prone to drought than the second half of the 19th century or the mid 20th century. We further examine these results using time series analysis and discuss regional differences. We then illustrate that according to the ENSEMBLES scenarios shifts in the drought regime until 2050 are likely to be less pronounced than previously thought, despite a marked warming and a moderate but significant increase in the length of dry spells. This suggests that further studies are needed to better understand changes in the hydrological cycle and their implications for drought risk.

  12. Surface Pollen Distribution from Alpine Vegetation in Eastern Tibet, China.

    PubMed

    Zhang, Yun; Kong, Zhaochen; Yang, Zhenjing; Wang, Li; Duan, Xiaohong

    2017-04-03

    We explore the relationship between modern pollen spectra and vegetation patterns in the Eastern Tibet, China in order to provide information on the representation of pollen taxa and improve the general knowledge of vertical pollen transport. Forty-two modern pollen samples collected in surface soil along two altitudinal transects allowed conclusions on vertical pollen dispersal from the alpine region of Dingqing County, Changdu district in Tibet. Discriminant analyses and detrended correspondence analysis (DCA) of 24 pollen taxa were used to further discuss the difference of modern pollen spectra in these alpine vegetation zones. The surface pollen assemblage is divided into three pollen zones, such as subalpine shrub meadow, montane coniferous forest and shrub steppe with sparse trees. Altitude and precipitation are two primary factors contributing to changes in surface pollen assemblage from alpine vegetation in the eastern Tibet. Large amounts of spruce pollen at higher elevations above the timberline might be introduced from lower elevations by upslope winds. Therefore, the interpretation of spruce pollen in the fossil record must take into account long distance upward wind transport. Moreover, the destruction of coniferous forest in the study area is well illustrated in the modern pollen rain.

  13. Numerical simulation of a turning alpine ski during recreational skiing.

    PubMed

    Hirano, Y; Tada, N

    1996-09-01

    While downhill snow skiing, recreational alpine skiers enjoy making turning motions with their skis. These motions are mainly induced by skidding, while turning by alpine ski racers is made by carving a trace in the snow. In the present study we treat the turning motions by recreational alpine skiers. This "skidding" turning motion is made possible by centripetal forces acting on the ski and skier dynamic motion systems, with these forces arising due to the skier placing the ski's longitudinal axis at an angle that is inclined away from the velocity vector and edging the ski into the snow. When snow is soft, the edged ski creates a snow impacting force, whereas a snow cutting force occurs when it is hard. Here, we calculate the former force using a three-dimensional water jet analogy, while the latter one using conventional metal cutting theory, after which the corresponding equations of motion for each system are derived and numerically solved. This methodology enables simulating the curvilinear and rotational motion of the ski and skier systems. Resultant simulations quantitatively show for the first time that the resultant radius of curvature of a ski track while downhill skiing is strongly dependent on the location of the ski boot on the ski's longitudinal axis and also on its side-cut (midlength taper).

  14. Observed trends in the hydrologic regime of Alpine catchments

    NASA Astrophysics Data System (ADS)

    Bard, Antoine; Renard, Benjamin; Lang, Michel

    2010-05-01

    A European trans-national project, AdaptAlp, has been set up since 2008 in order to study the impacts of climate change in the Alps and to assess adaptation strategies. One of the objectives of this project is to study past and present changes in the hydrologic regime of Alpine rivers. This poster presents preliminary results of a trend analysis over the whole Alpine area. A new dataset of more than two hundred discharge time series has been collected over the six countries of the alpine space: Switzerland, Italy, Germany, Austria, Slovenia and France. These series are made up of at least forty years of daily record and are related to undisturbed catchments. This dataset covers the whole spectrum of hydrological regimes existing in the Alps (from glacier- to mixed rainfall/snow regimes). In a second step, a set of hydrologic indices has been defined to characterize the hydrologic regime in terms of low, medium and high flows. In particular, these indices describe the drought severity (in terms of duration, intensity and volume deficit) and seasonality, the volume and timing of snowmelt, floods intensity and seasonality. A statistical trend test is finally applied for each hydrologic indice at each site. Consistent trends affecting the timing of snowmelt-dominated streamflow are found all over the Alps. Spring floods appear earlier in the season and tend to be longer in duration. Winter droughts tend to be shorter and less severe in terms of volume deficit.

  15. Alpine biodiversity and assisted migration: The case of the American pika (Ochotona princeps)

    USGS Publications Warehouse

    Wilkening, Jennifer L.; Ray, Chris; Ramsay, Nathan G.; Klingler, Kelly

    2015-01-01

    Alpine mammals are predicted to be among the species most threatened by climate change, due to the projected loss and further fragmentation of alpine habitats. As temperature or precipitation regimes change, alpine mammals may also be faced with insurmountable barriers to dispersal. The slow rate or inability to adjust to rapidly shifting environmental conditions may cause isolated alpine species to become locally extirpated, resulting in reduced biodiversity. One proposed method for mitigating the impacts of alpine species loss is assisted migration. This method, which involves translocating a species to an area with more favourable climate and habitat characteristics, has become the subject of debate and controversy in the conservation community. The uncertainty associated with climate change projections, coupled with the thermal sensitivity of many alpine mammals, makes it difficult to a priori assess the efficacy of this technique as a conservation management tool. Here we present the American pika (Ochotona princeps) as a case study. American pikas inhabit rocky areas throughout the western US, and populations in some mountainous areas have become locally extirpated in recent years. We review known climatic and habitat requirements for this species, and also propose protocols designed to reliably identify favourable relocation areas. We present data related to the physiological constraints of this species and outline specific requirements which must be addressed for translocation of viable populations, including wildlife disease and genetic considerations. Finally, we discuss potential impacts on other alpine species and alpine communities, and overall implications for conserving alpine biodiversity in a changing climate.

  16. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  17. Diversity and distribution of fungal communities in lakes of Antarctica.

    PubMed

    Gonçalves, Vívian N; Vaz, Aline B M; Rosa, Carlos A; Rosa, Luiz H

    2012-11-01

    This study assessed the diversity and distribution of filamentous fungi obtained from water sampled from six lakes in the Antarctic Peninsula. One hundred and twenty-eight fungal isolates were purified and identified by analysis of nuclear rDNA ITS region sequences as belonging to 31 fungal different operational taxonomic units (OTUs). The most frequently isolated fungi were Geomyces pannorum and Mortierella sp.; these species occurred in six and three of the lakes sampled, respectively, and displayed the highest total colony-forming unit per L. Different species that have not been found to these lakes and/or had adapted to cold conditions were found. In general, the fungal community displayed low richness and high dominance indices. The species Cadophora cf. luteo-olivacea, Cadophora malorum, Davidiella tassiana, G. pannorum, Mortierella cf. alpina and Thelebolus cf. microsporus that were found in the lakes in question were also previously found in other cold ecosystems, such as Arctic, temperate and Alpine regions. The results of this study suggest the presence of an interesting aquatic fungal web, including symbionts, weak and strong saprophytes and parasite/pathogen fungal species. This aquatic web fungal may be a useful community model for further ecological and evolutionary studies of extreme habitats.

  18. Patterns of spatial and temporal variability of UV transparency in Lake Tahoe, California-Nevada

    NASA Astrophysics Data System (ADS)

    Rose, Kevin C.; Williamson, Craig E.; Schladow, S. Geoff; Winder, Monika; Oris, James T.

    2009-06-01

    Lake Tahoe is an ultra-oligotrophic subalpine lake that is renowned for its clarity. The region experiences little cloud cover and is one of the most UV transparent lakes in the world. As such, it is an ideal environment to study the role of UV radiation in aquatic ecosystems. Long-term trends in Secchi depths showed that water transparency to visible light has decreased in recent decades, but limited data are available on the UV transparency of the lake. Here we examine how ultraviolet radiation varies relative to longer-wavelength photosynthetically active radiation (PAR, 400-700 nm, visible wavelengths) horizontally along inshore-offshore transects in the lake and vertically within the water column as well as temporally throughout 2007. UV transparency was more variable than PAR transparency horizontally across the lake and throughout the year. Seasonal patterns of Secchi transparency differed from both UV and PAR, indicating that different substances may be responsible for controlling transparency to UV, PAR, and Secchi. In surface waters, UVA (380 nm) often attenuated more slowly than PAR, a pattern visible in only exceptionally transparent waters with very low dissolved organic carbon. On many sampling dates, UV transparency decreased progressively with depth suggesting surface photobleaching, reductions in particulate matter, increasing chlorophyll a, or some combination of these increased during summer months. Combining these patterns of UV transparency with data on visible light provides a more comprehensive understanding of ecosystem structure, function, and effects of environmental change in highly transparent alpine and subalpine lakes such as Tahoe.

  19. Estimated flood flows in the Lake Tahoe basin, California and Nevada

    USGS Publications Warehouse

    Crompton, E. James; Hess, Glen W.; Williams, Rhea P.

    2002-01-01

    Lake Tahoe, the largest alpine lake in North America, covers about 192 square miles (mi2) of the 506-mi2 Lake Tahoe Basin, which straddles the border between California and Nevada (Fig. 1). In cooperation with the Nevada Department of Transportation (NDOT), the U.S. Geological Survey (USGS) estimates the flood frequencies of the streams that enter the lake. Information about potential flooding of these streams is used by NDOT in the design and construction of roads and highways in the Nevada portion of the basin. The stream-monitoring network in the Lake Tahoe Basin is part of the Lake Tahoe Interagency Monitoring Program (LTIMP), which combines the monitoring and research efforts of various Federal, State, and regional agencies, including both USGS and NDOT. The altitude in the basin varies from 6,223 feet (ft) at the lake's natural rim to over 10,000 ft along the basin's crest. Precipitation ranges from 40 inches per year (in/yr) on the eastern side to 90 in/yr on the western side (Crippen and Pavelka, 1970). Most of the precipitation comes during the winter months as snow. Precipitation that falls from June through September accounts for less than 20 percent of the annual total.

  20. Lakes Ecosystem Services Online

    EPA Science Inventory

    Northeastern lakes provide valuable ecosystem services that benefit residents and visitors and are increasingly important for provisioning of recreational opportunities and amenities. Concurrently, however, population growth threatens lakes by, for instance, increasing nutrient ...

  1. National Lakes Assessment

    EPA Pesticide Factsheets

    The National Lakes Assessment is a collaborative, statistical survey of the nation's lakes. It is one of four national surveys that EPA and its partners conduct to assess the condition and health of the nation's water resources.

  2. Lake Huron LAMPs

    EPA Pesticide Factsheets

    The approach in Lake Huron differs from the Lakewide Management Plans of the other Great Lakes: no formal binational designation of lakewide beneficial use impairments, nor extensive lakewide modeling of chemical loadings

  3. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    article title:  Winter and Summer Views of the Salt Lake Region     View Larger Image Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the ...

  4. The Great Lakes

    EPA Pesticide Factsheets

    The Great Lakes form the largest surface freshwater system on Earth. The U.S. and Canada work together to restore and protect the environment in the Great Lakes Basin. Top issues include contaminated sediments, water quality and invasive species.

  5. About Lake Tahoe

    EPA Pesticide Factsheets

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate, change, Lake Tahoe Total Maximum Daily Load TMDL), EPA-sponsored projects, list of partner agencies.

  6. Lake trout rehabilitation in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Eckert, Thomas H.; Schaner, Ted; Bowlby, James N.; Schleen, Larry P.

    1995-01-01

    Attempts to maintain the native lake trout (Salvelinus namaycush) population in Lake Ontario by stocking fry failed and the species was extirpated by the 1950s. Hatchery fish stocked in the 1960s did not live to maturity because of sea lamprey (Petromyzon marinus) predation and incidental commercial harvest. Suppression of sea lampreys began with larvicide treatments of Lake Ontario tributaries in 1971 and was enhanced when the tributaries of Oneida Lake and Lake Erie were treated in the 1980s. Annual stocking of hatchery fish was resumed with the 1972 year class and peaked at about 1.8 million yearlings and 0.3 million fingerlings from the 1985–1990 year classes. Survival of stocked yearlings declined over 50% in the 1980 s and was negatively correlated with the abundance of lake trout > 550 mm long (r = −0.91, P < 0.01, n = 12). A slot length limit imposed by the State of New York for the 1988 fishing season reduced angler harvest. Angler harvest in Canadian waters was 3 times higher in eastern Lake Ontario than in western Lake Ontario. For the 1977–1984 year classes, mean annual survival rate of lake trout age 6 and older was 0.45 (range: 0.35–0.56). In U.S. waters during 1985–1992, the total number of lake trout harvested by anglers was about 2.4 times greater than that killed by sea lampreys. The number of unmarked lake trout < 250 mm long in trawl catches in 1978–1992 was not different from that expected due to loss of marks and failure to apply marks at the hatchery, and suggested that recruitment of naturally-produced fish was nil. However, many of the obstacles which may have impeded lake trout rehabilitation in Lake Ontario during the 1980s are slowly being removed, and there are signs of a general ecosystem recovery. Significant recruitment of naturally produced lake trout by the year 2000, one interim objective of the rehabilitation plan for the Lake, may be achieved.

  7. Speculations on the spatial setting and temporal evolution of a fjord-style lake

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Spötl, C.

    2012-04-01

    The Inn Valley, a classical region of Quaternary research in the Alps, is bordered by terraces that extend over almost 70 km and record an ancient lake with a lake level near 750-830 m above sea level (a.s.l.), about 250-300 m above the modern valley floor. Over large distances, the terrace sediments consist mainly of laminated "Banded Clays", above ~750 m a.s.l. overlain by glaciofluvial gravel and finally, by tills that record the Upper Würmian ice advance of Marine Isotope Stage (MIS) 2. In the (former) clay pit of Baumkirchen this boundary forms the Alpine type locality for the onset of the Upper Würmian, well supported by 14C-based age control first established by Fliri (1971). On the basis of a recently cored sediment section at Baumkirchen, the >200 m thick "Banded Clays" store a continuous, largely undisturbed, highly resolved, and widely varved climatic archive of MIS 3. Major unknowns concern the location and origin of dams that may have barred the vast and deep Inn Valley lake. We discuss potential linkages to the pattern of moraines and ice advance of MIS 4 glaciers, which was less prominent than during MIS 2, thus leading to a distinct east-west segment¬ation of the run-off systems in Tyrol. East of Imst, for example, the lake was possibly barred by both a rock sill reaching up to 830 m a.s.l. and a lateral moraine deposited by an Ötz Valley glacier. 80 km further east, a lateral moraine of a glacier advancing from the Ziller Valley may have barred the ancient Inn Valley lake to the east. The final rapid coarsening of clastic lake sediments at the end of MIS 3 is widely ascribed to major climatic deter¬ioration. However, the MIS 3-2 boundary was linked to an only modest change of global climates and accordingly, different forcings may be considered. In turn, the rapid coarsening may document a date, when the Central Alpine glaciers had already filled the basin of Imst to the west of the Inn Valley lake. This ice mass may have forced the melt

  8. Great Lakes rivermouths: a primer for managers

    USGS Publications Warehouse

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  9. Neighborhood functions alter unbalanced facilitation on a stress gradient in an alpine treeline simulation

    NASA Astrophysics Data System (ADS)

    Malanson, G. P.; Resler, L. M.

    2014-12-01

    The stress-gradient hypothesis states that individual and species competitive and facilitative effects change in relative importance or intensity along environmental gradients of stress. The importance of the number of facilitators in the neighborhood of a potential beneficiary has not been explored. Evenly distributed and stress-correlated facilitation and the increase in the intensity of facilitation with neighbors as linear, logarithmic, and unimodal functions is simulated for two species such as Pinus albicaulis and Abies lasiocarpa. The mutualism is unbalanced in that the establishment of one species is enhanced by neighbors more than the other. Compared to no facilitation or evenly distributed facilitation, the stress gradient produces more edges in the spatially advancing population, more overall intensity of facilitation, and more individuals further advanced into the area of higher stress; the more enhanced species has increased population relative to the other - to the point where they are equal. Among three neighborhood functions, little difference exists in outcomes between the linear and logarithmic functions, but the unimodal function, which shifts peak facilitation intensity to fewer neighbors, increases the above state variables more than the differences between the even and stress gradient facilitation scenarios. The unbalanced mutualism may be important at treeline ecotones where the spatial pattern becomes central to facilitation.

  10. Assessing Ecological Impact Assessment: Lessons from Mono Lake, California.

    PubMed

    Wiens, John A; Patten, Duncan T; Botkin, Daniel B

    1993-11-01

    Because of its high salinity and alkalinity, Mono Lake, in eastern California (USA), is a relatively simple ecosystem. It has become the focus of an environmental controversy over the effects of 50 yr of diversions of water from tributary streams to supply water to Los Angeles. Diversions lowered the lake level, increased the salinity, changed the availability of aquatic habitats, and altered the configuration of the shoreline and of islands that support breeding colonies of gulls. We consider (1) how two independent panels of experts synthesized scientific information on the lake ecosystem to assess the environmental consequences of these changes, and (2) how the findings of these groups influenced policy decisions and how well subsequent changes in the lake matched expectations. Despite differences in composition and approach, the two panels reached generally similar conclusions. These conclusions have been a major component of legal activities and the development of management plans for the lake and basin ecosystem. Both panels concluded that, because of the simplicity of the lake ecosystem, ecological consequences of changes in lake level and salinity associated with continuing diversions were likely to be unusually clear-cut. At certain lake levels these changes would be expected to alter algal and invertebrate populations and the populations of aquatic birds that feed upon them or to disrupt breeding activities in gull colonies. Projections about when critical lake levels might be reached, however, have not been met. This is largely because stream flows into the lake have been altered from recent historic patterns by the cessation of water diversions due to governmental and legal actions (prompted in part by the panels' findings) and by a prolonged drought. These events illustrate the difficulty of projecting a timetable for environmental changes, even in simple and well-studied ecosystems.

  11. Lake herring (Coregonus artedi) and rainbow smelt (Osmerus mordax) diets in western Lake Superior

    USGS Publications Warehouse

    Johnson, Timothy B.; Brown, William P.; Corry, Timothy D.; Hoff, Michael H.; Scharold, Jill V.; Trebitz, Anett S.

    2004-01-01

    We describe the diets of lake herring (Coregonus artedi) and rainbow smelt (Osmerus mordax) in western Lake Superior during the summers of 1996 and 1997. Both species consumed predominantly (> 71% by number) zooplankton, showing a preference for larger taxa. Diet overlap between the two species was low (Schoener's index = 0.42). Mysis was most important in rainbow smelt diets, whereas Diaptomus sicilis was most important in lake herring diets. Rainbow smelt selected larger taxa, and larger individuals within a taxon when compared to lake herring, although rainbow smelt tended to be smaller fish. Fish diets have changed relative to previous studies and may be reflecting changes in the zooplankton community. Continued changes in the fish and zooplankton community will alter predatorprey and energetic pathways, ultimately affecting growth and production of the ecosystem.

  12. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR

    USGS Publications Warehouse

    Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.

    2007-01-01

    Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.

  13. A Killer Lake

    ERIC Educational Resources Information Center

    Horvath, Thomas

    2005-01-01

    In 1986, Lake Nyos, a volcanic lake in Cameroon, released a huge amount of carbon dioxide gas, killing over 1,700 people in the surrounding area. This case study, developed for use in a limnology or aquatic biology course, explores that event, introducing students to concepts relating to lake formation, thermal stratification, and dissolved gases.…

  14. Lake Layers: Stratification.

    ERIC Educational Resources Information Center

    Brothers, Chris; And Others

    This teacher guide and student workbook set contains two learning activities, designed for fifth through ninth grade students, that concentrate on lake stratification and water quality. In the activities students model the seasonal temperature changes that occur in temperate lakes and observe the resulting stratification of lake waters. Students…

  15. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This book contains lesson plans that provide an integrated approach to incorporating Great Lakes environmental issues into elementary subjects. The book is divided into three subject areas: (1) History, which includes the origins of the Great Lakes, Great Lakes people, and shipwrecks; (2) Social Studies, which covers government, acid rain as a…

  16. Great Lakes: Chemical Monitoring

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1976-01-01

    The Tenth Great Lakes Regional Meeting of the American Chemical Society met to assess current Chemical Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)

  17. Lake Effects: The Lake Superior Curriculum Guide.

    ERIC Educational Resources Information Center

    Beery, Tom; And Others

    This curriculum guide was launched in response to a need for Lake Superior-specific educational materials and contains lessons and activities that can be used to teach about Lake Superior. The lessons in this book are divided into four sections. Each of the first three sections has a background section that provides basic information about Lake…

  18. Elevation, Substrate, & Climate effects on Alpine & Sub-Alpine Plant Distribution in California & Nevada's High Mountains: Preliminary Data from the California and Nevada GLORIA Project

    NASA Astrophysics Data System (ADS)

    Barber, A.; Millar, C.

    2014-12-01

    Documenting plant response to global climate change in sensitive zones, such as the alpine, is a major goal for global change biology. Basic information on alpine plant distribution by elevation and substrate provides a basis for anticipating which species may decline in a warming climate. The Global Observation Research Initiative in Alpine Environments (GLORIA) is a worldwide effort to document vegetation changes over time in alpine settings using permanent multi-summit plots. The California/Nevada group currently monitors seven permanent GLORIA target regions, composed of 29 summits in alpine and subalpine zones. Summits range in elevations from 2918m to 4325m on substrates including dolomite, granite, quartzite, and volcanics. High-resolution plant occurrence and cover data from the upper 10 meters of each summit are presented. Plants from our target regions can be divided into three groups: summit specialists found only on the highest peaks, alpine species found predominantly within the alpine zone, and broadly distributed species found in the alpine zone and below. Rock substrate and microsite soil development have a strong influence on plant communities and species richness. We present the first set of five-year resurvey and temperature data from 18 summits. We have documented some annual variation in species presence/absence at almost all sites, but no dramatic changes in total diversity. Consistent with the expectation of rising global temperatures, our soil temperature loggers have documented temperature increases at most of our sites. These data are a baseline for assessing bioclimatic shifts and future plant composition in California and Nevada's alpine zone.

  19. Forest gaps slow the sequestration of soil organic matter: a humification experiment with six foliar litters in an alpine forest

    PubMed Central

    Ni, Xiangyin; Yang, Wanqin; Tan, Bo; Li, Han; He, Jie; Xu, Liya; Wu, Fuzhong

    2016-01-01

    Humification of plant litter containing carbon and other nutrients greatly contributes to the buildup of soil organic matter, but this process can be altered by forest gap-induced environmental variations during the winter and growing seasons. We conducted a field litterbag experiment in an alpine forest on the eastern Tibetan Plateau from November 2012 to October 2014. Six dominant types of foliar litter were placed on the forest floor in various forest gap positions, including gap centre, canopy gap, expanded gap and closed canopy. Over two years of incubation, all foliar litters were substantially humified especially during the first winter, although the newly accumulated humic substances were young and could be decomposed further. The forest gaps exhibited significant effects on early litter humification, but the effects were regulated by sampling seasons and litter types. Compared with the litter under the closed canopy, humification was suppressed in the gap centre after two years of field incubation. The results presented here suggest that gap formation delays the accumulation of soil organic matter, and reduces soil carbon sequestration in these alpine forests. PMID:26790393

  20. Alpine Skiing With total knee ArthroPlasty (ASWAP): impact on molecular and architectural features of musculo-skeletal ageing.

    PubMed

    Narici, M; Conte, M; Salvioli, S; Franceschi, C; Selby, A; Dela, F; Rieder, F; Kösters, A; Müller, E

    2015-08-01

    This study investigated features of skeletal muscle ageing in elderly individuals having previously undergone unilateral total knee arthroplasty (TKA) and whether markers of sarcopenia could be mitigated by a 12-week alpine skiing intervention. Novel biomarkers agrin, indicative of neuromuscular junction (NMJ) degeneration, tumor suppressor protein p53, associated with muscle atrophy, and a new ultrasound-based muscle architecture biomarker were used to characterize sarcopenia. Participant details and study design are presented by Kösters et al. (2015). The results of this study show that NMJ degeneration is widespread among active septuagenarians previously subjected to TKA: all participants showed elevated agrin levels upon recruitment. At least 50% of individuals were identified as sarcopenic based on their muscle architecture, supporting the hypothesis that NMJ alterations precede sarcopenia. Notably, sarcopenia was strongly associated with the expression of p53, which seems to confirm its validity as a biomarker of muscle atrophy. Training did not significantly modify any of these biomarkers. In view of the lack of accretion of muscle mass in response to the alpine skiing intervention, we hypothesize that local muscle inflammation and oxidative stress may have blunted the anabolic response to training and promoted muscle breakdown in this elderly post-TKA population.

  1. Effects of waterlogging on carbon assimilate partitioning in the Zoigê alpine wetlands revealed by 13CO2 pulse labeling.

    PubMed

    Gao, Jun-Qin; Gao, Ju-Juan; Zhang, Xue-Wen; Xu, Xing-Liang; Deng, Zhao-Heng; Yu, Fei-Hai

    2015-03-23

    Waterlogging has been suggested to affect carbon (C) turnover in wetlands, but how it affects C allocation and stocks remains unclear in alpine wetlands. Using in situ (13)CO2 pulse labelling, we investigated C allocation in both waterlogged and non-waterlogged sites in the Zoigê wetlands on the Tibetan Plateau in August 2011. More than 50% of total (13)C fixed by photosynthesis was lost via shoot respiration. Shoots recovered about 19% of total (13)C fixed by photosynthesis at both sites. Only about 26% of total fixed (13)C was translocated into the belowground pools. Soil organic C pool accounted for 19% and roots recovered about 5-7% of total fixed (13)C at both sites. Waterlogging significantly reduced soil respiration and very little (13)C was lost via soil respiration in the alpine wetlands compared to that in grasslands. We conclude that waterlogging did not significantly alter C allocations among the C pools except the (13)CO2 efflux derived from soil respiration and that shoots made similar contributions to C sequestration as the belowground parts in the Zoigê alpine wetlands. Therefore, changes in waterlogging due to climate change will not affect C assimilate partitioning but soil C efflux.

  2. [Effects of snow pack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan].

    PubMed

    Tan, Bo; Wu, Fu-zhong; Yang, Wan-qin; Yang, Yu-lian; Wang, Ao; Kang, Li-na

    2011-10-01

    The dynamic changes of snow pack as affected by global warming might have strong effects on the ecological processes in alpine forests. To understand the responses of soil ecological processes in the alpine forests of west Sichuan to the decreasing snow pack under global warming, a snow-shading experiment was conducted in a primary fir forest from October 19, 2009 to May 18, 2010, with the effects of snow pack removal on the dynamics of soil temperature, carbon, nitrogen, and phosphorus investigated. The results showed that snow pack removal increased the diurnal variation amplitude of soil temperature and the frequency of freeze-thaw cycle, and advanced the time of soil frozen and melt as well as the peak time of soil dissolved carbon and nitrogen, available P, NH4(+)-N, and NO3(-)-N. Snow pack removal increased the concentrations of soil dissolved carbon and nitrogen and NO3(-)-N but decreased the concentrations of soil available P and NH4(+)-N, and changed the ratios of soil dissolved carbon and nitrogen, available P, NH4(+)-N, and NO3(-)-N in the period of snow cover and snow melt. The decreased snow pack in winter time in the alpine forests of west Sichuan as affected by global warming could alter the soil exterior environment, and further, affect the processes of soil carbon, nitrogen and phosphorus.

  3. Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere

    SciTech Connect

    Kober, B.; Wessels, M.; Bollhoefer, A.; Mangini

    1999-05-01

    Pb isotope ratios and Pb concentrations of well-dated sediments of Lake Constance, Central Europe have been analyzed using thermal ion mass spectrometry. Sequential extraction studies indicated isotope homogeneity of the leachable Pb components within the investigated layers. Since the middle of the 19th century a significant anthropogenic Pb component appeared in the lake sediments, and rapidly approaches concentration levels similar to that of the geogenic Pb background (20 ppm) at the beginning of the 20th century. Anthropogenic Pb was predominantly transferred to the lake sediments via the atmosphere. Pb sources were coal combustion, industrial ore processing and leaded gasoline. The flux of a fluvial Pb component to the lake sediments, additive to atmospheric Pb deposition, peaked in about 1960. This flux is attributed to (re)mobilization of Pb from polluted parts of the lake catchment, and indicates the change of catchment soils from a pollution sink to a heavy metal source. The strong reduction of anthropogenic Pb in the uppermost lake sediments since the 1960s has been caused by advances of environmental protection. The lake sediments record the changing fluxes and the isotope composition of the deposited aeolian Pb pollution. During the 20th century aeolian Pb fluxes to the lake sediments were in the range of 1--4 {micro}g/cm{sup 2}/a. During peak emission periods of gasoline Pb to the atmosphere (1960--1990) the aerosol Pb isotope composition was rather constant ({sup 206}Pb/{sup 207}Pb: 1.12--1.13) and probably a mixture of Canadian and Australian with Russian and Central European Pb types. Aeolian Pb isotope and Pb flux trends in the lake sediments as a whole agree well with the trends found in Alpine glaciers (Doering et al., 1997a,b) and in ombrotrophic peat bogs of Switzerland (Shotyk et al., 1996). However, different industrial Pb components were deposited in the archives of aeolian pollution during the early 20th century.

  4. Influence of glacial meltwater and humidity on evaporation of two Tibetan lakes indicated by delta 18O

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2009-04-01

    delta 18O and model results are adopted to study the affects of glacial meltwater and relative humidity in two lake basins (Lakes Yamdrok-tso and Puma Yum-tso) at two different elevations on the southern Tibetan Plateau. Temporally, the lake water delta 18O of Yamdrok-tso Lake displays a seasonal fluctuation, whereas the lake water delta 18O is stable in Puma Yum-tso Lake in whole year. Spatially, the delta 18O value in Yamdrok-tso Lake is 2‰ higher than that in Puma Yum-tso Lake. delta 18O values in the two lake basins increase by 10‰ from the termini of glaciers to the lake shores, by about 1‰ from the lakeshores to the lake center, by 0.4‰ from the water surface to depth in these lakes. The largest difference, from the terminus of the Qiangyong Glacier to the depth of 35 m, is 14.1‰ and demonstrates the importance of glacial meltwater. Evaporation alters the changes of delta 18O in the two lake basins. Model results show that relative humidity is a major controlling factor of evaporation. delta 18O values of both Yamdrok-tso and Puma Yum-tso Lakes are at their steady condition, but Puma Yum-tso Lake has taken a longer time to approach the current condition, which might be attributed to higher humidity and more glacial meltwater at the lake.

  5. Features of the Caucasian segment of the Alpine-Himalayan-Indonesian Convergence Zone

    NASA Astrophysics Data System (ADS)

    Sharkov, E.

    2012-04-01

    The Caucasus Mountain System is a part of the Cenozoic Alpine-Himalayan-Indonesian Convergence Zone (AHICZ) which lasted throughout Eurasia from Western Mediterranean to Western Pacific. This belt has been formed after closure of the Mesozoic Tethys and is marked by mountains building processes, appearance of riftogenic structures, numerous late Cenozoic basaltic plateaus, and chain of often within-continental andesite-latite volcanic arcs, which trace suture zones of the continental plates collision. Caucasus Mountains are located in eastern part of the proper Alpine Zone in zone of Arabian-Eurasian syntaxis and appeared as a result of submeridional pressure which generated by oncoming moving of these plates. The Great Caucasus is represent the south border of the Eurasian plate, uplifted along the Main Caucasian Fault (Thrust). The latter is a part of super-regional deep-seated fault ranged from the Kopetdag through Caspian Sea, Caucasus and Crimea; very likely, that its further continuation is Tornquist-Teisseyre Zone. This superfault separates areas of Alpine convergence from Eurasian plate sensu stricto. The Caucasus occurred between Black and Caspian seas with passive margins and oceanic crust, covered by sediments of 10-15 km thick. Depressions of the seas form large "downfall", or caldrons which cut off pre-Pliocene structures of Caucasus and Kopetdag. These seas are, probably, small remnants of the Tethys which gradually shallowing in the Miocene (Zonenshain, Le Pichon, 1986). New essential deepening of the Black Sea and South-Caspian deep began in the Pliocene- Quaternary; it occurred simultaneously with uprising of Crimea and Caucasus, which were not marked in relief before (Grachev, 2000). Large positive isostatic anomaly beneath the Trans-Caucasian Transverse Uplift (TCTU) of the Great Caucasus and Lesser Caucasus, which stretch out to Arabian plate, occurred between "subsides" Black and especially Caspian seas with neutral to negative isostatic

  6. Permian magmatism, Permian detachment faulting, and Alpine thrusting in the Orobic Anticline, southern Alps, Italy

    NASA Astrophysics Data System (ADS)

    Pohl, Florian; Froitzheim, Niko; Geisler-Wierwille, Thorsten; Schlöder, Oliver

    2014-05-01

    The Grassi Detachment Fault is located in the Orobic Alps east of Lake Como and was described by Froitzheim et al. (2008) as an Early Permian extensional structure. Many issues still remained unclear, like the exact timing of faulting and the extension from the well-exposed part of the detachment towards west. The Grassi Detachment Fault separates the Variscan Basement in its footwall from the volcanic and sedimentary rocks of the Early Permian Collio Formation within its hanging wall, marked by a mylonitic and cataclastic layer whose textures indicate top-to-the-southeast displacement. The footwall basement is formed by the Variscan Morbegno Gneiss and two granitic intrusions, the Val Biandino Quarz Diorite (VBQD) and the Valle Biagio Granite (VBG). The former is syntectonic with respect to the detachment, whereas for the latter, the relation to the detachment is unknown. The age of the VBQD is poorly defined as 312 Ma ± 48 Ma (Thöni et al. 1992); the VBG has not been dated. Volcanic rocks of the Collio Formation in the hanging wall may represent the extrusive part of the magmatic system. In our study area west of Val Biandino, several faults and shear zones are exposed: (1) The Grassi Detachment Fault is represented by mylonites and cataclasites with top-SE shear sense, between basement rocks and the Collio Volcanics. Towards NW, it is truncated by the unconformably overlying Late Permian Verrucano Lombardo. This may reflect the eroded culmination of a Permian metamorphic core complex. (2) A steeply NW-dipping, brittle normal fault is found further west in the footwall between VBQD and VBG. It is sealed by the basal unconformity of the Verrucano Lombardo and therefore should also be of Early Permian age (Sciunnach, 2001). It may represent an antithetic fault with respect to the detachment, accommodating the uplift of the magmatically inflated core complex. (3) The Biandino Fault is a steeply SE-dipping reverse fault, affecting also the Late Permian Verrucano

  7. Factors affecting the evolution of coastal wetlands of the Laurential Great Lakes: an overview

    USGS Publications Warehouse

    Mayer, T.; Edsall, T.; Munawar, M.

    2004-01-01

    Coastal wetlands play a pivotal role in the Great Lakes ecosystem. As buffer zones between the land and open waters of the Great Lakes, they perform a variety of essential functions providing both direct and indirect anthropogenic benefits. Geology, morphology and climate are the dominant variables that influence Laurentian Great Lakes wetland development. However, anthropogenic factors are the major contributors to alteration of natural wetland processes. This paper provides an overview of natural and anthropogenic factors important in Great Lakes coastal wetland development and provides statistical information describing the Great Lakes Basin. A brief description of wetlands classification and research issues is also presented.

  8. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: examples from two alpine watersheds

    USGS Publications Warehouse

    Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.

    2012-01-01

    The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996–2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54–0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.

  9. Ovarian alterations in wild northern pike Esox lucius females.

    PubMed

    Zarski, Daniel; Rechulicz, Jacek; Krejszeff, Sławomir; Czarkowski, Tomasz K; Stańczak, Katarzyna; Palińska, Katarzyna; Gryzińska, Magdalena; Targońska, Katarzyna; Kozłowski, Krzysztof; Mamcarz, Andrzej; Hliwa, Piotr

    2013-09-24

    The aim of the present study was to analyse the occurrence of macroscopically visible ovary alterations in 2 populations of northern pike Esox lucius L. originating from lakes in the Mazurian Lake District (NE Poland). The alterations were characterised by ovary tissue that was morphologically malformed, in part or in whole, and contained immature oocytes, i.e. trophoplastic or previtellogenic oocytes instead of vitellogenic oocytes. These alterations were found only in the ovaries, and no morphological alterations of the testes were noted. Macroscopic and histological analyses were carried out in order to classify the observed alterations in the ovaries. Three types of alterations were identified in which morphological malformations as well as histological investigation of the ovaries were considered. An analysis of the size and age of the fish in relation to the occurrence of alterations as well as of the macroscopic and histological nature of the alteration types was made. The data obtained revealed no lake or age dependency of the observed alterations. Based on the results obtained, we suggest that the presence of endocrine disruptors in the environment or/and genetic factors could be responsible for these kinds of gonad anomalies. However, our results did not allow us to determine the aetiology of the alterations.

  10. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Hinkel, Kenneth M.; Welker, Jeffery A.

    2015-01-01

    Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since many Arctic lakes are shallow and ice grows thick (historically 2-m or greater), seasonal ice commonly freezes to the lake bed (bedfast ice) by winter's end. Bedfast ice fundamentally alters lake energy balance and melt-out processes compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintain perennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out of bedfast ice lakes occurred on average 17 days earlier (22-June) than ice-out on adjacent floating ice lakes (9-July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation, 28% on average, relative to floating ice lakes and this divergence increased in lakes closer to the coast and in cooler summers. Water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that ice regimes created by the combination of lake depth relative to ice thickness and associated ice-out timing currently cause a strong hydrologic divergence among Arctic lakes. Thus understanding the distribution and dynamics of lakes by ice regime is essential for predicting regional hydrology. An observed regime shift in lakes to floating ice conditions due to thinner ice growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes occurs in spite of an overall projected increase in evapotranspiration as the Arctic climate warms.

  11. [Phytoplankton community structure and its succession in isolated lakes of Poyang-Junshan Lake].

    PubMed

    Liu, Xia; Qian, Kui-Mei; Tan, Guo-Liang; Xing, Jiu-Sheng; Li, Mei; Chen, Yu-Wei

    2014-07-01

    As one of the human activities that transform nature, construction of dams and dykes may impose significant effects on lake ecosystems. Due to lacking of comparative data for ecological monitoring, how the changes of phytoplankton community structure respond to altered hydrological connectivity between lakes and other water bodies is still unknown. This work chose Junshan Lake, the typical isolated lake from Poyang Lake floodplain, to investigate the succession in phytoplankton communities responding to altered connectivity. Phytoplankton samples were collected during the wet and dry seasons in Junshan Lake, to analyze the phytoplankton community structure. The results showed that, fifty three genera from six phyta were identified in Junshan Lake, with Chlorophyta (47.2%), Bacillariophyta (22.2%), Cyanophyta (14.8%) and Euglenophyta (9.3%) being the main phyta. The dominant species were Ceratium hirundinella (20.5%), Anabeana spp. (18.5%) and Microcystis spp. (12.9%) during the wet seasons. Cryptomonas ovate (38.4%), Aulacoseira granulata (15.2%) and Microcystis spp. (10.5%) dominated during the whole dry seasons. The total phytoplankton abundance was mainly composed of Cyanophyta (85.4% -87.0%). The total phytoplankton biomass was dominantly made up of Cyanophyta (45.0%), Dinophyta (21.1%), Bacillariophyta (15.6%) and Chlorophyta (11.5%) during the wet seasons. Cryptophyta (38.2%), Bacillariophyta (31.3%) and Cyanophyta (21.1%) were the main contributors of the total phytoplankton biomass during the dry seasons. The phytoplankton community structure changed from Dinophyta-Bacillariophyta type during the wet seasons of 2007-2008 to Cyanophyta- Dinophyta type during the wet seasons of 2012-2013, and changed from Dinophyta- Bacillariophyta type during the dry seasons of 2007-2008 to Cryptophyta- Bacillariophyta- Cyanophyta type during the dry seasons of 2012-2013. The abundance and biomass increased from 2.66 x 10(6) cell L(-1) during 2007-2008 to 6.77 x 10(7) cell x

  12. Limnology of the Green Lakes Valley: Phytoplankton ecology and dissolved organic matter biogeochemistry at a long-term ecological research site

    USGS Publications Warehouse

    Miller, Matthew P.; McKnight, Diane M.

    2015-01-01

    Background: Surface waters are the lowest points in the landscape, and therefore serve as excellent integrators and indicators of changes taking place in the surrounding terrestrial and atmospheric environment.Aims: Here we synthesise the findings of limnological studies conducted during the past 15 years in streams and lakes in the Green Lakes Valley, which is part of the Niwot Ridge Long-term Ecological Research (LTER) Site.Methods: The importance of these studies is discussed in the context of aquatic ecosystems as indicators, integrators, and regulators of environmental change. Specifically, investigations into climatic, hydrologic, and nutrient controls on present-day phytoplankton, and historical diatom, community composition in the alpine lake, Green Lake 4, are reviewed. In addition, studies of spatial and temporal patterns in dissolved organic matter (DOM) biogeochemistry and reactive transport modelling that have taken place in the Green Lakes Valley are highlighted.Results and conclusions: The findings of these studies identify specific shifts in algal community composition and DOM biogeochemistry that are indicative of changing environmental conditions and provide a framework for detecting future environmental change in the Green Lakes Valley and in other alpine watersheds. Moreover, the studies summarised here demonstrate the importance of long-term monitoring programmes such as the LTER programme.

  13. Intermediate and long-term anaerobic performance of elite Alpine skiers.

    PubMed

    Bacharach, D W; von Duvillard, S P

    1995-03-01

    Physiological requirements of Alpine skiing, demanding power from both aerobic and anaerobic sources, were first reported in 1965 by Bengt Saltin and coworkers. An update on the physiology of Alpine skiing was presented by Karlsson and colleagues in 1978, and their work remains a benchmark for most current research dealing with Alpine skiers. These works have identified muscular strength and complex motor skill abilities as essential to the competitive ski racer. The energy demands of Alpine ski racing dominate the range between 45 and 2 min. Since the late 1970s, many researchers have reported a variety of tests that associate test scores to skiing performance. Traditionally, short tests of anaerobic power such as the 30-s Wingate test have been used to reflect anaerobic capacity. Only recently have researchers and coaches begun to question whether a test that is shorter in duration than most skiing performances can estimate anaerobic power as it relates to Alpine ski racing. This study reviews current literature relative to physiological requirements for Alpine skiing as well as relating 18 nationally ranked male (N = 10) and female (N = 8) Alpine ski racers' USSA national points lists for slalom and giant slalom to power measures from 30-s and 90-s Wingate cycle ergometer tests. Further directions of physiological research in Alpine skiing are also offered.

  14. Lake trout rehabilitation in Lake Huron

    USGS Publications Warehouse

    Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles; Ebener, Mark P.

    1995-01-01

    Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.

  15. Marsupials don't adjust their thermal energetics for life in an alpine environment

    PubMed Central

    Cooper, Christine E.; Withers, Philip C.; Hardie, Andrew; Geiser, Fritz

    2016-01-01

    ABSTRACT Marsupials have relatively low body temperatures and metabolic rates, and are therefore considered to be maladapted for life in cold habitats such as alpine environments. We compared body temperature, energetics and water loss as a function of ambient temperature for 4 Antechinus species, 2 from alpine habitats and 2 from low altitude habitats. Our results show that body temperature, metabolic rate, evaporative water loss, thermal conductance and relative water economy are markedly influenced by ambient temperature for each species, as expected for endothermic mammals. However, despite some species and individual differences, habitat (alpine vs non-alpine) does not affect any of these physiological variables, which are consistent with those for other marsupials. Our study suggests that at least under the environmental conditions experienced on the Australian continent, life in an alpine habitat does not require major physiological adjustments by small marsupials and that they are physiologically equipped to deal with sub-zero temperatures and winter snow cover. PMID:28349088

  16. Models for the Filling of Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Bacon, C. R.; Gardner, J. V.

    2001-12-01

    Crater Lake partially fills, to a depth of 593 m, the 10-km-diameter, 1200-m-deep caldera formed by collapse of Mount Mazama volcano. The lake receives water from direct precipitation and inflow from the caldera walls and loses water by surface evaporation and leakage. No streams flow from Crater Lake. A high-resolution multibeam echo sounding survey of the lake floor conducted in 2000 (Gardner et al., 2001) revealed seven drowned beaches between 1849 and 1878 m elevation (reference lake elevation is 1883 m). The beaches are thought to reflect drier periods in the lake's history since the climactic, caldera-forming eruption of Mount Mazama, approximately 7,700 years ago. The shallowest drowned beach at 1878 m represents the deepest part of a wave-cut platform up to 100 m wide, substantially wider than any of the beaches, where erodible talus or intensely altered rocks are present. The great width of the platform compared to the width of the drowned beaches indicates that the lake has mostly been near its current level during the lake's history. Unambiguous evidence of former highstands above 1883 m has not been reported. In order to explain the occurrence of the drowned beaches and their relatively narrow depth range, leakage through the caldera walls must vary with depth and cannot occur just at the lake bottom or at the modern lake level. A reasonable model is that leakage is proportional to elevation above the bottom of the lake. Recognition that there is a thick layer of relatively permeable debris resting on glaciated lava in the northeast caldera wall above an elevation of 1845 m suggests a variant of this model where leakage is proportional to elevation above 1845 m. Climate studies indicate that Crater Lake began to fill during a dry period. Assuming that precipitation at that time was 70% of modern and that the beach at 1853 m (the deeper beach is somewhat suspect) corresponds to this amount of precipitation, a combination of the above leakage models is

  17. Microbial biodiversity in Alpine Permo-Triassic rock salt

    NASA Astrophysics Data System (ADS)

    Radax, C.; Wieland, H.; Pfaffenhuemer, M.; Leuko, S.; Rittmann, S.; Weidler, G.; Gruber, C.; Stan-Lotter, H.

    2003-04-01

    Alpine Permo-Triassic rock salt (age 200-250 million years) was shown several times to contain living extremely halophilic Archaea. These organisms might stem from ancient populations that became entrapped and persisted in the rock salt since then. For this reason, rock salt is considered a promising model system for the search for bacterial extraterrestrial life. In our studies on biodiversity in Alpine rock salt, we employed both culture-dependent and culture-independent, PCR-based methods. The latter approach indicated the presence of at least 12 distinct sequence types (phylotypes) in our samples, all of which belonged to the extremely halophilic Archaea. None of the recovered sequences was identical to sequences from databases, suggesting the avoidance of contaminants during experimental procedures. Two phylotypes could be assigned to taxonomically described members of this family; the remaining ten phylotypes appeared only remotely related to known genera of the extremely halophilic Archaea. In contrast, attempts to isolate organisms from the same sample on 15 different growth media so far yielded only two groups of isolates that could be differentiated based on their 16S rRNA genes. One group was very similar to Halococcus strains that we frequently isolated from Alpine rock salt; the other group was closely correlated to one of our novel phylotypes. Analyses of whole cell protein patterns allowed to further differentiate the latter group into two different subgroups that could not be distinguished at the molecular level. These results show that both culture-dependent and culture-independent strategies have to be applied in order to obtain a more complete view of microbial biodiversity in Permo-Triassic rock salt: culture-independent methods yield information on the gross microbial diversity in rock salt, whereas subtle differences can currently only be registered between cultivated strains.

  18. Protection of large alpine infrastructures against natural hazards

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Scheikl, Manfred; Hergarten, Stefan

    2013-04-01

    Large infrastructures in alpine domains are threatened by a variety of natural hazards like debris flows, rock falls and snow avalanches. Especially linear infrastructure including roads, railway lines, pipe lines and power lines passes through the entire mountain range and the impact of natural hazards can be expected along a distance over hundreds of kilometers. New infrastructure projects like storage power plants or ski resorts including access roads are often located in remote alpine domains without any historical record of hazardous events. Mitigation strategies against natural hazards require a detailed analysis on the exposure of the infrastructure to natural hazards. Following conventional concepts extensive mapping and documentation of surface processes over hundreds to several thousand km² of steep alpine domain is essential but can be hardly performed. We present a case study from the Austrian Alps to demonstrate the ability of a multi-level concept to describe the impact of natural hazards on infrastructure by an iterative process. This includes new state of the art numerical models, modern field work and GIS-analysis with an increasing level of refinement at each stage. A set of new numerical models for rock falls, debris flows and snow avalanches was designed to operate with information from field in different qualities and spatial resolutions. Our analysis starts with simple and fast cellular automata for rockfalls and debrisflows to show the exposure of the infrastructure to natural hazards in huge domains and detects "high risk areas" that are investigated in more detail in field in the next refinement level. Finally, sophisticated 2D- depth averaged fluid dynamic models for all kinds of rapid mass movements are applied to support the development of protection structures.

  19. Experimental Evaluation of Seed Limitation in Alpine Snowbed Plants

    PubMed Central

    2011-01-01

    Background The distribution and abundance of plants is controlled by the availability of seeds and of sites suitable for establishment. The relative importance of these two constraints is still contentious and possibly varies among species and ecosystems. In alpine landscapes, the role of seed limitation has traditionally been neglected, and the role of abiotic gradients emphasized. Methodology/Principal Findings We evaluated the importance of seed limitation for the incidence of four alpine snowbed species (Achillea atrata L., Achillea clusiana Tausch, Arabis caerulea L., Gnaphalium hoppeanum W. D. J. Koch) in local plant communities by comparing seedling emergence, seedling, juvenile and adult survival, juvenile and adult growth, flowering frequency as well as population growth rates λ of experimental plants transplanted into snowbed patches which were either occupied or unoccupied by the focal species. In addition, we accounted for possible effects of competition or facilitation on these rates by including a measure of neighbourhood biomass into the analysis. We found that only A. caerulea had significantly lower seedling and adult survival as well as a lower population growth rate in unoccupied sites whereas the vital rates of the other three species did not differ among occupied and unoccupied sites. By contrast, all species were sensitive to competitive effects of the surrounding vegetation in terms of at least one of the studied rates. Conclusions/Significance We conclude that seed and site limitation jointly determine the species composition of these snowbed plant communities and that constraining site factors include both abiotic conditions and biotic interactions. The traditional focus on abiotic gradients for explaining alpine plant distribution hence appears lopsided. The influence of seed limitation on the current distribution of these plants casts doubt on their ability to readily track shifting habitats under climate change unless seed production is

  20. Alpine lithofacies variation: Working toward a physically-based model

    NASA Astrophysics Data System (ADS)

    Morris, Scott E.; Olyphant, Greg A.

    1990-01-01

    Local scale variation in the deposition of alpine lithofacies (moraines, rock glaciers, and talus) within single mountain ranges or alpine valleys is hypothesized to reflect the control of three topoclimatic parameters (altitude, radiation shading and show-fence/wind-drift effects) that interact to varying degrees with sourcewall fracturing. A conceptual model that incorporates local and regional scale controls over facies deposition is formalized and indirectly tested using simple comparison-of-means, correlation analysis, and numerical simulations based upon two data sets from mountain ranges in the southern Rocky Mountains. Results from these exploratory analyses suggest that there is great promise for a physically-based approach to the study of alpine lithofacies. For example, the patterns of early-and mid-Holocene moraines in the Colorado Front Range can be reproduced by manipulating, in a spatially consistent fashion, the radiation shading and wind-drift components of the model. Preliminary analyses of cirque floor deposits in the Sangre de Cristo mountains suggest that the range of altitude, radiation shading and sourcewall fracturing values for rock glaciers and talus overlap, but that the facies can be roughly distinguished on the basis of a dimensionless interaction value combining all three of the topoclimatic and lithologic parameters. A more detailed set of field data from a portion of the Colorado Front Range allows the identification of a threshold separating talus deposits from active rock glaciers on the basis of topoclimatic situation and sourcewall characteristics. Full simulation of facies deposition during the Holocene is complicated by the differing responses of the facies to changing (macro) climatic conditions. Simulation of talus slope and rock glacier response to changing weathering rates underscores the complexity of rock glacier response, and highlights the need for caution in interpreting the morphology of these features and the timing

  1. Snowboarding injuries: an analysis and comparison with alpine skiing injuries.

    PubMed Central

    Abu-Laban, R B

    1991-01-01

    OBJECTIVE: To analyse the types and causes of injuries associated with recreational snowboarding and to compare these with the injuries seen in alpine skiing. DESIGN: Prospective case series. SETTING: Rural hospital near three large ski resorts. PATIENTS: All people presenting to the Emergency Department with an injury caused by snowboarding during two ski seasons (1988-90). Of the 115 injured snowboarders identified, 73 (63%) completed the questionnaire. Information on the other patients was obtained from the hospital emergency records. Information was also obtained on seven alpine skiers who collided with snowboarders. RESULTS: Of the snowboarders 87 (76%) were male, and the mean age was 20.3 years. A total of 132 injuries were documented. Of the respondents to the questionnaire 83% reported that their fitness level was excellent or above average, 36% had never been on a snowboard previously, 25% were in their first year of snowboarding, 39% reported excellent snow conditions, 59% reported light traffic on the hill, and 7% had consumed alcohol before their accident. Injuries were equally divided between the upper body and the legs, 75% of the lower-limb injuries involving the left (lead) leg. Significant differences were noted between the patterns of injuries in snowboarding and alpine skiing: snowboarders were less likely to have lacerations (0% v. 8% respectively), boot-top contusions (0% v. 4%), thumb injuries (1% v. 10%) and knee sprains (14% v. 27%) and more likely to have spinal injuries (12% v. 4%), foot or ankle injuries (28% v. 5%) and distal radius fractures (10% v. 1%). CONCLUSIONS: Snowboarding is associated with a unique pattern of injuries, the knowledge of which could influence snowboarder education, accident prevention and equipment design. Additional research is needed to understand better the types, causes and rates of injury associated with snowboarding. PMID:1751929

  2. Warming Contracts Flowering Phenology in an Alpine Ecosystem

    NASA Astrophysics Data System (ADS)

    Jabis, M. D.; Winkler, D. E.; Kueppers, L. M.

    2015-12-01

    In alpine ecosystems where temperature increases associated with anthropogenic climate change are likely to be amplified, the flowering phenology of plants may be particularly sensitive to changes in environmental signals. For example, earlier snowmelt and higher temperature have been found to be important factors driving plant emergence and onset of flowering. However, few studies have examined the interactive role of soil moisture in response to warming. Using infrared heating to actively warm plots crossed with manual watering over the growing season in a moist alpine meadow at Niwot Ridge, Colorado, our preliminary results indicate that community-level phenology (length of flowering time across all species) was contracted with heating but was unaffected by watering. At the species level, additional water extended the length of the flowering season by one week for almost half (43%) of species. Heating, which raised plant and surface soil temperatures (+1.5 C) advanced snowmelt by ~7.6 days days and reduced soil moisture by ~2%, advanced flowering phenology for 86% of species. The response of flowering phenology to combined heating and watering was predominantly a heating effect. However, watering did appear to mitigate advances in end of flowering for 22% of species. The length of flowering season, for some species, appears to be tied, in part, to moisture availability as alleviating ambient soil moisture stress delayed phenology in unheated plots. Therefore, we conclude that both temperature and moisture appear to be important factors driving flowering phenology in this alpine ecosystem. The relationship between flowering phenology and species- or community-level productivity is not well established, but heating advanced community peak productivity by 5.4 days, and also reduced peak productivity unless additional water was provided, indicating some consistency between drivers of productivity and drivers of flowering phenology.

  3. 3D cartographic modeling of the Alpine arc

    NASA Astrophysics Data System (ADS)

    Vouillamoz, Naomi; Sue, Christian; Champagnac, Jean-Daniel; Calcagno, Philippe

    2012-12-01

    We built a 3D cartography of the Alpine arc, a highly non-cylindrical mountain belt, using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric Line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western Alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimensional cartography that would be used as input for further alpine studies.

  4. A molecular phylogeny of Alpine subterranean Trechini (Coleoptera: Carabidae)

    PubMed Central

    2013-01-01

    Background The Alpine region harbours one of the most diverse subterranean faunas in the world, with many species showing extreme morphological modifications. The ground beetles of tribe Trechini (Coleoptera, Carabidae) are among the best studied and widespread groups with abundance of troglobionts, but their origin and evolution is largely unknown. Results We sequenced 3.4 Kb of mitochondrial (cox1, rrnL, trnL, nad1) and nuclear (SSU, LSU) genes of 207 specimens of 173 mostly Alpine species, including examples of all subterranean genera but two plus a representation of epigean taxa. We applied Bayesian methods and maximum likelihood to reconstruct the topology and to estimate divergence times using a priori rates obtained for a related ground beetle genus. We found three main clades of late Eocene-early Oligocene origin: (1) the genus Doderotrechus and relatives; (2) the genus Trechus sensu lato, with most anisotopic subterranean genera, including the Pyrenean lineage and taxa from the Dinaric Alps; and (3) the genus Duvalius sensu lato, diversifying during the late Miocene and including all subterranean isotopic taxa. Most of the subterranean genera had an independent origin and were related to epigean taxa of the same geographical area, but there were three large monophyletic clades of exclusively subterranean species: the Pyrenean lineage, a lineage including subterranean taxa from the eastern Alps and the Dinarides, and the genus Anophthalmus from the northeastern Alps. Many lineages have developed similar phenotypes independently, showing extensive morphological convergence or parallelism. Conclusions The Alpine Trechini do not form a homogeneous fauna, in contrast with the Pyrenees, and show a complex scenario of multiple colonisations of the subterranean environment at different geological periods and through different processes. Examples go from populations of an epigean widespread species going underground with little morphological modifications to

  5. Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Boulton, Carolyn; Menzies, Catriona D.; Toy, Virginia G.; Townend, John; Sutherland, Rupert

    2017-01-01

    Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet-oligoclase facies mylonitic fault rocks from ˜35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault-related rocks retrieved during Deep Fault Drilling Project (DFDP-1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core-alteration zone extends ˜20-30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle-to-plastic transition (T ≤ 300-400°C, 6-10 km depth) and at shallow depths (T = 20-150°C, 0-3 km depth). Within the fault core-alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.

  6. Sediment connectivity evolution on an alpine catchment undergoing glacier retreat

    NASA Astrophysics Data System (ADS)

    Goldin, Beatrice; Rudaz, Benjamin; Bardou, Eric

    2014-05-01

    Climate changes can result in a wide range of variations of natural environment including retreating glaciers. Melting from glaciers will have a significant impact on the sediment transport characteristics of glacierized alpine catchments that can affect downstream channel network. Sediment connectivity assessment, i.e. the degree of connections that controls sediment fluxes between different segments of a landscape, can be useful in order to address management activity on sediment fluxes changes of alpine streams. Through the spatial characterization of the connectivity patterns of a catchment and its potential evolution it is possible to both define sediment transport pathways and estimate different contributions of the sub-catchment as sediment sources. In this study, a topography based index (Cavalli et al., 2013) has been applied to assess spatial sediment connectivity in the Navisence catchment (35 km2), an alpine basin located in the southern Walliser Alps (Switzerland) characterized by a complex glacier system with well-developed lateral moraines on glacier margins already crossed by several lateral channels. Glacier retreat of the main glacial edifice will provide a new connectivity pattern. At present the glacier disconnects lateral slopes from the main talweg: it is expected that its retreat will experience an increased connectivity. In order to study this evolution, two high resolution (2 m) digital terrain models (DTMs) describing respectively the terrain before and after glacier retreat have been analyzed. The current DTM was obtained from high resolution photogrammetry (2 m resolution). The future DTM was derived from application of the sloping local base level (SLBL) routine (Jaboyedoff et al., 2004) on the current glacier system, allowing to remove the ice body by reconstituting a U-shaped polynomial bedrock surface. From this new surface a coherent river network was drawn and slight random noise was added. Finally the river network was burned into

  7. Alpine North and South Foehn: Are They Different?

    NASA Astrophysics Data System (ADS)

    Plavcan, David; Mayr, Georg J.

    2016-04-01

    Foehn in the European Alps has mostly been studied for air flowing from the climatologically warmer southern side to the north although it occurs also for reverse flow situations. The dense mesonet in the Alpine countries together with an objective foehn diagnosis method makes it possible to systematically compare north and south foehn for a variety of topographical settings. While they share many common characteristics, north foehn is more frequent than south foehn and in general temperatures do not rise as much or even decrease during foehn onset.

  8. GAP Flow Measurements During the Mesoscale Alpine Programme

    SciTech Connect

    Mayr, G.; Armi, L.; Arnold, S.; Banta, Robert M.; Darby, Lisa S.; Durran, D. D.; Flamant, C.; Gabersek, S.; Gohm, A.; Mayr, R.; Mobbs, S.; Nance, L. B.; Vergeiner, I.; Vergeiner, J.; Whiteman, Charles D.

    2004-04-30

    This article provides an overview of the Gap Flow sub-program of the Mesoscale Alpine Programme, a major international meteorological field experiment conducted in the European Alps. The article describes the initial results of an investigation of the wind flow through the Brenner Pass gap in the east-west oriented central section of the European Alps under conditions of south foehn. The overview describes the objectives of the experiments, the instrumentation used for the field investigation, and the mesoscale model simulations. Initial findings of the scientific program are provided.

  9. Dynamics and structure of the Alpine Fold Belt

    NASA Technical Reports Server (NTRS)

    Kahle, H. G.

    1985-01-01

    The structure and present-day dynamics of the Alps interms of geodesy and gravimetry are discusssed. A strong correlation of precise leveling and isostatic gravity along the central Alpine chain, especially in Canton Graubunden, East Switzerland are shown. It is assumed that the uplift is partly controlled by isostatic rebound effects. Field observations indicate that these phenomena are still active in the Alps. The study of the uplift processes by applying a number of geodetic and gravimetric measuring techniques, such as the determination of nonperiodic secular variations of gravity, of the deflections of the vertical and tilt changes monitored by hydrostatic leveling is proposed.

  10. Carboxylic acids in high elevation Alpine glacier snow

    NASA Astrophysics Data System (ADS)

    Maupetit, FrançOis; Delmas, Robert J.

    1994-08-01

    Fresh-snow samples were collected on an event basis on the Glacier de la Girose (3360 m above sea level (asl)) in the southern French Alps, during winters and early springs 1990 and 1991. In addition, a 13-m firn core was recovered in 1991 at the Col du Dôme (4250 m asl), a cold glacier in the northern French Alps, offering the complete seasonal record of alpine precipitation during 3.5 years. All samples were analyzed for total formate and acetate and for major ions using ion chromatography. The acidity-alkalinity was accurately measured using a titration technique. An almost perfect ion balance was achieved for this data set. In absence of Saharan dust transport, the high alpine snow is slightly acid (H+ ˜ 2-20 μEq L-1). HCOOT and CH3COOT are generally present in alpine acid snow at very low concentrations: 0.3-0.6 μEq L-1 in winter (January to February) and 0.6-2 μEq L-1 in early spring (March to April). At Col du Dôme, total acetate concentrations of ˜1 μEq L-1 are observed in summer. It remains unclear from our results what the major sources of carboxylic acids are, and in particular of acetic acid, in the wintertime continental free troposphere, while it appears that formic and acetic acids are presumably mainly derived from natural sources in spring and summer. The total contribution of formic and acetic acids to free acidity is, on average, less than 15-20%. Contrary to major ions which are present in wider concentration ranges and show large variations from one snowfall to the other, HCOOT and CH3COOT are surprisingly stable in acid alpine snow. The only significant deviation of HCOOT and CH3COOT from their mean values (up to 9 and 5 μEq L-1, respectively) are observed in case of Saharan dust transport, when precipitation pH is shifted from acid toward alkaline conditions. These observations suggest a pH partitioning effect between the aqueous and gas phases, formic and acetic acids being dissolved and neutralized as salts in alkaline cloudwater

  11. Coupling of carbon and nitrogen cycles through humic redox reactions in an alpine stream

    NASA Astrophysics Data System (ADS)

    McKnight, D.; Cory, R.; Miller, M.; Williams, M.

    2004-05-01

    Humic substances are a heterogeneous class of moderate molecular weight, yellow-colored bio-molecules present in all soils, sediments and natural waters. Although humic substances are generally resistant to microbial degradation under anaerobic conditions, some microorganisms in soils and sediments can use quinone moieties in humic substances as electron acceptors or as electron shuttles in the microbial reduction of ferric iron. In turn, ferrous iron can reduce nitrate, facilitating the formation of organic nitrogen moieties. Field studies of humic electron shuttling processes can be carried out by characterizing the oxidation state of quinone moieties in humic substances at natural concentrations using fluorescence spectroscopy. We have used fluorescence spectroscopy to show that humic substances are important in electron transport reactions in coastal marine sediments and in the water columns of ice-covered lakes. Gradients in humic redox state may also occur as stream water is exchanged with water in associated hyporheic zones. We conducted a conservative tracer injection experiment in an alpine stream-wetland system located in the Front Range of the Colorado Rocky Mountains. In this system, concentrations of nitrate and dissolved organic carbon both increase with the onset of snowmelt as nitrate deposited in the snowpack is mobilized and DOC is flushed from upper soil horizons. During the tracer experiment, we sampled wells adjacent to the stream and found that lower nitrate concentrations occurred in wells with slower hyporheic exchange and more reduced dissolved humic substances. These results suggest that humic redox shuttling may be an important process linking carbon, nitrogen and iron cycling in watersheds.

  12. Primary dispersal of supraglacial debris and debris cover formation on alpine glaciers

    NASA Astrophysics Data System (ADS)

    Kirkbride, M. P.; Deline, P.

    2009-04-01

    Debris-covered glaciers are receiving increased attention due to the modulation of runoff by supraglacial covers, and to the lake outburst flood hazard at many covered glacier termini. Observed increases in debris cover extents cannot presently be explained in terms of glaciological influences. The supply of englacial debris to the supraglacial zone has previously been understood only in terms of local dispersal due to differential ablation between covered and uncovered ice, for example on medial moraines. Here, we introduce the term primary dispersal to describe the process of migration of the outcrops of angled debris septa across melting, thinning ablation zones. Understanding primary debris dispersal is an essential step to understanding how supraglacial debris cover is controlled by glaciological variables, and hence is sensitive to climatically-induced fluctuation. Three measures of a glacier's ability to evacuate supraglacial debris are outlined: (1) a concentration factor describing the focussing of englacial debris into specific supraglacial mass loads; (2) the rate of migration of a septum outcrop relative to the local ice surface; and (3) a downstream velocity differential between a septum outcrop and the ice surface. (1) and (2) are inversely related, while (3) increases downglacier to explain why slow-moving, thinning ice rapidly becomes debris covered. Data from Glacier d'Estelette (Italian Alps) illustrate primary dispersal processes at a site where debris cover is increasing in common with many other shrinking alpine glaciers. We develop a model of the potential for debris cover formation and growth in different glaciological environments. This explains why glaciers whose termini are obstructed often have steep debris septa feeding debris covers which vary slowly in response to mass balance change. In contrast, at glaciers with gently-dipping debris-bearing foliation, the debris cover extent is sensitive to glaciological change. These findings

  13. Salting our freshwater lakes.

    PubMed

    Dugan, Hilary A; Bartlett, Sarah L; Burke, Samantha M; Doubek, Jonathan P; Krivak-Tetley, Flora E; Skaff, Nicholas K; Summers, Jamie C; Farrell, Kaitlin J; McCullough, Ian M; Morales-Williams, Ana M; Roberts, Derek C; Ouyang, Zutao; Scordo, Facundo; Hanson, Paul C; Weathers, Kathleen C

    2017-04-10

    The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have >1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L(-1)), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue.

  14. Are viruses important in the plankton of highly turbid glacier-fed lakes?

    PubMed Central

    Drewes, Fabian; Peter, Hannes; Sommaruga, Ruben

    2016-01-01

    Viruses are ubiquitous in aquatic ecosystems where they significantly contribute to microbial mortality. In glacier-fed turbid lakes, however, viruses not only encounter low host abundances, but also a high number of suspended mineral particles introduced by glacier meltwaters. We hypothesized that these particles potentially lead to unspecific adsorption and removal of free virus from the plankton, and thus significantly reduce their abundance in this type of lake. We followed the distribution of free virus-like particles (VLP) during the ice-free season across a turbidity gradient in four alpine lakes including one adjacent clear system where hydrological connectivity to the receding glacier is already lost. In the glacier-fed turbid lakes, VLP abundance increased with distance to the glacier, but the highest numbers were observed in the clear lake by the end of August, coinciding with the maximum in prokaryotic abundance. Our results suggest that viral loss by attachment to particles is less important than expected. Nevertheless, the relatively lower variability in VLP abundance and the lower virus-to-prokaryote ratio found in the turbid lakes than in the clear one point to a rather low temporal turnover and thus, to a reduced impact on microbial communities. PMID:27094854

  15. Potential for acid precipitation damage to lakes of the Sierra Nevada, California

    SciTech Connect

    Harte, J.; Holdren, J.; Tonnesson, K.

    1983-04-01

    One of the areas of California potentially sensitive to acidic deposition is the Sierra Nevada, located along the eastern boundary. A report on sensitive areas in North America identifies the Sierra as a region characterized by poorly buffered soils and granite based lakes. The subalpine and alpine lakes in this region share many of the characteristics of lakes adversely affected by acid deposition in other parts of the US and the world. For this investigation selected subalpine lakes of the western slope of the Sierra were chosen for study, to establish baseline water quality which would allow for the identification of chemical and biological changes due to acidic deposition. It was then attempted to simulate the ecosystem stress of increased acidic deposition, particularly in the form of snowmelt, on these systems by performing microcosm experiments in the laboratory. These experiments were particularly concerned with recording changes in concentrations of micronutrients which might be leached from lake sediments with increasing acidification. This phenomenon is particularly important to study in the light of finds on the importance of aluminum leaching in the northeast which was led to toxic effects of biota in Adirondack lakes. 10 references, 3 figures, 1 table.

  16. Are viruses important in the plankton of highly turbid glacier-fed lakes?

    NASA Astrophysics Data System (ADS)

    Drewes, Fabian; Peter, Hannes; Sommaruga, Ruben

    2016-04-01

    Viruses are ubiquitous in aquatic ecosystems where they significantly contribute to microbial mortality. In glacier-fed turbid lakes, however, viruses not only encounter low host abundances, but also a high number of suspended mineral particles introduced by glacier meltwaters. We hypothesized that these particles potentially lead to unspecific adsorption and removal of free virus from the plankton, and thus significantly reduce their abundance in this type of lake. We followed the distribution of free virus-like particles (VLP) during the ice-free season across a turbidity gradient in four alpine lakes including one adjacent clear system where hydrological connectivity to the receding glacier is already lost. In the glacier-fed turbid lakes, VLP abundance increased with distance to the glacier, but the highest numbers were observed in the clear lake by the end of August, coinciding with the maximum in prokaryotic abundance. Our results suggest that viral loss by attachment to particles is less important than expected. Nevertheless, the relatively lower variability in VLP abundance and the lower virus-to-prokaryote ratio found in the turbid lakes than in the clear one point to a rather low temporal turnover and thus, to a reduced impact on microbial communities.

  17. How have the alpine dwarf plants in Yakushima been miniaturized? A comparative study of two alpine dwarf species in Yakushima, Blechnum niponicum (Blechnaceae) and Lysimachia japonica (Primulaceae).

    PubMed

    Shinohara, Wataru; Murakami, Noriaki

    2006-11-01

    Many plant species are miniaturized in the alpine region in Yakushima, Japan. To examine how these alpine dwarf plants are different from their related lowland ones of the same species, we analyzed two phylogenetically distinct species cytologically, genetically and morphologically: one is a fern species, Blechnum niponicum, and the other is an angiosperm species, Lysimachia japonica. The analysis shows that the alpine dwarf and the lowland plants in each of these species do not differ in chromosome number or genetic constitution. The organ-level comparison between the alpine dwarf and lowland plants of B. niponicum shows that the fertile leaf size correlates closely with the sterile one. By contrast, the flower size does not correlate with the leaf size in L. japonica. At the cell level, the leaf size of the alpine dwarf plants of B. niponicum consists of a smaller number of epidermal cells than that of the lowland plants of this species. On the other hand, the smaller leaf size of the alpine dwarf plants of L. japonica depends on both the smaller number and the smaller size of the epidermal cells. We conclude that plant dwarfism in Yakushima shows variation at both the organ and cell levels.

  18. The bacterial community composition of the surface microlayer in a high mountain lake

    PubMed Central

    Hörtnagl, Paul; Pérez, Maria Teresa; Zeder, Michael; Sommaruga, Ruben

    2010-01-01

    The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air–water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 μm) and the underlying water (ULW) (0.2–0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizers. PMID:20528985

  19. 9. GRANT LAKE AND MONO LAKE IN DISTANCE, LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. GRANT LAKE AND MONO LAKE IN DISTANCE, LOOKING NORTHEAST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  20. In-lake Modeling Recommendation Report for Lake Champlain TMDL

    EPA Pesticide Factsheets

    This report describes the recommended modeling approach for the in-lake modeling component of the Lake Champlain TMDL project. The report was prepared by Tetra Tech, with input from the Lake Champlain modeling workgroup. (TetraTech, 2012b)

  1. View of Lake Sabrina Dam and Lake Sabrina from east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam and Lake Sabrina from east ridge showing spillway at photo center, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  2. Crossing historical and sedimentary archives to reconstruct an extreme flood event calendar in high alpine areas

    NASA Astrophysics Data System (ADS)

    Wilhelm, B.; Giguet-Covex, C.; Arnaud, F.; Allignol, F.; Legaz, A.; Melo, A.

    2010-09-01

    Torrential flood hazard is expected to increase in the context of global warming. However, long time-series of climate and gauge data at high-elevation sites are too sparse to assess reliably recurrence times of such events in high mountain areas. Historical documents are an alternative which provide valuable information. However, historic archives are by nature subjective and variable in quality owing to hazard perception and vulnerability according to the banks land-use throughout time. To overcome these limits, natural archives may be used as complementary records. Among the various natural archives lake sediments have the advantage to be continuous records in which particular events are preserved such as earthquakes and especially flood events. Furthermore an objective magnitude of these events can be assessed from the thickness of noteworthy event-triggered deposits. However if the recognition of major event-triggered deposits can be simple, a high-resolution dating of these events is more difficult over the historical period due to a lack of chronological markers. In this paper, we present a sediment record study of a French high alpine lake where an important effort was undertaken to date precisely 56 flood events over the last three centuries from the use of historical archives. The caesium and the lead were measured to detect the fallouts of the Chernobyl accident (1986), the atmospheric nuclear weapons tests (1955-1963) and the use of leaded gasoline which culminated in the 70's. In parallel local and regional historical archives were going through in order to correlate the thickest sediment deposits triggered by major floods and earthquakes with their potential triggering historic events. Thus we were able to associate 12 historic flood and 4 earthquake dates to particular sediment deposits. The resulting flood calendar is very well-constrained thanks to 19 chronological marks over the last 270 years, i.e. one mark by 14 years. This method permitted so

  3. Lake sediment records as earthquake catalogues: A compilation from Swiss lakes - Limitations and possibilities

    NASA Astrophysics Data System (ADS)

    Kremer, Katrina; Reusch, Anna; Wirth, Stefanie B.; Anselmetti, Flavio S.; Girardclos, Stéphanie; Strasser, Michael

    2016-04-01

    Intraplate settings are characterized by low deformation rates and recurrence intervals of strong earthquakes that often exceed the time span covered by instrumental records. Switzerland, as an example for such settings, shows a low instrumentally recorded seismicity, in contrast to strong earthquakes (e.g. 1356 Basel earthquake, Mw=6.6 and 1601 Unterwalden earthquake, Mw=5.9) mentioned in the historical archives. As such long recurrence rates do not allow for instrumental identification of earthquake sources of these strong events, and as intense geomorphologic alterations prevent preservation of surface expressions of faults, the knowledge of active faults is very limited. Lake sediments are sensitive to seismic shaking and thus, can be used to extend the regional earthquake catalogue if the sedimentary deposits or deformation structures can be linked to an earthquake. Single lake records allow estimating local intensities of shaking while multiple lake records can furthermore be used to compare temporal and spatial distribution of earthquakes. In this study, we compile a large dataset of dated sedimentary event deposits recorded in Swiss lakes available from peer-reviewed publications and unpublished master theses. We combine these data in order to detect large prehistoric regional earthquake events or periods of intense shaking that might have affected multiple lake settings. In a second step, using empirical seismic attenuation equations, we test if lake records can be used to reconstruct magnitudes and epicentres of identified earthquakes.

  4. Modeling rates of life form cover change in burned and unburned alpine heathland subject to experimental warming.

    PubMed

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Jarrad, Frith; Hoffmann, Ary A; Vesk, Peter A

    2015-06-01

    Elevated global temperatures are expected to alter vegetation dynamics by interacting with physiological processes, biotic relationships and disturbance regimes. However, few studies have explicitly modeled the effects of these interactions on rates of vegetation change, despite such information being critical to forecasting temporal patterns in vegetation dynamics. In this study, we build and parameterize rate-change models for three dominant alpine life forms using data from a 7-year warming experiment. These models allowed us to examine how the interactions between experimental warming, the abundance of bare ground (a measure of past disturbance) and neighboring life forms (a measure of life form interaction) affect rates of cover change in alpine shrubs, graminoids and forbs. We show that experimental warming altered rates of life form cover change by reducing the negative effects of neighboring life forms and positive effects of bare ground. Furthermore, we show that our models can predict the observed direction and rate of life form cover change at burned and unburned long-term monitoring sites. Model simulations revealed that warming in unburned vegetation is expected to result in increased forb and shrub cover and decreased graminoid cover. In contrast, in burned vegetation, warming is predicted to slow post-fire regeneration in both graminoids and forbs and facilitate rapid expansion in shrub cover. These findings illustrate the applicability of modeling rates of vegetation change using experimental data. Our results also highlight the need to account for both disturbance and the abundance of other life forms when examining and forecasting vegetation dynamics under climatic change.

  5. Quantifying Hydraulic Conductivity and Fluid Pressures in the Alpine Fault Hanging-Wall Using DFDP-2 Data and Numerical Models

    NASA Astrophysics Data System (ADS)

    Coussens, J. P.; Woodman, N. D.; Menzies, C. D.; Teagle, D. A. H.; Sutherland, R.; Capova, L.; Cox, S.; Upton, P.; Townend, J.; Toy, V.

    2015-12-01

    Fluid flow can play an important role in fault failure, due to the influence of pore pressure on effective confining stress and through chemical and thermal alteration of the fault zone. Rocks of the Alpine Fault Zone, both exposed at the surface and recovered in cores, show evidence for significant alteration by fluids. However, the fluid flow regime in the region is poorly constrained and its relationship with the behaviour of the fault is uncertain. In 2014 the Deep Fault Drilling Project (DFDP) drilled the DFDP-2B borehole, penetrating 893 m into the hanging-wall of the Alpine Fault. Prior to drilling, a set of hydrogeological models for the Whataroa Valley region, encompassing the DFDP-2B drill site, were constructed using the modelling software FEFLOW. Models were constructed for a range of plausible hydraulic conductivity structures for the region. They predicted strongly artesian hydraulic heads of 50-150 m above surface elevation and temperatures exceeding 100 °C within 1 km depth in bedrock beneath the DFDP-2 drill site, with the exact hydraulic and thermal gradients dependent on the hydraulic conductivity structure chosen. During the drilling project hydraulic and thermal data from the borehole was collected. This included 33 slug test datasets, carried out at a range of borehole depths throughout the project. Estimates for hydraulic conductivity were obtained by analysis of slug test data. Steady state hydraulic heads for the borehole, across a range of depths, were estimated from the slug test measurements. Depth profiles of hydraulic head show rapid increases in hydraulic head with depth, in line with model predictions. Results show fluid pressures greatly exceeding hydrostatic pressure in the shallow crust, reflecting significant upward flow of groundwater beneath the Whataroa Valley. Hydraulic conductivity estimates provide constraints on the hydraulic conductivity structure of the region. All hydraulic conductivity structures modelled thus far

  6. Sediment analysis to support the recent glacial origin of DDT pollution in Lake Iseo (Northern Italy).

    PubMed

    Bettinetti, Roberta; Galassi, Silvana; Guilizzoni, Piero; Quadroni, Silvia

    2011-09-01

    In the present study, a depth-related distribution of Persistent Organic Pollutants (POPs) in sediments of Lake Iseo, one of the major southern Alpine Italian lakes, is reported in order to further test the hypothesis of melting Alpine glaciers as a secondary source of contamination. In a previous paper, a "glacier contamination hypothesis" was suggested to explain the unexpected contamination of the biota of Lake Iseo, mainly fed by the Alpine melting ice. The sediment core analyses covered around the last 50 years. The organic matter profile evaluated as a Loss-On-Ignition percentage indicated transition of the basin from an oligotrophic to a mesotrophic status at around the early 1970s, but there was no evidence of the shift to eutrophy in the 1980s. Among DDTs, pp'DDE was the predominant metabolite, accounting on average for 79.4% of the total DDT concentrations and ranging from 6.4 to 447.5 ng g(-1)d.w. PCBs ranged from 5.0 to 163.7 ng g(-1)d.w. The maximum PCB concentrations were found in sediment layers corresponding to the 1970s when the highest production and use of these compounds occurred in Italy. In contrast, concentrations of DDTs showed a sharp increase from the early 1990s, long after their agricultural use was banned in Italy. This delayed pollution provides support for the hypothesis that the recent retreat of glaciers represents a secondary pollution source for old pesticides that were stored in the ice at the time of their use in agriculture.

  7. Different responses of alpine plants to nitrogen addition: effects on plant-plant interactions

    PubMed Central

    Wang, Jun; Luo, Peng; Yang, Hao; Mou, Chengxiang; Mo, Li

    2016-01-01

    The different responses of plant species to resource stress are keys to understand the dynamics of plant community in a changing environment. To test the hypothesis that nitrogen (N) increase would benefit N competitive species, rather than N stress-tolerant species, to compete with neighbours, we conducted an experiment with neighbour removal, N addition and soil moisture as treatments in an alpine grassland on the southeastern Tibetan Plateau. Both growths and competitive-response abilities (CRA, the ability to tolerate the inhibitory effects of neighbors) of Kobresia macrantha, Polygonum viviparum and Potentilla anserine in wet site were facilitated by N addition, conversely, both growths and CRA of Taraxacum mongolicum and Ligularia virgaurea were suppressed by N addition, indicating that the responses of CRA of target species under N addition were consistent with the N utilization strategies of them. Moreover, the facilitative effects of N addition on competitive-response abilities of Kobresia macrantha and Polygonum viviparum were not found at the dry site, illustrating that soil moisture can alter the changes of neighbour effects caused by N addition. Life strategy of dominant species in plant community on the undisturbed southeastern Tibetan Plateau may shift from N stress-tolerant to N competitive, if the N increases continuously. PMID:27922131

  8. Origins of rainbow smelt in Lake Ontario

    USGS Publications Warehouse

    Bergstedt, Roger A.

    1983-01-01

    The first rainbow smelt (Osmerus mordax) to enter Lake Ontario were probably migrants from an anadromous strain introduced into New York's Finger Lakes. Since the upper Great Lakes were originally stocked with a landlocked strain from Green Lake, Maine, subsequent migration to Lake Ontario from Lake Erie makes Lake Ontario unique among the Great Lakes in probably having received introductions from two distinct populations.

  9. Speciation in ancient lakes.

    PubMed

    Martens, K

    1997-05-01

    About a dozen lakes in the world are up to three orders of magnitude older than most others. Lakes Tanganyika (East Africa) and Baikal (Siberia) have probably existed in some form for 12-20 million years, maybe more. Such lakes can have different origins, sizes, shapes, depths and limnologies, but, in contrast to short-lived (mostly post-glacial) lakes, they have exceptionally high faunal diversity and levels of endemicity. A multitude of and processes accounting for these explosive radiations have recently been documented, most of them based on particular groups in certain lakes, but comparative research can detect repeated patterns. No special speciafion mechanism, exclusive to ancient lakes has been demonstrated, although cases of ultra-rapid speciation have been documented. Extant diversity results not by simple accumulation, but by a complex process of immigration, speciation and extinction.

  10. Hydrology of Indiana lakes

    USGS Publications Warehouse

    Perrey, Joseph Irving; Corbett, Don Melvin

    1956-01-01

    The stabilization of lake levels often requires the construction of outlet control structures. A detailed study of past lake-level elevations and other hydologic date is necessary to establish a level that can be maintained and to determine the means necessary for maintaining the established level. Detailed lake-level records for 28 lakes are included in the report, and records for over 100 other lakes data are available in the U.S. Geological Survey Office, Indianapolis, Ind. Evaporation data from the four Class A evaporation station of the U. S. Weather Bureau have been compiled in this report. A table showing the established legal lake level and related data is included.

  11. Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland) - analysis and comparison with Lago di Lugano and other lakes.

    PubMed

    Putyrskaya, Victoria; Klemt, Eckehard; Röllin, Stefan

    2009-01-01

    This paper describes the behaviour of 137Cs in Lago Maggiore and other pre-alpine lakes as a consequence of atmospheric nuclear weapons testing fallout and the fallout from the nuclear accident in Chernobyl. It presents data on the 137Cs distribution in tributaries, lake water, bottom sediments and reveals the role of (137)Cs as a marker of the sedimentation processes. The run-off of 137Cs from the watershed to the lake is described with a simple compartment model. Measurements of the activity concentration of (137)Cs in sediments are compared with the output of a model (diffusion-convection type) which describes the input of 137Cs into and its vertical distribution within the sediment. Varying sedimentation rates (0.05-0.90g(cm2y)(-1)) in Lago Maggiore are compared with data of other authors. Sedimentation rates and total distribution coefficients (of about 10(5) Lkg(-1)) in Lago Maggiore are discussed and compared with those of Lago di Lugano, Lake Constance, and Lake Vorsee.

  12. Jurassic Lake T'oo'dichi': a large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau

    USGS Publications Warehouse

    Turner, C.E.; Fishman, N.S.

    1991-01-01

    Recognition of alkaline, saline-lake deposits in the Morrison Formation significantly alters interpretations of depositional environments of this formation, and it also has important implications for paleoclimatic interpretation. Late Jurassic climate was apparently much more arid than had previously been thought. In fact, sedimentologic evidence suggests that the lake basin was typically dry for extended periods and enjoyed only brief wet intervals. This conclusion has important consequences for environmental interpretation of the habitat that was favorable for large herbivorous dinosaurs, which thrived in the Late Jurassic. -from Authors

  13. David Morrison on Lake Vostok

    NASA Video Gallery

    Dr. David Morrison discusses the implications of research possibilities at Lake Vostok, one of the largest subglacial lakes located over two miles beneath the ice in Antarctica. The lake has been c...

  14. Alpine climate treatment of atopic dermatitis: a systematic review.

    PubMed

    Fieten, K B; Weststrate, A C G; van Zuuren, E J; Bruijnzeel-Koomen, C A; Pasmans, S G M A

    2015-01-01

    Climate therapy has been used for decades in the treatment of atopic dermatitis (AD), but evidence of its effectiveness has not yet been assessed systematically. A systematic literature search in Medline, Embase, and the Cochrane library was performed to identify all original studies concerning alpine climate treatment. The risk of bias of individual studies was assessed following the Cochrane Handbook, and level of evidence was rated using GRADE guidelines. Fifteen observational studies were included concerning 40 148 patients. Four studies concerning 2670 patients presented follow-up data over a period of 1 year. Disease activity decreased in the majority of patients during treatment (96% of n = 39 006) and 12-month follow-up (64% of n = 2670). Topical corticosteroid use could often be reduced or stopped during treatment (82% of n = 1178) and during 12-month follow-up (72% of n = 3008). Quality assessment showed serious study limitations, therefore resulting in a very low level of evidence for the described outcomes. Randomized controlled trials designed with a follow-up period including well-defined patient populations, detailed description and measurement of applied interventions during climate therapy and using validated outcomes including cost-effectiveness parameters, are required to improve the evidence for alpine climate therapy as an effective treatment for patients with AD.

  15. In Review (Geology): Alpine Landscape Evolution Dominated by Cirque Retreat

    NASA Technical Reports Server (NTRS)

    Oskin, Michael; Burbank, Doug

    2005-01-01

    Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.

  16. Solar driven climate changes recorded in Holocene alpine speleothems

    NASA Astrophysics Data System (ADS)

    Frisia, S.; Borsato, A.; Preto, N.; McDermott, F.

    2003-04-01

    Inter-annual variations in the growth rate of three annually laminated speleothems from Grotta di Ernesto, an